
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Software Science

Vladislav Zakharenkov, 176478 IAPM

MULTI-OBJECTIVE FEATURE SELECTION

FOR ANOMALY-BASED INTRUSION DETECTION

BY MEANS OF GENETIC ALGORITHMS

Master’s Thesis

Supervisor: Margarita Spitšakova, PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond
Tarkvarateaduse instituut

Vladislav Zakharenkov, 176478 IAPM

MULTIKRITERIAALNE TUNNUSTE VALIMINE

ANOMAALIA-PÕHISE

SISSETUNGI TUVASTAMISEKS

GENEETILISTE ALGORITMIDEGA

Magistritöö

Juhendaja: Margarita Spitšakova, PhD

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials,

references to the literature and the work of others have been referred to. This thesis

has not been presented for examination anywhere else.

Author: Vladislav Zakharenkov

07.05.2019

1

Abstract

The main goal of this thesis is to develop a multi-objective Genetic Algorithm-

based search method that employs a combined filter-wrapper approach to feature

selection and produces well-performing solutions in the domain of anomaly-based

intrusion detection.

Anomaly-based intrusion detection is a binary classification task, which splits

all observations from computer logs into nominals and anomalies. Classification

model performance and complexity depends greatly on the number of features used.

Feature selection is a multi-objective optimization task that focuses on finding the

minimum number of features that provide maximum performance, as described by

domain-specific criteria.

The results of the present thesis combine the robustness of filter approaches with

the thoroughness and versatility of Genetic Algorithms in a multi-phase search

method, which is benchmarked against traditional techniques on a classical intrusion

detection dataset. The proposed algorithm outperforms compared approaches and

delivers efficient solutions and exceptional explanatory power.

This thesis is written in English and is 61 pages long, including 7 chapters,

23 figures and 11 tables.

2

Kokkuvõte

Multikriteriaalne tunnuste valimine anomaalia-põhise

sissetungi tuvastamiseks geneetiliste algoritmidega

Antud töö põhieesmärk on välja arendada genetiilisel algoritmil põhinev otsingu-

meetod, mis kasutab tunnuste valimisel kombineeritud filter-wrapper lähenemist

ning toodab edukalt toimivaid lahendusi anomaalia-põhise sissetungi tuvastamiseks.

Anomaalia-põhine sissetungi tuvastamine on binaarne klassifitseerimisülesanne,

mis jagab kõik arvuti logide kirjed nominaalideks ja anomaaliateks. Klassifitseer-

imismudeli jõudlus ja keerukus tugevalt sõltuvad kasutatud tunnuste arvust. Tun-

nuste valimine on multikriteriaalne optimeerimisülesanne, mis fokusseerub maksi-

maalse mudeli jõudluseks vajalikku minimaalse tunnuste arvu leidmisele domeen-

spetsifiliste kriteeriumite järgi.

Antud töö tulemuseks on multifaasiline otsingumeetod, mis kombineerib filter-

lähenemise robustsust geneetiliste algoritmide põhjalikkuse ja mitmekülgsusega.

Otsigumeetodit võrreldatakse tranditsiooniliste lähenemistega klassikalise sissetungi

tuvastamise andmestiku põhjal. Väljapakutud algoritm ületab võrreldavate lähene-

misviiside jõudluse ning omab erakordset seletusvõimet.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 61 leheküljel, 7 peatükki,

23 joonist, 11 tabelit.

3

Contents

1 Introduction 8

1.1 Anomaly-based intrusion detection 8

1.2 Feature selection . 9

1.3 Problem statement . 10

1.4 Objectives . 11

1.5 Related work . 11

1.6 Outline . 12

2 Theoretical background 13

2.1 Feature selection methods . 13

2.1.1 Filters . 13

2.1.2 Embedded . 15

2.1.3 Wrappers . 15

2.2 Evolutionary Algorithms . 17

2.2.1 Genetic Algorithms . 17

2.2.2 Genetic operators . 17

2.2.3 NSGA-II . 18

2.2.4 µ + λ Evolution Strategy . 19

3 Methodology 20

3.1 Strategy . 20

3.2 Concerns . 21

3.2.1 Computational cost . 21

3.2.2 Scalability . 21

3.2.3 Handling of mixed and missing data 21

3.3 Validation . 22

3.3.1 Metrics . 22

3.3.2 Baseline . 23

3.3.3 Evaluation of component contribution 23

3.3.4 Comparison with other methods 23

3.4 Tools . 24

4

4 Proposed method 25

4.1 Algorithm overview . 25

4.2 Filter phase . 26

4.2.1 Removing features . 27

4.2.2 Ranking features . 27

4.3 Wrapper phase . 28

4.3.1 Initial population . 28

4.3.2 Fitness function . 29

4.3.3 Genetic operators . 29

4.3.4 Search parameters . 30

5 Experiment and analysis 31

5.1 Setup . 31

5.1.1 Benchmark dataset . 31

5.1.2 Search parameters . 32

5.2 Results . 33

5.2.1 All attacks . 33

5.2.2 DoS . 35

5.2.3 Probe . 36

5.2.4 R2L . 37

5.2.5 U2R . 38

5.3 Selected features . 40

5.4 Analysis of selected features . 41

5.5 Convergence on selected features . 44

6 Discussion 48

7 Conclusion 51

5

List of Figures

2.1 Filter feature selection . 13

2.2 Embedded feature selection . 15

2.3 Wrapper feature selection . 16

4.1 Proposed search algorithm . 25

4.2 Filter phase of the proposed algorithm 26

4.3 Wrapper phase of the proposed algorithm 28

5.1 NSL-KDD informative feature correlation matrix 32

5.2 Performance comparison on all attacks 34

5.3 Performance comparison on DoS attacks 35

5.4 Performance comparison on Probe attacks 36

5.5 Performance comparison on R2L attacks 37

5.6 Performance comparison on U2R attacks 39

5.7 Two most frequently selected features 41

5.8 Three fundamental network traffic features selected 41

5.9 Increased separation in problem area using selected error rate feature 42

5.10 Clustering of selected counter features 42

5.11 Increased separation in counter feature clustering 43

5.12 General tendency towards clustering using selected features 43

5.13 Genetic drift in the proposed method on all attacks 44

5.14 Genetic drift in the proposed method on DoS attacks 45

5.15 Genetic drift in the proposed method on Probe attacks 46

5.16 Genetic drift in the proposed method on R2L attacks 47

5.17 Genetic drift in the proposed method on U2R attacks 47

6

List of Tables

4.1 Filtered feature rankings for NSL-KDD when targeting all attacks . 27

4.2 Search parameters of the proposed algorithm 30

5.1 Values of search parameters used to obtain reported results 32

5.2 Grouping of obtained solutions on all attacks 34

5.3 Key performance scores on all attacks 34

5.4 Key performance scores on DoS attacks 36

5.5 Key performance scores on Probe attacks 37

5.6 Grouping of obtained solutions on R2L attacks 38

5.7 Key performance scores on R2L attacks 38

5.8 Key performance scores on U2R attacks 39

5.9 Selected feature subsets for key performance scores 40

7

1. Introduction

There is a great demand for anomaly detection systems in monitoring, analysis and

security. Practical solutions are needed where traditional rule-based approaches fail

or get too costly to implement. In such cases, machine learning is the go-to approach.

Performance of machine learning applications depends greatly on the efficiency of

feature engineering and feature selection processes. While the former deals with

extracting all sorts of useful information from the data, the latter makes it possible

to improve the predictive power of the model, bring down its computational cost and

help simplify the system in general. This is achieved by focusing on a select subset

of features that are relevant only to the specific task at hand. The automation and

improvement of these processes is a subject of active research.

1.1 Anomaly-based intrusion detection

Anomalies (outliers, deviants, discordants, abnormalities) are data points which

deviate so much from the remaining data that one can suspect them to have been

generated by a different mechanism [1]. As such, they carry important informa-

tion about the underlying generative process and provide useful application-specific

insights [2].

Anomaly detection is the task of recognizing observations in any given dataset as

either nominals or anomalies. This can be done by scoring each data point according

to some metric that quantifies the point’s level of abnormality or by performing

straightforward binary classification [2]. The former is easily converted into the

latter by setting a confidence threshold [3].

Anomaly detection is of particular interest for security systems, where malicious

activities can be picked up due to their unusual behavior patterns, instead of having

to be checked against pre-defined signatures [4], [5]. Computer logs, being a rich

source of information about the system state, provide the best data for learning

to successfully detect anomalies in real-time [5], [6]. In this context, nominals cor-

respond to patterns and behaviors that are expected to be present in the data,

8

e.g. normal system operations, whereas anomalies serve as a catch-all for various

unexpected events, such as software and hardware failures, exploits, attacks and

malfunctions [7]. In security, malicious activities are dealt with by intrusion detec-

tion systems [4], [5]. Anomaly-based intrusion detection systems are often deployed

alongside other security tools [4], [5], [8], in concordance with the goals of redun-

dancy and diversity [9].

1.2 Feature selection

Features (predictors, independent variables, input variables) are separate measurable

characteristics of observed data points [10]. Feature selection is a combinatorial

optimization task with two primary objectives: maximizing model performance and

minimizing the number of features used [11]. With computer logs, one may need to

consider additional optimization criteria. For any given task, processing irrelevant

features may induce unnecessary load on the underlying systems – high throughput

combined with the cost of aggregate calculations, database queries and interactions

with external systems can cause significant slowdowns. Relying on as few features as

possible helps not only improve model performance, but potentially reduce coupling

between systems.

Since most applications share similarities in architecture and process flow, there

are quite a few widely used features (e.g. event counters, state flags, IP addresses,

network protocol specifics) that have universal explanations regardless of domain,

whereas some features can be challenging to make sense of even for human experts.

Domain specifics and feature characteristics may need to be accounted for when per-

forming feature selection. Additional criteria directly affect the nature of obtained

solutions.

Depending on the data being labeled fully, partially or not at all, feature selection

algorithms can be supervised, semi-supervised or unsupervised, respectively [12].

Unsupervised feature selection is the most challenging problem, since no ground

truth is present. Supervised feature selection, while being the easiest possible setting,

is still NP-hard [13]. This thesis focuses on the supervised setting. Beyond data

concerns, approaches to feature selection can be split into three main categories:

filter, wrapper and embedded methods [11], [12], [13]. Their differences and specifics

are addressed in section 2.1 of this document.

9

1.3 Problem statement

Feature selection is inherently a multi-objective task [14] – besides conflicting primary

objectives of maximum performance and minimum number of features, many other

criteria can be introduced, such as feature explainability, acquisition cost, etc. Multi-

objective problems are characterized by a set of optimal non-dominated solutions,

none of which can excel each other in one aspect without falling behind in another

[15]. Having access to such a set of solutions allows human experts to adequately

evaluate trade-off possibilities when making the final decision regarding the most

suitable selection of features [16].

However, the overwhelming majority of feature selection methods are only capable

of solving single-objective tasks [14], [17]. In most traditional feature selection algo-

rithms, multiple objectives are reduced to a single objective via a weighted sum

or other means of scalarization, which can effectively render optimal solutions un-

reachable through heuristic search [15], [18]. Moreover, single-objective algorithms

usually yield a single solution, leaving no room for decision making and greatly

limiting further capabilities for analysis. While the applicability and efficiency of

existing single-objective algorithms is not under question, the bigger picture suggest

that a shift towards multi-objective methods is the preferred way of tackling the

problem of feature selection [19].

When the desired output is a set of solutions, it follows naturally that the expected

problem solving method should operate on sets of solutions as well. Population-

based approaches leverage the advantages of assessing many candidate solutions at

once in order to build towards better performance [16]. Evolutionary Computation

is a set of population-based global optimization techniques that draw heavily from

biology and are notably well-suited for multi-objective problems [15], [16]. Genetic

Algorithms in particular offer a paradigm which befits the binary task of feature se-

lection exceptionally well [20]. A number of Evolutionary Algorithms are designed

for multi-objective optimization [21], [22], [23], [24] and have been successfully ap-

plied to feature selection in the domain of intrusion detection [25], [26], [27].

A recent survey on Evolutionary Computation approaches to feature selection

[14] has indicated a clear lack of combined multi-objective approaches; at the same

time, pure filter and wrapper methods in evolution continue to produce positive

results. This thesis aims to contribute towards research of combined evolution-based

approaches within the domain of anomaly-based intrusion detection.

10

1.4 Objectives

The main goal of this thesis is to develop a multi-objective Genetic Algorithm-

based search method that employs a combined filter-wrapper approach to feature

selection and produces well-performing solutions in the domain of anomaly-based

intrusion detection. This involves data processing and handling, evaluation of sepa-

rate methods and their combinations, design and implementation of a multi-phase

algorithm, experimental parameter tuning, result validation and subsequent analysis

using relevant baselines and benchmarks.

1.5 Related work

A variety of multi-objective Evolutionary Computation techniques have been suc-

cessfully used for feature selection [14], most notable being Particle Swarm Opti-

mization [25], [28], Differential Evolution [22], Genetic Algorithms [21], [29] and

more general Evolutionary Algorithms [21], [26], [30]. All of these fall into the

population-based paradigm, but differ by the nature of the phenomena that they

mimic and the way solutions are represented and operated upon [15], [16], [31].

Given that these algorithms are probabilistic and their results are highly sensitive

to search parameters, all of these works differ in the way of handling the process

of evolution. Apart from the obvious minimization of feature count, the metrics

used for fitness functions which evaluate solutions also differ greatly. These include:

accuracy [29], error rate [28], true positive rate, true negative rate [26], false pos-

itive rate [25], area under the receiver operating characteristic curve [30], entropy

and mutual information based metrics [21], as well as multi-stage combinations [28],

[30], weighted sums [25] and method-specific fitness metrics. Approaches to training

and validation tend to diverge, and actual selected features are not always reported.

This makes direct comparison of evolutionary methods quite difficult. However, the

ultimate performance metrics always belong to the confusion matrix and reflect the

predictive power of the classifiers trained on the selected subset of features.

The two works that have the most relevance to this thesis deal with feature se-

lection for intrusion detection using KDD’99 and NSL-KDD datasets [32], [33], [34]

(classical benchmarks in this field, described in section 5.1 of this document) and

employ Particle Swarm Optimization and an Evolutionary Algorithm, respectively

[25], [26]. Both report excellent results, with EFSA-CP algorithm claiming accuracy

over 90% with as few as 4 features [25] and MOEA-LS over 98% accuracy with an

average of 9 features [26].

11

1.6 Outline

This thesis is organized in the following way. Chapter 2 introduces the core concepts

behind the topics of feature selection, Evolutionary and Genetic Algorithms, as well

as provides some details of techniques that this thesis relies on. Chapter 3 focuses

on the research method, covering the general strategy, main concerns, approach to

validation and selection of tools. Chapter 4 provides a detailed explanation of the

proposed search algorithm and rationale behind its design. Chapter 5 is dedicated

to the experiment, followed by thorough analysis of obtained results. Chapter 6

assesses the performance, general properties and the future of the proposed method,

leading to the conclusion of this thesis.

12

2. Theoretical background

The core techniques that are principal to this thesis are drawn from mature and well

established scientific fields with a wide and deep body of knowledge. This chapter

provides a brief overview of feature selection methods and the basic theory behind

Evolutionary and Genetic Algorithms, focusing on the explanation of methods that

are used in this thesis in more detail.

2.1 Feature selection methods

Feature selection methods can be categorized into three groups: filter, wrapper and

embedded methods. Combined or hybrid approaches aim to take advantage of both

filter and wrapper methods [35], [36]. Usually these are filter-wrapper combinations.

2.1.1 Filters

Filter methods select features with the highest utility based on some quantifiable

metric. This allows to reduce the number of features by casting aside the ones

that score below a certain threshold. This approach is the most computationally

lightweight, since no model training is involved. The various criteria in use are

entropy, information gain, mutual information [37], [38], [39], [40], Gini index, Fisher

score [41], correlation [42], consistency [43], [44], permutation tests [45] and Relief-

based algorithms [46], to name a few.

Figure 2.1: Filter feature selection

13

Since filter methods are not dependent on any learning algorithm, they produce

more general feature subsets and are highly versatile. It is important to note that

some statistics cannot capture feature interactions unless specifically adapted for

multivariate analysis [38], [47].

The three filter methods used in this thesis are mutual information, Fisher score,

and Pearson’s χ2 test. These techniques are described in more detail below.

Mutual Information

In information theory, entropy is the self-information of a random variable. Mutual

information is a measure of the amount of information one random variable contains

about another. It is a special case of a more general relative entropy, which is a

measure of the distance between two probability distributions [48].

Fisher score

The Fisher score of a feature is calculated as the ratio of the explained variance

between different classes to the unexplained variance within these classes [41]:

Fi =

∑
pj(µi − µij)

2∑
pj · σ2

ij

(2.1)

where:

• pj is the fraction of observations belonging to the j-th class,

• µi is the overall mean of the i-th feature,

• µij is the mean of the i-th feature in the j-th class,

• σij is the variance of the i-th feature in the j-th class.

Pearson’s χ2 test

Pearson’s χ2 test is a criterion which measures the likelihood of a given set of obser-

vations to have been generated by a purely random process [49]. This is achieved

by comparing the frequency distributions of the tested variables to a theoretical

random distribution. The more the joint frequency distribution differs from the one

expected to occur by chance, the more likely it is that the variables in question are

statistically dependent.

14

2.1.2 Embedded

Embedded methods incorporate feature selection into the process of learning, where

feature utility is evaluated based on its effect on the objective function of the model

[50]. This means that the actual feature selection method itself cannot be separated

from model training.

Figure 2.2: Embedded feature selection

Embedded techniques include decision trees, neural networks, lasso methods and

others [51], [52], [53], [54]. The computational complexity of embedded methods is

entirely dependent on the complexity of the trained models. Since the qualities of

selected features are very model-specific, embedded methods are less robust than

the filter approach, but offer an advantage by capturing feature interactions.

Decision tree classifier

Decision tree classifiers are prediction models constructed by recursively partitioning

a data set and fitting a simple model to each partition [55]. While building the tree,

the features that are the best at partitioning the data set are selected. The resulting

model can be easily visualized and explained, so the decision tree can be seen as a

white box example of an embedded feature selection method. It is computationally

cheap and versatile.

2.1.3 Wrappers

Wrapper methods use concrete learning algorithms to evaluate performance on can-

didate feature subsets, meaning that at each search step a model is trained, evaluated

and discarded. This is the most computationally expensive approach, since it al-

ways involves training multiple models. However, wrapper methods lead to higher

performance scores in practice [35], [56]. Wrapper results are tuned to the specific

model type and therefore inherit the properties of the chosen learning algorithm. As

a rule, they excel at capturing feature interactions and in general perform a more

exhaustive search than other approaches.

15

Figure 2.3: Wrapper feature selection

The efficiency of the search algorithm becomes critical in wrapper methods [57],

since the number of candidate feature subsets is 2N − 1, where N is the number of

features. Naturally, classical search algorithms like Best-First Search [58], Branch

and Bound [59], [60], [61] and others have been used extensively [35]. Among the

most widely used wrapper methods are numerous variations of sequential selection

[62] and floating search [63] algorithms with top-down and bottom-up approaches.

To select relevant features, some wrapper methods use contrast variables – randomly

constructed features with similar properties, but without any relation to the ground

truth [64], [65]. Metaheuristics like Simulated Annealing [35], GRASP [66], tabu

search [67] have also been successfully applied to feature selection.

Recursive feature elimination

Recursive feature elimination is a greedy top down approach that begins with a

full set of features and then proceeds to iteratively drop features using internal

explanations of embedded models until the desired number of features remains.

This method has the advantage of assessing the entire set of available features and

with each step eliminating the one feature that has the least effect on model training

errors [53].

Sequential forward floating selection

Sequential forward floating selection is a semi-greedy bottom up approach that starts

off with an empty subset and then proceeds to add features with the highest signifi-

cance, assess their performance, then conditionally drop the least relevant ones until

no further improvements can be made. It continues to do so (float back and forth,

hence the name of the algorithm) until it arrives to the desired subset size [63].

16

2.2 Evolutionary Algorithms

When dealing with optimization problems like feature selection, there is no known

orderly way to arrive to an optimal solution within a reasonable time limit. Such

problems call for the use of metaheuristics [16], [68]. Evolutionary Algorithms are

population-based metaheuristics that use the theory of evolution as their guiding

principle. In this approach, survival of the fittest becomes the driving force towards

better solutions [68]. This makes evolutionary techniques particularly robust and

suited for optimization tasks, as they deal well with large search spaces[15], [16],

[69].

An Evolutionary Algorithm starts off with the initial population of data structures

that represent candidate solutions. Each generation, individual solutions from the

population are scored using a fitness function. Better performing solutions have

a higher chance of being selected for reproduction and making it through to the

next generation, while the remaining solutions with poor performance are more

likely to be discarded. The offspring are generated by tweaking operations, which

manipulate and alter the parent data structures to create new solutions [16]. The

cycle continues for any number of generations until the stopping criteria is met.

Although such iterative processes tend to converge on local optima [15], evolution

is capable of jumping between local optima thanks to the variations introduced to

the offspring solutions by tweaking operators [68].

2.2.1 Genetic Algorithms

Genetic Algorithms are the best-known and most utilized subset of Evolutionary

Algorithms. These search methods are based on the mechanics of natural selec-

tion and natural genetics [68]. Here, the underlying data structures that represent

individual solutions are strings of genes. Classically these are bit strings, but it is

possible to use more complex elements if gene expressions are not binary. This rep-

resentation allows a variety of assisting methods and heuristics to be used in order

to ensure the diversity of the population and better solution quality [20], [23].

2.2.2 Genetic operators

In order to simulate the mechanics of natural processes, Genetic Algorithms use the

following genetic operators: selection, crossover and mutation. The former serves as

a guide to the evolution process, while the latter two facilitate genetic changes in

the population.

17

Selection

The selection operator imitates the reproductive selection process and dictates which

of the individuals get chosen for reproduction. There are many ways to achieve this.

The simplest selection operator is truncation, where only the top n individuals out

of the whole population are able to reproduce. Tournament selection divides the

population into groups of n individuals and selects the best out of each group.

This can be a recursive process in order to arrive to the desired number of selected

individuals. Fitness-proportionate and ranked selection are probabilistic operators

that tip the odds in favor of better-performing individuals [70].

Crossover

The crossover operator generates an offspring solution by mimicking the sexual re-

production of two parents. This involves an exchange of spliced genetic material

between parent individuals. The level of splicing is usually determined in advance.

This can be single-point crossover, where parents contribute large continuous chunks

of genes to their offspring, multi-point for smaller chunks, or uniform crossover for

a random distribution of individual parent genes. [71].

Mutation

Mutation is a straightforward operator that imitates DNA copying errors found in

nature [20]. As a result, a random gene of an individual is modified. This process is

highly dependent on gene expression possibilities. In case of bit strings, this usually

means simple gene activation or deactivation.

2.2.3 NSGA-II

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a multi-objective algo-

rithm most notable for its selection operator, which is capable of fast and efficient

selection of individuals with two important properties: good spread of solutions and

better convergence near the true Pareto-optimal front compared to other methods

[23]. For the task of feature selection, both of these properties are very important.

NSGA-II achieves great results by combining non-dominated sorting of individuals

by fronts with crowding tournament selection if a certain front is underrepresented,

which leads to the preservation of the spread in the final selection of individuals.

It is important to note that NSGA-II successor, NSGA-III [24], has been shown

to perform better as the number of objectives grows higher [72], but at the time of

writing no official implementation has been released.

18

2.2.4 µ + λ Evolution Strategy

µ + λ Evolution Strategy is an Evolutionary Algorithm that operates in the fol-

lowing way. At the beginning of each generation, µ parents generate λ offspring.

The population then consists of µ + λ individuals whose fitnesses are assessed and

µ survivors with the highest fitness scores are chosen to proceed into the next gen-

eration. This strategy is characterized by a fixed bracket for parent and offspring

portions of the population and forces the parents to compete with their offspring for

as long as it takes to develop better solutions [16]. This is an aggressive approach

with associated risks of premature convergence, but it ensures that the resulting

solutions are strictly better than the initial population or at least as good in case

evolution completely fails to find any solutions that outperform the initial parent

population.

19

3. Methodology

Given the NP-hard nature of the problem tackled in this thesis and the wide variety

of techniques and tools that are available, it is important to make use of best prac-

tices and avoid pitfalls in order for the method to produce consistent results. This

chapter describes the development strategy with which the solution to the prob-

lem is approached, including the main concerns, the validation procedure and the

selection of tools.

3.1 Strategy

Genetic Algorithms are characterized by sensitivity to search parameters and their

performance is greatly affected by the choice of genetic operators, so the taken

approach is highly experimental and involves a lot of fine-tuning [15], [16], [20].

The chosen strategy is therefore an iteration between phases of empirical and expe-

rimental research: first, results are acquired and validated, upon analysis further

improvements are made, experimental setup is adjusted and the process is repeated

until the thesis objectives are met in full.

A combined filter-wrapper approach brings about the advantages and shortcom-

ings of both techniques, so these need to be carefully considered and addressed. The

robustness offered by filter methods needs to be balanced with model-dependent

wrapper results to utilize the best of both worlds. The common combined approach

is to use filter and wrapper methods in sequence so that filter results inform the

following search performed by the wrapper [56]. Ensemble filter approaches have

been shown to achieve good performance [73]. Genetic Algorithms, being stochastic

methods, excel as wrapper phases [14].

Multi-objective feature selection puts an emphasis on producing a set of possible

solutions that allow human experts to make informed decisions by evaluating trade-

offs in various objectives. This means that the arrived-to solutions are not just about

absolute improvements in performance, but provide some leeway for potential trade-

offs, as well as help gain more information about the nature of the data in question.

20

Given that the produced set of solutions is non-dominated, it follows that some

degradation in certain objectives is to be expected for the benefit of flexibility and

informedness. Naturally, an acceptability threshold can be set to any desired level

by human experts in charge of assessing the results.

3.2 Concerns

Provided the specifics of the problem and available methods, it is important not

only to leverage their advantages, but to avoid the common pitfalls that accompany

individual techniques or arise from their combinations. This section describes con-

crete concerns regarding chosen methods that have to be addressed in order for the

algorithm to be viable and applicable in practice.

3.2.1 Computational cost

Wrapper methods are very computationally expensive, so bringing down training

and evaluation time is a topmost priority. The use of computational resources

directly translates into financial cost of operation, so strict control over computation

time is needed. This can be achieved by choosing a cheap and efficient learning

algorithm, namely the decision tree classifier, as well as adjusting the complexity

of trained models and imposing limitations on the total number of models trained

during search. These adjustments also help avoid overfitting the classifiers.

3.2.2 Scalability

Scalability lies at the core of feature selection, especially in wrapper and embedded

approaches: increase in the number of features and observations leads to nonlinear

growth of model complexity and training time. Parallelization and distributed pro-

cessing are essential parts of any viable modern approach that involves heavy com-

putation. Evolutionary Algorithms offer many ways of hierarchical chaining and

parallelization of search processes, including multiple parallel runs on a distributed

network and sharing of solutions between different instances [16].

3.2.3 Handling of mixed and missing data

Data obtained from computer logs comes in all forms: numeric (both continuous

and discrete) and categorical (both ordinal and nominal). Data preprocessing and

transformation is often a necessary step, but the desired algorithm must attempt to

weaken these requirements and aim be as data type-agnostic as possible.

21

In the experimental setting, one can assume that there is no invalid or missing

data. Naturally, this is different from actual live environments encountered in prac-

tice, so this needs to be accounted for. The choice of decision tree classifier as the

learning algorithm makes it possible to handle all types of data (including missing

values) without issues or significant loss of predictive power [55].

3.3 Validation

In machine learning, even the slightest discrepancies in the validation process can

lead to wildly inaccurate results. Therefore, strict adherence to best validation

practices is called for. In order to perform any kind of analysis and draw conclusions

that are based in reality, it is necessary to apply the same validation process to all

compared methods.

For all results presented in this thesis, feature selection is performed using the

training part of the dataset, then the selected features subsets are evaluated sepa-

rately using 5-fold cross-validation on the test part of the dataset. The same classifier

is used for validation. For wrapper methods, the classifiers used for feature selection

in training are matched as well. This is done to eliminate inconsistencies in the

experiment that may affect the reported results.

3.3.1 Metrics

The two metrics selected for performance evaluation are detection rate and false

alarm rate. The choice of metrics follows the trends in ranking metrics used for eva-

luation of intrusion detection systems [74]. Together, these provide a clear overview

of model performance. Detection rate (DR), also known as true positive rate, is

defined as follows:

DR =
True Positives

True Positives+ False Negatives
(3.1)

False alarm rate (FAR), also known as false positive rate, is defined as follows:

FAR =
False Positives

False Positives+ True Negatives
(3.2)

Best-regarded performance is a combination of high detection rate with low false

alarm rate. High detection rate ensures the desired level of provided security, which

is a must-have for intrusion detection systems, while a low false alarm rate mini-

mizes the waste of human expert effort that is associated with investigating reported

anomalies. The balance between the two accurately reflects the real-life practical

challenges of intrusion detection.

22

Besides being good indicators of model performance, optimization of these two

metrics is a conflicting task. Maximizing detection rate is as easy as classifying

all observations as anomalies, but that would maximize false alarm rate as well.

Analogously, ignoring anomalies would minimize false alarm rate, but the detection

rate would then plummet. The inherent conflict makes these two a good choice of

objectives for optimization to test the capabilities of the proposed method.

3.3.2 Baseline

The baseline chosen for solution viability is model performance on all features with

1% loss adjustment for each metric, which is a very conservative threshold. This

minuscule loss is accepted to entertain the possibilities of trade-offs, where a slight

decrease in one objective can bring about a disproportionate increase in another.

3.3.3 Evaluation of component contribution

Since the developed algorithm uses a combined approach, it is important to evalu-

ate individual phases and components of the algorithm separately and assess their

usefulness. This is done to check whether the combination of these methods offers

any improvement in performance. It is essential to identify the contribution of each

technique to the final performance and ensure that this contribution is quantifiably

positive.

3.3.4 Comparison with other methods

Algorithm performance is compared with four filter methods: entropy, mutual in-

formation, Fisher score and Pearson’s χ2 test (last three are used in the filter phase

of the algorithm) and two wrapper methods: recursive feature elimination and se-

quential forward floating selection. These wrappers are guided by the preferences of

the decision tree, which helps distinguish between the natural behavior of the clas-

sifier and the efficiency of evolution-based search that is based on that classifier’s

performance.

Results are also compared with the ones reported in existing literature. Compar-

ison based solely on performance cannot be considered conclusive, since the means

of training (if such is performed) and validation may differ between the compared

experiments. Of course, general performance levels are expected to be the same.

On the other hand, a comparison of selected feature subsets between different studies

will provide a higher degree of objectivity and help verify and validate the obtained

results.

23

3.4 Tools

The programming language of choice is Python due to its popularity for machine

learning applications and the author’s experience and familiarity with it. There are

a number of established and well-tested libraries that use the C language under the

hood with minimal overhead. For scientific calculations, NumPy [75] and SciPy [76]

libraries are used. Quick data manipulation is done using pandas [77]. Standard ma-

chine learning algorithm implementations are available through scikit-learn [78] and

MLxtend [79]. For Evolutionary Algorithms, DEAP [80] is chosen for its efficiency,

maturity, extensibility, parallelization and multiprocessing capabilities.

24

4. Proposed method

This thesis proposes a multi-objective Genetic Algorithm for feature selection that

uses a combined approach of filter-wrapper implemented in a sequence. This chapter

provides a detailed explanation of the proposed search algorithm, documents its

structure, capabilities, limitations and the rationale behind the implementation.

4.1 Algorithm overview

The proposed algorithm consists of two phases: filter and wrapper. It takes a full

set of features as input and outputs a set of non-dominated feature subsets that fall

within a specified size range. The algorithm is designed to benefit from the speed

and versatility of bivariate filter methods, while applying reinforcement learning

techniques to capture multivariate interactions at a preset computational cost.

Figure 4.1: Proposed search algorithm

25

4.2 Filter phase

The inspiration for the filter phase was drawn from filter ensemble rankings pre-

sented in the uEFS (univariate ensemble feature selection) method [73]. The core

idea behind the taken approach is the following. Since filters base their selection

of features on one specific criterion, the top N features chosen by the filter are all

bound to have similar properties to some extent. When this is coupled with bi-

variate filters’ inability to capture complex feature interactions, relying on a single

filter output when the desired feature properties are unknown can cause potentially

important features to be ranked so low as to be excluded altogether. Combining fil-

ter outputs and basing feature selection on ensemble ranking helps overcome these

issues and end up with a more diverse range of features to work with. However,

significant disagreements between ensemble members can lead to much lower scores

for otherwise relevant and useful features. The proposed approach deals with this

issue by using a ranking table instead of a single harmonized ensemble ranking list.

Figure 4.2: Filter phase of the proposed algorithm

During the filter phase, features are filtered and ranked. Since every filter method

makes specific assumptions about the type of data, automatic transformation is

performed to satisfy the filter requirements. Mutual information can handle both

continuous and discrete data, while Fisher score cannot handle categorical variables

and the χ2 test works with discrete data only.

26

4.2.1 Removing features

The filter phase is careful not to remove any features besides the ones that carry

zero information. Thus, only constant features are dropped at this stage. Effective

discarding of low-ranking features is delegated to further stages of the algorithm and

depends on the supplied search parameters. The mechanism is elaborated upon in

section 4.3.1.

4.2.2 Ranking features

The primary purpose of the filter phase is to produce feature rankings that will

inform the search performed in the wrapper phase. An example of produced rankings

is presented below. The disagreement between different filter methods is apparent.

Pearson’s χ2 test Fisher score Mutual information

service same srv rate src bytes
src bytes dst host same srv rate service
flag logged in flag
dst bytes dst host serror rate diff srv rate
diff srv rate serror rate dst host diff srv rate
same srv rate dst host srv serror rate same srv rate
dst host srv count srv serror rate count
dst host same srv rate dst host diff srv rate dst host srv count
logged in diff srv rate dst host same srv rate
dst host diff srv rate dst host rerror rate dst bytes
dst host serror rate urgent dst host serror rate
count rerror rate serror rate
serror rate protocol type dst host srv serror rate
dst host srv serror rate dst host srv rerror rate srv serror rate
srv serror rate srv rerror rate dst host same src port rate
dst host count num shells logged in
dst host srv diff host rate srv diff host rate dst host srv diff host rate
srv diff host rate dst host srv diff host rate dst host count
dst host srv rerror rate root shell srv count
dst host same src port rate flag protocol type
srv count su attempted dst host rerror rate
protocol type is guest login srv diff host rate
rerror rate dst host same src port rate dst host srv rerror rate
dst host rerror rate num access files rerror rate
srv rerror rate wrong fragment srv rerror rate
duration land duration
wrong fragment num file creations hot
hot dst host srv count wrong fragment
num root count num compromised
num compromised hot is guest login
num access files dst host count num root
is guest login service num failed logins
num file creations num compromised num file creations
su attempted num root num access files
root shell num failed logins root shell
num failed logins srv count su attempted
num shells duration num shells
land dst bytes land
urgent src bytes urgent

Table 4.1: Filtered feature rankings for NSL-KDD when targeting all attacks

27

4.3 Wrapper phase

The wrapper phase is a multi-objective µ + λ Genetic Algorithm wrapped around

a decision tree classifier. The results of filter phase are effectively embedded into

the initial state of the wrapper and this information transfer allows the algorithm

to pick up the search where the filters left off. The benefit here is three-fold. First,

the robustness of filter-based solutions is carried over to the wrapper phase without

the need to perform costly model training. Second, this process has straightforward

parametrization and makes the search more flexible and focused. Third, the solu-

tions found in the wrapper phase are guaranteed to be better or at least as good as

the ones that are compiled based on feature rankings alone.

Figure 4.3: Wrapper phase of the proposed algorithm

4.3.1 Initial population

The wrapper phase begins with the initial population being seeded by subsets of top

Nmin toNmax features based on each filter’s ranking without duplicates. The practice

of initial population seeding serves the goal of fast-tracking the evolution process,

thus allowing a more thorough exploration of the search space that surrounds the

initially seeded solutions [16], [68]. The main associated risk with this technique is

premature convergence on local optima if the population is not diverse enough. This

can be counteracted by introducing a significant degree of uniform randomness into

the genetic material. The mechanism selected for that purpose are the mutation

and crossover operators, which are described in section 4.3.3.

28

4.3.2 Fitness function

Each generation, two comparatively small stratified bootstrapped samples are pro-

duced to evaluate the population. The entire population is then evaluated on the

same pair of samples in order to facilitate fair competition between individuals. For

each individual feature subset in the population, a shallow decision tree classifier

is trained on the first sample and tested on the second. The tuple containing the

resulting performance (detection rate and false alarm rate) together with the size of

the subset are assigned to the individual as its fitness score. If the solution performs

well enough to live through multiple generations, it is re-evaluated every time and

its fitness is averaged across all runs.

The evolution process does not seem to favor cached cross-validated scores as indi-

vidual fitnesses, since this causes the classifiers to overfit and perform consistently

worse than filter-based solutions. Although caching saves a lot of computational

resources, it does not produce positive results. Stratified bootstrapped samples,

however, always present a fresh view of the data and can be controlled in terms of

size and fraction of anomalies. This makes the underlying learning process poten-

tially infinite, but adjustable in terms of computation time and complexity.

4.3.3 Genetic operators

During each generation, µ parents create λ offspring. The offspring is produced by

either mutating one parent individual or performing crossover of two parents. The

probability of mutation versus crossover is parameterizable.

Selection

The proposed algorithm utilizes the advantages of NSGA-II selection operator to

select the top µ Pareto-optimal individuals for reproduction, turning that fraction

of the population into the reproductive elite that directs the search towards more

optimal solutions.

Mutation

The proposed algorithm uses a highly active probabilistic mutation operator that

randomly gains or loses a feature. The operator is parameterizable, so it can be

configured to exhibit bias towards gaining or losing features. Since natural selection

favors smaller feature subsets and this can quickly lead to premature convergence,

the mutation operator is set up to add random features more often than to remove

them.

29

Crossover

The crossover operator follows tertiary logic based on the similarity of parent indi-

viduals as expressed by Jaccard index (for two sets, size of their intersection over

the size their of union). If parents’ Jaccard index is high, meaning that they have a

lot in common, then the offspring inherits all the common genes of the parents. If

parents’ Jaccard index is low, meaning that the two parents are very different, the

offspring inherits their symmetrical difference. The rationale behind this operation

is as follows. In a multi-objective landscape, some individuals may survive thanks to

their specialization on a single objective. Naturally, different objectives may favor

different sets of genes. When the operator encounters drastically different solutions

that are both eligible for reproduction, it fuses their differences together in hopes

of producing a new individual that is well-adapted to both objectives. For interme-

diate Jaccard index values, the offspring inherits a random subset of features from

both parents. Threshold levels for operator behavior are parameterizable as well.

4.3.4 Search parameters

Genetic Algorithms are known for having many parameters that are used to direct

the search procedure. The following table provides a summary of parameters for the

proposed search algorithm.

Parameter Value range Description

Nmin [1 .. N] Minimum number of features to select

Nmax [1 .. N] Maximum number of features to select

µ N+ Size of the parent fraction of the population

λ N+ Size of the offspring fraction of the population

Pcrossover v mutation [0 .. 1] Probability of crossover versus mutation

Pmutation growth [0 .. 1] Mutation bias towards growth versus loss

Jhigh [0 .. 1] High threshold for Jaccard index in crossover

Jlow [0 .. 1] Low threshold for Jaccard index in crossover

S N+ Size of the samples used for fitness evaluation

ν (0 .. 1) Fraction of anomalies in evaluation samples

M N+ Number of fitness evaluations to perform

Table 4.2: Search parameters of the proposed algorithm

Reaching M evaluations serves as the stopping criterion for the evolution process.

30

5. Experiment and analysis

The proposed method is put through a proper validation process using relevant

benchmarks. This chapter documents the conducted experiment and its results.

Initial observations are followed by a detailed analysis of the method’s performance

and the solutions it produced.

5.1 Setup

All calculations were performed using Python version 3.6.8 on consumer-grade hard-

ware equipped with a quad-core processor clocked at 3.60 GHz and 8 GB of memory.

Decision trees of depth 3 and 6 are used to train and test, respectively.

5.1.1 Benchmark dataset

For anomaly detection, it is especially important that the data is drawn from real-

world generating processes or modeled to reflect them as close as possible [7]. It is

also extremely important that no data leakage occurs [81]. For these reasons, the

dataset chosen for performance evaluation is NSL-KDD [33], [34], an improved ver-

sion of the classical KDD’99 dataset [32], a known benchmark for intrusion detection

with countless references in existing literature on the subject.

NSL-KDD contains information about network connection traffic described by

41 features (34 numerical, 7 categorical). 39 different attack classes are presented in

the dataset, collectively describing four major attack groups: denial of service (DoS,

10 classes), port scanning and probing (Probe, 6 classes), remote to local access

(R2L, 16 classes), and user to root privilege escalation (U2R, 7 classes).

The dataset comes pre-split into training and test subsets. These are made up of

125973 and 22544 non-redundant records, respectively. There are 22 attack classes

in training and 37 in test, so over one third of attacks are concealed until validation.

The feature selection methods evaluated in this thesis use a reduced training subset

which consists of 25192 records and contains 21 attack classes. Reported results are

cross-validated feature subset performances on the previously unseen test subset.

31

Figure 5.1: NSL-KDD informative feature correlation matrix

5.1.2 Search parameters

The following search parameters were used to obtain the results reported in this

thesis. These values were arrived to by a combination of best practices and rough

approximations, as well as ad hoc measures and experience-based tuning. A brief

summary of rationales for the choices of specific values is provided in the table below.

Parameter Value Rationale

Nmin 2 Smallest possible subset size to warrant heuristic search

Nmax 19 Permissive upper bound, roughly halves the search space

µ Auto 3 · (Nmax −Nmin + 1), as described in section 4.3.1

λ 4 · µ Very modest population size, proportional exploration

Pcrossover v mutation 0.20 Soften the disruptiveness of crossover, focus on mutation

Pmutation growth 0.75 Bias towards feature gain, as explained in section 4.3.3

Jhigh 0.80 Tuned based on performance

Jlow 0.20 Tuned based on performance

S 4000 Sample approx. 95% of training data over 10 generations

ν 0.5 Perfectly balanced training set

M 5000 Results in max. 1 minute wall time for wrapper phase

(on given parameter and classifier combination)

Table 5.1: Values of search parameters used to obtain reported results

32

5.2 Results

The presented results were obtained by taking the best of 10 runs on 5 separate

target groups: all attacks (56.9% of the dataset), DoS (33.1%), Probe (10.7%), R2L

(12.2%) and U2R (0.9%). The best run was decided based on the highest achieved

scores, number and nature of solutions, as well as overall quality of the population.

No solution aggregation took place, even though it would have improved the achieved

results. This was done in order to demonstrate the efficiency of the method when

run as a single process, which is the typical setting for benchmarking.

Since the number of obtained solutions is too high to process by hand, they are

automatically sorted into four categories of interest:

• Superior (performing better than all features on all objectives)

• Acceptable (above established baseline, 1% loss allowed on each metric)

• High DR (detection rate is higher than the baseline)

• Low FAR (false alarm rate is lower than the baseline)

The last two groups provide important general information about features that

perform well on individual objectives. They are useful in analysis of feature roles

and characteristics and can help guide further exploration of the data at hand.

In order to better assess the efficiency of the method, it is important to track

and distinguish between seeded solutions that were created during the filter phase

and evolved solutions at the end of the wrapper phase. Ideally, these sets should

not have any solutions in common. A significant overlap between the two can be

interpreted as a failure of the proposed algorithm’s wrapper phase to improve on the

output of filters, especially if initial solutions end up being superior. Overlaps with

solutions reported by other studies are favorable, as such feature subsets usually

possess properties of local optima based on the heuristics of the compared method.

5.2.1 All attacks

The main validation test is an evaluation of general performance when all attacks

are treated as anomalies. Under this setting, class proportions are more or less

balanced.

Out of the initial 43 seeded solutions, 142 non-dominated ones evolved, with

2 survivors remaining from the initial population.

33

Figure 5.2: Performance comparison on all attacks

Two small solutions from the filter phase have survived the evolution process and

landed in the acceptable range. The proposed method succeeded in producing a

large number of superior and acceptable solutions of various sizes. The best ones

are between 5 and 8 features.

Initial Evolved

Superior 0 8

Acceptable 2 54

Table 5.2: Grouping of obtained solutions on all attacks

DR FAR Number of features Selection method

97.5% 6.3% 41 All features

98.2% 6.2% 5 Proposed method

97.6% 5.0% 8 Proposed method

96.6% 4.4% 2 χ2, MI

Table 5.3: Key performance scores on all attacks

34

When targeting all attacks and taking both objectives into consideration, the

evolutionary approach performs better than all other presented methods. Mutual

information and χ2, being core components of the proposed method, come very close.

They obtain similar scores on separate metrics and produce a 2-feature solution that

boasts the lowest false alarm rate. Recursive feature elimination can produce results

that perform better than the proposed method in terms of detection rate for large

feature subsets, but not as well as evolution when false alarms are concerned. The

proposed method has a clear advantage over compared wrappers when looking at the

smallest possible subsets, with the mean size of acceptable solutions being 4 features,

the exact subset size at which performances of other wrappers begin to deteriorate

sharply.

5.2.2 DoS

This target group focuses only on denial of service attacks, which constitute one

third of the dataset, with the remaining observations treated as nominals. Out

of 53 initially seeded solutions, 120 non-dominated ones evolved, with 1 survivor.

No superior solutions have emerged, but a single acceptable subset of 4 features was

found during the wrapper phase.

Figure 5.3: Performance comparison on DoS attacks

The performance on all features is already excellent, so it is extremely diffi-

cult to improve upon, but still possible to reduce the number of features used.

35

As far as trade-offs go, a 9-feature solution with a considerably high detection rate

and a three-fold decrease in false alarms was produced.

DR FAR Number of features Selection method

99.1% 1.0% 41 All features

99.2% 1.5% 4 Proposed method

97.1% 0.3% 9 Proposed method

Table 5.4: Key performance scores on DoS attacks

Under these circumstances, the proposed method performs only marginally better

than filters on smaller subsets, but is considerably more successful at both objectives

when compared to standard wrapper approaches.

5.2.3 Probe

This target group is aimed at probing and surveillance attacks, which constitute

roughly one tenth of the dataset. Out of the initial population of 51, 108 non-

dominated solutions evolved, with 1 survivor. 5 acceptable solutions were found, all

with a relatively high feature count: 12, 13, 14. As with the DoS attack group, no

superior solutions emerged.

Figure 5.4: Performance comparison on Probe attacks

36

The decline in performance of all compared methods as the number of features

grows smaller suggests objective difficulty of this target group. However, the pro-

posed algorithm has produced a 4-feature solution that shows a clear advantage over

the achievements of all other techniques on that subset size, including the filters that

are used in the first stage of the proposed algorithm.

DR FAR Number of features Selection method

94.9% 0.9% 41 All features

94.6% 1.4% 12 Proposed method

93.2% 1.2% 4 Proposed method

Table 5.5: Key performance scores on Probe attacks

5.2.4 R2L

This target group isolates remote to local access attacks, roughly one eighth of the

dataset. Out of the initial 54 seeded solutions, 105 evolved, with 1 survivor. 5 are

superior, showing a clear improvement in detection rates and marginally lower false

alarm rates. 10 fall into the acceptable range with improved detection but more

proneness to cause false alarms.

Figure 5.5: Performance comparison on R2L attacks

37

On this target group, mutual information filter performs very well, yielding a

superior 2-feature solution. The proposed method builds on that foundation by

finding 4 more superior feature subsets and a number of acceptable candidates.

Initial Evolved

Superior 1 4

Acceptable 0 10

Table 5.6: Grouping of obtained solutions on R2L attacks

It is apparent that filters contribute a great deal to the success of the proposed

approach. Even though the Fisher score performs notably poorly on this particular

target group and it can be seen to affect the overall results, significant improvements

in performance are achieved during the wrapper phase. The proposed method still

yields higher detection rates on the smallest feature subsets, which contrasts with

pure wrapper approaches - recursive feature elimination is holding a steady score

at first, but fails as the number of features falls below 5. The entropy-based filter

displays consistently good scores all the way down to 7 features and in this case

rivals the proposed algorithm in terms of performance.

DR FAR Number of features Selection method

77.7% 0.6% 41 All features

88.8% 0.5% 11 Proposed method

87.3% 0.3% 3 Proposed method

85.0% 0.6% 2 MI

91.2% 2.1% 4 Proposed method

Table 5.7: Key performance scores on R2L attacks

5.2.5 U2R

This target group deals with the least represented type of attacks - user to root

privilege escalations. These make up a mere 0.9% of the dataset. This setting is

particularly difficult due to the heavy class imbalance.

Out of the initial 54 solutions inherited from the filter phase, 46 new ones evolved

with no survivors. The proposed method produced 5 superior solutions.

38

Figure 5.6: Performance comparison on U2R attacks

The overall performance on this target group is very poor. Since the false alarm

rate is virtually null for all methods, detection rate serves as the deciding metric.

All compared approaches, both filter and wrapper, fail rapidly in that respect as

the number of features goes down. The exception is the χ2 filter, which scores

consistently near the baseline. Informed by this filter’s initial solutions, the proposed

algorithm finds feature subsets that display even better performance in the given

setting, boosting detection rates without causing more false alarms.

DR FAR Number of features Selection method

45.8% 0.08% 41 All features

50.3% 0.08% 5 Proposed method

45.8% 0.05% 3 Proposed method

Table 5.8: Key performance scores on U2R attacks

In general, performance results for all groups are in line with those found in rele-

vant literature [33], [34], [82], [83], [84] with the poor performance on U2R explained

by the nature of the chosen classifier, since similar setups report a comparable per-

formance drop as well. The results can be therefore considered valid.

39

5.3 Selected features

One of the advantages of the proposed approach is the output of multiple good

solutions at once. This greatly helps with analysis and subsequent settlement on

the final feature subset, since much more informed decisions can be made.

Target group Selected features Selection method

All attacks count, dst bytes, dst host srv count, Proposed method
service, src bytes (5)

count, diff srv rate, dst bytes, Proposed method
dst host rerror rate, dst host srv count, hot,
service, src bytes (8)

service, src bytes (2) χ2, MI

DoS diff srv rate, rerror rate, service, src bytes (4) Proposed method

count, diff srv rate, dst host diff srv rate, Proposed method
dst host same srv rate, dst host serror rate,
dst host srv count, same srv rate, src bytes,
wrong fragment (9)

Probe count, diff srv rate, dst bytes, Proposed method
dst host rerror rate, dst host same srv rate,
dst host serror rate, dst host srv count,
dst host srv serror rate, flag, serror rate,
service, srv diff host rate (12)

diff srv rate, dst bytes, service, src bytes (4) Proposed method

R2L count, diff srv rate, dst host same srv rate, Proposed method
dst host srv count, logged in, num access files,
root shell, same srv rate, service, src bytes,
su attempted (11)

count, service, src bytes (3) Proposed method

service, src bytes (2) MI

count, hot, protocol type, service (4) Proposed method

U2R dst bytes, num file creations, serror rate, Proposed method
service, src bytes (5)

num compromised, num file creations, Proposed method
src bytes (3)

Table 5.9: Selected feature subsets for key performance scores

It is apparent that the most important features are src bytes, dst bytes, service,

count, diff srv rate, and dst host srv count. Note the presence of group-indicative

features like dst host rerror rate (Probe) and hot (R2L) in the 8-feature subset that

was selected for all attacks by the proposed method. For U2R, num file creations

is an important feature. On the whole, selected features are in agreement with the

results reported in existing literature [25], [34], [82], [83], [84], [85], [86].

40

5.4 Analysis of selected features

Since the selected feature subsets are quite small, visual analysis can be performed.

The most frequently occurring pair of features is (src bytes, service).

Figure 5.7: Two most frequently selected features

There is no linear separability between nominals and anomalies, but a large iso-

lated cluster is present. dst bytes allows to separate some of the border regions.

Figure 5.8: Three fundamental network traffic features selected

41

Further segregation can be achieved by projecting onto dst host rerror rate.

Figure 5.9: Increased separation in problem area using selected error rate feature

Two selected features, count and dst host srv count, form a large cluster, but there

is a large amount of mixing around the border areas.

Figure 5.10: Clustering of selected counter features

42

dst host rerror rate is able to achieve separation in the problematic border areas.

Figure 5.11: Increased separation in counter feature clustering

Figure 5.12: General tendency towards clustering using selected features

After visual analysis, it is clear that the proposed method selected useful features.

43

5.5 Convergence on selected features

As previously mentioned, it is important to assess the overlap between the feature

subsets produced during the filter phase with the evolved solutions. This helps

measure the level of inter-phase contribution, identify the source and importance of

selected features and get a deeper understanding of the performed search process

and the associated challenges. For these purposes, genetic drift, i.e. relative feature

frequencies between the initial and evolved feature subsets, are analyzed.

Figure 5.13: Genetic drift in the proposed method on all attacks

On all attacks, out of the 9 key features, 6 had a significant presence in the initial

population and 1 was barely represented. The evolution has considerably amplified

dst bytes and dst host rerror rate and generated a strong presence for previously

nonexistent group-specific features hot and num file creations. It has also consi-

derably downplayed correlated features that occurred in the initial population, thus

resolving the issue that accompanies the chosen filter methods. All non-zero features

are represented in the evolved solution set to some extent, so the proposed method’s

output is rich with information. This helps to better understand the problem land-

scape and perform more rigorous analysis using outputs from multiple runs.

44

Figure 5.14: Genetic drift in the proposed method on DoS attacks

For the DoS attack group, all of the important features are already present in

the initial population. The wrapper dampens a number of irrelevant features and

boosts signature denial of service features, such as count and wrong fragment.

The evolution on DoS attacks also leads to some questionable features being

encouraged, most likely picked up in an attempt to improve on already very good

performance. A closer look at the results reveals that a number of these features are

stepping stones towards a solution with a marginally better detection rate. However,

a highly active feature num compromised ended up not contributing to the accepted

solution, yet it has a very strong presence in the gene pool.

The explanation for this becomes apparent when the evolved population is grouped

by features and compared in detail. Early on in the evolutionary process, this fea-

ture has been randomly attached to a well-performing solution via mutation, adding

a slight edge to its performance. Then, via uniform crossover, it was combined with

very successful features into a new unique breed of solution, managing to secure a

place among the reproductive elite for long enough to increase its concentration in

the gene pool. It was later rendered obsolete by better solutions, but at that point,

speciation has already occurred. These kinds of evolutionary mechanisms may lead

to improvement of outcomes, and in this case num compromised has played its role.

45

Figure 5.15: Genetic drift in the proposed method on Probe attacks

The genetic drift on Probe attacks reflects significant changes in the population,

with dst bytes, dst host rerror rate and some others being boosted by evolution,

and the frequency of relevant src bytes, service, dst host srv count declining twofold,

suggesting reorganization of importances and active search underway.

The same is true for R2L attacks, but to a lesser degree – the frequencies of most

important features are more or less in balance. Semantically related features such

as root shell, num shells, num access files and su attempted naturally emerge during

the wrapper phase, contributing to the superior solution. See next page for graph.

For U2R attacks, 8 features become extinct, with 5 more on the way, indicating

that the evolution took a different direction from what was initially seeded. A

disproportionate increase in root shell and num compromised can be observed. An

examination of the evolved solutions indicates that these two features occur in the

majority of the population, predominantly in tandem. Since the pair contributes to

a superior 5-feature solution, but is not needed in another 5-feature solution that

performs even better, it can be concluded that an early domination of the gene pool

has occurred, similarly to the case with DoS attacks. Here, this was caused by the

lack of diversity in samples presented to the classifier, which also explains the low

overall performance scores. See next page for graph.

46

Figure 5.16: Genetic drift in the proposed method on R2L attacks

Figure 5.17: Genetic drift in the proposed method on U2R attacks

47

6. Discussion

Based on the results of the conducted experiments, and the comparison of the ob-

tained results not only with other techniques but with individual components of the

proposed algorithm, it can be concluded that the approach taken in this thesis has

been successful. The various properties of the proposed method, both positive and

negative, need to be taken into consideration in order to map out the best use cases

and identify ares for further improvement.

The proposed method can be seen to outperform pure filter and wrapper app-

roaches, especially when selecting smaller feature subsets. This is thanks to three

components: the filter-based information embedded into the initial genetic mate-

rial, the stochastic search procedure that follows, and its ability to perform multi-

objective optimization. The algorithm produces a wide selection of solutions in a

relatively short time, during which it manages to investigate a larger portion of the

search space compared to traditional wrapper methods by using small bootstrapped

samples for evaluation. This allows it to abandon clearly poor candidates (which

constitute the majority of the search space) without having to train on full data,

with the added benefit of producing fresh datasets ad infinitum. Ever-changing

evaluation samples serve as a safeguard for the feature selection process against

spontaneous overfitting that may occur in the chosen classifier.

Using bootstrapped samples to re-evaluate the entire population on each genera-

tion is definitely a rewarding technique that the proposed method cannot do without,

but it becomes progressively wasteful for long runs if there is a population with a

high proportion of veterans that have seen most of the data already. Even though

any desired level of caching can be implemented, small bootstrapped samples will

cumulatively cost more in terms of evaluation efforts than using all of the data at

once. This is due to the nature of sampling with replacement, where one needs to

draw roughly 3 times more samples than the size of the original data to ensure that

each observation has been sampled with approx. 95% probability. However, seeing

how this technique helps avoid the dangers associated with the chosen classifier and

evaluates unfit solutions at a lesser cost, this trade-off is more than welcome.

48

The contribution of filters to the efficiency of this method cannot be understated:

randomly seeded populations with the same search parameters fail to perform as

well as the proposed multi-phase algorithm. The ensemble-like approach to ranking-

based seeding makes it possible to use any number of filters or even manual rankings

to initialize wrapper search without forcing consensus. In the case of filters chosen

for this thesis, Fisher score seems to perform with the least consistency out of the

three, but during the course of experiments it has proved to be an important member

of the ensemble, since it introduces a vital portion of informed diversity into the

initial frontier of explored solutions, helping to avoid homogeneity and premature

convergence.

The instability of reported filter performances has three main causes: their failure

to account for feature interactions, the embedded feature selection method of the

decision tree classifier used for training and evaluation, and the data transforma-

tion that takes place in order to satisfy various filter requirements. Filter-based

feature ranking is not an accurate depiction of optimal feature subsets, but a simple

assessment of individual features. The forced introduction of ordinality to nomi-

nal features can create some confusion in data-sensitive filters. When the internal

mechanism of the classifier is in discord with the given criterion, poor performance

follows. These are expected and known drawbacks of the corresponding methods.

Although the proposed algorithm improves on the results of the filter phase by

means of evolution, a poor initial population can be disruptive to the entire method,

serving as a setback instead of boosting its progress, especially when the algorithm

has limited time to produce results. This is typical of all population-based app-

roaches [16]. Naturally, as uniform randomness is introduced to the genetic material

via mutation, the process will recover and advance towards better solutions, but the

initial damage will have been done. It is questionable as to which combination of fil-

ters would produce a backward population like that, but in order to circumvent this

unlikely scenario, preliminary verification of filter-based solutions can be performed

to gauge their potential impact.

With evolutionary approaches naturally favoring parallelization, the proposed al-

gorithm is designed for maximal control over the explored search space and the

complexity of performed computations, which is critical when dealing with NP-

hard problems due to their enormous size. This degree of reconfigurability makes

it possible to address the time factor and tailor the algorithm to run efficiently on

a distributed network of machines with different computational capabilities. The

tools selected for implementation enable this with very little additional code.

49

The output of the proposed algorithm not only provides one with the means

of performing fast and efficient feature selection, but allows a detailed and tho-

rough analysis of the problem domain, feature characteristics and their interactions.

Even at modest population sizes and basic objectives, such as the ones used in

this thesis, the explanatory power and the quality of solutions contained within

non-dominated sets of solutions is unmatched by traditional single-objective feature

selection methods.

There are many ways to improve on the proposed method. Three prospects for

future work spring to mind. The first one is making the algorithm adaptive in a

variety of aspects. Allowing dynamic reconfiguration during the search procedure

based on intermediate results, backtracking to previous states, automatically esti-

mating convergence and using more intricate fitness evaluation techniques can all be

found in many successfully applied Evolutionary Algorithms and will only enhance

the speed and thoroughness of performed search, minimizing some of the weaknesses

associated with stochastic approaches. The second undertaking would be to devise

and employ more powerful genetic operators in order to fully leverage domain know-

ledge and available heuristics by incorporating them into the process of evolution.

As demonstrated in this thesis, the choice of genetic operators serves as the driving

force behind the wrapper phase and plays a key role in the way search is performed.

The third avenue for future work would be to focus on the development of analytical

tools and metrics to accompany the method, making it possible to explore, map and

explain the problem domain with speed and efficiency that is sought after in practice

when tackling challenging problems.

50

7. Conclusion

The aim of this thesis was to develop a Genetic Algorithm-based search method

for multi-objective feature selection, applicable in the domain of anomaly-based

intrusion detection. The main motivation was to realize the high potential of multi-

objective methods using combined filter-wrapper feature selection techniques, a com-

bination that was shown in recent literature surveys to be poorly explored. The

proposed method was designed, its results were validated and benchmarked on a

classical intrusion detection dataset against traditional feature selection methods.

The obtained results demonstrated the method’s effectiveness and aligned with the

ones reported in relevant literature.

The main concerns were computational cost and scalability of the method, as well

as its ability to handle mixed data. For these purposes, the algorithm was designed to

be easily configurable to match any desired depth, breadth and duration of search.

The proposed approach combines the robustness of filter selection methods with

the thoroughness and versatility of Genetic Algorithms. It is guided by multiple

objectives and finds sets of non-dominated Pareto-optimal solutions, which bring

great flexibility and informedness to the final decision made by the end user.

In conclusion, all of the objectives set forth in this thesis have been successfully

accomplished. The proposed approach manages to address all of the main concerns

that were raised. It augments the strengths of used components’ while softening

their weaknesses and isolates flaws to less likely scenarios that can be circumvented

with proper planning and procedures. Naturally, it cannot completely eliminate

drawbacks that are characteristic of the methods themselves, but provides high

performance, efficient solutions and exceptional explanatory power.

51

Acknowledgments

I would like to thank my supervisor Margarita Spitšakova for her guidance and

strategical advice, without which the core ideas of this thesis would not have been

generated; Sven Nõmm, who has provided useful feedback which addressed impor-

tant aspects of this work; Ivan Senilov, for sharing his experience and practical

knowledge of machine learning. Last, but not least, I would like to thank my

friends and family, especially my mother and father – for their undying support

and encouragement.

52

Bibliography

[1] Hawkins, D. M. Identification of Outliers. Monographs on applied probability

and statistics. 1980.

[2] Aggarwal, C. C. Outlier Analysis. 2013.

[3] Ishida, T., Niu, G., Sugiyama, M. Binary Classification from Positive-

Confidence Data. In Advances in Neural Information Processing Systems 31,

pages 5917–5928. 2018.

[4] Garćıa-Teodoro, P., Dı́az-Verdejo, J., Maciá-Fernández, G., Vázquez, E.

Anomaly-based network intrusion detection: Techniques, systems and chal-

lenges. Computers & Security, 28(1):18 – 28, 2009.

[5] Jyothsna, V., Rama Prasad, V. V., Munivara Prasad, K. A Review of Anomaly

based Intrusion Detection Systems. International Journal of Computer Appli-

cations, 28:26–35, 2011.

[6] Du, M., Li, F., Zheng, G., Srikumar, V. DeepLog: Anomaly Detection and

Diagnosis from System Logs through Deep Learning. In ACM Conference on

Computer and Communications Security (CCS), 2017.

[7] Emmott, A. F., Das, S., Dietterich, T., Fern, A., Wong, W.-K. Systematic Con-

struction of Anomaly Detection Benchmarks from Real Data. In Proceedings

of the ACM SIGKDD Workshop on Outlier Detection and Description, ODD

’13, pages 16–21, 2013.

[8] Maza, S., Touahria, M. Feature Selection Algorithms in Intrusion Detection

System: A Survey. KSII Transactions on Internet and Information Systems,

12:5079–5099, 2018.

[9] Littlewood, B., Strigini, L. Redundancy and Diversity in Security. In Computer

Security – ESORICS 2004, pages 423–438, 2004.

[10] Bishop, C. M. Pattern Recognition and Machine Learning (Information Science

and Statistics). 2006.

53

[11] Guyon, I., Elisseeff, A. An Introduction to Variable and Feature Selection. The

Journal of Machine Learning Research, 3:1157–1182, 2003.

[12] Miao, J. and Niu, L. A Survey on Feature Selection. Procedia Computer Science,

91:919–926, 2016.

[13] Tang, J., Alelyani, S., Liu, H. Feature selection for classification: A review,

pages 37–64. 2014.

[14] Xue, B., Zhang, M., Browne, W. N., Yao, X. A Survey on Evolutionary Com-

putation Approaches to Feature Selection. IEEE Transactions on Evolutionary

Computation, 20(4):606–626, 2016.

[15] Weise, T. Global Optimization Algorithm: Theory and Application. 2009.

[16] Luke, S. Essentials of Metaheuristics . Second edition, 2013.

[17] Kudo, M., Sklansky, J. Comparison of algorithms that select features for pattern

classifiers. Pattern Recognition, 33(1):25 – 41, 2000.

[18] Das, I., Dennis, J. A Closer Look at Drawbacks of Minimizing Weighted Sums of

Objectives for Pareto Set Generation in Multicriteria Optimization Problems.

Structural Optimization, 14:63–69, 1997.

[19] Alaa, T., Anbar, M., Al-Ani, A., Al-tamimi, B., Faleh, N. Review on Feature

Selection Algorithms for Anomaly-Based Intrusion Detection System. pages

605–619, 2019.

[20] Mitchell, M. An Introduction to Genetic Algorithms. 1998.

[21] Xue, B., Cervante, L., Shang, L., Browne, W., Zhang, M. Multi-objective

evolutionary algorithms for filter based feature selection in classification. In-

ternational Journal on Artificial Intelligence Tools, 22, 2013.

[22] Xue, B., Fu, W., Zhang, M. Differential evolution (DE) for multi-objective

feature selection in classification. GECCO 2014 - Companion Publication of

the 2014 Genetic and Evolutionary Computation Conference, 2014.

[23] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,

6(2):182–197, 2002.

[24] Deb, K., Jain, H. An Evolutionary Many-Objective Optimization Algorithm

Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving

Problems With Box Constraints. IEEE Transactions on Evolutionary Compu-

tation, 18(4):577–601, 2014.

54

[25] Zhou, L., Liu, Y., Chen, G. A Feature Selection Algorithm to Intrusion Detec-

tion Based on Cloud Model and Multi-Objective Particle Swarm Optimization.

In 2011 Fourth International Symposium on Computational Intelligence and

Design, volume 2, pages 182–185, 2011.

[26] Hameed, S., Mahmood, D. A Multi-Objective Evolutionary Algorithm based

Feature Selection for Intrusion Detection. Iraqi Journal of Science, 58(1C):

536–549, 2017.

[27] Balasaraswathi, V. R., Sugumaran, M., Hamid, Y. Feature selection tech-

niques for intrusion detection using non-bio-inspired and bio-inspired optimiza-

tion algorithms. Journal of Communications and Information Networks, 2(4):

107–119, 2017.

[28] Xue, B., Zhang, M., Browne, W. Particle Swarm Optimization for Feature

Selection in Classification: A Multi-Objective Approach. IEEE transactions on

cybernetics, 43:1656–1671, 2013.

[29] Khan, A., Baig, A. R. Multi-Objective Feature Subset Selection using Non-

dominated Sorting Genetic Algorithm. Journal of Applied Research and Tech-

nology, 13(1):145 – 159, 2015.

[30] Zhou, Z., Li, S., Qin, G., Folkert, M., Jiang, S., Wang, J. Automatic multi-

objective based feature selection for classification. CoRR, abs/1807.03236, 2018.

[31] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs

(3rd Ed.). 1996.

[32] Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A. A. A Detailed Analysis of the

KDD CUP 99 Data Set. In Proceedings of the Second IEEE International Con-

ference on Computational Intelligence for Security and Defense Applications,

CISDA’09, pages 53–58, 2009.

[33] Revathi, S., Malathi, A. A Detailed Analysis on NSL-KDD Dataset Using

Various Machine Learning Techniques for Intrusion Detection. International

Journal of Engineering Research & Technology (IJERT), 2:1848–1853, 2013.

[34] Dhanabal, L., Shantharajah, S. P. A Study on NSL-KDD Dataset for Intrusion

Detection System Based on Classification Algorithms. 2015.

[35] Jovic, A., Brkic, K., Bogunovic, N. A review of feature selection methods

with applications. In 2015 38th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), pages

1200–1205, 2015.

55

[36] Thaseen, I. S., Kumar, C. A. Intrusion detection model using fusion of chi-

square feature selection and multi class SVM. Journal of King Saud University

- Computer and Information Sciences, 29(4):462 – 472, 2017.

[37] Peng, H., Long, F., Ding, C. Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, 2005.

[38] Bonev, B. Feature Selection based on Information Theory. PhD thesis, Univer-

sity of Alicante, 2010.

[39] Vergara, J. R., Estévez, P. A. A review of feature selection methods based on

mutual information. Neural Computing and Applications, 24(1):175–186, 2014.

[40] Bennasar, M., Hicks, Y., Setchi, R. Feature selection using Joint Mutual Infor-

mation Maximisation. Expert Systems with Applications, 42(22):8520 – 8532,

2015.

[41] Aggarwal, C. C. Data Classification: Algorithms and Applications. 2014.

[42] Hall, M. A. Correlation-based Feature Selection for Machine Learning. Tech-

nical report, 1999.

[43] Dash, M., Liu, H. Consistency-based search in feature selection. Artificial

Intelligence, 151(1):155 – 176, 2003.

[44] Shin, K., Fernandes, D., Miyazaki, S. Consistency Measures for Feature Selec-

tion: A Formal Definition, Relative Sensitivity Comparison and a Fast Algo-

rithm. In Proceedings of the Twenty-Second International Joint Conference on

Artificial Intelligence, volume 2 of IJCAI’11, pages 1491–1497, 2011.

[45] Radivojac, P., Obradovic, Z., Dunker, A. K., Vucetic, S. Feature Selection

Filters Based on the Permutation Test. In Proceedings of the 15th European

Conference on Machine Learning, ECML’04, pages 334–346, 2004.

[46] Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., Moore, J. H. Relief-

Based Feature Selection: Introduction and Review. CoRR, abs/1711.08421,

2017.

[47] Gu, Q., Li, Z., Han, J. Generalized Fisher Score for Feature Selection. In

Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial In-

telligence, UAI’11, pages 266–273, 2011.

[48] Cover, T. M., Thomas, J. A. Elements of Information Theory. 1991.

56

[49] Pearson, K. X. On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it can

be reasonably supposed to have arisen from random sampling. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302):

157–175, 1900.

[50] Aggarwal, C. C. Data Mining: The Textbook. 2015.

[51] Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. Journal of

the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[52] Lal, T. N., Chapelle, O., Weston, J., Elisseeff, A., Guyon, I., Gunn, S.,

Nikravesh, M., Zadeh, L. Embedded Methods. Feature Extraction, Founda-

tions and Applications, pages 137–165, 2006.

[53] Chen, X., Jeong, J. C. Enhanced recursive feature elimination. In Sixth In-

ternational Conference on Machine Learning and Applications (ICMLA 2007),

pages 429–435, 2007.

[54] Liu, C., Wang, W., Zhao, Q., Shen, X., Konan, M. A New Feature Selection

Method Based on a Validity Index of Feature Subset. Pattern Recogn. Lett., 92

(C):1–8, 2017.

[55] Loh, W.-Y. Classification and Regression Trees. Wiley Interdisciplinary Re-

views: Data Mining and Knowledge Discovery, 1:14 – 23, 2011.

[56] Mwadulo, M. A Review on Feature Selection Methods For Classification Tasks.

International Journal of Computer Applications Technology and Research, 5:

395–402, 2016.

[57] Kohavi, R., John, G. H. Wrappers for feature subset selection. Artificial Intel-

ligence, 97(1):273 – 324, 1997.

[58] Xu, L., Yan, P., Chang, T. Best first strategy for feature selection. volume 2,

pages 706 – 708, 1988.

[59] Narendra, P. M., Fukunaga, K. A Branch and Bound Algorithm for Feature

Subset Selection. IEEE Transactions on Computers, 26(9):917–922, 1977.

[60] Ris, M., Barrera, J., Martins Jr., D. C. A branch-and-bound feature selection

algorithm for U-shaped cost functions. CoRR, abs/0810.5573, 2008.

[61] Frank, A., Geiger, D., Yakhini, Z. A Distance-Based Branch and Bound Feature

Selection Algorithm. CoRR, abs/1212.2488, 2012.

57

[62] Aha, D. W., Bankert, R. L. A Comparative Evaluation of Sequential Feature

Selection Algorithms, pages 199–206. 1996.

[63] Pudil, P., Novovičová, J., Kittler, J. Floating Search Methods in Feature Se-

lection. Pattern Recogn. Lett., 15(11):1119–1125, 1994.

[64] Rudnicki, W., Wrzesien, M., Paja, W. All Relevant Feature Selection Methods

and Applications. Studies in Computational Intelligence, 584:11–28, 2015.

[65] Altmann, A., Tolosi, L., Sander, O., Lengauer, T. Permutation importance: a

corrected feature importance measure. Bioinformatics, 26(10):1340–1347, 2010.

[66] Arpita, N., Gaur, D. Hybrid Feature Selection Approach Based on GRASP for

Cancer Microarray Data. Journal of computing and information technology, 25

(2):133–148, 2017.

[67] Zhang, H., Sun, G. Feature selection using tabu search method. Pattern Recog-

nition, 35(3):701 – 711, 2002.

[68] Ashlock, D. Evolutionary Computation for Modeling and Optimization. 2006.

[69] Neri, F., Cotta, C. Memetic algorithms and memetic computing optimization:

A literature review. Swarm and Evolutionary Computation, 2:1–14, 2012.

[70] Jebari, K. Selection Methods for Genetic Algorithms. International Journal of

Emerging Sciences, 3:333–344, 2013.

[71] Umbarkar, A., Sheth, P. D. Crossover operators in Genetic Algorithms: a

review. ICTACT Journal on Soft Computing, 6(1), 2015.

[72] Ciro, G. C., Dugardin, F., Yalaoui, F., Kelly, R. A NSGA-II and NSGA-III com-

parison for solving an open shop scheduling problem with resource constraints.

IFAC-PapersOnLine, 49(12):1272 – 1277, 2016.

[73] Ali, M., Ali, S. I., Kim, D., Hur, T., Bang, J., Lee, S., Kang, B. H., Hussain, M.

uEFS: An efficient and comprehensive ensemble-based feature selection method-

ology to select informative features. PLOS ONE, 13(8):1–28, 2018.

[74] Kumar, G. Evaluation Metrics for Intrusion Detection Systems-A Study. In-

ternational Journal of Computer Science and Mobile Applications, 11, 2015.

[75] Oliphant, T. E. Guide to NumPy. 2nd edition, 2015.

[76] Jones, E., Oliphant, T. E., Peterson, P. et al. SciPy: Open source scientific

tools for Python, 2001. URL http://www.scipy.org/. [Online] Accessed:

07.05.2019.

58

[77] McKinney, W. pandas: a Foundational Python Library for Data Analysis and

Statistics. Python High Performance Science Computer, 2011.

[78] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Pas-

sos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. Scikit-learn:

Machine Learning in Python . Journal of Machine Learning Research, 12:2825–

2830, 2011.

[79] Raschka, S. MLxtend: Providing machine learning and data science utilities

and extensions to Python’s scientific computing stack. The Journal of Open

Source Software, 3(24), 2018.

[80] Fortin, F-A., De Rainville, F-M., Gardner, M-A., Parizeau, M., Gagné, C.

DEAP: Evolutionary Algorithms Made Easy . Journal of Machine Learning

Research, 13:2171–2175, 2012.

[81] Kaufman, S., Rosset, S., Perlich, C. Leakage in Data Mining: Formulation,

Detection, and Avoidance. volume 6, pages 556–563, 2011.

[82] Hosseinzadeh Aghdam, M., Kabiri, P. Feature Selection for Intrusion Detection

System Using Ant Colony Optimization. International Journal of Network

Security, 18:420–432, 2016.

[83] Gaikwad, D. P., Thool, R. C. Intrusion Detection System using Ripple Down

Rule learner and Genetic Algorithm. volume 5, pages 6976–6980, 2014.

[84] Mukherjee, S., Neelam, S. Intrusion Detection using Naive Bayes Classifier with

Feature Reduction. Procedia Technology, 4:119 – 128, 2012.

[85] Popoola, E., Adewumi, A. Efficient feature selection technique for network

intrusion detection system using discrete differential evolution and decision tree.

International Journal of Network Security, 19:660–669, 2017.

[86] Eid, H. F., Hassanien, A. E., Kim, T-H., Banerjee, S. Linear Correlation-

Based Feature Selection for Network Intrusion Detection Model. In Advances

in Security of Information and Communication Networks, pages 240–248, 2013.

59

