

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

Chair of General Informatics

Analytic Layered Anti-Aliasing

Bachelor’s Thesis

Student: Georgi Gerassimov

Student code: 123682

Supervisor: Marko Kääramees

Tallinn

2015

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

Annotatsioon

Aliasing on veel lahendamata probleem arvutigraafikas. Välja on pakutud suur hulk algoritme,

kuid enamik neist kas lahendavad probleemi osaliselt või on välja mõeldud spetsiifilisele

sisendile ja ei tööta erijuhtudel, näiteks ristumise puhul.

Käesolevas töös palutakse välja analüütilise anti-aliasingu rasterdamise algoritmi, mis töötab

läbipaistvate objektidega ning lahendab kattuvuse ning ristumise erijuhud. Algoritm kasutab

standardset graafika rasterdamise pipeline-i. Ta lahendab nähtavuse probleemi kasutades

analüütilist mitmetasandilist lähenemisviisi, mis võimaldab teha arvutusi paralleelselt. Algoritmi

võrreldakse standardse anti-aliasing tehnikaga.

Tulemused näitavad, et analüütilised meetodid annavad parema pildi kui brute-force sampling

meetodid, mis püüavad lihtsalt suurendada diskreetimissagedust. Analüütiliste meetodite

piiranguks on ujukomaarvutuste täpsus ja ajamahukus.

Abstract

Aliasing is still an unresolved problem in computer graphics. A huge number of algorithms have

been proposed, however, most of them either partially solve the issue or they are designed for a

particular input and do not handle special cases, like intersections.

This work proposes an algorithm for analytical anti-aliasing rasterization, which handles

transparent objects as well as primitive overlapping and intersections. The algorithm is an

extended version of a standard graphics pipeline adopted for analytic anti-aliasing. It solves the

visibility problem using an analytical layered approach, allowing to do calculations in separate

threads. The algorithm is compared with standard sampling anti-aliasing technique.

Results show that an analytic anti-aliasing has better quality than brute-force sampling methods,

which try to increase the sampling rate. However, analytic methods are still limited to computer

precision and cost a lot of computational time.

Table of Contents

1. Introduction .. 6

1.1 Aliasing in computer graphics .. 6

1.2 Related work ... 8

1.3 Standard rendering pipeline overview .. 10

2. Analytic layered approach .. 12

2.1 Hidden surface elimination ... 13

2.2 Layered rendering ... 16

3. Analysis of results .. 18

3.1 Comparison ... 18

3.2 Advantages and disadvantages ... 22

4. Conclusion .. 24

5. References .. 25

6

1. Introduction

1.1 Aliasing in computer graphics

Modern monitors are able to display only raster images, since they consist of pixels. Raster

image (Fig. 2) is basically just a set of finite fragments, from which the final image is

constructed. While raster images lack quality, they are faster and simpler to render. [1] In

contrast to raster, vector image (Fig. 2) holds original shapes, usually described as some

equations. In terms of the raster image, that would mean infinite amount of fragments. This

allows rendering shapes correctly at any scaling, whereas raster images will lose quality when

zooming or transforming them. Moreover, in computer graphics, 3D models are usually

represented as vector information. That way they occupy less disk space and also they can be

rendered at any scaling without losing precision.

To be able to display vector images, they have to be transformed into raster images. The

process of transforming vector data to raster is called rasterization (this term also refers to

rendering algorithm, described later). This is discretization process, since continuous data is

sampled and converted into discrete. Data is usually sampled at different rates, depending on

screen resolution. Sampling means taking value from certain image point, which usually

corresponds to a pixel center location.

7

Figure 1 (Moiré pattern)

However, discretization has its consequences. If the signal is sampled at frequencies lower

than 𝑓𝑠 2⁄ > 𝑓, which is called the Nyquist frequency [2], distortions, inaccuracies and

artifacts can occur, like Moiré patterns (Fig. 1), jagged or pixelated edges (Fig. 2 leftmost).

Such effect is called aliasing. [3]. This happens when point sampled value is far different from

whole pixel exact area value.

Figure 2 (left: difference between aliased & anti-aliased image, right: difference between

raster & vector images)

8

1.2 Related work

Different anti-aliasing techniques were proposed to solve this problem. Modern sampling

algorithms could be divided into two main types: pre-processing and post-processing, which

solve the issue before rendering and after respectively. Post-processing methods try to detect

edges after rendering, by comparing pixel neighbor values and averaging them to soften edges

or applying post-filters. [4] Though this method is fast and parallel, it tends to blur the overall

image and it does not solve inaccuracy problem. Pre-processing methods try to reduce

original signal frequency or increase sampling frequency.

Increasing the sample rate is called supersampling or Full-Scene Anti-Aliasing (FSAA). [5]

Instead of one sample per pixel it takes more and averages result by combining values.

𝑃𝑡𝑜𝑡𝑎𝑙 = ∑
𝑝𝑖

𝑛

𝑛

𝑖=0
 Rendering resolution could be 2x, 4x, 8x or 16x higher. All pre-filtering

approaches inherit supersampling idea, trying to approximate and optimize algorithms, for

example via compressing rendering buffer [6]. Supersampling is still considered to be the best

quality sampling anti-aliasing and it is being used for high-quality rendering [7].

Rather than sampling a signal, analytic methods try to calculate exact area, solving the

convolution of filter kernel W and continuous image I for each pixel at position (i, j).

 𝑃(𝑖, 𝑗) = ∬ 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)𝑊(𝑥, 𝑦)𝑑𝑥𝑑𝑦

That just means to find exact area, which certain polygon occupies inside pixel area.

Sampling is approximation of this convolution. Since the signal is not actually linearly

distributed [2] different filters are used for value estimation. Filters simply tell which part of

the area has more weight. Many different analytic methods were proposed and implemented,

for instance methods using scanlines [8], calculating actual volume [9], improving filter usage

[10], special algorithms for terrain rendering [11] or half-analytic approaches like line-

sampling [12]. Not all of algorithms are mentioned, however, from those, which try to achieve

the best quality, most are quite limited and they render only certain geometry or do not handle

intersections and transparency.

When rendering 3D scenes, anti-aliasing always comes along with so called “hidden surface

elimination problem”, to determine which parts of 3D geometry are actually visible. Many

early methods tried to just sort polygons in correct order [13]. More complex solutions were

found later, like clipping polygons before sorting [14], using a grid to sort them [15], solving

9

visibility issues for each pixel [16]. Further algorithms were optimized to solve only actually

overlapping polygons [17], decomposing polygon methods were used to handle intersections

[18], algorithms were optimized and parallelized even more [19]. Algorithms for efficient

polygon clipping were also developed to solve this issue [20]. Because of their complexity

and computational time they are rarely used in real-time rendering.

In modern graphic cards z-buffer algorithm is used [21]. It can be easily combined with

sampling technique and it follows the idea of fast approximation algorithms. The main idea of

this method is to calculate the distance for each pixel fragment of each polygon and simply

discards those, which are further away, taking nearest ones. This distance is saved along with

the color in z-buffer, where z – is the distance from polygon point to view point.

Unfortunately, it is not well combinable with analytic methods.

10

1.3 Standard rendering pipeline overview

In order to display 3D scene on screen, several steps should be made (Fig. 3): [22]

Figure 3 (Diagram of the rendering pipeline)

1. Input Mesh Data. Firstly, objects should be defined. 3D Geometry is usually

prescribed as a list of vertexes, which form polygons. Polygons could be considered to

be built from triangles, since they are simplest polygons, thus easier to render. Those

simplest polygons are called primitives.

2. Vertex Processing. Then, their position on screen should be found. Objects are

declared in so called world space and view position is defined by camera object.

Vertexes are transformed from world to viewport and then to window space by

multiplying with model-view and projection matrixes. Perspective projection matrix

projects points onto screen plane.

3. Geometry Processing. Polygons are formed by connecting vertexes. Then vector data

is transformed into raster. The program produces a set of pixel fragments for each

polygon, linearly interpolating different vertex parameters, like color and z-values

(distance to screen plane) [23]. When sampling, the program checks whereas point lies

within the triangle boundaries or not.

4. Pixel Processing. Each pixel fragment receives its color and z-value. By simple check,

nearest fragment for each pixel is found. This solves the visibility issue, though

precision is depending on rendering resolution. Shading (how the object is lit) is

computed per pixel. Post-processing also happens on this stage, since the resolution is

fixed, applying post-effects is more efficient, than processing the geometry itself.

5. Rendering. Lastly, data from the buffer is copied to monitor screen and displayed.

11

Modern graphic cards render images using rasterization technique. As opposed to ray

tracing algorithm [24], where pixel iteration is in the outer loop, and primitive iteration in

inner, in rasterization - pixel iteration is done per primitive. In other words, in ray tracing,

program casts a ray from pixel position and then starts looking through all primitives,

detecting ray-polygon intersection. In rasterization, program projects each polygon onto

screen plane, and then starts checking, which pixels are within this polygon area. Since the

screen resolution does not change, as opposed to polygon number, rasterization is easier

to optimize, since for each polygon there will be a fixed amount of pixels to check, using

for example scanline method [25]. Moreover, ray intersections have to be performed in 3D

space, while in rasterization polygons are already mapped to 2D screen plane.

Because of speed and simplicity, this method is widely used in modern computer graphics

applications, especially in real-time rendering, where speed is crucial component.

Advantages:

 Fast. The algorithm is parallel, which allows accelerating it by improving hardware.

The algorithm is discrete, thus it is easier for computers to work with it.

In terms of Big-O Notation (a standard way of expressing how efficient an algorithm

is, depending on argument size) rasterization is O(n*h*w), where n is number of

primitives, h and w are respectively height and width of rendering screen. Since screen

resolution is constant, it becomes just O(n).

 Requires small amount of memory. Usually it is enough to have only z-buffer and

color buffer.

Disadvantages:

 Aliasing.

 When rendering transparent objects, they have to be rendered separately at the end.

12

2. Analytic layered approach

In this thesis, one of the possible solutions for analytic anti-aliasing is described. It uses

standard rendering pipeline, which was previously described, as a basis [26], changing only

rasterization and visibility solving part, that means that it could be easily combined with other

modern techniques. It is assumed that the input consists only of polygons, and then complex

polygons are subdivided into triangles.

To further optimize this method, the exact area of each pixel is calculated only if p < 1, where

p is coverage percent. That means - if triangle covers pixel only partially. For all pixels where

all four vertices of pixel box lie within the triangle, p = 1 is always true.

In this work simple box filter was used for calculating area convolution, however better filters

exist, like gauss or tent (reconstruction) [27]. For each pixel, triangles are clipped by pixel

box boundaries. Then the coverage area is calculated. 𝑝 = |∫ 𝑓1(𝑥)𝑑𝑥 − ∫ 𝑓2(𝑥)𝑑𝑥
𝑟

𝑙

𝑟

𝑙
| ,

where l is pixel left edge, r is pixel right edge and f1, f2 are equations of lines, which form a

triangle [28].

13

2.1 Hidden surface elimination

To correctly display anti-aliased edges method has to divide polygons, if they are covered by

others, and select only visible parts. So, the final image may be considered as a vector image

consisting of non-overlapping triangles.

Two ways of achieving that, are described here:

Figure 4 (left: final image; center: method of rendering only actually visible parts; right:

method of rendering original triangles and then subtracting invisible parts, unseen part of the

green triangle is outlined)

 Drawing triangles and then subtracting unseen parts. (Fig. 4 right) Hidden surface

elimination is performed after triangles are drawn, that ensures that only if triangles

overlap at the same pixel, calculations are performed. After triangles are rendered,

parts which are not supposed to be seen are found and subtracted.

This method is adaptive, since it will use original triangles to solve visibility where

possible and only if more than two triangles overlap in the same area complexity will

increase (Fig. 5 right).

The idea of this method is to render original triangles on separate layers, find

intersection parts and subtract them from triangles, which are overlapped by others.

Unfortunately W = O(2
n
). Each time when polygon is subtracted, deleted part should

also be saved, so it can be re-added next time. (Fig. 5 right) That happens due to the

fact that after subtraction original triangles are not changed and intersection part of

two subtracting polygons is being subtracted twice. For instance, the addition formula

for three triangles will be: 𝐴 + 𝐵 + 𝐶 − (𝐴 ∩ 𝐵) − (𝐴 ∩ 𝐶) − (𝐵 ∩ 𝐶) + (𝐴 ∩ 𝐵 ∩

𝐶), where A,B and C are representing triangle areas and the last term is exactly the

14

part, which is re-added. While for opaque objects that does not make any difference,

transparent objects will be rendered incorrectly.

Since each new triangle can overlap with already existing ones, it can create the same

amount of subtracting polygons. That means: if there were N polygons, there would be

2 ∗ 𝑁 + 1 polygons. (+1 is a new triangle itself) This leads to recurrence relation:

𝑇𝑛 = 2 ∗ 𝑇𝑛−1 + 1 , where Tn is number of polygons;

characteristic equation for which is: 𝑇𝑛 = 2𝑛 − 1 , which is O(2
n
).

 Drawing only visible parts. (Fig. 4 center and Fig. 5 left) O(n
2
) is for evaluating

checks, since it has to be done for all pairs of polygons. That step can be optimized

using broad phase, where program finds possibly overlapping polygons using for

example axis aligned boxes to represent complex polygons or via mapping polygons

to grid. Actual calculations are performed after that in narrow phase.

However, each time polygon overlaps or intersects it has to be divided. Moreover,

some polygons have to be divided in order to maintain only primitive polygons, as

working with concave shapes, which can be formed, is harder. Assuming that each

new polygon can divide already existing geometry by two or more (including

transparent polygons): W ≥ O(2
n
).

Hidden surface elimination is done before rendering triangles and only actually visible

parts are being rendered.

Figure 5 (more complex scenario with three triangles. From left to right: final image; visible

parts are outlined; triangles are transparent to show how they overlap; subtractive polygons

for those triangles are outlined.)

For this work, the first method was chosen, since it generates overall less geometry, and

intersection parts are always going to be convex polygons. It is easier to work with convex

polygons, rather than with concave. Moreover, with the second method to actually start

15

rendering polygon, we have to solve the visibility issue first, as opposed to the first method,

where rendering one polygon does not interrupt the calculations to find visible parts of the

same polygon. Since those actions could be performed in parallel, it could decrease

computation time. In addition, the first method is better suited for rendering transparent

objects.

To find out overlapping or not overlapping part of each polygon, it has to be cut three times

for 2D (Fig. 6) (since the triangle is an area of plane limited by three lines) and four times for

3D to solve intersections (line is formed by the intersection of two triangle planes).

Figure 6 (the process of finding the intersection part: blue triangle is being iteratively cut with

lines, which form the green triangle)

Assuming that triangle vertices are declared in winding order, edge function method [29] can

be used to determine on which side of the line a certain vertex lies. When the line intersects it

forms an intersection point, which belongs to both parts. By connecting all vertexes, which lie

on certain side polygons are formed. That way, the triangle is cut into two parts: one, which is

outside the cutting triangle and inside one. Outside polygon composes the visible part of cut

triangle, which does not intersect with cutting triangle. Inside polygon lies on the other side

and intersects with cutting triangle, moreover, it is always going to be a convex polygon. This

polygon is the part, which is subtracted afterwards. It is subtracted from triangle which is

behind the other one. That can easily be determined knowing plane equations, on which those

triangles lie. If planes intersect, intersection line will divide the screen into two regions: where

the first triangle is in front of the second one and where the first triangle is covered by the

second one.

16

2.2 Layered rendering

The process of layered rasterization is described below. It should be noted that the buffer

implementation may be different and only one of possible variants is described here.

Firstly, the original polygon is rasterized into a separate layer. Color values are computed

only for original polygons. Whenever a new polygon falls into pixel, already containing

another polygon, a candidate polygon is marked into a temporary buffer, to check later

whether they overlap or not. Basically, the program finds approximately possibly overlapping

polygons with pixel precision. Buffer (Fig. 7) contains all drawn triangle ID-s and their

coverage percent per pixel. Subtractive triangles are drawn on triangle layer, from which they

are subtracted. Only at the end values are combined to get the final color for each pixel. That

means, that correct coverage percent for each triangle in pixel is calculated and then values

are merged together.

Triangle intersections are solved once per scene. After the hidden part of triangles has been

determined, subtractive triangles are drawn exactly the same way as original ones, with

exception of the coverage percent sign (-). For a subtractive triangle of the subtractive triangle

the sign is reversed (+), so triangle part will be re-added, otherwise, this area will be just

subtracted more than once, as previously explained in description of hidden surface

elimination algorithm. Triangles and subtractive triangles can be rendered in any order. Even

though this approach takes a lot of memory to hold information about each triangle,

computations for each primitive are totally independent and can be done in parallel threads.

That way part of a program, which is rendering, does not have to wait for other calculations, it

can render without pauses. Furthermore, primitive rendering itself could be already optimized

using graphic card features, since calculations for each pixel are independent. The final step

of combining layers is independent for each pixel as well. However, parallelizing algorithm

does not decrease the total number of operations, which have to be performed in order. That

means computation time is depending on the maximum amount of triangles, overlapping in

one pixel region. And even though complexity is exponential (O(2
n
), as explained previously),

it is not likely that too many triangles will overlap in one pixel.

17

Figure 7 (rendering buffer, each pixel has a dynamic array – a list of triangle or subtractive

triangle ID-s drawn in that pixel. They all belong to certain layer, which represents an original

triangle, from which they are subtracted or to which they are added. When calculating

resulting color all values are combined together to find coverage percent of visible part for

each triangle)

This method supports rendering transparent objects. Transparent triangle will only partially

subtract hidden part, depending on transparency degree, which could be possibly calculated

for each pixel individually allowing to use more complicated objects. Instead of subtracting

whole coverage value, it subtracts less, taking into account transparency.

18

3. Analysis of results

3.1 Comparison

Presented method was compared to multisampling algorithm, since multisampling is

considered to give best quality. Since optimization was out of scope of this work, time was

not be compared.

Table 1 (comparison of analytic method and supersampling when rendering high frequency

patterns)

No Anti-aliasing

FSAAx2

FSAAx4

19

FSAAx8

FSAAx16

Analytic Anti-aliasing

20

Each chessboard tile was rendered as a separate polygon.

As can be clearly seen on examples (Table 1), by increasing the sampling rate, high frequency

signals are sampled better and aliasing disappears, though it still remains for even higher

frequencies. (Distortions are moving towards the horizon, while sampling rate is increased).

Even with x16 multisampling distortions remain very far away (Table 2). Using the analytical

approach those distortions totally disappear. Though they remain for middle-frequencies.

Results do not get much better on middle frequencies for multisampling after x4 as well, that

is due to the limitation of using a box filter (FSAA can be considered using box filter, since

pixel is interpreted as a box).

Table 2 (image was zoomed in to show the difference between analytical and supersampling

anti-aliasing at very high frequencies)

FSAAx16 Analytic Anti-aliasing

21

Table 3 (comparison of analytic method and supersampling when rendering 3D models [30])

No Anti-aliasing FSAAx8 Analytic Anti-aliasing

22

When rendering low-poly models (Table 3) difference is less noticeable. Since no high

frequency patterns exist, there is no aliasing in the final image. Even though analytic approach

should be more accurate, final precision is still limited by resolution and those details are not

distinguishable. That means, edge anti-aliasing does not require such precision, as opposed to

high-frequency patterns.

3.2 Advantages and disadvantages

Pros and cons of the proposed method are presented below.

Advantages:

 Can render transparent (Fig. 9) and opaque (Fig.8) primitives in any order.

 Solving intersections (Fig. 10) does not increase complexity much.

 Analytic approach is theoretically the best quality anti-aliasing (Table 2).

 Rendering and hidden surface elimination calculations can be done independently in

multiple threads.

Disadvantages:

 Slow. W=O(2
n
). Very inefficient for rendering high-poly models.

 Even though it tries to calculate exact area, there is no perfect filter and calculations

are still limited by the precision of floating point numbers. Since floating point is by

itself an approximation of real number, calculations can be inaccurate.

 Requires a lot of memory to hold all geometry data and buffer layers. Dynamic

memory is always slower than static.

23

Figure 8 (shows that program solves hidden surface elimination for opaque objects)

Figure 9 (shows that program solves hidden surface elimination for transparent objects)

Figure 10 (shows that program correctly handles polygon intersections; boxes are intersecting

with transparent terrain)

24

4. Conclusion

An algorithm for analytical anti-aliasing, which handles transparent objects and intersections

was proposed, implemented (Fig. 11) and evaluated.

Figure 11 (shows that method is capable of rendering 3D models, correctly resolving

visibility problem, intersections and applying anti-aliasing)

The main limitations of this approach are:

 Complex computations take a lot of time.

 It is hard to make it even more parallel and optimize further.

 Floating point errors can create aliasing and other inaccuracies.

 Filters are not ideal, since they approximate actual distribution of vector image.

Analytical methods are obviously not suited for fast real-time rendering, though for some

applications where the scene is pre-rendered they can give better results, both in quality and

time, compared to computational extensive high resolution supersampling. Presented method

could be further optimized or combined with other techniques to achieve better results.

However, analytical methods give practically no benefit, when rendered scene does not have

the aliasing effect of its own. This may lead to focusing future works on creating some hybrid

approaches, which can detect high-frequency regions and apply corresponding type of anti-

aliasing.

25

5. References

[1] Foley J., Sibert J., Wenner P., Acquah J., "A conceptual model of raster graphics

systems," in Proc. of SIGGRAPH '82, New York, NY, USA, 1982.

[2] Grenader U., Probability and Statistics: The Harald Cramér Volume, Wiley: Alqvist &

Wiksell, 1959.

[3] Crow F., "The aliasing problem in computergenerated shaded images," Communications

of the ACM, vol. 20, no. 11, p. 799–805, November 1977.

[4] Echevarria J. I., Sousa T., Gutierrez D., Jimenez J., "SMAA: Enhanced Subpixel

Morphological Antialiasing," Computer Graphics Forum, vol. 31, no. 2pt1, pp. 355-364,

May 2012.

[5] Haines E., Hoffman N., Akenine-Möller T., Real-Time Rendering 3rd Edition, Natick,

MA, USA: A. K. Peters, Ltd., 2008.

[6] Poulin P., Beaudoin P., "Compressed multisampling for efficient hardware edge

antialiasing," in Proc. of GI '04, Waterloo, Ontario, Canada, 2004.

[7] Enderton E., Wexler D., "High-Quality Antialiased Rasterization," in GPU Gems 2,

Addison-Wesley Professional, 2005.

[8] Kallio K., "Scanline edge-flag algorithm for antialiasing," in Proc. of TPCG07, Bangor,

Wales, 2007.

[9] Guthe M., Jeschke S., Auzinger T., "Analytic antialiasing of linear functions on

polytopes," Comp. Graph. Forum 31, 2pt1, p. 335–344, May 2012.

[10] Musialski P., Preiner R., Wimmer M., Auzinger T., "Non-Sampled Anti-Aliasing," in

Proc. of the 18th International Workshop on Vision, Modeling and Visualization,

Lugano, Switzerland, September 2013.

[11] Cohen-Or D., "Exact antialiasing of textured terrain models," The Visual Computer, vol.

13, no. 4, pp. 184-199, June 1997.

[12] Perry R. N, Jones T.R., "Antialiasing with Line Samples," in Proceedings of the

Eurographics Workshop on Rendering Techniques 2000, London, UK, 2000.

[13] Sproull R. F., Schumacker. R. A., Sutherland I. E., "Sorting and the hidden-surface

problem," in Proc. of AFIPS '73, New York, NY, USA, 1973.

[14] Atherton P., Weiler K., "Hidden surface removal using polygon area sorting," in Proc. of

SIGGRAPH ’77, New York, NY, USA, 1977.

[15] Franklin W. R., "A linear time exact hidden surface algorithm," in Proc. of SIGGRAPH

’80, New York, NY, USA, 1980.

[16] Catmull E., "An analytic visible surface algorithm for independent pixel processing," in

Proc. of SIGGRAPH ’84, New York, NY, USA, 1984.

[17] Mulmuley K., "An efficient algorithm for hidden surface removal," in Proc. of

SIGGRAPH ’89, New York, NY, USA, 1989.

[18] Doan K., "Antialiased Rendering of Self-Intersecting Polygons using Polygon

Decomposition," in Proc. of PG'4, 2004.

[19] Dévai F., "An optimal hidden-surface algorithm and its parallelization," in Proc. of

26

ICCSA'11, Berlin, Heidelberg, 2011.

[20] Hormann K., Greiner G., "Efficient clipping of arbitrary polygons," TOG 17, 2, pp. 71-

83, 1998.

[21] Catmull E., A subdivision algorithm for computer display of curved surfaces, 1974.

[22] "Rendering Pipeline Overview," OpenGL.org, 12 April 2015. [Online]. Available:

http://www.opengl.org/wiki/Rendering_Pipeline_Overview. [Accessed 28 April 2015].

[23] Rosen P., Popescu V., "Forward rasterization," TOG 25, 2, pp. 375-411, April 2006.

[24] Appel A., "Some techniques for shading machine renderings of solids," in Proc. of

AFIPS '68, New York, NY, USA, 1968.

[25] Romney G. W., Evans D. C. Erdahl A., Wylie C., "Halftone Perspective Drawings by

Computer," in Proc. of AFIPS '67, New York, NY, USA, 1967.

[26] Scratchapixel, "Rasterization: a Practical Implementation," Scratchapixel, [Online].

Available: http://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-

practical-implementation . [Accessed 28 April 2015].

[27] Reed N., "Antialiasing: To Splat Or Not," 15 November 2014. [Online]. Available:

http://www.reedbeta.com/blog/2014/11/15/antialiasing-to-splat-or-not/. [Accessed 28

April 2015].

[28] Levoy M., "Practical analytical antialiasing," 17 October 2002. [Online]. Available:

http://graphics.stanford.edu/courses/cs248-02/scan/scan2.html. [Accessed 28 April

2015].

[29] Pineda J., "A Parallel Algorithm for Polygon Rasterization," in Proc. of SIGGRAPH '88,

New York, NY, USA, 1988.

[30] tf3dm.com, "tf3dm," 2015. [Online]. Available: http://tf3dm.com/. [Accessed 2015].

