TALTECH UNIVERSITY

School of Information Technology Department of Software Science

Andres Suislepp 204042IAPM

MULTI-MODAL DATA FUSION FOR SHORT-TERM URBAN NOISE PREDICTION IN INTELLIGENT TRANSPORTATION SYSTEMS

Master's thesis

Supervisor Sadok Ben Yahia Professor Co-supervisor Chahinez Ounoughi PhD student

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Andres Suislepp 204042IAPM

MULTIMODAALSETE ANDMETE ÜHITAMINE LINNAMÜRA LÜHIAJALISEKS ENNUSTAMISEKS INTELLIGENTSETES TRANSPORDISÜSTEEMIDES

Magistritöö

Juhendaja Sadok Ben Yahia Professor

Kaasjuhendaja Chahinez Ounoughi PhD student

Author's declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature, and the work of others have been referred to. This thesis has not been presented for examination anywhere else.

Author: Andres Suislepp

Date: 02.01.2023

Annotatsioon

Intelligentsed transpordisüsteemid on kriitilise tähtsusega tänapäeva linnades. Tarkade rakenduste olemasolu linnades on oluline, et pakkuda inimestele kaasaegset, turvalist ja mugavat linnaruumi. Meie liikumise ja teguviiside analüüsimiseks kogutakse massiiv-seid andmehulkasid, mille protsessimiseks kulub rohkesti aega ja arvutijõudlust. Selle probleemi lahendamiseks on välja töötatud mitmeid andmeühitamise tehnoloogiaid, mille tulemusena andmete hulk ja modaalsus väheneb, kuid nendes sisalduv informatsioonihulk jääb samaks või suureneb.

Töö eesmärk on välja pakkuda andmeühitamise metoodika, mille kaasabil on võimalik pakkuda usaldusväärseid, kiireid, töökindlaid ja täpseid mürataseme ennustusi linnades.

Välja töötatud lahendus on hübriidne andmeühitamine, milles on kasutatud andmeühitusmetoodikat nii tunnuse- kui ka otsustuse tasemel. Tunnuse taseme ühitamiseks on kasutatatud *Smoothed Kalman Filter* lähenemist, mis töötab hästi mitte-täielike andmehulkade peal. Lisaks vähendab see andmete modaalsust, mille tulemusena ka mudeli keerukus väheneb. Lõplik väljatöötatud mudel koosneb lisaks eelnevale ka otsustustasemel ühitusest, kuhu on lisatud Tallinna avakaameratel põhineva mudeli tulemused. See saavutas veelgi väiksema ennustusvea tulemuse. Lõplik hübriidne andmeühitusmeetod põhineb tunnustasemel *Smoothed Kalman Filter* tehnoloogial ja otsustustasemel *Support Vector Regression* tehnoloogial.

Andmete ühitamise meetodi tulemuste valideerimiseks loodi ennustusmudel, mis koosneb konvolutsioonilisest ja rekurrentsest närvivõrgust. Eksperimendid viidi läbi Tallinna linnast ühe kuu vältel kogutud andmehulga pealt. Tulemuste efektiivsust hinnati neid mitmete üldtuntud andmete ühitamise meetoditega võrreldes. Lisaks sellele kõrvutati tulemusi statistiliste aegridade ennustamise meetoditega. Võrdluseks kasutati kahte karakteristikut: täpsus ja efektiivsus. Täpsus mõõdab ennustuse vea suurust ja efektiivsus mudeli treenimiseks kulunud energiat ja aega. Välja pakutud ühitamisstrateegia saavutas parima tulemuse kõigi võrreldavatega, olles kõige väiksema vea väärtusega. Tulemustest sai lisaks välja lugeda, et mudelile piltide ja otsustusühituse lisamine tõstis väga vähesel määral mudeli täpsust, kuid sellega kaasnes väga suur efektiivsuse langus.

Töö tulemusena valmis täpne ja efektiivne linnamüra ennustusmudel, mis põhineb hübriidsel andmete ühitamise meetodil. Ennustusmudeli tulemusena on võimalik ehitada tarku aplikatsioone, mis tõstaksid intelligentsete transpordisüsteemide kasutajakogemust ja usaldusväärsust. Pakutud andmeühituslahenduse adapteerimine teistesse valdkondadesse on üks võimalikest töö edasiarendustest.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 8 peatükki, 14 joonist, 9 tabelit.

Abstract

The amount of data being collected each second is enormous. It takes loads of time and computational power to extract valuable information to process and analyze this data. Data fusion methodologies have been implemented to tackle these problems and reduce complexity while maintaining or improving the information content.

The primary goal of this thesis is to propose a data fusion strategy to provide reliable, accurate, and efficient predictions for urban noise levels in Intelligent Transportation Systems.

The proposed approach to data fusion is a hybrid data fusion, using the feature and decisionlevel fusions in parallel. For feature fusion, a statistical method, Smoothed Kalman Filter, was used to deal with the data unreliability and simultaneously reduce the complexity of the model. For the model that includes images from Tallinn open cameras, a decision fusion based on a Support Vector Regression was applied to further improve the final prediction's accuracy.

A deep learning network was built to evaluate the impact of the data fusion strategy. Experiments were carried out from the multi-modal data set acquired from Tallinn over the period of 1 month. The results were evaluated against multiple data fusion algorithms and statistical time series baselines based on accuracy and complexity. The proposed model was able to outperform all the other baselines on average. Adding the decision fusion with images to our model had a small improvement in accuracy. However, the increased complexity was immense. The model outperformed baselines by a high margin when predicting 5 or 15 minutes into the future. Regarding 30 or 60-minute predictions, two baselines, namely *Univariate, no fusion* and *Moving average* were able to produce better results due to the simplistic approach of filling the missing target variable values.

As a result of the proposed data fusion strategy, a performant and accurate prediction model was built. This enables building smart applications for Intelligent Transportation Systems on top of urban noise predictions. Generalization to different contexts could be researched for further improvement to the data fusion model.

The thesis is in English and contains 46 pages of text, 8 chapters, 14 figures, 9 tables.

List of abbreviations and terms

API	Application Programming Interface
ARIMA	Autoregressive Integrated Moving Average
AVG	Average
CNN	Convolutional Neural Network
CSV	Comma Separated Values
DF	Data Fusion
GPS	Global Positioning System
ISO	International standard for date and time presentation
ITS	Intelligent Transportation System
KF	Kalman Filter
KNN	K-Nearest Neighbors
LSTM	Long short-term memory
MAE	Mean Absolute Error
MAPE	Mean Absolute Percentage Error
MLR	Multinomial Logistic Regression
MSE	Mean Squared Error
P1	Road section 1
P2	Road section 2
px	Pixel, the smallest addressable element in a raster image
RMSE	Root Mean Squared Error
RNN	Recurrent neural network
SKF	Smoothed Kalman Filter
SVM	Support Vector Machine
SVR	Support Vector Regression
UKF	Uncented Kalman Filter
relu	Rectified linear unit

Table of Contents

Li	List of Figures 1				
Li	st of [Fables	12		
1	Intr	oduction	13		
	1.1	Motivation	13		
	1.2	Problem statement	14		
	1.3	Structure	14		
2	Bac	kground and related work	15		
	2.1	Intelligent Transportation Systems	15		
	2.2	Data fusion	15		
		2.2.1 Data-level fusion	16		
		2.2.2 Feature-level fusion	16		
		2.2.3 Decision-level fusion	16		
	2.3	Data fusion for time series prediction	17		
	2.4	Multivariate time series prediction	18		
	2.5	Long short-term memory	18		
3	Data	a acquisition	20		
	3.1	Data sources	20		
	3.2	Data processing	20		
		3.2.1 Combining data from multiple sources	23		
	3.3	Exploratory analysis	23		
		3.3.1 Handling of missing data	28		
		3.3.2 Privacy preserving	28		
4	Met	hodology	29		
	4.1	Model building	30		
		4.1.1 Fusion approach	31		
		4.1.2 Prediction approach	32		
5	Exp	erimental evaluation	33		
	5.1	Experimental setup	33		
	5.2	Evaluation	34		
		5.2.1 Walk-forward validation	36		

5.3 Targeted baselines								
	5.3.1 Data fusion methods							
		5.3.2	Statistical time series prediction techniques	37				
	5.4	Result	s and discussion	38				
		5.4.1	Comparison of data fusion methods	38				
		5.4.2	Comparison of time series methods	41				
		5.4.3	Sequence length impact on model performance	42				
6	Fut	ure wor	k and applications	44				
7	Sun	nmary		45				
8 Acknowledgements								
Bibliography								
Appendix 1 - Non-exclusive licence for reproduction and publication of a grad-								
uation thesis 49								
Appendix 2 - Results50								
Appendix 3 - Dataset90								
Aj	ppend	lix 4 - C	Code	97				

List of Figures

1	LSTM architecture for a supervised model in time series prediction context.	
	Figure referenced from [13]	19
2	TomTom road sections	21
3	Tallinn Live Cameras: Concatenated	22
4	Noise series	24
5	Noise histogram	25
6	Correlation matrix	26
7	Rain histogram	27
8	High-level model architecture	29
9	Final model architecture	30
10	Final model architecture without images and decision fusion	30
11	Walk-forward validation	36
12	Example proposed model training	38
13	Proposed model predictions for different output steps	39
14	Comparison of time series input sequence length	43

List of Tables

1	Data sources	20
2	Noise characteristics	24
3	Rain characteristics	26
4	Categorical value counts	27
5	Prediction model architecture	34
6	Data fusion accuracy comparison	40
7	Data fusion performance comparison	41
8	Proposed approach comparison with statistical time series methods	42
9	Comparison of input sequence length on training the proposed model	43

1. Introduction

Developing Intelligent Transportation Systems (ITS) is crucial to improve people's mobility in densely populated cities. Evolution in the field has led to a high demand for smart applications that provide useful information as an input for reliable and smart transportation networks [1].

The amount of information we have today is enormous, and the challenge relies on extracting the useful and informative parts of the collected data and providing meaningful analysis on top of it. In the context of ITS, the biggest generators of data are the deployed sensors, including data from GPS, video cameras, LIDAR, RADAR, and loop detectors, to name a few. This data is often supported by other sources such as social media, weather data, public transportation data, etc. The biggest challenges in the field can be identified as *(i)* analyzing real-time heterogeneous big data and *(ii)* data reliability [1].

Data Fusion (DF) is considered an elegant and efficient way to tackle the problems related to multi-modal big data. Studies on DF have delivered significant enhancements in ITS and demonstrated a vital impact on its evolution [1].

The proportion of the world population living in urban areas is expected to grow rapidly in the following decades [2], which indicates the actuality of the problem. In addition, high urban noise levels are known to be a source of many illnesses, starting from constant stress and sleep issues to more severe problems like cardiovascular diseases [3].

This thesis proposes a novel data fusion method to improve and simplify deep-learning prediction model outcomes. The model is developed using data from the city of Tallinn.

1.1 Motivation

Traffic congestion in big cities is a huge cost for city stakeholders. Accurately predicting traffic characteristics, including urban noise, can reduce congestion and the overall CO_2 emissions, fuel consumption, and travel times. This will lead to safer, more modern urban environments and a healthier planet.

1.2 Problem statement

Urbanization increases the need for smart cities to manage people's mobility efficiently. Therefore, to overcome this issue, a myriad of researchers have conducted combined data fusion techniques with traffic prediction approaches by processing the vast amount of collected heterogeneous traffic data from different sources. Better prediction results allow ITS stakeholders, managers, and applications to reduce congestion, travel time, CO₂ emissions, allocate resources, and increase safety.

My thesis aims to propose a method for traffic data fusion that improves the performance and accuracy of predicting urban noise levels in Intelligent Transportation Systems. The hypothesis to be proven is that data fusion methods mixed with hybrid deep learning methods can yield highly accurate and performant results for short-term urban noise prediction. The problem is interpreted as a forecasting problem.

1.3 Structure

The rest of the work is structured as follows. Chapter 2 introduces the general methodology and summarizes the state-of-the-art data fusion methods, emphasizing feature and decision fusions. Additionally, a comprehensive introduction to the techniques used in work is given. Chapter 3 gives an overview and initial analysis of the available dataset and the pre-processing strategies used. The proposed architecture is provided in Chapter 4, where the underlying technology choices are justified. Chapter 5 thoroughly analyzes the experimental evaluation, where the results are discussed and compared to the relevant baselines. Possible applications for the final implementation are given in Chapter 6, together with ideas for further improvement of the models.

2. Background and related work

This chapter provides the necessary context needed to understand further work. Stateof-the-art data fusion methods are introduced, and a high-level overview of the used technologies is given.

2.1 Intelligent Transportation Systems

European Union directive 2010/40/EU states Intelligent Transportation Systems as a group of advanced applications that aim to provide helpful and innovative solutions to traffic management and different modes of transportation [4]. It integrates telecommunications, electronics, and information technologies with transport engineering to enable various stakeholders to be better informed for making safer and more coordinated decisions. A critical factor in deploying these systems is preserving individual consumers' privacy. The directive also suggests increasing the number of deployments of intelligent applications, which has accelerated the demand and interest in the field.

2.2 Data fusion

Data Fusion is an advanced technique to combine information coming from several sources to get more accurate results in an execution of an application in a way that would be performed by the use of individual sources separately [5]. The expectation is that fused data is more informative and synthetic than the original inputs. Another significant factor of DF is dimensionality reduction. The ability to simplify models both algorithmically and computationally is a precious aspect when dealing with significant amounts of multi-modal data. In a recent study, [1] has classified the current directions of DF as hybrid data fusion, explainable deep neural network data fusion, adaptive sensor selection, privacy-preserving, and real-time data acquisition and processing.

Data fusion can be categorized into three main categories based on when the fusion takes place: data-level fusion, feature-level fusion, and decision-level fusion.[6]

2.2.1 Data-level fusion

Data-level fusion, also recognized as low-level fusion, is most widely used when collecting data from the environment. Suppose multiple homogeneous sensors collect the exact measurement. In that case, these inputs from the sensors can be fused directly to improve sensor reliability, reduce noise and achieve more accurate and informative data than the sources. This also decreases the network bandwidth used, making it less expensive to handle big amounts of data [6].

2.2.2 Feature-level fusion

Feature-level fusion, also known as intermediate-level fusion, merges multiple data sources into a new high-dimensional dataset. Since high-dimensional datasets are computationally and algorithmically expensive, simple concatenation of feature sets is usually not good enough. Feature-level DF algorithms and feature engineering can be beneficial when dealing with high-modality datasets. However, in some cases, simple concatenation has shown to be a viable option with the popularization of deep learning [6].

Authors in [7] built a deep-learning model to predict the occupancy of electric vehicle charging stations. Their proposed fusion component integrates information from the dynamic encoder and static feature component. It uses concatenation to feed the encoded feature vectors to the fully-connected layer. The prediction model is evaluated concerning multiple metrics: precision, recall, and F1-score. The proposed model shows the best performance regarding the Recall and the F1-score compared to various statistical, machine learning, and deep learning baselines. The paper shows promising results with a simplistic fusion approach.

2.2.3 Decision-level fusion

Decision-level fusion, also recognized as high-level fusion, is used to fuse multiple independent, often weaker decisions to a final unique decision [6]. This is especially useful for capturing the different characteristics of the dataset by using specialized models and fusing the outputs instead of trying to build a generalized model for the whole dataset.

Paper [8] is introducing a decision-level data fusion framework based on homogeneous (machine-learning) and heterogeneous (Extended Kalman Filter) data for traffic congestion prediction. Decisions from three data mining algorithms (deep belief network, k nearest neighbors, random forest) are fused using Extended Kalman Filtering. The three models'

fused output shows a significant performance increase over any models independently. The dataset of the evaluation is based on daily motorway traffic in Montreal, obtained from Genetec blufaxcloud travel-time system engine. The model validation is done by measuring the predicted travel time and comparing it against the estimates obtained from Genetec blufaxcloud travel-time system engine. The model outperforms Genetec estimations 12 times out of 23. Authors in [9] use feature- and decision-level fusion to assess tea quality based on the tea's image and scent. Paper is extracting features from images and e-nose sensors and fusing the data to classify the quality of the tea batch. K-nearest neighbors (KNN), support vector machine (SVM), and multinomial logistic regression (MLR) were applied for classification modeling. Both studies (feature and decision) show better classification results than those based on independent inputs. For this paper, decision-level fusion is the most effective approach.

2.3 Data fusion for time series prediction

Traffic prediction has been a hot research topic for many years. Traffic's complex, nonlinear and stochastic characteristics are the main problems of making accurate predictions [10]. In recent years, traffic data fusion has been used to improve traffic characteristic predictions in cities [8]. Kalman Filter and its variations have shown high usage in forecasting and estimating short-term traffic characteristics. The authors in [11] use Kalman Filter to fuse spatial and location-based data to estimate traffic density. Subsequently, the estimated data are utilized for predicting density to future time intervals using a time series regression model. The experiment was carried over in Chennai, India, which adds a significant complexity due to the unique nature of traffic that poses both technological and algorithmic challenges. The density prediction model performed relatively well despite the challenges arising from India's heterogeneous traffic flow conditions. A more recent study [12] has proposed a hybrid model for regional traffic flow prediction based on the convolutional neural network (CNN) and long short-term memory (LSTM). The data being fused is both spatial and temporal. As CNN is generally more suitable for spatial data and LSTM models are appropriate for processing sequential types of data (temporal), a hybrid approach combining CNN and LSTM is introduced. The model shows the highest accuracy compared to the targeted baselines for multi-step forecasting. Another paper [13] with a similar approach proposes a multivariate CNN-LSTM model to predict stock market prices. The stock market is a noisy, stochastic environment identical to traffic in big cities. The proposed model used multiple stock market indices by considering the state of correlation between them in the forecasting process. The multivariate CNN-LSTM model outperformed standalone CNN and LSTM models by a relatively high margin.

Besides traffic predictions, other commonly used applications for DF in the context of

ITS include autonomous vehicles, travel time estimation, traffic prediction, congestion prediction, incident detection, vehicle communication, and different management systems [1].

2.4 Multivariate time series prediction

Multiple time-dependent variables in a multivariate time series prediction depend on their previous value and other variables' previous values. This allows the model to capture the trend of observed variables' relationships when forecasting the future value [13]. The input to a multivariate time series prediction is a uniformly distributed time-dependent sequence of prior values. Formula 2.1 represents the prediction as a function *fn* where *X* represents the variable set, *y* as the target variable, \hat{y} as the predicted value, *l* is the input sequence time length in time steps, and *o* represents the output time steps (how many steps in the future to predict).

$$\hat{y}_{t+o} = fn(\{X_{t+(-l+1)}, X_{t+(-l+2)}, ..., X_t\})$$
(2.1)

2.5 Long short-term memory

To evaluate the fusion methodologies, a multivariate prediction methodology is needed. Multi-modal non-linear urban noise data is known to be too complex and noisy for traditional time series prediction methods to handle. The advancements in machine learning research are providing viable options to overcome these limitations. Neural networks can learn the complex relationships between data features in big datasets without relying on previous information [13].

Due to its popularity in late time series prediction publications, the chosen prediction methodology was long short-term memory (LSTM). LSTM is a popular recurrent neural network (RNN). Recurrent neural network (RNN) is a deep network architecture where the connections between hidden units form a directed cycle [14]. The LSTM network can capture long-term dependencies by using internal memory that keeps the previous information from the last hidden states, as illustrated in Figure 1.

Figure 1. LSTM architecture for a supervised model in time series prediction context. Figure referenced from [13]

•

Traditional LSTM unit comprises forget, input, output gates, and a memory cell. The architecture assumes uniformly distributed elapsed time between the elements of a sequence [14]. LSTM has been widely used and proven to be very capable of forecasting time series data [13].

3. Data acquisition

This chapter aims to give a good understanding of the underlying dataset. This includes the data source, acquisition information, and a thorough analysis of the available features. A thorough exploration of the available dataset is needed to propose a suitable data fusion strategy for an accurate prediction.

3.1 Data sources

The intersection of interest for the model building is in Tallinn, between Sõpruse Puiestee and Tammsaare Tee. The main reason for this decision was the availability of the urban noise sensor data.

Different traffic characteristics data were acquired from multiple sources. Data sources, methods of acquisition, and processing strategies are described in Table 1. The interval for data acquisition was 5 minutes. Data were acquired from 10 February 2022 until 6 March 2022.

Features	Source	Acquisition method
Noise level	Thinnect	Export
Traffic characteristics	TomTom Developer Portal	API Scraping
Weather	ilm.ee	Website Scraping
Road condition, weather	Tallinn Weather Portal	Website Scraping
Camera images	Tallinn Live Cameras	Scraping
Datetime features	-	Computed

Table 1. Data sources

3.2 Data processing

Noise data

Noise data was exported in CSV format from Thinnect portal and required no preprocessing. The used sensor is situated at the intersection of Tammsaare - Sõpruse and sends the average noise level to the server every minute.

TomTom

Data from TomTom was acquired by accessing the TomTom Maps API [15]. TomTom provides data about different road sections. The two road sections used are denoted as *P1* and *P2* and depicted in Figure 2.

Figure 2. TomTom road sections

TomTom provides average car speed and travel-time information about each road section for two cases: the current and free flow states. Free flow state describes the situation for a case where there is no extensive amount of traffic. This allows us to calculate the differences between the free flow state and the current state, using the formula 3.1. In addition, TomTom provides data about road closures and road types in real time.

$$t_{diff} = t_{current} - t_{freeflow} \tag{3.1}$$

Ilm.ee

Scraping *ilm.ee* website provides data points about the current weather and air conditions. The available features are temperature, wind temperature, air pressure, air humidity, wind speed and direction, rainfall, sunset and sunrise times, cloudiness, and coldness class.

Tallinn Weather Portal

Scraping *Tallinn Weather portal* website provides data points about the current weather and road conditions. The available features are temperature, air humidity, and road temperature.

Tallinn Live Cameras

There are three live cameras for the intersection of interest. The images are scraped from the Tallinn Live Cameras website, resized into a standardized size of 100px x 100px, and concatenated into a single 300px x 100px picture collage depicted in Figure 3. Concatenation is needed to allow the deep learning model to learn about all the driving directions simultaneously. The small size for the images had to be chosen to optimize the further processing and training procedures since dealing with high volumes of image data is computationally expensive.

Figure 3. Tallinn Live Cameras: Concatenated

DateTime features

DateTime features are computed from the ISO timestamp. The following features are computed: date, hour, minute, minute of the day, day of the month, day of the week, and is-weekend.

```
def compute_datetime_features(df):
    df['Datetime'] = df.apply(lambda row: datetime
            . from isoformat (row ['Timestamp']), axis = 1)
    df['Date'] = df.apply(lambda row: row['Datetime']
            .strftime("%Y-%m-%d"), axis=1)
    df['Hour'] = df.apply(lambda row: row['Datetime']
            . hour, axis=1)
    df['Minute'] = df.apply(lambda row: row['Datetime']
            . minute, axis=1)
    df['Minute_Of_Day'] = df.apply(lambda row: (row['Hour'] *
            60) + row['Minute'], axis=1)
    df['Day_Of_Month'] = df.apply(lambda row: row['Datetime']
            . day, axis=1)
    df['Day_Of_Week'] = df.apply(lambda row: row['Datetime']
            .weekday(), axis=1)'
    df['Is_Weekend'] = df.apply(lambda row: row['Day_Of_Week']
            == 5 or row ['Day_Of_Week'] == 6, axis=1)
    return df
```

3.2.1 Combining data from multiple sources

For further processing of the dataset, data from multiple sources are combined using the Pandas DataFrame merge functionality. Merging is based on computed DateTime features.

```
df = pd.merge(df_noise, df_ilmee_weather,
    how='left',
    on=['Date', 'Hour', 'Minute'])
```

3.3 Exploratory analysis

The initial dataset contains 7, 252 data points. Exploration of the target variable, noise, shows the first immediate problem. As depicted in Figure 4, noise value is only present for 26.54% of the dataset. Another feature visible from Figure 4 is the temporal characteristic of the urban noise. Further exploration of noise characteristics are shown in Table 2 and a

histogram in Figure 5. The target variable is a numeric value between the range of 45-80 dB with a mean of 58.931 dB.

Figure 4. Noise series

Characteristic	Value
Count	1925
Mean	58.931
Standard deviation	5.954
Minimum	45
25%	54
50%	59
75%	63
Maximum	80

Table 2. Noise characteristics

Figure 5. Noise histogram

Exploring the correlations between continuous features shows a very low correlation for rainfall. The correlation matrix in Figure 6 shows less than 0.1 correlation between any other feature and rain. Further exploration of the rain feature in Table 3 and Figure 7 shows that there was minimum rain detected during our interest of time. The outcome of the exploration is removing the rain feature from further model development. The biggest correlation with the target variable is the road, air temperature, and wind speed.

⊢ ⊢ ⊢ Figure 6. Correlation matrix

Characteristic	Value
Count	7177
Mean	0.008
Standard deviation	0.089
Minimum	0
25%	0
50%	0
75%	0
Maximum	1

Table 3. Rain characteristics

Figure 7. Rain histogram

Categorical features value count exploration shows us four variables with static values as described in Table 4. These values are not providing additional information to the model and, therefore, can be excluded from further model development. Because wind speed has a significant correlation, we can expect the wind direction to be very influential.

Value	Count	Value	Count] [Value	Count	Value	Count
FRC3	7252	FRC2	7252		False	7252	False	7252
P1 roa	ad type	P2 roa	ad type		P1 is	closed	P2 is	closed
Valu	e Count			Value		Count		

Value	Count
cloud_norain	3490
cloud	2089
cloud_lightsnow	653
cloud_lightrain	634
cloud_modrain	202
cloud_lightrainsnow	90
cloud_modsnow	78
cloud_modrainsnow	18

Value	Count
cold	4158
hot	3096

Coldness class

Wind direction

SW

S

W

SE

Ν

NW

NE

Е

2728

1509

1380

508

462

457

114

96

Cloudiness class

Table 4. Categorical value counts

The final dataset contains 11 continuous features, three categorical features, and one image feature combined with three images. The immediate problems regarding data preprocessing that arose from the exploratory analysis are the following:

- 1. Missing values for the target variable.
- 2. Privacy-preserving for images.
- 3. Capturing periodic temporal characteristics of the target variable.

3.3.1 Handling of missing data

The requirement for training accurate deep learning models is a sufficient amount of training data. To increase the size of the training dataset, noise values are imputed using a method of backward fill, where the last known valid value is carried backward in the dataset, with a limit of 6. This ensures that short-term missing values are not affecting the training process. Still, the limit is set not to fill vast gaps of missing data in training, which can cause the model to learn the backward fill implementation instead of the actual dependencies and variable movements. In addition, as described in Chapter 2.4, the input to a time series prediction is a sequence of datasets where elements are expected to be uniformly distributed. The sequences that violate that assumption are removed from the training set as described in Formula 3.2, where the sequence of variables *S* including *l* variable sets *X* with a parameter timestamp in minutes X(t). The sequence *S* is included in the training set when function *fn* evaluates to *true* with a time step *ts* between each item.

$$fn(S) = (X_t(t) - X_{t+(-l+1)}(t)) <= l * ts$$
(3.2)

3.3.2 Privacy preserving

Data privacy is an important matter to discuss when dealing with image processing. The collected images used in this work are processed only to predict future noise values. The persons and the personal cars visible in the images are not processed in a standalone approach.

4. Methodology

The proposed architecture is described in detail in this chapter. The distinct strategies are justified, and an overview of underlying logic is provided.

Considering the late success shown in recently published papers that proposed deep learning models which can recognize complicated and unknown patterns in large varying data sets, the proposed methodology chosen for the prediction model is deep learning. The idea is to use a combination of data fusion techniques before feeding it into the LSTM-based model that predicts short-term urban noise levels. Deep learning models greatly succeed when dealing with nonlinear multivariate time series data. However, the limitation is the need for a vast amount of data and computationally expensive training times [16]. A combination of DF strategies improves the prediction model's accuracy and performance. The proposed approach is a hybrid DF method combining feature and decision-level fusions. Figure 8 shows the high-level architecture to be built.

Figure 8. High-level model architecture

4.1 Model building

The proposed architecture depicted in Figure 9 aims to overcome the issues described earlier and provide an accurate forecast.

The proposed model is a combination of fusions. It uses the traditional DF method Smoothed Kalman Filter (SKF) for feature fusion to reduce the dimensionality and complexity of the model to allow for faster training times while maintaining or even improving the accuracy. This is combined with a CNN architecture to extract unknown features and patterns from the already fused data by introducing a multi-fusion strategy. The image input is processed using another independent CNN. The prediction outputs are fused using a Support Vector Regression decision fusion with a *rbf* kernel to improve the model's accuracy further. Both independent models use a deep learning prediction network based on CNN and LSTM. The final architecture of the model is described in Figure 4.1. The architecture of the same but more straightforward approach without images and decision fusion is shown in Figure 10.

The final architecture is a hybrid data fusion model, where multiple types of fusions are used to achieve an accurate prediction.

Figure 9. Final model architecture

Figure 10. Final model architecture without images and decision fusion

4.1.1 Fusion approach

Continuous features. A Kalman Filter with Smoothing, Smoothed Kalman Filter (SKF) is proposed to implement as a feature fusion method. It is an extended version of one of the oldest state estimation methods, the Kalman Filter(KF). It is simple and effective to use and helps to reduce the observation noises. The most beneficial outcome of the added smoothing usually becomes apparent when there is a more complex multivariate problem. The smoothed estimates of component values like the trend, cycles, and regressor effects can improve the forecasting target series [17].

Categorical features. Deep learning models require all inputs and outputs to be numeric. A learned embedding is an excellent way to overcome this and allow the network to learn the dependencies of categorical values. The implementation of embedding maps each categorical value to a vector, which allows the network to learn the categorical parameters when training.

Datetime features. Time is an important feature when building the prediction model. For the neural network to understand the properties of time, such as periodicity and invariance to time scaling, a Time2Vec implementation proposed in [18] is implemented. Time2Vec is mainly implemented to capture the periodicity characteristic of the target variable described in Chapter 3.3.

Images. To extract unknown features from image sequences, a CNN is used. CNN has been shown to learn accurate patterns and insights from images. Its built-in convolutional layer reduces the high dimensionality of images without losing its information [19]. It is one of the most popular choices when dealing with image data in a deep-learning context. The biggest disadvantage of using images and CNN is the computational expense. Image sequences take a long time to process and train the network.

Decision fusion, Support Vector Regression. Support Vector Machines (SVM) have been studied, generalized, and applied to several problems, including time series predictions. Support Vector Regression (SVR) shares the same advantages as SVMs [20]. They are efficient and work well in cases when there are not many outliers, making them ideal for decision fusions with an assumption that our models are generally accurate independently.

4.1.2 Prediction approach

The prediction approach is an ensemble of CNN and LSTM layers heavily influenced by a similar approach proposed in [13]. This combination is referred to as CNN-LSTM. It uses CNN to extract complex hidden patterns in the dataset and feeds its output to the LSTM layer input for time series prediction. This allows taking advantage of the powers from both independent layers to allow for accurate predictions. CNN extracts the hidden relationships between multi-modal data features, and LSTM is learning the time sequence relationships.

This must be noted that the prediction approach is not the main contribution of this work. The prediction approach must be in place to evaluate the fusion approaches.

5. Experimental evaluation

In this chapter, the results of the performed experiments are given. A description of the configurations and parameters used to run the experiments is provided. The evaluation metrics and baselines for comparisons are introduced, and the performance of the proposed approach is compared to the baselines in detail.

5.1 Experimental setup

The data preprocessing, fusion techniques, and prediction models were all implemented in Python (version 3.8.10) programming language. Many standard Python libraries were used for data processing, evaluation, and visualization, such as *matplotlib*, *numpy*, *matplotlib*, *scikit-learn* and *pandas*. Keras (version 2.7.0), the Python deep learning framework, was used with the Tensorflow backend to implement deep learning models for predictions.

To measure the performance of the proposed approach, a prediction for future urban noise levels for the next 5 minutes, 15 minutes, 30 minutes, and 60 minutes is computed. For all experiments, a *min-max* normalization technique between the range 0 to 1 is performed on all the continuous feature values, including the target feature, before applying the proposed fusion strategy. Embeddings are extracted for categorical variables. As described in Chapter 2.4, the values are aggregated into fixed-length sequences of 12-time steps that result in 60 minutes of look-back time. When choosing the sequence length, two aspects were considered carefully. The sequence must be long enough to learn the models' complex patterns. However, too-long sequences are computationally much more expensive and rely too much on perfect data quality.

The CNN for models where images were included were composed of three convolutional layers, with 100, 200, and 300 units, respectively, followed by a dense layer with 1024 units. All mentioned layers are using *relu* activation. The final layer of the CNN for extracting image features is a dense layer with one unit and a *linear* activation function. Pooling and dropout were added to reduce the complexity of the network and prevent overfitting.

The deep learning prediction model described in Chapter 4.1.2 was tuned to fit during the

implementation and kept static during all experiments to give a fair evaluation of the data fusion approaches. The CNN-LSTM architecture contains three convolutional layers with 64, 64, and 64 units, respectively, together with *relu* activation. Dropout with a rate of 0.2 is added between each convolutional layer to prevent overfitting. Pooling is added to reduce the complexity of the network. The output of the final convolution layer is fed into an LSTM layer with ten units and *relu* activation function. The final layer of the prediction network is a dense layer with linear activation and units equal to the prediction length. Table 5 gives an overview of all the parameters used.

All the experiments were run in the TalTech AI-Lab environment. 80% of the data is used for training purposes and 20% for validation of the results. The models were trained for 100 epochs with the *Adam* optimizer and a mean average error (MAE) loss function. The learning rate.

Туре	Value
Sequence length (look back)	12
CNN layers	3
CNN filters	64, 64, 64
LSTM layers	1
LSTM units	10
Epochs	100
Optimizer	Adam
Loss function	MAE
Learning rate	0.001

Table 5. Prediction model architecture

5.2 Evaluation

As described in Chapter 2, data fusion aims to solve two problems: improve the accuracy of the models and reduce the computational and algorithmic complexity by reducing the dimensionality. Based on this assumption, the evaluation of the proposed approach is also grouped into two segments: the model's accuracy and performance. Model accuracy evaluates the difference between the predicted noise level with the actual noise level. Model performance shows the computing resources and time used to train the model.

To evaluate the accuracy of the model, four different metrics are used, where y represents the actual value, \hat{y} the predicted value, and *n* the size of the dataset.

Mean Squared Error (MSE) - Popular metric to evaluate the errors for the models. [21] Calculated with formula 5.1.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
(5.1)

Root Mean Squared Error (RMSE) - Similar metric to MSE, but giving more weight to big outliers. [21]. Calculated with formula 5.2.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
(5.2)

Mean Absolute Error (MAE) - A scale-dependent metric over the whole dataset. Calculated with formula 5.3.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
(5.3)

Mean Absolute Percentage Error (MAPE) - Percentage error that is easy to interpret without knowing the context of the data. Calculated with formula 5.4. [22]

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} |\frac{y_i - \hat{y}_i}{y_i}|$$
(5.4)

RMSE and MSE have seen high usage in evaluating forecast models due to their theoretical relevance in statistical modeling. On the other hand, MAE and MAPE are less sensitive to outliers [21].

To evaluate the performance of the model, two different metrics are used:

Time to train (t) - Time elapsed to train the model. Less time spent on training the model means this model is computationally more performant as it spends fewer resources.

Model trainable parameter count (n_{param}) - Number of parameters model has to train. This is another way to evaluate the number of computational resources spent.

5.2.1 Walk-forward validation

Walk-forward validation is a testing approach designed to test models in a realistic scenario, imitating what would happen in a real-life setting. It provides a testing framework for evaluating the predictive power of a model on the data not used to train it [23]. A regular cross-validation strategy is not optimal for time series data because of temporal characteristics like seasonality, unexpected pulses, or trends. Using future observations to predict past values does not fairly indicate the actual model performance. This is why walk-forward validation is also an excellent method to avoid overfitting for time series models [24]. Figure 11 illustrates the walk-forward procedure used to evaluate the prediction outputs.

Figure 11. Walk-forward validation

5.3 Targeted baselines

5.3.1 Data fusion methods

No fusion, univariate. No fusion algorithm. Prediction is only based on the previous sequence of noise values.

No fusion. No feature fusion algorithm, all the parameters from feature engineering are fed into the deep learning prediction model. This baseline is a good comparison to evaluate if, using the same deep learning model, can the proposed feature fusion methodology improve the results.

No fusion + *images.* Similar to the previous, except for the outputs of the CNN are concatenated into the input of the final model. This is an excellent baseline to show that the decision fusion with an independent image prediction model should improve upon the
model where images are concatenated into a single model together with other features.

Kalman Filter. Kalman Filter is one the oldest state estimators for linear systems. It has been widely used to improve observation errors. It is simple to use and computationally very inexpensive. However, applying the KF to nonlinear systems can be difficult [25].

Uncented Kalman Filter. Unscented Kalman Filter (UKF) is an extension to the regular Kalman Filter. The internal method called unscented transformation allows UKF to calculate the statistics and state estimation of a random nonlinear state [25].

Average. An simple average over multiple decisions or predictions can be used. The main positive effect of using average is that it helps balance the outliers in the model outputs. In addition, it is straightforward to implement. This only applies to decision fusion since the variables must be of the same type and scale.

5.3.2 Statistical time series prediction techniques

Statistical time series baselines are added as a comparison to validate the problem-solving approach using deep learning. Statistical methods have been widely used to solve time series prediction problems, and they tend to be much more efficient and easier to build and understand than deep learning models. To justify the deep learning approach, statistical methods are added as baselines.

Naive. Naive is the most simplistic forecasting method, where the last observation is carried over as a prediction. This can yield surprisingly good results for many economic and financial time series [26]. It is an excellent first baseline to improve upon.

Moving average. Moving average is a classical time series forecast algorithm. Observations near each other in time are likely to be proximate in value. In case of outliers, the moving average smoothes the output and therefore gives a smooth trend-line prediction [26].

Linear regression. As shown in 6, there is a correlation between temperature and the time of day. The univariate linear regression model is built upon the assumption that there is a linear relationship between the target variable and a predictor [26].

ARIMA. Autoregressive integrated moving average (ARIMA) model is one of the most widely used time series forecasting models. It aims to find autocorrelations in the dataset. [26]

5.4 Results and discussion

All experiment results are shown in Appendix 2. The dataset used is provided in Appendix 3 and code together with instructions for running the experiments is given in Appendix 4.

Figure 12 shows the loss of the training and validation set during the training process. The figure shows that training and validation losses do not diverge significantly. This explains that our model generalizes well instead of overfitting by remembering the input data [19]. Figure 13 illustrates the model predictions against the validation data set.

Figure 12. Example proposed model training

5.4.1 Comparison of data fusion methods

The proposed model, both with and without images as inputs, is compared to the relevant baselines to evaluate the impact of the data fusion strategy. Table 6 combines the accuracy results for the experiments. Only the best-performing model of each type is given. Overall, on average the proposed model can outperform all the other baselines. As expected, the model works best when predicting just one-time steps into the future. The proposed model achieves the best average RMSE (3.113), MSE (11.000), MAE (2.456), and MAPE (0.042). When predicting 5 minutes or 15 minutes into the future, the proposed model achieves low error rates with RMSE values of 2.220 and 2.788 respectively. These values outperform other baselines by a huge margin. When predicting 30 minutes or 60 minutes into the future, the simplest *Univariate, no fusion* manages to outperform the proposed

Figure 13. Proposed model predictions for different output steps

model by a relatively low margin. The proposed model without images is also performing exceptionally well overall. On average, it outperforms all the other models, excluding the proposed model with images and the univariate model, while. This indicates that our feature fusion approach is the most impactful part of our model.

When comparing the proposed approach without decision fusion to the no-fusion approach, we see that our data fusion strategy has improved the accuracy by a high margin. On average, the proposed model RMSE is lower by 0.381 than the no-fusion approach. This indicates that our data fusion strategy is giving the expected results and significantly impacting the predictions.

MethodFeature fusion × Decision fusion	Prediction length	RMSE	MSE	MAE	MAPE
	5min	3.038	9.23	2.322	0.039
Univariate, no fusion	15min	3.624	13.136	2.875	0.048
	30min	3.343	11.177	2.668	0.046
NONE NONE	60min	3.647	13.303	2.894	0.050
NONE × NONE	AVG	3.413	11.712	2.690	0.046
	5min	3.100	9.611	2.434	0.041
No fusion	15min	4.403	19.385	3.524	0.059
	30min	4.320	18.666	3.362	0.056
	60min	3.691	13.622	2.976	0.050
NONE × NONE	AVG	3.879	15.321	3.074	0.052
	5min	38.033	1446.497	9.431	0.157
Combined model with images	15min	50.747	2575.249	7.522	7.522
	30min	13.430	180.354	4.824	0.082
	60min	6.335	40.133	4.527	0.078
SKF × NOINE	AVG	27.136	1060.558	6.576	1.960
	5min	6.147	37.783	4.946	0.083
	15min	7.411	54.927	6.115	0.102
Only images	30min	6.946	48.252	5.633	0.094
	60min	6.886	52.982	5.677	0.094
	AVG	6.848	48.486	5.593	0.093
	5min	2.220	4.928	1.677	0.029
Proposed model	15min	2.788	7.773	2.228	0.038
	30min	3.520	12.390	2.876	0.049
$SKE \times SVB$	60min	3.923	15.390	3.043	0.052
	AVG	3.113	10.120	2.456	0.042
	5min	2.598	6.752	1.970	0.033
Proposed model, no decision fusion	15min	3.083	9.504	2.451	0.041
	30min	3.979	15.836	3.246	0.054
$SKE \times NONE$	60min	4.332	18.768	3.419	0.057
	AVG	3.498	12.715	2.772	0.046
	5min	4.410	19.452	3.467	0.057
	15min	5.473	29.951	4.444	0.074
$\rm UKF imes \rm UKF$	30min	4.807	23.104	3.887	0.065
	60min	5.285	27.929	4.173	0.069
	AVG	4.994	25.109	3.993	0.066
	5min	2.875	8.268	2.203	0.037
	15min	3.136	9.836	2.506	0.042
$KF \times SVR$	30min	4.104	16.846	3.358	0.057
	60min	4.443	19.740	3.500	0.059
	AVG	3.640	13.673	2.892	0.049

Table 6. Data fusion accuracy comparison

When evaluating the performance and computational expensiveness of the models in Table 7, we immediately see that models with image inputs have many more trainable parameters

and, therefore, longer training times. However, when comparing the *No-fusion* approach with the proposed model with no decision fusion, it is clear that our fusion strategy is not only improving the accuracy of the predictions but also making the model computationally less expensive. The data fusion strategy reduced the time to train in our experiments from 169 seconds to 57 seconds and reduced the number of trainable parameters by 112. Yet, here we see that the most simple model that is based only on the target variable, *Univariate, no fusion*, is computationally the most performing.

Method	No. trainable params	Time to train (s)
Univariate, no fusion	11 459	28
No fusion	91 915	169
Only images	137 128 974	9498
Proposed model	137 220 249	9555
Proposed model, no decision fusion	91 275	57

Table 7. Data fusion performance comparison

5.4.2 Comparison of time series methods

When comparing the proposed approach to statistical time series methods in Table 8, it is shown that the proposed approach outperforms all the other methods. When comparing to *Moving average*, the margin of outperformance is slightly small (RMSE 3.113 vs. RMSE 3.260). When predicting 30 or 60 minutes ahead, the *Moving average* can beat our approach. The most significant factor of the high performance of these straightforward methods like *Naive* and *Moving average* is the handling of missing values described in Chapter 3.3.1. The simplistic backfill approach with a limit of 6 heavily favors these methods. *Linear regression* shows the poorest results, with an RMSE value of 12.30.

Method	Prediction length	RMSE	MSE	MAE	MAPE
	5min	3.007	9.045	1.955	0.033
	15min	3.516	12.362	2.582	0.044
Naive	30min	3.824	14.624	3.025	0.052
	60min	4.053	16.423	3.169	0.054
	AVG	3.6	13.114	2.683	0.046
	5min	2.783	7.744	2.202	0.038
	15min	3.045	9.270	2.429	0.042
Moving average	30min	3.379	11.420	2.719	0.047
	60min	3.832	14.683	3.059	0.053
	AVG	3.260	10.779	2.602	0.045
	5min	3.047	9.286	2.164	0.037
	15min	3.399	11.550	2.584	0.044
ARIMA	30min	3.765	14.177	2.962	0.051
	60min	4.031	16.247	3.168	0.055
	AVG	3.561	12.815	2.720	0.047
	5min	3.169	10.044	2.360	0.040
	15min	5.344	28.560	3.203	0.055
Linear regression	30min	16.779	281.548	5.027	0.090
	60min	23.906	571.497	9.072	0.164
	AVG	12.300	222.912	4.916	0.087
	5min	2.220	4.928	1.677	0.029
Proposed model	15min	2.788	7.773	2.228	0.038
	30min	3.520	12.390	2.876	0.049
	60min	3.923	15.390	3.043	0.052
SKF×SVK	AVG	3.113	10.120	2.456	0.042

Table 8. Proposed approach comparison with statistical time series methods

5.4.3 Sequence length impact on model performance

To measure the models' ability to generalize to the time series data, experiments with different input sequence lengths were carried out. Longer training sequences make models computationally more expensive and more reliant on data quality. Three input sequences were tested with the time horizon of 6, 12, and 24 steps that represent 30-minute, 60-minute, and 120-minute look-back times respectively. The accuracy metrics are presented in Table 9. On average the model trained on an input sequence of 12 shows the smallest RMSE value of 3.113 when compared to others. In Figure 14 the models' performance is compared with all the output time perspectives. When predicting 6 steps or 30 minutes into the future, the model with a time series input sequence of 6 manages to slightly improve upon the 12-input model, with an RMSE improvement of 0.012. Input sequence 12 shows the lowest error value for all other output horizons.

Input sequence length	Prediction length	RMSE	MSE	MAE	MAPE
	5min	2.362	5.579	1.700	0.029
	15min	3.166	10.024	2.458	0.042
6	30min	3.508	12.306	2.771	0.047
	60min	4.656	21.678	3.551	0.060
	AVG	3.423	12.397	2.620	0.045
	5min	2.220	4.928	1.677	0.029
	15min	2.788	7.773	2.228	0.038
12	30min	3.520	12.390	2.876	0.049
	60min	3.923	15.390	3.043	0.052
	AVG	3.113	10.120	2.456	0.042
24	5min	2.730	7.454	2.077	0.035
	15min	3.472	12.055	2.929	0.049
	30min	4.659	21.707	3.896	0.066
	60min	4.153	17.246	3.317	0.056
	AVG	3.754	14.616	3.055	0.052

Table 9. Comparison of input sequence length on training the proposed model

Figure 14. Comparison of time series input sequence length

Among all the input sequences and baseline methods, the proposed approach with an input sequence of 12 shows the best accuracy with a low average RMSE value of 3.113.

6. Future work and applications

The proposed data fusion strategy greatly improved the accuracy and performance of the final prediction model when compared to the one without fusion. However, there are many aspects that could be implemented to further improve. The deep learning prediction model could be further fine-tuned and tested to further improve the performance and have a greater advantage over the statistical time series prediction models, especially when predicting 30 or 60 minutes ahead. Experiments with smaller sequence lengths can improve the model used in the real-world setting, allowing us to build a more robust model.

The proposed data fusion strategies should be tested upon other datasets, in the context of ITS and outside it. The results of this could be a generalized data fusion technique that works across many problem domains.

One of the applications of this work is an input to a full-scale application for city stakeholders called Urban Mobility Hub. The proposed prediction model is integrated into the dashboard that supports city stakeholders to make further business decisions. Moreover, it is possible to build preventive applications that react to the predictions of urban noise increases.

7. Summary

The thesis aimed to analyze and propose an efficient traffic data fusion strategy with a prediction model to present accurate short-term urban noise predictions. An extensive data acquisition was carried out over a period of 1 month. The biggest challenge from the acquired data set was the missing values of the target variable, urban noise level.

The data fusion strategy was implemented using a hybrid approach containing a mixture of feature fusion and decision fusion algorithms. For feature fusion, a strategy implementing a Smoothed Kalman Filter was used to deal with the data unreliability and simultaneously reduce the model's complexity. For models that include images from cameras, a decision fusion based on a Support Vector Regression was applied to improve the accuracy of the final prediction further.

A CNN-LSTM deep learning network was used to evaluate the proposed fusion strategies. An extensive amount of data fusion and statistical time series methods were evaluated as baselines to confirm the proposed approach's validity. Evaluations were based on two criteria: the predictions' accuracy and the model's complexity.

The proposed model achieved the best accuracy among the baselines irrelevant to the sequence length of the experiment. The proposed approach without images showed the great aspect of DF, where experiment training times were reduced by three times and, on the other hand, significantly improved accuracy of the results for more than 10% when comparing against no fusion baseline. The proposed model with images and decision fusion outperformed the one without images by a relatively small margin; on average RMSE decreased by 0.385. However, adding images added a lot of complexity, and training time increased significantly. The proposed approach showed the best performance when predicting a one-time step 5 minutes ahead. On average, a simple statistical time series prediction method *Moving average* outperformed the proposed model when predicting 30 or 60 minutes ahead due to the simplistic approach of filling in missing values. This opens up opportunities for future improvements like CNN-LSTM network fine-tuning or reducing the sequence length to increase the reliability against missing values.

8. Acknowledgements

I would like to sincerely thank my supervisor and co-supervisor for extensive support, feedback, guidance, and motivation throughout the whole process. In addition, I would like to thank Jaanus Kaugerand and Thinnect for providing access to their sensor data deployed in the city of Tallinn.

I would like to acknowledge TalTech AI-Lab for the extensive use of computational resources for running experiments.

Bibliography

- [1] C. Ounoughi and S. B. Yahia. "Data fusion for ITS: A Systematic Literature Review". In: *Submitted to Information fusion journal* (2021).
- [2] United Nations. "68% of the world population projected to live in urban areas by 2050, says UN". In: (2018).
- [3] N. Mucci et al. "Urban Noise and Psychological Distress: A Systematic Review". In: *Int J Environ Res Public Health* (2020).
- [4] DIRECTIVE 2010/40/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 7 July 2010. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A02010L0040-20180109.2010.
- [5] M. M. Alyannezhadi, A. A. Pouyan, and V. Abolghasemi. "An efficient algorithm for multisensory data fusion under uncertainty condition". In: *Journal of Electrical Systems and Information Technology* (2016).
- [6] R. Gravina et al. "Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges". In: *Information Fusion* (2016).
- [7] A. Sao, N. Tempelmeier, and E. Demidova. "Deep Information Fusion for Electric Vehicle Charging Station Occupancy Forecasting". In: (2021).
- [8] T. Adetiloye and A. Awasthi. "Multimodal Big Data Fusion for Traffic Congestion Prediction". In: (2019).
- [9] M. Xu, J. Wang, and S. Gu. "Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy". In: *Journal of Food Engineering* (2019).
- [10] L. Ghouti. "Mobility prediction in mobile ad hoc networks using neural learning machines". In: *Simulation Modelling Practice and Theory* (2016).
- [11] A. Anand, G. Ramadurai, and L. Vanajakshi. "Data Fusion-Based Traffic Density Estimation and Prediction". In: *Journal of Intelligent Transportation Systems* (2014).
- [12] S. Khan and S. Nazir. "Deep learning-based urban big data fusion in smart cities: Towards traffic monitoring and flow-preserving fusion". In: *Computers and Electrical Engineering* (2021).
- [13] H.Widiputra, A. Mailangkay, and E.Gautama. "Multivariate CNN-LSTM Model for Multiple Parallel Financial Time-Series Prediction". In: *Hindawi* (2021).

- [14] I. M. Baytas et al. "Patient Subtyping via Time-Aware LSTM Networks". In: *Proceedings of KDD '17* (2017).
- [15] *TomTom Developer API*. https://developer.tomtom.com/.
- [16] A. Mouakher et al. "EXPECT: EXplainable Prediction Model for Energy Consump-Tion". In: *Mathematics* (2022).
- [17] A. Harway. *Handbook of Economic Forecasting, Volume 1, (Pages 327-412).* 2006. (accessed: 02.11.2022).
- [18] S. M. Kazemi et al. "Time2Vec: Learning a Vector Representation of Time". In: *arXiv:1907.05321* (2019).
- [19] D. Osinga. *Deep Learning Cookbook, Volume 1*. O'Reilly Media, Inc., 2018. ISBN: 9781491995846.
- [20] P. Rivas-Perea et al. "Support Vector Machines for Regression: A Succinct Review of Large-Scale and Linear Programming Formulations". In: *International Journal* of Intelligence Science, 2013, 3, 5-14 (2012).
- [21] R. J. Hyndman and A. B. Koehler. "Another look at measures of forecast accuracy". In: *International Journal of Forecasting* (2006).
- [22] A. Myttenaere, B. Golden, and B. Le Grand. "Mean Absolute Percentage Error for regression models". In: *Neurocomputing* (2016).
- [23] R. M. Stein. "Benchmarking default prediction models: pitfalls and remedies in model validation". In: *Journal of Risk Model Validation* (2007).
- [24] L. Börjesson and M. Singull. "Forecasting Financial Time Series through Causal and Dilated Convolutional Neural Networks". In: *Entropy (Basel)* (2020).
- [25] S. J. Julier and J. K. Uhlmann. "A New Extension of the Kalman Filter to Nonlinear Systems". In: *Proceedings Volume 3068, Signal Processing, Sensor Fusion, and Target Recognition VI* (1997).
- [26] R.J. Hyndman and G. Athanasopoulos. *Forecasting: principles and practice, 2nd edition.* OTexts: Melbourne, Australia, 2018. (accessed: 25.10.2022).

Appendix 1 - Non-exclusive licence for reproduction and publication of a graduation thesis

I Andres Suislepp

- Grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis "Multi-Modal Data Fusion for Short-Term Urban Noise Prediction in Intelligent Transportation Systems", supervised by Sadok Ben Yahia
 - 1.1 to be reproduced for the purposes of preservation and electronic publication of the graduation thesis, incl. to be entered in the digital collection of the library of Tallinn University of Technology until expiry of the term of copyright;
 - 1.2 to be published via the web of Tallinn University of Technology, incl. to be entered in the digital collection of the library of Tallinn University of Technology until expiry of the term of copyright.
- 2. I am aware that the author also retains the rights specified in clause 1 of the nonexclusive licence.
- 3. I confirm that granting the non-exclusive licence does not infringe other persons' intellectual property rights, the rights arising from the Personal Data Protection Act or rights arising from other legislation.

02.01.2023

Appendix 2 - Results

Method			RMSE MSE	Time		
Feature fusion × Decision fusion	Input seq.	Output step	MAE	Trainable params		
			MAPE			
Combined model			38.033	2075		
	12	1	2575.249	3075		
SKF × NONE	12	1	9.431	29,203,074		
			0.157			
Images only			6.147	7043		
intages only	12	1	37.783	137 125 726		
	12	1	4.946	137,123,720		
			0.083			
			2.598	57		
$SKF \times NONE$	12	12	1	6.752	91 275	
		1	1.970	,275		
			0.033			
Univariate			3.038	28		
NONE × NONE	12	12	12	1	9.230	0.459
				-	2.322	-,
			0.039			
			2.970	34		
$KF \times NONE$	12	1	8.819	91,275		
			2.275			
			0.038			
Images only			6.147	14086		
-	- 12	1	37.783	137,125,726		
			4.946			
			0.083			
			2.598	57		
$SKF \times NONE$	12	1	6.752	91,275		
			1.970			
			0.033			

Univariate NONE × NONE	12	1	3.038 9.230 2.322 0.039	28 11,459
KF imes NONE	12	1	2.970 8.819 2.275 0.038	34 91,275
$\mathbf{U}\mathbf{K}\mathbf{F} imes \mathbf{N}\mathbf{O}\mathbf{N}\mathbf{E}$	12	1	4.186 17.525 3.332 0.056	36 91,275
No fusion NONE × NONE	12	1	3.100 9.611 2.434 0.041	169 91,915
Naive -	12	1	3.007 9.045 1.955 0.033	0 -
Moving average -	12	1	2.783 7.744 2.202 0.038	0
Linear regression -	12	1	3.169 10.044 2.360 0.040	0
ARIMA -	12	1	3.047 9.281 2.164 0.037	0
Univariate + DF NONE × AVG	12	1	4.143 17.166 3.256 0.054	7877 -
Univariate + DF NONE × KF	12	1	6.019 36.230	7877

			4.819	
			0.081	
			6.071	7000
Univariate + DF	10	1	36.854	/880
NONE \times SKF	12	1	4.874	-
			0.081	
			4.126	
Univariate + DF	10	4	17.023	7877
NONE \times UKF	12	1	3.236	-
			0.054	
			2.996	
Univariate + DF	10	4	8.974	18/7
NONE \times SVR	12	I	2.388	-
			0.041	
			4.092	0010
No fusion + DF	10	1	16.741	8018
NONE \times AVG	12	1	3.233	-
			0.054	
			6.019	0010
No fusion + DF	10	1	36.230	8018
NONE \times KF	12	1	4.819	-
			0.081	
			6.071	0001
No fusion + DF	10	1	36.856	8021
NONE × SKF	12	1	4.874	-
			0.081	
			4.065	0010
No fusion + DF	10	1	16.521	8019
NONE × UKF	12	1	3.206	-
			0.053	
			2.867	0010
No fusion + DF	10	1	8.218	8019
NONE × SVM	12	1	2.229	-
			0.038	
			3.919	7007
	10	1	15.357	/90/
SKF × AVG	12	1	3.104	-
			0.052	

1<u>2</u>

			36.230	
SKF × KF			4.819	-
			0.081	
			6.070	7000
	10	1	36.847	/909
SKF × SKF		1	4.874	-
			0.081	
			3.908	7007
SKE – TIKE	12	1	15.275	/907
SKI [*] × UKI [*]		1	3.086	-
			0.051	
			2.220	7007
SKE ~ SAW	12	1	4.928	/907
		1	1.677	-
			0.029	
			4.443	7885
$IIKE \times AVG$	12	1	19.736	7885
	1	3.502	-	
			0.058	
		1	6.019	7885
$IIKE \times KE$	12		36.230	7885
			4.819	-
			0.081	
			6.070	7887
LIKE × SKE	12	1	36.848	/00/
UKI [®] × SKI [®]	12	1	4.874	-
			0.081	
			4.410	7885
$\Pi \mathbf{KE} \times \Pi \mathbf{KE}$	12	1	19.452	-
	12	1	3.467	-
			0.057	
			3.600	7885
IIKE ~ SVM	12	1	12.957	7885
		1	2.831	-
			0.048	
			4.037	7883
	12	1	16.299	/003
KF × AVU		1	3.176	-

			0.053	
			6.019	7002
	10	1	36.230	/883
$\mathbf{KF} \times \mathbf{KF}$	12	1	4.819	-
			0.081	
			6.071	7996
	10	1	36.859	/880
KF × SKF	12	1	4.874	-
			0.081	
			4.015	7992
	10	1	16.123	/883
KF × UKF	12	1	3.153	-
			0.052	
			2.875	7992
	10	1	8.268	/883
$\mathbf{K}\mathbf{\Gamma} \times \mathbf{S}\mathbf{V}\mathbf{M}$	12	1	2.203	-
			0.037	
Combined model			50.747	2092
	10	2	2575.249	3083 20.205.002
SKF × NONE	12	3	7.522	29,203,092
			0.127	
Imagas only			7.411	7949
intages only	12	2	54.927	127 125 744
-	12	5	6.115	157,125,744
			0.102	
			3.083	60
	12	2	9.504	01 207
SKF × NONE	12	5	2.451	91,297
			0.041	
Universite			3.624	27
	10	2	13.136	<i>21</i> 11 401
NONE × NONE	12	3	2.875	11,401
			0.048	
			3.312	29
	12	2	10.970	01 207
KF × NONE	12	5	2.639	91,297
			0.044	
			4.841	20
	12	2	23.433	ענ 01 207
UNF X NUNE	12	3		91,297

			3.948	
			0.066	
No fusion			4.403	196
	10	2	19.385	180
NOINE × NOINE	12	3	3.524	91,937
			0.059	
Nister			3.516	0
Naive	12	2	12.362	0
-	12	3	2.582	-
			0.044	
Moving overego			3.045	0
Moving average	12	2	9.270	0
-	12	3	2.429	-
			0.042	
T :			5.344	0
Linear regression	12	2	28.560	0
-	12	3	3.203	-
			0.055	
			3.398	0
ARIMA	12	2	11.545	0
-	12	3	2.583	-
			0.044	
Universite + DE			4.897	7075
$MONE \times AVC$	12	2	23.976	1013
NONE × AVG	12	3	3.910	-
			0.065	
Universite + DE			7.278	7075
NONE $\times KE$	12	2	52.966	1013
NONE × KI	12	5	5.974	-
			0.100	
Universita - DE			7.341	7070
$Onverse \in Ske$	12	2	53.894	/8/8
NONE × SKF	12	3	6.050	-
			0.101	
Universita + DE			4.861	7075
	10	2	23.634	1013
		3	3.888	-
			0.065	
Univariate + DF			3.262	7875

			10.639	
$NONE \times SVR$			2.592	-
			0.044	
No fusion + DE			5.355	9024
No fusion $+$ DF	10	2	28.681	8034
NONE × AVG	12	5	4.335	-
			0.072	
No fusion + DE			7.278	8034
NONE $\times KE$	12	2	52.966	8034
		5	5.974	-
			0.100	
No fusion $\pm DE$			7.342	8037
$\frac{1}{10000000000000000000000000000000000$	12	3	53.905	8037
NONE × SKI		5	6.050	-
			0.101	
No fusion + DF			5.324	8034
$\frac{1}{10000000000000000000000000000000000$	12	3	28.341	8034
		5	4.298	-
			0.071	
No fusion $+ DF$			4.208	8034
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	12	3	17.707	-
		12 5	3.346	_
			0.056	
			4.632	7909
$SKF \times AVG$	12	3	21.457	-
	12	5	3.749	
			0.062	
			7.278	7909
SKE × KE	12	3	52.966	-
	12	5	5.974	
			0.100	
			7.342	7911
SKF × SKF	12	3	53.904	-
		5	6.050	
			0.101	
			4.601	7909
SKE ~ IIKE	12	3	21.167	
		5	3.723	-

			0.062	
			2.788	7000
	12	2	7.773	/909
SKF × SVM	12	5	2.228	-
			0.038	
			5.504	7007
	12	2	30.297	/00/
UKF × AVG	12	3	4.471	-
			0.075	
			7.278	7887
	12	2	52.966	/00/
	12	5	5.974	-
			0.100	
			7.338	7800
$IIKE \times SKE$	12	3	53.851	7890
UKI ^V × SKI ^V	12		6.048	-
			0.101	
			5.473	7887
$UKF \times UKF$ 12	12	3	29.951	7007
	5	4.444	-	
			0.074	
			4.692	7887
LIKE ~ SVM	12	2	22.013	7007
	12	5	3.751	_
			0.063	
			4.808	7886
$KE \times AVG$	12	3	23.115	-
	12	5	3.890	
			0.065	
			7.278	7886
	12	3	52.966	-
	12	5	5.974	-
			0.100	
			7.342	7889
 	12	3	53.911	-
	12	5	6.050	_
			0.101	
			4.774	7886
	12	3	22.791	
$\mathbf{M} \wedge \mathbf{U}\mathbf{M}$	14	5		=

			3.866	
			0.064	
			3.136	7996
	10	2	9.836	/880
$KF \times SVM$	12	3	2.506	-
			0.042	
			13.430	2007
	12	C	180.354	3096
SKF × NONE	12	0	4.824	29,205,119
			0.082	
Imagaa anky			6.946	7940
Images only	12	6	48.252	/849
-	12	U	5.633	137,123,771
			0.094	
			3.979	61
	10	6	15.836	01 220
SKF × NONE	12	0	3.246	91,330
			0.054	
Ilainariata			3.343	26
	10	6	11.177	20
NONE × NONE	12	0	2.668	11,314
			0.046	
			4.275	27
KE V NONE	12	6	18.274	01.220
KF × NOINE	12	0	3.473	91,550
			0.059	
			4.939	20
	12	6	24.395	39 01 220
UKF × NONE	12	0	3.905	91,550
			0.065	
No fusion			4.320	160
NO IUSION	12	C	18.666	160
NONE × NONE	12	0	3.362	91,970
			0.056	
Nation			3.824	0
Indive	10	6	14.624	U
-	12	D	3.025	-
			0.052	
Martina			3.379	0
Noving average	1		I I	0

1<u>2</u> 58

			11.420	
-			2.719	-
			0.047	
.			16.779	0
Linear regression	10	C C	281.548	0
-	12	6	5.027	-
			0.090	
			3.769	0
ARIMA	10	C	14.207	0
-	12	0	2.968	-
			0.051	
Universite + DE			4.200	7975
$\frac{1}{1}$	12	6	17.643	1013
NONE × AVG	12	0	3.339	-
			0.056	
Universite + DE			6.652	7975
$\frac{1}{1}$	12	6	44.247	1013
NONE × KF	12	0	5.445	-
			0.090	
Universite $\pm \mathbf{DE}$			6.600	7878
$NONE \sim SKE$	12	6	43.564	7878
	12	0	5.413	_
			0.090	
Univariate \pm DE			4.117	7875
NONE \sim LIKE	12	6	16.949	1015
	12	0	3.295	-
			0.055	
Univariate + DE			3.465	7875
NONE × SVR	12	6	12.008	-
	12	0	2.754	
			0.047	
No fusion + DF			4.673	8009
NONE \times AVG	12	6	21.837	-
	12	0	3.744	
			0.062	
No fusion + DF			6.652	8009
NONE × KF	12	6	44.247	_
	12	O	5.445	

			0.090	
No fusion + DE			6.601	2012
$\frac{1}{10000000000000000000000000000000000$	12	6	43.574	8012
NONE × SKF	12	0	5.414	-
			0.090	
No fusion + DE			4.590	8000
NO IUSION $+$ DF	12	6	21.066	8009
NONE × UKF	12	0	3.668	-
			0.061	
No fusion + DE			4.121	8000
$\frac{1}{10000000000000000000000000000000000$	12	6	16.981	8009
NONE × SVM	12	0	3.206	-
			0.054	
			4.614	7000
$SVE \times AVC$	12	6	21.291	7909
	12	0	3.760	-
			0.063	
			6.652	7000
$\mathrm{SKF} imes \mathrm{KF}$	12	6	44.247	/909
	12		5.445	-
			0.090	
			6.604	7012
SKE – SKE	12	6	43.609	1912
	12	0	5.417	-
			0.090	
			4.532	7010
SKE ~ LIKE	12	6	20.535	7910
	12		3.694	-
			0.062	
			3.520	7010
$SKE \times SVM$	12	6	12.390	7910
	12	0	2.876	-
			0.049	
			4.889	7888
	12	6	23.898	7000
UKF × AVG	12	6	3.963	-
			0.066	
			6.652	7888
	12	6	44.247	/000
$O\mathbf{M}^{*} \wedge \mathbf{M}^{*}$	14	0		-

			5.445	
			0.090	
			6.604	7901
	10	(43.611	/891
$UKF\timesSKF$	12	0	5.417	-
			0.090	
			4.807	7000
	10	(23.104	/888
$UKF \times UKF$	12	0	3.887	-
			0.065	
			4.587	7000
	10	(21.043	/888
$OKF \times SVM$	12	0	3.600	-
			0.060	
			4.816	7996
	10	(23.195	/880
KF imes AVG	12	6	3.967	-
			0.066	
			6.652	7996
	10	(44.247	/880
KF imes KF	12	0	5.445	-
			0.090	
			6.604	7990
	10	(43.607	/889
$KF \times SKF$	12	0	5.417	-
			0.090	
			4.732	7997
	10	(22.391	/88/
KF × UKF	12	6	3.909	-
			0.065	
			4.104	7007
	10	C	16.846	/88/
$\mathbf{KF} \times \mathbf{SVM}$	12	0	3.358	-
			0.057	
Combined 11			6.335	2070
	10	10	40.133	3000 20.205 172
$SKF \times NONE$	12	12	4.527	29,203,173
			0.078	
Imagaa artu			7.279	7015
images only	10	10		/843
	61	12		

			52.982	107 105 005
-			5.677	137,125,825
			0.094	
			4.332	(1
	10	10	18.768	61
SKF × NONE	12	12	3.419	91,396
			0.057	
Luingrigto			3.647	27
	10	12	13.303	11,590
NONE × NONE	12	12	2.894	11,380
			0.050	
			4.521	29
	12	12	20.436	01 306
KF × NONE	12	12	3.578	91,390
			0.060	
			4.359	40
	12	12	19.004	40
UKF × NONE	12	12	3.447	91,390
			0.058	
Nafusion			3.691	195
NO IUSIOII	12	12	13.622	02.026
NONE × NONE	12	12	2.976	92,030
			0.050	
Noivo			4.053	0
INAIVE	12	12	16.423	0
-	12	12	3.169	-
			0.054	
Moving overage			3.832	0
woving average	12	12	14.683	0
-	12	12	3.059	-
			0.053	
Lineer regression			23.906	0
Linear regression	12	12	571.497	0
-	12	12	9.072	-
			0.164	
			4.035	0
	12	12	16.284	
-		12	3.169	-

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.055	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4.766	7070
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Univariate + DF	10	10	22.714	1812
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NONE × AVG	12	12	3.715	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.062	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Universita + DE			7.104	7970
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NONE × KE	12	10	50.463	1812
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NONE × KF	12	12	5.541	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.091	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Universite + DE			7.210	7075
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{1}$	10	10	51.988	1813
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NONE × SKF	12	12	5.621	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.093	
$\begin{array}{c c} \text{NONE } \times \text{UKF} & 12 & 12 & 12 & 22.402 & 3.691 & - & & & & & & & & & & & & & & & & & $	Universite + DE			4.733	7973
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	12	22.402	1812
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NONE × UKF	12	12	3.691	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.061	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Universite + DE			3.586	7973
$\frac{12}{12} \qquad 12 \qquad 2.873 \qquad - \frac{1}{2} \qquad 2.873 \qquad - \frac{1}{2} \qquad 0.049 \qquad - \frac{1}{2} \qquad 0.065 \qquad - \frac{1}{2} \qquad 0.091 \qquad - \frac{1}{2} \qquad 0.093 \qquad - \frac{1}{2} \qquad 0.065 \qquad - \frac{1}{2} \qquad 0.093 \qquad - \frac{1}{2} \qquad 0.065 \qquad - \frac{1}{2} \qquad 0.093 \qquad - \frac{1}{2} \qquad 0.065 \qquad - \frac{1}{2} \qquad 0.06 \qquad$	$\frac{1}{1}$	12	12	12.857	1012
$ \begin{array}{c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	INDINE × SVK	12	12	2.873	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.049	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No fusion + DF			4.898	8030
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO IUSION $+$ DI	12	12	23.991	8050
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NONE × AVO	12	12	3.937	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.065	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No fusion $\pm DE$			7.104	8030
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NONE \times KE	12	12	50.463	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	12	5.541	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.091	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No fusion $+$ DF			7.214	8033
No fusion + DF 12 12 5.623 No fusion + DF 12 12 4.853 8030 NONE × UKF 12 12 3.904 - 0.065 3.686 8030 No fusion + DF 12 12 3.686 No fusion + DF 12 12 3.686 NONE × SVM 12 12 12	NONE ~ SKE	12	12	52.038	-
$\begin{array}{ c c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$		12	12	5.623	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.093	
NONE × UKF 12 12 23.553 No fusion + DF	No fusion $\pm DE$			4.853	8030
NONE × CM 12 12 3.904 No fusion + DF 3.686 8030 NONE × SVM 12 12	NONE - UKE	12	12	23.553	-
No fusion + DF 0.065 NONE × SVM 12 12 12		12	12	3.904	-
No fusion + DF 3.686 NONE \times SVM121212				0.065	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	No fusion + DF			3.686	8030
	NONE × SVM	12	12	13.587	-

			2.974	
			0.050	
			5.253	7006
	10	10	27.595	/906
$SKF \times AVG$	12	12	4.163	-
			0.069	
			7.104	7007
	10	10	50.463	7906
SKF × KF	12	12	5.541	-
			0.091	
			7.214	7000
	10	10	52.042	/908
$SKF \times SKF$	12	12	5.624	-
			0.093	
			5.212	7007
SKF × UKF 12	10	27.165	/906	
	12	4.138	-	
			0.068	
			3.923	7006
	12	10	15.390	/906
SKF × SVM	12	12	3.043	-
			0.052	
			5.322	7005
	12	10	28.329	1003
UKF × AVG	12	12	4.206	-
			0.069	
			7.104	7005
	12	10	50.463	1003
UKF × KF	12	12	5.541	-
			0.091	
			7.214	7007
	12	10	52.036	/00/
UKF × SKF	12	12	5.623	-
			0.093	
			5.285	7005
	10	10	27.929	/883
	12	12	4.173	-
			0.069	
			4.052	7005
	1		i.	/885

$\mathbf{U}\mathbf{K}\mathbf{F} \times \mathbf{S}\mathbf{V}\mathbf{M}$			16.422 3.093	-
			0.052	
			5.384	7883
KF imes AVG	12	12	28.990	_
			4.279	
			0.071	
			7.104	7883
KF imes KF	12	12	50.463	-
			5.541	
			0.091	
			7.213	7885
$KF \times SKF$	12	12	52.032	_
			5.623	
			0.093	
			5.344	7883
$KF \times UKF$	12	12	28.557	-
	12		4.248	
			0.070	
			4.443	7883
KF × SVM	12	12	19.740	-
	12	12	3.500	
			0.059	
Combined model			31.683	2569
SKE × NONE	6	1	1003.796	29 204 756
	0	1	12.469	29,204,750
			0.209	
Images only			306.261	7559
-	6	1	93795.544	137 125 726
	0	1	28.870	137,123,720
			0.471	
			2.373	50
SKE V NONE	6	1	5.629	00 765
	0	1	1.730	90,705
			0.029	
Universite			4.081	25
	6	1	16.653	11 450
	0	1	3.357	11,439

			0.056	
			2.674	27
		1	7.150	37
KF × NONE	6	1	2.017	90,765
			0.034	
			3.421	20
		1	11.705	39
UKF × NONE	0 1	2.688	90,765	
			0.046	
No fueire			2.889	200
	6	1	8.346	200
INOINE × INOINE	0	1	2.232	91,405
			0.038	
Naiva			2.941	0
Inaive	6	1	8.648	0
-	0	1	1.911	-
			0.032	
Maying ayong a			2.815	0
Moving average	- 6	1	7.925	0
-			2.123	-
			0.036	
Linear regression			3.315	0
Linear regression	6	1	10.989	0
_	0	1	2.351	-
			0.040	
			3.040	0
ARIMA	6	1	9.243	0
_	0	1	2.116	-
			0.036	
Universite + DE			152.948	7594
$\frac{1}{1}$	6	1	23393.109	7364
NONE × AVG	0	1	15.043	-
			0.246	
Universite + DE			218.690	7584
$\frac{1}{10000000000000000000000000000000000$	6	1	47825.252	7364
		28.434	-	
			0.464	
Universita + DE			129.615	7507
	6	1	16800.019	1301
TIONE × 3RF	U	1		-

			28.363	
			0.463	
			119.881	7504
Univariate + DF		1	14371.547	/584
NONE × UKF	6	1	14.779	-
			0.241	
			2.897	7504
Univariate + DF		1	8.395	/584
NONE × SVR	0	1	2.240	-
			0.039	
No foriar a DE			153.097	7750
NO IUSION + DF		1	23438.658	//58
NONE × AVG	0	1	14.996	-
			0.245	
No foriar a DE			218.690	7750
NO IUSION + DF		1	47825.252	1759
NONE × KF	6	1	28.434	-
			0.464	
No foriar a DE			129.264	77()
NO IUSION $+$ DF	6	1	16709.101	7762
NOINE × SKF	0	1	27.476	-
			0.447	
No fusion + DE			120.066	7750
NONE \times UVE	6	1	14415.884	1139
NONE × UKF	0	1	14.797	-
			0.242	
No fusion + DE			2.761	7750
NONE \times SVM	6	1	7.625	1139
NONE × SVM	0	1	2.115	-
			0.036	
			153.119	7618
SKE × AVC	6	1	23445.566	7018
SKF × AVG	0	1	14.882	-
			0.243	
			218.690	7618
$CVE \lor VE$	6	1	47825.252	/010
$SKF \times KF$ 6			28.434	-
			0.464	
			129.260	7621

			16708.248	
SKF × SKF			27.471	-
			0.447	
			120.095	7(10
		1	14422.732	/618
$SKF \times UKF$	6	1	14.721	-
			0.241	
			2.362	7(10
		1	5.579	/618
$SKF \times SVM$	0	1	1.700	-
			0.029	
			153.059	7507
		1	23427.083	/59/
$UKF \times AVG$	6	1	15.150	-
			0.248	
			218.690	7507
		1	47825.252	/59/
$UKF\timesKF$	0	1	28.434	-
			0.464	
	6		129.420	7601
		1	16749.448	7001
UKF × SKF		1	27.826	-
			0.453	
			120.021	7509
	6	1	14404.954	1398
	0	1	14.938	-
			0.244	
			3.312	7508
LIKE ~ SVM	6	1	10.971	1590
	0	1	2.570	-
			0.044	
			153.075	7506
$KF \times AVG$	6	1	23431.838	1390
	0	1	14.990	_
			0.245	
			218.690	7596
	6	1	47825.252	1590
		1	28.434	-

			0.464	
			129.263	7500
		1	16708.833	/599
KF × SKF	0	1	27.470	-
			0.447	
			120.037	7506
	6	1	14408.938	7390
	0	1	14.802	-
			0.242	
			2.668	7506
KE ~ SVM	6	1	7.120	7390
	0	1	1.997	-
			0.034	
Combined model			8.158	2508
	6	3	66.549	2338
SKI × NONE	0	5	6.451	29,204,774
			0.107	
Images only			5.929	7560
intages only	6	2	35.155	127 125 744
-	0	5	4.759	137,123,744
			0.080	
			3.198	60
$SKE \times NONE$	6	3	10.230	90 787
SKI A NONE	0		2.467	90,707
			0.042	
Univariate			3.341	26
NONE × NONE	6	2	11.161	11 /81
NONE ~ NONE	0	5	2.635	11,401
			0.044	
			3.413	38
KE – NONE	6	3	11.652	00 787
KI' × NONE	0	5	2.696	90,787
			0.045	
			4.182	20
$\mathrm{UKF} imes \mathrm{NONE}$	6	2	17.489	<u>خر</u>
	0	5	3.302	90,787
			0.055	
No fusion			3.481	181
NONE × NONE	6	3	12.117	91 427
	U	5		▶1,74/

			2.789	
			0.047	
Naiva	6		3.465	0
-		3	12.007	0
			2.576	-
			0.044	
Moving overage			3.141	0
Moving average	6	3	9.867	0
-			2.470	-
			0.042	
Lincon managion	(3	12.176	0 -
Linear regression			148.266	
-	0		4.211	
			0.073	
			3.585	0
	6	3	12.851	0
-	0	5	2.698	-
			0.046	
Universite + DE			4.223	7586
Univariate + DF	6	3	17.830	-
NONE × AVO			3.408	
			0.057	
Universite $\pm \mathbf{DE}$			5.731	7586
NONE \times KE	6	3	32.845	-
	0		4.611	
			0.077	
Univariate $\pm DE$			5.800	7580
	6	3	33.635	1509
			4.657	-
			0.078	
Univariate + DE			4.176	7586
$\frac{\text{Univariate + DF}}{\text{NONE} \times \text{UKF}}$	6	3	17.439	7380
	0		3.358	-
			0.056	
Universite + DE			3.113	7596
	6	3	9.690	1300
NONE × SVK			2.468	-
			0.042	
No fusion + DF			4.206	7741

60

			17.693	
$NONE \times AVG$			3.387	-
			0.057	
			5.731	77.41
No fusion + DF		2	32.845	//41
NONE × KF	6	3	4.611	-
			0.077	
No fusion + DE			5.800	7745
$\frac{1}{10000000000000000000000000000000000$	6	3	33.644	//45
NONE × SKF	6		4.658	-
			0.078	
No fusion + DE		2	4.153	7742
NO IUSIOII $+$ DF	6		17.248	
NOINE × UKF	0	5	3.335	-
			0.056	
No fusion + DE			3.396	7740
No iusion $+$ DF	6	2	11.536	//42
$NONE \times SVM$	6	3	2.740	-
			0.046	
SKF imes AVG	6	3	4.140	7619
			17.139	
			3.332	-
			0.056	
SKF imes KF		3	5.731	7620
	6		32.845	
	0		4.611	-
			0.077	
			5.800	7623
SKF imes SKF	6	3	33.642	7025
	0		4.657	-
			0.078	
SKF imes UKF	6	3	4.089	7620
			16.723	7020
			3.282	-
			0.055	
$SKF \times SVM$		3	3.166	7(20
	6		10.024	/020
			2.458	-

			0.042	
$\rm UKF imes AVG$		3	4.606	7500
	6		21.216	1599
	0		3.697	-
			0.062	
		3	5.731	7500
$\mathrm{UKF} imes \mathrm{KF}$	6		32.845	1399
	0		4.611	-
			0.077	
		3	5.801	7603
	6		33.654	
UKI [*] × SKI [*]	0		4.658	-
			0.078	
			4.555	7600
	6	2	20.748	7000
$\mathbf{U}\mathbf{K}\mathbf{F} \times \mathbf{U}\mathbf{K}\mathbf{F}$	0	5	3.647	-
			0.061	
$\rm UKF imes SVM$		3	3.823	7500
	6		14.617	1333
	0		2.980	-
			0.050	
$KF \times AVG$		3	4.261	7598
	6		18.155	-
	0		3.422	
			0.057	
$\mathrm{KF} imes \mathrm{KF}$		3	5.731	7598
	6		32.845	
	0		4.611	
			0.077	
KF imes SKF		3	5.801	7601
	6		33.647	-
	0		4.658	
			0.078	
KF imes UKF		3	4.209	7598
	6		17.713	-
	0		3.371	_
			0.056	
			3.210	7508
KF × SVM	6	3	10.302	
	U	5		
			2.537	
-------------------	----	---	----------	--------------
			0.043	
Combined model			42.475	2505
SKF imes NONE	6	6	1804.108	29,204,801
			9.881	
			0.166	
Images only			8.738	7556
_	6	6	76.350	137,125,771
			7.244	
			0.120	
			3.545	60
$SKF \times NONE$	6	6	12.565	90.820
			2.814	,
			0.047	
Univariate			3.539	26
NONE × NONE	6	6	12.526	11 514
	0	0	2.811	11,517
			0.047	
			4.050	27
KE × NONE	6	6	16.400	00.820
KF × NONE	0	0	3.264	90,820
			0.055	
			4.113	20
			16.916	39 00.820
UKF × NONE	0	0	3.157	90,820
			0.054	
			3.766	202
No fusion			14.180	202
NONE × NONE	6	6	2.968	91,460
			0.050	
			3.720	
Naive			13.836	0
-	6	6	2.947	-
			0.051	
			3.304	
Moving average			10.914	0
-	6	6	2.605	-
			0.045	
			34 023	
Linear regression			011020	0
	93	6		

			1157.550	
-			8.256	-
			0.148	
			3.883	0
ARIMA	6	6	15.076	0
-	0		2.985	-
			0.051	
Universite + DE			5.635	7583
NONE \times AVG	6	6	31.758	1303
NONE × AVO	0	0	4.572	-
			0.076	
Universite + DE			8.548	7583
NONE \checkmark KE	6	6	73.065	1303
NONE × KI	0 0	0	7.069	-
			0.117	
Universite + DE			8.645	7586
$\frac{1}{1}$	6	6	74.742	7380
NONE × SKF	0	0	7.160	-
			0.119	
Universite + DE			5.579	7583
	6	6	31.129	1303
NONE × UKI		0	4.520	-
			0.075	
Univariate + DE			3.370	7583
NONE \times SVP	6	6	11.360	1505
NONE × SVK	0	0	2.709	-
			0.046	
No fusion + DF			5.634	7758
NONE \times AVG	6	6	31.743	-
	0	0	4.631	
			0.077	
No fusion + DF			8.548	7758
NONE \times KE	6	6	73.065	-
	0	U	7.069	_
			0.117	
No fusion + DF			8.648	7762
NONE ~ SKE	6	6	74.789	-
	0		7.162	-

			0.119	
Na facian + DE			5.578	7750
NO IUSION $+$ DF	C	6	31.109	1159
NONE × UKF	0	0	4.571	-
			0.076	
No fusion + DE			3.637	7750
$\frac{1}{100} \frac{1}{100} \frac{1}$	6	6	13.226	1139
NONE × SVM	0	0	2.888	-
			0.049	
			5.653	7616
	6	6	31.954	/010
SKF × AVG	0	0	4.668	-
			0.077	
			8.548	7617
SKE – KE	6	6	73.065	/01/
$SKF \times KF$	0	0	7.069	-
			0.117	
			8.649	7620
$\mathrm{SKF} imes \mathrm{SKF}$	6	6	74.801	7620
	0		7.163	-
			0.119	
			5.592	7617
SKE V LIKE	6	6	31.276	/01/
$SKF \times UKF$	0	0	4.613	-
			0.076	
			3.508	7617
SKE × SVM	6	6	12.306	/01/
	0		2.771	-
			0.047	
			5.794	7506
	6	6	33.572	7390
UKF × AVG	0	0	4.807	-
			0.080	
			8.548	7506
	6	6	73.065	1590
\bigcup KF × KF	0	0	7.069	-
			0.117	
			8.646	7500
	6	6	74.750	1399
$\cup \mathbf{VL} \times \mathbf{JVL}$. 0	U		-

			7.160	
			0.119	
			5.736	7596
	6	6	32.905	1390
UKF × UKF	0	0	4.753	-
			0.079	
			4.224	7500
		(17.842	/596
$\mathbf{OKF} \times \mathbf{SVM}$	6	6	3.211	-
			0.055	
			5.929	7504
		6	35.148	/594
$KF \times AVG$	6	6	4.891	-
			0.081	
			8.548	7504
			73.065	7594
$\mathbf{KF} \times \mathbf{KF}$	6	6	7.069	-
			0.117	
			8.648	7507
			74.783	7597
$KF \times SKF$	6	6	7.162	-
			0.119	
			5.871	====
		<i>.</i>	34.470	7594
$\mathbf{KF} \times \mathbf{UKF}$	6	6	4.834	-
			0.080	
			3.921	
	-		15.375	7594
$\mathbf{KF} \times \mathbf{SVM}$	6	6	3.152	-
			0.053	
~			7.685	
Combined model			59.063	2572
$SKF \times NONE$	6	12	5.712	29,204,855
			0.095	
			6.796	
Images only			46.182	7555
-	6	12	5.570	137,125,825
			0.093	
			4.783	
	I	l		61

96

			22.877	00.996
SKF × NONE			3.713	90,880
			0.063	
I I view view			3.690	26
Univariate		10	13.619	26
NONE × NONE	6	12	2.959	11,580
			0.051	
			5.286	20
		10	27.945	38
KF × NONE	0	12	4.106	90,886
			0.069	
			4.521	20
		10	20.444	39
UKF × NONE	6	12	3.560	90,886
			0.060	
NL Garian			4.102	200
		10	16.825	200
NONE × NONE	0	12	3.234	91,526
			0.054	
Naiva			4.003	0
INdive	6	10	16.023	0
-	0	12	3.149	-
			0.054	
Moving overage			3.885	0
Moving average	6	10	15.093	0
-	0	12	3.131	-
			0.054	
Lincorrection			50.296	0
Linear regression	6	10	2529.661	0
-	0	12	14.990	-
			0.272	
			4.271	0
ARIMA	6	10	18.245	0
-	0	12	3.246	-
			0.056	
Universita + DE			4.703	7590
$\frac{\text{Univariate + DF}}{\text{NONE } \times \text{AVC}}$	6	10	22.116	1382
		12	3.819	-

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$
Univariate + DF 6 6 6 6 7585 7585 7585 $-$ NONE × SKF 6 12 6.707 7585 $ -$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
NONE × SKF 0 12 5.495
0.002
0.092
Universite + DE 4.678 7582
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
12 3.798
0.064
Universite + DE 3.708 7582
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
0.052
No fusion + DE 4.978 7756
NONE \times AVG 6 12 24.776
0.066
No fusion + DF 6.658 7756
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
5.462
0.091
No fusion + DF 6.707 7759
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
5.495
0.092
No fusion + DF 4.942 7756
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
3.970
0.066
No fusion + DF 4.101 7756
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3.215
0.054
5.134 7616
$\begin{vmatrix} SKF \times AVG & 6 & 12 & 26.361 & - \\ \hline - & - & - & - & - \\ \hline - & - & - & - & - \\ \hline - & - & - & - & - & - \\ \hline - & - & - & - & - & - \\ \hline - & - & - & - & - & - & - \\ \hline - & - & - & - & - & - & - & - \\ \hline - & - & - & - & - & - & - & - \\ \hline - & - & - & - & - & - & - & - \\ \hline - & - & - & - & - & - & - & - & - \\ \hline - & - & - & - & - & - & - & - & - \\ \hline - & - & - & - & - & - & - & - & - & -$

			5.347	7593
			0.060	
	6		3.509	
$\rm UKF imes SVM$		12	21.747	-
			4.003	7595
			0.008	
			4.094	
$\mathrm{UKF} imes \mathrm{UKF}$	6	12	25.050	-
			5.005	7595
			0.092	
			5.493	
$\mathrm{UKF} imes \mathrm{SKF}$	6	12	44.964	-
			0.700	7598
			0.091	
			5.462	
$\mathrm{UKF} imes \mathrm{KF}$	6	12	44.327	-
			8C0.0	7594
			0.009	
			4.127	
$\rm UKF imes AVG$	6	12	23.430 A 127	-
			25 / 28	7594
			5.044	
			0.060	
SKF imes SVM	6	12	21.078	-
			4.030	7616
			0.009	
			4.143	
$SKF \times UKF$ 6	6	12	25.999 4 1 4 5	-
			5.099	7616
			0.092	
			5.492	
SKF imes SKF	6	12	44.950	-
			6.704	7619
			0.091	
			5.462	
$\mathrm{SKF} imes \mathrm{KF}$	6	12	44.327	_
			6.658	7616
			0.069	
			4.163	
		1	1 · · · · · · · · · · · · · · · · · · ·	1

99

12

			28.588	
$KF \times AVG$			4.426	-
			0.074	
			6.658	7502
		10	44.327	/593
$\mathbf{KF} \times \mathbf{KF}$	0	12	5.462	-
			0.091	
			6.704	7507
	6	12	44.948	1391
KF × SKF		12	5.492	-
			0.092	
			5.308	7502
$\mathbf{KE} \sim \mathbf{IIKE}$	6	12	28.172	1393
	0	12	4.402	-
			0.074	
			5.023	7504
KE ~ SVM	6	12	25.233	1394
	0	12	3.821	-
			0.065	
Combined model			4.345	3187
SKE ~ NONE	24	1	18.878	20 205 026
	24	1	2.760	29,203,920
			0.046	
Images only			6.886	8048
	24	1	47.419	137 125 726
_	<i>2</i> 4	1	5.493	137,123,720
			0.091	
			2.859	54
$SKF \times NONF$	24	1	8.173	92 511
	21	1	2.231	,511
			0.037	
Univariate			3.164	25
NONE × NONE	24	1	10.013	11 459
	27	1	2.412	11,707
			0.040	
			3.147	31
	24	1	9.902	02 511
		1	2.448	72,311

			0.041	
			4.562	22
	24	1	20.808	33
UKF × NONE	24	I	3.699	92,511
			0.061	
			3.623	101
NO IUSION	24	1	13.126	121
NONE × NONE	24	I	2.760	93,151
			0.046	
Naina			3.163	0
Inalve	24	1	10.008	0
-	24	1	2.059	-
			0.034	
Maring avanage			3.088	0
Moving average	24	1	9.535	0
-	24	1	2.489	-
			0.042	
I in car recreasion			3.095	0
Linear regression	24	1	9.581	0
-	24	1	2.386	-
			0.040	
			3.036	0
ARIMA	24	1	9.218	0
-	24	1	2.186	-
			0.037	
Universite DE			4.563	8072
$\frac{1}{1}$	24	1	20.822	8073
NOINE × AVG	24	1	3.580	-
			0.059	
Universite + DE			6.704	9072
$VONE \times KE$	24	1	44.946	8073
NONE × KF	24	1	5.389	-
			0.089	
Universite + DE			6.643	2075
	24	1	44.133	0075
NONE × SKF	24	1	5.365	-
			0.089	
Universita + DE			4.527	8072
$\frac{1}{1}$	24	1	20.493	0073
NUNE X UKF	· 24	1		-

			3.562	
			0.059	
			2.904	0072
Univariate + DF		1	8.433	8073
NONE × SVR	24	1	2.319	-
			0.039	
			4.687	21.62
No fusion + DF			21.964	8169
NONE \times AVG	24	1	3.726	-
			0.061	
			6.704	21.62
No fusion + DF		_	44.946	8169
NONE \times KF	24	1	5.389	-
			0.089	
			6.660	0171
No fusion + DF		1	44.355	8171
NONE × SKF	24	1	5.376	-
			0.089	
			4.643	01.00
No fusion + DF	0.4	1	21.556	8169
NONE × UKF	24	1	3.691	-
			0.061	
			3.580	01/0
NO IUSION + DF	0.4	1	12.817	8169
NONE × SVM	24	1	2.787	-
			0.046	
			4.247	0100
	0.4	1	18.038	8102
$SKF \times AVG$	24	1	3.302	-
			0.055	
			6.704	9102
	0.4	1	44.946	8103
$SKF \times KF$	24	1	5.389	-
			0.089	
			6.651	9104
OVE & OVE		1	44.236	8104
JKF × JKF	24	1	5.371	-
			0.089	
			4.216	8103

			17.776	
SKF × UKF			3.287	-
			0.054	
			2.730	9102
	24	1	7.453	8103
SKF × SVM	24	I	2.077	-
			0.035	
			5.243	9091
	24	1	27.492	0001
UKF × AVG	24	1	4.233	-
			0.070	
			6.704	2021
	24	1	44.946	0001
UKF × KF	24	1	5.389	-
			0.089	
			6.664	0002
$\mathrm{UKF} imes \mathrm{SKF}$	24	1	44.413	8085
			5.379	-
			0.089	
			5.199	8081
	24	1	27.027	0001
UKF × UKF		1	4.211	-
			0.069	
			4.025	2021
	24	1	16.199	0001
	24		3.171	-
			0.053	
			4.259	8080
	24	1	18.135	8080
KF × AVO	24	1	3.314	-
			0.055	
			6.704	8080
$\mathrm{KF} imes \mathrm{KF}$	24	1	44.946	8080
	24	1	5.389	-
			0.089	
			6.656	2001
	24	1	44.303	8081
	24	1	5.374	-

			0.089	
			4.219	0000
	24	1	17.802	8080
$KF \times UKF$	24	I	3.286	-
			0.054	
			3.059	2020
	24	1	9.359	8080
$\mathbf{KF} \times \mathbf{SVM}$	24	1	2.378	-
			0.040	
Combined model			55.081	2215
	24	2	3033.900	5215 20 205 044
SKI × NONE	24	5	7.045	29,203,944
			0.117	
Images only			5.311	8048
intages only	24	3	28.210	137 125 744
-	24	5	4.170	137,123,744
			0.070	
			3.481	57
SKE × NONE	24	3	12.118	92 533
	27	5	2.886	72,555
			0.049	
Univariate			3.938	24
NONE \times NONE	24	3	15.505	11 481
		5	3.100	11,401
			0.051	
			3.501	34
$KF \times NONE$	24	3	12.255	92 533
	21	5	2.856	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			0.048	
			4.731	36
$\mathbf{U}\mathbf{K}\mathbf{F} \times \mathbf{N}\mathbf{O}\mathbf{N}\mathbf{F}$	24	3	22.378	92 533
	21	5	3.783	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			0.063	
No fusion			3.808	138
NONE × NONE	24	3	14.501	93,173
	21	5	3.066	<i>y3</i> ,175
			0.051	
Naive			3.703	0
-	24	3	13.709	-

			2.719	
			0.045	
			3.335	0
Moving average	24	2	11.119	0
-	24	3	2.690	-
			0.046	
.			3.934	0
Linear regression	24	2	15.475	0
-	24	3	2.807	-
			0.048	
			3.383	0
ARIMA	24	2	11.446	0
-	24	. 3	2.655	-
			0.045	
			4.125	9072
Univariate + DF	24	2	17.015	8073
NONE × AVG	24	3	3.221	-
			0.053	
			5.314	9072
NONE × KE	24	2	28.243	8073
NONE × KF	24	3	4.193	-
			0.070	
Universita - DE			5.285	9075
$\frac{1}{1}$	24	2	27.934	8073
NONE × SKF	24	3	4.149	-
			0.069	
Universita - DE			4.148	9072
	24	2	17.208	8075
NONE × UKF	24	5	3.257	-
			0.054	
Universita - DE			3.151	2072
NONE × SVD	24	2	9.928	8075
NONE × SVK	24	5	2.551	-
			0.043	
No fusion + DE			4.098	0106
$\frac{1001081001 + DF}{1000000000000000000000000000000000000$	24	2	16.796	0100
	24	3	3.313	-
			0.055	
No fusion + DF			5.314	8186

3

			28.243					
NONE × KF			4.193	-				
			0.070					
Na fusian + DE			5.288	0100				
NO IUSIOII $+$ DF	24	2	27.964	8188				
NONE × SKF	24	5	4.150	-				
			0.069					
No fusion + DE			4.117	9196				
NO IUSIOII $+$ DF	24	2	16.951	0100				
NONE × UKF	24	5	3.333	-				
			0.056					
No fusion + DE			3.806	9196				
$\frac{1}{10000000000000000000000000000000000$	24	2	14.485	0100				
INOINE × SVM	24	5	3.066	-				
			0.051					
			3.704	9106				
	24	2	13.719	8100				
SKF × AVG	24	5	2.994	-				
			0.050					
			5.314	<u> 2106</u>				
$SVE \vee VE$	24	2	28.243	8100				
SKF × KF	24	3	4.193	-				
			0.070					
			5.288	<u> 2109</u>				
	24	2	27.962	8108				
SKF × SKF	24	24	24	24	24	3	4.150	-
			0.069					
			3.728	8106				
	24	2	13.900	8100				
SKF × UKF	24	5	3.023	-				
			0.051					
			3.472	9106				
	24	2	12.055	8106				
SKF × SVM	24	3	2.929	-				
			0.049					
			4.480	0005				
	24	2	20.070	8083				
UKF × AVG	24	3	3.642	-				

			0.061	
			5.314	2025
	24	2	28.243	8083
	24	5	4.193	-
			0.070	
			5.288	8086
LIKE ~ SKE	24	3	27.960	8080
UKI [*] × SKI [*]	24	5	4.150	-
			0.069	
			4.495	8085
	24	3	20.205	0005
		5	3.663	-
			0.061	
			4.264	8085
$IIKE \times SVM$ 24	2	18.181	0005	
		5	3.312	
			0.056	
$KF \times AVG$ 24		3	3.749	8083
	24		14.059	-
			3.066	
			0.051	
			5.314	8083
KF × KF	24	3	28.243	-
			4.193	
			0.070	
			5.288	8085
$KF \times SKF$	24	3	27.964	-
	21	5	4.150	
			0.069	
			3.767	8083
$KE \times \Pi KE$	24	3	14.189	-
	21	5	3.088	
			0.052	
			3.621	8083
KF × SVM	24	3	13.112	-
	21	3	3.046	
			0.052	
Combined model			8.999	3183
SKF × NONF	24	6	80.977	29 205 971
	<i>—</i> г	0		

			4.741	
			0.078	
Images only			4.497	8047
_	24	6	20.220	137,125,771
			3.746	
			0.064	
			4.477	57
$SKF \times NONE$	24	6	20.044	92,566
			3.721	
			0.063	
Univariate			3.503	25
NONE \times NONE	24	6	12.269	11.514
		Ŭ	2.747	11,011
			0.046	
			4.024	37
$KE \times NONE$	24	6	16.191	92 566
KI' × INOINE	24	0	3.283	92,500
			0.056	
			4.196	29
	24	6	17.605	30 02 566
UKF × NONE	24	0	3.228	92,300
			0.055	
			4.698	122
No fusion		-	22.068	122
NONE × NONE	24	6	3.857	93,206
			0.064	
			3.972	-
Naive			15.773	0
-	24	6	3.120	-
			0.053	
			3.656	
Moving average			13.363	0
-	24	6	2.943	-
			0.050	
<u></u>			6.439	
Linear regression			41,455	0
-	24	6	3 443	-
			0.060	
			3 865	
ARIMA			5.005	0

			14.935	
-			2.977	-
			0.051	
			3.461	0070
NONE AVC	24	6	11.979	8072
NONE × AVG	24	6	2.890	-
			0.049	
			4.372	9073
$\frac{1}{1}$	24	C	19.112	8072
NONE × KF	24	0	3.649	-
			0.063	
Universite + DE			4.397	9074
$\frac{1}{1}$	24	6	19.335	8074
NOINE × SKF	24	6	3.668	-
			0.063	
			3.440	9073
$\frac{1}{1}$	24	C	11.834	8072
NONE × UKF	24	0	2.861	-
			0.049	
Universite + DE			3.577	8072
$\frac{1}{1}$	24	6	12.795	8072
NONE × SVK	24	0	3.024	-
			0.052	
No fusion + DE			3.826	8160
NONE \times AVG	24	6	14.637	8109
NONE × AVO	24	0	3.124	-
			0.053	
No fusion $\pm DF$			4.372	8169
NONE \times KE	24	6	19.112	-
	27	0	3.649	
			0.063	
No fusion + DF			4.392	8170
NONE \times SKE	24	6	19.288	-
		0	3.663	
			0.063	
No fusion + DF			3.778	8169
NONE \times LIKE	24	6	14.273	-
INUINE × UKF 24		0	3.084	_

			0.052	
No fusion + DE			4.676	9160
NO IUSIOII $+$ DF	24	6	21.862	8109
NOINE × SVIM	24	0	3.844	-
			0.064	
			3.902	<u> </u>
	24	6	15.222	8104
SKF × AVG	24	0	3.127	-
			0.053	
			4.372	<u> </u>
	24	6	19.112	8104
SKF × KF	24	0	3.649	-
			0.063	
			4.392	<u> </u>
SVE V SVE	24	6	19.292	8103
SKF × SKF	24	0	3.663	-
			0.063	
			3.856	<u> </u>
	24	6	14.865	8104
$SKF \times UKF$ 24	24	0	3.091	-
			0.053	
			4.659	8104
SKE × SVM	24	6	21.707	8104
SKI' × SVIM	24	0	3.896	-
			0.066	
			3.743	8085
$IIKE \times AVG$	24	6	14.007	8085
	24	0	3.011	_
			0.051	
			4.372	8085
$IIKE \sim KE$	24	6	19.112	0005
	24	0	3.649	-
			0.063	
			4.392	8087
LIKE ~ CKE	24	6	19.291	0007
	24	0	3.663	-
			0.063	
			3.698	8085
IIKE ~ IIKE	24	6	13.677	0005
$\mathbf{O}\mathbf{N}\mathbf{I}^*$ \wedge $\mathbf{O}\mathbf{N}\mathbf{I}^*$	∠-+	0		-

			2.977	
			0.051	
			4.137	0005
	24	(17.115	8085
$\mathbf{OKF} \times \mathbf{SVM}$	24	0	3.247	-
			0.055	
			3.680	0004
	24	(13.544	8084
KF × AVG	24	0	2.960	-
			0.050	
			4.372	2024
	24	6	19.112	8084
KF × KF	24	0	3.649	-
			0.063	
			4.392	8086
KE ~ SKE	24	6	19.292	8080
	24	0	3.663	-
			0.063	
			3.635	8084
$KE \sim \Pi KE$	24	6	13.214	-
	24	0	2.926	
			0.050	
			4.194	8084
$KF \times SVM$	24	6	17.589	-
		0	3.405	
			0.058	
Combined model			16.039	3152
SKF × NONE	24	12	257.251	29 206 025
		12	7.152	27,200,020
			0.116	
Images only			7.283	8051
-	24	12	53.047	137 125 825
-		12	5.826	137,123,023
			0.096	
			4.386	60
$\mathbf{SKF} \times \mathbf{NONE}$	24	12	19.238	92.632
	24		3.473	
			0.058	
Univariate			4.009	26
	24	12		

			16.074	11.500								
NONE × NONE			3.136	11,580								
			0.052									
			4.433	25								
	24	10	19.650	35								
KF × NONE	24	12	3.462	92,632								
			0.058									
			4.570	26								
	24	12	20.884	02 622								
	24	12	3.686	92,032								
			0.062									
Nafusion			4.161	120								
NO IUSION NONE × NONE	24	12	17.315	03 272								
NONE × NONE	24	12	3.304	93,272								
			0.056									
Naiva			4.201	0								
Naive	24	12	17.651	0								
-	24	12	3.231	-								
			0.055									
Moving overage			4.179	0								
woving average	24	12	17.463	0								
-	24	12	3.321	-								
			0.057									
Linear regression			7.308	0								
-	24	12	53.410	-								
-	<u>ک</u> 4	<i>24</i>	2 - 7	<i>∠</i> -⊤	2 - 7	2 -T	<i>∠-</i> ⊤	<i>—</i> т	<i>2</i> -т	12	4.509	-
			0.079									
ARIMA			4.166	0								
-	24	12	17.356	-								
	27	12	3.163									
			0.054									
Univariate + DF			5.254	8076								
NONE \times AVG	24	12	27.600	-								
	21	12	4.250									
			0.070									
Univariate + DF			7.135	8076								
NONE × KE	24	12	50.904	_								
	24	12	5.732	_								

			0.095	
Universita + DE			7.209	2072
$\frac{1}{1}$	24	10	51.974	8078
NOINE × SKF	24	12	5.766	-
			0.095	
Universite + DE			5.224	8076
	24	10	27.295	8070
NONE × UKF	24	12	4.222	-
			0.070	
Universite + DE			4.123	8076
NONE × SVD	24	10	16.997	8070
INDINE × 3VK	24	12	3.328	-
			0.056	
No fusion + DE			4.893	8171
$\frac{1}{1000} \frac{1}{1000} + \frac{1}{1000} \frac{1}{$	24	10	23.939	01/1
NONE × AVG	24	12	4.022	-
			0.067	
No fusion + DE			7.135	9171
NOTUSION $+$ DI	NO IUSIOII $+$ DF	12	50.904	01/1
NONE × KI	24	12	5.732	-
			0.095	
No fusion $\pm DE$			7.210	8173
NONE ~ SKE	24	12	51.988	0175
	24	12	5.766	-
			0.095	
No fusion + DE			4.853	8171
NO IUSIOII $+$ DI	24	10	23.548	01/1
NONE × UKI	24	12	3.986	-
			0.066	
No fusion + DE			4.267	8171
$\frac{1}{10000000000000000000000000000000000$	24	10	18.207	01/1
NOME × SVIVI	24	12	3.401	-
			0.058	
			5.068	8110
$SKE \times AVG$	24	12	25.688	8110
	24	12	4.151	-
			0.069	
			7.135	8110
SKE × KE	24	12	50.904	
	<i>_</i>	1 4		

			5.732	
			0.095	
			7.216	0110
	24	10	52.073	8112
$SKF \times SKF$	24	12	5.771	-
			0.095	
			5.034	0110
	24	10	25.345	8110
$SKF \times UKF$	24	12	4.123	-
			0.068	
			4.153	0110
	24	10	17.246	8110
$SKF \times SVM$	24	12	3.317	-
			0.056	
			5.413	0007
	24	10	29.304	8087
$UKF \times AVG$	24	12	4.414	-
			0.073	
	24		7.135	0007
		12	50.904	8087
UKF × KF			5.732	-
			0.095	
			7.216	0000
	24	12	52.072	8088
UKF × SKF	24		5.771	-
			0.095	
			5.375	9097
	24	10	28.888	8087
UKF × UKF	24	12	4.381	-
			0.072	
			4.091	9097
	24	10	16.737	8087
$UKF\timesSVM$	24	12	3.196	-
			0.054	
			5.127	0007
	24	10	26.283	8086
KF × AVG	24	12	4.205	-
			0.070	
			7.135	0007
I Contraction of the second	I	I	I	8086

2<u>4</u>4

12

			50.904	
KF × KF			5.732	-
			0.095	
			7.222	8088
	24	10	52.152	8088
KF × SKF	24	12	5.775	-
			0.095	
			5.084	2026
	24	12	25.849	8080
KF × UKF	24	12	4.166	-
			0.069	
			4.062	0006
	24	10	16.501	8080
	24	12	3.242	-
			0.055	

Appendix 3 - Dataset

Datasetd used for experiments is available in pickle format at:

```
https://bitbucket.org/andressuislepp/magistritoo/src/master/
app/10feb-06mar-cameras-sm.pkl
```

Appendix 4 - Code

Source code for the development of models is available as a Git Repository:

https://bitbucket.org/andressuislepp/magistritoo