
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mariam Mikava 195355IVSM

Conversion from Stateflow to Uppaal Model

Master's thesis

Supervisor: Tonu Naks

 MSc

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mariam Mikava 195355IVSM

Stateflow mudelite teisendamine Uppaal'i

mudeliteks

Magistritöö

Juhendaja: Tonu Naks

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mariam Mikava

10.05.2021

4

Abstract

Model Driven Engineering (MDE) is widely used in software development, in particular

for development of safety-critical systems. Simulink and Stateflow are often used for

developing control systems. While providing excellent, easy to use tools for composing

the models and for simulation, the formal analysis capabilities are limited both in

Simulink and Stateflow.

This thesis, investigates the possibility of formal verification of Stateflow models by

converting them into the Uppaal model checking tool. Firstly, we do an experiment for

demonstrating the advantages of the Uppaal verification language. Then, we create a

Uppaal EMF metamodel as an intermediate layer for manipulating Uppaal elements

during the translation and, finally, map Uppaal elements to the Stateflow elements. The

thesis also provides the translation of different Stateflow modelling patterns and

investigates how to represent fully deterministic Stateflow semantics in essentially non-

deterministic of Uppaal models. The approach is verified by two example models.

This thesis is written in English and is 66 pages long, including 6 chapters, 42 figures and

6 tables

5

List of abbreviations and terms

MDE: Model driven engineering... 4

GUI: Graphical user interface ... 12

API: Application Programming Interface .. 13

CTL: Computational tree logic .. 13

EMF: Eclipse modelling framework ... 13

ETA: Extended time automata .. 19

TCTL: Time computational tree logic ... 19

UML: Unified Modeling Language ... 17

6

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

List of abbreviations and terms .. 5

Table of contents .. 6

List of figures ... 8

List of tables ... 10

1 Introduction ... 11

1.1 Research goal .. 12

1.2 The verification language of Uppaal .. 13

1.3 Motivation: ... 16

1.4 Challenges .. 16

1.5 Research questions ... 17

2 Verification frameworks and theoretical background ... 17

2.1 Verification Frameworks .. 17

2.2 Related Work .. 18

2.3 Descriptions of the formalisms ... 22

2.3.1 Description of the Stateflow language .. 22

2.3.2 Description of the Uppaal modelling language ... 24

3 An experiment to demonstrate the power of Uppaal query language 26

3.1 Problem statement for the experiment .. 26

3.1.1 The model of non-periodic traffic light systems. .. 26

3.2 Models .. 27

3.2.1 Modelling with Uppaal .. 27

3.2.2 Stateflow model ... 31

3.3 Analysis of an experiment: ... 34

4 The proposed Solution ... 36

4.1 EMF metamodel for Uppaal ... 36

4.2 The translation workflow .. 38

4.3 Mapping from Stateflow to Uppaal .. 39

7

4.3.1 State ... 39

4.3.2 Transition ... 43

4.3.3 Junctions .. 46

4.3.4 Transition prioritization ... 48

4.3.5 Temporal logic ... 49

4.3.6 And composition ... 55

5 Verification of the translation .. 57

5.1 Case study ... 57

5.1.1 Model 1: ... 57

5.1.2 Model 2 .. 59

6 Conclusion ... 60

6.1 Summary ... 60

6.2 Future work... 61

References .. 62

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 66

8

List of figures

Figure 1. Possibly ... 14

Figure 2. Potentially ... 14

Figure 3. Eventually ... 14

Figure 4. Invariantly ... 15

Figure 5. Leads to ... 15

Figure 6. Determistic Stateflow model ... 21

Figure 7. Non-deterministic Uppaal model .. 21

Figure 8. Verification in Uppaal ... 21

Figure 9. Non-periodic traffic light system model in Uppaal... 29

Figure 10. Verification in Uppaal ... 30

Figure 11. Performance of verification in Uppaal .. 30

Figure 12. Stateflow non-periodic traffic light system ... 31

Figure 13. Simulink observer model .. 31

Figure 14. Simulink observer model .. 32

Figure 15. Stateflow model inside the observer ... 32

Figure 16. Simulation in scope block ... 33

Figure 17. Simulink whole none-periodic traffic light system 34

Figure 18: EMF metamodel for Uppaal .. 37

Figure 19. Translation block schema .. 38

Figure 20. Stateflow example model for states .. 41

Figure 21. Uppaal example model for states .. 41

Figure 22. Stateflow example model for Superstates ... 42

Figure 23. Uppaal example model for Superstates ... 42

Figure 24. Uppaal example for guard with time constraint .. 44

Figure 25. Stateflow example model for Explicit Events ... 45

Figure 26. Uppaal example model for Explicit Events .. 45

Figure 27. Stateflow example model for a Juncion .. 47

Figure 28. Uppaal example model for a Juncion .. 48

Figure 29. Staateflow example for probabilistic execution flow.................................... 49

9

Figure 30. Uppaal example for probabilistic execution flow ... 49

Figure 31. Stateflow example for temporal logic with absolute time 51

Figure 32. Uppaal example for temporal logic with absolute time 51

Figure 33. Stateflow example for temporal logic with an implicit event 53

Figure 34. Uppaal example for temporal logic with an implicit event 53

Figure 35. Stateflow example for temporal logic with an explicit event 54

Figure 36. Uppaal example for temporal logic with an explicit event 55

Figure 37. Stateflow example model for And composition .. 56

Figure 38. Uppaal example model for And composition .. 56

Figure 39. Case study model 1 in Stateflow ... 58

Figure 40. Case study model 1 in Uppaal ... 58

Figure 41. Case study model 2 in Stateflow ... 59

Figure 42 . Case study model 2 in Uppaal .. 60

10

List of tables

Table 1 –Stateflow language concept ... 23

Table 2 – Stateflow temporal logic concept ... 24

Table 3 – Uppaal language concept .. 25

Table 4 – State Mapping ... 39

Table 5 – Transition Mapping .. 43

Table 6 – Temporal Logic Mapping ... 50

11

1 Introduction

Modelling real-time safety-critical systems have a vital role in developing high quality,

safe and liveness systems with minimal cost. Model-Driven Engineering (MDE) is widely

used to create safety-critical designs, for example, in avionics, air traffic management,

autonomous vehicle, etc. MDE is particularly useful because it supports the designing,

validation and verification of safety-critical systems [1]. Simulink and Stateflow

graphical tools are very popular MDE tools for modelling critical systems [2]. Simulink

for verification uses Simulink Design Verifier and Simulink Polyspace [3]. They are

responsible for detecting design and implementation errors. As a result, they can

successfully reveal blocks in the model that result in integer overflow, dead logic, array

access violations, and division by zero. Simulink design verifier can formally verify that

the design meets functional requirements. However, it is not able to deal with real-time

complex temporal properties [4][5]. That is why developing new verification

technologies for the Simulink/Stateflow models has a vital role in maintaining a system

safe, liveness and reduce the production cost using early-stage verification.

The popularity of MDE is increasing, and therefore the systems modelled using MDE

tools are getting more complex. For instance, the Stateflow graphical modelling language

semantics is given by 886 pages long document [6][7]. Stateflow and Simulink are often

used in the modelling of safety-critical systems where potential failure can have fatal

results. That’s why the needs for better verification methods for Simulink/Stateflow

models are increasing. Formal methods are preferred given that unlike simulation-based

verification, they provide guarantees for the correctness of checked properties [8].

Timed-automata is a powerful concept for modelling and verifying real-time systems,

providing a good basis for formal verification. Timed automata is an automation

containing a finite set of nodes and is extended with real-valued variables. One of the

modelling and verification tools providing model checking capabilities based on the

theory of time automata is Uppaal [9].

12

Uppaal is a model checking tool used for modelling, validation and verification of real-

time systems. The tool contains two main parts a graphical user interface (GUI) and a

model checker engine. The GUI of the Uppaal version used in this thesis (4.1.24) provides

the support of the following elements [10][11]:

 Editor – Construction of the model

 Simulator – Provides both guided and random simulation with displayed trace

and updated values of global and local variables

 Concrete simulator – Each step of the simulation is better shown at a specific time

unit

 Verifier - The main power of the tool provides the possibility to verify essential

properties of the model and can detect and generate counter example which

significantly simplifies the error identification process

. This thesis is seeking for possibilities of verifying time-based requirements. In Stateflow

such verification can be done by simulation which has the same limitations as software

testing. The verifier has to find scenarios that may lead to requirement violation and

compose test/simulation according to this scenario. In the Uppaal model-checking tool,

the verification of temporal properties is naturally available. The Uppaal query language

simplifies describing the safety and liveness properties of the model and verifying them

using model-checker. This thesis assumes that automatic conversion from Stateflow

models into a Uppaal model checking tool will make the timing analysis available for

Simulink users.

1.1 Research goal

The main goal of this thesis is to create a converter that automatically translates Stateflow

models into the Uppaal model checking tool and gives the possibility for property

verification using the Uppaal query language. For achieving the primary goal, it is

essential to address the following concrete goals:

 Analyze the usefulness of translation from Stateflow to Uppaal models by running

the experiments to compare the verification capabilities of both modelling tools.

13

 Create a Uppaal EMF metamodel representing element types of the Uppaal model

[2]. The metamodel will be used for creating an intermediate layer for

manipulating the model elements before recording them in the file for the Uppaal

model checking tool. The approach makes it simpler to extract data from Uppaal

and map it to Stateflow’s API, respectively.

 Develop a mapping between selected subset of Stateflow elements and

corresponding Uppaal model constructs.

 Implement an automatic translation from Stateflow to Uppaal model checking tool

by developing an algorithm for the mapping.

 Verify the mapping rules on selected example models. Full verification of all the

mapping element remains outside of the scope of this thesis.

1.2 The verification language of Uppaal

The main reason for using a model-checking is to verify whether a finite-state model of

a system meets a given specification [12]. The language for defining

specifications should be descriptive enough to express the requirements

sufficiently. Uppaal uses the query language based on computational tree logic

(CTL) [13] and uses mathematical notations to provide path evaluations using

specific symbols. In Uppaal we have statistical, state, and temporal properties.

Based on statistical properties UPPAAL can estimate the probability of statistical

expression values. There are four types of statistical properties: quantitative,

qualitative, comparison and probable value [14]. This work is more concerned

about the other too property groups: temporal and state properties. When p and q

are state properties, then there are five temporal properties that can be applied to

them [15]:

14

1. E<>p - Possibly : there exists a path where eventually p holds.

Figure 1. Possibly

2. E[]p - Potentially always: there exists a path where p always hold

Figure 2. Potentially

3. A<>p - Eventually: for all path p eventually holds

Figure 3. Eventually

15

4. A[]p - Invariantly: for all path p always holds

Figure 4. Invariantly

1. p-->q - Leads to: for all path if p becomes true, also q will eventually become

true

Figure 5. Leads to

Using these five notations, it is possible to easily verify state and temporal properties that

are essential while building real-time safety-critical systems. The following three

statements given below are the combination of state and temporal properties which are

represented using the notations above.

 Safety properties are the most important property for proving that the system

never will be in a state where damage can happen. One of the most substantial

property that Uppaal verifier can check is if the system is deadlock-free or not. In

avionics, traffic control in aerospace, autonomous vehicle production etc., it is

critically important to verify that the systems are deadlock-free.

16

 Liveness properties are used to prove that the system eventually reaches the

desired state. An example of using liveness properties could be the elevator that

is supposed to arrive eventually after a button press.

 Reachability properties are used to verify the behaviours of the model. Uppaal for

communication uses the channel synchronisation between sender and receiver.

Moreover, using reachability properties, it is easy to check how synchronisation

is happening.

1.3 Motivation:

The verification is an essential part while creating real-time safety-critical systems.

Non-verified specific property can cause delayed testing, production, and in some cases,

it could be a reason for developing an unsafe system. Stateflow is one of the languages

that is a widely accepted tool for large-scale system development and the possibility of

providing formal analysis while allowing the user to stick to the tool thy are used to is

the main motivation for this thesis. Stateflow is easy-to use and simulation capabilities

within Simulink make it a powerful design tool, however verification through

simulation has the same limitations as testing in software development.

1.4 Challenges

There are several important differences between the semantics of Stateflow and

UPPAALlanguages which make the translation complicated.. Stateflow semantics is

very complex. It uses an event stack mechanism, while Uppaal does not support it. The

execution of Stateflow models is entirely deterministic, where each transition has

priority and guard represents the execution condition. On the contrary, Uppaal models

contain non-determinism, and the guard represents only an enabling condition.

17

1.5 Research questions

1) What are the benefits using Uppaal verification language over statflow models?

2) How does the semantics of Stateflow elements trantslate to the semantics of

UPPAAL model?

3) How to synchronize the execution of translated elements in a way to maintain

the behaviour of the model?

4) How to represent deterministic behaviour of Statelflow model in Uppaal

semantics, which is essentially probabilistic?

2 Verification frameworks and theoretical background

2.1 Verification Frameworks

The paper [11] is one of the most popular Uppaal introductory tutorial which explores

every element of Uppaal and explains the execution characteristics using several models.

As the stability of the embedded software becomes more critical, the software verification

tools are gaining more and more attention. The objective of the paper [16] is to compare

model checking tools performance with respect to time. Authors focused on four different

model checkers for study purpose: NuSMV, SPIN, UPAAL and PES. NuSMV is a model

checking tool that uses binary decision diagrams. SPIN model checker uses linear

temporal logic (LTL) [17] formulas for software models verification.

The study uses eight different translation schemes from UML [18] activity model

checker for comparing above mentioned tool performances. Paper presents algorithms

for each type of the translation and graph analysis of the results. Authors focus on how

much verification time was spent by each translation, they also present mean and

median of verification times for every activity and emphasize offset variations for

determining the best tool for UML activity model checker.

Three different SPIN translations were used in the process of research. The study shows

that all of three translations presented small difference between median and mean.

18

Overall process showed that channel based translation is less optimal in comparison

with flat and variable-based ones, which have more or less similar performance. Two

translations were defined for the model checker UPAAL: a centralized-control and

distributed-control translation. It is notable that mean and median of the verification

time are more similar in the distributed translation. Graphs show that the verification

time is as well affected by the size of the activities. Results of this experiment shows

that distributed translation has a better performance than a centralized one.

As for the PES model checker, study showed that mean and median values are very

similar, but unlike others the offset value remains constant in spite of the activity size.

The verification time for the translation were twice longer that the UPAAL’s best time

performance.

Two translation schemes were used to evaluate the performance of the NuSMV model

checker. Turned out that there is significant difference between flat and modular

translations, as flat translation takes a lot less time for action completion. Overall in

comparison with other model checkers NuSMV showed lowest performance.

Authors present UPAAL distributed translation compared to SPIN variable based and

PES translations. The difference is demonstrated in graph, displaying verification times

for three of the abovementioned checkers. In overall performance of the UPAAL is the

best compared two others.

2.2 Related Work

Several works are done using the Uppaal model checking tool for formal analysis and

verification of safety-critical systems. The main emphasis on most of the papers is

transforming Simulink models that are not containing the Stateflow tool. However, few

works still address formal verification based on state machines, including Stateflow with

a limited number of model elements.

The paper [19] presents the approach of transforming Simulink blocks into UPPAAL

Statistical model checker by illustrating two Brake-by-Wire and Adjustable Speed

Limiter systems. They translated computational blocks and the other blocks which are

defining the structure of the models are eliminated during the transformation. They

presented pattern for discrete and continues blocks using three: Start, Offset, and Operate

states. Where the start represents the initial starting point, offset is used to model the

19

delays of the system and the operate state is used to display the output of the system and

also it represents the last state for the system. With combination of Uppaal property

language they also used the temporal logic extension weighted metric to measure the

probabilities of property satisfaction. Their work was motivated by the industrial need of

developing brake and speed limiter systems with better verification possibilities. The

paper covers important part of the Simulink tool and shows the usage of property

language. The exact details of the transformation method are not described – and also not

expected given that it is a paper rather than a research report. The translation of Stateflow

models transformation is not investigated. Compared to this work, in our research we

address the Stateflow model transformation and provide the mapping with an

implementation for automatic translation.

The paper [20] presents the approach of transforming the Safechart models into

extended time automata (ETA). Safechart is one of the variants of Statecharts which is

specifically created to maintain risk analysis for safety critical systems [21]. The

presented research objectives are to understand:

 How Safecharts can be translated in ETA in a way to maintain the specific safety

semantic of Safecharts.

 How safety properties can be chosen to be used for verification of Safechart

models.

 How to deal with the safety non-determinism that could be presented in

Safecharts but isn’t desirable for safety-critical systems.

To address these objectives, they created input language for defining complex

hierarchical models and for decomposition of hierarchical states they developed

flattening algorithm. To deal with the non-determinism they developed algorithm for

risk level evaluation, and checked if there were any transition with unknown level of

rick and implement transition prioritization. The SGM model-checking tool which for

verification uses Time computational tree logic (TCTL) was used during the

transformation. Similarly to this paper, in the current work, the topic of translation

between deterministic and non-deterministic is models raised. However, because of

syntactic differences among used tools, the approach of dealing with none determinism

in our paper is different from what is presented above.

20

The verification approach of a real-time train controller design presented in [22] is

among the few articles which focus on translation from Simulink/Stateflow to Uppaal.

The paper introduces the Uppaal runtime verification, explains importance of it and

concentrates on translating six Stateflow elements: states, transitions, junction, actions,

timers, and events. They identify two main challenges for their translation:

1) Stateflow transition is driven by events. Execution of every event is in

deterministic sequential order, and interruptible with stack. At the same time

timed automata is executed in parallel, and driven by the channel

synchronization without the support of stack.

2) Stateflow supports hierarchy structure which is combined with recursive

activation-deactivation mechanism, transitional action, and conditional action

very closely. At the same time timed automata supports a single state.

The paper addresses these complications by:

 Creating a virtual stack

 Implementing the state transformation rule: For a regular simple state without

decomposition or attached actions, the transformation is straightforward. They

just directly map simple Stateflow states to Uppaal timed automata. But for

those complex Stateflow state with decomposition or attached actions, they used

parallel cooperative templates.

Overall, this article covers an important part of Stateflow elements. However, there are

several missing elements like the different kinds of compositions, function box,

temporal logic inside the actions and most importantly, there is no investigation of one

of the main characteristic of Uppaal non – determinism [23]. One of the most significant

differences between Stateflow and Uppaal models is that the execution of Stateflow

models is entirely deterministic. The transitions have priorities, and a guard is

considered an execution condition, while in Uppaal, a guard only represents the

enabling condition. In figure 6, the change of a state from s1 to s2 is triggered when the

guard condition is satisfied and time is equal to 10 units. In figure 7 corresponded

Uppaal model is presented. If we neglect none determinism, we will get that when time

is equal to 10, it is possible to go from s1 to s2, but it is not a strict execution condition.

Furthermore, it gives different verification results rather than what is expected for the

Stateflow model. To force the system to go from one state to another, it is needed to

eliminate non-determinism from the model.

21

The example:

Figure 6. Determistic Stateflow model

Figure 7. Non-deterministic Uppaal model

The first property is not satisfied because we have non-determinism in the above model

(see Figure 7). It is possible for the system to stay in s1 state after 10 time units that’s

why for all path the first condition is not satisfied (see Figure 8).

Figure 8. Verification in Uppaal

Compared to this paper, we address the translation of additional Stateflow elements. We

go deeper in Stateflow compositions, develop mapping for or, and, and flow graph

compositions, explore temporal actions in states and provide a pattern for representing

deterministic behaviour in Uppaal.

22

2.3 Descriptions of the formalisms

2.3.1 Description of the Stateflow language

Stateflow is a modeling language and a tool in the MATLAB toolset for the modeling

and simulation of decision logic using state machines [24] [25].

2.3.1.1 State modelling concepts

Concept Definition

Machine Top-level container of Sateflow elements within

one model

Chart A chart is the top-level object that has an explicit interface

 (data and events). In Stateflow there exist also Subchart

State A state describes an operating mode of a reactive system. In a Stateflow

chart, states are used for sequential design to create state transition diagrams.

States can be active or inactive. The activity or inactivity of a state can

change depending on events and conditions. The occurrence of an event

drives the execution of the state transition diagram by making states become

active or inactive. At any point during execution, active and inactive states

exist.

State label The label for a state appears on the top left corner of the state rectangle with

the following general format:

State Name

entry:entry actions

during:during actions

exit:exit actions

23

on event_name:on event_name actions

on message_name:on message_name actions

bind:events

Transition A graphical element in a chart that can be used for connecting

The states in char is transition

Transition

label

A transition label can consist of an event or message, a condition, a condition

action, and a transition action. Each part of the label is optional. The ?

character is the default transition label. Transition labels have this overall

format:

event_or_message[condition]{condition_action}/transition_action

Explicit event An event is a Stateflow object that can trigger actions in one of these objects

and the explicit event is an event that you define explicitly

Implicit event An implicit event is a built-in event. These events are implicit because there

is no need to define them explicitely

Actions State actions are instructions written inside a state and defines how a chart

behaves during simulation

Guard Guard is a condition added on the transition label. Condition should be

satisfied to execute the transition and if the condition is satisfied the

transition is executed.

Junction Connective junctions are decision points in the system.

Table 1 –Stateflow language concept

2.3.1.1.1 Temporal logic concepts

Concept Definition

After Returns true if at least n units of time have elapsed since the associated state

became active. Otherwise, the operator returns false.

https://ch.mathworks.com/help/stateflow/ref/after.html

24

Syntax:

after (n,time_unit)

n is a positive real number or an expression that evaluates to a positive real

value. Time_unit is sec, msec, or usec.

At Returns true if exactly n seconds have elapsed since the associated state

became active. Otherwise, the operator returns false.

Syntax:

at (n,time_unit)

n is a positive real number or an expression that evaluates to a positive real

value. Time_unit is sec, msec, or usec.

Before Returns true if fewer than n units of time have elapsed since the associated

state became active. Otherwise, the operator returns false.

Syntax:

before (n,time_unit)

n is a positive real number or an expression that evaluates to a positive real

value. Time_unit is sec, msec, or usec.

Table 2 – Stateflow temporal logic concept

2.3.2 Description of the Uppaal modelling language

2.3.2.1 Concepts

Concept Definition

Template Parallel processes, is used to model small parts of a system

Location Locations are the states of the system

https://ch.mathworks.com/help/stateflow/ref/at.html

25

Initial location State where the process starts

Urgent location Time is not allowed to pass when the system is in this state

Committed

location

The most restrictive location type. There must be at least one outgoing

transition enabled and the transition is taken immediately.

Invariant Conditions on locations which allows system to stay in the location until

condition becomes false

Rate of

exponential

Rate of clocks given by the general expression, used for statistical model

checking.

Edge Transition between locations

Selection Allows to select a value from a range non-deterministically

Guard Guard is a condition added on the transition. Condition should be satisfied

to execute the transition, guard represents only enabling condition

Synchronization Synchronisation is used for communication between processes, channels

are the labels for synchronisation they send or receive signals.

Update Update allows initializations and update of variables and function calls on

the transition

Weight Automata support branching edges where weights can be added to give a

distribution on discrete transitions.

Clock Clocks are real-valued integers, measured in real time units

Table 3 – Uppaal language concept

26

3 An experiment to demonstrate the power of Uppaal query

language

Before starting the translation from Stateflow to Uppaal model checking tool, important

part is to perform the experiments and demonstrate the advantages of verification using

a query language. This section demonstrates usage of Uppaal and Stateflow for

modelling a periodic traffic-light system.

3.1 Problem statement for the experiment

Model two traffic lights: three-color periodic traffic light for cars and a two-colour on-

demand traffic light for pedestrians.

Demonstrate how to model and verify the following requirements:

1. Green light for vehicles should be at least X ticks

2. Vehicle should get a green light at least every Y ticks

3.Pedestrian shall get green light no later than Z ticks after the button press

4.The period for switching the lights is P (unless some other condition interferes, a colour

stays on for P time units and is then switched)

It is assumed that X <= P.

3.1.1 The model of non-periodic traffic light systems.

Scenarios to cover in the model:

● Vehicle green

○ Pedestrian pressed the button, time passed from switching green on is less

than X → the system waits until X and then switches the light

○ Pedestrian pressed the button, time passed from switching green on is

equal or larger than X → the system switches to yellow immediately

27

○ Pedestrian pressed the button, time passed from switching green on is less

than X, the button was already pressed before → the system waits until X

and then switches the light

○ Time X passed, the pedestrian did not press the button → system stays on

green, no change

○ Time P passed, the pedestrian did not press the button → system stays on

green, no change

● Vehicle yellow

○ Pedestrian pressed the button → no change, the system is already waiting

for red

○ Time P passed → system switches to red

● Vehicle red

○ Pedestrian pressed the button → no change, the system is already at red

○ Time P passed → system switches to green

Dataset:

X - minimum time for vehicle green: 20 time units

Y - minimum period between two vehicle greens: 20 time units

Z - maximum delay between button press and pedestrian green: 30 time units

P - the period of each light to stay on: Min green for vehicle - 20 time units, Yellow for

vehicle -10 time units, Red for vehicle -10 time units, Min red for pedestrian 30 time

units.

3.2 Models

3.2.1 Modelling with Uppaal

Main logic:

28

The presented non-periodic traffic light system’s state change is triggered by environment

input when the pedestrian press the button. Depending of the time intervals between

pressing there are several different execution paths (see Figure 9):

1. The system gets the input from the environment of button pressed and the vehicle

light is on green state and the time of being the green state for vehicle is less or

equal to X (20 time units) . The system waits on green state, until the time of

green state for vehicle becomes less or equal to 20 and then switches light to

yellow.

2. The system gets the input from the environment of button pressed and the vehicle

light is on green state and the time of being the green state for vehicle is greater

than X (20 time units) the system immediately switches to the yellow state.

3. The system is in the yellow state and the pedestrian pressed the button. When the

system is in the yellow state it won’t get any massage from the environment and

the state stays on green state. After P (10 time units) the system switches to the

red state.

4. The vehicle light is in the red state and the pedestrian pressed the button. When

the system for vehicle light is in the red state it won’t get any massage from the

environment and after P (10 time units) the system switches to the green state for

vehicle.

5. The vehicle traffic light is on the green state and there is no input from the

environment. The vehicle light stays on the green state.

29

Figure 9. Non-periodic traffic light system model in Uppaal

3.2.1.1 Verification conditions

The idea of this experiment is to show that the verification of safety and temporal

properties using formal methods and specifically using Uppaal query language is efficient

way (see Figure 10).

1. A[]not deadlock: there is no deadlock in the model.

2. A[] (not (vehicle_light.green and ped_light.green)) : There is never green for

pedestrians and cars at the same time.

3. A[]ped_light.green imply (time>=10 and time <=20) : Green for pedestrian will

stay during 10 time units.

4. A[]vehicle_light.wait imply (time<=20) : The green light for the vehicles stays

on at least during 20 time units. If the pedestrian press in less than 20 time unit

30

interval the system goes to waiting state until 20 time units passes and then it goes

from green to yellow state.

5. E<>vehicle_light.wait and time>=20: There is no path where after 20 time units,

from a pedestrian pressed the button, still will be the green state for vehicles.

6. A[]vehicle_light.yellow imply (time<=10) : This condition with outgoing guard

time==10 states that for all path after pedestrian press there will be yellow light

exactly 10 time units.

Figure 10. Verification in Uppaal

Here is the log of the verification performance of Uppaal model checking. For example,

to verify that the whole system is deadlock free it took less than one millisecond (see

Figure 11) .

Figure 11. Performance of verification in Uppaal

31

3.2.2 Stateflow model

Figure 12. Stateflow non-periodic traffic light system

3.2.2.1 Verification conditions

1) Light for pedestrians and for cars never is the green at the same time

The inputs 1 and 2 on the graph represents vehicle and pedestrian traffic lights

respectively.

Figure 13. Simulink observer model

32

2) Green light for pedestrian will stay during 10 time units

To prove this property there is need to create an additional subsystem in Simulink.

Figure 14. Simulink observer model

Figure 15. Stateflow model inside the observer

Scope block for the verification:

Scope contains three inputs

1. Global clock

2. Vehicle light types

3. Pedestrian light types

From the scope by manual counting we can verify:

Previous two properties:

33

1. Light for pedestrians and for cars never is green at the same time: from the

graphs it is shown that when the light for pedestrian is green the light for

cars is red thought the whole sample time and visa-versa.

2. When the light for the pedestrian gets the green it stays on green during

10 seconds and then switches to red: from the graphs it is shown that after

30 seconds the pedestrian light gets green and after 10 seconds it gets red.

● At least during 20 time units there will be green for cars

● Pedestrian gets the green light in at least 30 seconds

Figure 16. Simulation in scope block

The whole model contains a Stateflow chart where the main logic of traffic light system

is specified. Additionally, there are created two subsystems for property verification and

scope blocks to visually display the input and output values at a time.

34

Figure 17. Simulink whole none-periodic traffic light system

3.3 Analysis of an experiment:

In the presented experiment, the non-periodic traffic light system is constructed in both

Simulink/Stateflow and in Uppaal modelling tools. The main focus of the experiment is

to compare the verification performance of modelling tools on a simple non-periodic

traffic light system.

In the Stateflow model we used two methods to verify properties: first using observers

conaining assertion blocks and the second using visually observable scope blocks.

1) The Assertion block checks whether any of the elements of the input signal are

zero. If all of the elements are nonzero, the assertion is accurate, and the block

does nothing. If not, the block halts the simulation and returns an error message

by default. To implement the verification using assertions, subsystem blocks were

created in which the verification logic using different Simulink blocks were

modelled (see Figure 14 and figure 15) . The main disadvantage of verification

using assertion blocks is that it is laborious – you have to construct a model for

each situation. Verifying one single property requires creating a subsystem with

logic inside, which sometimes is more complex than creating the model itself.

35

2) The second method using scope blocks hardly can be considered as a verification.

Scopes are mainly used to visualize simulation data and observe it. They are a

helper tool for verification by human – as you do not describe what you want from

the system you cannot expect that there is an error message or trace provided.

Using UPPAAL, the verification is much efficient and straightforward. As there is no

dedicated query language for describing properties in Simulink, the only possibility to

describe the verified properties is to construct another model – an observer. Compared to

the Simulink/Stateflow, Uppaal can verify safety and temporal properties using a one-line

query language containing mathematical notations. Based on the experiment, Uppaal

showed better capabilities of verifying the safety and temporal properties.

36

4 The proposed Solution

4.1 EMF metamodel for Uppaal

In developing the translation from Stateflow to the Uppaal model, one of the subtasks

was to develop an EMF metamodel (see Figure 18) for manipulating elements of the

Uppaal model. Similar metamodel for reading Stateflow model was existing before and

the goal was to use similar technology for working with both Stateflow and Upaal. The

EMF framework provides full automation for generating the Java for working with model

elements and for reading/writing XMI files with the model.

As a starting point, we used an open-source metamodel given in in the Uppaal

documentation [26]. Unfortunately, the published version of the metamodel was not

compatible with the current version of Uppaal (the last commit to the repository was made

at 2016). In order to make generated XMI files readable by Uppaal, all the classes except

NamedElement, Transition, and Template classes were newly added. Also some of the

features in the metamodel needed special tuning to get them serialized exactly in the

format Uppaal expected while reading the file.

37

Figure 18: EMF metamodel for Uppaal

38

4.2 The translation workflow

The translation from Stateflow to Uppaal models has been developed beseed on EMF

metamodels. For both tools, Java classes and methods have been generated. The process

flow is the following: export Stateflow model in xmi form, import it in eclipse modelling

framework, read the model, modify elements and map them to Uppaal elements using

classes and methods generated from metamodel. Finally, export the data in XML form

(See Figure 19) .

Figure 19. Translation block schema

39

4.3 Mapping from Stateflow to Uppaal

4.3.1 State

4.3.1.1 Mapping

Stateflow

concept

Uppaal concept Example

Empty state Location State_1

Entry action Update on incoming edge of the location State_1

During

action

Self-transition with an update State_1

Exit action Update on outgoing edge from the location State_1

Composite

state

Parallel templates State_2

Table 4 – State Mapping

4.3.1.2 Empty state

Empty Stateflow states can be translated as locations in the Uppaal model

4.3.1.3 State actions

Stateflow state can contain, entry, during, and exit while Uppaal is not supporting the

same representation.

1. Translate entry action

a. To translate the entry action of state, one of the ways is to add the entry

condition as an update in the incoming transition of the Uppaal model.

2. Translate during action

a. During action is executed when the state is active and there is no valid

outgoing transition. To translate the during action in Uppaal first it’s needed

to split translation into following cases:

i. Outgoing transition with empty condition - Transition without any

condition or event is always valid outgoing transition. In that case

40

action is never executed. That’s why if outgoing transition is free

from conditions and events, translating during action can be omitted.

ii. Outgoing transition with condition: To translate during action when

outgoing transition has condition one of the ways is to create self-

loop with committed location. Using self-loop, the value in during

action will get updated until the outer transition will get valid. When

the condition of outer transition will get valid the state still will stay

with two valid outer transitions. Compared to Stateflow in Uppaal

transitions are not prioritized and they can execute non-

deterministically. To avoid executing self-transition it’s needed to

add the negation of guard condition that got enabled after executing

during action.

3. Translate exit action

a. Exit action in Stateflow is executed when the system leaves the state. So,

when outer transition from state is executed the value of exit action is also

executed. To represent this behaviour in Uppaal model one of the ways is to

update the value on outer transition of the state

Example: State_1

Description

When s1 state is enabled output value is incremented and because there is no valid

outgoing transition enabled for s1 state the during action is executed. When count is 3

and condition is satisfied, the transition between s1 and s2 is executed which also means

that the exit action is executed and the system goes from s1 to s2 with updated values.

41

Figure 20. Stateflow example model for states

Figure 21. Uppaal example model for states

4. Superstates

a. Stateflow models are often presented with composite states. Composite state is

composed of super-states and sub-states. In Uppaal there are no composite states

but they can be represented using parallel templates and channel

synchronisation. States which are directly connected to each other create parallel

templates and communication between them is based on channel

synchronization.

42

Example: State_2

Figure 22. Stateflow example model for Superstates

Every state that are directly connected to each other create new templates.

Figure 23. Uppaal example model for Superstates

43

4.3.2 Transition

4.3.2.1 Mapping

Stateflow concept Uppaal concept Example

Default transition

(no guard or event)

Default location with transition State_1

Transition with event New template for event with channel

synchronisation

Transition_2

Transition with

guard

Guard + Invariant Transition_1

Transition with

action

Assignment Transition_2

Table 5 – Transition Mapping

4.3.2.2 Default transition

a. The default transition which does not contain any labels (events, guards,

assignments) can be translated as an initial location of a state which has

an inner default transition and the state pointing to the

Example:

b. The default transition which contains any labels (e.g assignment) can be

represented by adding initial location to the Uppaal model and translating

transition between initial location and the location that represents the

state with inner default transition.

Example:

4.3.2.3 Transition between states

c. A Stateflow transition which is between two states and doesn’t contain

any events or guard conditions, in Stateflow is executed immediately

after processing the state actions is completed. In Uppaal the activation

of a transition without guard and synchronisation is not determined -- it

can happen any time. To present the same behaviour that Stateflow

model has we need to force the system to leave the location. One of the

44

ways to execute transition directly in Uppaal is to make the location,

from where the outer transition is unconditional, committed.

4.3.2.4 Transition with guard

4.3.2.4.1 Guard with time constraints

In Uppaal, time constraints are represented as clocks. To translate the guard condition

with timing behaviour following steps should be done:

1. Clocks should be created in Uppaal

2. Guard should be created with clocks in the corresponded transition

3. To make the model probabilistic, the invariant that is less or equal to the guard

condition should be added to the location which has an outer transition with

guards of timing constraints.

4.3.2.4.2 Guard without time constraints:

Sometimes in Stateflow the value of guard condition is given by computational value

which isn’t connected to real value clocks. To translate the guard condition without

timing behaviour following steps should be done (see Figure 24):

1. Declare variable type of guard in global declaration

2. Create self-loop with guard representing negation of all guard conditions on

outgoing transitions

Example Transition_1

Figure 24. Uppaal example for guard with time constraint

4.3.2.5 Transition with events

In Uppaal the events are modelled through the concept of channel synchronisation. In

Stateflow the execution of transitions happens when the event on transition is triggered.

To represent the same behaviour in Uppaal one of the ways is to create separate

templates for every event presented in Stateflow and make synchronisation between

processes.

Example Transition_2

45

Figure 25. Stateflow example model for Explicit Events

The corresponding Uppaal model with two events template and synchronisation

mechanism.

Figure 26. Uppaal example model for Explicit Events

46

4.3.2.5.1 Complex event logic:

In Stateflow events on the transition can be presented in a complex way. For example:

e1|e2|e3. Based on the example presented in part a) events can be translated as separate

templates. But in Uppaal it’s not supported to represent synchronisation with composite

logic. We need to take into account that the transition in case of Stateflow based on the

example is executed when one of the following cases is triggered

1. e1

2. e2

3. e3

4. (e1 and e2)

5. (e1 and e3)

6. (e2 and e3)

 One of the ways to represent this behaviour in Uppaal is to make templates for all

possible scenarios. If the number of events separated with or logic is n to cover all

possible scenarios in Uppaal it’s needed to create templates which number is calculated

from the following formula where the n represents number of events:

4.3.2.5.2 Transition with an update

Update element on transition is conceptually the same as Uppaal assignment. That’s

why the Update can be directly translated as assignment in Uppaal.

4.3.3 Junctions

In Stateflow connective junctions are decision points in the system. When the system is

on the junction state the system is not staying on the junction and immediately leaves

the junction state.

If outgoing transitions of junctions are not executed junctions have backtrace behaviour

which means that the system is staying in the previous state before the junction.

The junctions are executed in the following cases:

1. On outer transition there is no condition

2. On outer transition there is guard condition

47

In Uppaal there is no direct representation of the junction. One of the possible ways to

represent it is using committed location.

To represent the Stateflow junctions in Uppaal the following manipulations should be

done:

Translate all junction state as committed location

Check if the junction’s outer transition contains the guard or not

1. Junction followed by the transition without guard condition:

a. There is no need to consider backtrace behaviour of junction because if

there is no condition on junction’s outer transition executes

straightforwardly.

2. Junction followed by the transition with guard condition:

a. In Stateflow when junction is followed with conditional transition if

condition is not true time is freezed and system stays in the previous state

before the transition. That’s the backtrace behaviour of the junction. To

represent the same behaviour in Uppaal one of the ways is to add

transition that goes on previous state and on this transition put the

negation of all conditions.

Example: Junction_1

Figure 27. Stateflow example model for a Juncion

48

In the Uppaal model the committed state represents the junction which goes to the

previous state if the conditions on outer transition to the next state are not true (see

Figure 28).

Figure 28. Uppaal example model for a Juncion

4.3.4 Transition prioritization

Stateflow models are fully probabilistic, which also applies to transition execution order.

In Stateflow every transition has prioritization number to determine which transition

should be taken.

After starting the simulation of bellow Stateflow model s1 state is activated and the

systems checks if condition of the transition with the priority number one is satisfied if

not only after checks the condition on the second transition (see Figure 29).

To represent the same behavior in Uppaal tool the negated condition value of first

transition needs be added as a guard condition to the second transition (see Figure 30).

49

Example: Transition prioritization1

Figure 29. Staateflow example for probabilistic execution flow

Figure 30. Uppaal example for probabilistic execution flow

4.3.5 Temporal logic

4.3.5.1 Mapping

Stateflow Concept Uppaal concept Example

After (n, time_unit) Guard “time” as clock (greater than

n) + invariant (less or equal to

n+1)

Temporal_logic1

Before (n, time_unit) Guard “time” as clock (less than n

) + invariant (less than n)

Temporal_logic1

After (n, implicit_event) Guard “implicit_event” as clock

(greater than n) + invariant (less or

equal to n+1)

Temporal_logic2

https://ch.mathworks.com/help/stateflow/ref/after.html
https://ch.mathworks.com/help/stateflow/ref/after.html

50

Before (n, implicit_event) Guard “implicit_event” as clock

(less than n) + invariant (less than

n)

Temporal_logic1

At (n, implicit_event) Guard “implicit_event” as clock

(equal to n) + invariant (less or

equal to n)

Temporal_logic2

After (n, explicit_event) Guard variable form

“emplicit_event” template (greater

than n) + invariant (less or equal to

n+1)

Temporal_logic3

Before (n, explicit_event) Guard variable form

“emplicit_event” template (less

than n) + invariant (less than n)

Temporal_logic3

At (n, explicit_event) Guard variable form

“emplicit_event” template (equal to

n) + invariant (less or equal to n)

Temporal_logic3

Table 6 – Temporal Logic Mapping

4.3.5.2 Absolute time temporal logic

In Uppaal, absolute time constraints can be represented as clocks, but to maintain the

same Stateflow behaviour, additional modifications are needed.

4.3.5.2.1 After (n, time_unit)

To translate “After (n, time_unit)” following steps should be done:

1. Create clock variable

2. Transform After (n, time_unit) as a guard condition with clock variable is

greater than n

3. To remove time non-determinism, add clock variable less or equal to n+1 as

invariant to the location

4. Update clock value to 0 to maintain the feature of incrementing absolute time

towards the state.

4.3.5.2.2 Before (n, time_unit)

To translate the Before (n, time_unit) following steps should be done:

https://ch.mathworks.com/help/stateflow/ref/after.html

51

1. Create clock variable

2. Transform Before (n, time_unit) as the guard condition with clock variable less

than n

3. To remove time non-determinism, add clock variable less then n as invariant to

the location

4. Update clock value to 0 to maintain the feature of incrementing absolute time

towards the state [6].

Example: Temporal_logic1

Figure 31. Stateflow example for temporal logic with absolute time

Figure 32. Uppaal example for temporal logic with absolute time

52

4.3.5.3 Temporal logic with implicit event

In Uppaal, there is no direct representation of temporal logic with an implicit event. We

use one of the most popular implicit event tick and present the transformation approach.

4.3.5.3.1 After (n, tick)

To translate After (n, tick) following steps should be done:

1. Create clock variable

2. Transform After (n, tick) as a guard condition with clock variable is greater than

n

3. To remove time non-determinism, add clock variable less or equal to n+1 as

invariant to the location

4. Update clock value to 0 to maintain the feature of incrementing absolute time

towards the state.

4.3.5.3.2 Before (n, tick)

To translate the Before (n, tick) following steps should be done:

1. Create clock variable

2. Transform Before (n, tick) as the guard condition with clock variable less than n

3. To remove time non-determinism, add clock variable less then n as invariant to

the location

4. Update clock value to 0 to maintain the feature of incrementing absolute time

towards the state.

4.3.5.3.3 At (n, tick)

 To translate the At (n, tick) following steps should be done:

1. Create clock variable

2. In the place of At (n, tick) place the guard condition with clock variable equal to

n

3. Add invariants to the location to eliminate time non-determinism

4. Update clock value to 0.

53

Example: Temporal_logic2

Figure 33. Stateflow example for temporal logic with an implicit event

Figure 34. Uppaal example for temporal logic with an implicit event

4.3.5.4 Temporal logic with explicit event

In Uppaal, there is no direct representation of temporal logic with an explicit event and

it’s not possible to represent it using clock, because event occurrence isn’t based on real

time value.

4.3.5.4.1 After (n, event_name)

To translate the After (n, time_unit) following steps should be done:

1. Create new template for event and update variable on self-loop.

54

2. In the place of Before (n, event_name) place the above variable as guard with

condition variable greater than n

3. To eliminate flow non - determinism, make location committed with self-loop of

negated all outgoing transition

4. Update clock value to 0

4.3.5.4.2 Before (n, event_name)

To translate the Before (n, time_unit) following steps should be done:

1. Create new template for event and update variable on self-loop.

2. In the place of Before (n, event_name) place the above variable as guard with

condition variable less than n

3. To eliminate flow non - determinism, make location committed with self-loop of

negated all outgoing transition

4. Update clock value to 0

4.3.5.4.3 At (n, event_name)

To translate the At (n, event_name) following steps should be done:

1. Create new template for event and update variable on self-loop.

2. In the place of Before (n, event_name) place the above variable as guard with

condition variable equal to n

3. To eliminate flow non - determinism, make location committed with self-loop of

negated all outgoing transition

4. Update variable value to 0

Example: Temporal_logic3

Figure 35. Stateflow example for temporal logic with an explicit event

55

Figure 36. Uppaal example for temporal logic with an explicit event

4.3.6 And composition

Stateflow supports the modelling of different kinds of compositions. Two primary types

of compositions are or and and compositions. In all the previous examples, only or

composition has been used. However, in this section, we investigate how and

composition can be represented in Uppaal model checking tool.

The difference between these two compositions is in state execution manner. In "or

composition", states are executed sequentially, where only one state inside a chart could

be active at a time, while in and composition, activation of states happens in parallel

and the several states could be active simultaneously.

After starting the simulation of Stateflow model s1, s11, s2, and s21, states getting

active simultaneously (see Figure 37). To present the same behaviour in Uppaal, the

following steps should be done:

1. Translate and and or compositions as templates

2. Create an additional template for synchronisation

56

3. Add broadcast channel synchronisation to maintain the correct execution order of

created elements

When the simulation of the Uppaal model starts "activateAndComposition" template

sends the synchronisation message to other templates, and the s1, s11, s2, and s21 states

get activated simultaneously (see Figure 38).

Example: And_composition1

Figure 37. Stateflow example model for And composition

Figure 38. Uppaal example model for And composition

57

5 Verification of the translation

5.1 Case study

The proposed mapping pattern for translating from Stateflow to Uppaal models is tested

on different case study models. The details of transformation of models is given by two

specific case study models described below.

5.1.1 Model 1:

The elements of Stateflow model (See Figure 39):

 Or composition

 State with actions

 State with more than 1 outgoing transitions with prioritization

 Junction

The state change of the given model is triggered by the value of Y1 and condition

statement. Model contains three types of state actions and transition prioritization. For

example, when the system is in the s1 state the condition on transition of first priority is

checked and if it’s not satisfied then the system checks the condition of the second

transition.

After applying the mapping (section 4.3) we get the Uppaal model (See Figure 40)

58

Figure 39. Case study model 1 in Stateflow

Figure 40. Case study model 1 in Uppaal

59

5.1.2 Model 2

The elements of Stateflow model (See Figure 41):

 Or composition

 End composition

 State actions with temporal logic

 Implicit event

 Supercharts

 Junction

 Integer array

From the start of the model simulation, s1, s11, s2, and s21 states are getting active

simultaneously, and the state actions are executed based on temporal logic represented

with an explicit event. Besides state actions, temporal logic is also presented as a

condition on transition. For example, the system from s21 to s22 state moves when the

guard condition on transition is satisfied, which happens exactly the “In1+1” tick.

After applying the mapping (section 4.3) we get the Uppaal model (See Figure 42)

Figure 41. Case study model 2 in Stateflow

60

Figure 42 . Case study model 2 in Uppaal

6 Conclusion

6.1 Summary

MDE is widely used in developing real-time safety-critical systems where verification

plays a vital role in maintaining system safe and liveness. One of the widely used MDE

tools, Stateflow, cannot verify temporal, safety, and liveness properties and creates the

need for a better verification tool. For that purpose, in this paper, we present an approach

61

for translating Stateflow models to the Uppaal model checking tool. Uppaal model

checking tool uses the theory of time automata and its query language, which represents

the sufficient base for the verification.

In the process of developing the thesis a lot of models in both Stateflow and Uppaal were

created. Before moving to the translation, the approach thesis presents one of thise

experiments: a non-periodic traffic light system modelled in both Stateflow and Uppaal

and presents the advantages of verification capabilities of the Uppaal model-checking

tool.

The main goal of this work was first to analyse the advantages of the verification language

of the Uppaal model checking tool, secondly to create the translation. The process of

translation is divided into two main parts. First, an EMF metamodel for Uppaal described

in section 4.1, which is used as an intermediate layer for manipulating Uppaal elements.

Second, the mapping rules are described in section 4.3. The algorithm automating the

translation from Stateflow to Uppaal model was developed based on those two

components of translation. The verification of the proposed approach is demonstrated

using example models from which two are presented in the chapter 5.

6.2 Future work

While working on this research, many experiments were performed, and many models

with different variety of elements were translated. However, because of limited time the

verification of the whole mapping stayed out of the scope of this research. Additionally,

because the approach is not tested on large scale models, there is no proof about the

translated model complexity represented in the Uppaal.

Another important aspect that remained outside the scope of this thesis and has to be

developed further is the approach of defining verification conditions in Simulink model.

Using a property language that enables to specify the contracts in earlier stage would

potentially allow to hide Uppaal form the user for simpler models.

To sum up, this thesis can be considered a starting point of future research on developing

verification using formal methods on a large scale Stateflow models and additionally, the

paper can be used as a baseline for translating other Simulink blocks into the Uppaal

model checking tool.

62

References

[1] Akdur, Deniz & Garousi, Vahid & Demirors, Onur. (2018). A survey on

modeling and model-driven engineering practices in the embedded software

industry. Journal of Systems Architecture. 91. 10.1016/j.sysarc.2018.09.007.

[2] Paz, Andrés & El-Boussaidi, Ghizlane. (2020) . Breesse: Bridging EMF,

Simulink and Stateflow for Model-Based Design of Safety-Critical Systems.

10.1145/3417990.3421408.

[3] Leitner, F. (2008). Evaluation of the Matlab Simulink Design Verifier versus

the model checker SPIN.

[4] Filipovikj P., Mahmud N., Marinescu R., Seceleanu C., Ljungkrantz O., Lönn

H. (2016) Simulink to UPPAAL Statistical Model Checker: Analyzing

Automotive Industrial Systems. In: Fitzgerald J., Heitmeyer C., Gnesi S.,

Philippou A. (eds) FM 2016: Formal Methods. FM 2016. Lecture Notes in

Computer Science, vol 9995. Springer, Cham.

[5] Yang, Yixiao & Jiang, Yu & Gu, Ming & Sun, Jiaguang. (2016). Verifying

simulink stateflow model: timed automata approach. 852-857.

10.1145/2970276.2970293.

[6] The Mathworks: Stateflow and Stateflow Coder, User’s Guide. Release 13sp1

edn. (2003).

[7] Hamon, G., & Rushby, J. (2004, March). An operational semantics for

Stateflow. In International Conference on Fundamental Approaches to

Software Engineering (pp. 229-243). Springer, Berlin, Heidelberg.

[8] E. -. Olderog, "Formal methods in real-time systems," Proceeding. 10th

EUROMICRO Workshop on Real-Time Systems (Cat. No.98EX168),Berlin,

Germany, 1998, pp. 254-263, doi: 10.1109/EMWRTS.1998.685130.

63

[9] Bouyer, P. (2009). Model-checking timed temporal logics. Electronic notes in

theoretical computer science, 231, 323-341.

[10] Naveed Ahmed Alizai, Master's degree, 2020, (leader) Leonidas Tsiopoulos;

Jüri Vain, Bisimulation verification of UPPAAL Models, Tallinn University of

Technology, Faculty of Information Technology, Institute of Software Science.

[11] Behrmann G., David A., Larsen K.G. (2004) A Tutorial on Uppaal. In: Bernardo

M., Corradini F. (eds) Formal Methods for the Design of RealTime Systems.

SFM-RT 2004. Lecture Notes in Computer Science, vol3185. Springer, Berlin,

Heidelberg.

[12] Bošnački, D., Wijs, A. Model checking: recent improvements and

applications. Int J Softw Tools Technol Transfer 20, 493–497 (2018).

https://doi.org/10.1007/s10009-018-0501-x.

[13] Axelsson, Roland & Hague, Matthew & Kreutzer, Stephan & Lange, Martin &

Latte, Markus. (2010). Extended Computation Tree Logic. Lecture Notes in

Computer Science. 10.1007/978-3-642-16242-8_6.

[14] “UPPAAL.” Semantics of the Requirement Specification Language: UPPAAL

Documentation, docs.uppaal.org/language-reference/requirements-

specification/semantics/.

[15] University of Pennsylvania (2012). UPPAAL TUTORIAL, Part-4-Uppaal-

Input, www.seas.upenn.edu/~lee/10cis541/lecs/part-4-uppaal-input-new-

1x2.pdf.

[16] Daw, Z., & Cleaveland, R. (2015). Comparing model checkers for timed

UML activity diagrams. Science of Computer Programming, 111, 277-299.

[17] L. Baresi, M. M. Pourhashem Kallehbasti and M. Rossi, "Efficient Scalable

Verification of LTL Specifications," 2015 IEEE/ACM 37th IEEE International

64

Conference on Software Engineering, 2015, pp. 711-721, doi:

10.1109/ICSE.2015.84.

[18] J. Li, J. Li and F. Zhang, "Model Checking UML Activity Diagrams with

SPIN," 2009 International Conference on Computational Intelligence and

Software Engineering, 2009, pp. 1-4, doi: 10.1109/CISE.2009.5363181.

[19] Filipovikj, Predrag & Mahmud, Nesredin & Marinescu, Raluca & Seceleanu,

Cristina & Ljungkrantz, Oscar & Lönn, Henrik. (2016). Simulink to UPPAAL

Statistical Model Checker: Analyzing Automotive Industrial Systems. 9995.

748-756. 10.1007/978-3-319-48989-6_46.

[20] Hsiung, Pao-Ann & Chen, Yean-Ru & Lin, Yen-Hung. (2007). Model

Checking Safety-Critical Systems Using Safecharts. Computers, IEEE

Transactions on. 56. 692-705. 10.1109/TC.2007.1021.

[21] Dammag H., Nissanke N. (2003) A Mathematical Framework for Safecharts.

In: Dong J.S., Woodcock J. (eds) Formal Methods and Software Engineering.

ICFEM 2003. Lecture Notes in Computer Science, vol 2885. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-39893-6_35

[22] Jiang, Yu & Yang, Yixiao & Liu, Han & Kong, Hui & Gu, Ming & Sun,

Jiaguang & Sha, Lui. (2016) . From Stateflow Simulation to Verified

Implementation: A Verification Approach and A Real-Time Train Controller

Design. 1-11. 10.1109/RTAS.2016.7461337.

[23] Gromov M., El-Fakih K., Shabaldina N., Yevtushenko N. (2009) Distinguing

Non-deterministic Timed Finite State Machines. In: Lee D., Lopes A.,

Poetzsch-Heffter A. (eds) Formal Techniques for Distributed Systems.

FMOODS 2009, FORTE 2009. Lecture Notes in Computer Science, vol 5522.

Springer, Berlin, Heidelberg.

[24] Hamon, G., & Rushby, J. (2004, March). An operational semantics for

Stateflow. In International Conference on Fundamental Approaches to

Software Engineering (pp. 229-243). Springer, Berlin, Heidelberg.

65

[25] The Mathworks: Stateflow and Stateflow Coder, User’s Guide. Release 13sp1

edn. (2003).

[26] UPPAAL, uppaal.org/documentation/.

66

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Mariam Mikava

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis, supervised by Tonu Naks

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

10.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author (s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

