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Annotatsioon 

Aliasing on veel lahendamata probleem arvutigraafikas. Välja on pakutud suur hulk algoritme, 

kuid enamik neist kas lahendavad probleemi osaliselt või on välja mõeldud spetsiifilisele 

sisendile ja ei tööta erijuhtudel, näiteks ristumise puhul. 

Käesolevas töös palutakse välja analüütilise anti-aliasingu rasterdamise algoritmi, mis töötab 

läbipaistvate objektidega ning lahendab kattuvuse ning ristumise erijuhud. Algoritm kasutab 

standardset graafika rasterdamise pipeline-i. Ta lahendab nähtavuse probleemi kasutades 

analüütilist mitmetasandilist lähenemisviisi, mis võimaldab teha arvutusi paralleelselt. Algoritmi 

võrreldakse standardse anti-aliasing tehnikaga. 

Tulemused näitavad, et analüütilised meetodid annavad parema pildi kui brute-force sampling 

meetodid, mis püüavad lihtsalt suurendada diskreetimissagedust. Analüütiliste meetodite 

piiranguks on ujukomaarvutuste täpsus ja ajamahukus. 

 

 



 

 

Abstract 

Aliasing is still an unresolved problem in computer graphics. A huge number of algorithms have 

been proposed, however, most of them either partially solve the issue or they are designed for a 

particular input and do not handle special cases, like intersections. 

This work proposes an algorithm for analytical anti-aliasing rasterization, which handles 

transparent objects as well as primitive overlapping and intersections. The algorithm is an 

extended version of a standard graphics pipeline adopted for analytic anti-aliasing. It solves the 

visibility problem using an analytical layered approach, allowing to do calculations in separate 

threads. The algorithm is compared with standard sampling anti-aliasing technique. 

Results show that an analytic anti-aliasing has better quality than brute-force sampling methods, 

which try to increase the sampling rate. However, analytic methods are still limited to computer 

precision and cost a lot of computational time. 
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1. Introduction 

1.1 Aliasing in computer graphics 

 

Modern monitors are able to display only raster images, since they consist of pixels. Raster 

image (Fig. 2) is basically just a set of finite fragments, from which the final image is 

constructed. While raster images lack quality, they are faster and simpler to render. [1]  In 

contrast to raster, vector image (Fig. 2) holds original shapes, usually described as some 

equations. In terms of the raster image, that would mean infinite amount of fragments. This 

allows rendering shapes correctly at any scaling, whereas raster images will lose quality when 

zooming or transforming them. Moreover, in computer graphics, 3D models are usually 

represented as vector information. That way they occupy less disk space and also they can be 

rendered at any scaling without losing precision. 

To be able to display vector images, they have to be transformed into raster images. The 

process of transforming vector data to raster is called rasterization (this term also refers to 

rendering algorithm, described later). This is discretization process, since continuous data is 

sampled and converted into discrete. Data is usually sampled at different rates, depending on 

screen resolution. Sampling means taking value from certain image point, which usually 

corresponds to a pixel center location.  
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Figure 1 (Moiré pattern) 

 

However, discretization has its consequences. If the signal is sampled at frequencies lower 

than 𝑓𝑠 2⁄ > 𝑓, which is called the Nyquist frequency [2], distortions, inaccuracies and 

artifacts can occur, like Moiré patterns (Fig. 1), jagged or pixelated edges (Fig. 2 leftmost). 

Such effect is called aliasing. [3]. This happens when point sampled value is far different from 

whole pixel exact area value.  

 

Figure 2 (left: difference between aliased & anti-aliased image, right: difference between 

raster & vector images) 
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1.2 Related work 

Different anti-aliasing techniques were proposed to solve this problem. Modern sampling 

algorithms could be divided into two main types: pre-processing and post-processing, which 

solve the issue before rendering and after respectively. Post-processing methods try to detect 

edges after rendering, by comparing pixel neighbor values and averaging them to soften edges 

or applying post-filters. [4] Though this method is fast and parallel, it tends to blur the overall 

image and it does not solve inaccuracy problem. Pre-processing methods try to reduce 

original signal frequency or increase sampling frequency.  

Increasing the sample rate is called supersampling or Full-Scene Anti-Aliasing (FSAA). [5] 

Instead of one sample per pixel it takes more and averages result by combining values. 

𝑃𝑡𝑜𝑡𝑎𝑙 = ∑
𝑝𝑖

𝑛

𝑛

𝑖=0
 Rendering resolution could be 2x, 4x, 8x or 16x higher. All pre-filtering 

approaches inherit supersampling idea, trying to approximate and optimize algorithms, for 

example via compressing rendering buffer [6]. Supersampling is still considered to be the best 

quality sampling anti-aliasing and it is being used for high-quality rendering [7].  

Rather than sampling a signal, analytic methods try to calculate exact area, solving the 

convolution of filter kernel W and continuous image I for each pixel at position (i, j). 

 𝑃(𝑖, 𝑗) = ∬ 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)𝑊(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

That just means to find exact area, which certain polygon occupies inside pixel area. 

Sampling is approximation of this convolution. Since the signal is not actually linearly 

distributed [2] different filters are used for value estimation. Filters simply tell which part of 

the area has more weight. Many different analytic methods were proposed and implemented, 

for instance methods using scanlines [8], calculating actual volume [9], improving filter usage 

[10], special algorithms for terrain rendering [11] or half-analytic approaches like line-

sampling [12]. Not all of algorithms are mentioned, however, from those, which try to achieve 

the best quality, most are quite limited and they render only certain geometry or do not handle 

intersections and transparency. 

When rendering 3D scenes, anti-aliasing always comes along with so called “hidden surface 

elimination problem”, to determine which parts of 3D geometry are actually visible. Many 

early methods tried to just sort polygons in correct order [13]. More complex solutions were 

found later, like clipping polygons before sorting [14], using a grid to sort them [15], solving 
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visibility issues for each pixel [16]. Further algorithms were optimized to solve only actually 

overlapping polygons [17], decomposing polygon methods were used to handle intersections 

[18], algorithms were optimized and parallelized even more [19]. Algorithms for efficient 

polygon clipping were also developed to solve this issue [20]. Because of their complexity 

and computational time they are rarely used in real-time rendering. 

In modern graphic cards z-buffer algorithm is used [21]. It can be easily combined with 

sampling technique and it follows the idea of fast approximation algorithms. The main idea of 

this method is to calculate the distance for each pixel fragment of each polygon and simply 

discards those, which are further away, taking nearest ones. This distance is saved along with 

the color in z-buffer, where z – is the distance from polygon point to view point. 

Unfortunately, it is not well combinable with analytic methods. 
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1.3 Standard rendering pipeline overview 

 

In order to display 3D scene on screen, several steps should be made (Fig. 3):  [22] 

 

Figure 3 (Diagram of the rendering pipeline) 

 

1. Input Mesh Data. Firstly, objects should be defined. 3D Geometry is usually 

prescribed as a list of vertexes, which form polygons. Polygons could be considered to 

be built from triangles, since they are simplest polygons, thus easier to render. Those 

simplest polygons are called primitives. 

2. Vertex Processing. Then, their position on screen should be found. Objects are 

declared in so called world space and view position is defined by camera object. 

Vertexes are transformed from world to viewport and then to window space by 

multiplying with model-view and projection matrixes. Perspective projection matrix 

projects points onto screen plane. 

3. Geometry Processing. Polygons are formed by connecting vertexes. Then vector data 

is transformed into raster. The program produces a set of pixel fragments for each 

polygon, linearly interpolating different vertex parameters, like color and z-values 

(distance to screen plane) [23]. When sampling, the program checks whereas point lies 

within the triangle boundaries or not. 

4. Pixel Processing. Each pixel fragment receives its color and z-value. By simple check, 

nearest fragment for each pixel is found. This solves the visibility issue, though 

precision is depending on rendering resolution. Shading (how the object is lit) is 

computed per pixel. Post-processing also happens on this stage, since the resolution is 

fixed, applying post-effects is more efficient, than processing the geometry itself. 

5. Rendering. Lastly, data from the buffer is copied to monitor screen and displayed. 
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Modern graphic cards render images using rasterization technique. As opposed to ray 

tracing algorithm [24], where pixel iteration is in the outer loop, and primitive iteration in 

inner, in rasterization - pixel iteration is done per primitive. In other words, in ray tracing, 

program casts a ray from pixel position and then starts looking through all primitives, 

detecting ray-polygon intersection. In rasterization, program projects each polygon onto 

screen plane, and then starts checking, which pixels are within this polygon area. Since the 

screen resolution does not change, as opposed to polygon number, rasterization is easier 

to optimize, since for each polygon there will be a fixed amount of pixels to check, using 

for example scanline method [25]. Moreover, ray intersections have to be performed in 3D 

space, while in rasterization polygons are already mapped to 2D screen plane. 

Because of speed and simplicity, this method is widely used in modern computer graphics 

applications, especially in real-time rendering, where speed is crucial component.  

Advantages: 

 Fast. The algorithm is parallel, which allows accelerating it by improving hardware. 

The algorithm is discrete, thus it is easier for computers to work with it.  

In terms of Big-O Notation (a standard way of expressing how efficient an algorithm 

is, depending on argument size) rasterization is O(n*h*w), where n is number of 

primitives, h and w are respectively height and width of rendering screen. Since screen 

resolution is constant, it becomes just O(n). 

 Requires small amount of memory. Usually it is enough to have only z-buffer and 

color buffer. 

Disadvantages: 

 Aliasing. 

 When rendering transparent objects, they have to be rendered separately at the end. 
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2. Analytic layered approach 

In this thesis, one of the possible solutions for analytic anti-aliasing is described. It uses 

standard rendering pipeline, which was previously described, as a basis [26], changing only 

rasterization and visibility solving part, that means that it could be easily combined with other 

modern techniques. It is assumed that the input consists only of polygons, and then complex 

polygons are subdivided into triangles. 

To further optimize this method, the exact area of each pixel is calculated only if p < 1, where 

p is coverage percent.  That means - if triangle covers pixel only partially. For all pixels where 

all four vertices of pixel box lie within the triangle, p = 1 is always true. 

In this work simple box filter was used for calculating area convolution, however better filters 

exist, like gauss or tent (reconstruction) [27]. For each pixel, triangles are clipped by pixel 

box boundaries. Then the coverage area is calculated. 𝑝 = |∫ 𝑓1(𝑥)𝑑𝑥 − ∫ 𝑓2(𝑥)𝑑𝑥
𝑟

𝑙

𝑟

𝑙
| , 

where l is pixel left edge, r is pixel right edge and f1, f2 are equations of lines, which form a 

triangle [28]. 
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2.1 Hidden surface elimination 

To correctly display anti-aliased edges method has to divide polygons, if they are covered by 

others, and select only visible parts. So, the final image may be considered as a vector image 

consisting of non-overlapping triangles.  

Two ways of achieving that, are described here: 

 

Figure 4 (left: final image; center: method of rendering only actually visible parts; right: 

method of rendering original triangles and then subtracting invisible parts, unseen part of the 

green triangle is outlined) 

 

 

 Drawing triangles and then subtracting unseen parts. (Fig. 4 right) Hidden surface 

elimination is performed after triangles are drawn, that ensures that only if triangles 

overlap at the same pixel, calculations are performed. After triangles are rendered, 

parts which are not supposed to be seen are found and subtracted.  

This method is adaptive, since it will use original triangles to solve visibility where 

possible and only if more than two triangles overlap in the same area complexity will 

increase (Fig. 5 right).   

The idea of this method is to render original triangles on separate layers, find 

intersection parts and subtract them from triangles, which are overlapped by others.  

Unfortunately W = O(2
n
). Each time when polygon is subtracted, deleted part should 

also be saved, so it can be re-added next time. (Fig. 5 right)  That happens due to the 

fact that after subtraction original triangles are not changed and intersection part of 

two subtracting polygons is being subtracted twice. For instance, the addition formula 

for three triangles will be: 𝐴 + 𝐵 + 𝐶 − (𝐴 ∩ 𝐵) − (𝐴 ∩ 𝐶) − (𝐵 ∩ 𝐶) + (𝐴 ∩ 𝐵 ∩

𝐶), where A,B and C are representing triangle areas and the last term is exactly the 
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part, which is re-added. While for opaque objects that does not make any difference, 

transparent objects will be rendered incorrectly.  

Since each new triangle can overlap with already existing ones, it can create the same 

amount of subtracting polygons. That means: if there were N polygons, there would be 

2 ∗ 𝑁 + 1 polygons. (+1 is a new triangle itself) This leads to recurrence relation: 

𝑇𝑛 = 2 ∗ 𝑇𝑛−1 + 1 , where Tn is number of polygons;  

characteristic equation for which is:  𝑇𝑛 = 2𝑛 − 1 ,  which is O(2
n
). 

 Drawing only visible parts. (Fig. 4 center and Fig. 5 left) O(n
2
) is for evaluating 

checks, since it has to be done for all pairs of polygons. That step can be optimized 

using broad phase, where program finds possibly overlapping polygons using for 

example axis aligned boxes to represent complex polygons or via mapping polygons 

to grid. Actual calculations are performed after that in narrow phase.  

However, each time polygon overlaps or intersects it has to be divided. Moreover, 

some polygons have to be divided in order to maintain only primitive polygons, as 

working with concave shapes, which can be formed, is harder. Assuming that each 

new polygon can divide already existing geometry by two or more (including 

transparent polygons): W ≥ O(2
n
). 

Hidden surface elimination is done before rendering triangles and only actually visible 

parts are being rendered. 

 

Figure 5 (more complex scenario with three triangles. From left to right: final image; visible 

parts are outlined; triangles are transparent to show how they overlap; subtractive polygons 

for those triangles are outlined.) 

 

For this work, the first method was chosen, since it generates overall less geometry, and 

intersection parts are always going to be convex polygons. It is easier to work with convex 

polygons, rather than with concave. Moreover, with the second method to actually start 
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rendering polygon, we have to solve the visibility issue first, as opposed to the first method, 

where rendering one polygon does not interrupt the calculations to find visible parts of the 

same polygon. Since those actions could be performed in parallel, it could decrease 

computation time. In addition, the first method is better suited for rendering transparent 

objects. 

To find out overlapping or not overlapping part of each polygon, it has to be cut three times 

for 2D (Fig. 6) (since the triangle is an area of plane limited by three lines) and four times for 

3D to solve intersections (line is formed by the intersection of two triangle planes). 

 
Figure 6 (the process of finding the intersection part: blue triangle is being iteratively cut with 

lines, which form the green triangle) 

 

Assuming that triangle vertices are declared in winding order, edge function method [29] can 

be used to determine on which side of the line a certain vertex lies. When the line intersects it 

forms an intersection point, which belongs to both parts. By connecting all vertexes, which lie 

on certain side polygons are formed. That way, the triangle is cut into two parts: one, which is 

outside the cutting triangle and inside one. Outside polygon composes the visible part of cut 

triangle, which does not intersect with cutting triangle. Inside polygon lies on the other side 

and intersects with cutting triangle, moreover, it is always going to be a convex polygon. This 

polygon is the part, which is subtracted afterwards. It is subtracted from triangle which is 

behind the other one. That can easily be determined knowing plane equations, on which those 

triangles lie. If planes intersect, intersection line will divide the screen into two regions: where 

the first triangle is in front of the second one and where the first triangle is covered by the 

second one. 
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2.2 Layered rendering 

 

The process of layered rasterization is described below. It should be noted that the buffer 

implementation may be different and only one of possible variants is described here. 

Firstly, the original polygon is rasterized into a separate layer. Color values are computed 

only for original polygons. Whenever a new polygon falls into pixel, already containing 

another polygon, a candidate polygon is marked into a temporary buffer, to check later 

whether they overlap or not. Basically, the program finds approximately possibly overlapping 

polygons with pixel precision. Buffer (Fig. 7) contains all drawn triangle ID-s and their 

coverage percent per pixel. Subtractive triangles are drawn on triangle layer, from which they 

are subtracted. Only at the end values are combined to get the final color for each pixel. That 

means, that correct coverage percent for each triangle in pixel is calculated and then values 

are merged together.  

Triangle intersections are solved once per scene. After the hidden part of triangles has been 

determined, subtractive triangles are drawn exactly the same way as original ones, with 

exception of the coverage percent sign (-). For a subtractive triangle of the subtractive triangle 

the sign is reversed (+), so triangle part will be re-added, otherwise, this area will be just 

subtracted more than once, as previously explained in description of hidden surface 

elimination algorithm. Triangles and subtractive triangles can be rendered in any order. Even 

though this approach takes a lot of memory to hold information about each triangle, 

computations for each primitive are totally independent and can be done in parallel threads. 

That way part of a program, which is rendering, does not have to wait for other calculations, it 

can render without pauses. Furthermore, primitive rendering itself could be already optimized 

using graphic card features, since calculations for each pixel are independent. The final step 

of combining layers is independent for each pixel as well. However, parallelizing algorithm 

does not decrease the total number of operations, which have to be performed in order. That 

means computation time is depending on the maximum amount of triangles, overlapping in 

one pixel region. And even though complexity is exponential (O(2
n
), as explained previously), 

it is not likely that too many triangles will overlap in one pixel. 
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Figure 7 (rendering buffer, each pixel has a dynamic array – a list of triangle or subtractive 

triangle ID-s drawn in that pixel. They all belong to certain layer, which represents an original 

triangle, from which they are subtracted or to which they are added. When calculating 

resulting color all values are combined together to find coverage percent of visible part for 

each triangle) 

 

This method supports rendering transparent objects. Transparent triangle will only partially 

subtract hidden part, depending on transparency degree, which could be possibly calculated 

for each pixel individually allowing to use more complicated objects. Instead of subtracting 

whole coverage value, it subtracts less, taking into account transparency. 
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3. Analysis of results 

3.1 Comparison 

Presented method was compared to multisampling algorithm, since multisampling is 

considered to give best quality. Since optimization was out of scope of this work, time was 

not be compared. 

Table 1 (comparison of analytic method and supersampling when rendering high frequency 

patterns) 

No Anti-aliasing 

   

FSAAx2 

   

FSAAx4 
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FSAAx8 

   

FSAAx16 

   

Analytic Anti-aliasing 
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Each chessboard tile was rendered as a separate polygon. 

As can be clearly seen on examples (Table 1), by increasing the sampling rate, high frequency 

signals are sampled better and aliasing disappears, though it still remains for even higher 

frequencies. (Distortions are moving towards the horizon, while sampling rate is increased). 

Even with x16 multisampling distortions remain very far away (Table 2). Using the analytical 

approach those distortions totally disappear. Though they remain for middle-frequencies. 

Results do not get much better on middle frequencies for multisampling after x4 as well, that 

is due to the limitation of using a box filter (FSAA can be considered using box filter, since 

pixel is interpreted as a box). 

Table 2 (image was zoomed in to show the difference between analytical and supersampling 

anti-aliasing at very high frequencies) 

FSAAx16 Analytic Anti-aliasing 
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Table 3 (comparison of analytic method and supersampling when rendering 3D models [30]) 

No Anti-aliasing FSAAx8 Analytic Anti-aliasing 

   

   

   



22 

 

When rendering low-poly models (Table 3) difference is less noticeable. Since no high 

frequency patterns exist, there is no aliasing in the final image. Even though analytic approach 

should be more accurate, final precision is still limited by resolution and those details are not 

distinguishable. That means, edge anti-aliasing does not require such precision, as opposed to 

high-frequency patterns. 

3.2 Advantages and disadvantages 

Pros and cons of the proposed method are presented below. 

Advantages: 

 Can render transparent (Fig. 9) and opaque (Fig.8) primitives in any order. 

 Solving intersections (Fig. 10) does not increase complexity much.  

 Analytic approach is theoretically the best quality anti-aliasing (Table 2). 

 Rendering and hidden surface elimination calculations can be done independently in 

multiple threads. 

Disadvantages: 

 Slow. W=O(2
n
). Very inefficient for rendering high-poly models. 

 Even though it tries to calculate exact area, there is no perfect filter and calculations 

are still limited by the precision of floating point numbers. Since floating point is by 

itself an approximation of real number, calculations can be inaccurate. 

 Requires a lot of memory to hold all geometry data and buffer layers. Dynamic 

memory is always slower than static. 
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Figure 8 (shows that program solves hidden surface elimination for opaque objects) 

 
Figure 9 (shows that program solves hidden surface elimination for transparent objects) 

 
Figure 10 (shows that program correctly handles polygon intersections; boxes are intersecting 

with transparent terrain) 
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4. Conclusion 

An algorithm for analytical anti-aliasing, which handles transparent objects and intersections 

was proposed, implemented (Fig. 11) and evaluated.  

 

Figure 11 (shows that method is capable of rendering 3D models, correctly resolving 

visibility problem, intersections and applying anti-aliasing) 

 

The main limitations of this approach are: 

 Complex computations take a lot of time.  

 It is hard to make it even more parallel and optimize further. 

 Floating point errors can create aliasing and other inaccuracies. 

 Filters are not ideal, since they approximate actual distribution of vector image. 

Analytical methods are obviously not suited for fast real-time rendering, though for some 

applications where the scene is pre-rendered they can give better results, both in quality and 

time, compared to computational extensive high resolution supersampling. Presented method 

could be further optimized or combined with other techniques to achieve better results. 

However, analytical methods give practically no benefit, when rendered scene does not have 

the aliasing effect of its own. This may lead to focusing future works on creating some hybrid 

approaches, which can detect high-frequency regions and apply corresponding type of anti-

aliasing. 
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