
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Nikita Timokhin 214710IVCM

Structural Assessment and Automatic
Aggregation of OS X Forensic Artifacts

Master's thesis

Supervisor: Pavel Tšikul

PhD Candidate

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Nikita Timokhin 214710IVCM

OS X KOHTUEKSPERTIISI ARTEFAKTIDE
STRUKTUURI HINDAMINE JA

AUTOMAATNE KOGUMINE

Magistritöö

Juhendaja: Pavel Tšikul

Doktorant

Tallinn 2023

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Nikta Timokhin

[15.05.2023]

3

Abstract

This paper examines the state of forensic artifacts in modern versions of Mac OS X for

desktop computers. This operating system is gradually gaining more and more market

share, which implies more OS X based devices are becoming part of forensic

investigations. However, there is no up-to-date structured map of its forensic artifacts,

such as files and system entries, as there is no abundant tooling for their automated

excavation and aggregation.

Based off the existing research on forensic artifact locations in OS X and such, the

presented study explores the OS and creates a comprehensive, structured map of

thereof. This map is then used in conjunction with design science guidelines to produce

a tool for automated discovery, excavation, aggregation, description and processing of

the artifacts.

The presented artifact map is a valuable open-source document useful for any

researcher, developer or forensic expert working with OS X, while the tool serves as a

ready-made aggregation solution and a base for further development.

This thesis is written in English and is 59 pages long, including 8 chapters, 7 figures and

10 tables.

4

List of abbreviations and terms

AFP Apple File Protocol

APFS Apple-Proprietary File System

BASH, Bash Bourne Again SHell

CLI Command Line Interface

EXT4 Fourth Extended Filesystem

FS File System

HFS+ Hierarchical File System Plus

IP Internet Protocol

JSON, .json JavaScript Object Notation

OS Operating System

OS X, Mac OS X, Mac OS Apple’s proprietary operating system for desktop computers

.plist Preference List file

SQLite, .sqlite Structured Query Language Lite database file

URL Universal Resource Location

VS Versus

XML eXtended Markup Language

5

Table of Contents

1 Introduction...10

1.1 Problem Statement..10

1.2 Research Motivation...11

2 Literature Review..12

2.1 OS X Preference Lists in the Forensic Context..12

2.2 General OS X Preference List Information..13

2.3 Other Types of OS X Forensic Artifacts...13

2.4 Existing Tooling..14

2.5 Design Science Approach...15

3 Research Gap Review..17

4 Research Design..19

4.1 Ethical Aspects of Research..20

4.2 General Research Plan..21

4.3 Plan of Tool Design..22

4.3.1 Requirements...22

4.3.2 Implementation..23

4.3.3 Evaluation..24

4.4 Plan of Data Processing..25

4.4.1 Collection...25

4.4.2 Structuring...27

4.4.3 Assessment..29

5 Tool Design..31

5.1 User Interface..31

5.2 Directory List Object..33

5.3 Main commands..34

5.3.1 “gatherall”..34

5.3.2 “commonfiles”...35

5.3.3 “rankplists”..37

6

5.3.4 “excavate”..38

6 Data Processing...39

6.1 File Path Information Collection..39

6.2 Structuring and Assessment..40

7 Analysis...43

7.1 Forensic Artifact Map Analysis..43

7.2 Tool Analysis..46

8 Summary..48

 References..50

 Appendix 1 – Non-exclusive Licence for Reproduction and Publication of a Graduation

Thesis...52

 Appendix 2 – Full OS X .plist Forensic Artifact Map..53

 Appendix 3 – Code Excerpt and Tool Location...57

7

List of Figures

Figure 1. Graphic example of finding common artifacts...28

Figure 2. Tool’s command line interface after executing the “help” command..............32

Figure 3. Contents of the “places.txt” file...35

Figure 4. “commonfiles” command being executed...36

Figure 5. Files and folders generated by running “excavate”..38

Figure 6. Artifact count per rank...44

Figure 7. Artifact count per group...45

8

List of Tables

Table 1. Example of a map entry row..29

Table 2. Artifact groups...29

Table 3. Artifact ranks..30

Table 4. Directory List object data structure tuple fields...33

Table 5. Locations for automatic searching...39

Table 6. Ignored locations..40

Table 7. “commonfiles” tolerance VS file path and located file counts..........................41

Table 8. S-ranked OS X .plist forensic artifacts..42

Table 9. Test subject machines’ descriptions...46

Table 10. Full OS X .plist forensic artifact map..53

9

1 Introduction

1.1 Problem Statement

Apple’s Macintosh desktop and laptop computer operating system (OS), Mac OS X

introduced XML-based property list (.plist) files in 2001, with the release of version

10.0 for PowerPC, followed by the nowadays-prevalent binary preference lists since OS

X 10.2 [21,6]. These files may contain “user and application preference information and

application’s session, user’s information and many more artifacts” [13] and system

properties [15] – they are generated mostly by the OS X applications themselves, and

the information they contain varies greatly with the application itself.

Although on the surface it may seem that program preferences do not carry any specific

forensic value, this is proven otherwise by most big forensic solutions such as FTK

Imager supporting binary .plist decoding natively [15]. This is because sometimes these

files would have sensitive data, ranging from usernames, language settings, and

timestamps to Internet Protocol (IP) addresses, geographic coordinates, and base64-

encoded datastores.

Apple’s OS X market share has been steadily increasing ever since 2010 [16] and

likewise did increase both the attacks on it and its usage by criminal individuals or

individuals with malicious intent. Respectively, the attacked OS X systems need

protection, and the attackers’ systems captured as forensic evidence need examination.

OS X on a Hierarchical File System Plus (HFS+) or Apple-Proprietary File System

(APFS) formatted drive has plenty of low-level capabilities that can be used forensically

on its own, such as Journal and timestamps [1]. Very high-level forensic capabilities,

such as simply opening the mail application (app) also exist.

10

However, the layer between disk-level and app-level examination lacks both academic

research and practical tooling. This layer includes forensically useful artifacts like the

file metadata[10], SQLite databases[15], and, among everything else, the .plist files[12].

1.2 Research Motivation

In the present reality where OS X is slowly and steadily climbing the market share

ladder of the operating systems, and the overall index of cybercriminal activity is rising,

it is important to keep on researching forensically interesting aspects of the operating

system and develop tools for its examination. Conducting design science research for a

particular narrow class of OS X forensic artifacts like .plist files that are on the “middle

layer” – between disk-level and app-level examination – is appealing in many ways.

Firstly, it adds to the generally available experience on the matter, which is currently not

at all numerous, lacks solid frameworks and, for a considerable part, is not accessible to

the general public. Carrying out well-documented practical research would contribute to

the overall pool of research on this and adjacent topic, and facilitate further research,

potentially facilitating the eventual establishment of robust artifact research frameworks

and techniques.

Secondly, automated tooling in this area is currently lacking. While solutions like

EnCase and FTK Imager exist, and can perform disk recovery, and facilitate the formal

part of the forensic examination and data acquisition, no solution with native .plist-

centric functionality excavates, sorts, classifies, or parses these files from a volume that

has OS X on it[15]; indeed, it is not even the stated mission of these tools. Designing a

tool that specializes in this particular forensic task and adding it to the roster of

generally available tooling facilitates the work of forensic experts and other researchers

alike.

Finally, and most importantly, OS X file-level forensics appears to be a fairly narrow

field of study, and for that reason is somewhat underrepresented compared to both disk-

level and app-level studies. It is imperative to add to this narrow field of research to

contribute to keeping all layers of OS X forensically inclined research well-represented

and synergetic.

11

2 Literature Review

A pool of literature suiting the research topic was created. Advanced logic filtering

techniques were used along with forward and reverse snowballing techniques to cover

as much material as needed while keeping it as close to the topic as possible. The

resulting selection covers questions related directly to the present research topic, as well

as various topics adjacent to the present research and additional topics to supplement

various research aspects.

2.1 OS X Preference Lists in the Forensic Context

Overall, the preference lists turned out to be somewhat revered inside the overall OS X

forensics topic. One of the selected works, “Mac OS X Forensic artifact Locations” by

Michael Cook et al.[12], is of particular interest, as it picks on the exact question the

present research does as well. It has been conducted in 2015 – that is 8 years before the

current study – and its goals are admittedly close to this study.

The work provides a table of locations of forensic artifacts inside OS X, many of which

are of .plist type. This work, however, lacks a rigid description of searching methods;

they likely were manual. Likely for this reason, the map appears incomplete. Moreover,

the study has been conducted years ago, possibly rendering some of the artifact

locations nonactual. This study is the one the present research aims to update and

expand on by adding the tool design and research science aspects.

The remaining range of works directly related to the topic is existent, albeit quite

limited. Dr. Digvijaysinh Rathod argues that the preference list files serve direct

forensic use, and provide a .plist generated by the Safari web browser with a description

of its forensically interesting content as an example[13]. Christian Hummert shares this

point of view, adding that no modern forensic solutions fully support binary preference

lists[15].

12

2.2 General OS X Preference List Information

Research on .plist files in their forensic context is hard, if not pointless, without proper

backing information on the file format, its history, and its peculiar aspects. Janet Bass et

al. report the OS X preference lists being quite a chaotic and disorganized format[4].

Indeed, it is apparent from their work how Apple’s preference lists not only come in

different base formats (NeXTSTEP, XML, Binary, JSON), but also may represent the

same type of data as a different construct – for example, for sequential data points there

is no clear pattern of when a dictionary is used versus when an array is, and each .plist’s

structure ends up depending on the particular programmer’s choices at the end of all.

This unruliness makes .plist files harder to carve and recover, among other artifacts like

images, and to figure out what exactly its fields mean.

The prevalent format of .plist files in OS X is Binary .plists, and Christian Hummert

provides an in-depth explanation of the format’s insides and principles[15]. This

information is not as valuable to the present research as its scope does not include file

recovery, to which the information provided in [15] would make a substantial guide.

Along with this information, a brief history of the .plist format in the OS X context is

provided. No other relevant information source of such quality on OS X preference list

structure and purpose was located. Hummert puts OS X in a forensic context later on in

the book, expanding on the analysis of fields. This information intersects well with the

presented study’s aim to gather and assess .plist files common on modern OS X

systems.

2.3 Other Types of OS X Forensic Artifacts

Naturally, forensic artifacts come in various formats and appear in various levels of Mac

OS X. One of the selected base papers mentions .sqlite files and cache dumps as

valuable higher-level artifacts [12]. However, a substantial amount of work has been put

into studying the lower-level OS X systems.

Following Extended File System 4 (EXT4) of Linux receiving extended journalling and

other forensically valuable capabilities[19] and having them studied by independent

researchers in 2007, Apple’s HFS got upgraded to HFS+ in 2009[5] and received

13

numerous capabilities of very similar kind, such as Journal. Naturally, the lower-level

OS X forensic capabilities depend on these new capabilities of the formatted drive OS X

is running on (HFS+ or APFS), hence, they are investigated thoroughly. Jong-Hwa Song

et al. investigated [1] the APFS timestamps, and Kurt K. Hansen et al. decoded[5] the

APFS file system structure at byte levels. Such findings for HFS+ and APFS likewise

are put into forensic context by Philip Craiger et al., providing proper explanations of

using the disk- and memory-level techniques[11]. The lower-level OS X forensic

artifacts are numerous, and at this point, they are relatively well documented; extracting

and systematizing them is possible with some of the modern forensic examination

solutions.

2.4 Existing Tooling

It is apparent that big, well-known forensic examination solutions like FTK Imager do

not have built-in deep .plist operations[15], and that no substantial framework for file-

level artifact discovery has been located. For this reason, it is necessary to retrieve

research on more specialized solutions and their documented development processes to

incorporate the upsides into the present research.

Admittedly, the topic of specialized OS X forensic tooling is quite sparsely populated. It

appears that the forensic specialists who find themselves in need of very specific actions

with OS X use a popular solution (FTK imager or such) to gather the data, and then

process it manually or write proprietary scripts without publishing them.

For the most part, the present research benefits from materials on the topic of new

forensic tooling for OS X targetting artifacts that reside above the lower levels of

Journal, timestamp, and such. Any related experience, even with lower-level tools, is

also feasible. Robert A. Joyce et al. documented their development of MEGA [14], a

tool that uses OS X’s own generated search databases and other mechanisms that

facilitate search. MEGA uses these mechanisms in combination with general knowledge

of OS X forensic artifacts, such as file metadata and in-app data like contacts in OS X’s

native “Mail” e-mail client. On the other side, Gyu-Sang Cho developed a tool named

FACT (Forensic Analyzer based Cluster Information Tool) – a tool prototype for very

low-level, cluster-based HFS+ volume assessment [8].

14

There are two issues with MEGA. Firstly, it was released in 2008 – fifteen years before

the present study is carried out. It does not appear that the project is being supported, so

it is highly likely out of date in both its implementation technology and its assessment

methods. Secondly, while exposing forensically interesting information, it still leaves

the search process up to the expert; the work does not outline any particular way of

searching the interesting bits, and neither does it provide any automated means of doing

so. Lastly, MEGA and FACT share a similar fate of development traces getting lost,

leading to the conclusion of both programs essentially being abandonware at this point.

Aside from MEGA and FACT, there are not at all many well-documented pieces of

research and even somewhat maintained tools. Apple themselves did release a

Developer Tool called “Property List Editor” on their website, which allows viewing

and editing of all OS X-native .plist files[17]. However, the development process of this

tool is not part of any research, and the tool itself is but an archival remnant on the

Internet Archive, which does not exactly contribute to the modern specialized tooling

variety.

2.5 Design Science Approach

Since the research includes designing software and analyzing its behavior, it is crucial to

select a scientific development framework that is widely approved and has been used in

other academic studies that include software development.

Such frameworks are numerous, but the one that fits the practical tooling inclined type

of the present research is “Design Science in Information Systems Research” by Alan

Hevner et al. This work provides a multitude of practically applicable tool development

and testing strategies that fit into the formal and academic research aspect and is nearing

eight thousand citations as of April 2023.

Admittedly, this paper has some of its focuses rather visibly tilted toward the enterprise

environment; some of the design and research strategies outlined are not exactly fit for

research conducted by a single person. However, these aspects of the paper mostly

cover the topics that are generated by the enterprise itself, such as business strategy and

15

such. The parts that cover the research and development process itself are perfectly

applicable in the context of the present research.

16

3 Research Gap Review

After assembling a pool of literature important for the presented study, studying and

critically overviewing it, a research gap can be identified.

Firstly, most studies related to OS X forensics are rather theoretical. In itself, this is

reasonable and acceptable. However, there appears to not be enough studies with more

practical studies documenting not only the findings themselves, but the process and

results of using these findings in the field. Such studies exist, but they are far

outnumbered by more observational studies that state facts about the ways OS X works.

Conducting a design science study that incorporates a working tool prototype as one of

its results would contribute to the general experience and knowledge of practical OS X

forensic artifact location.

Secondly, while some studies do state the locations of some of the forensically

interesting files, such as preference lists, SQLite databases, and mail caches, no study

clearly defines a repeatable process of searching for the artifacts. This sets further

studies like the present research itself back, by having the publicly accessible research

space more or less devoid of documented experience in artifact searching. The existing

research does provide some base points in the OS X file hierarchy to start the searches

from, which is useful, but the exact sequence and algorithm of searching that could be

reused was not located. Hence, it makes sense to have the present research have a well-

defined and sufficiently reasoned procedure of artifact location, which can then be

modified and repeated as necessary.

Furthermore, the overall OS X forensic artifact and capability research are somewhat

skewed towards favoring lower-level activities, such as the HFS+/APFS Journal

parsing, timestamp discovery, file recovery, and so on – this topic appears furnished

enough and partially implemented in practice in existing solutions. The other, smaller

portion of the research, focuses on rather high-level concepts, such as using the default

applications as forensic data sources; this research does not seem as relevant in 2023,

17

when most people use cloud services by companies like Google to access e-mail

services, store contacts, and such, rather than using the built-in apps like “Mail” for

managing e-mails and “Contacts” for manually storing and retrieving useful contact

information. The middle ground – a logic level above Journal and a logic level below

“Mail” – seems rather sparsely populated in terms of relevant research. It makes sense

to make .plist files the main target of the present research, as they fall exactly in that

less researched middle area.

18

4 Research Design

In this section of the document, research design decisions, assumptions and strategies

are explained. The present research has the two main objectives in its scope:

1. Create a solution capable of automated forensic artifact excavation and

processing. The solution should take into account the usefulness, type and rank

of the artifact, and work by the composed map to excavate as much of the

forensically interesting files as possible. The solution should not require

installations of any additional software on an OS X system (be portable) and

allow saving, loading and processing its own data, aggregating files from the

system onto external volumes, and such. Since the aggregated and processed

data will be of similar type, it makes sense to implement the file path aggregator

for the data processing step as part of the overall solution even before

implementing other parts.

2. Build a cohesive, full, up-to-date and technically useful map of computer-

generated OS X forensic artifacts, such as the .plist files. The map should consist

of files present on most OS X systems and have high tolerance to difference of

usage time, OS version and past user actions. The map should provide clear

details as to where the file is usually found, group them by their useful traits and

rank them by their forensic usefulness.

This implies the research itself falls into two simultaneous parts:

1. Tool design – the part at which the automated tool prototype is created. At this

point, the data processing part has already yielded its results in form of a robust

and useful artifact map. The tool shall contain selected parts of this map, and the

tool’s actions shall be based off the properties of the map entries. The tool design

is conducted with accordance to the seven Design-Science Research

Guidelines[7] in order to facilitate and systematize the design process.

19

2. Data processing – the part at which the artifact map is created. At this step, data

on .plist files is automatically collected using a tool (program) designed

specifically for the present research needs. The data is then structured

(compared, condensed and de-noised) and assessed (grouped, ranked,

overviewed) to form the map. The ethical aspects of data collection shall be

addressed along with the technicalities.

4.1 Ethical Aspects of Research

Ethical usage of data subjects’ rights is crucial for any research that processes personal

or potentially identifying information, let alone a forensically inclined one. It is of

utmost importance to outline rigid requirements and guidelines of data usage for the

present research and make sure that all the research procedures and practices adhere to

them. In order to achieve proper guidelines, it must be well understood what

information the study would collect at which steps, and how sensitive the data is.

Information on file locations is gathered from numerous live systems. Such system may

belong to any person who replies to a call for research participants, not necessarily part

of the research group or otherwise related to the researcher. This data shall be

minimized to only the most necessary parts – the present research only needs the file

paths and nothing more, hence it must be assured that the tool’s functionality

responsible for gathering this data never accesses the file contents and only

programmatically checks if files exist or not. The only directly identifying information

in the collected data (lists of file paths) is the user name; it shall be uniformly

pseudonymized. Finally, no original information shall be submitted as part of the final

results; the reason for collecting the information is searching for common, ubiquitous

file paths – so only this information may directly contribute to the further steps of the

research and the final results. The volunteers shall be clearly notified of what

information the tool searches for exactly, be able to review the code before running it

and the data output before submitting it to the research.

Information on forensically interesting artifact file contents is gathered from the same

kind of live OS X installations on personal machines. However, for research steps that

require reading file contents, only machines of the research group members may be

20

used. Such a narrowing restriction essentially leaves two individuals; however it is

necessary to ensure that the highly sensitive data gathered in this step is gathered from

the individuals who clearly know the research roadmap and are aware of how exactly

the data is being treated. The file contents themselves shall be used for analysis of

artifact importance, the type of information found in the file and such. Raw file contents

may not be part of the research product or the analysis – the research is restricted to

only submitting generalized properties, conclusions and such (e.g. the fact of the

existence of a cache dump in a .plist file) without submitting the contents themselves

(e.g. the cache dump data).

4.2 General Research Plan

As noted in the beginning of Chapter 4, the research is comprised of two simultaneous

processes: tool design and data processing. While these two parts have separate

requirements and working processes, they may not be conducted sequentially one after

another, and instead rely on each other’s output as the research proceeds.

For this reason, the research part in which the parts work in tandem is logically divided

into three major stages:

1. Preference list path acquisition and processing – the tool is completed on a level

sufficient to run the assembly of all .plist file paths in selected search places and

search for same file paths across different export results. The tool and

instructions are sent out to the individuals volunteering to be part of the

research, the returned data exports are aggregated at the researcher machine, the

common file paths are detected using the tool running on the researcher

machine. A list of overlapping file paths is composed.

2. Ranking and grouping of the artifacts – the resulting list from step 1 is used in

conjunction with the tool to manually assess, rank and assign groups to each

artifact. Although this task would be possible without the tool, for better

repeatability and more reliable process, the tool is complete with a utility that

facilitates the process and outputs an automatically formatted artifact map JSON

21

file. Files are being accessed locally on the researcher machine; if the file is

missing, it is discarded from the artifact map.

3. Evaluation and field testing. At this stage, the tool’s main functionality of

excavating and rank-sorting files guided by the artifact map once ran on any

system is implemented. The tool is ran on a number of machines matching

operational and ethical criteria. The resulted file collections are aggregated on

the researcher machine and examined in order to draw a conclusion on the

effectiveness of the tool, the approach and the methods.

4.3 Plan of Tool Design

4.3.1 Requirements

A tool is developed for the present study. This tool carries out all programmatic needs of

the study: gathering, structuring, assessing and managing of data. Before programming

the tool, a set of requirements is formed.

1. The tool shall not be heavy on machine resources, shall not require root level

privileges, and not require a lot of external components.

2. The tool shall gather the information needed for study in minimized and

pseudonymized way. It shall not gather more information than needed for the

study. It shall export the data locally at the data subject’s machine so that the

data subject themselves could examine the data before manually submitting it to

the present research. It shall not establish any internet connections while

gathering the data.

3. The tool shall automatically structure the gathered data by reading existing data

exports submitted by the data subjects. It shall find overlapping file paths and

write them to another file for further usage. It shall allow for custom tolerance –

on how many of the data exports can a file be missing – to be provided to it.

4. The tool shall provide at least a basic manual mean of assessing the files by

accessing the file paths, displaying the file, and allowing the researcher to assign

22

groups and a rank. The tool shall notify upon failing to read from the file path;

some Apple programs have links in their preferences subdirectory that would

point to a non-existing file. The tool shall export the map of assessed files as a

separate file.

5. The tool shall provide a mean to use the artifact map as a guide to excavate

interesting files from an arbitrary OS X system with Python 3 installed. The tool

shall copy files from across the system it is ran on to its own export subfolder

and sort them by ranks.

6. The tool shall provide a command-line user interface subsystem. It shall prompt

the user or the researcher for arguments to its commands, be the arguments not

provided after the command itself. It shall provide help messages for each of its

commands. It shall not be a script ran with shell arguments, but rather its own

subsystem with multiple available commands.

7. Finally, the tool shall be open source and easy to read, assess and modify. It shall

require the most basic development kit possible, as to make it feasible for further

research, modification, and such.

4.3.2 Implementation

Requirements 1 and 6 of the list in 3.1.1 imply Python as the programming language

choice. It is already de facto the most widely-used prototyping tool by many businesses

and individuals alike[20]. It has an extensive library of pre-installed modules that

implement functionality otherwise having to be programmed manually, which enhances

readability, universality and development speed. Admittedly, Python lacks the

robustness and optimality of languages such as C# and Rust – however, those require

more than installing one universal package and writing code in any text editor, making

them a worse choice for prototyping.

To satisfy Requirement 2, it is enough to simply use the built-in “os” Python module to

scan the local file tree and write only the file paths and other attributes that are

significant to the present research to a JavaScript Object Notation (.json) file for further

processing. The data subject can view it using any online JSON viewer, or by simply

23

changing the extension to .txt and opening it in a basic text editor, such as TextEdit for

OS X or Notepad on Windows. The information in the file shall be pseudonymized;

since the only information stored is the file paths, and they include one personal

identifier – the machine username of the data subject – it shall be replaced with a

randomly generated pseudonym.

Requirement 3 is satisfiable using the default Python tools and capabilities. Since the

data exported by the structuring (finding overlapping files) step shall be used to then

attempt accessing the needed files on any OS X machine, and most of the file paths may

contain a username, the generated pseudonyms shall all be replaced with a single

indicator of a username location in the file path string, later to be replaced with an

actual username when needed. A list of such username-templated file path strings shall

be exported as a simple .txt file.

Requirements 4, 5 and 6 are satisfied by creating a clear and user friendly command line

interface (CLI). For the assessment part, it shall iteratively read and display the file

contents to the user, then prompting them for a rank and the groups to add the file to.

4.3.3 Evaluation

The tool has three main actions: gather - assemble information from the machine it is

ran on, structurize – or find the overlapping file paths between data exports, and assess

– give rank and groups to each file. They all rely on a clean, user-friendly CLI and

robust underlying code system. Each of the three main actions rely on the previous

one’s results, which means even basic evaluation of structurization is not possible

without the gathering part complete. Each action shall be iteratively evaluated using the

generate-test cycle[12, Fig. 3] before applying it to existing live systems and taking the

results into account for the research.

Evaluation of basic data gathering functionality is conducted against the researcher’s

machine in the mentioned iterative fashion. It is possible to create dummy data to test it

on first, and then test it on the actual system and compare the outputs with the apparent

state of affairs on the FS. Once this capability is deemed fully working, the program is

sent to the data subjects to gather real life file path .json data.

24

The structurization capabilities are also iteratively evaluated. It is necessary to use the

.json files received after the previous step in order to find tolerances and other aspects

that are optimal to the research.

The assessing functionality is to be once again developed and tested fully on the

researcher machine. This implies that the files that are ubiquitous to an extent, but not

present on the machine, will not be included in the final map due to the live system

inventory constraints. The assessing process shall prove to be easy and output a correct

file before running the assessment routine to generate the present research’s artifact

map.

Finally, the file excavation and aggregation means are validated against one or more

machines belonging to the research group. A metric of how many files were found of all

files in the artifact map shall be collected along with the files themselves. Validation of

this functionality is validation of the solution as a whole, as it essentially indicates the

forensic usefulness of the tool via field testing.

4.4 Plan of Data Processing

4.4.1 Collection

The final goal of this step is collecting data on .plist files located on computers running

OS X. This task is not as trivial, though, as there is an immense amount of such files on

the systems, and a lot of them do not present any sort of usefulness. Even more

complexity is added by the fact that the possibility of different modern versions of OS X

having the targeted files differently named or structured cannot be completely ruled out,

although locations appear to not have changed at all between Yosemite and El Capitan

versions of OS X[12].

To make such a complex task more manageable and to reduce the needed output data to

clutter ratio, which would in its turn make structuring and processing easier, the present

study is basing itself off existing research, such as "Mac OS X Forensic artifact

Locations" by Michael Cook et al.[12] – this type of research contains output somewhat

25

similar to the target of the present research, although outdated and not necessarily

structured in the most useful way.

Examining existing known locations of OS X forensic artifacts of needed type, one can

build a list of folders to recursively search in. In the aforementioned work, most artifacts

occur in subfolders of a small handful of core system folders, such as

/User/<username>/Library/. However, the system itself contains numerous .plist files

that do not seem to serve any forensic use.

Therefore, the scanned folders should be of low depth (not more than four layers deep

relatively to the volume root) and created by the system installation, so that they are

present even on very fresh OS X systems. This ensures that the list of scanned places of

interest stays short and comprehensive, and that uninteresting files are effectively

excluded.

After building the “interesting locations” for .plist files separately, a script shall be

created that scans the locations recursively and generates a list of paths to the target

artifacts that it found, along with the “interesting location” they were found in and the

username scanning is conducted for. This script shall output a JavaScript Object

Notation (JSON) text dump that can be further used for processing. It shall be ran on as

many modern systems running OS X as possible in order to amass many combinations

of existing artifacts, so that during later steps the common ones could be detected. Since

one of the biggest practical papers ([12]) with a list the present research bases itself off

investigates two systems running OS X Yosemite (2014) and OS X El Capitan (2015), it

makes sense to set the system novelty bar to High Sierra (2017) and above, favouring

Big Sur (2020) and above, as at the moment everything older than Big Sur is at its end

of lifecycle.

Ethical aspects of data collection shall be addressed at this planning step. First, data

minimization has to be enforced; this means the script has to collect as little data as

possible. First and foremost, this means that as the artifacts themselves contain sensitive

data, which the research is after, the files themselves shall not be exported from the user

systems – only the file names and locations. Furthermore, since the data is being

aggregated targeting a particular system user (usually the sole owner of a laptop running

26

OS X) – the username itself has to be protected before dumping the data to JSON. This

shall be done by the use of pseudonymization.

One could argue that pseudonymization in this case is redundant, as people almost never

use their full names as their computer usernames, and even if they do – they are

definitely not the single person ever with such legal names. However, a solid argument

is that “any information relating to an identified or identifiable natural person”[2] counts

as personal data, legal name included. This implies that the aggregation script has to

have built in pseudonymization by default. Moreover, “same pseudonym cannot be used

for more than one subject is a fundamental rule, even if the person concerned chooses

its form”[18]. These aspects have to be taken into account while designing the data

aggregation script along with the present research’s technical requirements. After the

research is complete, the amassed data shall be safely erased.

4.4.2 Structuring

After data has been successfully aggregated to the researcher laptop (MacBook Pro 13”

2012 running OS X High Sierra) it has to be structured. Structuring the data in this case

means finding a uniformity among the provided data sets, which will then reveal

locations of forensic artifacts that are more ubiquitous than others. This is an important

research step, as the amount of forensically uninteresting .plist on a randomly chosen

computer running OS X may be tremendous, and manually assessing them may turn

into an impossibly long and, most importantly, pointless task.

For this reason, the received data shall be processed in a way that finds artifacts

common among all the gathered datasets from individual machines. This action will

reveal a list of files that are shared among the machines, i.e. are common artifacts. The

number of these files will be significantly lower than the total number of detected

.plist’s on any given system, and these can hence be assessed manually.

27

It is important to note that web browsers are a type of application that may generate

.plist files, yet do not fit very well into this way of artefact searching. Browsers store a

vast amount of potentially interesting information[15] on disk – in the file formats

targeted by the present research (.plist) and otherwise. However, browsers are not

necessarily ubiquitous across a small selection of machines due to the fact that browser

choice is a matter of preference of the machine owner, and preferences differ. Although

Chrome has been showing steady growth of market share over the past decade[9], other

browsers like Firefox and, in case of OS X specifically, Safari, have rather wide user

bases too. The described method of file filtering is most likely to filter out a lot of files

of potential interest, as one machine may run Firefox, while other runs Chrome – and

since they generate differently named files in different directories, they are not deemed

common. The only counteraction to this is manual inclusion of these files to the final

map, which falls out of the automatic aggregation scope. Moreover, browses like

Chrome have more abundant forensically interesting information stored in the memory

and low-level caches[6] than in the formats the present research targets. Hence, for the

present research, such files shall be omitted.

28

4.4.3 Assessment

After gathering enough data from live systems running OS X and eliminating most of

noise, the remaining ubiquitous forensic artifacts shall be manually assessed. The goal

of this step is to contextualize and prioritize the gathered data. Separating more

forensically valuable data from less valuable yields different tiers of artifacts, which

then can be separately processed. Grouping and contextualizing the artifacts by their

contents – the groups of forensically interesting information they have, such as

language, date and time, filenames etc – may be profitable for building more advanced

automated assessment tools that process a particular group of artifacts targeting its

informational context.

The final artifact map contains a separate table per rank, yielding four sequential tables

total. A single entry in the map is formatted the following way, demonstrated on some

made up data:

Table 1. Example of a map entry row.

Path Groups Notes

/Applications/Firefox.app/contents/options.plist datetime,
language

Contains date of last
program launch

“Scan Location” indicates which of the preprogrammed “interesting locations” the

artifact was discovered in. “Path” is the path to the exact file relatively to the scan

locations, ergo full path would be scan location followed by the file path. This

separation is done because some scan locations will include username, which will make

it harder to reuse the map if the absolute path is stored; every entry with username in it

will have to be separately preprocessed to replace the username with a valid string.

The artifacts are manually examined and assigned one or more of the following groups:

Table 2. Artifact groups

Group Meaning

geo Any info related to geographic locations (country codes, coordinates...)

language Records of language settings

datetime Records of any date and time events, e.g. last program execution time

web Any web-addresses and URLs

29

ip Any IP addresses except local loopback/localhost

name Any logins, names and other name-related info

data Any potentially interesting data like hashes, b64-encoded strings, etc

path Local file paths

other Other potentially interesting fields

Ranking the artifacts will happen according to the following guide:

Table 3. Artifact ranks.

Rank Denominator

Superior (S) Has three or more unique interesting fields, falls into three or more dif-
ferent groups, is in at least two of groups: geo, web, ip, data

A-grade (A) Has three or more unique interesting fields, falls into three or more dif-
ferent groups, is in at least one of groups: geo, web, ip, data

B-grade (B) Has two or more unique interesting fields, falls into two or more differ-
ent groups

C-grade (C) Has one or more unique interesting field of any group

The ranking system will help the tool to prioritize its information sources, and is

designed so that the better the rank, the more valuable information is presented, and in

bigger quantities it is presented in. This implies that an artifact that has a lot of

interesting bits of information, and a few of them contain more sensitive information

(e.g. an IP address or a password hash) are valued above other, less data-abundant

artifacts. This, however, by no means implies that all but S-ranked artifacts shall be

disregarded; the files that hold no forensic meaning do not get any rank whatsoever and

are subsequently discarded from the final map altogether, so, all ranked files may have

important information in them; the ranking system only helps to facilitate choices like

processing order and such.

30

5 Tool Design

This chapter explains the logic of tool development and explains the reasoning behind

major design choices. Tool development is conducted simultaneously with data

processing (Chapter 6), hence, each new layer of functionality is tested locally before

contributing to the research. The practical applicability of the resulting final tool is

further assessed by analyzing the results of field tests on real-life machines (Chapter 7).

5.1 User Interface

As per tool requirements and implementation guidelines set in Chapter 4, Python is the

selected programming language for implementing the tool. Although lacking in

execution speed and code optimality, its upsides of a free and lightweight development

toolkit, vast built-in functionality useful for the tool, and Python being the most

ubiquitous software prototyping option[20], far outweigh the downsides.

However, it is natural that a Python program can be written in many different ways. As

per Design-Science Research Guideline 1, “Design-science research must produce a

viable artifact in the form of a construct, a model, a method, or an instantiation.”[7]. The

framework further states that “artifacts constructed in design-science research are rarely

full-grown information systems that are used in practice. Instead, artifacts are

innovations that define the ideas, practices, and technical capabilities”[7]. In practice,

this implies that the development process shall focus on building innovation and

capabilities while keeping the artifact (the tool) viable – hence, easily usable and

practically useful.

These requirements define the choice of the user interface. As to not distract from the

technical aspect of the tool development, making a graphical user interface (GUI) is out

of the question. Making a proper GUI that keeps the tool viable requires massive

amounts of additional research in the direction of both the user interface theory and the

existing user interface implementations in widely-used solutions.

31

On the other hand, for the resulting software to be easily usable by any arbitrary

individual without programming experience and deep knowledge of its source code.

This eliminates the otherwise appealing option of making the tool adhere to the general

Bourne Again SHell (BASH) utility program practices. A user who knows the program

well may be able to successfully run it from the command line with all the correct

arguments, a new user who is unfamiliar with the program easily gets lost. This is

evident from observing the fact of “The Sleuth Kit” – a set of forensically useful scripts

– getting way less usage from individuals than its fork with a well-made GUI, Autopsy.

This leaves one option viable: keeping the tool in the command line but giving it its

command line interface which guides the user through required input arguments upon

launching one of the commands, while keeping the BASH-style argument provision in

place for advanced users as well. Such proprietary CLI is easily implemented in Python

using its built-in high-level functionality. The interface code is structured so that adding

new functions to the CLI code is intuitive and easy, and does not require writing

excessive CLI-related code and manually validating provided arguments to commands.

All the CLI functionality is stored in a “cli.py” module and is used by the main script to

run almost all interface-related routines.

Figure 2. Tool’s command line interface after executing the “help” command

32

5.2 Directory List Object

To make storing and retrieving information on artifact locations homogenous across the

entire program and satisfy the research requirements, a directory list object (“Dirlist”) is

implemented. A variable called “data”, stores the required data structure in the directory

list object. It has to be a list of tuples. Each tuple has the following fields:

Table 4. Directory List object data structure tuple fields

Name Type Description

search_place String, path-like Global search place files were found in

directory String, path-like Subfolder of search_place files were found in

files List of strings List of located files

Hence, the list of such tuples contains a record of each folder that has any interesting

files – .plist files in case of the present research – and each such record contains all the

said files’ names in it. Concatenating “search_place”, “directory” and one of the

filename strings from “files” yields an absolute path to a file of interest.

The “Dirlist” object is created on one of the two following occasions:

• The “gatherall” command is executed to gather information about locally

existing .plist files in pre-programmed general search locations. “Dirlist” object

holds information gathered from this local system.

• The “commonfiles” command is executed and the provided data dumps are

imported. One “Dirlist” is spawned per imported data dump, and it holds

information about that data system

The object also has two methods crucial for the whole tool’s operation - “import_json”

and “export_json”. These methods govern the import and export of necessary “Dirlist”

information so that states can be saved, loaded, and transported between machines as

files.

33

5.3 Main commands

The tool has numerous functions realized as part of its command set. Some of them,

such as “help” and “clear”, are for user convenience only, and although they majorly

contribute to the usability of the tool, they hold no complicated technological solutions

and are not the functions that directly contribute to the research process. Hence, this

section focuses on the four main commands of the program: “gatherall”,

“commonfiles”, “rankplists”, and “excavate”.

5.3.1 “gatherall”

This command governs the gathering of information from the local machine and is

predominantly used for the first step of the research – gathering the interesting file paths

from the research volunteers’ personal OS X systems.

The function requires a username argument. This username is then used in conjunction

with a file at “lists/bundled/places.txt” to construct a list of global search places. The list

has been constructed by the plan outlined in 4.4.1, however, it may be user-modified if

needed.

The said file contains two sections with search locations listed on separate lines. The

first section contains the paths that are included in the search process. It starts with the

“INCLUDE:” directive on a separate line. The second section starts exactly after the

first one with a line containing an “IGNORE:” directive.

Places noted in the first section get recursively searched. However, if encountered

during the recursive searching, directories noted in the second section (and all their

subdirectories) will get ignored. If a located directory contains at least one .plist file,

information about its location and files is added as a formatted tuple to the “data” field

of the “Dirlist” object that the function produces. After the search is concluded, the

“Dirlist” object’s state is exported to a .json file using the object’s built-in method.

34

Figure 3. Contents of the “places.txt” file

To construct locally existing search paths, the “<<<user>>>” field gets automatically

replaced with the provided username using the templating functions implemented in the

“common.py” module. However, as per the ethical requirements of the present research,

the username may not be included in the final output. For this reason, a pseudonym

generator is implemented in “common.py” – it randomly generates one of the four

million possible easily human-readable pseudonyms that share no relation with

execution time, provided username, or anything else potentially identifying, while being

easily human-readable for easier transport. This pseudonym is used instead of the

provided username in the exported .json file to keep the data subject pseudonymized.

5.3.2 “commonfiles”

This command implements the routine depicted in Figure 2 – finding common file paths

between data exports from multiple machines. It reads “Dirlist” .json data dump files

from a hard-coded subfolder inside the tool’s own folder: “datasource/dirlist_export”.

Given there are two or more files manually loaded into the correct folder, the function

will output a list of file paths that are common between the .json dumps to

“export/commonfiles”.

35

The “commonfiles” function requires a tolerance argument to be provided. Tolerance is

expected to be an integer that is less than the number of .json in

“datasource/dirlist_export” files being processed. If this argument is set to 0, then a file

path only appears in the exported output if all the input .json files had it present, i.e.

such a file was found on all the surveyed machines. However, a positive tolerance

argument N allows to ignore the absence of a file path on N dumps. For instance, if 6

data dump files are input, a tolerance of “1” means a path will appear at the exported

“commonfiles” result if it appeared on 6 – 1 = 5 files. This allows fine-tuning the width

of the common file paths set to not be too restrictive, but also not include files that are

too uncommon.

The main output of “commonfiles” is a .txt file at “export/commonfiles” marked with

the execution time unix timestamp of 1-second resolution. In the file is a list of file

paths that are common between the provided “Direntry” data dumps generated with

“gatherall” on various machines. Paths are separated by a newline. Since all input .json

dumps may have a pseudonymized username in them, “commonfiles” detects it and

replaces it with “<<<user>>>”, fit for further templating when the exported file is

reused.

Figure 4. “commonfiles” command being executed

36

5.3.3 “rankplists”

The “rankplists” command allows for manual review, ranking, and group assignation of

files, and exports a .json file describing the resulting forensic artifact map. It requires

three arguments: file location, username, and mode. The provided .txt file is expected to

contain a list of paths of forensically interesting files with the username location

swapped for a “<<<user>>>” template marker. This file can be located anywhere in the

system, however, it usually would be an exported result of “commonfiles” stored in

“export/commonfiles”. The username is expected to be a real username of the local

machine user – it will be used to construct actual file paths by templating it in where

necessary. Finally, the “mode” argument has three options: “rank” to run the main

ranking routine, “count” to display how many files are live on the local OS X system

versus how many file paths are noted in the provided .txt list, and “filenames” to export

the existing files’ real paths to a .txt file at “exports/rankplists”.

Naturally, the most useful mode of the three is “rank”. It iterates the noted files,

attempting to open and parse each as a .plist file. If the program fails to open a file – i.e.

the file path is noted in the source .txt list, but the actual file happens to be absent on

this particular system – it is skipped. If the program successfully opens a file but fails to

parse it as a .plist, it displays a corresponding message and the ranking continues.

After displaying each file, three prompts appear one after another, prompting the user to

assign groups, rank, and an arbitrary textual comment respectively. For ease of

operation, each group is assigned a digit, and the group prompt expects a sequence of

selected digits representing groups, not the group names. If any of the prompts

encounter an error, “rankplists” attempts prompting again, thus ensuring that progress is

not lost upon providing unexpected data. Providing no groups and no rank (pressing

“Enter” two times) discards the file from the final artifact map output.

The resulting artifact map is stored at “exports/rankplists” once each of the files noted in

the input list is either graded or discarded. Its structure is a list of dictionaries. Each

dictionary contains an absolute path to the artifact with a “<<<user>>>” template

marker instead of a real username, its rank, a list of its group names, and the textual

comment.

37

5.3.4 “excavate”

The most practically useful command of the tool, “excavate” requires a valid local

machine user name as its single argument, and automatically assembles the interesting

files from across the local system.

Firstly, this command fetches information from “lists/bundled/files.json”. In the case of

the final version of the tool, “files.json” is the output of “rankplists” command ran as

part of the research – essentially, a copy of the artifact map presented in Appendix 2;

this file can be edited or replaced but has to adhere to the “rankplists” export .json

structure.

Finally, the fetched information is used to locate the files from the artifact map and copy

them to the tool’s subfolder “export/excavate”. A subfolder structure is created; folders

named after ranks from Table 3 are created in a common subfolder. The common

subfolder includes an integer UNIX timestamp to universally indicate the time

“excavate” has been executed. If located on the system, the files from the artifact map

are copied to the folder corresponding to their respective rank. This output may be

copied to a portable volume or compressed into an archive and sent over the Internet for

further inspection.

Figure 5. Files and folders generated by running “excavate”

38

6 Data Processing

6.1 File Path Information Collection

As per the research plan, paper [12] is checked against a live OS X system to find the

folders containing numerous .plist files of interest in itself and its subfolders. The final

selection yields a list of general search places – starting points from which the tool

recursively searches for the required files. As planned, the folders in the selection are

four layers deep at most and are generated by the system itself in any real-life case.

These folders are compiled into a properly formatted list and saved as “places.txt” to

“lists/bundled/” inside the tool folder for future use. The resulting selection is presented

in Table 5.

Table 5. Locations for automatic searching

Location Description

/Users/<<<user>>>/Library/Preferences Contains a lot of .plist files with user-set
preferences for apps etc

/Users/<<<user>>>/Library/Application
Support

Contains sone assorted .plist files generated
by apps

/Users/<<<user>>>/Library/Containers Apps put some files here temporarily and
should clear this out[15], but it may still
contain residual information

/Users/<<<user>>>/Library/Caches May contain residual info similarly to
/Containers

/Applications Folder with installed programs, each has a
plethora of files inside its own package

The list formatting allows to specify directories that shall be ignored if encountered

during the search. This functionality helps improve the usefulness of the resulting data

and saves up some of the manual assessment time. The folders that were set to be

ignored are the two applications that are common across many OS X systems and

happen to generate immense amounts of .plist files and other data of no forensic use[3].

39

It has to be noted that despite OS X stores its applications in what seems to be a .app

format file, those are, in fact, ordinary folders that can be examined and have rich

substructure. The ignored locations are presented in Table 6.

Table 6. Ignored locations

Location Reason

/Applications/Xcode.app Generates thousands of .plists if the OS X
user develops using Xcode, mostly with
technical data on Xcode settings and such.

/Applications/iTunes.app Contains hundreds of .plists related to li-
cense agreements and other uninteresting
information

The list of searched and ignored locations is composed and the tool functionality is

sufficient to gather information on .plist file paths and validated by local testing. The

tool folder is then compressed into an archive file and sent out to the individuals

volunteering to participate in the research as data subjects, accompanied by a text file

containing detailed explanations of the actions needed to be conducted, as well as what

data is the tool exactly collecting and how to verify correct pseudonymization and non-

excessive information collection.

The data is acquired using the tool’s “gatherall” method (Chapter 5) on six real-life

personal systems running OS X High Sierra and above. The collaborators come from

different professional backgrounds, predominantly arts & media or information

technologies. The returned data dump .json files are stored on the researcher's machine

for further usage.

6.2 Structuring and Assessment

After the period of data gathering is finished, the .json data dumps are rounded up and

put to “datasource/dirlist_export” for the tool to read from. Each export file contains

information about the locations of .plist files on the machine that the file comes from.

The following structuring and assessment actions are aimed at creating a forensic .plist

artifact map.

40

First of all, “commonfiles” and “rankplists” in “count” mode are used in conjunction to

determine the most suitable “commonfiles” tolerance argument value. For each of the

valid tolerance values from 0 until one less than the overall number of surveyed

machines, which is 5 in the case of the present study, the following sequence of actions

is taken:

• Run “commonfiles” with a tolerance, locate the generated path list .txt file

• Run “rankplists” in “count” mode, aim it at the freshly generated path list

• Note the number of noted file paths and the files located on the researcher

machine

There are two reasons behind the last step. Firstly, a lot of applications have .plist file

aliases in them which are treated as valid files by Python’s “os” module. This may lead

to both duplicate file paths (multiple applications having aliases to the same real file)

and dead file paths (alias pointing to a file that does not exist on the system). Secondly,

the manual assessment of the files is conducted on the researcher's machine, so it is

crucial to get an understanding of how many files may be accessed for review.

Table 7. “commonfiles” tolerance VS file path and located file counts

Tolerance Common file paths Located files

0 140 94

1 190 112

2 1017 149

3 4844 256

4 29817 2934

5 40538 4476

The file path and located file counts for each selected tolerance are provided in Table 7.

Further research may only use one of the tolerance values. It is evident that when

stepping the tolerance up from 3 to 4, the noted common file path count quadruples, and

the located file count grows by more than 50%. This implies that the set includes a large

portion of files not as common as required per research goals, and many of the located

files may be of lesser interest. Hence, the tolerance selected for further research is “2”.

41

After running the tolerance tests and analyzing the outcomes, the list of common .plist

file paths is generated by the “commonfiles” command executed with the selected

tolerance. It is collected as the source list for manual assessment. The “rankplists”

command is run in its ranking mode and is pointed at the selected source file. Each

noted file is accessed and displayed on the screen for manual rank and group

assignment. After the routine is finished, the resulting artifact map is exported to

“exports/rankplists” as a .json file. Its full contents are presented in a human-readable

form in Appendix 2. A short excerpt with only the artifacts ranked “S” is presented as an

example in Table 8.

Table 8. S-ranked OS X .plist forensic artifacts

Path G. Comment

/Users/<<<user>>>/Library/Preferences/com.apple.GEO.plist geo, date-
time, web,
data

last network etag

/Users/<<<user>>>/Library/Preferences/com.apple.imes-
sage.bag.plist

datetime,
web, data

potential imessage
caches

/Users/<<<user>>>/Library/Preferences/com.apple.Safari.plist geo, date-
time, data

some of the safari set-
tings/stats

/Users/<<<user>>>/Library/Preferences/com.apple.face-
time.bag.plist

datetime,
web, data,
other

may contain facetime
cache data etc

/Users/<<<user>>>/Library/Preferences/.GlobalPreferences.plist geo, lan-
guage,
datetime,
web, data,
path, other

user's global prefer-
ences. has a non-ex-
haustive list of devices
ever connected, rich lan-
guage data, etc

/Users/<<<user>>>/Library/Preferences/com.apple.finder.plist ip, data,
path, other

finder datastore - has
goto fields' history, nu-
merous local and remote
paths, user settings, etc

Upon finishing the manual assessment of the artifacts, “rankplists” generates a .json

output file containing the entered data in a machine-readable format. This file is

renamed to “files.json” and is put to “lists/bundled” along with “places.txt’. This copy

of the final forensic artifact map is used by the tool’s “excavate” command as a guide to

artifact locations and ranks. As per the research design, the tool’s “excavate” is executed

on several machines to gather actual files and analyze their contents, from which the

overall tool effectiveness may be evaluated.

42

7 Analysis

As the study procedures outlined in the research design come to a conclusion, the results

are overviewed and analyzed. As per the design, the research produces two related

results at its outcome: the OS X .plist forensic artifact map and the tool for artifact

discovery and excavation. These two outcomes are analyzed separately, as both their

natures and the categories they may be evaluated in evidently differ.

7.1 Forensic Artifact Map Analysis

This section reviews and evaluates aspects of the artifact map composed over the course

of the study. The full map is displayed in Appendix 2.

The original map file is exported by the tool’s “rankplists” command as a .json file.

Although the choice was somewhat debatable at the moment of functionality

implementation, it is evident that JSON is the most convenient of all due to its

malleability. It can both be easily processed in its raw form by a machine using one of

the many programming languages, as well as quickly converted to a human-readable

format, like a table version presented in Appendix 2, using the widely-used non-default

“pandas” module in case of Python.

The map contains 70 entries total, out of the 149 ranked located files. This means that

46.9% of the programmatically extracted and locally existing files were manually

deemed being of forensic value. This percentage is evidently high, especially once it is

taken into account how many .plist files are empty or hold strictly operational data of

the program. Such high percentage of valuable files at the programmatically aggregated

file locations shows that the method for locating and filtering common .plist files is

working successfully.

Ranking of .plist files is conducted according to the strict and objective guidelines noted

in Table 3. The guidelines were selected so that better ranked artifacts come in smaller

43

quantities, e.g. there should be more “C” ranked ones than “B” ranked, and so on. This

ensures the typical pyramid-like distribution, since one higher-ranked artifact should

hold more value than a lower-ranked one. The final count of artifacts in each rank are as

follows:

Figure 6. Artifact count per rank

As evident from Figure 6, there is approximately 3.5 times more C-ranked artifacts than

the B-ranked ones. Likewise, B-ranked ones outnumber the A-ranked ones about

threefold. However, the number of A- and S-ranked artifacts difffer by one. This

indicates that generally the guidelines produce the desired result, however, the

classifiers for the “S” rank could be made stricter, so that more files get ranked “A”

instead and make the distribution closer to ideal.

The artifacts are assigned to groups. Eight groups are available by what presumably are

the main classes of information possible to encounter in a file-level forensic artifact.

The distribution of files is provided in Figure 7.

44

6

5

13

47

S

A

B

C

Figure 7. Artifact count per group

The three leading groups are datetime, data and other, followed by geo. It is of high

value that many artefacts contain datetime field, as establishing dates and times of

events is a big part of digital forensic expertise; the timestamps often indicate events

like last app launch, last update, and so on. Many files contain data type fields: these are

mostly cache dumps of some of the applications stored as hex byte arrays. These are

possible to use given there exists a way to interpret the data generated by a given

application.

The dominant category is “other”. Firstly it has to be noted that one artifact may be in

many groups – and coincidentially, “other” is a group that mostly appears along with

other, more particular group. Secondly, despite being named “other”, this group mostly

contains personal user settings, such as mouse sensitivity, GUI settings, and such; these

are of high value, as they may be of help for profiling a person. This implies that

although the group separation generally produces the desired effect and effectively

detects specific information like timestamps and geologic locations, it could be

improved by breaking the “other” tier down into more specific groups.

Finally, every artifact in the map has a textual commentary field. Unlike rank and

groups, this field may be left empty, and is merely to add context to a given artifact

when possible. Out of 70 entries total, 57 entries are complete with a comment field

45

Artifact count
0

5

10

15

20

25

30

35

40

45

8

3

21

5

2 2

23

11

40

geo

language

datetime

web

ip

name

data

path

other

entry. This implies that approximately 84% of the artifacts were successfully

contextualized by searching Apple’s official documentation and Apple-hosted user

forums. The smaller fraction of the artefacts were either not possible to identify within

the scope of the present research (e.g. a data dump within a tag of no humanly

understandable meaning), or simply did not need additional commentary (e.g. a

timestamp within a field clearly labelling which event’s timestamp it is).

7.2 Tool Analysis

Efficiency of the tool’s main functionality is evaluated by field testing it and critically

assessing the test results. Two OS X in direct possession of the research group systems

are picked to transfer the tool to and run the “excavate” command on. The output of this

command – the folder with the excavated .plist files – is compressed into an archive file

and stored on the researcher machine for manual examination and assessment.

Three machines are used as testing subjects. These machines are all personal, however,

have been used for different amount of time and with differing intensity, and belong to

people of different professional and personal backgrounds. Information about the

machines and the global tool runtime statistics are presented in Table 9, followed by a

detailed analysis. Since the hardware and Apple product model do not matter nearly as

much as the OS X version and time of continuous usage without clean reinstallations,

hardware details are omitted.

Table 9. Test subject machines’ descriptions

Machine A B C

OS X Version Big Sur Catalina High Sierra

Time w/o fresh install 4 years 1 year 6 years

User professional field IT Arts Engineering, Music

Use intensity Once every 1-2 days 1-2 times a week Daily

Located artifacts count 65/70 67/70 69/70

User settings for the main OS X utilities such as Dock, Finder, Spotlight and Launchpad

were captured for all three machines along with other miscellaneous forensic

information, such as last login time, some of the automatic update and manual setting

46

alteration timestamps, and such. Likewise, caches of FaceApp and Messages are located

on all three machines, however, the files are evidently similar – likely due to the fact

that neither of the machine owners ever use these platforms.

In addition, for machine A and C, it is possible to recover a list of installed applications,

some of the recently accessed files, country code and language settings, recently

connected storage devices. On top of that, the machine C export has an IP address of a

remote AFP file sharing server frequented by the owner, as well as information on

previously installed applications that are no longer present.

Manually interpreting the export results using the artifact map is evidently simple; since

most artifacts have textual commentary on their contents in the table. The tool command

line interface itself also appears to be simple and efficient, as no volunteering individual

had trouble operating it, while deploying and running it on an unprepared system is a

matter of minutes.

47

8 Summary

Modern Mac OS X versions use special files of the “Preference List” (.plist) type to

store some of the user settings, options, program configuration, and other data.

Collectively, these files have forensic significance, as they may contain fields of

interest, such as timestamps, cache dumps, geolocation, language settings, file paths,

URLs and IP addresses. The present study explores the forensic capability of these files

using a practically inclined design-science approach.

The study yields two results: a forensic artifact map – a table with locations,

descriptions and classifications of .plist files of interest, and a practical software tool

that features the needed functionality for location, structuring, classification, and

excavation of the said files. In conjunction, they produce a working solution prototype.

The map responds to the initial criteria and requirements within a small error margin.

The selected methods are evidently useful for creation of such map. Judging by the fact

of most files in the map being found on field test machines, the method of filtering out

all files except for the ones universally common in OS X is sufficient. In future works,

the skeleton of the search process may be reused, but the particular aspects, like the rank

definitions and the set of available groups, may be fine-tuned to bring the resulting map

even closer to the ideal expectations. An additional automatic method not based on file

path ubiquity may be added to include artifacts generated by web browsers.

The tool implements all the planned functionality. It is capable of assembling the file

paths while fulfilling the established ethical guidelines. The automatic structuring and

manual assessing routines produce viable results in malleable format. Equipped with the

resulting artifact map, it consistently excavates more above 90% of the noted files. The

tool uses no third party modules and runs on user interface is clear and provides instant

guidance to new users. The code allows for easy addition of new commands and

functions by making numerous core functions reusable and modular.

48

While the tool furnishes the present research needs fully, it has its own gaps as a state-

of-the art forensic solution. While manual assessment is feasible for a small number of

common system-generated .plist files, automation is a crucial need when the artifact

count is in the order of thousands or more. Regular expression and artificial intelligence

could be employed to facilitate separating the forensically valuable files from the many

files of no forensic interest. Finally, as per the research scope, the resulting tool works

on live systems only. Built-in disk image reading support would be a valuable

functionality expansion for it as a state-of-the-art forensic toolkit part.

Studying the under-explored area file-level forensic capabilities of default OS X proved

to be viable. Even from a narrow, intentionally ubiquitous file selection of the same

type, it is possible to infer a lot of valuable information, including that of previously

connected media and devices, applications deleted at the moment of examination, and

other info that would otherwise require tedious disk-level digging to discover. To further

explore other artifact formats and discovery methods, the procedures used throughout

the present research may be used in their original form, or modified to fit the new

research. File-level automatic artefact aggregation compliments other, better furnished

layers of OS X forensics, allowing for fast and efficient system examination covering a

multitude of its facets.

49

References

[1] "A study on the APFS timestamps in MACOS", Jong-Hwa Song, Se Ho Kim, Song Yi

Hwang, Seung Gyu Kim, Sung-Jin Lee, Div. of information and communication Baekseok

University

[2] Article 4(1)(a), GDPR, data.consilium.europa.eu, last accessed 6 April 2023

[3] "Can I delete Containers?", Jerry Dammers, Léonie, discussions.apple.com, last accessed 6

April 2023

[4] "Configuration Management for Mac OS X, It's just Unix Right?", Janet Bass, David

Pullman, NIST

[5] "Decoding the APFS file system", Kurt H. Hansen, Fergus Toolan

[6] "Digital forensic analysis of discord on google chrome", Khushi Gupta, Cihan Varol, Bing

Zhou

[7] “Design Science in Information Systems Research”, Alan R. Hevner, Salvatore T. March,

Jinsoo Park, Sudha Ram et al.

[8] "Development of a Forensic Analyzing Tool based on Cluster Information of HFS+ filesys-

tem", Cho, Gyu-Sang

[9] "Global market share held by leading internet browsers from January 2012 to January 2023",

Lionel Sujay Vailshery, statista.com, last accessed 6 April 2023

[10] "Hfs Plus File System Exposition And Forensics", Scott Ware

[11] "Mac Forensics: Mac OS X and the HFS+ File System", Philip Craiger, Paul K. Burke

[12] "Mac OS X Forensic Artifact Locations", Michael Cook, Jake Nicastro TJ Dalzell, Michael

Geyer, Austin Truax

[13] "Mac OS X Forensics", Dr. Digvijaysinh Rathod

[14] "MEGA: A tool for Mac OS X operating system and application forensics", Robert A.

Joyce, Judson Powers, Frank Adelstein

[15] "Mobile Forensics – The File Format Handbook", Christian Hummert, Dirk Pawlaszczyk

[16] "Operating System Market Share Worldwide", StatCounter Global Stats, statcounter.com,

last accessed 6 April 2023

50

https://gs.statcounter.com/os-market-share#monthly-201608-202210
https://www.statista.com/statistics/268254/market-share-of-internet-browsers-worldwide-since-2009/
https://discussions.apple.com/thread/7805082
http://data.consilium.europa.eu/

[17] "PLIST Files", Ryan R. Kubasiak, The Internet Archive, last accessed 16 April 2023

[18] "Pseudonymization and impacts of Big (personal/anonymous) Data processing in the

transition from the Directive 95/46/EC to the new EU General Data Protection Regulation",

Luca Bolognini, Camilla Bistolfi

[19] "The new ext4 filesystem: current status and future plans, Proceedings of the Linux

symposium. Vol. 2. 2007.", Mathur, Avantika, et al.

[20] "Why Businesses Choose Python for Prototyping and Production", Will Serene, Adam Gao,

for RevGen, last accessed 2 May 2023

51

https://www.revgenpartners.com/insight-posts/why-businesses-choose-python-for-prototyping-and-production/
https://web.archive.org/web/20140219093104/http://www.appleexaminer.com/MacsAndOS/Analysis/PLIST/PLIST.html

Appendix 1 – Non-exclusive Licence for Reproduction and

Publication of a Graduation Thesis1

I, Nikita Timokhin

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Structural Assessment and Automated Aggregation of OS X Forensic Arti-

facts”, supervised by Pavel Tšikul

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Techno-

logy until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-ex-

clusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons' in-

tellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

15.05.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

52

Appendix 2 – Full OS X .plist Forensic Artifact Map

Table 10. Full OS X .plist forensic artifact map

Path Rank Group Comment

/Users/<<<user>>>/Library/Preferences/com.apple.-
FontRegistry.user.plist

b path, dat-
etime

/
Users/<<<user>>>/Library/Preferences/com.apple.GEO.p
list

s geo, date-
time,

web, data

last network etag

/Users/<<<user>>>/Library/Preferences/com.apple.Fol-
derActionsDispatcher.plist

c data

/Users/<<<user>>>/Library/Preferences/com.apple.uni-
versalaccessAuthWarning.plist

b path,
other

lists applications author-
ized for full disk access

/Users/<<<user>>>/Library/Preferences/com.apple.Ap-
pleMultitouchMouse.plist

c other mouse preferences

/Users/<<<user>>>/Library/Preferences/com.apple.Ap-
pleMultitouchTrackpad.plist

c other user trackpad settings

/
Users/<<<user>>>/Library/Preferences/com.apple.iApps.
plist

c path iphoto and other native
apps' default photo lib-
raries

/Users/<<<user>>>/Library/Preferences/com.apple.Face-
Time.plist

c other may contain data on ex-
ternally connected cam-
eras/microphones

/Users/<<<user>>>/Library/Preferences/com.apple.calcu-
lateframework.plist

c datetime,
other

last currency converter
refresh date and curren-
cies' rates for the day

/Users/<<<user>>>/Library/Preferences/com.apple.imes-
sage.bag.plist

s datetime,
web, data

potential imessage
caches

/Users/<<<user>>>/Library/Preferences/com.apple.mad-
rid.plist

c datetime

/Users/<<<user>>>/Library/Preferences/com.apple.User-
AccountUpdater.plist

c other shows if the library
folder is hidden from
user

/Users/<<<user>>>/Library/Preferences/com.apple.Core-
Graphics.plist

c other screen grayscale/invert
settings

/
Users/<<<user>>>/Library/Preferences/com.apple.speech
.voice.prefs.plist

c datetime,
other

text-to-speech stats

/Users/<<<user>>>/Library/Preferences/com.apple.ac-
countsd.plist

b data,
other

has to do with the local
account system

/Users/<<<user>>>/Library/Preferences/com.apple.Safar-
i.plist

s geo, date-
time, data

some of the safari set-
tings/stats

53

/Users/<<<user>>>/Library/Preferences/com.apple.Con-
sole.plist

c other console settings

/Users/<<<user>>>/Library/Preferences/com.apple.sug-
gestions.plist

c data spotlight suggestions re-
lated

/Users/<<<user>>>/Library/Preferences/com.apple.cor-
eauthd.plist

c data coreauthd daemon re-
lated

/Users/<<<user>>>/Library/Preferences/com.apple.im-
service.ids.iMessage.plist

b name,
other

potential imessage ac-
count info

/
Users/<<<user>>>/Library/Preferences/com.apple.driver-
.AppleBluetoothMultitouch.mouse.plist

c other bluetooth mouse settings

/Users/<<<user>>>/Library/Preferences/com.apple.sys-
tempreferences.plist

b data, path general user system set-
tings

/Users/<<<user>>>/Library/Preferences/com.apple.dock-
.plist

a datetime,
data, path

dock preferences

/Users/<<<user>>>/Library/Preferences/com.apple.Sys-
temProfiler.plist

a geo, data,
other

may contain previously
used regions

/Users/<<<user>>>/Library/Preferences/login-
window.plist

c other

/Users/<<<user>>>/Library/Preferences/com.apple.tala-
gent.plist

c datetime datetime related to the
transparent app lifecycle
agent (autosave + ver-
sions thing)

/Users/<<<user>>>/Library/Preferences/com.apple.com-
merce.plist

a datetime,
web,
other

has apple id email ad-
dress

/Users/<<<user>>>/Library/Preferences/com.apple.Ad-
dressBook.plist

b geo, date-
time

may have previously
used country codes

/
Users/<<<user>>>/Library/Preferences/com.apple.icloud.
fmfd.plist

c data contains some aps key,
sensitivity unknown

/Users/<<<user>>>/Library/Preferences/com.apple.audi-
o.AudioMIDISetup.plist

b datetime,
other

audio and midi settings

/Users/<<<user>>>/Library/Preferences/com.apple.Tele-
phonyUtilities.plist

b data,
other

telephony settings

/Users/<<<user>>>/Library/Preferences/com.apple.face-
time.bag.plist

s datetime,
web,
data,
other

may contain facetime
cache data etc

/Users/<<<user>>>/Library/Preferences/com.apple.-
passd.plist

c datetime related to the apple pay
and wallet daemon
(passd)

/Users/<<<user>>>/Library/Preferences/com.apple.assist-
ant.plist

b geo, date-
time

related to apple's assist-
ant (enhanced voiceover
service)

/Users/<<<user>>>/Library/Preferences/com.apple.iC-
al.plist

a geo, date-
time,
other

calendar app settings
memory; has last view's
timezone

/Users/<<<user>>>/Library/Preferences/com.apple.com- c data app store related, sensit-

54

merce.knownclients.plist ivity undefined

/Users/<<<user>>>/Library/Preferences/com.apple.stock-
holm.plist

c other

/Users/<<<user>>>/Library/Preferences/.GlobalPrefer-
ences.plist

s geo, lan-
guage,

datetime,
web,
data,
path,
other

user's global prefer-
ences. has a non-ex-
haustive list of devices
ever connected, rich lan-
guage data, etc

/
Users/<<<user>>>/Library/Preferences/com.apple.driver-
.AppleHIDMouse.plist

c other hid mouse settings

/Users/<<<user>>>/Library/Preferences/com.apple.nc-
prefs.plist

b data, path appears to list the cur-
rently installed apps
in /applications

/
Users/<<<user>>>/Library/Preferences/com.apple.Activ-
ityMonitor.plist

c other activity monitor related

/Users/<<<user>>>/Library/Preferences/com.apple.Safar-
i.SafeBrowsing.plist

c datetime

/Users/<<<user>>>/Library/Preferences/com.apple.tex-
tInput.keyboardServices.textReplacement.plist

c name contains username

/Users/<<<user>>>/Library/Preferences/com.apple.i-
Tunes.plist

c other may have recent itunes
searches

/Users/<<<user>>>/Library/Preferences/com.apple.-
java.util.prefs.plist

c data has names of ever con-
figured java applications

/Users/<<<user>>>/Library/Preferences/com.apple.secur-
ity.cloudkeychainproxy3.keysToRegister.plist

c other

/Users/<<<user>>>/Library/Preferences/com.apple.core-
services.uiagent.plist

c other has names of some of
the apps that have been
ran

/
Users/<<<user>>>/Library/Preferences/com.apple.HIToo
lbox.plist

b language,
other

has installed input meth-
ods and the 2 last active
methods

/Users/<<<user>>>/Library/Preferences/com.apple.Ser-
vicesMenu.Services.plist

c other registered translations of
the general (right click)
context menu entries

/Users/<<<user>>>/Library/Preferences/com.apple.Setu-
pAssistant.plist

c other has some flags related to
events such as did user
see the privacy state-
ment

/
Users/<<<user>>>/Library/Preferences/com.apple.driver-
.AppleBluetoothMultitouch.trackpad.plist

c other bluetooth multitouch
mouse settings

/Users/<<<user>>>/Library/Preferences/com.apple.xp-
c.activity2.plist

b datetime,
other

/Users/<<<user>>>/Library/Preferences/com.apple.sys-
temuiserver.plist

c other topmost bar left side se-
lected widgets list

/Users/<<<user>>>/Library/Preferences/com.apple.Ter- b data, terminal settings

55

minal.plist other

/Users/<<<user>>>/Library/Preferences/com.apple.uni-
versalaccess.plist

c other universal access settings

/
Users/<<<user>>>/Library/Preferences/com.apple.DiskU
tility.plist

a data,
path,
other

has a root directory, pre-
sumably last viewed in
disk utility

/Users/<<<user>>>/Library/Preferences/org.cups.Print-
ingPrefs.plist

c ip has ips of last used
printers

/Users/<<<user>>>/Library/Preferences/com.apple.Spot-
light.plist

c datetime timestamp likely the last
time of spotlight launch

/Users/<<<user>>>/Library/Preferences/com.apple.find-
er.plist

s ip, data,
path,
other

finder datastore - has
goto fields' history, nu-
merous local and remote
paths, user settings, etc

/
Users/<<<user>>>/Library/Preferences/com.apple.Launc
hServices/com.apple.launchservices.secure.plist

c other has bindings of formats
to programs, may con-
tain uninstalled pro-
grams' names

/Users/<<<user>>>/Library/Application
Support/icdd/deviceInfoCache.plist

c data may contain a device
info cache dump

/Users/<<<user>>>/Library/Containers/com.apple.lan-
guageassetd/Data/Library/Caches/com.apple.Diction-
aryServices/DictionaryCache.plist

c language,
other

lists dictionary sources,
directly related to selec-
ted input sources

/Users/<<<user>>>/Library/Containers/com.apple.Quick-
TimePlayerX/Data/Library/Preferences/com.apple.Quick-
TimePlayerX.plist

c path may have path of (pos-
sibly unexistent) files
accessed with quicktime

/Users/<<<user>>>/Library/Containers/com.apple.siri.-
media-indexer/Data/Library/Preferences/com.apple.siri.-
media-indexer.plist

c datetime timestamps of siri's me-
dia indexing routine ex-
ecution

/Users/<<<user>>>/Library/Containers/com.apple.-
TextEdit/Data/Library/Saved Application
State/com.apple.TextEdit.savedState/windows.plist

c path has a path to a .txt file
accessed with textedit

/Users/<<<user>>>/Library/Containers/com.apple.Pre-
view/Data/Library/Preferences/com.apple.Preview.plist

c data

/Users/<<<user>>>/Library/Containers/com.apple.Pre-
view/Data/Library/Preferences/com.apple.Pre-
view.ViewState.plist

c data

/Users/<<<user>>>/Library/Caches/GeoServices/net-
workDefaults.plist

c other

/Users/<<<user>>>/Library/Caches/GeoServices/Re-
sources/supportedCountriesDirections-20.plist

c geo

/
Users/<<<user>>>/Library/Preferences/com.apple.AppSt
ore.plist

c other

56

Appendix 3 – Code Excerpt and Tool Location

The following code is an excerpt from the main command line interface loop of the

resulting tool. It showcases the four main functions and the general CLI logic, while

omitting the more utilitarian code. The full code is available from the code repository

located at https://github.com/kouyouelysian/osxcavate, the version resulting from the

present research is commit auto-labelled “e372e1f”, dating May 15, 2023.

[... code omitted ...]

def gather_artefacts_all(args=None,h=False):

 """ exports dumps of all .sqlite and .plist filepaths in preprogrammed interesting locations """

 params_description = [\

 ("Please, input a valid username to gather artefacts on","user",None)\

]

 if (h):

 print("[?] gatherall <username>:\n Scans a predefined list of folders based on the
provided username")

 print(" checks for all .plist files available, makes a .json dump of those for further
usage")

 return

 params = cli.get_params(params_description, args)

 if params == None:

 return

 user = params[0]

 global v

 p = common.pseudonym_generate()

 plist = actions.scanplaces_plist(user, pseudonym=p, verbose=v)

 plist.export_json(p+"_"+str(common.timestmap())+"_plist")

[... code omitted ...]

def rank_plists(args=None, h=False):

 """ a loop for manually ranking plist files from common_files-generated list """

 mode_options = ["rank", "count", "filenames"]

 params_description = [\

 ("Select input file - has to be a list of filenames generated by common_files","file"),\

 ("Please, input a valid username to access artefacts of","user"),\

 ("Select one of operation modes: rank, count, filenames","inlist",mode_options)\

]

 if (h):

 print("[?] rankplists <file> <username> <mode>\n manually assign rank/groups to plist
files from a common_files-generated list")

 return

57

https://github.com/kouyouelysian/osxcavate

 params = cli.get_params(params_description, args)

 if params == None:

 return

 filename, user, mode = params[0], params[12], params[2']

 files = []

 fh = open(filename, 'r')

 for line in fh:

 files.append(common.template_fill_field(line, 'user', user).replace("\n", "").strip())

 fh.close()

 count = 0

 livefiles = []

 for f in files:

 fh = None

 try:

 fh = open(os.path.realpath(f), 'rb')

 except Exception as e:

 if (v == "vvv"):

 print("[x] failed to open "+f+"; file likely missing")

 if not fh == None:

 livefiles.append(f)

 count += 1

 fh.close()

 if mode == "count":

print("listed filepath count:",len(files))

 print("located file count: ",count)

 elif mode == "filenames":

 fname = "rankplists_files_"+str(common.timestmap())+".txt"

 fpath = os.path.join(os.path.join(os.getcwd(), "exports/rankplists/"), fname)

 common.strlist_to_file(fpath, livefiles, v)

 elif mode == "rank":

 groups = ["geo","language","datetime","web","ip","name","data","path","other"]

 ranks = ["s", "a", "b", "c", ""]

 counter = 1

 out_data = []

 for f in livefiles:

 clear()

 data_row = {"path":None,"groups":None,"rank":None,"comment":None}

 # [... code omitted ...]

 out_data.append(data_row)

 name = "rankings_"+str(common.timestmap())+".json"

 fname = os.path.join(os.path.join(os.getcwd(), "exports/rankplists"), name)

 out = common.str_to_file(fname, json.dumps(out_data, indent=4), v)

 clear()

 print("ranking finished successfully")

 return

def excavate(args=None,h=False):

 """ excavates interesting files by the built-in .json list, exports to /exports/excavate """

 global v

 if (h):

 print("[?] excavate <username>\n gathers known artefacts from this system for a particu-
lar user")

58

 return

 params_description = [\

 ("Please, input a valid username to export artefacts of","user",None)\

]

 params = cli.get_params(params_description, args)

 if params == None:

 return

 user = params[0]

 export_path = os.path.join(os.getcwd(), "exports/excavate",
"excavation_"+str(common.timestmap()))

 os.makedirs(export_path)

 for subf in ["s","a","b","c"]:

 os.makedirs(os.path.join(export_path, subf))

 artefacts_store = os.path.join(os.getcwd(), "lists/bundled/files.json")

 fh = open(artefacts_store, 'r')

 contents = fh.read()

 fh.close()

 artefacts = json.loads(contents)

 actions.export_artefacts(user, artefacts, export_path, v)

def common_files(args=None,h=False):

 """ finds overlapping files between json dumps from /datasource/json """

 global v

 if (h):

 print("[?] commonfiles <tolerance>\n compares existing data dumps and finds out which
files exist across all of them")

 return

 opts = ["json"]

 params_description = [\

 ("Input elimination tolerance - positive integer less than number of data dumps
processed","int_pos")\

]

 params = cli.get_params(params_description, args)

 if params == None:

 return

 tolerance = params[0]

 method = "json" # this is here so that maybe later on some other data storing method gets added

 if (method == "json"):

 source = "datasource/json"

 out = actions.overlapping_files(source, method, tolerance, v)

 if out == False:

 return

 fname = "commonfiles_"+str(common.timestmap())+".txt"

 fpath = os.path.join(os.path.join(os.getcwd(), "exports/commonfiles/"), fname)

 common.strlist_to_file(fpath, out, v)

 print("Wrote a list of", len(out) ,"overlapping files to", fname)

[... code omitted ...]

59

	1 Introduction 10
	1.1 Problem Statement 10
	1.2 Research Motivation 11

	2 Literature Review 12
	2.1 OS X Preference Lists in the Forensic Context 12
	2.2 General OS X Preference List Information 13
	2.3 Other Types of OS X Forensic Artifacts 13
	2.4 Existing Tooling 14
	2.5 Design Science Approach 15

	3 Research Gap Review 17
	4 Research Design 19
	4.1 Ethical Aspects of Research 20
	4.2 General Research Plan 21
	4.3 Plan of Tool Design 22
	4.4 Plan of Data Processing 25

	5 Tool Design 31
	5.1 User Interface 31
	5.2 Directory List Object 33
	5.3 Main commands 34

	6 Data Processing 39
	6.1 File Path Information Collection 39
	6.2 Structuring and Assessment 40

	7 Analysis 43
	7.1 Forensic Artifact Map Analysis 43
	7.2 Tool Analysis 46

	8 Summary 48
	References 50
	Appendix 1 – Non-exclusive Licence for Reproduction and Publication of a Graduation Thesis 52
	Appendix 2 – Full OS X .plist Forensic Artifact Map 53
	Appendix 3 – Code Excerpt and Tool Location 57
	1 Introduction
	1.1 Problem Statement
	1.2 Research Motivation

	2 Literature Review
	2.1 OS X Preference Lists in the Forensic Context
	2.2 General OS X Preference List Information
	2.3 Other Types of OS X Forensic Artifacts
	2.4 Existing Tooling
	2.5 Design Science Approach

	3 Research Gap Review
	4 Research Design
	4.1 Ethical Aspects of Research
	4.2 General Research Plan
	4.3 Plan of Tool Design
	4.3.1 Requirements
	4.3.2 Implementation
	4.3.3 Evaluation

	4.4 Plan of Data Processing
	4.4.1 Collection
	4.4.2 Structuring
	4.4.3 Assessment

	5 Tool Design
	5.1 User Interface
	5.2 Directory List Object
	5.3 Main commands
	5.3.1 “gatherall”
	5.3.2 “commonfiles”
	5.3.3 “rankplists”
	5.3.4 “excavate”

	6 Data Processing
	6.1 File Path Information Collection
	6.2 Structuring and Assessment

	7 Analysis
	7.1 Forensic Artifact Map Analysis
	7.2 Tool Analysis

	8 Summary
	References
	Appendix 1 – Non-exclusive Licence for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Full OS X .plist Forensic Artifact Map
	Appendix 3 – Code Excerpt and Tool Location

