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Annotatsioon

Intelligentsed transpordisüsteemid on kriitilise tähtsusega tänapäeva linnades. Tarkade
rakenduste olemasolu linnades on oluline, et pakkuda inimestele kaasaegset, turvalist ja
mugavat linnaruumi. Meie liikumise ja teguviiside analüüsimiseks kogutakse massiiv-
seid andmehulkasid, mille protsessimiseks kulub rohkesti aega ja arvutijõudlust. Selle
probleemi lahendamiseks on välja töötatud mitmeid andmeühitamise tehnoloogiaid, mille
tulemusena andmete hulk ja modaalsus väheneb, kuid nendes sisalduv informatsioonihulk
jääb samaks või suureneb.

Töö eesmärk on välja pakkuda andmeühitamise metoodika, mille kaasabil on võimalik
pakkuda usaldusväärseid, kiireid, töökindlaid ja täpseid mürataseme ennustusi linnades.

Välja töötatud lahendus on hübriidne andmeühitamine, milles on kasutatud andmeühi-
tusmetoodikat nii tunnuse- kui ka otsustuse tasemel. Tunnuse taseme ühitamiseks on
kasutatatud Smoothed Kalman Filter lähenemist, mis töötab hästi mitte-täielike andme-
hulkade peal. Lisaks vähendab see andmete modaalsust, mille tulemusena ka mudeli
keerukus väheneb. Lõplik väljatöötatud mudel koosneb lisaks eelnevale ka otsustustasemel
ühitusest, kuhu on lisatud Tallinna avakaameratel põhineva mudeli tulemused. See saavutas
veelgi väiksema ennustusvea tulemuse. Lõplik hübriidne andmeühitusmeetod põhineb
tunnustasemel Smoothed Kalman Filter tehnoloogial ja otsustustasemel Support Vector

Regression tehnoloogial.

Andmete ühitamise meetodi tulemuste valideerimiseks loodi ennustusmudel, mis koosneb
konvolutsioonilisest ja rekurrentsest närvivõrgust. Eksperimendid viidi läbi Tallinna linnast
ühe kuu vältel kogutud andmehulga pealt. Tulemuste efektiivsust hinnati neid mitmete
üldtuntud andmete ühitamise meetoditega võrreldes. Lisaks sellele kõrvutati tulemusi
statistiliste aegridade ennustamise meetoditega. Võrdluseks kasutati kahte karakteris-
tikut: täpsus ja efektiivsus. Täpsus mõõdab ennustuse vea suurust ja efektiivsus mudeli
treenimiseks kulunud energiat ja aega. Välja pakutud ühitamisstrateegia saavutas parima
tulemuse kõigi võrreldavatega, olles kõige väiksema vea väärtusega. Tulemustest sai lisaks
välja lugeda, et mudelile piltide ja otsustusühituse lisamine tõstis väga vähesel määral
mudeli täpsust, kuid sellega kaasnes väga suur efektiivsuse langus.
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Töö tulemusena valmis täpne ja efektiivne linnamüra ennustusmudel, mis põhineb hübriid-
sel andmete ühitamise meetodil. Ennustusmudeli tulemusena on võimalik ehitada tarku
aplikatsioone, mis tõstaksid intelligentsete transpordisüsteemide kasutajakogemust ja usal-
dusväärsust. Pakutud andmeühituslahenduse adapteerimine teistesse valdkondadesse on
üks võimalikest töö edasiarendustest.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 8 peatükki, 14
joonist, 9 tabelit.
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Abstract

The amount of data being collected each second is enormous. It takes loads of time and
computational power to extract valuable information to process and analyze this data.
Data fusion methodologies have been implemented to tackle these problems and reduce
complexity while maintaining or improving the information content.

The primary goal of this thesis is to propose a data fusion strategy to provide reliable,
accurate, and efficient predictions for urban noise levels in Intelligent Transportation
Systems.

The proposed approach to data fusion is a hybrid data fusion, using the feature and decision-
level fusions in parallel. For feature fusion, a statistical method, Smoothed Kalman Filter,
was used to deal with the data unreliability and simultaneously reduce the complexity of
the model. For the model that includes images from Tallinn open cameras, a decision
fusion based on a Support Vector Regression was applied to further improve the final
prediction’s accuracy.

A deep learning network was built to evaluate the impact of the data fusion strategy.
Experiments were carried out from the multi-modal data set acquired from Tallinn over the
period of 1 month. The results were evaluated against multiple data fusion algorithms and
statistical time series baselines based on accuracy and complexity. The proposed model
was able to outperform all the other baselines on average. Adding the decision fusion
with images to our model had a small improvement in accuracy. However, the increased
complexity was immense. The model outperformed baselines by a high margin when
predicting 5 or 15 minutes into the future. Regarding 30 or 60-minute predictions, two
baselines, namely Univariate, no fusion and Moving average were able to produce better
results due to the simplistic approach of filling the missing target variable values.

As a result of the proposed data fusion strategy, a performant and accurate prediction
model was built. This enables building smart applications for Intelligent Transportation
Systems on top of urban noise predictions. Generalization to different contexts could be
researched for further improvement to the data fusion model.
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The thesis is in English and contains 46 pages of text, 8 chapters, 14 figures, 9 tables.

7
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1. Introduction

Developing Intelligent Transportation Systems (ITS) is crucial to improve people’s mobility
in densely populated cities. Evolution in the field has led to a high demand for smart
applications that provide useful information as an input for reliable and smart transportation
networks [1].

The amount of information we have today is enormous, and the challenge relies on
extracting the useful and informative parts of the collected data and providing meaningful
analysis on top of it. In the context of ITS, the biggest generators of data are the deployed
sensors, including data from GPS, video cameras, LIDAR, RADAR, and loop detectors, to
name a few. This data is often supported by other sources such as social media, weather
data, public transportation data, etc. The biggest challenges in the field can be identified as
(i) analyzing real-time heterogeneous big data and (ii) data reliability [1].

Data Fusion (DF) is considered an elegant and efficient way to tackle the problems related
to multi-modal big data. Studies on DF have delivered significant enhancements in ITS
and demonstrated a vital impact on its evolution [1].

The proportion of the world population living in urban areas is expected to grow rapidly in
the following decades [2], which indicates the actuality of the problem. In addition, high
urban noise levels are known to be a source of many illnesses, starting from constant stress
and sleep issues to more severe problems like cardiovascular diseases [3].

This thesis proposes a novel data fusion method to improve and simplify deep-learning
prediction model outcomes. The model is developed using data from the city of Tallinn.

1.1 Motivation

Traffic congestion in big cities is a huge cost for city stakeholders. Accurately predicting
traffic characteristics, including urban noise, can reduce congestion and the overall CO2

emissions, fuel consumption, and travel times. This will lead to safer, more modern urban
environments and a healthier planet.
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1.2 Problem statement

Urbanization increases the need for smart cities to manage people’s mobility efficiently.
Therefore, to overcome this issue, a myriad of researchers have conducted combined
data fusion techniques with traffic prediction approaches by processing the vast amount
of collected heterogeneous traffic data from different sources. Better prediction results
allow ITS stakeholders, managers, and applications to reduce congestion, travel time, CO2

emissions, allocate resources, and increase safety.

My thesis aims to propose a method for traffic data fusion that improves the performance
and accuracy of predicting urban noise levels in Intelligent Transportation Systems. The
hypothesis to be proven is that data fusion methods mixed with hybrid deep learning
methods can yield highly accurate and performant results for short-term urban noise
prediction. The problem is interpreted as a forecasting problem.

1.3 Structure

The rest of the work is structured as follows. Chapter 2 introduces the general methodology
and summarizes the state-of-the-art data fusion methods, emphasizing feature and decision
fusions. Additionally, a comprehensive introduction to the techniques used in work is
given. Chapter 3 gives an overview and initial analysis of the available dataset and
the pre-processing strategies used. The proposed architecture is provided in Chapter 4,
where the underlying technology choices are justified. Chapter 5 thoroughly analyzes the
experimental evaluation, where the results are discussed and compared to the relevant
baselines. Possible applications for the final implementation are given in Chapter 6,
together with ideas for further improvement of the models.

14



2. Background and related work

This chapter provides the necessary context needed to understand further work. State-
of-the-art data fusion methods are introduced, and a high-level overview of the used
technologies is given.

2.1 Intelligent Transportation Systems

European Union directive 2010/40/EU states Intelligent Transportation Systems as a group
of advanced applications that aim to provide helpful and innovative solutions to traffic
management and different modes of transportation [4]. It integrates telecommunications,
electronics, and information technologies with transport engineering to enable various
stakeholders to be better informed for making safer and more coordinated decisions. A
critical factor in deploying these systems is preserving individual consumers’ privacy. The
directive also suggests increasing the number of deployments of intelligent applications,
which has accelerated the demand and interest in the field.

2.2 Data fusion

Data Fusion is an advanced technique to combine information coming from several sources
to get more accurate results in an execution of an application in a way that would be
performed by the use of individual sources separately [5]. The expectation is that fused
data is more informative and synthetic than the original inputs. Another significant factor
of DF is dimensionality reduction. The ability to simplify models both algorithmically and
computationally is a precious aspect when dealing with significant amounts of multi-modal
data. In a recent study, [1] has classified the current directions of DF as hybrid data fusion,
explainable deep neural network data fusion, adaptive sensor selection, privacy-preserving,
and real-time data acquisition and processing.

Data fusion can be categorized into three main categories based on when the fusion takes
place: data-level fusion, feature-level fusion, and decision-level fusion.[6]

15



2.2.1 Data-level fusion

Data-level fusion, also recognized as low-level fusion, is most widely used when collecting
data from the environment. Suppose multiple homogeneous sensors collect the exact
measurement. In that case, these inputs from the sensors can be fused directly to improve
sensor reliability, reduce noise and achieve more accurate and informative data than the
sources. This also decreases the network bandwidth used, making it less expensive to
handle big amounts of data [6].

2.2.2 Feature-level fusion

Feature-level fusion, also known as intermediate-level fusion, merges multiple data sources
into a new high-dimensional dataset. Since high-dimensional datasets are computationally
and algorithmically expensive, simple concatenation of feature sets is usually not good
enough. Feature-level DF algorithms and feature engineering can be beneficial when
dealing with high-modality datasets. However, in some cases, simple concatenation has
shown to be a viable option with the popularization of deep learning [6].

Authors in [7] built a deep-learning model to predict the occupancy of electric vehicle
charging stations. Their proposed fusion component integrates information from the
dynamic encoder and static feature component. It uses concatenation to feed the encoded
feature vectors to the fully-connected layer. The prediction model is evaluated concerning
multiple metrics: precision, recall, and F1-score. The proposed model shows the best
performance regarding the Recall and the F1-score compared to various statistical, machine
learning, and deep learning baselines. The paper shows promising results with a simplistic
fusion approach.

2.2.3 Decision-level fusion

Decision-level fusion, also recognized as high-level fusion, is used to fuse multiple inde-
pendent, often weaker decisions to a final unique decision [6]. This is especially useful
for capturing the different characteristics of the dataset by using specialized models and
fusing the outputs instead of trying to build a generalized model for the whole dataset.

Paper [8] is introducing a decision-level data fusion framework based on homogeneous
(machine-learning) and heterogeneous (Extended Kalman Filter) data for traffic congestion
prediction. Decisions from three data mining algorithms (deep belief network, k nearest
neighbors, random forest) are fused using Extended Kalman Filtering. The three models’
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fused output shows a significant performance increase over any models independently.
The dataset of the evaluation is based on daily motorway traffic in Montreal, obtained
from Genetec blufaxcloud travel-time system engine. The model validation is done
by measuring the predicted travel time and comparing it against the estimates obtained
from Genetec blufaxcloud travel-time system engine. The model outperforms Genetec
estimations 12 times out of 23. Authors in [9] use feature- and decision-level fusion to
assess tea quality based on the tea’s image and scent. Paper is extracting features from
images and e-nose sensors and fusing the data to classify the quality of the tea batch.
K-nearest neighbors (KNN), support vector machine (SVM), and multinomial logistic
regression (MLR) were applied for classification modeling. Both studies (feature and
decision) show better classification results than those based on independent inputs. For
this paper, decision-level fusion is the most effective approach.

2.3 Data fusion for time series prediction

Traffic prediction has been a hot research topic for many years. Traffic’s complex, non-
linear and stochastic characteristics are the main problems of making accurate predictions
[10]. In recent years, traffic data fusion has been used to improve traffic characteristic
predictions in cities [8]. Kalman Filter and its variations have shown high usage in
forecasting and estimating short-term traffic characteristics. The authors in [11] use Kalman
Filter to fuse spatial and location-based data to estimate traffic density. Subsequently,
the estimated data are utilized for predicting density to future time intervals using a time
series regression model. The experiment was carried over in Chennai, India, which adds a
significant complexity due to the unique nature of traffic that poses both technological and
algorithmic challenges. The density prediction model performed relatively well despite
the challenges arising from India’s heterogeneous traffic flow conditions. A more recent
study [12] has proposed a hybrid model for regional traffic flow prediction based on the
convolutional neural network (CNN) and long short-term memory (LSTM). The data being
fused is both spatial and temporal. As CNN is generally more suitable for spatial data
and LSTM models are appropriate for processing sequential types of data (temporal), a
hybrid approach combining CNN and LSTM is introduced. The model shows the highest
accuracy compared to the targeted baselines for multi-step forecasting. Another paper
[13] with a similar approach proposes a multivariate CNN-LSTM model to predict stock
market prices. The stock market is a noisy, stochastic environment identical to traffic in big
cities. The proposed model used multiple stock market indices by considering the state of
correlation between them in the forecasting process. The multivariate CNN-LSTM model
outperformed standalone CNN and LSTM models by a relatively high margin.

Besides traffic predictions, other commonly used applications for DF in the context of
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ITS include autonomous vehicles, travel time estimation, traffic prediction, congestion
prediction, incident detection, vehicle communication, and different management systems
[1].

2.4 Multivariate time series prediction

Multiple time-dependent variables in a multivariate time series prediction depend on their
previous value and other variables’ previous values. This allows the model to capture the
trend of observed variables’ relationships when forecasting the future value [13]. The input
to a multivariate time series prediction is a uniformly distributed time-dependent sequence
of prior values. Formula 2.1 represents the prediction as a function fn where X represents
the variable set, y as the target variable, ŷ as the predicted value, l is the input sequence
time length in time steps, and o represents the output time steps (how many steps in the
future to predict).

ŷt+o = fn({Xt+(−l+1), Xt+(−l+2), ..., Xt}) (2.1)

2.5 Long short-term memory

To evaluate the fusion methodologies, a multivariate prediction methodology is needed.
Multi-modal non-linear urban noise data is known to be too complex and noisy for
traditional time series prediction methods to handle. The advancements in machine
learning research are providing viable options to overcome these limitations. Neural
networks can learn the complex relationships between data features in big datasets without
relying on previous information [13].

Due to its popularity in late time series prediction publications, the chosen prediction
methodology was long short-term memory (LSTM). LSTM is a popular recurrent neural
network (RNN). Recurrent neural network (RNN) is a deep network architecture where
the connections between hidden units form a directed cycle [14]. The LSTM network
can capture long-term dependencies by using internal memory that keeps the previous
information from the last hidden states, as illustrated in Figure 1.
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Figure 1. LSTM architecture for a supervised model in time series prediction context.
Figure referenced from [13]

.

Traditional LSTM unit comprises forget, input, output gates, and a memory cell. The
architecture assumes uniformly distributed elapsed time between the elements of a sequence
[14]. LSTM has been widely used and proven to be very capable of forecasting time series
data [13].
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3. Data acquisition

This chapter aims to give a good understanding of the underlying dataset. This includes
the data source, acquisition information, and a thorough analysis of the available features.
A thorough exploration of the available dataset is needed to propose a suitable data fusion
strategy for an accurate prediction.

3.1 Data sources

The intersection of interest for the model building is in Tallinn, between Sõpruse Puiestee
and Tammsaare Tee. The main reason for this decision was the availability of the urban
noise sensor data.

Different traffic characteristics data were acquired from multiple sources. Data sources,
methods of acquisition, and processing strategies are described in Table 1. The interval for
data acquisition was 5 minutes. Data were acquired from 10 February 2022 until 6 March
2022.

Features Source Acquisition method
Noise level Thinnect Export

Traffic characteristics TomTom Developer Portal API Scraping
Weather ilm.ee Website Scraping

Road condition, weather Tallinn Weather Portal Website Scraping
Camera images Tallinn Live Cameras Scraping

Datetime features - Computed

Table 1. Data sources

3.2 Data processing

Noise data

Noise data was exported in CSV format from Thinnect portal and required no preprocessing.
The used sensor is situated at the intersection of Tammsaare - Sõpruse and sends the average
noise level to the server every minute.
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TomTom

Data from TomTom was acquired by accessing the TomTom Maps API [15]. TomTom
provides data about different road sections. The two road sections used are denoted as P1

and P2 and depicted in Figure 2.

Figure 2. TomTom road sections

TomTom provides average car speed and travel-time information about each road section
for two cases: the current and free flow states. Free flow state describes the situation
for a case where there is no extensive amount of traffic. This allows us to calculate the
differences between the free flow state and the current state, using the formula 3.1. In
addition, TomTom provides data about road closures and road types in real time.

tdiff = tcurrent − tfreeflow (3.1)

df [ ’ TT_P1_Travel_Time_Diff_Sec ’ ] = d f . a p p l y (

lambda row : row [ ’ TT_P1_Current_Travel_Time_Sec ’ ] −

row [ ’ TT_P1_Freef low_Travel_Time_Sec ’ ] , a x i s =1)

d f [ ’ TT_P1_Speed_Diff_Kmh ’ ] = df . a p p l y (

lambda row : row [ ’ TT_P1_Freeflow_Speed_Kmh ’ ] −

row [ ’ TT_P1_Current_Speed_Kmh ’ ] ) , a x i s =1)
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Ilm.ee

Scraping ilm.ee website provides data points about the current weather and air conditions.
The available features are temperature, wind temperature, air pressure, air humidity, wind
speed and direction, rainfall, sunset and sunrise times, cloudiness, and coldness class.

Tallinn Weather Portal

Scraping Tallinn Weather portal website provides data points about the current weather and
road conditions. The available features are temperature, air humidity, and road temperature.

Tallinn Live Cameras

There are three live cameras for the intersection of interest. The images are scraped
from the Tallinn Live Cameras website, resized into a standardized size of 100px x
100px, and concatenated into a single 300px x 100px picture collage depicted in Figure 3.
Concatenation is needed to allow the deep learning model to learn about all the driving
directions simultaneously. The small size for the images had to be chosen to optimize the
further processing and training procedures since dealing with high volumes of image data
is computationally expensive.

Figure 3. Tallinn Live Cameras: Concatenated
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DateTime features

DateTime features are computed from the ISO timestamp. The following features are
computed: date, hour, minute, minute of the day, day of the month, day of the week, and
is-weekend.

d e f c o m p u t e _ d a t e t i m e _ f e a t u r e s ( d f ) :

d f [ ’ Date t ime ’ ] = df . a p p l y ( lambda row : d a t e t i m e

. f r o m i s o f o r m a t ( row [ ’ Timestamp ’ ] ) , a x i s =1)

d f [ ’ Date ’ ] = d f . a p p l y ( lambda row : row [ ’ Date t ime ’ ]

. s t r f t i m e ("%Y−%m−%d " ) , a x i s =1)

d f [ ’ Hour ’ ] = d f . a p p l y ( lambda row : row [ ’ Date t ime ’ ]

. hour , a x i s =1)

d f [ ’ Minute ’ ] = d f . a p p l y ( lambda row : row [ ’ Date t ime ’ ]

. minute , a x i s =1)

d f [ ’ Minute_Of_Day ’ ] = df . a p p l y ( lambda row : ( row [ ’ Hour ’ ] *
60) + row [ ’ Minute ’ ] , a x i s =1)

d f [ ’ Day_Of_Month ’ ] = df . a p p l y ( lambda row : row [ ’ Date t ime ’ ]

. day , a x i s =1)

d f [ ’ Day_Of_Week ’ ] = df . a p p l y ( lambda row : row [ ’ Date t ime ’ ]

. weekday ( ) , a x i s =1) ’

d f [ ’ Is_Weekend ’ ] = df . a p p l y ( lambda row : row [ ’ Day_Of_Week ’ ]

== 5 or row [ ’ Day_Of_Week ’ ] == 6 , a x i s =1)

r e t u r n d f

3.2.1 Combining data from multiple sources

For further processing of the dataset, data from multiple sources are combined using the
Pandas DataFrame merge functionality. Merging is based on computed DateTime features.

df = pd . merge ( d f _ n o i s e , d f _ i l m e e _ w e a t h e r ,

how= ’ l e f t ’ ,

on =[ ’ Date ’ , ’ Hour ’ , ’ Minute ’ ] )

3.3 Exploratory analysis

The initial dataset contains 7, 252 data points. Exploration of the target variable, noise,
shows the first immediate problem. As depicted in Figure 4, noise value is only present for
26.54% of the dataset. Another feature visible from Figure 4 is the temporal characteristic
of the urban noise. Further exploration of noise characteristics are shown in Table 2 and a
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histogram in Figure 5. The target variable is a numeric value between the range of 45-80
dB with a mean of 58.931 dB.
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Figure 4. Noise series

Characteristic Value
Count 1925
Mean 58.931

Standard deviation 5.954
Minimum 45

25% 54
50% 59
75% 63

Maximum 80

Table 2. Noise characteristics
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Figure 5. Noise histogram
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Exploring the correlations between continuous features shows a very low correlation for
rainfall. The correlation matrix in Figure 6 shows less than 0.1 correlation between any
other feature and rain. Further exploration of the rain feature in Table 3 and Figure 7 shows
that there was minimum rain detected during our interest of time. The outcome of the
exploration is removing the rain feature from further model development. The biggest
correlation with the target variable is the road, air temperature, and wind speed.
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Figure 6. Correlation matrix

Characteristic Value
Count 7177
Mean 0.008

Standard deviation 0.089
Minimum 0

25% 0
50% 0
75% 0

Maximum 1

Table 3. Rain characteristics
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Figure 7. Rain histogram

Categorical features value count exploration shows us four variables with static values as
described in Table 4. These values are not providing additional information to the model
and, therefore, can be excluded from further model development. Because wind speed has
a significant correlation, we can expect the wind direction to be very influential.

Value Count
FRC3 7252

P1 road type

Value Count
FRC2 7252

P2 road type

Value Count
False 7252

P1 is closed

Value Count
False 7252

P2 is closed

Value Count
SW 2728
S 1509
W 1380
SE 508
N 462

NW 457
NE 114
E 96

Wind direction

Value Count
cloud_norain 3490

cloud 2089
cloud_lightsnow 653
cloud_lightrain 634
cloud_modrain 202

cloud_lightrainsnow 90
cloud_modsnow 78

cloud_modrainsnow 18

Cloudiness class

Value Count
cold 4158
hot 3096

Coldness class

Table 4. Categorical value counts

The final dataset contains 11 continuous features, three categorical features, and one image
feature combined with three images. The immediate problems regarding data preprocessing
that arose from the exploratory analysis are the following:
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1. Missing values for the target variable.
2. Privacy-preserving for images.
3. Capturing periodic temporal characteristics of the target variable.

3.3.1 Handling of missing data

The requirement for training accurate deep learning models is a sufficient amount of
training data. To increase the size of the training dataset, noise values are imputed using
a method of backward fill, where the last known valid value is carried backward in the
dataset, with a limit of 6. This ensures that short-term missing values are not affecting
the training process. Still, the limit is set not to fill vast gaps of missing data in training,
which can cause the model to learn the backward fill implementation instead of the actual
dependencies and variable movements. In addition, as described in Chapter 2.4, the input
to a time series prediction is a sequence of datasets where elements are expected to be
uniformly distributed. The sequences that violate that assumption are removed from the
training set as described in Formula 3.2, where the sequence of variables S including l

variable sets X with a parameter timestamp in minutes X(t). The sequence S is included in
the training set when function fn evaluates to true with a time step ts between each item.

fn(S) = (Xt(t)−Xt+(−l+1)(t)) <= l ∗ ts (3.2)

3.3.2 Privacy preserving

Data privacy is an important matter to discuss when dealing with image processing. The
collected images used in this work are processed only to predict future noise values. The
persons and the personal cars visible in the images are not processed in a standalone
approach.
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4. Methodology

The proposed architecture is described in detail in this chapter. The distinct strategies are
justified, and an overview of underlying logic is provided.

Considering the late success shown in recently published papers that proposed deep
learning models which can recognize complicated and unknown patterns in large varying
data sets, the proposed methodology chosen for the prediction model is deep learning.
The idea is to use a combination of data fusion techniques before feeding it into the
LSTM-based model that predicts short-term urban noise levels. Deep learning models
greatly succeed when dealing with nonlinear multivariate time series data. However, the
limitation is the need for a vast amount of data and computationally expensive training
times [16]. A combination of DF strategies improves the prediction model’s accuracy
and performance. The proposed approach is a hybrid DF method combining feature and
decision-level fusions. Figure 8 shows the high-level architecture to be built.

features

images

Data preprocessing Feature fusion 
Feature engineering

prediction 1

prediction 2

Prediction method

final prediction

Decision fusion

Figure 8. High-level model architecture
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4.1 Model building

The proposed architecture depicted in Figure 9 aims to overcome the issues described
earlier and provide an accurate forecast.

The proposed model is a combination of fusions. It uses the traditional DF method
Smoothed Kalman Filter (SKF) for feature fusion to reduce the dimensionality and com-
plexity of the model to allow for faster training times while maintaining or even improving
the accuracy. This is combined with a CNN architecture to extract unknown features and
patterns from the already fused data by introducing a multi-fusion strategy. The image
input is processed using another independent CNN. The prediction outputs are fused using
a Support Vector Regression decision fusion with a rbf kernel to improve the model’s
accuracy further. Both independent models use a deep learning prediction network based
on CNN and LSTM. The final architecture of the model is described in Figure 4.1. The
architecture of the same but more straightforward approach without images and decision
fusion is shown in Figure 10.

The final architecture is a hybrid data fusion model, where multiple types of fusions are
used to achieve an accurate prediction.

Noise feature

Categorical 
features

Continuous 
features

DateTime 
features

Image Features

minmax-scaling Feature Fusion 
SKF

Embedding

Time2Vec

C
on

ca
te

na
te

CNN

prediction 1
CNN-LSTM 

prediction 2
CNN-LSTM 

predictionDecision
Fusion
SVR

Figure 9. Final model architecture
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Figure 10. Final model architecture without images and decision fusion
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4.1.1 Fusion approach

Continuous features. A Kalman Filter with Smoothing, Smoothed Kalman Filter (SKF)
is proposed to implement as a feature fusion method. It is an extended version of one of
the oldest state estimation methods, the Kalman Filter(KF). It is simple and effective to
use and helps to reduce the observation noises. The most beneficial outcome of the added
smoothing usually becomes apparent when there is a more complex multivariate problem.
The smoothed estimates of component values like the trend, cycles, and regressor effects
can improve the forecasting target series [17].

Categorical features. Deep learning models require all inputs and outputs to be numeric.
A learned embedding is an excellent way to overcome this and allow the network to learn
the dependencies of categorical values. The implementation of embedding maps each
categorical value to a vector, which allows the network to learn the categorical parameters
when training.

Datetime features. Time is an important feature when building the prediction model. For
the neural network to understand the properties of time, such as periodicity and invariance
to time scaling, a Time2Vec implementation proposed in [18] is implemented. Time2Vec is
mainly implemented to capture the periodicity characteristic of the target variable described
in Chapter 3.3.

Images. To extract unknown features from image sequences, a CNN is used. CNN has
been shown to learn accurate patterns and insights from images. Its built-in convolutional
layer reduces the high dimensionality of images without losing its information [19]. It is
one of the most popular choices when dealing with image data in a deep-learning context.
The biggest disadvantage of using images and CNN is the computational expense. Image
sequences take a long time to process and train the network.

Decision fusion, Support Vector Regression. Support Vector Machines (SVM) have been
studied, generalized, and applied to several problems, including time series predictions.
Support Vector Regression (SVR) shares the same advantages as SVMs [20]. They are
efficient and work well in cases when there are not many outliers, making them ideal for
decision fusions with an assumption that our models are generally accurate independently.
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4.1.2 Prediction approach

The prediction approach is an ensemble of CNN and LSTM layers heavily influenced by
a similar approach proposed in [13]. This combination is referred to as CNN-LSTM. It
uses CNN to extract complex hidden patterns in the dataset and feeds its output to the
LSTM layer input for time series prediction. This allows taking advantage of the powers
from both independent layers to allow for accurate predictions. CNN extracts the hidden
relationships between multi-modal data features, and LSTM is learning the time sequence
relationships.

This must be noted that the prediction approach is not the main contribution of this work.
The prediction approach must be in place to evaluate the fusion approaches.
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5. Experimental evaluation

In this chapter, the results of the performed experiments are given. A description of the
configurations and parameters used to run the experiments is provided. The evaluation
metrics and baselines for comparisons are introduced, and the performance of the proposed
approach is compared to the baselines in detail.

5.1 Experimental setup

The data preprocessing, fusion techniques, and prediction models were all implemented in
Python (version 3.8.10) programming language. Many standard Python libraries were used
for data processing, evaluation, and visualization, such as matplotlib, numpy, matplotlib,
scikit-learn and pandas. Keras (version 2.7.0), the Python deep learning framework, was
used with the Tensorflow backend to implement deep learning models for predictions.

To measure the performance of the proposed approach, a prediction for future urban noise
levels for the next 5 minutes, 15 minutes, 30 minutes, and 60 minutes is computed. For all
experiments, a min-max normalization technique between the range 0 to 1 is performed
on all the continuous feature values, including the target feature, before applying the
proposed fusion strategy. Embeddings are extracted for categorical variables. As described
in Chapter 2.4, the values are aggregated into fixed-length sequences of 12-time steps
that result in 60 minutes of look-back time. When choosing the sequence length, two
aspects were considered carefully. The sequence must be long enough to learn the models’
complex patterns. However, too-long sequences are computationally much more expensive
and rely too much on perfect data quality.

The CNN for models where images were included were composed of three convolutional
layers, with 100, 200, and 300 units, respectively, followed by a dense layer with 1024
units. All mentioned layers are using relu activation. The final layer of the CNN for
extracting image features is a dense layer with one unit and a linear activation function.
Pooling and dropout were added to reduce the complexity of the network and prevent
overfitting.

The deep learning prediction model described in Chapter 4.1.2 was tuned to fit during the
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implementation and kept static during all experiments to give a fair evaluation of the data
fusion approaches. The CNN-LSTM architecture contains three convolutional layers with
64, 64, and 64 units, respectively, together with relu activation. Dropout with a rate of
0.2 is added between each convolutional layer to prevent overfitting. Pooling is added to
reduce the complexity of the network. The output of the final convolution layer is fed into
an LSTM layer with ten units and relu activation function. The final layer of the prediction
network is a dense layer with linear activation and units equal to the prediction length.
Table 5 gives an overview of all the parameters used.

All the experiments were run in the TalTech AI-Lab environment. 80% of the data is used
for training purposes and 20% for validation of the results. The models were trained for
100 epochs with the Adam optimizer and a mean average error (MAE) loss function. The
learning rate.

Type Value
Sequence length (look back) 12

CNN layers 3
CNN filters 64, 64, 64

LSTM layers 1
LSTM units 10

Epochs 100
Optimizer Adam

Loss function MAE
Learning rate 0.001

Table 5. Prediction model architecture

5.2 Evaluation

As described in Chapter 2, data fusion aims to solve two problems: improve the accuracy
of the models and reduce the computational and algorithmic complexity by reducing the
dimensionality. Based on this assumption, the evaluation of the proposed approach is
also grouped into two segments: the model’s accuracy and performance. Model accuracy
evaluates the difference between the predicted noise level with the actual noise level.
Model performance shows the computing resources and time used to train the model.

To evaluate the accuracy of the model, four different metrics are used, where y represents
the actual value, ŷ the predicted value, and n the size of the dataset.

Mean Squared Error (MSE) - Popular metric to evaluate the errors for the models. [21]
Calculated with formula 5.1.
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MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.1)

Root Mean Squared Error (RMSE) - Similar metric to MSE, but giving more weight to big
outliers. [21]. Calculated with formula 5.2.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5.2)

Mean Absolute Error (MAE) - A scale-dependent metric over the whole dataset. Calculated
with formula 5.3.

MAE =
1

n

n∑
i=1

|yi − ŷi| (5.3)

Mean Absolute Percentage Error (MAPE) - Percentage error that is easy to interpret without
knowing the context of the data. Calculated with formula 5.4. [22]

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi

| (5.4)

RMSE and MSE have seen high usage in evaluating forecast models due to their theoretical
relevance in statistical modeling. On the other hand, MAE and MAPE are less sensitive to
outliers [21].

To evaluate the performance of the model, two different metrics are used:

Time to train (t) - Time elapsed to train the model. Less time spent on training the model
means this model is computationally more performant as it spends fewer resources.

Model trainable parameter count (nparam) - Number of parameters model has to train. This
is another way to evaluate the number of computational resources spent.
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5.2.1 Walk-forward validation

Walk-forward validation is a testing approach designed to test models in a realistic scenario,
imitating what would happen in a real-life setting. It provides a testing framework for
evaluating the predictive power of a model on the data not used to train it [23]. A
regular cross-validation strategy is not optimal for time series data because of temporal
characteristics like seasonality, unexpected pulses, or trends. Using future observations to
predict past values does not fairly indicate the actual model performance. This is why walk-
forward validation is also an excellent method to avoid overfitting for time series models
[24]. Figure 11 illustrates the walk-forward procedure used to evaluate the prediction
outputs.

Sequence length
Time

Output step

Validation

Unobserved

Training

Ignored

B
at

ch

Figure 11. Walk-forward validation

5.3 Targeted baselines

5.3.1 Data fusion methods

No fusion, univariate. No fusion algorithm. Prediction is only based on the previous
sequence of noise values.

No fusion. No feature fusion algorithm, all the parameters from feature engineering are fed
into the deep learning prediction model. This baseline is a good comparison to evaluate if,
using the same deep learning model, can the proposed feature fusion methodology improve
the results.

No fusion + images. Similar to the previous, except for the outputs of the CNN are
concatenated into the input of the final model. This is an excellent baseline to show that
the decision fusion with an independent image prediction model should improve upon the
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model where images are concatenated into a single model together with other features.

Kalman Filter. Kalman Filter is one the oldest state estimators for linear systems. It has
been widely used to improve observation errors. It is simple to use and computationally
very inexpensive. However, applying the KF to nonlinear systems can be difficult [25].

Uncented Kalman Filter. Unscented Kalman Filter (UKF) is an extension to the regular
Kalman Filter. The internal method called unscented transformation allows UKF to
calculate the statistics and state estimation of a random nonlinear state [25].

Average. An simple average over multiple decisions or predictions can be used. The main
positive effect of using average is that it helps balance the outliers in the model outputs. In
addition, it is straightforward to implement. This only applies to decision fusion since the
variables must be of the same type and scale.

5.3.2 Statistical time series prediction techniques

Statistical time series baselines are added as a comparison to validate the problem-solving
approach using deep learning. Statistical methods have been widely used to solve time
series prediction problems, and they tend to be much more efficient and easier to build and
understand than deep learning models. To justify the deep learning approach, statistical
methods are added as baselines.

Naive. Naive is the most simplistic forecasting method, where the last observation is
carried over as a prediction. This can yield surprisingly good results for many economic
and financial time series [26]. It is an excellent first baseline to improve upon.

Moving average. Moving average is a classical time series forecast algorithm. Observations
near each other in time are likely to be proximate in value. In case of outliers, the moving
average smoothes the output and therefore gives a smooth trend-line prediction [26].

Linear regression. As shown in 6, there is a correlation between temperature and the time
of day. The univariate linear regression model is built upon the assumption that there is a
linear relationship between the target variable and a predictor [26].

ARIMA. Autoregressive integrated moving average (ARIMA) model is one of the most
widely used time series forecasting models. It aims to find autocorrelations in the dataset.
[26]
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5.4 Results and discussion

All experiment results are shown in Appendix 2. The dataset used is provided in Appendix
3 and code together with instructions for running the experiments is given in Appendix 4.

Figure 12 shows the loss of the training and validation set during the training process. The
figure shows that training and validation losses do not diverge significantly. This explains
that our model generalizes well instead of overfitting by remembering the input data [19].
Figure 13 illustrates the model predictions against the validation data set.
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Figure 12. Example proposed model training

5.4.1 Comparison of data fusion methods

The proposed model, both with and without images as inputs, is compared to the relevant
baselines to evaluate the impact of the data fusion strategy. Table 6 combines the accuracy
results for the experiments. Only the best-performing model of each type is given. Overall,
on average the proposed model can outperform all the other baselines. As expected, the
model works best when predicting just one-time steps into the future. The proposed
model achieves the best average RMSE (3.113), MSE (11.000), MAE (2.456), and MAPE
(0.042). When predicting 5 minutes or 15 minutes into the future, the proposed model
achieves low error rates with RMSE values of 2.220 and 2.788 respectively. These values
outperform other baselines by a huge margin. When predicting 30 minutes or 60 minutes
into the future, the simplest Univariate, no fusion manages to outperform the proposed
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Figure 13. Proposed model predictions for different output steps

model by a relatively low margin. The proposed model without images is also performing
exceptionally well overall. On average, it outperforms all the other models, excluding
the proposed model with images and the univariate model, while. This indicates that our
feature fusion approach is the most impactful part of our model.

When comparing the proposed approach without decision fusion to the no-fusion approach,
we see that our data fusion strategy has improved the accuracy by a high margin. On
average, the proposed model RMSE is lower by 0.381 than the no-fusion approach. This
indicates that our data fusion strategy is giving the expected results and significantly
impacting the predictions.
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Method Prediction length RMSE MSE MAE MAPEFeature fusion × Decision fusion

Univariate, no fusion
5min 3.038 9.23 2.322 0.039
15min 3.624 13.136 2.875 0.048
30min 3.343 11.177 2.668 0.046

NONE × NONE
60min 3.647 13.303 2.894 0.050
AVG 3.413 11.712 2.690 0.046

No fusion
5min 3.100 9.611 2.434 0.041
15min 4.403 19.385 3.524 0.059
30min 4.320 18.666 3.362 0.056

NONE × NONE
60min 3.691 13.622 2.976 0.050
AVG 3.879 15.321 3.074 0.052

Combined model with images
5min 38.033 1446.497 9.431 0.157
15min 50.747 2575.249 7.522 7.522
30min 13.430 180.354 4.824 0.082

SKF × NONE
60min 6.335 40.133 4.527 0.078
AVG 27.136 1060.558 6.576 1.960

Only images

5min 6.147 37.783 4.946 0.083
15min 7.411 54.927 6.115 0.102
30min 6.946 48.252 5.633 0.094
60min 6.886 52.982 5.677 0.094
AVG 6.848 48.486 5.593 0.093

Proposed model
5min 2.220 4.928 1.677 0.029
15min 2.788 7.773 2.228 0.038
30min 3.520 12.390 2.876 0.049

SKF × SVR
60min 3.923 15.390 3.043 0.052
AVG 3.113 10.120 2.456 0.042

Proposed model, no decision fusion
5min 2.598 6.752 1.970 0.033
15min 3.083 9.504 2.451 0.041
30min 3.979 15.836 3.246 0.054

SKF × NONE
60min 4.332 18.768 3.419 0.057
AVG 3.498 12.715 2.772 0.046

UKF × UKF

5min 4.410 19.452 3.467 0.057
15min 5.473 29.951 4.444 0.074
30min 4.807 23.104 3.887 0.065
60min 5.285 27.929 4.173 0.069
AVG 4.994 25.109 3.993 0.066

KF × SVR

5min 2.875 8.268 2.203 0.037
15min 3.136 9.836 2.506 0.042
30min 4.104 16.846 3.358 0.057
60min 4.443 19.740 3.500 0.059
AVG 3.640 13.673 2.892 0.049

Table 6. Data fusion accuracy comparison

When evaluating the performance and computational expensiveness of the models in Table
7, we immediately see that models with image inputs have many more trainable parameters
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and, therefore, longer training times. However, when comparing the No-fusion approach
with the proposed model with no decision fusion, it is clear that our fusion strategy is not
only improving the accuracy of the predictions but also making the model computationally
less expensive. The data fusion strategy reduced the time to train in our experiments from
169 seconds to 57 seconds and reduced the number of trainable parameters by 112. Yet,
here we see that the most simple model that is based only on the target variable, Univariate,

no fusion, is computationally the most performing.

Method No. trainable params Time to train (s)
Univariate, no fusion 11 459 28

No fusion 91 915 169
Only images 137 128 974 9498

Proposed model 137 220 249 9555
Proposed model, no decision fusion 91 275 57

Table 7. Data fusion performance comparison

5.4.2 Comparison of time series methods

When comparing the proposed approach to statistical time series methods in Table 8, it is
shown that the proposed approach outperforms all the other methods. When comparing
to Moving average, the margin of outperformance is slightly small (RMSE 3.113 vs.
RMSE 3.260). When predicting 30 or 60 minutes ahead, the Moving average can beat our
approach. The most significant factor of the high performance of these straightforward
methods like Naive and Moving average is the handling of missing values described in
Chapter 3.3.1. The simplistic backfill approach with a limit of 6 heavily favors these
methods. Linear regression shows the poorest results, with an RMSE value of 12.30.
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Method Prediction length RMSE MSE MAE MAPE

Naive

5min 3.007 9.045 1.955 0.033
15min 3.516 12.362 2.582 0.044
30min 3.824 14.624 3.025 0.052
60min 4.053 16.423 3.169 0.054
AVG 3.6 13.114 2.683 0.046

Moving average

5min 2.783 7.744 2.202 0.038
15min 3.045 9.270 2.429 0.042
30min 3.379 11.420 2.719 0.047
60min 3.832 14.683 3.059 0.053
AVG 3.260 10.779 2.602 0.045

ARIMA

5min 3.047 9.286 2.164 0.037
15min 3.399 11.550 2.584 0.044
30min 3.765 14.177 2.962 0.051
60min 4.031 16.247 3.168 0.055
AVG 3.561 12.815 2.720 0.047

Linear regression

5min 3.169 10.044 2.360 0.040
15min 5.344 28.560 3.203 0.055
30min 16.779 281.548 5.027 0.090
60min 23.906 571.497 9.072 0.164
AVG 12.300 222.912 4.916 0.087

Proposed model
5min 2.220 4.928 1.677 0.029

15min 2.788 7.773 2.228 0.038
30min 3.520 12.390 2.876 0.049

SKF × SVR
60min 3.923 15.390 3.043 0.052
AVG 3.113 10.120 2.456 0.042

Table 8. Proposed approach comparison with statistical time series methods

5.4.3 Sequence length impact on model performance

To measure the models’ ability to generalize to the time series data, experiments with
different input sequence lengths were carried out. Longer training sequences make models
computationally more expensive and more reliant on data quality. Three input sequences
were tested with the time horizon of 6, 12, and 24 steps that represent 30-minute, 60-
minute, and 120-minute look-back times respectively. The accuracy metrics are presented
in Table 9. On average the model trained on an input sequence of 12 shows the smallest
RMSE value of 3.113 when compared to others. In Figure 14 the models’ performance is
compared with all the output time perspectives. When predicting 6 steps or 30 minutes into
the future, the model with a time series input sequence of 6 manages to slightly improve
upon the 12-input model, with an RMSE improvement of 0.012. Input sequence 12 shows
the lowest error value for all other output horizons.
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Input sequence length Prediction length RMSE MSE MAE MAPE

6

5min 2.362 5.579 1.700 0.029
15min 3.166 10.024 2.458 0.042
30min 3.508 12.306 2.771 0.047
60min 4.656 21.678 3.551 0.060
AVG 3.423 12.397 2.620 0.045

12

5min 2.220 4.928 1.677 0.029
15min 2.788 7.773 2.228 0.038
30min 3.520 12.390 2.876 0.049
60min 3.923 15.390 3.043 0.052
AVG 3.113 10.120 2.456 0.042

24

5min 2.730 7.454 2.077 0.035
15min 3.472 12.055 2.929 0.049
30min 4.659 21.707 3.896 0.066
60min 4.153 17.246 3.317 0.056
AVG 3.754 14.616 3.055 0.052

Table 9. Comparison of input sequence length on training the proposed model

5min 15min 30min 60min

2.5

3.0

3.5

4.0

4.5

RM
SE

Input sequence length 6
Input sequence length 12
Input sequence length 24

Figure 14. Comparison of time series input sequence length

Among all the input sequences and baseline methods, the proposed approach with an input
sequence of 12 shows the best accuracy with a low average RMSE value of 3.113.
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6. Future work and applications

The proposed data fusion strategy greatly improved the accuracy and performance of the
final prediction model when compared to the one without fusion. However, there are many
aspects that could be implemented to further improve. The deep learning prediction model
could be further fine-tuned and tested to further improve the performance and have a greater
advantage over the statistical time series prediction models, especially when predicting 30
or 60 minutes ahead. Experiments with smaller sequence lengths can improve the model
used in the real-world setting, allowing us to build a more robust model.

The proposed data fusion strategies should be tested upon other datasets, in the context of
ITS and outside it. The results of this could be a generalized data fusion technique that
works across many problem domains.

One of the applications of this work is an input to a full-scale application for city stake-
holders called Urban Mobility Hub. The proposed prediction model is integrated into the
dashboard that supports city stakeholders to make further business decisions. Moreover,
it is possible to build preventive applications that react to the predictions of urban noise
increases.
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7. Summary

The thesis aimed to analyze and propose an efficient traffic data fusion strategy with a
prediction model to present accurate short-term urban noise predictions. An extensive
data acquisition was carried out over a period of 1 month. The biggest challenge from the
acquired data set was the missing values of the target variable, urban noise level.

The data fusion strategy was implemented using a hybrid approach containing a mixture of
feature fusion and decision fusion algorithms. For feature fusion, a strategy implementing
a Smoothed Kalman Filter was used to deal with the data unreliability and simultaneously
reduce the model’s complexity. For models that include images from cameras, a decision
fusion based on a Support Vector Regression was applied to improve the accuracy of the
final prediction further.

A CNN-LSTM deep learning network was used to evaluate the proposed fusion strategies.
An extensive amount of data fusion and statistical time series methods were evaluated
as baselines to confirm the proposed approach’s validity. Evaluations were based on two
criteria: the predictions’ accuracy and the model’s complexity.

The proposed model achieved the best accuracy among the baselines irrelevant to the
sequence length of the experiment. The proposed approach without images showed the
great aspect of DF, where experiment training times were reduced by three times and, on
the other hand, significantly improved accuracy of the results for more than 10% when
comparing against no fusion baseline. The proposed model with images and decision
fusion outperformed the one without images by a relatively small margin; on average
RMSE decreased by 0.385. However, adding images added a lot of complexity, and training
time increased significantly. The proposed approach showed the best performance when
predicting a one-time step 5 minutes ahead. On average, a simple statistical time series
prediction method Moving average outperformed the proposed model when predicting
30 or 60 minutes ahead due to the simplistic approach of filling in missing values. This
opens up opportunities for future improvements like CNN-LSTM network fine-tuning or
reducing the sequence length to increase the reliability against missing values.
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Appendix 2 - Results

Method
Input seq. Output step

RMSE
Time

Feature fusion × Decision fusion
MSE

Trainable params
MAE

MAPE

Combined model
12 1

38.033
3075

SKF × NONE
2575.249

29,205,074
9.431
0.157

Images only
12 1

6.147
7043

-
37.783

137,125,726
4.946
0.083

12 1

2.598
57

SKF × NONE
6.752

91,275
1.970
0.033

Univariate
12 1

3.038
28

NONE × NONE
9.230

o,459
2.322
0.039

12 1

2.970
34

KF × NONE
8.819

91,275
2.275
0.038

Images only
12 1

6.147
14086

-
37.783

137,125,726
4.946
0.083

12 1

2.598
57

SKF × NONE
6.752

91,275
1.970
0.033
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Univariate
12 1

3.038
28

NONE × NONE
9.230

11,459
2.322
0.039

12 1

2.970
34

KF × NONE
8.819

91,275
2.275
0.038

12 1

4.186
36

UKF × NONE
17.525

91,275
3.332
0.056

No fusion
12 1

3.100
169

NONE × NONE
9.611

91,915
2.434
0.041

Naive
12 1

3.007
0

-
9.045

-
1.955
0.033

Moving average
12 1

2.783
0

-
7.744

-
2.202
0.038

Linear regression
12 1

3.169
0

-
10.044

-
2.360
0.040

ARIMA
12 1

3.047
0

-
9.281

-
2.164
0.037

Univariate + DF
12 1

4.143
7877

NONE × AVG
17.166

-
3.256
0.054

Univariate + DF
12 1

6.019
7877

NONE × KF
36.230

-
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4.819
0.081

Univariate + DF
12 1

6.071
7880

NONE × SKF
36.854

-
4.874
0.081

Univariate + DF
12 1

4.126
7877

NONE × UKF
17.023

-
3.236
0.054

Univariate + DF
12 1

2.996
7877

NONE × SVR
8.974

-
2.388
0.041

No fusion + DF
12 1

4.092
8018

NONE × AVG
16.741

-
3.233
0.054

No fusion + DF
12 1

6.019
8018

NONE × KF
36.230

-
4.819
0.081

No fusion + DF
12 1

6.071
8021

NONE × SKF
36.856

-
4.874
0.081

No fusion + DF
12 1

4.065
8019

NONE × UKF
16.521

-
3.206
0.053

No fusion + DF
12 1

2.867
8019

NONE × SVM
8.218

-
2.229
0.038

12 1

3.919
7907

SKF × AVG
15.357

-
3.104
0.052

12 1

6.019
7907
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SKF × KF
36.230

-
4.819
0.081

12 1

6.070
7909

SKF × SKF
36.847

-
4.874
0.081

12 1

3.908
7907

SKF × UKF
15.275

-
3.086
0.051

12 1

2.220
7907

SKF × SVM
4.928

-
1.677
0.029

12 1

4.443
7885

UKF × AVG
19.736

-
3.502
0.058

12 1

6.019
7885

UKF × KF
36.230

-
4.819
0.081

12 1

6.070
7887

UKF × SKF
36.848

-
4.874
0.081

12 1

4.410
7885

UKF × UKF
19.452

-
3.467
0.057

12 1

3.600
7885

UKF × SVM
12.957

-
2.831
0.048

12 1

4.037
7883

KF × AVG
16.299

-
3.176
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0.053

12 1

6.019
7883

KF × KF
36.230

-
4.819
0.081

12 1

6.071
7886

KF × SKF
36.859

-
4.874
0.081

12 1

4.015
7883

KF × UKF
16.123

-
3.153
0.052

12 1

2.875
7883

KF × SVM
8.268

-
2.203
0.037

Combined model
12 3

50.747
3083

SKF × NONE
2575.249

29,205,092
7.522
0.127

Images only
12 3

7.411
7848

-
54.927

137,125,744
6.115
0.102

12 3

3.083
60

SKF × NONE
9.504

91,297
2.451
0.041

Univariate
12 3

3.624
27

NONE × NONE
13.136

11,481
2.875
0.048

12 3

3.312
38

KF × NONE
10.970

91,297
2.639
0.044

12 3

4.841
39

UKF × NONE
23.433

91,297

54



3.948
0.066

No fusion
12 3

4.403
186

NONE × NONE
19.385

91,937
3.524
0.059

Naive
12 3

3.516
0

-
12.362

-
2.582
0.044

Moving average
12 3

3.045
0

-
9.270

-
2.429
0.042

Linear regression
12 3

5.344
0

-
28.560

-
3.203
0.055

ARIMA
12 3

3.398
0

-
11.545

-
2.583
0.044

Univariate + DF
12 3

4.897
7875

NONE × AVG
23.976

-
3.910
0.065

Univariate + DF
12 3

7.278
7875

NONE × KF
52.966

-
5.974
0.100

Univariate + DF
12 3

7.341
7878

NONE × SKF
53.894

-
6.050
0.101

Univariate + DF
12 3

4.861
7875

NONE × UKF
23.634

-
3.888
0.065

Univariate + DF
12 3

3.262
7875
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NONE × SVR
10.639

-
2.592
0.044

No fusion + DF
12 3

5.355
8034

NONE × AVG
28.681

-
4.335
0.072

No fusion + DF
12 3

7.278
8034

NONE × KF
52.966

-
5.974
0.100

No fusion + DF
12 3

7.342
8037

NONE × SKF
53.905

-
6.050
0.101

No fusion + DF
12 3

5.324
8034

NONE × UKF
28.341

-
4.298
0.071

No fusion + DF
12 3

4.208
8034

NONE × SVM
17.707

-
3.346
0.056

12 3

4.632
7909

SKF × AVG
21.457

-
3.749
0.062

12 3

7.278
7909

SKF × KF
52.966

-
5.974
0.100

12 3

7.342
7911

SKF × SKF
53.904

-
6.050
0.101

12 3

4.601
7909

SKF × UKF
21.167

-
3.723
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0.062

12 3

2.788
7909

SKF × SVM
7.773

-
2.228
0.038

12 3

5.504
7887

UKF × AVG
30.297

-
4.471
0.075

12 3

7.278
7887

UKF × KF
52.966

-
5.974
0.100

12 3

7.338
7890

UKF × SKF
53.851

-
6.048
0.101

12 3

5.473
7887

UKF × UKF
29.951

-
4.444
0.074

12 3

4.692
7887

UKF × SVM
22.013

-
3.751
0.063

12 3

4.808
7886

KF × AVG
23.115

-
3.890
0.065

12 3

7.278
7886

KF × KF
52.966

-
5.974
0.100

12 3

7.342
7889

KF × SKF
53.911

-
6.050
0.101

12 3

4.774
7886

KF × UKF
22.791

-
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3.866
0.064

12 3

3.136
7886

KF × SVM
9.836

-
2.506
0.042

Combined model
12 6

13.430
3096

SKF × NONE
180.354

29,205,119
4.824
0.082

Images only
12 6

6.946
7849

-
48.252

137,125,771
5.633
0.094

12 6

3.979
61

SKF × NONE
15.836

91,330
3.246
0.054

Univariate
12 6

3.343
26

NONE × NONE
11.177

11,514
2.668
0.046

12 6

4.275
37

KF × NONE
18.274

91,330
3.473
0.059

12 6

4.939
39

UKF × NONE
24.395

91,330
3.905
0.065

No fusion
12 6

4.320
160

NONE × NONE
18.666

91,970
3.362
0.056

Naive
12 6

3.824
0

-
14.624

-
3.025
0.052

Moving average
12 6

3.379
0
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-
11.420

-
2.719
0.047

Linear regression
12 6

16.779
0

-
281.548

-
5.027
0.090

ARIMA
12 6

3.769
0

-
14.207

-
2.968
0.051

Univariate + DF
12 6

4.200
7875

NONE × AVG
17.643

-
3.339
0.056

Univariate + DF
12 6

6.652
7875

NONE × KF
44.247

-
5.445
0.090

Univariate + DF
12 6

6.600
7878

NONE × SKF
43.564

-
5.413
0.090

Univariate + DF
12 6

4.117
7875

NONE × UKF
16.949

-
3.295
0.055

Univariate + DF
12 6

3.465
7875

NONE × SVR
12.008

-
2.754
0.047

No fusion + DF
12 6

4.673
8009

NONE × AVG
21.837

-
3.744
0.062

No fusion + DF
12 6

6.652
8009

NONE × KF
44.247

-
5.445
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0.090

No fusion + DF
12 6

6.601
8012

NONE × SKF
43.574

-
5.414
0.090

No fusion + DF
12 6

4.590
8009

NONE × UKF
21.066

-
3.668
0.061

No fusion + DF
12 6

4.121
8009

NONE × SVM
16.981

-
3.206
0.054

12 6

4.614
7909

SKF × AVG
21.291

-
3.760
0.063

12 6

6.652
7909

SKF × KF
44.247

-
5.445
0.090

12 6

6.604
7912

SKF × SKF
43.609

-
5.417
0.090

12 6

4.532
7910

SKF × UKF
20.535

-
3.694
0.062

12 6

3.520
7910

SKF × SVM
12.390

-
2.876
0.049

12 6

4.889
7888

UKF × AVG
23.898

-
3.963
0.066

12 6

6.652
7888

UKF × KF
44.247

-
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5.445
0.090

12 6

6.604
7891

UKF × SKF
43.611

-
5.417
0.090

12 6

4.807
7888

UKF × UKF
23.104

-
3.887
0.065

12 6

4.587
7888

UKF × SVM
21.043

-
3.600
0.060

12 6

4.816
7886

KF × AVG
23.195

-
3.967
0.066

12 6

6.652
7886

KF × KF
44.247

-
5.445
0.090

12 6

6.604
7889

KF × SKF
43.607

-
5.417
0.090

12 6

4.732
7887

KF × UKF
22.391

-
3.909
0.065

12 6

4.104
7887

KF × SVM
16.846

-
3.358
0.057

Combined model
12 12

6.335
3060

SKF × NONE
40.133

29,205,173
4.527
0.078

Images only
12 12

7.279
7845
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-
52.982

137,125,825
5.677
0.094

12 12

4.332
61

SKF × NONE
18.768

91,396
3.419
0.057

Univariate
12 12

3.647
27

NONE × NONE
13.303

11,580
2.894
0.050

12 12

4.521
38

KF × NONE
20.436

91,396
3.578
0.060

12 12

4.359
40

UKF × NONE
19.004

91,396
3.447
0.058

No fusion
12 12

3.691
185

NONE × NONE
13.622

92,036
2.976
0.050

Naive
12 12

4.053
0

-
16.423

-
3.169
0.054

Moving average
12 12

3.832
0

-
14.683

-
3.059
0.053

Linear regression
12 12

23.906
0

-
571.497

-
9.072
0.164

ARIMA
12 12

4.035
0

-
16.284

-
3.169
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0.055

Univariate + DF
12 12

4.766
7872

NONE × AVG
22.714

-
3.715
0.062

Univariate + DF
12 12

7.104
7872

NONE × KF
50.463

-
5.541
0.091

Univariate + DF
12 12

7.210
7875

NONE × SKF
51.988

-
5.621
0.093

Univariate + DF
12 12

4.733
7872

NONE × UKF
22.402

-
3.691
0.061

Univariate + DF
12 12

3.586
7872

NONE × SVR
12.857

-
2.873
0.049

No fusion + DF
12 12

4.898
8030

NONE × AVG
23.991

-
3.937
0.065

No fusion + DF
12 12

7.104
8030

NONE × KF
50.463

-
5.541
0.091

No fusion + DF
12 12

7.214
8033

NONE × SKF
52.038

-
5.623
0.093

No fusion + DF
12 12

4.853
8030

NONE × UKF
23.553

-
3.904
0.065

No fusion + DF
12 12

3.686
8030

NONE × SVM
13.587

-
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2.974
0.050

12 12

5.253
7906

SKF × AVG
27.595

-
4.163
0.069

12 12

7.104
7906

SKF × KF
50.463

-
5.541
0.091

12 12

7.214
7908

SKF × SKF
52.042

-
5.624
0.093

12 12

5.212
7906

SKF × UKF
27.165

-
4.138
0.068

12 12

3.923
7906

SKF × SVM
15.390

-
3.043
0.052

12 12

5.322
7885

UKF × AVG
28.329

-
4.206
0.069

12 12

7.104
7885

UKF × KF
50.463

-
5.541
0.091

12 12

7.214
7887

UKF × SKF
52.036

-
5.623
0.093

12 12

5.285
7885

UKF × UKF
27.929

-
4.173
0.069

12 12

4.052
7885
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UKF × SVM
16.422

-
3.093
0.052

12 12

5.384
7883

KF × AVG
28.990

-
4.279
0.071

12 12

7.104
7883

KF × KF
50.463

-
5.541
0.091

12 12

7.213
7885

KF × SKF
52.032

-
5.623
0.093

12 12

5.344
7883

KF × UKF
28.557

-
4.248
0.070

12 12

4.443
7883

KF × SVM
19.740

-
3.500
0.059

Combined model
6 1

31.683
2569

SKF × NONE
1003.796

29,204,756
12.469
0.209

Images only
6 1

306.261
7559

-
93795.544

137,125,726
28.870
0.471

6 1

2.373
59

SKF × NONE
5.629

90,765
1.730
0.029

Univariate
6 1

4.081
25

NONE × NONE
16.653

11,459
3.357
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0.056

6 1

2.674
37

KF × NONE
7.150

90,765
2.017
0.034

6 1

3.421
39

UKF × NONE
11.705

90,765
2.688
0.046

No fusion
6 1

2.889
200

NONE × NONE
8.346

91,405
2.232
0.038

Naive
6 1

2.941
0

-
8.648

-
1.911
0.032

Moving average
6 1

2.815
0

-
7.925

-
2.123
0.036

Linear regression
6 1

3.315
0

-
10.989

-
2.351
0.040

ARIMA
6 1

3.040
0

-
9.243

-
2.116
0.036

Univariate + DF
6 1

152.948
7584

NONE × AVG
23393.109

-
15.043
0.246

Univariate + DF
6 1

218.690
7584

NONE × KF
47825.252

-
28.434
0.464

Univariate + DF
6 1

129.615
7587

NONE × SKF
16800.019

-
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28.363
0.463

Univariate + DF
6 1

119.881
7584

NONE × UKF
14371.547

-
14.779
0.241

Univariate + DF
6 1

2.897
7584

NONE × SVR
8.395

-
2.240
0.039

No fusion + DF
6 1

153.097
7758

NONE × AVG
23438.658

-
14.996
0.245

No fusion + DF
6 1

218.690
7759

NONE × KF
47825.252

-
28.434
0.464

No fusion + DF
6 1

129.264
7762

NONE × SKF
16709.101

-
27.476
0.447

No fusion + DF
6 1

120.066
7759

NONE × UKF
14415.884

-
14.797
0.242

No fusion + DF
6 1

2.761
7759

NONE × SVM
7.625

-
2.115
0.036

6 1

153.119
7618

SKF × AVG
23445.566

-
14.882
0.243

6 1

218.690
7618

SKF × KF
47825.252

-
28.434
0.464

6 1

129.260
7621
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SKF × SKF
16708.248

-
27.471
0.447

6 1

120.095
7618

SKF × UKF
14422.732

-
14.721
0.241

6 1

2.362
7618

SKF × SVM
5.579

-
1.700
0.029

6 1

153.059
7597

UKF × AVG
23427.083

-
15.150
0.248

6 1

218.690
7597

UKF × KF
47825.252

-
28.434
0.464

6 1

129.420
7601

UKF × SKF
16749.448

-
27.826
0.453

6 1

120.021
7598

UKF × UKF
14404.954

-
14.938
0.244

6 1

3.312
7598

UKF × SVM
10.971

-
2.570
0.044

6 1

153.075
7596

KF × AVG
23431.838

-
14.990
0.245

6 1

218.690
7596

KF × KF
47825.252

-
28.434
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0.464

6 1

129.263
7599

KF × SKF
16708.833

-
27.470
0.447

6 1

120.037
7596

KF × UKF
14408.938

-
14.802
0.242

6 1

2.668
7596

KF × SVM
7.120

-
1.997
0.034

Combined model
6 3

8.158
2598

SKF × NONE
66.549

29,204,774
6.451
0.107

Images only
6 3

5.929
7560

-
35.155

137,125,744
4.759
0.080

6 3

3.198
60

SKF × NONE
10.230

90,787
2.467
0.042

Univariate
6 3

3.341
26

NONE × NONE
11.161

11,481
2.635
0.044

6 3

3.413
38

KF × NONE
11.652

90,787
2.696
0.045

6 3

4.182
39

UKF × NONE
17.489

90,787
3.302
0.055

No fusion
6 3

3.481
181

NONE × NONE
12.117

91,427

69



2.789
0.047

Naive
6 3

3.465
0

-
12.007

-
2.576
0.044

Moving average
6 3

3.141
0

-
9.867

-
2.470
0.042

Linear regression
6 3

12.176
0

-
148.266

-
4.211
0.073

ARIMA
6 3

3.585
0

-
12.851

-
2.698
0.046

Univariate + DF
6 3

4.223
7586

NONE × AVG
17.830

-
3.408
0.057

Univariate + DF
6 3

5.731
7586

NONE × KF
32.845

-
4.611
0.077

Univariate + DF
6 3

5.800
7589

NONE × SKF
33.635

-
4.657
0.078

Univariate + DF
6 3

4.176
7586

NONE × UKF
17.439

-
3.358
0.056

Univariate + DF
6 3

3.113
7586

NONE × SVR
9.690

-
2.468
0.042

No fusion + DF
6 3

4.206
7741
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NONE × AVG
17.693

-
3.387
0.057

No fusion + DF
6 3

5.731
7741

NONE × KF
32.845

-
4.611
0.077

No fusion + DF
6 3

5.800
7745

NONE × SKF
33.644

-
4.658
0.078

No fusion + DF
6 3

4.153
7742

NONE × UKF
17.248

-
3.335
0.056

No fusion + DF
6 3

3.396
7742

NONE × SVM
11.536

-
2.740
0.046

6 3

4.140
7619

SKF × AVG
17.139

-
3.332
0.056

6 3

5.731
7620

SKF × KF
32.845

-
4.611
0.077

6 3

5.800
7623

SKF × SKF
33.642

-
4.657
0.078

6 3

4.089
7620

SKF × UKF
16.723

-
3.282
0.055

6 3

3.166
7620

SKF × SVM
10.024

-
2.458
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0.042

6 3

4.606
7599

UKF × AVG
21.216

-
3.697
0.062

6 3

5.731
7599

UKF × KF
32.845

-
4.611
0.077

6 3

5.801
7603

UKF × SKF
33.654

-
4.658
0.078

6 3

4.555
7600

UKF × UKF
20.748

-
3.647
0.061

6 3

3.823
7599

UKF × SVM
14.617

-
2.980
0.050

6 3

4.261
7598

KF × AVG
18.155

-
3.422
0.057

6 3

5.731
7598

KF × KF
32.845

-
4.611
0.077

6 3

5.801
7601

KF × SKF
33.647

-
4.658
0.078

6 3

4.209
7598

KF × UKF
17.713

-
3.371
0.056

6 3

3.210
7598

KF × SVM
10.302

-
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2.537
0.043

Combined model
6 6

42.475
2505

SKF × NONE
1804.108

29,204,801
9.881
0.166

Images only
6 6

8.738
7556

-
76.350

137,125,771
7.244
0.120

6 6

3.545
60

SKF × NONE
12.565

90,820
2.814
0.047

Univariate
6 6

3.539
26

NONE × NONE
12.526

11,514
2.811
0.047

6 6

4.050
37

KF × NONE
16.400

90,820
3.264
0.055

6 6

4.113
39

UKF × NONE
16.916

90,820
3.157
0.054

No fusion
6 6

3.766
202

NONE × NONE
14.180

91,460
2.968
0.050

Naive
6 6

3.720
0

-
13.836

-
2.947
0.051

Moving average
6 6

3.304
0

-
10.914

-
2.605
0.045

Linear regression
6 6

34.023
0
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-
1157.550

-
8.256
0.148

ARIMA
6 6

3.883
0

-
15.076

-
2.985
0.051

Univariate + DF
6 6

5.635
7583

NONE × AVG
31.758

-
4.572
0.076

Univariate + DF
6 6

8.548
7583

NONE × KF
73.065

-
7.069
0.117

Univariate + DF
6 6

8.645
7586

NONE × SKF
74.742

-
7.160
0.119

Univariate + DF
6 6

5.579
7583

NONE × UKF
31.129

-
4.520
0.075

Univariate + DF
6 6

3.370
7583

NONE × SVR
11.360

-
2.709
0.046

No fusion + DF
6 6

5.634
7758

NONE × AVG
31.743

-
4.631
0.077

No fusion + DF
6 6

8.548
7758

NONE × KF
73.065

-
7.069
0.117

No fusion + DF
6 6

8.648
7762

NONE × SKF
74.789

-
7.162
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0.119

No fusion + DF
6 6

5.578
7759

NONE × UKF
31.109

-
4.571
0.076

No fusion + DF
6 6

3.637
7759

NONE × SVM
13.226

-
2.888
0.049

6 6

5.653
7616

SKF × AVG
31.954

-
4.668
0.077

6 6

8.548
7617

SKF × KF
73.065

-
7.069
0.117

6 6

8.649
7620

SKF × SKF
74.801

-
7.163
0.119

6 6

5.592
7617

SKF × UKF
31.276

-
4.613
0.076

6 6

3.508
7617

SKF × SVM
12.306

-
2.771
0.047

6 6

5.794
7596

UKF × AVG
33.572

-
4.807
0.080

6 6

8.548
7596

UKF × KF
73.065

-
7.069
0.117

6 6

8.646
7599

UKF × SKF
74.750

-
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7.160
0.119

6 6

5.736
7596

UKF × UKF
32.905

-
4.753
0.079

6 6

4.224
7596

UKF × SVM
17.842

-
3.211
0.055

6 6

5.929
7594

KF × AVG
35.148

-
4.891
0.081

6 6

8.548
7594

KF × KF
73.065

-
7.069
0.117

6 6

8.648
7597

KF × SKF
74.783

-
7.162
0.119

6 6

5.871
7594

KF × UKF
34.470

-
4.834
0.080

6 6

3.921
7594

KF × SVM
15.375

-
3.152
0.053

Combined model
6 12

7.685
2572

SKF × NONE
59.063

29,204,855
5.712
0.095

Images only
6 12

6.796
7555

-
46.182

137,125,825
5.570
0.093

6 12

4.783
61
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SKF × NONE
22.877

90,886
3.713
0.063

Univariate
6 12

3.690
26

NONE × NONE
13.619

11,580
2.959
0.051

6 12

5.286
38

KF × NONE
27.945

90,886
4.106
0.069

6 12

4.521
39

UKF × NONE
20.444

90,886
3.560
0.060

No fusion
6 12

4.102
200

NONE × NONE
16.825

91,526
3.234
0.054

Naive
6 12

4.003
0

-
16.023

-
3.149
0.054

Moving average
6 12

3.885
0

-
15.093

-
3.131
0.054

Linear regression
6 12

50.296
0

-
2529.661

-
14.990
0.272

ARIMA
6 12

4.271
0

-
18.245

-
3.246
0.056

Univariate + DF
6 12

4.703
7582

NONE × AVG
22.116

-
3.819
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0.064

Univariate + DF
6 12

6.658
7582

NONE × KF
44.327

-
5.462
0.091

Univariate + DF
6 12

6.707
7585

NONE × SKF
44.986

-
5.495
0.092

Univariate + DF
6 12

4.678
7582

NONE × UKF
21.884

-
3.798
0.064

Univariate + DF
6 12

3.708
7582

NONE × SVR
13.748

-
3.001
0.052

No fusion + DF
6 12

4.978
7756

NONE × AVG
24.776

-
3.997
0.066

No fusion + DF
6 12

6.658
7756

NONE × KF
44.327

-
5.462
0.091

No fusion + DF
6 12

6.707
7759

NONE × SKF
44.989

-
5.495
0.092

No fusion + DF
6 12

4.942
7756

NONE × UKF
24.421

-
3.970
0.066

No fusion + DF
6 12

4.101
7756

NONE × SVM
16.818

-
3.215
0.054

6 12

5.134
7616

SKF × AVG
26.361

-
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4.163
0.069

6 12

6.658
7616

SKF × KF
44.327

-
5.462
0.091

6 12

6.704
7619

SKF × SKF
44.950

-
5.492
0.092

6 12

5.099
7616

SKF × UKF
25.999

-
4.145
0.069

6 12

4.656
7616

SKF × SVM
21.678

-
3.551
0.060

6 12

5.044
7594

UKF × AVG
25.438

-
4.127
0.069

6 12

6.658
7594

UKF × KF
44.327

-
5.462
0.091

6 12

6.706
7598

UKF × SKF
44.964

-
5.493
0.092

6 12

5.005
7595

UKF × UKF
25.050

-
4.094
0.068

6 12

4.663
7595

UKF × SVM
21.747

-
3.509
0.060

6 12

5.347
7593
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KF × AVG
28.588

-
4.426
0.074

6 12

6.658
7593

KF × KF
44.327

-
5.462
0.091

6 12

6.704
7597

KF × SKF
44.948

-
5.492
0.092

6 12

5.308
7593

KF × UKF
28.172

-
4.402
0.074

6 12

5.023
7594

KF × SVM
25.233

-
3.821
0.065

Combined model
24 1

4.345
3187

SKF × NONE
18.878

29,205,926
2.760
0.046

Images only
24 1

6.886
8048

-
47.419

137,125,726
5.493
0.091

24 1

2.859
54

SKF × NONE
8.173

92,511
2.231
0.037

Univariate
24 1

3.164
25

NONE × NONE
10.013

11,459
2.412
0.040

24 1

3.147
31

KF × NONE
9.902

92,511
2.448
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0.041

24 1

4.562
33

UKF × NONE
20.808

92,511
3.699
0.061

No fusion
24 1

3.623
121

NONE × NONE
13.126

93,151
2.760
0.046

Naive
24 1

3.163
0

-
10.008

-
2.059
0.034

Moving average
24 1

3.088
0

-
9.535

-
2.489
0.042

Linear regression
24 1

3.095
0

-
9.581

-
2.386
0.040

ARIMA
24 1

3.036
0

-
9.218

-
2.186
0.037

Univariate + DF
24 1

4.563
8073

NONE × AVG
20.822

-
3.580
0.059

Univariate + DF
24 1

6.704
8073

NONE × KF
44.946

-
5.389
0.089

Univariate + DF
24 1

6.643
8075

NONE × SKF
44.133

-
5.365
0.089

Univariate + DF
24 1

4.527
8073

NONE × UKF
20.493

-
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3.562
0.059

Univariate + DF
24 1

2.904
8073

NONE × SVR
8.433

-
2.319
0.039

No fusion + DF
24 1

4.687
8169

NONE × AVG
21.964

-
3.726
0.061

No fusion + DF
24 1

6.704
8169

NONE × KF
44.946

-
5.389
0.089

No fusion + DF
24 1

6.660
8171

NONE × SKF
44.355

-
5.376
0.089

No fusion + DF
24 1

4.643
8169

NONE × UKF
21.556

-
3.691
0.061

No fusion + DF
24 1

3.580
8169

NONE × SVM
12.817

-
2.787
0.046

24 1

4.247
8102

SKF × AVG
18.038

-
3.302
0.055

24 1

6.704
8103

SKF × KF
44.946

-
5.389
0.089

24 1

6.651
8104

SKF × SKF
44.236

-
5.371
0.089

24 1

4.216
8103
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SKF × UKF
17.776

-
3.287
0.054

24 1

2.730
8103

SKF × SVM
7.453

-
2.077
0.035

24 1

5.243
8081

UKF × AVG
27.492

-
4.233
0.070

24 1

6.704
8081

UKF × KF
44.946

-
5.389
0.089

24 1

6.664
8083

UKF × SKF
44.413

-
5.379
0.089

24 1

5.199
8081

UKF × UKF
27.027

-
4.211
0.069

24 1

4.025
8081

UKF × SVM
16.199

-
3.171
0.053

24 1

4.259
8080

KF × AVG
18.135

-
3.314
0.055

24 1

6.704
8080

KF × KF
44.946

-
5.389
0.089

24 1

6.656
8081

KF × SKF
44.303

-
5.374
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0.089

24 1

4.219
8080

KF × UKF
17.802

-
3.286
0.054

24 1

3.059
8080

KF × SVM
9.359

-
2.378
0.040

Combined model
24 3

55.081
3215

SKF × NONE
3033.900

29,205,944
7.045
0.117

Images only
24 3

5.311
8048

-
28.210

137,125,744
4.170
0.070

24 3

3.481
57

SKF × NONE
12.118

92,533
2.886
0.049

Univariate
24 3

3.938
24

NONE × NONE
15.505

11,481
3.100
0.051

24 3

3.501
34

KF × NONE
12.255

92,533
2.856
0.048

24 3

4.731
36

UKF × NONE
22.378

92,533
3.783
0.063

No fusion
24 3

3.808
138

NONE × NONE
14.501

93,173
3.066
0.051

Naive
24 3

3.703
0

-
13.709

-
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2.719
0.045

Moving average
24 3

3.335
0

-
11.119

-
2.690
0.046

Linear regression
24 3

3.934
0

-
15.475

-
2.807
0.048

ARIMA
24 3

3.383
0

-
11.446

-
2.655
0.045

Univariate + DF
24 3

4.125
8073

NONE × AVG
17.015

-
3.221
0.053

Univariate + DF
24 3

5.314
8073

NONE × KF
28.243

-
4.193
0.070

Univariate + DF
24 3

5.285
8075

NONE × SKF
27.934
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4.149
0.069

Univariate + DF
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0.043
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24 3

4.098
8186

NONE × AVG
16.796

-
3.313
0.055

No fusion + DF
24 3

5.314
8186
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5.288
8188
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27.964

-
4.150
0.069

No fusion + DF
24 3

4.117
8186

NONE × UKF
16.951

-
3.333
0.056

No fusion + DF
24 3

3.806
8186

NONE × SVM
14.485

-
3.066
0.051

24 3

3.704
8106

SKF × AVG
13.719

-
2.994
0.050

24 3

5.314
8106
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28.243

-
4.193
0.070

24 3

5.288
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SKF × SKF
27.962

-
4.150
0.069

24 3

3.728
8106

SKF × UKF
13.900

-
3.023
0.051

24 3

3.472
8106

SKF × SVM
12.055

-
2.929
0.049

24 3

4.480
8085

UKF × AVG
20.070

-
3.642
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8085
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-
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0.070

24 3

5.288
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UKF × SKF
27.960

-
4.150
0.069

24 3
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-
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24 3

4.264
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UKF × SVM
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-
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0.056

24 3
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24 3

5.314
8083

KF × KF
28.243

-
4.193
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5.288
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KF × SKF
27.964

-
4.150
0.069

24 3
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-
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24 3
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KF × SVM
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-
3.046
0.052

Combined model
24 6

8.999
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SKF × NONE
80.977

29,205,971
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4.741
0.078

Images only
24 6

4.497
8047

-
20.220
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3.746
0.064

24 6

4.477
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SKF × NONE
20.044

92,566
3.721
0.063

Univariate
24 6
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25
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2.747
0.046

24 6

4.024
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KF × NONE
16.191

92,566
3.283
0.056

24 6

4.196
38

UKF × NONE
17.605

92,566
3.228
0.055

No fusion
24 6

4.698
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NONE × NONE
22.068

93,206
3.857
0.064

Naive
24 6

3.972
0

-
15.773

-
3.120
0.053

Moving average
24 6

3.656
0

-
13.363

-
2.943
0.050

Linear regression
24 6

6.439
0

-
41.455

-
3.443
0.060

ARIMA
24 6

3.865
0
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-
14.935

-
2.977
0.051

Univariate + DF
24 6

3.461
8072

NONE × AVG
11.979

-
2.890
0.049

Univariate + DF
24 6

4.372
8072

NONE × KF
19.112

-
3.649
0.063

Univariate + DF
24 6

4.397
8074

NONE × SKF
19.335

-
3.668
0.063

Univariate + DF
24 6

3.440
8072

NONE × UKF
11.834

-
2.861
0.049

Univariate + DF
24 6

3.577
8072

NONE × SVR
12.795

-
3.024
0.052

No fusion + DF
24 6

3.826
8169

NONE × AVG
14.637

-
3.124
0.053

No fusion + DF
24 6

4.372
8169

NONE × KF
19.112

-
3.649
0.063

No fusion + DF
24 6

4.392
8170

NONE × SKF
19.288

-
3.663
0.063

No fusion + DF
24 6

3.778
8169

NONE × UKF
14.273

-
3.084
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0.052

No fusion + DF
24 6

4.676
8169

NONE × SVM
21.862

-
3.844
0.064

24 6

3.902
8104

SKF × AVG
15.222

-
3.127
0.053

24 6

4.372
8104

SKF × KF
19.112

-
3.649
0.063

24 6

4.392
8105

SKF × SKF
19.292

-
3.663
0.063

24 6

3.856
8104

SKF × UKF
14.865

-
3.091
0.053

24 6

4.659
8104

SKF × SVM
21.707

-
3.896
0.066

24 6

3.743
8085

UKF × AVG
14.007

-
3.011
0.051

24 6

4.372
8085

UKF × KF
19.112

-
3.649
0.063

24 6

4.392
8087

UKF × SKF
19.291

-
3.663
0.063

24 6

3.698
8085

UKF × UKF
13.677

-
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2.977
0.051

24 6

4.137
8085

UKF × SVM
17.115

-
3.247
0.055

24 6

3.680
8084

KF × AVG
13.544

-
2.960
0.050

24 6

4.372
8084

KF × KF
19.112

-
3.649
0.063

24 6

4.392
8086

KF × SKF
19.292

-
3.663
0.063

24 6

3.635
8084

KF × UKF
13.214

-
2.926
0.050

24 6

4.194
8084

KF × SVM
17.589

-
3.405
0.058

Combined model
24 12

16.039
3152

SKF × NONE
257.251

29,206,025
7.152
0.116

Images only
24 12

7.283
8051

-
53.047

137,125,825
5.826
0.096

24 12

4.386
60

SKF × NONE
19.238

92,632
3.473
0.058

Univariate
24 12

4.009
26
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NONE × NONE
16.074

11,580
3.136
0.052

24 12

4.433
35

KF × NONE
19.650

92,632
3.462
0.058

24 12

4.570
36

UKF × NONE
20.884

92,632
3.686
0.062

No fusion
24 12

4.161
120

NONE × NONE
17.315

93,272
3.304
0.056

Naive
24 12

4.201
0

-
17.651

-
3.231
0.055

Moving average
24 12

4.179
0

-
17.463

-
3.321
0.057

Linear regression
24 12

7.308
0

-
53.410

-
4.509
0.079

ARIMA
24 12

4.166
0

-
17.356

-
3.163
0.054

Univariate + DF
24 12

5.254
8076

NONE × AVG
27.600

-
4.250
0.070

Univariate + DF
24 12

7.135
8076

NONE × KF
50.904

-
5.732
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0.095

Univariate + DF
24 12

7.209
8078

NONE × SKF
51.974

-
5.766
0.095

Univariate + DF
24 12

5.224
8076

NONE × UKF
27.295

-
4.222
0.070

Univariate + DF
24 12

4.123
8076

NONE × SVR
16.997

-
3.328
0.056

No fusion + DF
24 12

4.893
8171

NONE × AVG
23.939

-
4.022
0.067

No fusion + DF
24 12

7.135
8171

NONE × KF
50.904

-
5.732
0.095

No fusion + DF
24 12

7.210
8173

NONE × SKF
51.988

-
5.766
0.095

No fusion + DF
24 12

4.853
8171

NONE × UKF
23.548

-
3.986
0.066

No fusion + DF
24 12

4.267
8171

NONE × SVM
18.207

-
3.401
0.058

24 12

5.068
8110

SKF × AVG
25.688

-
4.151
0.069

24 12

7.135
8110

SKF × KF
50.904

-
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5.732
0.095

24 12

7.216
8112

SKF × SKF
52.073

-
5.771
0.095

24 12

5.034
8110

SKF × UKF
25.345

-
4.123
0.068

24 12

4.153
8110

SKF × SVM
17.246

-
3.317
0.056

24 12

5.413
8087

UKF × AVG
29.304

-
4.414
0.073

24 12
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8087
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50.904

-
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0.095

24 12

7.216
8088

UKF × SKF
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-
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0.095

24 12
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8087
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28.888

-
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0.072

24 12
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8087

UKF × SVM
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-
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0.054

24 12

5.127
8086

KF × AVG
26.283

-
4.205
0.070

24 12

7.135
8086
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KF × KF
50.904

-
5.732
0.095

24 12

7.222
8088

KF × SKF
52.152

-
5.775
0.095

24 12

5.084
8086

KF × UKF
25.849

-
4.166
0.069

24 12

4.062
8086

KF × SVM
16.501

-
3.242
0.055
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Appendix 3 - Dataset

Datasetd used for experiments is available in pickle format at:

https://bitbucket.org/andressuislepp/magistritoo/src/master/

app/10feb-06mar-cameras-sm.pkl
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Appendix 4 - Code

Source code for the development of models is available as a Git Repository:

https://bitbucket.org/andressuislepp/magistritoo
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