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Abstract 

Model Driven Engineering (MDE) is widely used in software development, in particular 

for development of safety-critical systems. Simulink and Stateflow are often used for 

developing control systems. While providing excellent, easy to use tools for composing 

the models and for simulation, the formal analysis capabilities are limited both in 

Simulink and Stateflow. 

This thesis, investigates the possibility of formal verification of Stateflow models by 

converting them into the Uppaal model checking tool. Firstly, we do an experiment for 

demonstrating the advantages of the Uppaal verification language. Then, we create a 

Uppaal EMF metamodel as an intermediate layer for manipulating Uppaal elements 

during the translation and, finally, map Uppaal elements to the Stateflow elements. The 

thesis also provides the translation of different Stateflow modelling patterns and 

investigates how to represent fully deterministic Stateflow semantics in essentially non-

deterministic of Uppaal models. The approach is verified by two example models.   

This thesis is written in English and is 66 pages long, including 6 chapters, 42 figures and 

6 tables
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1 Introduction 

Modelling real-time safety-critical systems have a vital role in developing high quality, 

safe and liveness systems with minimal cost. Model-Driven Engineering (MDE) is widely 

used to create safety-critical designs, for example, in avionics, air traffic management, 

autonomous vehicle, etc. MDE is particularly useful because it supports the designing, 

validation and verification of safety-critical systems [1]. Simulink and Stateflow 

graphical tools are very popular MDE tools for modelling critical systems [2]. Simulink 

for verification uses Simulink Design Verifier and Simulink Polyspace [3]. They are 

responsible for detecting design and implementation errors. As a result, they can 

successfully reveal blocks in the model that result in integer overflow, dead logic, array 

access violations, and division by zero. Simulink design verifier can formally verify that 

the design meets functional requirements. However, it is not able to deal with real-time 

complex temporal properties [4][5]. That is why developing new verification 

technologies for the Simulink/Stateflow models has a vital role in maintaining a system 

safe, liveness and reduce the production cost using early-stage verification.  

The popularity of MDE is increasing, and therefore the systems modelled using MDE 

tools are getting more complex. For instance, the Stateflow graphical modelling language 

semantics is given by 886 pages long document [6][7]. Stateflow and Simulink are often 

used in the modelling of safety-critical systems where potential failure can have fatal 

results. That’s why the needs for better verification methods for Simulink/Stateflow 

models are increasing. Formal methods are preferred given that unlike simulation-based 

verification, they provide guarantees for the correctness of checked properties [8]. 

Timed-automata is a powerful concept for modelling and verifying real-time systems, 

providing a good basis for formal verification. Timed automata is an automation 

containing a finite set of nodes and is extended with real-valued variables. One of the 

modelling and verification tools providing model checking capabilities based on the 

theory of time automata is Uppaal [9].  
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Uppaal is a model checking tool used for modelling, validation and verification of real-

time systems. The tool contains two main parts a graphical user interface (GUI)  and a 

model checker engine. The GUI of the Uppaal version used in this thesis (4.1.24) provides 

the support of the following elements [10][11]: 

 Editor – Construction of the model 

 Simulator – Provides both guided and random simulation with displayed trace 

and updated values of global and local variables 

 Concrete simulator – Each step of the simulation is better shown at a specific time 

unit 

 Verifier - The main power of the tool provides the possibility to verify essential 

properties of the model and can detect and generate counter example which 

significantly simplifies the error identification process 

. This thesis is seeking for possibilities of verifying time-based requirements. In Stateflow 

such verification can be done by simulation which has the same limitations as software 

testing. The verifier has to find scenarios that may lead to requirement violation and 

compose test/simulation according to this scenario. In the Uppaal model-checking tool, 

the verification of temporal properties is naturally available. The Uppaal query language 

simplifies describing the safety and liveness properties of the model and verifying them 

using model-checker. This thesis assumes that automatic conversion from Stateflow 

models into a Uppaal model checking tool will make the timing analysis available for 

Simulink users. 

1.1 Research goal 

The main goal of this thesis is to create a converter that automatically translates Stateflow 

models into the Uppaal model checking tool and gives the possibility for property 

verification using the Uppaal query language. For achieving the primary goal, it is 

essential to address the following concrete goals: 

 Analyze the usefulness of translation from Stateflow to Uppaal models by running 

the experiments to compare the verification capabilities of both modelling tools.     
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 Create a Uppaal EMF metamodel representing element types of the Uppaal model 

[2]. The metamodel will be used for creating an intermediate layer for 

manipulating the model elements before recording them in the file for the Uppaal 

model checking tool. The approach makes it simpler to extract data from Uppaal 

and map it to Stateflow’s API, respectively.  

 Develop a mapping between selected subset of Stateflow elements and 

corresponding Uppaal model constructs. 

 Implement an automatic translation from Stateflow to Uppaal model checking tool 

by developing an algorithm for the mapping.   

 Verify the mapping rules on selected example models.  Full verification of all the 

mapping element remains outside of the scope of this thesis.  

 

1.2 The verification language of Uppaal 

The main reason for using a model-checking is to verify whether a finite-state model of 

a system meets a given specification [12]. The language for defining 

specifications should be descriptive enough to express the requirements 

sufficiently. Uppaal uses the query language based on computational tree logic  

(CTL ) [13] and uses mathematical notations to provide path evaluations using 

specific symbols. In Uppaal we have statistical, state, and temporal properties. 

Based on statistical properties UPPAAL can estimate the probability of statistical 

expression values. There are four types of statistical properties: quantitative, 

qualitative, comparison and probable value [14]. This work is more concerned 

about the other too property groups: temporal and state properties. When p and q 

are state properties, then there are five temporal properties that can be applied to 

them [15]: 
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1. E<>p - Possibly : there exists a path where eventually p holds.  

 

Figure 1. Possibly  

  

2. E[]p - Potentially always: there exists a path where p always hold

 

Figure 2. Potentially 

 

3. A<>p - Eventually: for all path p eventually holds  

 

Figure 3. Eventually 
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4. A[]p - Invariantly: for all path p always holds  

 

Figure 4. Invariantly 

1. p-->q - Leads to: for all path if p becomes true, also q will eventually become 

true 

 

Figure 5. Leads to 

 

Using these five notations, it is possible to easily verify state and temporal properties that 

are essential while building real-time safety-critical systems. The following three 

statements given below are the combination of state and temporal properties which are 

represented using the notations above.  

 Safety properties are the most important property for proving that the system 

never will be in a state where damage can happen. One of the most substantial 

property that Uppaal verifier can check is if the system is deadlock-free or not. In 

avionics, traffic control in aerospace, autonomous vehicle production etc., it is 

critically important to verify that the systems are deadlock-free.  
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 Liveness properties are used to prove that the system eventually reaches the 

desired state. An example of using liveness properties could be the elevator that 

is supposed to arrive eventually after a button press. 

 Reachability properties are used to verify the behaviours of the model. Uppaal for 

communication uses the channel synchronisation between sender and receiver.  

Moreover, using reachability properties, it is easy to check how synchronisation 

is happening. 

1.3 Motivation: 

The verification is an essential part while creating real-time safety-critical systems. 

Non-verified specific property can cause delayed testing, production, and in some cases, 

it could be a reason for developing an unsafe system. Stateflow is one of the languages 

that is a widely accepted tool for large-scale system development and the possibility of 

providing formal analysis while allowing the user to stick to the tool thy are used to is 

the main motivation for this thesis. Stateflow is easy-to use and simulation capabilities 

within Simulink make it a powerful design tool, however verification through 

simulation has the same limitations as testing in software development.  

1.4 Challenges 

There are several important differences between the semantics of Stateflow and 

UPPAALlanguages which make the translation complicated.. Stateflow semantics is 

very complex. It uses an event stack mechanism, while Uppaal does not support it. The 

execution of Stateflow models is entirely deterministic, where each transition has 

priority and guard represents the execution condition. On the contrary, Uppaal models 

contain non-determinism, and the guard represents only an enabling condition. 
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1.5 Research questions 

1) What are the benefits using Uppaal verification language over statflow models? 

2) How does the semantics of Stateflow elements trantslate to the semantics of 

UPPAAL model? 

3) How to synchronize the execution of translated elements in a way to maintain 

the behaviour of the model? 

4) How to represent deterministic behaviour of Statelflow model in Uppaal 

semantics, which is essentially probabilistic? 

 

2 Verification frameworks and theoretical background 

2.1 Verification Frameworks 

The paper [11] is one of the most popular Uppaal introductory tutorial which explores 

every element of Uppaal and explains the execution characteristics using several models. 

As the stability of the embedded software becomes more critical, the software verification 

tools are gaining more and more attention. The objective of the paper [16] is to compare 

model checking tools performance with respect to time. Authors focused on four different 

model checkers for study purpose: NuSMV, SPIN, UPAAL and PES. NuSMV is a model 

checking tool that uses binary decision diagrams. SPIN model checker uses linear 

temporal logic (LTL) [17] formulas for software models verification.  

The study uses eight different translation schemes from UML [18] activity model 

checker for comparing above mentioned tool performances. Paper presents algorithms 

for each type of the translation and graph analysis of the results. Authors focus on how 

much verification time was spent by each translation, they also present mean and 

median of verification times for every activity and emphasize offset variations for 

determining the best tool for UML activity model checker. 

Three different SPIN translations were used in the process of research. The study shows 

that all of three translations presented small difference between median and mean. 
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Overall process showed that channel based translation is less optimal in comparison 

with flat and variable-based ones, which have more or less similar performance. Two 

translations were defined for the model checker UPAAL: a centralized-control and 

distributed-control translation. It is notable that mean and median of the verification 

time are more similar in the distributed translation. Graphs show that the verification 

time is as well affected by the size of the activities. Results of this experiment shows 

that distributed translation has a better performance than a centralized one.  

As for the PES model checker, study showed that mean and median values are very 

similar, but unlike others the offset value remains constant in spite of the activity size. 

The verification time for the translation were twice longer that the UPAAL’s best time 

performance. 

Two translation schemes were used to evaluate the performance of the NuSMV model 

checker. Turned out that there is significant difference between flat and modular 

translations, as flat translation takes a lot less time for action completion. Overall in 

comparison with other model checkers NuSMV showed lowest performance. 

Authors present UPAAL distributed translation compared to SPIN variable based and 

PES translations. The difference is demonstrated in graph, displaying verification times 

for three of the abovementioned checkers. In overall performance of the UPAAL is the 

best compared two others. 

2.2 Related Work 

Several works are done using the Uppaal model checking tool for formal analysis and 

verification of safety-critical systems. The main emphasis on most of the papers is 

transforming Simulink models that are not containing the Stateflow tool. However, few 

works still address formal verification based on state machines, including Stateflow with 

a limited number of model elements. 

The paper [19] presents the approach of transforming Simulink blocks into UPPAAL 

Statistical model checker by illustrating two Brake-by-Wire and Adjustable Speed 

Limiter systems. They translated computational blocks and the other blocks which are 

defining the structure of the models are eliminated during the transformation. They 

presented pattern for discrete and continues blocks using three: Start, Offset, and Operate 

states. Where the start represents the initial starting point, offset is used to model the 
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delays of the system and the operate state is used to display the output of the system and 

also it represents the last state for the system. With combination of Uppaal property 

language they also used the temporal logic extension weighted metric to measure the 

probabilities of property satisfaction. Their work was motivated by the industrial need of 

developing brake and speed limiter systems with better verification possibilities. The 

paper covers important part of the Simulink tool and shows the usage of property 

language. The exact details of the transformation method are not described – and also not 

expected given that it is a paper rather than a research report. The translation of Stateflow 

models transformation is not investigated. Compared to this work, in our research we 

address the Stateflow model transformation and provide the mapping with an 

implementation for automatic translation.    

The paper [20] presents the approach of transforming the Safechart models into 

extended time automata (ETA). Safechart is one of the variants of Statecharts which is 

specifically created to maintain risk analysis for safety critical systems [21]. The 

presented research objectives are to understand: 

 How Safecharts can be translated in ETA in a way to maintain the specific safety 

semantic of Safecharts. 

 How safety properties can be chosen to be used for verification of Safechart 

models. 

 How to deal with the safety non-determinism that could be presented in 

Safecharts but isn’t desirable for safety-critical systems. 

To address these objectives, they created input language for defining complex 

hierarchical models and for decomposition of hierarchical states they developed 

flattening algorithm. To deal with the non-determinism they developed algorithm for 

risk level evaluation, and checked if there were any transition with unknown level of 

rick and implement transition prioritization. The SGM model-checking tool which for 

verification uses Time computational tree logic (TCTL) was used during the 

transformation.  Similarly to this paper, in the current work, the topic of translation 

between deterministic and non-deterministic is models raised. However, because of 

syntactic differences among used tools, the approach of dealing with none determinism 

in our paper is different from what is presented above. 
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The verification approach of a real-time train controller design presented in [22] is 

among the few articles which focus on translation from Simulink/Stateflow to Uppaal. 

The paper introduces the Uppaal runtime verification, explains importance of it and 

concentrates on translating six Stateflow elements: states, transitions, junction, actions, 

timers, and events. They identify two main challenges for their translation: 

1) Stateflow transition is driven by events. Execution of every event is in 

deterministic sequential order, and interruptible with stack. At the same time 

timed automata is executed in parallel, and driven by the channel 

synchronization without the support of stack. 

 

2) Stateflow supports hierarchy structure which is combined with recursive 

activation-deactivation mechanism, transitional action, and conditional action 

very closely. At the same time timed automata supports a single state. 

The paper addresses these complications by:  

 Creating a virtual stack  

 Implementing the state transformation rule: For a regular simple state without 

decomposition or attached actions, the transformation is straightforward. They 

just directly map simple Stateflow states to Uppaal timed automata. But for 

those complex Stateflow state with decomposition or attached actions, they used 

parallel cooperative templates. 

Overall, this article covers an important part of Stateflow elements. However, there are 

several missing elements like the different kinds of compositions, function box, 

temporal logic inside the actions and most importantly, there is no investigation of one 

of the main characteristic of Uppaal non – determinism [23]. One of the most significant 

differences between Stateflow and Uppaal models is that the execution of Stateflow 

models is entirely deterministic. The transitions have priorities, and a guard is 

considered an execution condition, while in Uppaal, a guard only represents the 

enabling condition. In figure 6, the change of a state from s1 to s2 is triggered when the 

guard condition is satisfied and time is equal to 10 units. In figure 7 corresponded 

Uppaal model is presented. If we neglect none determinism, we will get that when time 

is equal to 10, it is possible to go from s1 to s2, but it is not a strict execution condition. 

Furthermore, it gives different verification results rather than what is expected for the 

Stateflow model. To force the system to go from one state to another, it is needed to 

eliminate non-determinism from the model. 
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The example:  

 

Figure 6. Determistic Stateflow model 

 

 

Figure 7. Non-deterministic Uppaal model 

 

The first property is not satisfied because we have non-determinism in the above model 

(see Figure 7). It is possible for the system to stay in s1 state after 10 time units that’s 

why for all path the first condition is not satisfied (see Figure 8).  

 

 

Figure 8. Verification in Uppaal 

Compared to this paper, we address the translation of additional Stateflow elements. We 

go deeper in Stateflow compositions, develop mapping for or, and, and flow graph 

compositions, explore temporal actions in states and provide a pattern for representing 

deterministic behaviour in Uppaal. 
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2.3 Descriptions of the formalisms 

2.3.1 Description of the Stateflow language 

Stateflow is a modeling language and a tool in the MATLAB toolset for the modeling 

and simulation of decision logic using state machines [24] [25]. 

2.3.1.1 State modelling concepts 

 

Concept Definition 

Machine Top-level container of Sateflow elements within 

one model 

 

Chart A chart is the top-level object that has an explicit interface 

 (data and events). In Stateflow there exist also Subchart 

 

State A state describes an operating mode of a reactive system. In a Stateflow 

chart, states are used for sequential design to create state transition diagrams. 

States can be active or inactive. The activity or inactivity of a state can 

change depending on events and conditions. The occurrence of an event 

drives the execution of the state transition diagram by making states become 

active or inactive. At any point during execution, active and inactive states 

exist. 

 

State label The label for a state appears on the top left corner of the state rectangle with 

the following general format: 

State Name 

entry:entry actions 

during:during actions 

exit:exit actions 
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on event_name:on event_name actions 

on message_name:on message_name actions 

bind:events 

Transition A graphical element in a chart that can be used for connecting 

The states in char is transition 

 

Transition 

label 

A transition label can consist of an event or message, a condition, a condition 

action, and a transition action. Each part of the label is optional. The ? 

character is the default transition label. Transition labels have this overall 

format: 

event_or_message[condition]{condition_action}/transition_action 

Explicit event An event is a Stateflow object that can trigger actions in one of these objects 

and the explicit event is an event that you define explicitly 

Implicit event An implicit event is a built-in event. These events are implicit because there 

is no need to define them explicitely 

Actions State actions are instructions written inside a state and defines how a chart 

behaves during simulation 

Guard Guard is a condition added on the transition label. Condition should be 

satisfied to execute the transition and if the condition is satisfied the 

transition is executed.  

Junction Connective junctions are decision points in the system. 

Table 1 –Stateflow language concept 

2.3.1.1.1 Temporal logic concepts 

 

Concept Definition 

After Returns true if at least n units of time have elapsed since the associated state 

became active. Otherwise, the operator returns false. 

https://ch.mathworks.com/help/stateflow/ref/after.html
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Syntax: 

after (n,time_unit )  

n is a positive real number or an expression that evaluates to a positive real 

value. Time_unit is sec, msec, or usec. 

At Returns true if exactly n seconds have elapsed since the associated state 

became active. Otherwise, the operator returns false. 

Syntax: 

at (n,time_unit )  

n is a positive real number or an expression that evaluates to a positive real 

value. Time_unit is sec, msec, or usec. 

Before  Returns true if fewer than n units of time have elapsed since the associated 

state became active. Otherwise, the operator returns false. 

 

Syntax: 

before (n,time_unit )  

n is a positive real number or an expression that evaluates to a positive real 

value. Time_unit is sec, msec, or usec. 

Table 2 – Stateflow temporal logic concept 

2.3.2 Description of the Uppaal modelling language 

2.3.2.1 Concepts 

 

Concept Definition 

Template Parallel processes, is used to model small parts of a system  

Location Locations are the states of the system 

https://ch.mathworks.com/help/stateflow/ref/at.html
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Initial location State where the process starts 

Urgent location Time is not allowed to pass when the system is in this state 

Committed 

location 

The most restrictive location type. There must be at least one outgoing 

transition enabled and the transition is taken immediately. 

Invariant Conditions on locations which allows system to stay in the location until 

condition becomes false 

Rate of 

exponential 

Rate of clocks given by the general expression, used for statistical model 

checking.  

Edge Transition between locations 

Selection Allows to select a value from a range non-deterministically 

Guard Guard is a condition added on the transition. Condition should be satisfied 

to execute the transition, guard represents only enabling condition 

Synchronization Synchronisation is used for communication between processes, channels 

are the labels for synchronisation they send or receive signals. 

Update Update allows initializations and update of variables and function calls on 

the transition 

Weight Automata support branching edges where weights can be added to give a 

distribution on discrete transitions. 

Clock Clocks are real-valued integers, measured in real time units 

Table 3 – Uppaal language concept 
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3 An experiment to demonstrate the power of Uppaal query 

language  

Before starting the translation from Stateflow to Uppaal model checking tool, important 

part is to perform  the experiments and demonstrate the advantages of verification using 

a query language.  This section demonstrates usage of Uppaal and Stateflow for 

modelling a periodic traffic-light system. 

3.1 Problem statement for the experiment 

Model two traffic lights: three-color periodic traffic light for cars and a two-colour on-

demand traffic light for pedestrians. 

Demonstrate how to model and verify the following requirements: 

1. Green light for vehicles should be at least X ticks 

2. Vehicle should get a green light at least every Y ticks 

3.Pedestrian shall get green light no later than Z ticks after the button press 

4.The period for switching the lights is P (unless some other condition interferes, a colour 

stays on for P time units and is then switched)  

It is assumed that X <= P.        

3.1.1 The model of non-periodic traffic light systems.  

Scenarios to cover in the model: 

● Vehicle green 

○ Pedestrian pressed the button, time passed from switching green on is less 

than X → the system waits until X and then switches the light 

○ Pedestrian pressed the button, time passed from switching green on is 

equal or larger than X → the system switches to yellow immediately 
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○ Pedestrian pressed the button, time passed from switching green on is less 

than X, the button was already pressed before → the system waits until X 

and then switches the light 

○ Time X passed, the pedestrian did not press the button → system stays on 

green, no change 

○ Time P passed, the pedestrian did not press the button → system stays on 

green, no change 

● Vehicle yellow 

○ Pedestrian pressed the button → no change, the system is already waiting 

for red 

○ Time P passed → system switches to red 

● Vehicle red 

○ Pedestrian pressed the button → no change, the system is already at red 

○ Time P passed → system switches to green 

Dataset: 

X - minimum time for vehicle green: 20 time units 

Y - minimum period between two vehicle greens:  20 time units 

Z - maximum delay between button press and pedestrian green: 30 time units 

P - the period of each light to stay on: Min green for vehicle - 20 time units, Yellow for 

vehicle -10 time units, Red for vehicle -10 time units, Min red for pedestrian 30 time 

units. 

3.2 Models 

3.2.1 Modelling with Uppaal 

Main logic: 
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The presented non-periodic traffic light system’s state change is triggered by environment 

input when the pedestrian press the button. Depending of the time intervals between 

pressing there are several different execution paths (see Figure 9):  

1. The system gets the input from the environment of button pressed and the vehicle 

light is on green state and the time of being the green state for vehicle is less or 

equal to X  (20 time units ) . The system waits on green state, until the time of 

green state for vehicle becomes less or equal to 20 and then switches light to 

yellow.  

2. The system gets the input from the environment of button pressed and the vehicle 

light is on green state and the time of being the green state for vehicle is greater 

than X (20 time units) the system immediately switches to the yellow state.  

3. The system is in the yellow state and the pedestrian pressed the button. When the 

system is in the yellow state it won’t get any massage from the environment and 

the state stays on green state. After P (10 time units) the system switches to the 

red state.  

4. The vehicle light is in the red state and the pedestrian pressed the button. When 

the system for vehicle light is in the red state it won’t get any massage from the 

environment and after P (10 time units) the system switches to the green state for 

vehicle. 

5. The vehicle traffic light is on the green state and there is no input from the 

environment. The vehicle light stays on the green state. 
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Figure 9. Non-periodic traffic light system model in Uppaal 

 

 

3.2.1.1 Verification conditions 

The idea of this experiment is to show that the verification of safety and temporal 

properties using formal methods and specifically using Uppaal query language is efficient 

way (see Figure 10).  

1. A[]not deadlock: there is no deadlock in the model. 

2. A[] (not  (vehicle_light.green and ped_light.green )  ) : There is never green for 

pedestrians and cars at the same time. 

3. A[]ped_light.green imply  (time>=10 and time <=20 ) : Green for pedestrian will 

stay during 10 time units.  

4. A[]vehicle_light.wait imply  (time<=20 ) :  The green light for the vehicles stays 

on at least during 20 time units. If the pedestrian press in less than 20 time unit 
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interval the system goes to waiting state until 20 time units passes and then it goes 

from green to yellow state. 

5. E<>vehicle_light.wait and time>=20: There is no path where after 20 time units, 

from a pedestrian pressed the button, still will be the green state for vehicles. 

6. A[]vehicle_light.yellow imply  ( time<=10  ) : This condition with outgoing guard 

time==10 states that for all path after pedestrian press there will be yellow light 

exactly 10 time units.  

 

Figure 10. Verification in Uppaal 

Here is the log of the verification performance of Uppaal model checking. For example, 

to verify that the whole system is deadlock free it took less than one millisecond  (see 

Figure 11) .  

 

Figure 11. Performance of verification in Uppaal 
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3.2.2 Stateflow model 

 

Figure 12. Stateflow non-periodic traffic light system 

  

3.2.2.1 Verification conditions 

1) Light for pedestrians and for cars never is the green at the same time  

The inputs 1 and 2 on the graph represents vehicle and pedestrian traffic lights 

respectively.   

 

Figure 13. Simulink observer model  
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2) Green light for pedestrian will stay during 10 time units 

To prove this property there is need to create an additional subsystem in Simulink. 

 

Figure 14. Simulink observer model 

 

Figure 15. Stateflow model inside the observer 

Scope block for the verification: 

Scope contains three inputs 

1. Global clock  

2. Vehicle light types 

3. Pedestrian light types 

From the scope by manual counting we can verify: 

Previous two properties:  
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1. Light for pedestrians and for cars never is green at the same time: from the 

graphs it is shown that when the light for pedestrian is green the light for 

cars is red thought the whole sample time and visa-versa. 

2. When the light for the pedestrian gets the green it stays on green during 

10 seconds and then switches to red: from the graphs it is shown that after 

30 seconds the pedestrian light gets green and after 10 seconds it gets red. 

● At least during 20 time units there will be green for cars 

● Pedestrian gets the green light in at least 30 seconds 

  

 

 

Figure 16. Simulation in scope block  

The whole model contains a Stateflow chart where the main logic of traffic light system 

is specified. Additionally, there are created two subsystems for property verification and 

scope blocks to visually display the input and output values at a time.  
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Figure 17. Simulink whole none-periodic traffic light system 

3.3 Analysis of an experiment: 

In the presented experiment, the non-periodic traffic light system is constructed in both 

Simulink/Stateflow and in Uppaal modelling tools. The main focus of the experiment is 

to compare the verification performance of modelling tools on a simple non-periodic 

traffic light system. 

In the Stateflow model we used two methods to verify properties: first using observers 

conaining assertion blocks and the second using visually observable scope blocks. 

1) The Assertion block checks whether any of the elements of the input signal are 

zero. If all of the elements are nonzero, the assertion is accurate, and the block 

does nothing. If not, the block halts the simulation and returns an error message 

by default. To implement the verification using assertions, subsystem blocks were 

created in which the verification logic using different Simulink blocks were 

modelled (see Figure 14 and figure 15) . The main disadvantage of verification 

using assertion blocks is that it is laborious – you have to construct a model for 

each situation. Verifying one single property requires creating a subsystem with 

logic inside, which sometimes is more complex than creating the model itself. 
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2) The second method using scope blocks hardly can be considered as a verification. 

Scopes are mainly used to visualize simulation data and observe it. They are a 

helper tool for verification by human – as you do not describe what you want from 

the system you cannot expect that there is an error message or trace provided.  

Using UPPAAL, the verification is much efficient and straightforward. As there is no 

dedicated query language for describing properties in Simulink, the only possibility to 

describe the verified properties is to construct another model – an observer. Compared to 

the Simulink/Stateflow, Uppaal can verify safety and temporal properties using a one-line 

query language containing mathematical notations. Based on the experiment, Uppaal 

showed better capabilities of verifying the safety and temporal properties. 
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4 The proposed Solution 

4.1 EMF metamodel for Uppaal 

In developing the translation from Stateflow to the Uppaal model, one of the subtasks 

was to develop an EMF metamodel (see Figure 18) for manipulating elements of the 

Uppaal model. Similar metamodel for reading Stateflow model was existing before and 

the goal was to use similar technology for working with both Stateflow and Upaal. The 

EMF framework provides full automation for generating the Java for working with model 

elements and for reading/writing XMI files with the model. 

As a starting point, we used an open-source metamodel given in in the Uppaal 

documentation [26]. Unfortunately, the published version of the metamodel was not 

compatible with the current version of Uppaal (the last commit to the repository was made 

at 2016).  In order to make generated XMI files readable by Uppaal, all the classes except 

NamedElement, Transition, and Template classes were newly added. Also some of the 

features in the metamodel needed special tuning to get them serialized exactly in the 

format Uppaal expected while reading the file. 
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Figure 18:  EMF metamodel for Uppaal 
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4.2 The translation workflow 

The translation from Stateflow to Uppaal models has been developed beseed on EMF 

metamodels. For both tools, Java classes and methods have been generated. The process 

flow is the following: export Stateflow model in xmi form, import it in eclipse modelling 

framework, read the model, modify elements and map them to Uppaal elements using 

classes and methods generated from metamodel. Finally, export the data in XML form 

(See Figure 19) .  

 

Figure 19. Translation block schema 
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4.3 Mapping from Stateflow to Uppaal 

4.3.1 State  

4.3.1.1 Mapping 

 

Stateflow 

concept 

Uppaal concept Example 

Empty state Location State_1 

Entry action Update on incoming edge of the location State_1 

During 

action 

Self-transition with an update State_1 

Exit action Update on outgoing edge from the location State_1 

Composite 

state 

Parallel templates State_2 

Table 4 – State Mapping 

4.3.1.2 Empty state 

Empty Stateflow states can be translated as locations in the Uppaal model 

4.3.1.3 State actions 

Stateflow state can contain, entry, during, and exit while Uppaal is not supporting the 

same representation.  

1. Translate entry action 

a. To translate the entry action of state, one of the ways is to add the entry 

condition as an update in the incoming transition of the Uppaal model. 

2. Translate during action 

a. During action is executed when the state is active and there is no valid 

outgoing transition. To translate the during action in Uppaal first it’s needed 

to split translation into following cases:   

i. Outgoing transition with empty condition - Transition without any 

condition or event is always valid outgoing transition. In that case 
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action is never executed. That’s why if outgoing transition is free 

from conditions and events, translating during action can be omitted. 

ii. Outgoing transition with condition: To translate during action when 

outgoing transition has condition one of the ways is to create self-

loop with committed location. Using self-loop, the value in during 

action will get updated until the outer transition will get valid. When 

the condition of outer transition will get valid the state still will stay 

with two valid outer transitions. Compared to Stateflow in Uppaal 

transitions are not prioritized and they can execute non-

deterministically. To avoid executing self-transition it’s needed to 

add the negation of guard condition that got enabled after executing 

during action.  

3. Translate exit action 

a. Exit action in Stateflow is executed when the system leaves the state. So, 

when outer transition from state is executed the value of exit action is also 

executed. To represent this behaviour in Uppaal model one of the ways is to 

update the value on outer transition of the state 

 

 

Example: State_1 

Description 

When s1 state is enabled output value is incremented and because there is no valid 

outgoing transition enabled for s1 state the during action is executed. When count is 3 

and condition is satisfied, the transition between s1 and s2 is executed which also means 

that the exit action is executed and the system goes from s1 to s2 with updated values. 
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Figure 20. Stateflow example model for states 

 

 

Figure 21. Uppaal example model for states 

 

4. Superstates 

a. Stateflow models are often presented with composite states. Composite state is 

composed of super-states and sub-states. In Uppaal there are no composite states 

but they can be represented  using parallel templates and channel 

synchronisation. States which are directly connected to each other create parallel 

templates and communication between them is based on channel 

synchronization. 
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Example: State_2 

 

 

Figure 22. Stateflow example model for Superstates 

 

Every state that are directly connected to each other create new templates. 

 

Figure 23. Uppaal example model for Superstates 

 

 

 

 



43 

4.3.2 Transition 

4.3.2.1 Mapping 

Stateflow concept Uppaal concept Example 

Default transition  

(no guard or event ) 

Default location with transition State_1 

Transition with event New template for event with channel 

synchronisation 

Transition_2    

Transition with 

guard 

Guard + Invariant Transition_1    

Transition with 

action 

Assignment Transition_2    

Table 5 – Transition Mapping 

4.3.2.2 Default transition 

a. The default transition which does not contain any labels  (events, guards, 

assignments )  can be translated as an initial location of a state which has 

an inner default transition and the state pointing to the  

Example: 

 

b. The default transition which contains any labels (e.g assignment )  can be 

represented by adding initial location to the Uppaal model and translating 

transition between initial location and the location that represents the 

state with inner default transition.  

Example: 

4.3.2.3 Transition between states 

c. A Stateflow transition which is between two states and doesn’t contain 

any events or guard conditions, in Stateflow is executed immediately 

after processing the state actions is completed. In Uppaal the activation 

of a transition without guard and synchronisation is not determined -- it 

can happen any time. To present the same behaviour that Stateflow 

model has we need to force the system to leave the location. One of the 
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ways to execute transition directly in Uppaal is to make the location, 

from where the outer transition is unconditional, committed.  

4.3.2.4 Transition with guard 

4.3.2.4.1 Guard with time constraints 

In Uppaal, time constraints are represented as clocks. To translate the guard condition 

with timing behaviour following steps should be done: 

1. Clocks should be created in Uppaal 

2. Guard should be created with clocks in the corresponded transition 

3. To make the model probabilistic, the invariant that is less or equal to the guard 

condition should be added to the location which has an outer transition with 

guards of timing constraints. 

4.3.2.4.2 Guard without time constraints: 

Sometimes in Stateflow the value of guard condition is given by computational value 

which isn’t connected to real value clocks.  To translate the guard condition without 

timing behaviour following steps should be done (see Figure 24): 

1. Declare variable type of guard in global declaration  

2. Create self-loop with guard representing negation of all guard conditions on 

outgoing transitions 

Example Transition_1   

 

Figure 24. Uppaal example for guard with time constraint 

4.3.2.5 Transition with events  

In Uppaal the events are modelled through the concept of channel synchronisation. In 

Stateflow the execution of transitions happens when the event on transition is triggered. 

To represent the same behaviour in Uppaal one of the ways is to create separate 

templates for every event presented in Stateflow and make synchronisation between 

processes.   

Example Transition_2      
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Figure 25. Stateflow example model for Explicit Events 

The corresponding Uppaal model with two events template and synchronisation 

mechanism.  

 

 

Figure 26. Uppaal example model for Explicit Events 
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4.3.2.5.1  Complex event logic: 

 

In Stateflow events on the transition can be presented in a complex way. For example: 

e1|e2|e3. Based on the example presented in part a )  events can be translated as separate 

templates. But in Uppaal it’s not supported to represent synchronisation with composite 

logic. We need to take into account that the transition in case of Stateflow based on the 

example is executed when one of the following cases is triggered  

1. e1  

2. e2  

3. e3  

4.  (e1 and e2 )  

5.  (e1 and e3 )  

6.  (e2 and e3 )  

 One of the ways to represent this behaviour in Uppaal is to make templates for all 

possible scenarios. If the number of events separated with or logic is n to cover all 

possible scenarios in Uppaal it’s needed to create templates which number is calculated 

from the following formula where the n represents number of events: 

 

 

 

4.3.2.5.2 Transition with an update 

 

Update element on transition is conceptually the same as Uppaal assignment. That’s 

why the Update can be directly translated as assignment in Uppaal. 

4.3.3 Junctions 

In Stateflow connective junctions are decision points in the system. When the system is 

on the junction state the system is not staying on the junction and immediately leaves 

the junction state. 

If outgoing transitions of junctions are not executed junctions have backtrace behaviour 

which means that the system is staying in the previous state before the junction.   

The junctions are executed in the following cases: 

1. On outer transition there is no condition 

2. On outer transition there is guard condition  
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In Uppaal there is no direct representation of the junction. One of the possible ways to 

represent it is using committed location. 

To represent the Stateflow junctions in Uppaal the following manipulations should be 

done: 

Translate all junction state as committed location 

Check if the junction’s outer transition contains the guard or not  

1. Junction followed by the transition without guard condition: 

a. There is no need to consider backtrace behaviour of junction because if 

there is no condition on junction’s outer transition executes 

straightforwardly. 

2. Junction followed by the transition with guard condition: 

a. In Stateflow when junction is followed with conditional transition if 

condition is not true time is freezed and system stays in the previous state 

before the transition. That’s the backtrace behaviour of the junction. To 

represent the same behaviour in Uppaal one of the ways is to add 

transition that goes on previous state and on this transition put the 

negation of all conditions.   

    

Example: Junction_1 

 

 

Figure 27. Stateflow example model for a Juncion 
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In the Uppaal model the committed state represents the junction which goes to the 

previous state if the conditions on outer transition to the next state are not true (see 

Figure 28).  

 

Figure 28. Uppaal example model for a Juncion 

4.3.4 Transition prioritization 

Stateflow models are fully probabilistic, which also applies to transition execution order. 

In Stateflow every transition has prioritization number to determine which transition 

should be taken.  

After starting the simulation of bellow Stateflow model s1 state is activated and the 

systems checks if condition of the transition with the priority number one is satisfied if 

not only after checks the condition on the second transition (see Figure 29).  

To represent the same behavior in Uppaal tool the negated condition value of first 

transition needs be added as a guard condition to the second transition (see Figure 30). 
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Example: Transition prioritization1 

 

Figure 29. Staateflow example for probabilistic execution flow 

 

Figure 30. Uppaal example for probabilistic execution flow 

 

4.3.5 Temporal logic 

4.3.5.1 Mapping 

Stateflow Concept Uppaal concept Example 

After  (n, time_unit )  Guard “time” as clock (greater than 

n )  + invariant (less or equal to 

n+1) 

Temporal_logic1 

 

Before  (n, time_unit )  Guard “time” as clock (less than  n 

)  + invariant (less than n) 

Temporal_logic1 

 

After  (n, implicit_event ) Guard “implicit_event” as clock 

(greater than n )  + invariant (less or 

equal to n+1) 

Temporal_logic2 

 

https://ch.mathworks.com/help/stateflow/ref/after.html
https://ch.mathworks.com/help/stateflow/ref/after.html
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Before (n, implicit_event ) Guard “implicit_event” as clock 

(less than  n )  + invariant (less than 

n) 

Temporal_logic1 

 

At (n, implicit_event ) Guard “implicit_event” as clock 

(equal to n )  + invariant (less or 

equal to n) 

Temporal_logic2 

 

After  (n, explicit_event ) Guard variable form  

“emplicit_event” template (greater 

than n )  + invariant (less or equal to 

n+1) 

Temporal_logic3 

 

Before (n, explicit_event ) Guard variable form  

“emplicit_event” template (less 

than  n )  + invariant (less than n) 

Temporal_logic3 

 

At (n, explicit_event ) Guard variable form  

“emplicit_event” template (equal to 

n )  + invariant (less or equal to n) 

Temporal_logic3 

 

Table 6 – Temporal Logic Mapping 

4.3.5.2 Absolute time temporal logic  

In Uppaal, absolute time constraints can be represented as clocks, but to maintain the 

same Stateflow behaviour, additional modifications are needed. 

4.3.5.2.1 After (n, time_unit )  

To translate “After (n, time_unit )”  following steps should be done: 

1. Create clock variable  

2. Transform After (n, time_unit ) as a guard condition with clock variable is 

greater than n  

3. To remove time non-determinism, add clock variable less or equal to n+1 as 

invariant to the location  

4. Update clock value to 0 to maintain the feature of incrementing absolute time 

towards the state. 

4.3.5.2.2 Before (n, time_unit)  

To translate the Before (n, time_unit) following steps should be done: 

https://ch.mathworks.com/help/stateflow/ref/after.html
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1. Create clock variable  

2. Transform Before (n, time_unit)  as the guard condition with clock variable less 

than n  

3. To remove time non-determinism, add clock variable less then n as invariant to 

the location  

4. Update clock value to 0 to maintain the feature of incrementing absolute time 

towards the state [6].  

Example: Temporal_logic1 

 

Figure 31. Stateflow example for temporal logic with absolute time 

 

 

Figure 32. Uppaal example for temporal logic with absolute time 
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4.3.5.3 Temporal logic with implicit event  

In Uppaal, there is no direct representation of temporal logic with an implicit event. We 

use one of the most popular implicit event tick and present the transformation approach. 

4.3.5.3.1 After (n, tick)  

To translate After (n, tick) following steps should be done: 

1. Create clock variable  

2. Transform After (n, tick) as a guard condition with clock variable is greater than 

n  

3. To remove time non-determinism, add clock variable less or equal to n+1 as 

invariant to the location  

4. Update clock value to 0 to maintain the feature of incrementing absolute time 

towards the state. 

4.3.5.3.2 Before (n, tick)  

To translate the Before (n, tick) following steps should be done: 

1. Create clock variable  

2. Transform Before (n, tick) as the guard condition with clock variable less than n  

3. To remove time non-determinism, add clock variable less then n as invariant to 

the location  

4. Update clock value to 0 to maintain the feature of incrementing absolute time 

towards the state. 

4.3.5.3.3 At (n, tick)  

 To translate the At (n, tick) following steps should be done: 

1. Create clock variable  

2. In the place of At (n, tick) place the guard condition with clock variable equal to 

n  

3. Add invariants to the location to eliminate time non-determinism 

4. Update clock value to 0.  
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Example: Temporal_logic2 

 

 

Figure 33. Stateflow example for temporal logic with an implicit event 

 

 

Figure 34. Uppaal example for temporal logic with an implicit event 

 

 

4.3.5.4 Temporal logic with explicit event  

In Uppaal, there is no direct representation of temporal logic with an explicit event and 

it’s not possible to represent it using clock, because event occurrence isn’t based on real 

time value.  

4.3.5.4.1 After (n, event_name)  

To translate the After (n, time_unit )  following steps should be done: 

1. Create new template for event and update variable on self-loop. 
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2. In the place of Before (n, event_name) place the above variable as guard with 

condition variable greater than n  

3. To eliminate flow non - determinism, make location committed with self-loop of 

negated all outgoing transition 

4. Update clock value to 0 

4.3.5.4.2 Before (n, event_name)  

To translate the Before (n, time_unit )  following steps should be done: 

1. Create new template for event and update variable on self-loop. 

2. In the place of Before (n, event_name) place the above variable as guard with 

condition variable less than n  

3. To eliminate flow non - determinism, make location committed with self-loop of 

negated all outgoing transition 

4. Update clock value to 0 

4.3.5.4.3 At (n, event_name)  

To translate the At (n, event_name) following steps should be done: 

1. Create new template for event and update variable on self-loop. 

2. In the place of Before (n, event_name) place the above variable as guard with 

condition variable equal to n 

3. To eliminate flow non - determinism, make location committed with self-loop of 

negated all outgoing transition 

4. Update variable value to 0 

 

 

Example: Temporal_logic3 

 

 

Figure 35. Stateflow example for temporal logic with an explicit event 



55 

 

Figure 36. Uppaal example for temporal logic with an explicit event  

 

 

 

 

4.3.6 And composition 

Stateflow supports the modelling of different kinds of compositions. Two primary types 

of compositions are or and and compositions. In all the previous examples, only or 

composition has been used. However, in this section, we investigate how and 

composition can be represented in Uppaal model checking tool. 

The difference between these two compositions is in state execution manner. In "or 

composition", states are executed sequentially, where only one state inside a chart could  

be active at a time, while in and composition, activation of states happens in parallel 

and the several states could be active simultaneously. 

After starting the simulation of Stateflow model s1, s11, s2, and s21, states getting 

active simultaneously (see Figure 37). To present the same behaviour in Uppaal, the 

following steps should be done: 

1.    Translate and and or compositions as templates 

2.    Create an additional template for synchronisation 
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3.    Add broadcast channel synchronisation to maintain the correct execution order of 

created elements 

When the simulation of the Uppaal model starts "activateAndComposition" template 

sends the synchronisation message to other templates, and the s1, s11, s2, and s21 states 

get activated simultaneously (see Figure 38). 

 

Example: And_composition1 

 

Figure 37. Stateflow example model for And composition 

 

 

Figure 38. Uppaal example model for And composition  
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5 Verification of the translation 

5.1 Case study 

The proposed mapping pattern for translating from Stateflow to Uppaal models is tested 

on different case study models. The details of transformation of models is given by two 

specific case study models described below.  

5.1.1 Model 1: 

The elements of Stateflow model (See Figure 39): 

 Or composition 

 State with actions 

 State with more than 1 outgoing transitions with prioritization 

 Junction  

 

The state change of the given model is triggered by the value of Y1 and condition 

statement. Model contains three types of state actions and transition prioritization. For 

example, when the system is in the s1 state the condition on transition of first priority is 

checked and if it’s not satisfied then the system checks the condition of the second 

transition. 

After applying the mapping (section 4.3) we get the Uppaal model (See Figure 40) 
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Figure 39. Case study model 1 in Stateflow 

 

 

 

 

Figure 40. Case study model 1 in Uppaal 
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5.1.2 Model 2 

The elements of Stateflow model (See Figure 41): 

 Or composition 

 End composition 

 State actions with temporal logic 

 Implicit event 

 Supercharts 

 Junction  

 Integer array 

From the start of the model simulation, s1, s11, s2, and s21 states are getting active 

simultaneously, and the state actions are executed based on temporal logic represented 

with an explicit event. Besides state actions, temporal logic is also presented as a 

condition on transition. For example, the system from s21 to s22 state moves when the 

guard condition on transition is satisfied, which happens exactly the “In1+1” tick. 

After applying the mapping (section 4.3) we get the Uppaal model (See Figure 42) 

 

 

Figure 41. Case study model 2 in Stateflow 
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Figure 42 . Case study model 2 in Uppaal 

 

 

 

6 Conclusion 

6.1 Summary 

MDE is widely used in developing real-time safety-critical systems where verification 

plays a vital role in maintaining system safe and liveness.  One of the widely used MDE 

tools, Stateflow, cannot verify temporal, safety, and liveness properties and creates the 

need for a better verification tool. For that purpose, in this paper, we present an approach 
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for translating Stateflow models to the Uppaal model checking tool. Uppaal model 

checking tool uses the theory of time automata and its query language, which represents 

the sufficient base for the verification. 

In the process of developing the thesis a lot of models in both Stateflow and Uppaal were 

created. Before moving to the translation, the approach thesis presents one of thise 

experiments: a non-periodic traffic light system modelled in both Stateflow and Uppaal 

and presents the advantages of verification capabilities of the Uppaal model-checking 

tool. 

The main goal of this work was first to analyse the advantages of the verification language 

of the Uppaal model checking tool, secondly to create the translation. The process of 

translation is divided into two main parts. First, an EMF metamodel for Uppaal described 

in section 4.1, which is used as an intermediate layer for manipulating Uppaal elements. 

Second, the mapping rules are described in section 4.3. The algorithm automating the 

translation from Stateflow to Uppaal model was developed based on those two 

components of translation. The verification of the proposed approach is demonstrated 

using example models from which two are presented in the chapter 5. 

6.2 Future work 

While working on this research, many experiments were performed, and many models 

with different variety of elements were translated. However, because of limited time the 

verification of the whole mapping stayed out of the scope of this research.  Additionally, 

because the approach is not tested on large scale models, there is no proof about the 

translated model complexity represented in the Uppaal.  

Another important aspect that remained outside the scope of this thesis and has to be 

developed further is the approach of defining verification conditions in Simulink model. 

Using a property language that enables to specify the contracts in earlier stage would 

potentially allow to hide Uppaal form the user for simpler models.   

To sum up, this thesis can be considered a starting point of future research on developing 

verification using formal methods on a large scale Stateflow models and additionally, the 

paper can be used as a baseline for translating other Simulink blocks into the Uppaal 

model checking tool. 
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