
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C19

LOW POWER FINITE STATE MACHINE SYNTHESIS

ELENA FOMINA

TALLINN 2005

 ii

Faculty of Information Technology
Department of Computer Engineering
Chair of Computer Engineering
TALLINN UNIVERSITY OF TECHNOLOGY

Dissertation is accepted for the defence of the degree of Doctor of Philosophy in
Computer Engineering.

The commencement of the thesis will take place on the 15 December 2005 in
Tallinn University of Technology, Ehitajate Street 5, Tallinn, Estonia.

Supervisor:
Alexander Sudnitson,
Associated professor
Department of Computer Engineering, Tallinn University of Technology

Opponents:
Arkadi Zakrevski
Professor, Doctor of Science
Corresponding Member of NAS of Belarus,
United Institute of Informatics Problem, Minsk, Belarus

Vladimir Hahanov
Professor, Doctor of Science
Kharkov National University of Radioelectronics (KhTURE), Kharkov, Ukraine

Declaration

Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any degree or examination.

Copyright Elena Fomina 2005

ISSN
ISBN

 iii

To my parents

 iv

Abstract
Low power finite state machine synthesis

Low power synthesis has gained significant attention in recent years. The
thesis is a result of the investigations into development of energy-efficient
Finite State Machine (FSM) design. The current research focuses on a technique
to reduce dynamic power dissipation of the FSM. FSM partitioning and state
encoding are two virtually identical concepts that lie at the heart of the
presented approach of synthesis of a low power FSM.

We target the reduction of the average switching activity for an FSM in
the state variables by minimizing the number of bit changes during state
transitions. The technique introduces a fundamentally new methodology of
finding state encoding for an FSM described by the State Transition Graph
(STG).A new state encoding technique for a low power FSM based on the
concept of weakly crossed edge cuts is presented. The basic idea of this
approach is that the code length is equal to the number of encoding partitions on
the set of states and to the number of edge cuts on a set of state transitions in the
STG. The set of edge cuts is constructed with aim to minimize the Boolean
(Hamming) distance between the codes of the neighbor states (connected with a
transition).

Using a probabilistic description of an FSM, we have adapted our
strategy to propose a state encoding algorithm that minimizes the Hamming
distance between the codes of the states with high transition probability. The
framework we have developed is a general formulation of a state encoding
problem that links a probabilistic description of an FSM to its power
dissipation.

Minimizing the switching activity by modifying the state encoding of an
FSM by itself does not always guarantee reduced total power dissipation,
because the power consumed in the combinatorial part is not accounted for. The
most popular technique to reduce power in the FSM is Dynamic Power
Management (DPM). We specify the proposed state encoding strategy using
technique of FSM partitioning which is one of DPM techniques. Decomposition
has been shown as a very effective technique for synthesis of a low power FSM.

 A new complex approach to a low power FSM design which consists of
two phases: FSM decomposition and FSM state encoding is presented.
Moreover, these phases are tightly connected, which gives the possibility of
solving the task of construction a network of interacting and interconnected
machines with given restrictions on the structure.

The most important result of the presented research is the complete
framework developed for synthesis of a low power FSM. The key to success of
this work is a combination of a novel heuristic approach and well-known
approved techniques and methods.

 v

Lühike ülevaade
Lõplike automaatide madala energiatarbega süntees

Käesoleva doktoritöö on pühendatud madala energiatarbega lõplike
automaatide (edasises automaat; inglise keeles Finite State Machine)
projekteerimise alastele arendusuuringutele. Uuringute keskseks põhiteemaks
on automaatide dünaamiliste võimsuskadude vähendamise meetodite ja
algoritmide väljatöötamine. Töös on esitatud madala energiatarbega
automaatide sünteesi käsitlus, mis baseerub automaadi tükeldamisel ja tema
olekute kodeerimisel, mis on käesolevas kontekstis kaks peaaegu kattuvat
mõistet.

Doktoritöös esitatakse uus madala energiatarbega automaatide olekute
kodeerimise meetod, mis baseerub automaadi siirdegraafi (State Transition
Graph) tükeldamisel nõrgalt seotud lõigete alusel. Pakutud meetod toob sisse
põhimõtteliselt uue olekute kodeerimise metodoloogia graafiga kirjeldatud
automaatide jaoks.

Töö eesmärgiks on automaatide olekumuutuste keskmise
ümberlülitumise aktiivsuse vähendamine, minimeerides olekusiirete käigus
muutvate olekukoodi järkude arvu. Seejuures on olekukoodi pikkus määratud
olekute kooditükelduste hulga võimsusega, mis omakorda võrdub automaadi
siirdegraafi lõikete arvuga. Lõigete hulk konstrueeritakse nii, et siirdega seotud
naaberolekute vaheline loogiline e. Hammingu kaugus oleks minimaalne.

Kasutades automaatide tõenäosuslikku kirjeldust on väljatöötatud
kodeerimisstrateegiat edasi arendatud ning pakutud välja olekute
kodeerimisalgoritm, mis minimeerib kõrge siirdetõenäosusega olekukoodide
vahelise Hammingu kauguse. Väljatöötatud raamistik annab olekute
kodeerimise üldise määratluse, mis seob automaatide tõenäosusliku kirjelduse
võimsuskadudega.

Automaadi olekute ümberlülitamise aktiivsuse minimeerimine ei
garanteeri iseenesest alati üldise võimsuskao vähenemist, kuna pole arvestatud
automaadi realisatsiooni kombinatoorse osa poolt tarbitavat energiat.
Automaadi võimsuskadude summaarsel minimeerimisel kasutatakse automaadi
dünaamilise võimsuskontrolli meetodeid (Dynamic Power Management),
milliste hulka kuulub ka automaadi dekomponeerimine. Baseerudes
dekomoneerimismeetodil on käesolevas töös esitatud automaadi olekute
kodeerimisstrateegia ning uus kompleksne lähenemine madala energiatarbega
automaatide projekteerimisele, mis koosneb kahest etapist: automaadi
dekomponeerimisest ja automaadi olekute kodeerimisest. Veelgi enam, need
etapid on omavahel väga tihedalt seotud, mis antud struktuuripiiranguid
arvestades võimaldab lahendada omavahel ühendatud ja vastastiktoimega
komponentautomaatide võrgu projekteerimise ülesandeid.

Käesoleva doktoritöö oluliseimaks tulemuseks ongi täieliku raamistiku
loomine madala energiatarbega automaatide sünteeks. Nimetatud tulemus
saavutati eelkõige tänu uue heuristilise lähenemise õnnestunud seostamisele
varasemate hästituntud meetoditega.

 vi

Acknowledgements
I have many people to thank for their direct or indirect contribution to this

research work.
First, I would like to thank the main advisor, Dr. Alexander Sudnitson of

Tallinn University of Technology forgiving me the opportunity of affording this
research work. I am especially grateful to him for guiding my efforts, for
constantly monitoring my progresses on the research, and for reading these
pages.

My deepest gratitude is to Professor Dr. Andres Keevallik of Tallinn
University of Technology for his constant availability and guidance, which
enable my research to achieve fruitful results. I am also grateful him for the
friendship he demonstrated to me at difficult moments.

Then, I would like to thank Dr. Margus Kruus of Tallinn Technical
University for giving me his support.

Many special thanks to my opponents Professor Dr. Arkadi Zakrevskij of
United Institute of Informatics Problem, Minsk, Belarus and Dr. Vladimir
Hahanov of Kharkov National University of Radioelectronics, Ukraine for the
time and patience spent in carefully reading this dissertation and other previous
reports and papers.

I also wish to thank my colleagues of Computer Department of Tallinn
University of Technology, mainly Professor Raimund Ubar, Dr. Marina Brik,
Sergei Devadze and Roman Vassilyev for their support to me in the research.

My warmest special thanks I would like to thank to those without whom
this would have never been possible, my parents: especially to my mother for
being a constant and loving support at every difficult moment and believing in
me.

Lastly, I lovely wish to thank all my friends, especially Alexander
Rastovtsev, Oleg Balabanov, Elena Prelova and Ruslan Moris, for their
unconditioned love and constant presence.

With all my heart, this thesis is dedicated to all of them.

Elena Fomina
Tallinn, 2005

 vii

List of publications
Part of contents of this dissertation has been published in the following

papers:

[DDECS’02] E. Fomina, A. Keevallik, and A. Sudnitson, “Entropic
Analysis of Finite State Machines’ Networks”, in Proc.
IEEE 5th International Workshop on Design and
Diagnostics of Electronic Circuits and Systems, Brno,
Czech Republic, pp. 244-251, 2002.

[MIEL’02] E. Fomina, A. Keevallik, and A. Sudnitson, “Lower
Power Synthesis Based on Information Theoretic
Measures”, in Proc. IEEE 23rd International Conference
on Microelectronics, Nis, Yugoslavia, NJ, USA: IEEE,
vol.2, pp. 699-702. 2002.

[StZag’02] E. Fomina, “Entropy Evaluations of Information in Finite
State Machines’ Networks”, in Proc. National Conference
with International Participation, Stara Zagora, Bulgaria,
pp. 85-91, 2002.

[BEC’02] E. Fomina, A. Keevallik, M. Kruus, and A. Sudnitson,
“Web-based Tools for Finite State Machine
Decomposition with Analysis of Information Flows”, in
Proc. of the 8th International Baltic Electronics
Conference, Tallinn, Estonia, pp. 165-168, 2002.

[EUROCON’03] S. Devadze, E. Fomina, A. Keevallik, M. Kruus, and A.
Sudnitson, “Web-Based System for Sequential Machines
Decomposition”, in Proc. of IEEE EUROCON 2003
International Conference on Computer as a Tool, V.1.,
Ljubljana, Slovenia, v.1, pp. 57-61, 2003.

[CompSysTech’03] E. Fomina, A. Keevallik, M. Kruus, and A. Sudnitson, “A
Decomposition Procedure for Register-Transfer Level
Power Management”, in Proc. of International
Conference on Computer Systems and Technologies,
Sofia, Bulgaria, v.1, pp.21-26, ACM Press New York,
NY, USA, 2003.

[SAER’04] E. Fomina, P. Ellervee, M. Kruus, A. Sudnitson, and K.
Tammemae, “Digital Synthesis Tools for Education and
Research”, in Proc. 18th International Conference on
Systems for Automation of Engineering and Research,
Varna, Bulgaria, pp. 160-164, 2004.

[EWDTW’04] E. Fomina, and A. Sudnitson, “Information Relationships
for Decomposition of Finite State Machine”, in Proc. of
East-West Design & Test Workshop, Crimea, Ukraine,
pp. 41-47, 2004.

 viii

[WsBP’04] E. Fomina, A. Sudnitson, and R. Vassilyev, “FSMs
Network Coding Guided by Informational Relationship
Measure”, in Proc. of the 6th International Workshop
Boolean Problems, Freiberg, Germany, pp. 55-62. 2004.

[BEC’04] E. Fomina, A. Sudnitson, and R. Vassilyev,
“Optimization of FSMs Network by New Encoding
Strategy”, in Proc. of the 9th International Baltic
Electronics Conference, Tallinn, Estonia, pp. 119-122,
2004.

[CompSysTech’05] E. Fomina, “State Encoding Technique for Low Power
FSM”, in Proc. of International Conference on Computer
Systems and Technologies, Varna, Bulgaria, pp. V.1-1-
V.1-6, 2005.

[EWDTW’05a] E. Fomina, R. Vassilyev, M.Brik, and A. Sudnitson “New
Approach to State Encoding of Low Power FSM”, in
Proc. of the IEEE East West Design Test Workshop,
Odessa, Ukraine, pp. 21-26, 2005.

[EWDTW’05b] M. Brik, E. Fomina and R. Ubar, “A Proposal for
Optimization of Low-Powered FSM Testing”, in Proc. of
the IEEE East West Design Test Workshop, Odessa,
Ukraine, pp. 15-20, 2005.

[SAER’05] E. Fomina and A. Sudnitson, “Extended Finite State
Machine Decomposition for Low Power”, in Proc. of the
19th International Conference on Systems for Automation
of Engineering and Research, Varna, Bulgaria, pp. 126-
131, 2005.

 ix

Abbreviations
CAD – Computer-Aided Design
CMOS – Complementary Metal-Oxide Semiconductor
DPM – Dynamic Power Management
FSM – Finite State Machine
FSMD – Finite State Machine with Data-path
FPGA – Field Programmable Gate Array
ICs – Integrated Circuits
STG – State Transition Graph
RTL – Register Transfer Level
VLSI – Very Large Scale Integration

 x

CONTENTS
1 Introduction... 1

1.1 Switching activity as main factor for low power FSM synthesis 1
1.2 FSM state encoding targeting reduction of switching activity............. 3
1.3 FSM decomposition for RTL power management................................ 7
1.4 Outline of the thesis.. 11

2 Preliminaries ... 12

2.1 Basic automata theory concepts.. 12
2.2 Basic algebraic structure theory concepts ... 15

3 State Encoding for a Low Power FSM.. 20

3.1 Introduction.. 20
3.2 A new state encoding technique.. 22
3.2.1 Problem statement... 22
3.2.2 Weakly crossed edge cuts encoding algorithm 28
3.2.3 Comparison of encoding methods... 43
3.2.4 Further improvement of the received encoding 49
3.3 Experimental results .. 51
3.4 Summary... 53

4 Decomposition for a Low Power FSM .. 54

4.1 Introduction.. 54
4.2 FSM decomposition technique.. 56
4.2.1 Decomposition constraints.. 59
4.2.2 Information relationship measures.. 63
4.2.3 Decomposition procedure ... 67
4.2.4 Encoding of the network of machines... 76
4.3 Experimental results .. 81
4.4 Summary... 88

5 Conclusion and Future Direction .. 90

5.1 Thesis summary ... 90
5.2 Future work.. 92

References .. 93

Other bibliography.. 99

 1

111 INTRODUCTION
Power consumption has become a primary concern in the design of

Integrated Circuits (ICs). Two independent factors have contributed for this. On
one hand, low power consumption is essential to achieve longer autonomy for
portable devices. On the other hand, increasingly high circuit density and higher
clock frequencies are creating heat dissipation problems which in turn raise
reliability concerns and lead to more expensive packaging. Huge effort has been
invested to come up with a wide range of design solutions that help solve the
power dissipation problem for different types of electronic devices, components
and systems.

The thesis focuses on a technique to solve the problem of reducing the
power dissipated in synchronous sequential circuits range from Register
Transfer Level (RTL) power management. More precisely, we present
techniques applicable at RT-level that have proven to hold good potential for
power optimization in practical design environments.

1.1 Switching activity as main factor for low power
FSM synthesis
We propose a novel approach for the low power synthesis of synchronous

Finite State Machines (FSM) starting at the RT-level of design specification.
Since in Complementary Metal-Oxide Semiconductor (CMOS) technology the
largest fraction of power dissipation is caused by signal switches, our approach
deals with the reduction of switching activity.

In the CMOS technology, overall power consumption can be partitioned
in three main components [57]: P=Pdyn+Psc+Plk. Pdyn is the dynamic or switching
power. It is due to charging and discharging load capacitance. Psc (short-circuit
power) is caused by the currents flowing from supply to ground when pairs of
PMOS/NMOS transistors are conducting simultaneously. Finally, Plk (leakage
power) is static in nature and it originates mainly from sub-threshold MOS
conduction. In most current CMOS IC technologies, Pdyn is dominant [1], [7].

During normal operation of well designed CMOS circuits, power
consumption is determined by the switching activity in the circuit [27], [41]:

clkddSWLdyn fVACP 2

2
1

=
(1)

Here CL is the load of a circuit node, Vdd
2 is the supply voltage, fclk is the

clock frequency and ASW is the switching activity of the node, defined as the
expected number of logic transitions during one clock cycle.

Pdyn reduction targets the minimization of one or more factors in the
equation above. The parameters that influence the dynamic dissipation are the
voltage, the capacitance, the frequency of the switching activities. Voltage and

 2

capacitance are limited by the technology used; hence, ways to reduce dynamic
dissipation are focused on decreasing frequencies of switching activities [41].

The average power dissipation is proportional to the average switching
activity [6], [66]. A good approximation of the average switching activity is the
switching probability). Given the input switching probability it is possible to
calculate the probability of the state transitions in an FSM [26], [45].

At the gate level the average switching activity at the output of a gate i in

a time period T is the average number of signal transitions [6]: ()
T

nTn trans
i = ,

where ntrans is the number of transitions during time period T.
The switching (transition) probability is the limit value of the switching

activity when the observation time goes to infinity [17]: ()Tnp iTi →∞= lim .
According to [27], [41], the power dissipation at the gate level can be

regarded to be proportional to its switching activity. Then the average overall
power dissipation Ptot is a function of the average power dissipated by each gate
gi during one clock cycle Tcycle as follows:

() ()∑
=

=
G

i
ii

cycle

dd

tot gEgC
T

V
P

1

2

2
1

(2)

Here Vdd

2 is the supply voltage, C(gi) is the capacitive load at the output
of gate gi, E(gi) is the switching activity of the gate gi and G is the set of all
gates in the circuit [76].

The intention of low power design is to diminish the value of Ptot.
Voltage Vdd and clock cycle Tcycle are assumed to be fixed. The thesis
concentrates on reducing the power consumption at the gate level by reducing

of the term () ()∑
=

G

i
ii gEgC

1
 in (2). This can be done by determining a register

configuration and a combinational structure [14].
Basically, our approach provides a workbench-like method taking in two

particular low power optimization techniques and a strategy for their
application. The two techniques are deactivation of the parts of the circuit which
are not doing useful work and shut them down by either turning off the power
supply or the clock signal and appropriate state encoding.

Using our strategy, we consider the data-dependent or DPM technique
[51] in order to exploit both techniques in a suitable way. Depending on the
special application-specific requirements presented state encoding can be
applied separately or in a combination with the power management technique
manner. In the case of combined application our state encoding approach is
capable to consider state encoding constrains resulting from the disabling the
inactive parts of the circuit.

 3

1.2 FSM state encoding targeting reduction of
switching activity
The currently used technologies for design of sequential circuits usually

consist of several independent phases [6], [27] among which the step of
encoding is one of significance. In general, an encoding (or assignment)
problem is to assign (binary) codes to attribute to symbolic states, satisfying the
cost metrics, through the minimization of a given cost function. The problem is
NP-complete, indeed the optimum encoding can be found by exhaustive
enumerating all the possible assignments, carrying out logic synthesis for each
assignment and then picking the one that has the least area. This method is
computationally too expensive. Hence, different heuristic methods are used to
obtain a solution. The problem is a classic in switching circuit’s theory [58].
However, recently the encoding problem is again gaining momentum. The one
of predominant reasons of that is a demand of energy efficient designs. In the
last few years the problem of increasing the power consumption through the
phase of encoding during sequential circuit design has become a primary and a
major concern. Many various works devoted to encoding use different models,
methods and heuristics have been reported to address the power-efficient design
at different levels of abstraction [1], [57].

The main investigation object in the current thesis is an FSM that was
generated and presented in the form of State Transition Graphs (STG) or State
Transition Tables (STT). Currently is discussed only the problem of assigning
the internal states of an FSM with unique binary codes. State encoding
determines the number of flip-flops that are required to hold the state and
influences the complexity of the combinational logic used to realize the next
state and output of a synthesized state machine. The number of flip-flops must
be sufficient to represent the number of states as a binary number. A machine
with n states will require at least log2n flip-flops to store the encoded
representation of the states, but it could have more. The task of finding the state
encoding with minimum required code length is most widespread. In the
presented research the task of state encoding with minimal required number of
bits is also considered.

A code that changes by only one bit between adjacent codes will reduce
the simultaneous switching of adjacent physical signal lines in a circuit, thereby
minimizing the possibility of electrical crosstalk. These codes also minimize
transitions thought intermediate states, when state changes occur in the
operation of the actual hardware. The problem of intermediate transitions arises
because flip-flops in the state register do not change simultaneously. When
more that one bit changes to make a state transition and the bit do not switch
simultaneously, an intermediate state is present momentarily in the state
register. This could have undesirable consequences. Hence, the strategic aim of
the investigation is the development of the optimal (code length → minimum
code length) FSM state encoding that minimizes the number of state variables
that changes their value when an FSM moves between two adjacent states.

 4

Ideally, if we can guarantee that each state transition results in a single state
variable change, than we will have optimally reduced the switching activity
associated with registers in the given FSM.

Modifying of the state encoding is most of the popular technique to
reduce power in an FSM [6], [46], [50], [71], [77]. The state encoding has been
extensively studied because it is a crucial step in the synthesis of the controller
circuitry. Early researches were focused on finding a state encoding that
minimizes area of the circuit [13], [17], [20], [67], [71]. More recently, a
number of low power state encoding techniques target the reducing of switching
activity have been proposed [37], [47], [55], [56], [75], [77]. The problem of
Minimum Weighted Hamming Distance [61] was firstly formulated in 1992.
This problem considers the reducing of switching activity of input state lines on
next state logic during state encoding. The objective function in encoding
techniques is to minimize the Weighted Hamming Distance. Despite of that the
Minimum Weighted Hamming Distance does not exhibit a high absolute
accuracy this metric is still relevant and quite effective [4], [6], [55], [56], [66].

The state encoding for power dissipation in an FSM has received a lot of
attention. It would be impossible to report in detail on all different approaches
that have been proposed. We restrict our attention to those state encoding
methods that are either very commonly used or representative of a class of
techniques.

In 1994, Olson et al. used a linear combination of switching activity of
the next state lines and the number of literals as the cost function [56].

In 1995, Benini and De Michelli presented the aim of the low power state
assignment is the minimization of register switches in the synthesized circuit
which is approximated by the register switching rate. Usually this minimization
is performed by a simulated annealing procedure utilizing weighted state
transitions [6].

In 1997, Surti at al. presented the Huffman-code architecture to realize
encoding using two different code lengths [69]. Switching activity is reduced by
decreasing the expected number of state bits switched less than ⎡log2|S|⎤. The
state set S of the FSM is decomposed into two sets based on the limited state
probabilities. The state set with very high probability is encoded with less than
⎡log2|S|⎤ bits. The other state set, being less probable, is encoded using more
than ⎡log2|S|⎤ bits. Therefore authors use two code lengths for one state
machine.

In 1998, Tsui et al. [72] used simulated annealing as a search strategy to
find a low power state encoding that accounts for both the switching activity of
the next state lines and switched capacitance of the next state and output logic.

In 1999 it was proposed that the register switching activity can be
reduced by an adapted state assignment [29]. The state assignment procedure
for power and complexity consists of the following three steps: selection of a
suitable subset of all possible facets (trade-off between complexity and power),
based on this subset criterion of a partial state encoding for complexity

 5

reduction, completion the partial encoding by exploiting the remaining
optimization apace to minimize the register switching rate.

In 2000, Silvano provided a general frame work for low power state
assignment, starting from a probabilistic description of the FSM. The authors
consider the state assignment process as composed of two tasks: symbolic state
ordering and state encoding. The state ordering determines a propriety list of
symbolic states to be used during the successive phase of encoding. The weight
of each edge in the STG reflects the transition probabilities inside the
corresponding pairs of states. Authors define encoding techniques to assign
binary codes to the symbolic states to reduce the switching activity of state
registers [4], [66].

Area and power can be reduced using a number of encoding variables
over the minimum required to distinguish among the states. A state assignment
algorithm for the synthesis of multi-level low power controllers is presented in
[46]. The proposed algorithm follows a two step strategy. Each one works with
a different cost function. The first step targets area minimization. A partial
encoding is derived using area oriented criteria. In the second step, this partial
code is completed with the aim to reduce the register switching activity. The
multi-criteria approach is taken and the increasing in the number of state bits
over the minimum is explored.

Wu and Pedram [78] presented the state assignment technique called
priority encoding which uses multi-code assignment plus clock gating to reduce
power dissipation in sequential circuits. During the low-power design of
combinational circuits they have found that blocking the redundant signals and
shutting off the redundant parts in circuit is effective method to low the energy
dissipation [77]. The priority-based state assignment exploits the redundant
state codes to mask the clock to some of the flip-flops. Some states do not
require binary assignment of all state variables. When the system is in such
state, the unused state variables become redundant. Because the corresponding
flip-flops are not used, they can be isolated from the clock to reduce their power
dissipation.

Combined parameter “area and registers switching rate” is presented in
[38]. For providing a trade-off between two parameters authors estimate the
efficiency of variant for area reduction, and restrict the solution space by means
of two thresholds. They increase the probability to find a power reduced design
in the remaining space.

Venkataraman et al. use Genetic Algorithm (GA) for simultaneous
partitioning and state encoding of an FSM with power reduction as the objective
[74]. They constructed GALLOP – an FSM synthesis tool targeting low power.
It differs from previous works by performing state assignment and partitioning
simultaneously using GA and using steady state probabilities to bias the initial
population to wards giving better results. The tool yields circuits which
consume considerably less power than those obtained by the use of earlier
known low power synthesis procedures.

 6

The method proposed in [62] is not mutually exclusive with any of these
state assignment techniques, but complements them. A representative of
existing low power state assignment algorithms attempts to minimize switching
activity by reducing the Hamming distance between the states with high state
transition probability between them. Various cost functions combined with
these probabilities are suggested to control both area and power.

In 2003, Eggermont et al. introduce the profiling-based state-assignment
technique for low power that utilizes dynamic loop information extracted from
an FSM profiling data [21]. Authors proposed three different loop-based state
assignment algorithms. The depth-first search (DFS) algorithm performs an
exhaustive search over the FSM encoding space using the loop information for
intermediate cost estimates of an encoding. The loop-based DFS algorithm
performs a similar search on a loop-by-loop basis, where the loops are ordered
in the descending order of weight. The per-state algorithm encodes the states
individually, on the same loop-by-loop basis.

 7

1.3 FSM decomposition for RTL power
management
The development of Computer-Aided Design (CAD) techniques for

power minimization has been a very active area of research [41], [57] because
power dissipation has recently emerged as one the most critical design
constraints [52]. A wide range of techniques has already been proposed for the
optimization of logic circuits for low power.

Power management methods are among the most effective techniques for
power reduction [57]. The most representative data-dependent power
management techniques that have recently been proposed are pre-computation,
guarded evaluation, gated-clock FSM and FSM decomposition. Each of these
techniques uses a different approach to identify the input conditions for which
the circuit (or part of) can be disabled. These methods detect periods of time
during which parts of the circuit are not doing useful work and shut them down
by either turning off the power supply or the clock signal. Several methods have
been presented that perform shutdown on a clock-cycle base. Depending on the
input conditions at the beginning of a clock-cycle, the clock driving some of the
registers in the circuit can be inhibited, thus reducing the switching activity in
the fan-out of those registers. These techniques are referred to as data-dependent
or dynamic power management techniques. Dynamic power management is a
concept that includes various design methods and techniques and is based on
shutting down the parts of the circuit that are not currently active [8], [42].

High-level logic synthesis produces a combined description of data-path
and control logic. The latter is normally in the form of a transition structure,
whose most familiar representation is an FSM or a collection of machines. The
translation of such an FSM into a structural description presents opportunities
for reducing power consumption [41].

In static CMOS circuits, the probabilistic average switching activity of
the circuit is a good measure of the average power dissipation of the circuit.
Methods that can efficiently compute the average switching activity, and thus
power dissipation, in CMOS combinational [54] and sequential [72] circuits
have been developed.

Power consumption in a synchronous FSM can be reduced by
partitioning it into a number of coupled component machines where only the
part that is involved in a state transition is clocked [14].

In sequential circuit design, an effective approach to reduce power
dissipation is to “turn off” portions of the circuit [12], and hence reduces the
switching activities in the circuit. This approach is motivated by the observation
that, for an FSM, active transitions occur only within a subset of states in a
period time. Therefore, it is possible to synthesize an FSM in such way that
only the part of the circuit which computes the state transitions and outputs will
be turned on while all other parts will be turned off, power consumption will be
reduced.

The design of state machines can be made with a special state machine
design tool and companion optimizer, then the necessary of optimizing the state

 8

assignment for the performing constraints is arising. Machine decomposition or
partitioning can be regarded as a first phase of the state machine encoding. In
other words, machine decomposition and state encoding are virtually identical
concepts. Decomposition of an FSM into a group of component state machines
requires additional state encoding constraints because of assigning binary codes
to each state of all component machines. Composite encoding of all component
machine (or encoding of a network of component machines) with aim to
minimize the size of representations is considered as extended optimization
problem.

In the next review some of approaches present different strategies for low
power consumption which is based on the principle of decomposition [12], [39],
[41], [42], [50]-[53], [60], [65], [70], [74], and [78].

In [12], the combinational logic block is partitioned and the active part is
decided basing on the encoding of the present state. The states selected for one
of the component machines are all encoded in such a way that the enable signal
is always on for first combinational logic while it is off for the second
combinational logic. Conversely, for all states in the other sub-FSM, the
enabled signal is always off for the first combinational logic while it is on for
the second combinational logic. Consequently, for all the transitions within the
first component machine, only the first combinational logic will be active and
vice-versa.

The basic idea of the clock-gating technique in [51] is to decompose the
STG of an FSM into two component machines that jointly produce an input-
output behavior which is equivalent to that of the original machine. Power is
saved because, except for transitions between the two component machines,
only one of the component machines needs to be clocked. The technique
follows a standard decomposition structure. The states are partitioned by
searching for a smaller subset of states with high probability of transitions
among these states and a low probability of transitions between the other states.
This subset of states will then constitute a small sub-FSM that is active most of
the time. When the small sub-FSM is active, the other larger sub-FSM can be
disabled. Consequently, power is saved because most of the time only the
smaller, more power-efficient, component machine is clocked.

In 2000 orthogonal partitioning with the gated clock architecture was
used in [65] for low power realization of FSM. An FSM with n state is
decomposed into two approximately √n state machines interacting with each
other and running concurrently. When one or both the machines have a self-
loop, then clock and primary inputs are disabled for the respective
machine/machines. Therefore for all the self-edge conditions, the inputs and
clock of the respective machine are disabled to reduce the switching activity and
thereby the power.

The clock gating technique based on FSM decomposition presented in
[50] has been modified in [52]. A serious limitation of the previously proposed
techniques is that they require the STG of the FSM to be given or extracted
from the circuit. Since the size of the STG can be exponential on the number of

 9

registers in the circuit, explicit techniques can be applied to relatively small
sequential circuits. The authors present an approach to perform FSM
decomposition by direct manipulation of the circuit. This methodology allows
avoiding both disadvantages of the previous method: the explicit extraction of
the STG and computation of the transition relations. The computation of the
exact transition probabilities changes to simulation of approximate transition
probabilities and this approximation uses in the partition algorithm. Register-
disabling signal are added to the decomposed circuit, hence the overall
switching activity is minimized.

In 2002 the problem of optimizing FPGA (Field Programmable Gate
Array)-based FSM circuits for low power has been considered [70]. The
decomposition architecture like in [12] was evaluated in terms of area-time-
power. Using the transition probability distribution an FSM is partitioned into
two or more component machines such that minimize the sum of transition
probabilities between component machines. Only one component machine is
active at a time, meanwhile the other is disabled to save power. The
transference of control between the machines is based on the values of the
inputs and actual states.

Unlike previous works which focused only on either controller or data-
path in 2003 authors present a decomposition technique that takes both
controller and data-path into consideration [40]. The extended Finite State
Machine was decomposed into several extended component machines taking
state probability and resource sharing into account. At any time also only one
component machine is active while the others are idle. By turning off idle
circuits, the switching activity reduced and power consumption minimized.

In [74] an approach based on a Genetic Algorithm (GA) for simultaneous
partitioning of an FSM with power reduction as objective was presented. The
partition scheme decomposes the set of states of an FSM into two subsets
implemented by two component machines. Such partition is a partition of the
combinational logic of the sequential circuit into two sub-circuits each of which
computes the sequential circuit outputs and next states for different state-
transitions. Using GA and steady state probabilities authors proposed a
methodology to estimate cost function for designing of a low power FSM.

 10

Objectives and motivations
To define objectives of the thesis let us do some conclusions.
Conclusion 1 – the logic synthesis for achieving low-power consumption

is still one of the most important problems in the energy-efficient design of ICs.
Nowadays researchers show several reasons [27]. First, many ICs are employed
in mobile battery-powered systems, where the lifetime of the battery decreases
as the power consumption of ICs and peripherals grows. Second, low-power
design is required to either satisfy technical feasibility from a thermal profile
standpoint, or to reduce the cost of the package and cooling means.

Thus, economic, ecological and ethical reasons mandate the development
of energy-efficient ICs.

Conclusion 2 – during the minimization of switching activity the circuit is
transformed by adding logic that localizes computation in such a way that
switching is substantially reduced. The cost of the added logic is amortized by
significant switching activity reduction on many circuit nodes at the same time.
In the case of minimization of switching capacitance, transformations directly
optimize logic-level approximations of dynamic power consumption. These
techniques are generally local in scope, and overall power reduction is the
compound effect of a large number of local transformations.

The goal is to find a proper trade-off regarding combined parameter
“area and switching rate” in the encoding procedure. The simultaneous
consideration of area and register switching rate in a common low power
design strategy is based on the common optimization of both parameters.

Conclusion 3 – low power FSM synthesis is conventionally identified
with low power state encoding [6], [72]. The minimization of the register
transitions has to be combined with an appropriate implementation of the
combinational logic for obtaining a global power saving [66], so the state
encoding can be the starting point for further optimization of the combinational
part.

The power-oriented cost function should account for the minimization of
the number of logic transitions of the state registers between two successive
clock cycles, assuming the power consumption is proportional to the switching
activity on the state bit lines of the machine (2). Hence, an effective state
encoding technique should assign adjacent binary codes to state pairs
characterized by very high transition probability.

Conclusion 4 – partitioning has been shown as effective technique for
reducing power in an FSM [12], [9], [39], and [52]. Partitioning decomposes a
given FSM into two or more coupled component machines. When one
submachine is active, the inputs to the other component machine are turned off
to reduce power dissipation. Hence, except when there is a transition between
two different component machines, only one component machine is active at
time.

There is a need for a development of general approach to an FSM
partitioning and state encoding with power reduction as the objective.

 11

1.4 Outline of the thesis

The rest of the thesis is organized as follows. It is divided into five main
chapters. The thesis contains description of the investigated problem,
implementation discussions, examples and conclusions.

Chapter 2 presents some basic concepts from the classic machine theory
and algebraic structure theory of sequential machines that will be used
throughout the thesis.

Chapter 3 deals with the problem of state encoding for a low power FSM.
This chapter consists of four subchapters. Introduction discusses the traditional
sequential logic synthesis technique for low power – state encoding. The main
subchapter of the current chapter introduces a new encoding strategy for low
power FSM based on the concepts of weakly crossed edge cuts. A proposed
algorithm is illustratively described in detail. The comparison among several
encoding methods is added. A practical application was confirmed by series of
experimental results.

Chapter 4 describes FSM decomposition as an effective technique of
DPM for power reduction. Three types of decomposition were presented. The
first type is multiplicative decomposition which is based on the algebraic theory
and is constructed by a set of partitions on the set of states of a decomposable
machine. The second and the third types are additive and generalized additive
decompositions, which are based on the identification in the STG of sub-
routines or co-routines. A sub-routine/co-routine corresponds to a fragment of
the STG augment with a wait state. Additive decomposition is constructed by a
partition on the set of states of decomposable machine, while generalized
additive decomposition is constructed by a cover on the set of states of
decomposable machine.

The low power FSM optimization task consists of decomposition and
further encoding. Decomposition applies additional restrictions – decomposition
constraints. After multiplicative decomposition encoding of the network of
component machines is a composite encoding of component machines with
decomposition constraints – blocks of partitions from a complete system of
partitions. After additive and generalized additive decomposition we apply an
independent encoding of component machines based on the heuristic described
in the previous chapter.

Chapter 5 summarizes main contributions and outlines possible directions
for future investigations.

 12

222 PRELIMINARIES

2.1 Basic automata theory concepts
Over the years, many important problems in sequential circuit synthesis

and optimization have been approached using concepts from automata theory.
Traditionally, FSM is a discrete dynamical system translating sequences of
input vectors into sequences of output vectors. An FSM has a set of states and
of transitions between states; the transitions are triggered by input vectors and
produce output vectors. The states can be seen as recording the past input
sequence, so that when the next input is seen a transition can be produced based
on the information of the past history. If a system is such that there is no need to
look into past history to decide what output to produce, it has only one state and
therefore it yields a combinational circuit. From the other side, systems whose
past history cannot be condensed in a finite number of states are not physically
realizable.

It is widely recognized that the FSM is used to model the work of digital
devices, and reachability analysis is a powerful approach to retrieve information
from such model. Because of their finite nature, FSM yield better to describe, to
analyze and to synthesize of intricate digital systems than any other alternative
models. Moreover, the FSM is often the formalism of choice for specifying the
behavior of sequential components [22].

Behavior representation of an FSM

Traditionally, associated with a circuit, an FSM is represented as
algebraic quintuple: sets of states, inputs and outputs, and two functions –
transition and output.

Definition 2.1 A Finite State Machine is a discrete dynamic system
translating sequences of input vectors into sequences of output vectors and
defined as A=(S,I,O,δ,λ):

 S is a finite nonempty set of states;
 I is a finite nonempty set of inputs;
 O is a finite nonempty set of outputs;
 δ: S×I→S is called the transition (or next state) function;
 λ: S→O (Moore FSM) and S×I→O (Mealy FSM) is called output

function.
States S, I and O are nonempty. Functions δ and λ are multiple-output

Boolean functions: an l input, r output Boolean function F, is a mapping from
an l-dimensional Boolean space to an r-dimensional Boolean space F: Bl→Br,
where B={0,1}. Bl is called the domain of F, and Br is called the co-domain of
F. If r>1 the F is multiple output function. The sets of inputs I={x1, x2, …, xl},
where xi∈I is a binary input variable and outputs O={y1, y2, …, yr}, where yi∈O
is a binary output variable are considered as structural inputs and outputs of an
FSM. The domain of next state function is D(δ)→S×Dl, D={0,1}. The domain

 13

of output function is D(λ)→Dr, D={0,1} (Moore FSM) and D(λ)→S×Dr,
D={0,1} (Mealy FSM).

An FSM can be represented by two equivalent structures, a State
Transition Graph (STG) and, a State Transition Table (STT). The first is
graphical, second is tabular representation form. The two representations are
equivalent.

Definition 2.2 Given an FSM A=(S,I,O,δ,λ), the State Transition Graph
STG(A)=(V,E) is a labeled directed graph where each state in S corresponds to a
vertex in V labeled v and each transition in δ corresponds to a directed edge in E
labeled e.

The STG for the FSM “bbara” [48] is depicted in Figure 2-1, where
e1:¬x3x4∨x3¬x4∨¬x3¬x4, e2:¬x1¬x2x3x4, e3:x2x3x4, and e4:x1¬x2x3x4. Each edge in
the STG corresponds to an entry in the state table.

Figure 2-1 State transition graph for the FSM “bbara”

The states of the STG are labeled with the unique symbolic state names,

whereas the edges are labeled with the corresponding inputs and outputs values.
The state table is simply the list of edges of the STG. An example of STT

for the FSM “bbara” is presented in Table 2-1.

v0 v1 v2

v3

v4 v5

v6 v7

v8

v9

e1∨e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1∨e3

e2

e1

e4

e3 e2

e4

e1 e4

e3

e4

e1∨e3

e4

e2

e1

e2

e3

e4

e1

e3

e2

e4

e3

e2

e4

e1

 14

Table 2-1 State transition table for the FSM “bbara”
№ Present state Input Next state
1 st0 ¬x3x4∨x3¬x4∨¬x3¬x4∨¬x1¬x2x3x4 st0
2 x2x3x4 st1
3 x1¬x2x3x4 st4
4 st1 ¬x3x4∨x3¬x4∨¬x3¬x4 st1
5 ¬x1¬x2x3x4 st0
6 x2x3x4 st2
7 x1¬x2x3x4 st4
8 st2 ¬x3x4∨x3¬x4∨¬x3¬x4 st2
9 ¬x1¬x2x3x4 st1

10 x2x3x4 st3
11 x1¬x2x3x4 st4
12 st3 ¬x3x4∨x3¬x4∨¬x3¬x4∨x2x3x4 st3
13 ¬x1¬x2x3x4 st7
14 x1¬x2x3x4 st4
15 st4 ¬x3x4∨x3¬x4∨¬x3¬x4 st4
16 ¬x1¬x2x3x4 st0
17 x2x3x4 st1
18 x1¬x2x3x4 st5
19 st5 ¬x3x4∨x3¬x4∨¬x3¬x4 st5
20 ¬x1¬x2x3x4 st4
21 x2x3x4 st1
22 x1¬x2x3x4 st6
23 st6 ¬x3x4∨x3¬x4∨¬x3¬x4∨x1¬x2x3x4 st6
24 ¬x1¬x2x3x4 st7
25 x2x3x4 st1
26 st7 ¬x3x4∨x3¬x4∨¬x3¬x4 st7
27 ¬x1¬x2x3x4 st8
28 x2x3x4 st1
29 x1¬x2x3x4 st4
30 st8 ¬x3x4∨x3¬x4∨¬x3¬x4 st8
31 ¬x1¬x2x3x4 st9
32 x2x3x4 st1
33 x1¬x2x3x4 st4
34 st9 ¬x3x4∨x3¬x4∨¬x3¬x4 st9
35 ¬x1¬x2x3x4 st0
36 x2x3x4 st1
37 x1¬x2x3x4 st4

Notice that both the STG and the STT completely define the input-output

behavior of the FSM, but they do not provide any information regarding the
circuit implementation. In that sense, STG and STT can be considered as
behavioral representation of an FSM.

 15

2.2 Basic algebraic structure theory concepts
In the early sixties Hartmanis was one of the first to work on an

algebraization of the notion of logical or functional dependences in an FSM. His
“Algebraic Structure Theory of Sequential Machines” [28] presented
fundamental tools for describing two concepts, namely, “information” and
“information dependence”. The importance of this theory lies in the fact that it
provides a direct link between algebraic relationships and physical realizations
of machines. The formal techniques are very closely related to modern algebra.
It has an abstract beauty combined with the challenge of physical interpretation
and application. It falls squarely in the interdisciplinary area of applied algebra,
which is a part of engineering mathematics.

Partitions and partition pair algebra

We regard a partition on a finite set as an instrument for analyzing this
set.

Definition 2.3 A partition π on S is a collection of disjoint nonempty
subsets of S whose set union is S, i.e. π=(Ba) such that Ba∩Bb=∅ for a≠b and
∪(Ba)=S. We refer to the sets of π as blocks of π and designate the block which
contains s by Bπ(s).

Otherwise a set π of subsets of S, is a partition of S if
- No element of π is empty;
- The union of the elements of π is equal to S;
- The intersection of any two elements of π is empty (the elements of π

are pair-wise disjoint)
Hence, a partition on a finite set can be interpreted as an algebraic form

of the notion of information. According to this interpretation, the zero partition
contains maximum information while the unit partition contains minimum
information about the set.

The notion of partition is the particular case of the notion of cover: a
cover ϕ of a set S is a collection of subsets B of S whose union is S. More
generally, if B⊆S and ϕ is a collection of subsets of S whose union contains B,
then ϕ is said to be a cover of S.

Now we describe how partitions on a set can be “multiplied” and
“added”. These operations and the subsequently defined ordering of partitions
play a central role in the structure theory of sequential machines and form a
basic link between machine concepts and algebra.

If π1 and π2 are partitions on S, then:
First, π1⋅π2 is the partition on S such that s≡t(π1⋅π2) if and only if s≡t(π1)

and s≡t(π2).
Second, π1+π2 is the partition on S such that s≡t(π1+π2) if and only if there

exists a sequence in S s=s0, s1, …, sn=t for which either si≡si+1(π1) or si≡si+1(π2),
10 −≤≤ ni .

 16

The basic research object in structure theory of sequential machines is a
partition pair [48]. To study of machine structure is begun in following
definition with a formal notion of concept “information dependence”.

Definition 2.4 A partition pair (π, π’) on the machine A=(S,I,O,δ,λ) is an
ordered pair of partitions on S such that s≡t(π) implies δ(s, x)≡δ(t, x)(π’) for all
x in I.

Thus (π, π’) is a partition pair (p.p.) on S if and only if the blocks of π are
mapped into the blocks of π’ by S. That is, for every x in I and Bπ in π, there
exists a Bπ’ in π’ such that δ(Bπ, x)⊆Bπ’.

The concept of partition pairs based on the idea, that the first partition in
a pair has enough information to calculate the second one.

Next we determine for a given partition π, which partitions π’ can be
used to make a partition pair (π, π’) on S.

Definition 2.5 If π is a partition on S of A, let m(π)=∏(πi|(π, πi) is a p.p.
on A) and M(π)=Σ(πi|(πi, π) is a p.p. on A).

Informally speaking, for a given partitionπ, the partition m(π) describes
the largest amount of information which we can compute about the next state of
A knowing only π (i.e. the block of π which contains the present state of A).
Similarly, for a given partition π’, the partition M(π’) describes the least amount
of information we must have about the present state of A to compute π’ for the
next state.

Partition pairs and a component machine

Partitioning methods allow transforming a source FSM into a set of
smaller interconnecting and interacting machines. Let consider a circuit C with
m flip-flops, i.e., there are m state variables of the set of states S in the FSM, A,
associated to C, the entire state space for machine A is Sm. Each state variable
corresponds to a coordinate vector of this Boolean m-space. And let πi a state
partition of A is a partition of S. Each component of the state partition
represents a Boolean subspace consisting of the coordinate vectors
corresponding to the state variables in the partition component.

Each block of the state partition πi identify a set of components of the
next state function. This set of components can be seen as the next state
function of a sub-FSM of the given machine.

Let πi be the state partition inducting state decomposition on machine A.
For each πi, there is an associated FSM, Ai=(Si,Iiδi) where δi is the partitioned
next state function.

Definition 2.6 A component machine is a triple A=(S,I,δ):
 S=(s1, s2, …, sM) is a set of the component machines states;
 I=(x1, x2, …, xL) is a set of primary input symbolic variables of the

component;
 δ: D(δ)→S is a multiple valued next state function for component with

domain D(δ)=D1×…×DL×S and co-domain S. Here, Di represents a set
of values each xi may assume.

 17

The set (Ai | i∈I=(1, …, n)) of all the component machines Ai represents the
decomposed FSM network obtained from the original machine A when its set of
states is decomposed according of πi.

Definition 2.7 A FSM network we treat as a system N=(SN,IN,ON,δN,λN),
where:

 SN={Ai=(Si,Iiδi)|i={1, … ,n}} is a set of state machines referred to as
component machines;

 IN is a set of network external inputs;
 ON is a set of network external variables;
 δN: (×Sj)×IN→Ii nji ≤≤ ,1 – machine connecting rules;
 λN: (×Si)×IN→O – network output function.

As mentioned above, on the set of states S of the source original FSM A

we chose a state partitions πi. Next we define some information partitions which
are induced on A by a network that defines A. These “associated” partitions on
A may be thought of as a global characterization (on A) of the information used
and computed in a component machine of network. It is natural correspondence
between local and global properties that allows us to approach the structure of
machines with partition pair algebra.

For each component machine can be separated two partition pairs. The
partition pair I-S determines the dependence between external input of the
network and state of the component machine. The pair S-S reflects the
dependence between previous and next states of the component. Partitions π(S)
and τ(S) are partitions on the set of states and η(X) is a partition on the set of
inputs for all x∈X and for all s∈S. The equivalencies specifying τ(S) and η(X)
are: () () ()()πδδτ xtxsts ,, ≡↔≡ and () () ()()πδδη bsasba ,, ≡↔≡ .
According to [28] these pairs form pair algebras associated with the component
machine.

Suppose that the state behavior of a machine A is realized by network and
suppose that s=α(s1, s2, …, sn) and t=α(t1, t2, …, tn) are states of A; a and b are
inputs to A, than let

()its π≡ if and only if si=ti;
()jits ,ρ≡ if and only if fi,j(si)=fi,j(ti);

()iba μ≡ if and only if fi,j(i(a))=fi,j(i(b)).

Figure 2-2 Associated partitions for the component
machine Ai

Ai

πi
ρi,1

.

ρi,j

μi

 18

Main conditions of decomposition of an FSM
It is not an overstatement to tell that the decomposition task is one of the

most intricate and actual problem at complex discrete devices synthesis.
Commonly, the FSM decomposition task is representing of an original FSM as
its network realization. It means that, we construct such network of
interconnecting and interacting component machine that it must realizes the
work of an original FSM. As mathematical tool for do this we chose partition
pair algebra. In our opinion it is expedient algebraic system for research of FSM
structural properties. The basic element of the theory is partition which can be
interpreted as a measure or equivalent of information the source set. Thus,
character of possible FSM partitions is caused by properties of partitions on the
set of states of the original FSM. In other words, the process of finding a good
decomposition of the original machine into set of component machines can be
called machine partitioning [28].

There, we should emphasize that at the decision of practical problems we
are not satisfied with any machine partitioning. Depending on conditions of the
given task, on construction of a network various additional conditions are
imposed. Moreover, the decomposition approach can be widely used to
investigate all kinds of internal functional dependences of an FSM. As
frameworks of this work do not assume of search of effective decomposition,
then we consider necessary and sufficient condition for existence of FSM
decomposition in general.

Next, we present a fundamental theorem of machine decomposition.
Given a machine A=(S,I,O,δ,λ) and partitions πi and ρi,j on S and μi on I

for 1≤i,j≤n; then there exists a network such that realizes the state behavior of A,
and πi, ρi,j, μi are associated partitions on A if and only if the following
conditions hold:

()iSS
i

iji M πρπ −≤∏ , for all i;

()iSIi M πμ −≤ for all i;

iji πρ ≥, for all i and j;

0=∏
i

iπ .

This theorem show that a network can be built to certain specifications on
what information is to be stored where and what carry information is to be used
in computing states. Additional associated partition can be defined to study
carries to output logic.

Summarizing, the main condition of general FSM decomposition is
equality to zero partition (zero partition is the partition whose elements are the
singleton subsets of the set) of product of all selected partitions on the set of the
states of the FSM. These partitions are called complete set of partitions. From
informational point of view, while a partition on the set of states of a source
FSM is some measure of information about corresponding component sub-
FSM, the zero partition on the set of states of decomposed FSM contains

 19

complete information about it. Partitions ρi,j are additional information
partitions for partitions πi, which represent the flows of information from other
component machines. Thus, component sub-FSM Ai receives information flow
from itself, which is illustrated by partition πi and from other component
machines, which is illustrated by product of partitions∏

j
jiρ . The problem of

search suitable partitions ρi,j rests on the state assignment problem of network
[28]. It is well known that the selection of binary codes to represent the internal
states of the machine is one of the central problems in the physical realization of
sequential machines.

Partition MS-S(πi) describes amount of information we must have about
the present state of Ai to compute πi for the next state. In other words, amount of
information received by the given machine from itself and from other machines
should be sufficient to compute the next state. In this way, the first and the third
conditions of main decomposition theorem are executed. The second condition
can be interpreted as follows. Partition μi illustrates how much information from
input need to work of component FSM Ai.

Partitions search problem

Two products C and C’ are in the relations of consensus (C con C’) if and
only in they have opposite values (0 and 1) exactly in one bound component.
Two covers ϕ1 and ϕ2 are in consensus if and only if there are C∈ϕ1 and C’∈ϕ2
which are in consensus [14].

For every x∈I we define such symmetric binary relation ω on S that spωsq
(p≠q) if and only if for some sr exist α-transitions (sr,sp,αrp) and (sr,sq,αrq) such
that correspondent input conditions αrp and αrq are in consensus [68]. As a
result of transitive closure operations of relation ω we will receive symmetric
and transitive relation on S which we represent as partition with don’t care
(PDC) [28] and call primary αi-partition on S.

If x∈I, than αi(x) is PDC on S such, that si∼sj(αi(x)) means that transitions
from state si to state sj are the same if input variable x is masked (si and sj are
“indistinguishable” by the input channel x).

For every PDC τ we put in accordance partition π∈G(τ), which defines
component machine Ai in the network N. The number of states of component
machines is equal to the number of blocks in corresponding partition π [35].

Let is the sum α(I) (the least upper bound) of all α-partitions αi(x) such
that x∈I and Ai is a component FSM which is constructed in accordance with
some partition from G(α(I)) than behavior of Ai does not depend on all prime
inputs of network from I if and only if π≥α(I) .

 20

333 STATE ENCODING FOR A LOW POWER FSM

3.1 Introduction
In the “Future of Logic Synthesis and Verification” [27] Brayton predicts

that in future most sequential synthesis methods will not be used for two
reasons. First reason, in his opinion, is that only relatively small designs can be
handled. Second, sequential synthesis will not be used because it is hard to
verify if the changed design matches the original. He writes in one of his
challenge: “it is known how to drive, for a node in a network of interacting
FSMs, the set of all permissible behaviours that can be placed at the node
without changing the functionality of the network. However, that is very
expensive computation in additions; the method gives all possible solutions, and
the next task to drive a good one. This is also an expensive computation. In
many situations, there already exists a (particular) solution. Thus instead of
finding all possible solutions, operate directly on the particular one to find a
good one. This may circumvent both of the computationally expensive tasks
mentioned above…”

Despite of such pessimistic prediction this work tries to defence
sequential synthesis methods targeting the reduction of power dissipation.
Power can be minimized by appropriate synthesis of logic. The goal in this case
is to minimize the switched capacitance of the circuit by low power driven logic
minimization techniques [1].

State Encoding is one of the traditional techniques for sequential logic
synthesis for low power. Synthesis of sequential circuits for low power is an
area of research that promises to result in large power savings. The step that
translates a representation where some variables are symbolic into one where
they are all binary-valued is called encoding. An encoding must at least be
correct, which means that the encoded representation must behave as the
symbolic representation (usually an encoding must establish an injection from
symbols to codes); but more interestingly, it is often required that the encoded
implementation satisfies some further condition or optimality criteria.

Encoding plays an important role in determining the structure and
complexity of the resulting FSM in terms of the number of nodes required to
implement the output and next logic. Encoding also affects the switching
activity of the state variables and hence the internal signals in the circuit [66].

Classically, the problem of the encoding of an FSM which arises during
the design of controllers is formulated as that of obtaining a binary code for
each state of the FSM so that given design criteria are optimized. Typical design
constrains are the construction if the circuit with a minimal amount of logic or
that the circuit can be easily testable, or it consumes low power [75]. Recently
reduced power consumption has become a critical design parameter because of
several well known reasons [57] and synthesis algorithms as well as design
techniques targeted towards low power have been developed at different levels
[14].

 21

Concerning encoding aiming low power, research was targeted to reduce
switching activity in the state registers. Codes should be given such that the
Hamming distance of the codes of those states with a high transition probability
of a transition between them is minimized. Reducing the switching activity of
state bits contributes to reduce the dynamic power dissipation of the state
register and in CMOS circuits the major contributor to power consumption is
dynamic power.

The dynamic power dissipation in the combinational part of the circuit is
very difficult to estimate, even after the state encoding is determined [55]. At
the beginning there are already several different realizations to choose from,
depending on what kind of technology will be used. Later, when the gate level
implementation is known, the exact computation of the dynamic power
dissipation including glitches is often intractable, since it requires the
examination of all possible pairs of input patterns of the combinational logic.

In CMOS circuits, power is consumed during charging and discharging of
the load capacitances. Average power dissipation is proportional to the average
switching activity [6]. A good approximation of the average switching activity
is the switching probability. In order to estimate the power consumption the
signal and transition probabilities are calculated [49], [66].

These probabilities depend on the input patterns, the delay model, and the
circuit structure. Given the input switching probability, it is possible to calculate
the probability of the state transitions in an FSM.

Power and switching activity estimation for sequential circuits are
significantly more difficult, because the probability of the circuit being in any of
its possible states has to be computed. Given a circuit with n flip-flops there are
2n possible states. At any given instant, the probability that the circuit is in a
particular state can be distinct across all the states.

To compute the exact state probabilities of the machine we use the
Chapmann Kolmogorov equations for discrete-time Markov Chains [41]. The
method requires the solution of a linear system of equations of size 2n, where n
is the number of flip-flops in a machine.

The main idea of this chapter is to present an approach to optimize the
state encoding for low power embedded controllers, given the probabilistic
model of the FSM. If we press for a general solution, we need to find a method
that does not assume a particular STG structure and is not heavily constrained
on the number of state variables to use. Thus we use the probabilistic model of
an FSM to obtain state assignments that minimize the average number of signal
transitions on the state lines for a general STG.

 22

3.2 A new state encoding technique
3.2.1 Problem statement

In this section we introduce a new FSM state encoding technique. The
problem of FSM state encoding can be formulated by the following way. For
the given FSM={I, S, O, δ, λ} an encoding is a process of assigning to each
value of a symbolic variable {S} a unique combination of values of a set of
logic variables defined on {0,1}k [14].

Given the set of symbols S=(s1, s2, …, sn) for an FSM a state encoding is
given by an integer k and an injective functions e: S→{0,1}k.

Encoding Matrix

The codes of the symbols are represented by a Boolean state encoding
matrix kSBE ×∈ with n rows presenting state codes and k columns
corresponding to state variables, the umber of which is the unknown of the
problem. Each row of E is the encoding of a symbol.

An important degree of freedom to be exploited during the state encoding
of an FSM is the choice of the number of state variables, k. To have enough
codes, it is necessary that ⎡ ⎤ Skk ≤≤2log , where |S| is the cardinality of S.

The classical combinatorial problem is search for the FSM encoding with
minimum code length k→min. The strategy of most power-driven state
encoding algorithms consists of introducing the minimum possible number of
state bits k to minimize the corresponding number of registers [14].

As an example, for the FSM “bbtas” from [48] an arbitrary state encoding
matrix E is presented in the Table 3-1.

Table 3-1 Arbitrary state encoding matrix for the FSM “bbtas”
states codes

st0 001
st1 011
st2 111
st3 110
st4 100
st5 000

STG Representation
FSM state encoding problem can be described as a process of embedding

codes of states of an FSM into a complete Boolean graph.
An undirected graph G(V, E) is a pair (V, E), where V={v1, v2, …, vn} is

a set of vertices and E={e1, e2, …, em} is a set of edges (unordered pairs from
V). It presents a binary relation on V.

For the FSM “bbtas” the undirected graph is presented on the Figure 3-1.

 23

Figure 3-1 Undirected graph for the FSM “bbtas”

A symmetric Boolean graph where vertices correspond to Boolean space
elements and edges connect adjacent vertices is a complete Boolean graph [92].

On the Figure 3-2 the complete Boolean graph for 3-dimension Boolean
space is depicted.

Figure 3-2 Complete Boolean graph for 3-dimension Boolean space

Matrix Representation

Below we present a matrix description of an FSM given by STG [19],
[93].

The incidence matrix of an undirected graph G is an n×m matrix [bij]
where n and m are the number of vertices and edges respectively, such that aij=1
if the vertex vi and edge eij are incident and 0 otherwise.

The incidence matrix is related to the adjacency matrix of a graph.
The adjacency matrix for a finite undirected graph G on n vertices is an

n×n Boolean matrix where the entry aij=1 if and only if there exists an edge
joining vertex i and vertex j. The adjacency matrix of an undirected graph is
symmetric.

The degree, dG(vi) of a vertex vi in a graph G is the number of edges
incident to vi.

The matrix description: the incidence matrix and adjacency matrix
corresponding to the FSM “bbtas” are presented in the Table 3-2.

Table 3-2 Adjacency and incidence matrices for the FSM “bbtas”

vi\vi st0 st1 st3 st4 st5 d(vi) vi\ei 0
1

1
2

2
3

3
4

4
5

0
5

st0 1 1 2 st0 1 1
st1 1 1 2 st1 1 1
st2 1 1 2 st2 1 1
st3 1 1 2 st3 1 1
st4 1 2 st4 1 1
st5 1 1 2 st5 1 1

000

100

010

001

110

101

011

111

st1 st2

st0

st5 st4

st3

 24

The set of neighbors, called a (open) neighborhood NG(vi) for a vertex vi
in a graph G, consists of all vertices adjacent to vi but not including vi. When vi
is also included, it is called a closed neighborhood, denoted by NG[vi].

Optimization & Cost Functions

An encoding is a typical logic synthesis procedure which includes FSM
restructuring to obtain a logic description that can be mapped optimally into a
target technology. Often optimization is done first independent from
technology. Optimization depends not only on the target technology, but also on
the cost functions: besides area, speed and power consumption are growing
importance [41].

The state encoding problem is an optimization problem whose solution
can be measured in terms of a cost function and such that the cost functions
attains a minimum value.

In general, in the coding theory [75] the following three properties of a
code are analyzed: code length, total number of valid codes and the minimum
Hamming distance between two adjacent codes. We consider an encoding cost
function based on the third parameter, the minimum Hamming distance between
two adjacent codes ci and cj:

An encoding cost function O is ()∑=
ji

ji ccHO
,

, .

 The Hamming distance is the number of positions in two strings of equal
length for which the corresponding elements are different. Put another way, it
measures the number of substitutions required to change one for the other.

Attention has also been paid for FSM state encoding for low power. A
power-oriented cost function accounts for the minimization of the number of
logic transitions of the state registers between two successive clock cycles,
assuming the power consumption is proportional to the switching activity on the
state bit lines of the machine [66]. The minimization of the register transitions
has to be combined with an appropriate implementation of the combinational
logic for obtaining a global power saving, so the state encoding can be the
starting point for further power optimization of the combinational part.

The cost function consider the sum of the Hamming distances H(ci,cj)
between the codes ci, cj being assigned to all pairs of states si, sj among which a
transition can occur [42].

A power-oriented cost function Opower is ()∑ ⋅=
ji

jijipower ccHwO
,

, , ,

where wi,j is a weight of transition between states si and sj.

 25

Graph Weighing
To compute wi,j we use the probabilistic model of an FSM described

below.
Given the FSM description and the input probabilities, we estimate the

transition probabilities for each edge in the STG, by modeling the FSM as a
Markov chain. The input probability distribution can be obtained by simulating
the FSM at a higher level of abstraction in the context of its environment or by
direct knowledge from the designer [6].

An FSM is described by an STG defined by a vertex (state) set S={s1, s2,
.., sn} and a related directed edge set representing the set of transitions from one
state to another. The STG of the FSM “bbtas” with six states and two inputs is
presented on the Figure 3-3. The “-“symbol represents don’t care entry.

Figure 3-3 Directed STG for the FSM “bbtas”

We use information about probabilities to compute a static probabilistic
model of the FSM which will give the transition probabilities for the FSM. We
do this by interpreting the STG as a Markov chain. A Markov chain is a
representation of a finite Markov process, a stochastic model where the
probability distribution at any time depends only on the present state and do not
on how the process arrived in that state [45]. The Markov chain model for the
STG can be described by a directed graph with a structure isomorphic to the
STG and with weighted edges. For a transition from state si to state sj, the
weight pi,j on the corresponding edge represents the conditional probability of
the transition (i.e., the probability of a transition to state sj given that the
machine was in state si). Symbolically this can be expressed as:
pi,j=prob(next=si|present=sj). The edges with zero conditional probability are
never drawn in the graph representation of the Markov chain.

The conditional transition probabilities assuming equiprobable and
independent input signals for the FSM “bbtas” are presented on the Figure 3-4.

st1 st2

st0

st5 st4

st3

00

01
1-

00

01
1-

00

01
1-

00

01
1- 00

01
1-

01
1-

00

 26

Figure 3-4 Conditional probability distribution for the FSM “bbtas”

The set of values of all condition probabilities is called the conditional

probability distribution. The conditional probability distribution is easily found
from the input probability distribution and by observing for which input
configurations the FSM performs its state transitions [9], [25].

Conditional transition probabilities are used as a rough approximation to
the transition probabilities [6]. We need to calculate the probability of a
transition taking the present state into account. These probabilities are called
total transition probabilities, Pi,j, and can be calculated from the state
probabilities, where the state probability, Pi represents the probability that the
machine is in a given state si [43]: Pi,j=pi,j⋅Pi.

The next step is computation the state probabilities. These values are not
time-dependent [6]. This implies that as the observation time increases, the
probability that the machine is in each of its states converges to a constant
(stationary) set of real numbers. In other words, we receive a steady state
probability vector vect whose elements are stationary state probabilities.

We do not discuss in the current work such STG’s for which the
stationary state probabilities do not exist and refer readers for more information
to [45].

Let P be the conditional transition probability matrix whose entries pi;j
are the conditional transition probabilities, and vect the steady state probability
vector whose components are the state probabilities Pi. Then we compute the
steady state probabilities by solving the system of n+1 Chapman Kolmogorov

equations [6], [45]: vectT⋅P=vectT, ∑
=

=
n

i
iP

1
1.

The stationary state probabilities calculated solving the system above for
the FSM “bbtas” are shown in Figure 3-5. The Figure shows the total transition
probabilities (the products pi,j⋅Pi) on the edges. Note that the probabilities for
self-loops (P0,0=0.029, P3,3=0.176, P4,4=0.176, P5,5=0.176) are not shown only
because we are not interested in edge that do not imply any state transition.

st1 st2

st0

st st4

st3 p0,0=1/4

p0,1=3/4
p1,2=3/4

p2,3=3/4

p3,3=3/4

p4,4=3/4 p5,5=3/4

p1,0=1/4 p2,1=1/4

p3,4=1/4 p5,0=1/4

p4,5=1/4

 27

Figure 3-5 State probabilities and total transition
probabilities for the FSM “bbtas”

Once the total transition probabilities have been calculated, we transform
the original STG into a weighted graph which preserves only the relevant
information needed for state encoding. All the unreachable states and self-loops
are eliminated from the graph. The STG is transformed into an undirected graph
by converting all multiple-directed edges into a single undirected edge.

The weighted STG will be the starting point for the power-oriented state
encoding algorithm. For the FSM “bbtas” the weighted STG is shown on the
Figure 3-6.

Figure 3-6 Weighted graph for the FSM “bbtas”

st1 st2

st0

st5 st4

st3 w(v0)=0.113

w(e0)=0.111
w(e1)=0.099

w(e2)=0.056

w(e3)=0.059 w(e5)=0.059

w(e4)=0.059

w(v1)=0.104 w(v2)=0.078

w(v3)=0.235

w(v4)=0.235 w(v5)=0.235

st1 st2

st0

st5 st4

st3 P0=0.113

P0,1=0.085

P1,2=0.078

P2,3=0.056

P1,0=0.026

P2,1=0.021

P3,4=0.059 P5,0=0.059
P4,5=0.059

P1=0.104 P2=0.078

P3=0.235

P4=0.235 P5=0.235

 28

3.2.2 Weakly crossed edge cuts encoding algorithm
The main idea of our approach is an economical covering of the set of

transitions by weakly crossed edge cuts. To form such edge cuts we construct a
set of two blocks partitions called as encoding partitions on the set of states of
an FSM. The number of encoding partitions corresponds to the code length. We
consider the minimum number of state variables to find a set of distinct codes.

Necessary definitions

Definition 3.1 An encoding partition π on S is a collection
() (){ }sBsB 01 ,=π of two disjoint subsets B1∩B0=∅ of S whose set union is S:

B1∪B0=S (B1 is the unit block and B0 is the zero block).

Note that we mark out two notions of a decision of FSM state encoding

problem. The encoding e which has been received during applying of an
encoding algorithm is called as received encoding. A perfect encoding (or ideal
encoding) is an encoding such that the sum of Hamming distances between two
adjacent states is equal to the number of all transitions of FSM. In other words,
the perfect encoding is the encoding where the Hamming distance between two
adjacent states is equal to 1.

Definition 3.2 A transition between states si and sj with Hamming

distances H(ci,cj) between the codes ci, cj more than 1 is called complicated
transition.

Definition 3.3 An additional switching that is necessary to be done to

change state variable besides required switching (single state variable change) is
called redundant switching.

Next we introduce an evaluation to estimate the efficiency of received

encoding.
Definition 3.4 A summary defect of an encoding e is defined by a number

of complicated transitions and the sum of their redundant switching.

 29

Heuristic algorithm
The STG representation of an initial FSM is given: (G(V, E)), V=(v1, v2,

…, vn) – set of vertices and E=(e1, e2, …, em) – set of edges.
Preliminary step

 The adjacency and the incidence matrices are constructed.
Example: we illustrate how our encoding algorithm works on the FSM

“bbara” [48]. The undirected graph for the FSM “bbara” is depicted on the
Figure 3-7. Table 3-3 and Table 3-4 are presented the adjacency and incidence
matrices for the considered FSM.

Figure 3-7 Undirected graph for the FSM “bbara”
Table 3-3 Adjacency matrix for the FSM “bbara”

vi\vi 0 1 2 3 4 5 6 7 8 9 d(vi)
0 1 1 1 3
1 1 1 1 1 1 1 1 1 8
2 1 1 1 3
3 1 1 1 3
4 1 1 1 1 1 1 1 1 8
5 1 1 1 3
6 1 1 1 3
7 1 1 1 1 1 5
8 1 1 1 1 4
9 1 1 1 1 4

Table 3-4 Incidence matrix for the FSM “bbara”

v i\
e i,

j

0-
1

0-
4

0-
9

1-
2

1-
4

1-
5

1-
6

1-
7

1-
8

1-
9

2-
3

2-
4

3-
4

3-
7

4-
5

4-
7

4-
8

4-
9

5-
6

6-
7

7-
8

0 1 1 1
1 1 1 1 1 1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1 1 1
8 1 1 1

st0 st1 st2

st9

st4
st5 st8

st7 st6

st3

 30

The algorithm constructs a set of encoding partitions. The number of
encoding partitions is equal to k=⎡log2n⎤, where n is a number of vertices in
STG and k is a code length. Each encoding partition πr consists of two blocks:
the unit and the zero blocks which are represented by variable sets B1

r and B0
r

respectively, kr ≤≤1 .

First Step
 A partition π∏ on the set of states S of the machine is equal to unit

partition π∏=πI (unit partition is the partition where all elements of S are
in one block, π∏=πI={s1, s2, …, sn}).

 The sets B1
r and B0

r are empty at the beginning, i. e. B1
0=∅ and B0

0=∅.
 A vertex vi with maximal d(vi) from the adjacency matrix is selected as

a starting point.
 Selected vertex vi is placed in the set B1

1={vi}.

The procedure of calculation the edge cut weight increment γ1(B1

r, vc)
by adding vertex vc to the set B1

r
For each undistributed vertices vc this increment of the set B1

r is
calculated by the following way:

γ1(B1
r,vc)=d(vc)-2|N’(vc)| (3)

where d(vc) is the degree of the vertex vc and N’(vc) is the set of neighbors
for the vertex vc, which consists of all vertices from the set B1

r adjacent to vc.
From the degree of the vertex vc we subtract the double number of its neighbors.

A cardinality of an edge cut is the number of edges which has been cut.
The increment γ1(B1

r,vc) allow observing on the cardinality of constructed edge
cut.

By using the adjacency matrix the first vertex vc with the minimal
increment is selected. The selected vertex vc is added to the set B1

r, so it
becomes equal to {vi, vc}.

Usually the procedure of calculation of the increment by adding vertex vc
to the set B1

r, choosing the best vertex and extending the set B1
r repeats until a

cardinality of B1
r reaches approximately the half of a cardinality of V.

However, as it was mentioned above, we observe on the cardinality of
constructed edge cut with aim to minimize it. If adding of the next vertex
increases a cardinality of constructed edge we do not add this vertex to the
considered set.

The vertex vc in the set B1
r is also checked on a nearness to the set B0

r in
case if this set is not empty: γ0(B0

r,vc)=d(vc)-2|N’’(vc)|, is the increment by
adding vertex vc to the set B0

r, d(vc) is the degree of the vertex vc and N’’(vc) is
the set of neighbors for the vertex vc, which consists of all vertices from the set
B0

r adjacent to vc.
If the vertex vc has the same increment γ1(B1

r,vc)=γ0(B0
r,vc) for both sets

B1
r and B0

r, we place this vertex to such set B1
r or B0

r that minimizes the
cardinality of constructed edge cut.

 31

An encoding partition πr has the unit block equal to the set B1
r and the

zero block equal to the set B0
r. From the incidence matrix all rows which

correspond to the vertices of the set B0
r are deleted. The rest rows (rows which

correspond to the vertices of the set B1
r) are summed component-wise by

modulo two. The set of edges marked with 1 in the resulting Boolean vector
form the edge cut of the encoding partition πr.

Example, π∏=πI={st0, st1, st2, st3, st4, st5, st6, st7, st8, st9};
B1

1=B0
1=∅; selected vertex v1, d(v1)=8; B1

1={v1}, |EC| – the cardinality
of the edge cut.
Using (3) vertex v0 with minimal increment, 1 (column γ1

1 in Table 3-5:
d(v0)=3, N’(v0)=1 and hence γ1

1(v0)=3-2⋅1=1) is selected; B1
1={v1,v0}.

Then we calculate the increment to the set B1
1 for all rest vertices. Next

we select the vertex v9 with the increment γ1
0(v9)=4-2⋅2=0, B1

1={v1,v0,v9} and
then the vertex v8 with the increment γ1

9(v8)=4-2⋅2=0, B1
1={v1,v0,v9,v8}. The

next appropriate vertex to add to the set B1
1 is vertex v6 with the increment

γ1
8(v6)=3-2⋅2=-1, but we need to check this vertex on the increment to the set

B0
1={v2,v3,v4,v5,v7}: γ0

6(v6)=3-2⋅2=-1. The cardinality of the set B1
1 is equal to

|B1
1|=9, if we add the vertex v6 to the set B1

1 the cardinality of the set
B1

1={v1,v0,v9,v8,v6} will be equal to |B1
1|=10. Thus, we do not add the vertex v6

to the set B1
1.

π1={{st0,st1,st8,st9};{st2,st3,st4,st5,st6,st7}}
Table 3-5 Construction of the first encoding partition for the FSM “bbara”

vi\vi 0 1 2 3 4 5 6 7 8 9 d(vi) γ1
1 γ1

0 γ1
9 γ1

8 γ0
6

0 1 1 1 3 1
2 1 1 1 3 1 1 1
3 1 1 1 3 3 3 3
4 1 1 1 1 1 1 1 1 8 6 4 2
5 1 1 1 3 1 1 1
6 1 1 1 3 1 1 1 -1 -1
7 1 1 1 1 1 5 3 3 3
8 1 1 1 1 4 2 2 0
9 1 1 1 1 0 4 2 0

B1
1 1 0 9 8

B0
1 2,3,4,5,7 6

|EC| 8 9 9 9

Table 3-6 First edge cut for the FSM “bbara”
vi\ei,

j
0
1

0
4

0
9

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
3

2
4

3
4

3
7

4
5

4
7

4
8

4
9

5
6

6
7

7
8

8
9

1 1 1 1 1 1 1 1 1
0 1 1 1
9 1 1 1 1
8 1 1 1 1
 1 1 1 1 1 1 1 1 1

 32

Next Steps

 The construction of the next encoding partition, r=r+1.
 The partition π∏ is equal to π∏=π∏×πr.
 Select an arbitrary edge (vi, vj) from the previous edge cut.
 Set B1

k={vi, vj}.
 Repeat until kr ≤ .

Example, construction of the second encoding partition, r=2; π∏={{st0,

st1, st8, st9};{st2, st3, st4, st5, st6, st7}}; an arbitrary edge from the first edge
cut (v7,v8); B1

2={v7,v8}, Table 3-7.
The vertices v3 and v6 have the same increment γ1

7,8(v3/v6)=3-2⋅1=1, the
vertex v3 is added to the set B1

2={v7,v8,v3}. The column γ1
3 demonstrates the

increment of all rest vertices to the set B1
2. The vertices v2 and v6 have also the

same increment γ1
3(v2/v6)=3-2⋅1=1, vertices v6 is added to the set

B1
2={v7,v8,v3,v6}. B0

2={v2,v4,v5} because the second block of partition π∏ is
blocked. γ1

6(v1)=8-2⋅3=2 and γ1
6(v9)=4-2⋅1=2 we check these vertices on the

increment to the set B0
2={v2,v4,v5}: γ0

1(v1)=8-2⋅3=2 and γ0
1(v9)=4-2⋅1=2. The

vertex v1 is added to the set B1
2={v7,v8,v3,v6,v1}.

π2={{st1,st3,st6,st7,st8};{st0,st2,st4,st5,st9}}
Table 3-7 Construction of the second encoding partition for the FSM
“bbara”

vi\vi 0 1 2 3 4 5 6 7 8 9 d(vi) γ1
7,8 γ1

3 γ1
6 γ0

1
0 1 1 1 3 3 3 3
1 1 1 1 1 1 1 1 1 8 4 4 2 2
2 1 1 1 3 3 1
3 1 1 1 3 1
4 1 1 1 1 1 1 1 1 8 4 2
5 1 1 1 3 3 3
6 1 1 1 3 1 1
9 1 1 1 1 4 2 2 2 2

B1
2 7,8 3 6 1

B0
2 2,4,5 0,9

|EC| 7 8 9 11

Table 3-8 Second edge cut of the FSM “bbara”
vi\ei,

j
0
1

0
4

0
9

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
3

2
4

3
4

3
7

4
5

4
7

4
8

4
9

5
6

6
7

7
8

8
9

7 1 1 1 1 1
8 1 1 1 1
3 1 1 1
6 1 1 1
1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1

 33

Example, construction of the third encoding partition, r=3; π∏={{st0,
st9};{st1, st8};{st2, st4, st5};{st3, st6, st7}}; an edge from the second edge cut
is (v0,v1); B1

3={v0,v1}. The first two blocks of the partition π∏ are blocked, then
B0

3={v8,v9}. The vertices v1 and v5 have the same minimal increment
γ1

0,1(v1/v5)=3-2⋅1=1, we select the vertex v5 and B1
3={v0,v1,v5}, and

B0
3={v8,v9,v2,v4} since the third block of the product partition is blocked. Finally

we add the vertex v6 with minimal increment γ1
5(v6)=3-2⋅2=-1 to the set

B1
3={v0,v1,v5,v6}, Table 3-9 and Table 3-10.

π3={{st0,st1,st5,st6};{st2,st4,st3,st7,st8,st9}}

Table 3-9 Construction of the third encoding partition for the FSM
“bbara”

vi\vi 0 1 2 3 4 5 6 7 8 9 d(v) γ1
0,1 γ0

5 γ1
5

2 1 1 1 3 1 1
3 1 1 1 3 3 3
4 1 1 1 1 1 1 1 1 8 4 2
5 1 1 1 3 1 3
6 1 1 1 3 1 -1
7 1 1 1 1 1 5 3 3
8 1 1 1 1 4
9 1 1 1 1 4

B1
3 0,1 5 6

B0
3 8,9 2,4 3,7

|EC| 9 10 9

Table 3-10 Third edge cut for the FSM “bbara”
vi\ei,

j
0
1

0
4

0
9

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
3

2
4

3
4

3
7

4
5

4
7

4
8

4
9

5
6

6
7

7
8

8
9

0 1 1 1
1 1 1 1 1 1 1 1 1
5 1 1 1
6 1 1 1
 1 1 1 1 1 1 1 1 1

 34

Example, construction of the forth encoding partition, r=4;
π∏={{st0};{st1};{st2, st4};{st3, st7};{st5};{st6};{st8}; {st9}}; an edge from
the third edge cut (v0,v4); B1

4={v0,v4}; B0
4={v0,v4}, Table 3-11 and Table 3-12.

π4={{st0, st1, st4, st5, st6, st7, st8, st9};{st2, st3}}
Table 3-11 Construction of the fourth encoding partition for the FSM
“bbara”

vi\vi 0 1 2 3 4 5 6 7 8 9 d(v) γ1
0,4 γ1

9 γ1
8 γ1

1 γ1
5 γ1

6
1 1 1 1 1 1 1 1 1 8 4 2 0
2 1 1 1 3
3 1 1 1 3 1 1 1 1 1 1
5 1 1 1 3 1 1 1 -1
6 1 1 1 3 3 3 3 1 -1
7 1 1 1 1 1 5 3 3 1 -1 -1 -3
8 1 1 1 1 4 2 0
9 1 1 1 1 4 0

B1
4 0,4 9 8 1 5 6 7

B0
4 2 3

|EC| 9 9 9 9 8 7 4

Table 3-12 Fourth edge cut for the FSM “bbara”
vi\ei,

j
0
1

0
4

0
9

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
3

2
4

3
4

3
7

4
5

4
7

4
8

4
9

5
6

6
7

7
8

8
9

0 1 1 1
4 1 1 1 1 1 1 1 1
9 1 1 1 1
8 1 1 1 1
1 1 1 1 1 1 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1 1 1
 1 1 1 1

Concluding Step

 Check if the partition π∏ is equal to the zero partition:
π∏=π1×π2×…×πr=π0 (zero partition is partition where each
symbol of S is in one block: π0={{s1}, {s2}, …, {sn}})

 Calculate the number of complicated transitions, the number of
redundant switching and the summary defect of encoding.

 35

Example, π∏={{st0}, {st1}, {st2}, {st3}, {st4}, {st5}, {st6}, {st7},
{st8}, {st9}}=π0. The encoding matrix for the FSM “bbara” is presented in
Table 3-13.

Table 3-13 Encoding matrix for the FSM “bbara”
states codes

st0 0100
st1 0000
st2 1111
st3 1011
st4 1110
st5 1100
st6 1000
st7 1010
st8 0010
st9 0110

Table 3-14 Hamming distance of all edge cuts for the FSM “bbara”

0
1

0
4

0
9

1
2

1
4

1
5

1
6

1
7

1
8

1
9

2
3

2
4

3
4

3
7

4
5

4
7

4
8

4
9

5
6

6
7

7
8

8
9

 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1
 1 1 1 1

1 2 1 4 3 2 1 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1

Number of complicated transitions is equal to 8; number of redundant

switching is equal to11; O(eperfect)=22, O(ereceived)=33 and hence the defect of the
encoding 50%, Table 3-14.

 36

Power-oriented algorithm
The STG representation of an FSM is given: (G(V, E)), V=(v1, v2, …, vn)

– set of vertices and E=(e1, e2, …, em) – set of edges.

Preliminary step

 The weights of vertices and the weights of edges are calculated.
The set of vertices and the set of edges are resorted by decreasing
order.

 The adjacency and incidence matrices are constructed.

Example, the set of vertices and the set of edges of FSM “bbara” are

putted in decreasing order by the weights; and the adjacency and incidence
matrices are presented in Table 3-15 and Table 3-16.

Table 3-15 Adjacency matrix for the FSM “bbara”

w
(v

i)

0.
26

7

0.
19

7

0.
15

5

0.
13

4

0.
13

4

0.
04

9

0.
03

7

0.
01

6

0.
00

9

0.
00

2

w(vi) vi\vi 1 4 0 2 3 5 7 6 8 9 d(vi)
0.267 1 1 1 1 1 1 1 1 1 8
0.197 4 1 1 1 1 1 1 1 1 8
0.155 0 1 1 1 3
0.134 2 1 1 1 3
0.134 3 1 1 1 3
0.049 5 1 1 1 3
0.037 7 1 1 1 1 1 5
0.016 6 1 1 1 3
0.009 8 1 1 1 1 4
0.002 9 1 1 1 1 4

Table 3-16 Incidence matrix for the FSM “bbara”

v i\
e i,

j

1-
2

1-
4

0-
1

0-
4

2-
3

4-
5

2-
4

3-
4

3-
7

1-
5

1-
7

5-
6

1-
6

4-
7

7-
8

1-
8

6-
7

4-
8

8-
9

1-
9

0-
9

4-
9

1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
0 1 1 1
2 1 1 1
3 1 1 1
5 1 1 1
7 1 1 1 1 1
6 1 1 1
8 1 1 1 1

 37

The algorithm constructs a set of encoding partitions. The number of

encoding partitions is equal to k=⎡log2n⎤, where n is a number of vertices in
STG and k is a code length. Each encoding partition πr consists of two blocks:
the unit and the zero blocks which are represented by variable sets B1

r and B0
r

respectively, kr ≤≤1 .

First Step
 A partition π∏ on the set of states S of the machine is equal to unit

partition π∏=πI.
 The sets B1

r and B0
r are empty at the beginning, i. e. B1

0=∅ and B0
0 =∅.

 The first edge (vi, vj) from the incidence matrix is selected as a starting
point.

 Vertices of the selected edge (vi, vj) are placed in the set B1
1, so the

latter takes value {vi, vj}.

The procedure of calculation the edge cut weight increment γ1(B1
r, vc)

by adding vertex vc to the set B1
r

For each undistributed vertices vc this increment of the set B1
r is

calculated by the following way:
γ1(B1

r,vc)=d(vc)-2|N’(vc)| (4)
where d(vc) is the degree of the vertex vc and N’(vc) is the set of neighbors

for the vertex vc, consists of all vertices from the set B1
r adjacent to vc but not

including vc. From the degree of the vertex vc we subtract the double value of its
neighbors because

A cardinality of an edge cut is the number of edges which has been cut.
The increment γ1(B1

r,vc) allow observing on the cardinality of constructed edge
cut.

By using the adjacency matrix the first vertex vc with the minimal
increment is selected. The selected vertex vc is added to the set B1

r, so it
becomes equal to {vi, vj, vc}.

Usually the procedure of calculation of the increment by adding vertex vc
to the set B1

r, choosing the best vertex and extending the set B1
r repeats until a

cardinality of B1
r reaches approximately the half of a cardinality of V.

However, as it was mentioned above, we observe on the cardinality of
constructed edge cut with aim to minimize it. If adding of the next vertex
increases a cardinality of constructed edge, we do not add this vertex to the
considered set.

The vertex vc in the set B1
r is also checked on a nearness to the set B0

r in
case if this set is not empty: γ0(B0

r,vc)=d(vc)-2|N’’(vc)|, is the increment by
adding vertex vc to the set B0

r, d(vc) is the degree of the vertex vc and N’’(vc) is
the set of neighbors for the vertex vc, consists of all vertices from the set B0

r
adjacent to vc but not including vc.

If the vertex vc has the same increment γ1(B1
r,vc)=γ0(B0

r,vc) for both sets
B1

r and B0
r, we place this vertex to such set B1

r or B0
r that minimizes the

 38

cardinality of a constructed edge cut. In case of for some vertex vc we have the
same increment and the adding of this vertex do not change the cardinality of a
constructed edge we do not increase the set B1

r.
 An encoding partition πr has the unit block equal to the set B1

r and the
zero block equal to the set B0

r. From the incidence matrix all rows which
correspond to the vertices of the set B0

r are deleted. The rest rows (rows which
correspond to the vertices of the set B1

r) are summed component-wise by
modulo two. The set of edges marked with 1 in the resulting Boolean vector
form the edge cut of an encoding partition πr.

Example, π∏=πI={{st0}, {st1}, {st2}, {st3}, {st4}, {st5}, {st6}, {st7},
{st8}, {st9}}; B1

1=B0
1=∅; the selected edge (v1,v2); B1

1={v1,v2}.
Vertex v0 is the first vertex with minimal increment, 1 (column γ1

1,2 in
Table 3-17, γ1

1,2(v0)=3-2⋅1=1, (4)); B1
1={v1,v2,v0}. Then we calculate the

increment of the set B1
1 for all rest vertices. Thus vertex v9 combines into two

edges (v9;v1) and (v9;v0) with respect to the set B1
1={v1,v2,v0} and the minimal

number of increment for vertex v9 is γ1
0=4-2⋅2=0. We stop of forming the set

B1
1={v1,v2,v0,v9} on the vertex v9, because for the next vertex v4 we have the

same increment to both sets γ1
4=γ0

4. Moreover, the cardinality of the edge cut is
equal to 10, see Table 3-18, if we add the last vertex v4, B1

1={v1,v2,v0,v9,v4} the
cardinality of the edge cut is also would be equal to 10, so we do not add the
vertex v4 to the set B1

1.
π1={{st0, st1, st2, st9};{st3, st4, st5, st6, st7, st8}}

Table 3-17 Construction of the first encoding partition for the FSM
“bbara”

vi\vi 1 4 0 2 3 5 7 6 8 9 d(vi) γ1
1,2 γ1

0 γ1
4 γ0

4
4 1 1 1 1 1 1 1 1 8 4 2 0 0
0 1 1 1 3 1
3 1 1 1 3 1 1 1
5 1 1 1 3 1 1 1
7 1 1 1 1 1 5 3 3 3
6 1 1 1 3 1 1 1
8 1 1 1 1 4 2 2 0
9 1 1 1 1 4 2 0

B1
1 1,2 0 9

B0
1 3,5,6,7,8 4

|EC| 9 10 10 10

Table 3-18 First edge cut for the FSM “bbara”
vi\ei 1

2
1
4

0
1

0
4

2
3

4
5

1
7

5
6

1
9

1
6

4
7

7
8

1
8

6
7

2
4

3
4

3
7

4
8

8
9

1
5

0
9

4
9

1 1 1 1 1 1 1 1 1
2 1 1 1
0 1 1 1
9 1 1 1 1
 1 1 1 1 1 1 1 1 1 1

 39

Next Steps
 The construction of the next encoding partition, r=r+1.
 The partition is equal to π∏=π∏×πr.
 Select the first edge (vi, vj) from the previous edge cut.
 Set B1

k={vi, vj}.
 Repeat until kr ≤ .

Example, construction of the second encoding partition, r=2; π∏={{st0,

st1, st2, st9}; {st4, st5, st6, st7, st8, st9}}; the first edge from the first edge cut
(v1,v4); B1

2={v1,v2,v4}.
To the set B1

2={v1,v2,v4} the vertices v0 and v3 are added because they
have the smallest increment, see Table 3-19. For the last vertex we have the
increment γ1

5 to the set B1
2: γ1

5(B1
2)=3-2*2(edges (v1,v5) and (v4,v5))=-1 and the

cardinality of the edge cut is equal to 10, Table 3-19 and Table 3-20.

π2={{st0, st1, st2, st3, st4, st5};{st6, st7, st8, st9}}

Table 3-19 Construction of the second encoding partition for the FSM
“bbara”

vi\vi 1 4 0 2 3 5 7 6 8 9 d(v) γ1
1,2,4 γ1

0 γ0
0 γ1

5 γ0
5

0 1 1 1 3 -1
3 1 1 1 3 -1 -1 3
5 1 1 1 3 -1 -1 3 -1 1
7 1 1 1 1 1 5 1 1 5
6 1 1 1 3 1 1 3
8 1 1 1 1 4 0 0 2
9 1 1 1 1 4 0

B1
2 1,2,4 0 3 5

B0
2 9 6,7,8

|EC| 13 12 11 10

Table 3-20 Second edge cut of the FSM “bbara”
vi\ei 1

2
1
4

0
1

0
4

2
3

4
5

8
1

2
4

3
4

3
7

5
1

7
1

5
6

7
4

7
8

6
7

6
1

8
4

8
9

9
1

9
0

9
4

1 1 1 1 1 1 1 1 1
2 1 1 1
4 1 1 1 1 1 1 1 1
0 1 1 1
3 1 1 1
5 1 1 1
 1 1 1 1 1 1 1 1 1 1

 40

Example, construction of the third encoding partition, r=3; π∏={{st0, st1,

st2}; {st3, st4, st5}, {st6, st7, st8}, {st9}}; the first edge from the first edge cut
(v8,v1); B1

3={v1,v2,v4,v8}, Table 3-21 and Table 3-22.

π3={{st1,st2,st3,st4,st7,st8,st9};{st0,st5,st6}}

Table 3-21 Construction of the third encoding partition for the FSM “bbara”

vi\vi 1 4 0 2 3 5 7 6 8 9 d(v) γ1
1,2,4,8 γ1

9 γ0
9 γ1

7 γ1
7

0 1 1 1 3 -1
3 1 1 1 3 -1 -1 3
5 1 1 1 3 -1 -1 3
7 1 1 1 1 1 5 -1 -1 3 -3 3
6 1 1 1 3 1 1 1
9 1 1 1 1 4 -2

B1
3 1,2,4,8 9 3 7

B0
3 0 5 6

|EC| 13 11 10 7

Table 3-22 Third edge cut for the FSM “bbara”
vi\e

i

1
2

1
4

0
1

0
4

2
3

4
5

8
1

2
4

3
4

3
7

5
1

7
1

5
6

7
4

7
8

6
7

6
1

8
4

8
9

9
1

9
0

9
4

1 1 1 1 1 1 1 1 1
2 1 1 1
4 1 1 1 1 1 1 1 1
8 1 1 1 1
9 1 1 1 1
3 1 1 1
7 1 1 1 1 1
 1 1 1 1 1 1 1

Example, forth encoding partition, r=4; π∏={{st0}, {st1, st2}, {st3, st4},

{st5}, {st6}, {st7, st8}, {st9}}; the first edge from the first edge cut (v0,v1);
B1

4={v0,v1}. To the set B1
4={v0,v1} we subsequently add the vertices v9, v8, v6,

and v4, because they have the smallest increment, Table 3-23. The last
undistributed vertex v5 has the increment to the both sets: B1

4={v0,v1,v9,v8,v6,v4}
and B1

4={v2,v7,v3}, γ1
5(B1

4)=3-2*1(edge(v4,v5))=1 and γ1
5(B0

4)=3-2*2(edges
(v3,v5) and (v3,v7))=-1. Despite of that the increment of vertex v5 to the set B0

4 is
smaller than to the set B1

4 we decide to add the vertex v5 to the set
B1

4={v0,v1,v9,v8,v6,v4,v5}, because the cardinality of the edge cut is equal to 7,
Table 3-24. If we do not add the vertex v5 to the set B1

4, the cardinality would be
equal to 10.

 41

π4={{st0,st1,st4,st5,st6,st8,st9};{st2,st3,st7}}

Table 3-23 Construction of the fourth encoding partition for the FSM “bbara”

vi\vi 1 4 0 2 3 5 7 6 8 9 d(v) γ1
0,1 γ1

9 γ1
8 γ1

4 γ1
5

4 1 1 1 1 1 1 1 1 8 4 2 0
3 1 1 1 3 3 3 3
5 1 1 1 3 1 1 1 -1
7 1 1 1 1 1 5 3 3
6 1 1 1 3 1 1 1 1 -1
8 1 1 1 1 4 2 0
9 1 1 1 1 4 0

B1
4 0,1 9 8 4 5 6

B0
4 2 7 3

|EC| 9 9 9 9 8 7

Table 3-24 Fourth edge cut for the FSM “bbara”

vi\e
i

1
2

1
4

0
1

0
4

2
3

4
5

8
1

2
4

3
4

3
7

5
1

7
1

5
6

7
4

7
8

6
7

6
1

8
4

8
9

9
1

9
0

9
4

0 1 1 1
1 1 1 1 1 1 1 1 1
9 1 1 1 1
8 1 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1
6 1 1 1
 1 1 1 1 1 1 1

 42

Concluding Step
 Check if the partition π∏ is equal to the zero partition: π∏=π0.
 Calculate the number of complicated transitions, the number of

redundant switching and the summary defect of the encoding.

Example, π∏={{st0}, {st1}, {st2}, {st3}, {st4}, {st5}, {st6}, {st7},

{st8}, {st9}}=π0. The encoding matrix for the FSM “bbara” is presented in
Table 3-25.

Table 3-25 The encoding matrix for the FSM “bbara”
states codes

st0 1101
st1 1111
st2 1110
st3 0110
st4 0111
st5 0101
st6 0001
st7 0010
st8 0011
st9 1011

Table 3-26 Hamming distances of all edge cuts for the FSM “bbara”

1
2

1
4

0
1

0
4

2
3

4
5

1
8

2
4

3
4

3
7

1
5

1
7

5
6

4
7

7
8

6
7

1
6

4
8

8
9

1
9

0
9

4
9

 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 2 1 1 2 2 1 1 2 3 1 2 1 2 3 1 1 1 2 2

Number of complicated transition is equal to 10; number of redundant

switching is equal to 12; Opower(eperfect)=0.2215, Opower(ereceived)=0.2757 and hence
the defect of the encoding 24.4%, Table 3-26.

 43

3.2.3 Comparison of encoding methods
The encoding problem is NP-complete; therefore most of the proposed

state assignment techniques rely on heuristic solutions, which are using
problem-solving techniques based on experience [57].

In this sub-section we select five state-of-the-art encoding methods to
compare with the proposed encoding. These methods are Huffman-Style
Encoding by Surti [69], One Level Tree (OLT) by Silvano [66], POW3 by
Benini [6], Spanning Tree Based (STB) by Nőth [55], and Deep First Search
(DFS) by Eggermont [21]. All of these approaches have the aim to reduce the
dynamic power dissipation in synchronous sequential circuits by reducing the
register switching activity. The reduction of the average switching activity
targets the minimization of the number of bit changes during the FSM state
transitions.

Common to these approaches is the starting data that includes the initial
description of an FSM as the STG and a probabilistic model to present the
stochastic behavior of an FSM. The initial STG is transformed into the weighted
undirected graph. The graph is weighted using the probabilistic description of
the FSM. A good approximation of the average switching activity is the
switching probability (or transition probability) [6]. Given the input switching
probability it is possible to calculate the probability of the state transitions in an
FSM. This information is used to find an encoding that minimizes the switching
activity of the variables. The Huffman encoding algorithm works with the
vertex-weighted undirected graph, while POW3, OLT and STB use the edge-
weighted undirected graph.

1. Using Huffman-Style Encoding higher probability states have

shorter code length while lover probability states have longer code
length [69]. Huffman encodings for the FSM “bbara” is presented in
Table 3-27.

This approach may not always be practical since variable code lengths
have significant management overhead.

Table 3-27 Huffman encoding for the FSM “bbara”
w(vi) vi k1 k2 k3 k4 k5 k6
0.268 st1 1 1 - - - -
0.195 st4 1 0 - - - -
0.155 st0 0 1 0 - - -
0.134 st2 0 1 1 - - -
0.134 st3 0 0 1 - - -
0.049 st5 0 0 0 1 1 -
0.037 st7 0 0 0 1 0 -
0.016 st6 0 0 0 0 1 -
0.009 st8 0 0 0 0 0 1
0.003 st9 0 0 0 0 0 0

 44

2. One Level Tree encoding uses an edge-weighted undirected graph to
state ordering and thus to assign a priority to the symbolic states.
When the order is defined the well-known Gray code is used [4]. For
example, the edge e1,2 has maximal weight, let the state has code
0000, then state st2 has code 0001, the next edge ordered by weights
is the edge e1,4 then the state st4 can be encoded as 0010. Next
follows the edge e0,1 and the state st0 has the code 0100 and etc. Table
3-28 presents the OLT encoding for the FSM “bbara”.

The problem arises if several edges have the same weight.

Table 3-28 OLT encoding for the FSM “bbara”
ei w(ei) states codes

1-2 0,668 st1 0000
 st2 0001

1-4 0,661 st4 0010
0-1 0,577 st0 0100
2-3 0,268 st3 0011
4-5 0,246 st5 0110
3-7 0,134 st7 1011
5-6 0,049 st6 0111
7-8 0,037 st8 1010
8-9 0,009 st9 1110

3. POW3 encoding minimizes the Hamming distance between the codes

of the states connected by transition with high probability. The
encoding approach assigns the adjacent codes for the states
correspond to weights of edges, w(ei). These weights are recomputed
in the cost function after each previous variable assignment [6]. For
example, the edges e5,6, e7,8, and e8,9 have smallest weights, let k1=1
for the states st6, st8 and st9, then only two edges e5,6 and e7,8 have the
Hamming distance equals to 1. Next the weights which correspond to
selected edge are redoubled. Table 3-29 demonstrates the
construction of POW3 encoding for the FSM “bbara”.

The solution is not globally optimal because the method is not
considering the impact that the choice of one state variable has on the
other state bits.

 45

Table 3-29 POW3 encoding for the FSM “bbara”

e i

w
1 (e

i)

v i k 1

H
(e

i)

w
2 (e

i)

k 2

H
(e

i)

w
3 (e

i)

k 3

H
(e

i)

w
4 (e

i)

k 4

1-2 0.668 st1 0 0 0.668 0 0 0.668 0 1 1.336 1
 st2 0 0 1 1

1-4 0,661 st4 0 0 0,661 0 0 0,661 0 0 0,661 0
0-1 0,577 st0 0 0 0,577 1 1 1.154 0 1 2.308 1
2-3 0,268 st3 0 0 0,268 0 0 0,268 1 0 0,268 0
4-5 0,246 st5 0 0 0,246 1 1 0.492 0 1 0.984 0
3-7 0,134 st7 0 0 0,134 1 1 0.268 1 1 0.536 0
5-6 0,049 st6 1 1 0,098 0 1 0.196 1 3 0.784 0
7-8 0,037 st8 1 1 0,074 0 1 0.148 0 3 0.592 0
8-9 0,009 st9 1 0 0,009 1 0 0,009 1 2 0.027 1

4. The Spanning Tree Based encoding construct a maximum spanning

tree of the undirected graph and formulate the state encoding problem
as an embedding of the spanning tree into a Boolean hypercube of
unknown dimension [55]. In presented approach the limitation to a
predetermined number of bits for the state encoding is removed. In
case of several edges have the highest weight the division of spanning
tree is ambiguous. Figure 3-8 illustrates the maximum weighted
spanning tree for the FSM “bbara”. The highest weighted edge e1,2 is
selected, the degree of node v1 is equal d(v1)=3 and the degree of node
v2 is equal to d(v2)=2, dmax=3.

Figure 3-8 Maximum weighted spanning tree for the FSM “bbara”

The edge e1,2 is removed and it is leaved two sub-trees, Figure 3-9.
When we divide the maximum weighted spanning tree into the two
sub-trees we select the highest weighted edge, e1,2, which does not
increase the degree of the nodes. In case of some edges have the
highest weight the division of spanning tree is ambiguous.

st0 st1 st2

st9

st4
st5 st8

st7 st6

st3

 46

Figure 3-9 Two sub-trees for the FSM “bbara”

Next, adjacent codes are applied to both sub-trees, Figure 3-9 and
Table 3-30.

Table 3-30 STB encoding for “bbara” FSM
states codes

st0 0001
st1 0000
st2 0010
st3 0110
st4 0100
st5 1100
st6 1110
st7 0111
st8 1111
st9 1101

5. The Deep First Search (DFS) encoding utilizes dynamic loop
information extracted from FSM profiling data [21]. First, FSM run
under a relevant input data, state profiling collects information about
a state register trace. Second, loop detection searches for loops in the
state trace. Loops are identified by the repeated occurrence of the
same state in the trace, and each discovered loop is stored and
counted to obtain the frequency of the loops. Third, to each state
assign a unique code. For some circuits proposed algorithms gives
more power dissipation due to the larger state register. Hence the
code length is bigger than expected. The DFS can not be used for
very large circuits. For the FSM “bbara” the loop 1→2→1 has the
weight 100, while the loop 1→2→3→4→1 has the weight 50 and the
loop 1→4→1 is a (nested) inner loop with weight 25. These loops are
encoded using adjacent codes, Table 3-31.

st0 st1 st2

st9

st4 st5

st8

st7 st6

st3

0001 0000

0100 1100

1110

0010

0110

0111

0101
1101

 47

Table 3-31 DFS encoding for “bbara” FSM
states codes

st0 0100
st1 0000
st2 0001
st3 0011
st4 0010
st5 0110
st6 0111
st7 1011
st8 1010
st9 1000

 48

Table 3-32 summarizes the comparison among several discussed power-
oriented encoding methods for the FSM “bbara”.

Table 3-32 Comparison among several encoding methods for the FSM
“bbara”

 Hamming Distances H(ci,cj)
e i

w
(e

i)

W
C

EC

D
FS

O
LT

PO
W

3

ST
B

H
uf

fm
an

1-4 0,042 1 1 1 1 1 1
1-2 0,041 1 1 1 1 1 1
0-1 0,036 1 1 1 1 1 1
0-4 0,022 2 2 2 2 2 2
2-3 0,017 1 1 1 1 1 2
4-5 0,015 1 1 1 1 1 1
2-4 0,008 2 2 2 2 2 2
3-4 0,008 1 1 1 1 1 1
3-7 0,008 1 1 1 1 1 1
5-1 0,006 2 2 2 2 2 2
7-1 0,005 3 3 3 3 3 2
5-6 0,003 1 1 1 1 1 1
6-1 0,002 3 3 3 3 3 2
7-4 0,002 2 2 2 2 2 1
7-8 0,002 1 1 1 1 1 1
8-1 0,001 2 2 2 2 2 2
6-7 0,001 2 2 2 2 2 1
8-4 0,001 1 1 1 1 1 1
8-9 0,001 1 1 1 3 1 1
9-1 0,0003 1 1 3 3 3 2
9-0 0,0001 2 3 2 2 2 2
9-4 0,0001 2 2 2 4 2 1
Complicated
Transitions

10 10 11 12 11 9

Redundant
Switching

12 13 14 18 14 9

Cost
Function Opower

0.276 0.277 0.278 0.279 0.277 0.283

Defect (%) 24.4 24.5 24.7 25.7 24.5 27.7

 49

3.2.4 Further improvement of the received encoding
As it was mentioned above, the proposed state encoding technique is

based on a greedy choice of an appropriate vertex added to a constructed edge
cut. In this subsection we present some ways to improve the received encoding.

In computer science a search algorithm takes a problem as input and
returns a solution to the problem, usually after evaluating a number of possible
solutions. Searching algorithms can be divided into uninformed search
algorithms which use the simplest, most intuitive method of searching and
informed search algorithms which use heuristic to apply knowledge about the
structure of the search space try to reduce the amount of the time spent for
searching.

List search, tree search and graph search are uninformed search
algorithms. The goal of list search algorithm is to find one element of a set by
some key. Tree search is specialized version of search algorithms, which takes
the properties of trees into account. Many of the problems in graph theory can
be solved using graph search algorithms which are extensions of the tree search
algorithms [81].

Tree search techniques

Tree search algorithms are the heart of searching techniques [88]. These
search nodes of trees, whether that tree is explicit or implicit (generated on the
go). The basic principle is that a node is taken from a data structure, its
successors examined and added to the data structure. By manipulating the data
structure, the tree is explored in different orders for instance level by level or
reaching a leaf node first and backtracking.

A tree is a widely-used computer data structure that emulates a tree
structure with a set of linked nodes. Each node has zero or more child nodes,
which are below it in the tree. A node that has a child is called the child’s parent
node. A child has at most one parent; a node without a parent is called the root
node (or root). Nodes with no children are called leaf nodes.

The root of the tree corresponds to an initial situation of the problem.
Other vertices associate with situations which can be achieved in process of
solution of the problem. There are two basic types of tree. In an unordered tree,
there is no distinction between the children of a node --- none is the “first child”
or “last child”. A tree in which such distinctions are made is called ordered tree.
Ordered trees are by far the most common form of tree data structure. The root
selection gives an orientation to the tree when all paths are from the root to the
other vertices. An arc, or directed edge, is an ordered pair of vertices. In tree
arcs correspond to simple operations that represent the steps in process of
solution of the problem. Arcs connect the vertices, which correspond to
situations. A situation presented by a vertex characterizes a wide variety of
different next steps that described by arcs outgoing from the considered vertex.
Some situations present solutions of the problem.

 50

Figure 3-10 A fragment of tree search for the second encoding partition
for the FSM “bbara”

Example, Figure 3-10 presents a fragment of tree search for the

constructing the second encoding partition for the FSM “bbara”. The root is {1,
2, 4}. Arcs correspond to variants of choice of the next vertex to add to the
constructed set. We have received ten leaf nodes that correspond to the six
various unit blocks of the second encoding partition.

Randomization

Randomization is a process of making something random. Randomization
is a core principle in the statistical theory of design of experiments which is a
methodology for solving optimization problem [81].

Under randomization of our encoding technique we imply a process of
making a list of rest undistributed vertices random. We form a register of
rewriting of rest vertices and then choose more appropriate vertex to construct
an encoding partition.

Example, Table 3-7 demonstrates the construction of the second
encoding partition for the FSM “bbara”. We start the construction with a
selection of an arbitrary edge (e7,8) from the previous edge cut. Obviously, that
the choice of other edge as a starting point perhaps has different result of
construction from the received partition. We can form a register of rewritings of
edges from the previous edge cut to find better decision. Also we form a register
of rewritings of vertices (v3,v6) with minimal increment (γ1

7,8(v3/v6)=1) with aim
to select the most appropriate vertex to construct of an encoding partition. We
select the first vertex v3. Next we choose between two vertices v2 and v6
(γ1

3(v2/v6)=1), and prefer the vertex v6 because we receive the best decision.
Using randomization at a selection of next appropriate vertex to construct

an encoding partition greatly reduces a search among rest undistributed vertices.
Tree search and randomization techniques were used for machine

realization of the proposed encoding method.

1,2,4,
0

1,2,4,
3

1,2,4,
0,9

1,2,4,
3,0

1,2,4,
3,7

1,2,4,
3,0,9

1,2,4,
3,5,0

1,2,4,
3,5,6

1,2,4,
3,5,8

1,2,4,
5,3,0

1,2,4,
5

1,2,4,
3,5

1,2,4,
5,0

1,2,4,
5,3

1,2,4,
5,6

1,2,4,
5,6,7

1,2,4

 51

3.3 Experimental results
To evaluate the performance of the proposed state encoding algorithm we

use the benchmark set [48]. This is an industry-standard benchmark suite. Table
3-33 shows the benchmarks, the number of states each FSM consists of, and the
number of codes available to the state encoding algorithms for the minimum
size of the state register. Furthermore, the table lists the number of transitions.

Table 3-33: Benchmarks statistics
benchmark states codes transitions

bbara 10 16 60
bbsse 13 16 56

beecount 7 8 28
cse 16 16 91

dk14 7 8 56
dk15 4 4 32
dk16 27 32 108
dk17 8 8 32
dk27 7 8 14

dk512 15 16 30
donfile 24 32 96

ex1 20 32 138
ex4 14 16 21
ex6 8 8 34
keyb 19 32 170
log 17 32 28

mark1 13 16 33
opus 10 16 22

planet 48 64 115
pma 24 32 74
s1 20 32 107
s8 5 8 32

sand 32 32 184
shiftreg 8 8 16

sse 13 16 48
tbk 32 32 104
tma 20 32 96

train11 11 16 15
We have applied our encoding algorithm Weakly Crossed Edge Cut to all

FSM benchmarks and we present a summary of the results, Table 3-34. FSM
state encoding for low power dissipation do not target the circuit switching
activity directly, but instead minimize only the state register switching activity.

The switching activity is expressed as the number of bit changes in the
state register, or the number of signal changes in the circuit, that occurred
during the simulation. During the simulation, each state transition will cause at
least one bit to change in the state register. Therefore, the number of state
transitions forms a lower bound for the state register switching activity.

 52

Table 3-34 Defect of the encodings (ª - longer code)

be

nc
hm

ar
k

W

C
EC

D

FS

O

LT

PO

W
3

ST

B

H

uf
fm

an

bbara 24.0 24.1 24.6 25.0 26.0 27.2
bbsse 15.1 15.1 15.7 16.0 16.1ª 19.0

beecount 5.3 5.3 5.5 5.5 5.4ª 6.9
cse 4.6 5.6 7.8 8.0 4.9ª 10.3

dk14 34.1 34.1 44.8 44.8 34.1ª 52.0
dk15 19.8 19.8 19.8 19.8 19.8ª 21.1
dk16 80.2 - 85.6 91.5 73.7ª 104.0
dk17 22.7 22.8 23.5 23.5 23.4ª 25.5
dk27 16.3 18.8 17.8 19.8 19.8 23.9

dk512 18.4 18.4 29.4 35.2 25.2ª 39.8
donfile 83.0 - 91.8 110.1 74.8ª 111.8

ex1 29.8 30.4 49.5 55.5 34.8ª 68.8
ex4 10.2 10.2 12.0 14.2 11.4 14.8
ex6 25.8 25.8 29.6 27.9 - 27.9
keyb 1.3 1.3 1.3 1.3 1.3 1.6
log 4.0 - - 4.7 4.0ª -

mark1 29.8 30.2 - - - 44.4
opus 30.8 30.8 - 32.4 32.4ª -

planet 32.8 - 52.3 64.7 27.7ª 80.1
pma 22.3 34.3 - - 22.3ª -
s1 54.8 - 66.1 75.2 48.9ª 88.4
s8 14.4 14.5 29.3 33.7 14.5 38.9

sand 33.7 - 47.7 56.4 18.1ª 80.0
shiftreg 14.1 14.1 35.6 46.7 14.1ª 50.1

sse 15.1 15.1 - - 16.0ª -
tbk 78.0 - 88.8 90.4 35.5ª 100.3
tma 14.6 26.6 40.1 45.5 28.9 50.9

train11 13.3 13.4 46.8 50.7 23.5 54.9
The benchmarks bbtas, kirkmann, lion, lion9, mc, modulo12, tav, train4

are encoded perfectly, resulting in an average state register switching activity of
100%, or only one bit change for each state transition.

As expected, DFS [21] encoding finds the optimal state encoding solution
for some FSM for a minimal width state register. The reason for this is the
relatively low number of transitions for the number of states. The STB [55]
guarantees to find the optimal state encoding solution because this algorithm
utilizes (where needed) wider state registers, which relieves one of the
constraints of the other low power state encodings. This allows the algorithm to
obtain lower state register switching activities, at the cost of a larger chip area
for the state register.

 53

3.4 Summary
The research presented in the Chapter 3 focuses on the problem of

minimizing the power consumption in synchronous sequential circuits, which is
an indispensable component of any power optimization and synthesis
environment for digital circuits. Based on the concept of an economical
covering of the set of transitions by weakly crossed edge cuts we propose an
effective technique to solve the state encoding problem for an FSM targeting
power minimization.

Weakly Crossed Edge Cut encoding method uses the STG to describe of
an FSM. The probabilistic model of an FSM is constructed by using the
stochastic behavior of an FSM. For the given FSM description and the
knowledge of the input probabilities the transition probabilities for the STG are
calculated. The input probability distribution can be obtained by simulating the
FSM at a higher level of abstraction in the context of its environment, or by
direct knowledge from the designer. Transition probability information for each
edge in the STG can then be determined by modeling the STG as a Markov
chain. We describe the Markov chain model for the STG by a directed graph
with a structure isomorphic to the STG and with weighted edges. The
conditional probability distribution is found from the input probability
distribution. The total transition probabilities are calculated. Then, we compute
the steady state probabilities by solving the system of equations. Using the total
transition probabilities the original STG is transformed into weighted graph
which preserves only the relevant information needed for state encoding. Two
matrices, the adjacency matrix and incidence matrix, are constructed by using
the vertex-weighted and the edge-weighted graphs simultaneously.

The main idea of our technique is to find a state encoding that minimizes
the number of state variables that change their value when FSM moves between
two adjacent states. We construct a set of encoding partitions that corresponds
to a set of weakly crossed edge cuts for the STG of an FSM. The framework of
constructing of a set of weakly crossed edge cuts was developed in general
enough to update for exploration of the algorithm for the optimization of the
FSM that takes into account the reducing of switching activity. Power-oriented
encoding algorithm was implemented and ran on standard benchmark circuits.
We found that the presented state encodings allows low power FSM synthesis.
Our results confirm that state encoding has an impact on power dissipation in
the overall circuit.

 54

444 DECOMPOSITION FOR A LOW POWER FSM

4.1 Introduction

In the previous chapter the problem of FSM state encoding has received

considerable attention, because it is an important step in the process of
sequential circuit synthesis. The FSM state encoding problem can be also
viewed with relation to the FSM decomposition problem. Recently
decomposition of the FSM has attracted attention of researchers for power
reduction [9], [12], [51].

FSM decomposition is an organic part of logic synthesis process of
sequential circuits [14], [41], and [58]. A complex FSM can be decomposed
into simpler ones in order to recieve more efficient implementation. The task of
decomposition has been a classic problem of the discrete system theory for
many years [3], [28]. Decomposition of the FSM is a topic that waxes and
wanes in importance. The fundamental works were done in the 1960s [28],
became less interesting during the era of Very Large Scale Integration (VLSI)
[27], and is becoming more important again with pervasive use of
programmable logic and low power applications in digital design [1].

A large hardware behavioral description is decomposed into several
smaller ones. One goal is to make the synthesis problem more tractable by
providing smaller sub-problems that can be solved efficiently. Another goal is
to create descriptions that can be synthesized into a structure that meets the
design constraints. In the past, the synthesis focused on quality measures based
on area and performance [64]. The continuing decrease in feature size and
increase in chip density in recent years have given rise to consider
decomposition theory for low power as a new dimension of design process [9],
[12], [29], [30], [39], [41], [42], [50]-[53], [60], [65], [70], [74], and [78].

Usually, the task of FSM decomposition is a representation of the original
FSM as its network realization. It means that, we construct such a network of
the connected and interacted component machines which should realize
behavior of the original FSM. Moreover, each component machine should
satisfy some of given conditions.

Indeed, such a statement of the FSM decomposition task is common in
sense of understanding of an overall object of machine decomposition. This
work is concentrated on investigations of the pair method of decomposition
[28]. The structural properties of machine are described in pair algebra terms.
The character of possible decomposition of machine is caused by properties of
partitions on the set of the states of this machine. Interaction of several
machines can be imagined by mutual information depending on what is
reflected by elements of pair algebra. Moreover, the task of FSM decomposition
and problem of states encoding are virtually identical concepts. Thus, the
problem of assigning a binary code to all states of original machine leads to the
problem of assigning a binary code to the blocks of partitions. Therefore, the

 55

task of FSM decomposition can be formulated in a manner of apparatus of
partitions.

Given the STG of a circuit controller, the optimization task consists of
decomposing and encoding the graph in order to prepare it for logic synthesis.
Decomposition techniques produce interconnected machines from one large
FSM, and they can be divided into two categories [42]: those based on the
algebraic theory [28] and those based on the identification in the STG of sub-
routines or co-routines [15]. A sub-routine/co-routine corresponds to a fragment
of the STG augment with a wait state. Shutdown techniques can be applied to
the individual machines because only one is active at a given point of time [10].
Both approaches to decomposition try to minimize the activity along the lines
connecting the component machines, which tend to drive heavier loads.
Decomposition naturally helps tackling the complexity issue [42].

We regard three categories of FSM decompositions: multiplicative,
additive and generalized additive.

Multiplicative Decomposition is the general method of FSM
decomposition. The decomposition is called “multiplicative” because the graph
of the source FSM is embedded into a product of smaller graphs. This method
enables synthesis of a network of interacting component machines
corresponding to a complete set of partitions on the set of states of the source
FSM. Each component machine corresponds to a partition on the set of the
states. All the states belonging to a single block in a submachine are given the
same code in that component machine. Therefore, there is no way of
distinguishing between two states belonging to a single block in a submachine
without recourse to information from other component machines. A block of
states in a partition effectively corresponds to the state in the submachine
associated with that partition. The functionality of the source machine is
maintained in the decomposed machine if the partitions associated with the
decomposition such that their product is the zero-partition on the set (every
block of partition consists exactly of one state).

The idea of the Additive Decomposition is to introduce an additional
“idle” state into component machines. The graph of an FSM is partitioned into
node disjoint subsets. The network of machines consists of components working
alternatively in time, i.e. all components except one are suspended in one of
extra state (the “wait” state). The network of interacting component machines
corresponds to a given partition on the set of the states of the source FSM. The
number of the component machines in the network is equal to the number of the
blocks and the number of the states of the component machines is equal to the
number of the states in the corresponding block of a given partition plus 1.

The Generalized Additive Decomposition proceeds from a given cover on
the set of the states of the source FSM. Each component machine corresponds
to a subset of the set of the states of the source FSM. This method is a more
generalized approach based upon the previous method (more than one machine
could be active executing a computation at any given time while the other
component machines are idle).

 56

4.2 FSM decomposition technique
Because the traditional approach to FSM design involves solving at least

two difficult combinatorial problems (state minimization and state encoding
[58]), the attempt to implement a united strategy has been undertaken. The FSM
decomposition problem is classic in the machine theory [28] just like the state
encoding problem. Various approaches based on different heuristics have been
investigated [1], [27], [58].

An FSM can be decomposed into smaller interacting machines in order to
achieve different optimizations, such as area, performance, power consuming
and testability. The range of our interests comes to power optimization. We
proceed from the idea that proposed heuristics for state encoding and techniques
of logic optimization work better for smaller circuits as opposed to larger ones.
In general, if a good decomposition can be found, smaller areas for a
decomposed FSM over a single lumped circuit will result. Taking into
consideration the performance, the decomposed circuits can be clocked faster
than the source machine, due to smaller critical path delays. At the same time,
FSM decomposition may provide a solution that partitions the whole circuit into
parts working alternatively. In this case, the switching activity of the circuit can
be greatly reduced.

The main problem of the decomposition procedure is the choice of a
partition system [14]. We have also emphasized that in the current work we deal
only with decomposition methods based on the algebraic structure partition
theory [28]. In the introduction to the current chapter, we have mark out three
variants of partition systems: a complete system of partitions, a partition and a
cover of the set of the states of the decomposable FSM. In general,
decomposition using a partition and a cover on the set of the states of the
decomposable machine can be regarded as a particular case of more common
decomposition method using a complete system of partitions. Thus, the results
received during multiplicative decomposition can be extended into additive and
generalized additive decompositions.

The way to select (or construct) a partition (a set of partitions) is not
discussed in the thesis. We leave this question open for future investigations.
However, it is needed to underlain that the key condition of existing
decomposition for a given FSM must be executed. In subchapter 2.2 we present
the main condition of FSM decomposition in a general way.

To avoid significant complications during the decomposition procedure,
it is necessary to keep certain tactics. One of the essential foundations of
optimization methods of the decomposition synthesis is a strategy of global and
local transformations [35]. The strategy consists of two logical transformations
of the source FSM. The global or primary (coarse) transformation fragments the
source FSM into a group of its pieces. Clearly, the way of this fragmentation
depends on given conditions, or is dictated by a required basis. As a rule, more
important requirements are expected to be executed at this stage.

The stage of global transformations will entail the formation of
decomposition constraints. Consequently, already at this stage the main

 57

restrictions on the basis and structure of the network should be executed.
Among such restrictions, we are able to allocate, for example, the restriction on
the number of component machines in the network, the restriction of the
number of states of component machines, the restriction on the number of
binary inputs of component machines, the restriction on the number of binary
inputs of each component machines, etc. Every one of such restrictions
demands the decision of the certain subtask at the stage of choosing the partition
system. Moreover, depending on the given task, we can have the necessity to
build a network with several restrictions. All above-mentioned is an occasion of
creation a flexible method of global transformations realization of the source
FSM on the partitions basis. The second step of the decomposition procedure is
the step of determining of structure of the network. Here we define the number
of machines in the network, inputs and outputs of each components and also
connections between them.

When the system gets accustomed after impact of global transformations,
here arises a question of more delicate (fine) optimization. The accurate
definition of the received parts, detection and the specification of information
connections and final clarifying of the decomposable FSM as a whole are
ultimate aims of action of local transformations.

During the action of local transformations, we are interesting in
component-wise optimization. After determining the structure of the network,
here arises the task of optimum encoding, a task of searching for optimum input
and output alphabets of the component machines, connection functions, and the
network output. Generally speaking, the stage of local transformation means
working directly with each component machine. During this process takes place
an original swapping of complexity from the connection functions and the
network output to the output functions of the component machines. Obviously,
that optimization on the stage of local transformations also requires a local
criterion.

The strategy of global and local transformations at FSM decomposition
based on the concept of pair method also consists of two consistent steps. On
the global transformation step we realize rough decomposition of the source
FSM. Thus, the source FSM is strictly divided into a set of component
machines, which satisfy the given restrictions. As a result of global
transformations, we have a network of component machines which realizes the
source FSM.

The next stage is local transformations. During this phase, we have the
possibility for a more detailed and delicate specification of the parts received on
the previous step. Local transformations of the component machines allow
constructing of its internal inputs and outputs. Moreover, local transformations
give us resources for the optimization of internal connections between
component machines.

The main goal of FSM decomposition is division on a symbiosis of
global and local transformations is an opportunity to avoid full excess at the
optimization. It is well known that exact solution of optimal decomposition is

 58

practically not feasible. Therefore, the strategy of global and local
transformations gives us an opportunity of more differentiated approach to the
problem of searching for optimum decomposition.

We illustrate how works the proposed procedure of FSM decomposition

on the FSM “opus” [48]. The state transition and output table the FSM “opus” is
presented in Table 4-1.

Table 4-1 State transition and output table for the FSM “opus”
№ Present state Input Next state Output
1 init0 x3 init0 y1y2

2 ¬x3 init1 y1y2
3 init1 x3 init0 y1y2
4 ¬x3¬x4

 init1 y1y2
5 ¬x3x4 init2 y1y2y6
6 init2 x3 init0 y1y2
7 ¬x3 init4 y1y2y4
8 init4 x3

 init0 y1y2
9 ¬x3x4 init4 y1y2y4

10 ¬x3¬x4 IOwait -
11 IOwait x3 init0 y1y2
12 x1¬x2¬x3¬x4 init1 y1y2
13 ¬x3x4 init2 y1y2y6
14 ¬x1¬x2¬x3¬x4 IOwait -
15 ¬x1x2¬x3¬x4¬x5 read0 y1y3
16 x1x2¬x3¬x4¬x5 write0 y1y5
17 ¬x1x2¬x3¬x4x5 RMACK y1
18 x1x2¬x3¬x4x5 WMACK y1
19 RMACK x3 init0 y1y2
20 ¬x3x5 read0 y1y3
21 ¬x3¬x5 RMACK y1
22 WMACK ¬x3 init0 y1y2
23 x3¬x5 write0 y1y5
24 ¬x3x5 WMACK y1
25 read0 x3 init0 y1y2
26 ¬x3 read1 y1y3y6
27 read1 x3 init0 y1y2
28 ¬x3 IOwait -
29 write0 x3 init0 y1y2
30 ¬x3 IOwait -

 59

4.2.1 Decomposition constraints
In the previous we describe the notion of restrictions which are applied

on the structure of the network. For example, we would like to apply the
restriction on the number of inputs in each component machine in the network.
Such restrictions have effect on the construction of each partition from the
complete system of partitions for decomposition of the source FSM. Each
partition from the complete system of partitions represents the work of one
component machine in the network. The blocks of the partition describe the
states of the correspondent component machine. The set of all blocks of all
partitions from the complete set of partitions present the global states of the
network of machines and form the set of decomposition constraints.

We introduce tree heuristic methods for global transformations executing.
In our scenario, the first heuristic method corresponds to the primary

transformation of an FSM should begin with a separation of its inputs. Mainly,
it is explained by desire to mark out some inputs, which are not essential for
some component machine. The follows method breaks up into two consecutive
steps, each of which allows the process of complete set of partitions choice.

The second heuristic method for global transformation of the source FSM
allow to identify the most probable behaviors in a sequential component.

The third method is global transformation of the source FSM with aim to
separate outputs. The method provides a systematic way to separate outputs
among component machines.

Various decomposition techniques based on partition on the set of states
of decomposable machine produce various sets of constraints.

The set of decomposition constraints for the network of machines defined
by a complete system of partitions {πi}, 1≤i≤n is a set
{ }i

j jniB
i

ππ ≤≤≤≤ 1,1| , where
i

Bπ are the blocks of partitions from {πi}

and |πi | is the number of blocks in πi. For the constructed network of machines
the number of decomposition constraints is equal to the total number of blocks
in the complete system of partitions.

The set of decomposition constraints for the network of machines defined
by a partition π is a set { }ππ ≤≤ jB j 1| , where πB are the blocks of partition π
and |π| is the number of blocks in π.

Similarly the set of decomposition constraints for the network of
machines constructed by a cover on the set of states of decomposable machine
is defined.

In general we present a matrix formulation for the decomposition
constraints as follows [36]: for the given set of states S of the decomposable
machine the constraint matrix is a matrix with nc rows and ns columns. nc is
equal to the number of constrains and ns is equal to the number of symbols in S.
Entry (i, j) is 1 if and only if the ith constraint contains symbol j, otherwise it is
0.

Tables 4-2, 4-3 and 4-4 present tree matrices of decomposition
constraints for the FSM “opus”.

 60

Decomposition with a separation of inputs (multiplicative decomposition)
Decomposition of the source FSM with separation of inputs implies

partial or full division of all input signals between the component machines.

First step

 Calculating of α-partitions on the set of inputs of a decomposable FSM

Example, we illustrate the calculation of α-partitions on the FSM

“opus”:
α(x1)={{init1,IOwait}; {read0,write0}; {RMACK,WMACK};
{init0,init2,init4,read1}},
α(x2)={{init1,write0,WMACK}; {IOwait,read0,RMACK};
{init0,init2,init4,read1}},
α(x3)={{init0,init1,init2,init4,IOwait,read0,write0,RMACK,WMACK,read1}},
α(x4)={{init0,read1};{init1,init2,init4,IOwait,read0,write0,RMACK,WMACK}}
α(x5)={{read0,RMACK}; {write0,WMACK};
{init0,init1,init2,init4,IOwait,read1}}.

Second Step

 Generating of a complete system of partitions {π} on the set of states S
of a decomposable FSM

Intuitively, at the current step we have a certain freedom at the choice of
complete system of partitions. On the first step of this method, by search of α-
partitions we have been strictly limited to their definition. Quite opposite, the
second step does not limit us to a rule of addition of α-partitions. Each step
generates one next partition which fills up set {π} empty at the beginning. At
the forming of the first partition π1 from the set of partitions we consecutively
enlarge the zero partition πI by addition with some α-partitions. However, there
are some variants of partitions increasing. It is clear, that imposing additional
restrictions, we can make process of forming partitions more flexible. Thus, the
restriction on the number of component machines dictates the number of
partitions in complete set of partitions. The number of blocks in partitions
determines the number of states of the corresponding component machines.

Example, the partition π1 describes the work of the first component

machine “opus_1” which does not depend on the inputs x2 and x5; the partition
π2 describes the work of the second component machine “opus_2” which does
not depend on the input x1; the product of π1 and π2 is equal to zero partition and
the complete system of partitions for the FSM “opus” is π={π1,π2}:
π1={{init1,write0,WMACK};{IOwait,read0,RMACK};{init0,init2,init4,read1}}
and π2={{init1,IOwait,init0}; {write0,read0,init2}; {WMACK,RMACK,init4};
{read1}}.

The sets of inputs for both component machines “opus_1” and “opus_2”
are I1=(x1, x3, x4) and I2=(x2, x3, x4, x5).

 61

Table 4-2 Constraint matrix for the network “opus” after multiplicative
decomposition

in
it0

in
it1

in
it2

in
it4

IO
w

ai
t

Rm
ac

k

W
m

ac
k

re
ad

0

re
ad

1

w
ri

te
0

c0 0 1 0 0 0 0 1 0 0 1
c1 0 0 0 0 1 1 0 1 0 0
c2 1 0 1 1 0 0 0 0 1 0
c3 1 1 0 0 1 0 0 0 0 0
c4 0 0 1 0 0 0 0 1 0 1
c5 0 0 0 1 0 1 1 0 0 0
c6 0 0 0 0 0 0 0 0 1 0

Decomposition based on state probability distribution (additive
decomposition)

First Step
 Calculating of the distribution of steady state probabilities

Example, for the FSM “opus” we have the distribution of steady state

probabilities calculated using the probabilistic model of the FSM described
above:

Pinit0=0.500
Pinit1=0.334
Pinit2=0.088
Pinit4=0.058
PIOwait=0.017
Pread0=0.0006
Pwrite0=0.0006
PRMACK=0.0006
PWMACK=0.0006
Pread1=0.0006
After performing sensitive analysis of state probability distribution of the

considered FSM “opus”, we decide to decompose it into the network of two
component machine where the first component machine consists of states with
probability greater than P times the probability of the most frequently occurring
state.

Second Step

 Generating a partition πp on the set of states of a decomposable FSM

Example, the 0.9-ordered partition πp for the FSM “opus” is

πp(S)={{init0,init1,init2,init4,IOwait};
{read0,write0,RMACK,WMACK,read1}}

 62

Table 4-3 Constraint matrix for the network “opus” after additive
decomposition

in
it0

in
it1

in
it2

in
it4

IO
w

ai
t

Rm
ac

k

W
m

ac
k

re
ad

0

re
ad

1

w
ri

te
0

c0 1 1 1 1 1 0 0 0 0 0
c1 0 0 0 0 0 1 1 1 1 1

Decomposition with separation of outputs (generalized additive
decomposition)

First Step
 Calculating a partitions on the set of outputs of a decomposable FSM

Example, we divide the FSM “opus” into the network of two component

machines, the partitions on the set of inputs are:
O1={y1,y2,y4}
π(O1)={{init0,init2,write0,read1};
{init1,init4,IOwait,read0,RMACK,WMACK}}
O2={y1,y2,y3,y5,y6}
π(O2)={{init0,init1,IOwait,read0,read1,write0,WMACK,WMACK};
{init2,init4}}.

Second Step

 Generating a cover ϕ on the set of states of a decomposable FSM

Example, the cover ϕ on the set of states S of the FSM “opus” is

ϕ(S)={{init0,init2,init4,write0,read1};
{init0,init1,IOwait,read0,write0,read1,RMACK,WMACK}}.

Table 4-4 Constraint matrix for the network “opus” after generalized
additive decomposition

in
it0

in
it1

in
it2

in
it4

IO
w

ai
t

Rm
ac

k

W
m

ac
k

re
ad

0

re
ad

1

w
ri

te
0

c0 1 0 1 1 0 0 0 0 1 1
c1 1 1 0 0 1 1 1 1 1 1

 63

4.2.2 Information relationship measures
The problem of low power synthesis corresponds to an optimal

decomposition of an FSM reduced to choice of partitions on the set of states of
prototype machine [65]. For evaluation of the networks, the informational
modeling based on entropy measure is considered. It enables to enhance the
decomposition partition search for low power synthesis [32], [33].

We propose measures to enable qualitative and quantitative analysis of
the information structure and information flows of a FSM network to control
low-power synthesis of a sequential circuit [DDECS’02], [MIEL’02],
[StZag’02].

Let E = {e1, e2, …, en} be a set of events which may occur with the
probabilities p1, p2, … , pn. This set of events is complete that is
p1+p2+…+pn=1.

Entropy of E (denoted by H(E)) is given by [11], [45]:

∑
∈

⋅−=
Ee

epepEH)(log)()(2

As an event, we can consider the state of occupation or state transition of
FSM. The entropy of partition π is [35]:

∑
∈

⋅−=
π

π
B

BpBpH)(log)()(2

Here the probability of the block B⊆S is defined as the cumulative
occupation probability of the states in B.

Entropy of the network of machines [35] corresponding to the set of
partitions, N={π1,π2, …, πn}, is equal to the sum of entropies of partitions of N.

For partition pair 〈πi, πj〉 the conditional entropy is:
() () ()ijiji HHH πππππ −⋅=,

To estimate the power consumption (1), one has to calculate the
switching factor of the circuit. Entropy is related to switching activity that is if
the signal switching is high, it is likely that entropy is high also [44].
Theoretically confirmed high correlation proves that partition entropy is suitable
for estimating corresponding component machines [73] which make it a good
measure for partition choice for appropriate decomposition [35]. For estimation
of switching activity of an FSM as complete set of events, we consider the set
of all transitions (corresponding to edges of the STG) in the FSM, Ti. To
estimate switching activity, we have to take into account only events related to
changing of states. Criterion of switching activity of component machine Ai, is
H(Ti) decreased by self-loop component:

() [])(log)()(log)(2
1

2 iiiiii
mj

ijiijii
sw qpqpqpqpAH ⋅⋅⋅−−⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅⋅−= ∑

≤≤

Affirmation. For FSM A, Hsw(A) is maximal if transitions of the FSM are
equiprobable:

 64

()

()AH

AH
NR sw

ni
i

sw

sw
∑
≤≤= 1)(

(5)

To be useful for high-level power analysis, the switching activity has to
be used in conjunction with an estimator for the complexity of the target circuit
[2]. Since we want to keep the independence from the actual implementation of
the circuit, we need an encoding independent measure of the complexity of the
circuit. We suppose, that the measure for complexity of a controller (which is
synthesized from the FSM description in the design process) approximated by
the number of rows in the state transition table of the corresponding FSM
description. It is shown [38] that for low-power design this measure is good as
parameter of area estimation.

To calculate this parameter we need to find the symbolic cover of the
discrete function Fi: D(δ)→πi. Given the FSM, we first assign one-hot codes to
all states. Then symbolic minimization is applied to the one-hot coded machine
using multi-valued logic minimization. The result is a symbolic cover, Ki, of the
Fi. Each element of the symbolic cover is a symbolic prime implicant, that is a
triple 〈β, B’, B〉 where B’ is the set of states (block of partition M(π)) which
transit to the next state contained in the same block B of the partition π under
input condition β. The number of prime implicates, |Ki|, is proportional to
number of rows in the transition table of the corresponding component machine.

From this convincing argument:
() ii

compl KAC =

Next, we define the complexity measure for the network relative to the
source FSM:

()
()

()AK

AK
NR ni

i
compl

∑
≤≤= 1

(6)

In additional, we present the integral criterion (including two parameters
(5) and (6)) for search decomposition partitions as geometric mean of switching
measure of order and area:

() ()NRNRN complsw ⋅=Ω)(

The value of this estimation takes into account the parameters area
(capacitance) and register switching rate simultaneously.

Example, we apply introduced notions to the example FSM “dk15” [48]

for which the exact state occupation probabilities are computed, Figure 4-1.

 65

Figure 4-1 STG of the FSM “dk15” with transition probabilities

Final or limiting probabilities of the states for the FSM “dk15” are
P(S)={0.2435; 0.3809; 0.3339; 0.0417}, entropy of this complete set is
H=1.7463. We decompose the FSM “dk15” into a network of two component
machines. We select two different partitions systems:
[π1={{st1,st4},{st2},{st3}}, π2={{st1},{st2,st4},{st3}}] and
[τ1={{st1,st2,st3},{st4}}, τ2={{st1},{st2},{st3,st4}}].

According to [28] M(π1)=M(π2)={{st1},{st2},{st3},{st4}}, and
M(τ1)={{st1,st2,st3},{st4}}, M(τ2)= {{st1},{st2},{st3},{st4}}. Entropy of
partitions in the first case H(π1)=1.575 and H(π2)=1.550; total entropy of states
after decomposition H(N1)=3.125. In case of the second decomposition system
H(τ1)=0.250, H(τ2)=1.557, H(N2)=1.808. Transition tables of component
machines for both cases are presented in Table 4-5 and Table 4-6.

Table 4-5 Transition tables for the component machines in the network N1

Present
state

Next
state

qi,j piqi,j Present
state

Next
state

qi,j piqi,j

st1 st1 0.333 0.095 st4 st4 0.25 0.061
 st2 0.375 0.107 st5 0.375 0.091
 st3 0.292 0.083 st6 0.375 0.091

st2 st2 0.500 0.190 st5 st5 0.453 0.191
 st3 0.500 0.190 st4 0.141 0.060

st3 st3 0.125 0.042 st6 0.406 0.172
 st1 0.625 0.209 st6 st6 0.125 0.042
 st2 0.250 0.083 st4 0.500 0.167
 st5 0.375 0.125

st1 st2

st3 st4

p1,1= 0.061
p1,2= 0.091

p2,2= 0.190

p3,2= 0,167

p2,3= 0.190

p4,2= 0.016 p3,1= 0.190

p1,3= 0.010
p41= 0.016

p3,3= 0.083
p3,4= 0.042

p4,3= 0.042

 66

Table 4-6 Transition tables for the component machines in the network N2
Present

state
Next
state

qi,j piqi,j Present
state

Next
state

qi,j piqi,j

st1 st1 0.977 0.936 st3 st3 0.25 0.061
 st2 0.023 0.022 st4 0.375 0.091

st2 st1 1.000 0.042 st5 0.375 0.091
 st4 st4 0.500 0.190
 st5 0.500 0.190
 st5 st5 0.250 0.094
 st3 0.495 0.186
 st4 0.255 0.096

Total entropy of transitions before decomposition Esw(A)=5.873 and total

entropy of transitions after decomposition in the first case Eest(N1)=3.125, in the
second case Eest(N2)=1.808. The integral criterions for the both networks are
Cest(N)=0.368 and Cest(N)=1.083 and it is illustrate the complexity of
implementation.

We have presented the approach for implementation-independent low
power partitioning synthesis that attempts to minimize the average number of
signal transitions at the sequential circuit nodes through DPM. It is shown that
decomposition yields attractive power reduction in the final implementations.
What makes entropy especially useful from decomposition and coding point of
view is fact, that partitions, which are incomparable under the least upper bound
and the largest lower bounds in classic lattice, usually do have different entropy
values, so they become comparable from the power consumption point of view.
The idea of using entropy based on informational measures can be also
extended to other phases of logic synthesis also.

 67

4.2.3 Decomposition procedure
The synthesis of the network of machines in the proposed decomposition

procedure implies of determining the structure of the network and encoding of
the network of machines.

The structure of the network under multiplicative decomposition
For the FSM A={S,I,O,δ,λ} and the complete system of partitions {πi},

1≤i≤n on the set of states S of A we define the network N with n component
machines Ai={Si,Ii,δi} in accordance to the pairs (S,πi), 1≤i≤n [28]. The number
of component machines is equal to the number of partitions in the complete
system of partitions. Each partition πi defines one component machine Ai. The
number of states of Ai is equal to the number of blocks in πi. The component
machine Ai is defined as follows:

The set of states Ai=Bj, 1≤j≤m, where Bj∈πi, 1≤i≤n is the jth block of the
partition πi.

The sets of inputs Ii for each component machines Ai defines by using the
operator MI-S(πi) on the set of inputs of FSM A [28].

The set of internal binary outputs Zo
i for each component machines Ai

describes by partitions πi.
The set of internal binary inputs ZI

i for each component machines Ai
defines by using operator MS-S(πi) [28]. MS-S(πi) describes the information
received from the other components of the network sufficient for the component
machine Ai to compute its next state.

Example, for the FSM “opus” we have

A1(π1)={{init1,write0,WMACK}; {IOwait,read0,RMACK};
{init0,init2,init4,read1}}, A2(π2)={{init1,IOwait,init0}; {write0,read0,init2};
{WMACK,RMACK,init4}; {read1}}.
A1(s)={st0,st1,st2},
A2(s)={st3,st4,st5,st6}.
MI-S(π1)={x1, x3, x4},
MI-S(π2)={x2, x3, x4, x5},
MS-S(π1)={{RMACK,read1,write0}; {init4}; IOwait}; {WMACK,init0}; {init1};
{init2,read0}},
MS-S(π2)={{read0}; {init2}; {IOwait}; {init1}; {init4}; {init0,read1,write0};
{RMACK,WMACK}}.
Zo

i(π1)={z1
1, z1

2}
Zo

i(π2)={z2
1, z2

2}
ZI

i(π1)={z2
1, z2

2}
ZI

i(π1)={z1
1, z1

2}

 68

Figure 4-2 Structure of the network “opus” under multiplicative
decomposition

Table 4-7 State transition table for the component machine “opus_1”

№ Present state Input Next state
1 st0 x4z2

1¬z2
2∨¬z2

1z2
2∨x3z2

1 st0
2 ¬x3z2

1z2
2 st1

3 ¬x3¬z2
1¬z2

2∨¬x3¬x4¬z2
2
 st2

4 st1 x3z2
1∨x3z2

2∨x4z2
1z2

2 st0
5 ¬x3 ∨¬x3¬x4z2

2 st1
6 ¬x3¬z2

1z2
2 st2

7 st2 ¬z2
1z2

2∨x3z2
1∨x4z2

2
 st0

8 x1¬x3¬x4z2
1z2

2 st1
9 ¬x3¬z2

1z2
2∨¬x1¬x3¬x4z2

1 st2

Table 4-8 State transition table for the component machine “opus_2”
№ Present state Input Next state
1 st3 x2x3z1

1∨¬x2x3z1
2∨z1

1z1
2∨x2¬x4z1

2∨¬x2¬x4z1
1 st3

2 x2¬x3x4¬z1
1z1

2∨¬x2¬x3x4z1
1¬z1

2∨x2¬x3¬x5z1
1¬z1

2 st4
3 x2¬x3¬x4x5z1

1¬z1
2
 st5

4 st4 ¬z1
1z1

2∨x3z1
1 st3

5 ¬x3z1
1z1

2 st5
6 ¬x3z1

1¬z1
2 st6

7 st5 x3z1
1∨x3z1

2∨¬x4z1
1z1

2
 st3

8 ¬x3x5z1
1¬z1

2∨¬x3x5¬z1
1z1

2 st4
9 ¬x3x4z1

1z1
2∨¬x3¬x5z1

1¬z1
2∨¬x3¬x5¬z1

1z1
2 st5

10 st6 z1
1z1

2 st3

opus_1 opus_2

x1 x3 x4 x2 x5

z1
1

z1
2

z2
1

z2
2

y1 y2 y3 y4 y5 y6

 69

The structure of the network under additive decomposition
For the FSM A={S,I,O,δ,λ} and the partition π={B1,…,Bn} on the set of

states of A, where Bi(i=1,…,n) is a block of this partition we define the network
N with n component machines Ai={Si,Ii,Oi,δi,λi} in accordance to the pair (S,π)
[5]. The number of component machines is equal to the number of blocks in the
partition π.

The FSM Ai is defined as follows. The set of states Si=Bi∪sidle where Bi is
the ith block of the partition π and sidle is the additional (extra wait [70]) state in
Ai, such state exists in each component machine. To define the sets of inputs Ii
and outputs Oi in Ai we put the sets Ii(s), Oi(s), Gi(s), and Ti(s) in accordance to
each state s of the FSM A: Ii(s) is the set of inputs in all conjunctions for the
transitions from s, Oi(s) is the set of outputs for all transitions from the states s,
Gi(s) is the set of states from which there are transitions to the state s and a in
not included in Gi(s): Gi(s)={sj|δi(sj,x)=s, x∈I, sj≠s}, Ti(s) is the set of states to
which there are transitions from the state s; s is not included in Ti(s):
Ti(s)={si|δi(s,x)=si, x∈I, si≠s}.

For each block Bi(i=1,…,n) of the partition π we define the following sets
[5]: I(Bi) is the set of inputs at all transitions from the states of the block Bi in
the transition table of the FSM A, O(Bi) is the set of outputs at all transitions
from the states of the block Bi in the transition table of the FSM A,
G(Bi)={sj|δi(sj,x)=s, x∈I, sj∉Bi, s∈Bi} is the set of states not included in Bi, form
which there are transitions to the states of Bi in the FSM A, and
T(Bi)={si|δi(s,x)=si, x∈I, si∉Bi, s∈Bi} is the set of states not included in Bi, to
which there are transitions from the states of Bi in the FSM A.
Q(Bi)={s|δi(sj,x)=s, x∈I, sj∉Bi, s∈Bi} is the subset of states of Bi, to which there
are transitions from the states not included in Bi (from the states of T(Bi)) in the
FSM A.

Next we define the set of inputs Ii in the component machine Ai:
Ii=I(Bi)∪Zi

I, where Zi
I
 is the set of additional inputs which connect other

component machines with the machine Ai. To define Zi
I we put the additional

inputs z of the component machine in accordance to each state s∈Q(Bi). The
number of elements in Zi

I is the number of additional inputs in the component
machine Ai and is equal to the number of states in Q(Bi): Zi

I={z|δi(sj,x)=s, x∈I,
si∉Bi, s∈Bi}. Thus, if there is a transition from sj to s in the FSM A and s∈Bi (s
is the state of the component machine Ai) and si∉Bi (si is not the state of Ai),
then there is an additional input z in the machine Ai.

Similarly, we define the set of additional outputs Zi
O which connect the

machine Ai Ai with other components in the network. To define Zi
O we put the

additional output z of the component machine Ai in accordance to each state
s∈T(Bi). The number of elements in Zi

O is the number of additional outputs in
the component machine Ai is equal to the number of states in T(Bi). Thus, if
there is a transition from s to si in the FSM A and s∈Bi (s is the state of the
component machine) and si∉Bi (si is not the states of Ai), then there is an

 70

additional output z in the machine. The sets Q(Bi) and T(Bi) define the sets of
additional input Zi

I and output Zi
O in the component machine Ai.

The transition function δi and the output function λi in the component
machine Ai are defined as follows. Let δ(si,x)=s; λ(si,x)=y be the transition in the
FSM A. If si,s∈Bi; si and s are the states of the same machine Ai, then δi(si,x)=s;
λi(si,x)=y is the transition in the machine Ai. If si∈Bi, sj∈Bj; si and sj are the states
of two different machines Ai and Aj, then the component machine Ai transits
from the state si to the additional state sidle with the output Oi and the additional
output zO: δi(si,x)=sidle; λi(si,x)=y∪{zO}. The additional output of the component
machine Ai is the input of the component machine Aj. This input zI produces the
transition from the additional state sidle to the state s with the output y0 in the
machine Aj: δj(sidle,zI)=s; λj(sidle,zI)=y0. y0 corresponds to the output vector
containing only zero components, none of y1, …, ym are written in the column
“output” at the transition (sidle,s) in the machine Aj.

Example, for the FSM “opus” and the decomposition partition π=πp,

πp(S)=[(init0,init1,init2,init4,IOwait);(read0,write0,RMACK,WMACK,read1)]
we define the network “opus” based on state probability distribution under
additive decomposition, Figure 4-3.

Figure 4-3 Structure of the network “opus” based on probability
extraction

B1(πp)={init0,init1,init2,init4,IOwait},
B2(πp)={read0,write0,RMACK,WMACK,read1};
B1(s)={st0,st1,st2,st3,st4,stidle}, B2(s)={st0,st1,st2,st3,st4,stidle};
 The sets Ii(s), Oi(s), Gi(s), and Ti(s) for the FSM “opus” are presented in
Table 4-9.
I(B1)={x1, x2, x3, x4, x5}, I(B2)={x3, x5};
O(B1)={y1, y2, y3, y4, y5, y6}, O(B2)={y1, y2, y3, y6};
G(B1)={read0,write0,RMACK,WMACK,read1}, G(B2)={init0,IOwait};
T(B1)= {read0,write0,RMACK,WMACK}, T(B2)={init0,IOwait};
Q(B1)={init0,IOwait},
Q(B2)={read0,write0,RMACK,WMACK}.

x1x2x3x4x5

y1y2 y3y4y5y6

z1 z2

z3, z4,
z5, z6

opus_p

opus_add

 71

Table 4-9 The state parameters of the FSM “opus”
State Ii(s) Oi(s) Gi(s) Ti(s)
init0 x3 y1y2 init1, init2, init4, IOwait,

RMACK, WMACK,
read0,

read1, write0

init1

init1 x3x4 y1y2y6 init0, IOwait, read0 init0
init2 x3 y1y2y4 init1, IOwait init0,init4
init4 x3x4 y1y2y4

 init2 init0,IOwait
IOwait x1x2x3x4x5 y1y2y3y5y6 init4, read1,write0 init0,init1,init2,

RMACK,WMACK,
read0,write0

RMACK x3x5 y1y2y3 IOwait init0,read0
WMACK x3 y1y2y5 IOwait init0,write0

read0 x3 y1y2y3y6 IOwait, RMACK init0,read1
read1 x3 y1y2 read0 init0,IOwait
write0 x3 y1y2 IOwait, WMACK init0,IOwait

 Additional inputs: Z1
I={z1, z2}, Z2

I={z3, z4, z5, z6};
 Additional outputs: Z1

O={z3, z4, z5, z6}, Z2
O={z1, z2}.

 Table 4-10 and Table 4-11 present the transition tables for the component
machines “opus_p” and “opus_add”.

Table 4-10 State transition and output table for the component machine
“opus_p”

№ Present state Input Next state Output
1 st0 x3 st0 y1y2

2 ¬x3 st1 y1y2
3 st1 x3

 st0 y1y2
4 ¬x3¬x4 st1 y1y2
5 ¬x3x4 st2 y1y2y6
6 st2 x3 st0 y1y2
7 ¬x3 st4 y1y2y4
8 st3 x3

 st0 y1y2
9 ¬x3x4 st3 y1y2y4

10 ¬x3¬x4 st4 -
11 st4 ¬x1¬x2¬x3¬x4 st0 y1y2
12 x1¬x2¬x3¬x4 st1 y1y2
13 ¬x1x2¬x3¬x4¬x5 st2 y1y2y6
14 x1x2¬x3¬x4¬x5 st4 -
15 ¬x1x2¬x3¬x4¬x5 stidle z3 y1y3
16 x1x2¬x3¬x4¬x5 stidle z4 y1y5
17 ¬x1x2¬x3¬x4x5 stidle z5 y1
18 x1x2¬x3¬x4x5 stidle z6 y1
19 stidle z1 st0 -
20 z2 st4 -
21 ¬z1¬z2 stidle -

 72

Table 4-11 State transition and output table for the component machine
“opus_add”

№ Present state Input Next state Output
1 st0 x3 stidle z1 y1y2

2 ¬x3 st4 y1y3y6
3 st1 x3 stidle z1 y1y2
4 ¬x3 stidle z1
5 st2 x3 stidle z1 y1y2
6 ¬x3x5 st0 y1y3
7 ¬x3¬x5 st2 y1
8 st3 x3 stidle z1 y1y2
9 ¬x3x5 st0 y1y5

10 ¬x3¬x5 st3 y1
11 st4 x3 stidle z1 y1y2
12 ¬x3 stidle z1
13 stidle z3 st0 -
14 z4 st1 -
15 z5 st2 -
16 z6 st3 -
17 ¬z3¬z4¬z5¬z6 stidle -

 73

The structure of the network under generalized additive decomposition
For the FSM A={S,I,O,δ,λ} and the cover ϕ={B1,…,Bn}, Bi⊆S, s∈Bi ⇔

O(s)∩Oi≠∅ on the set of states of A in accordance to the pair (S, πy) we define
the network N with n component machines Ai={Si,Ii,Oi,δi,λi} [5]. The number of
component machines is equal to the number of blocks in the cover ϕ.

The state s will be in the block Bi of cover ϕ if there is at least one output
from the block Bi of the partition πy at the transitions from this state. The same
state s will be in several blocks of ϕ, for example, in Bi and Bj, if O(s)∩Oi≠∅
and O(s)∩Oj≠∅, i.e. the output from Bi and Bj are produced at the transitions
from s.

In exact the same way, we define the cover ϕtt on the set of rows of the
transition table of A in accordance to the pair (S, πy): ϕtt={B1

tt,…,Bn
tt}, Bi

tt⊆S,
r∈Bi

tt ⇔ O(r)∩Oi≠∅. The row r will be in the block Bi
tt of the cover ϕtt, if at

least one output from the block Bi
tt of the partition πy is written in this row r.

Just as for ϕ, the same row r will be in several blocks of ϕtt, for example, in Bi
tt

and Bj
tt, if O(r)∩Oi≠∅ and O(r)∩Oj≠∅, i.e. the output from Bi

tt and Bj
tt are

written in the row r.
Component machine Ai is defined as follows:
Si=Bi∪sidle is the set of states, where Bi is the ith block of the cover ϕ and

sidle is the additional state in Ai, such state exists in each component machine.
Ii=I(Bi

tt)∪Zi
I is the set of inputs in the component machine Ai, where

() ()U
i
tt

tt

Br

ii rIBI
∈

= , Ii(r) is the set of inputs in the row r of the FSM A transition

table and Bi
tt is the ith block of the cover ϕtt.

Zi
I={z|δi(si,x)=s, x∈I, si∉Bi, s∈Bi}, x is the input signal at the transition

from si to s, s∈Bi. The additional input z in the component machine Ai in
accordance to each s∈Bi exists if there is at least one transition to this state s
from the state sj not included in Bi in the FSM A.

Oi=O(Bi)∪Zi
O is the set of outputs in the component machine Ai, where,

Oi(Bi) is the ith block of the partition πy.
Zi

O={z|δ(s,x)=sj, x∈I, s∈Bi, sj∈Bj, s∉Bi, (i≠j)}. The additional output z in
the component machine Ai in accordance to each s∉Bi exists if the following
two conditions are concurrent:

- there is a transition from the state s included in Bi to the state sj
not included in Bi in the machine A;

- there is at least one block Bj (i≠j) such that sj is included in Bj and
is s not included in Bj among the blocks of the cover ϕ.

Next we define the transition δi and output λi functions in component
machines. Assume that here is a transition from s to sj with the input x and the
output Oi in the FSM: δ(si,x)=s; λ(si,x)=Oi. Consider the corresponding
transitions in component machine. Let ∑i be the set of component machine with
the state si, ∑j be the set of component machine with the state sj, and ∑ij=∑i∩∑j
be the set of component machine with the states si and sj. If Ak∈∑ij, then in Ak:

 74

δk(si,x)=s. If Ai∈∑i\∑ij (si is the state of Ai and sj is not the state of Ai), then in Ai:
δi(si,x)=sidle.

Output function for the machine Al∈∑i (si is the state of Al and it is also
possible that sj is the state of Al): λl(si,x)=Oi∩Ol. Moreover, one and only one
machine from ∑i, for example Ar, must have the output signal zr, which forces
each machines Av∈∑i\∑ij (if this set is not empty) to transit from the additional
state sidle to sj. In the machine Ar∈∑i: λr(si,x)= Oi∩Or∪{zr}. If Am∈∑i\∑ij (sj is
the state of Am and si is not the state of Am), then in Am: δm(sidle,zk)=sj;
λm(sidle,zk)=y0.

Example, for the FSM “opus” and the decomposition cover ϕ(S)={{init0,

init2, init4, write0, read1}; {init0, init1, IOwait, read0, write0, read1, RMACK,
WMACK}} we define the network “opus” under generalized additive
decomposition, Figure 4-4.

Figure 4-4 Structure of the network “opus” under generalized additive
decomposition

Table 4-12 State transition and output table for the FSM “opus_O1”
№ Present state Input Next state Output
1 st0 x3 st0 y1y2

2 ¬x3 stidle z1 y1y2
3 st1 x3 st0 y1y2
4 ¬x3 st2 y1y2y4
5 st2 x3

 st0 y1y2
6 ¬x3x4 st2 y1y2y4
7 ¬x3¬x4 stidle z2
8 st3 x3 st0 y1y2
9 ¬x3 stidle z2

10 st4 x3 st0 y1y2
11 ¬x3 stidle z2
12 stidle z3 st1 -
13 ¬z3 stidle -

opus
O1

opus
O2

x1 x2 x3 x4 x5

z1
z2

y4 y1 y2 y3 y5 y6

z3

 75

B1(ϕ)={init0,init2,init4,write0,read1},
B2(ϕ)={init0,init1,IOwait,read0,write0,read1,RMACK,WMACK};
B1∩B2={init0,write0,read1}.
For the FSM “opus”, Table 4-1, we have:
B1(ϕtt)={1,2,6,7,8,9,10,27,28,29,30},
B2(ϕtt)={1,2,3,4,5,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30};
B1∩B2={1,2,27,28,29,30}.

 B1(s)={st0,st1,st2,st3,st4,stidle}, B2(s)={st0,st1,st2,st3,st4,st5,st6,st7,stidle}.
 I(B1)={x3, x4}, I(B2)={x1, x2, x3, x4, x5}.
 O(B1)={y1, y2, y4}, O(B2)={y1, y2, y3, y5, y6}.
 Additional inputs: Z1

I={z3}, Z2
I={z1, z2}, outputs: Z1

O={z1, z2}, Z2
O={z3}.

 Transition tables for the component machines “opus_O1”and “opus_O2” are
presented in Table 4-12 and Table 4-13.

Table 4-13 State transition and output table for the FSM “opus_O2”
№ Present state Input Next state Output
1 st0 x3 st0 y1y2

2 ¬x3 st1 y1y2
3 st1 x3 st0 y1y2
4 ¬x3¬x4

 st1 y1y2
5 ¬x3x4 stidle z3y1y2y6
6 st2 x3 st0 y1y2
7 x1¬x2¬x3¬x4 st1 y1y2
8 ¬x3x4 stidle z3y1y2y6
9 ¬x1¬x2¬x3¬x4 st2 -

10 ¬x1x2¬x3¬x4¬x5 st5 y1y3
11 x1x2¬x3¬x4¬x5 st7 y1y5
12 ¬x1x2¬x3¬x4x5 st3 y1
13 x1x2¬x3¬x4x5 st4 y1
14 st3 x3 st0 y1y2
15 ¬x3x5 st5 y1y3
16 ¬x3¬x5 st3 y1
17 st4 ¬x3 st0 y1y2
18 x3¬x5 st7 y1y5
19 ¬x3x5 st4 y1
20 st5 x3 st0 y1y2
21 ¬x3 st6 y1y3y6
22 st6 x3 st0 y1y2
23 ¬x3 st2 -
24 st7 x3 st0 y1y2
25 ¬x3 st2 -
26 stidle z1 st1 -
27 z2 st2 -
28 ¬z1¬z2 stidle -

 76

4.2.4 Encoding of the network of machines

The problem of assigning a binary code to all states of machine leads to
the problem of assigning a binary code to the blocks of partitions. Extended
logic optimization problem is to find an encoding of blocks of states of a
machine with aim to modify the size of its minimum representation.

State encoding of the network of machines after multiplicative
decomposition and state encodings in case of additive and generalized additive
decompositions have one fundamental difference. When we assign a binary
code to the states of decomposable FSM after multiplicative decomposition we
are taking into consideration the fact that this state exerts on states of each
component machine in the network.

In case of additive decomposition we apply independent encoding to each
component machine in the network. It is because the state of decomposable
FSM presents strongly only in one component machine.

We decompose an FSM using generalized additive decomposition we
also encode each component machine independently. However in this case we
have the situation when one state has the different code depending on the work
of corresponding components.

State encoding of the network of machines after multiplicative

decomposition
In [WsBP’04] we propose the encoding method for the network of

machines based on the measure of information relationship and guarantee the
minimum code length for given decomposition constraints. It is important to
note that the solution of this task is tightly connected with classical
combinatorial problem – face hypercube embedding [24].

We use the standard approach to define the problem of state encoding of
the FSM which was described in the Chapter 3. State encoding of the network
of machines can be modeled by a binary constraint matrix with nr×ns dimension,
whose nr rows are the optimized cover corresponding to the symbol set S under
consideration. The matrix has as many columns as ns symbols in the set of states
S. The fundamentally difference between encoding of the FSM and the network
of machines consists in meaning that the encoding of the network of machines
should satisfy to decomposition constrains. Here we accentuate that we form the
encoding partitions with stringent restriction from the complete system of
partition (decomposition constraints). It means that we are definitely limited in
generation of encoding partitions.

Encoding problem has always a solution satisfying the constraints [75].
The encoding of ns symbols in a field may require more than |log2 ns| bits. Hence
the search for a minimum bit encoding is relevant. The problem of finding the
minimum k and related encoding such that is decomposition constraints
satisfied is called face hypercube embedding [14], [23], [24].

The constructing a Boolean hypercube with aim of state assignment (or
encoding) of FSM is presented in [59]. The process is the sequence of n steps,

 77

after which n-dimensional Boolean hypercube is obtained. The n-component
Boolean vectors are assigned to the vertices of the hypercube where the
neighborhoods relation between the vectors presented by the edges of the
hypercube.

Approach of encoding of the network of machines presented in the
current work is distinguished from [59] by two peculiarities. First is that we
assigned each states of the network of machines to Boolean vectors, not the
states of one FSM. Second peculiarity is that constructing a Boolean hypercube
in our approach is with using the measure of informational relationship.

Our desire to evaluate the contents of information in encoding partitions
with respect to information in the complete system of partitions is likewise the
concept of information relationship by Jozwiak [31]. The information
relationships and measures enable to analyze relationships between the modeled
information streams and constitute an important analysis apparatus that can be
used for analysis and synthesis of various information systems. In the field of
fixed task, i.e. encoding of the network of machines, we are interesting in
relationships between information in information streams described by coding
partitions and completed information reflected by system of partitions.

Information in discrete systems is considered by values of some signals
or variables which can be represented by a set system. A certain set system
gives information about elements of a set on which this system was described.
We deal with set system defined on some set as a compatibility relation.

When we think about relationships between information in information
streams described by encoding partitions and complete system of partitions we
are interesting in combined information about these streams. Encoding partition
is the two-block partition on the set of states S of decomposable FSM and
complete system of partitions is the set system on the set S. Then we interpret
product of the set system and the partition as joint information [WsBP’04].

Example, for the network “opus” after multiplicative decomposition the

encoding matrix is presented in Table 4-14.
Table 4-14 Encoding matrix for decomposable FSM “opus” after
multiplicative decomposition and encoding matrix of the network “opus”

States Codes Constraints Codes
init0 1001 c0 0--0
init1 000 c1 0--1
init2 1011 c2 1--1
init4 1101 c3 -00-

IOwait 0001 c4 -01-
Rmack 0101 c5 -10-
Wmack 0100 c6 1111
read0 0011
read1 1111
write0 0010

 78

Independent state encoding of component machines in the network after
additive and generalized additive decompositions

As a result of FSM decomposition stage, we receive the network of
interacted and interconnect component machines. In contrast to the network of
machines described in previous section in case of additive decomposition the
network consists of components working alternatively in time. It means that all
component machines except one are suspended in one of extra state – the “wait”
or “idle” state. We do not need to keep in mind the information about global
state of the network. In one particular period of time only one machine is active
while the other machines are in “wait” state. It is gives us possibility to encode
each machine in the network independently. Usually the number of states of
component machines is less than the number of states of decomposable FSM.
Hence we can find the encoding with shorter encoding length.

Next we apply the new low power state encoding method presented in
Chapter 3 to the component machines in the network in case of additive and
generalized additive decomposition.

Example, the encoding matrices after independent state encoding for the
component machine “opus_p” and “opus_add” are presented in Table 4-15.
Table 4-16 presents the same encoding for the component machines “opus_O1”
and “opus_ O2”.

Table 4-15 Encoding matrices for the component machines “opus_ p”
and “opus_ add”

States Codes States Codes
st0 010 st0 101
st1 000 st1 010
st2 001 st2 001
st3 110 st3 100
st4 100 st4 110
stidle 111 stidle 000

Table 4-16 Encoding matrices for the component machines “opus_O1”
and “opus_ O2”

States Codes States Codes
st0 000 st0 0100
st1 011 st1 0001
st2 --- st2 0010
st3 --- st3 0110
st4 --- st4 1000
stidle 001 st5 1110

 st6 1100
 st7 1010
 stidle 0000

 79

Optimization of the network under multiplicative decomposition
This step of decomposition procedure enables to optimize the network of

machines [16] under multiplicative decomposition in terms of the number of
internal binary connections. In [BEC’04] we illustrate that the proposed
encoding technique allows minimizing the total number of internal binary
variables between component machines by generation of new M-partitions [28]
after encoding of the network of machines. M(πi) keeps amount of information
needed for ith component machine in the network. In other words, the operator
M(πi) gives the maximum front partition of partition pair. Informally speaking,
for a given partition πi the partition M(πi) describes the least amount of
information we must have about the present state of the machine to the next
state (i.e., the block of πi which contains the next state of the machine). If
partition M(πi) is less or equal to multiplication of partitions from {πi} that it
means that ith component machine receives enough information from
component machines with which it is connected accordingly relation of
connection to compute the next state.

Example, we have selected the FSM “bbtas” [48]. To decompose the

FSM we select an arbitrary complete system of two partitions: [π1={{st0,
st1},{st2, st3},{st4, st5}};π2={{st0, st2},{st1, st3},{st4};{st5}}].

The M(πi) are M(π1)={{st0}, {st1, st2}, {st3},{st4},{st5}} and
M(π2)={{st0},{st1},{st2},{st3},{st4},{st5}}. The structure of the network
“bbtas” is depicted on the Figure 4-5. The internal binary connections are:

z1
1={{st0, st1, st2, st3},{st4, st5}};

z1
2={{st0, st1}, {st2, st3, st4, st5}};

z2
1={{st0, st2, st4},{ st1, st3, st5}};

z2
2={{st0, st2, st5},{ st1, st3, st4}}.

Figure 4-5 Structure of the network “bbtas” before optimization

We have applied the proposed encoding and as a result have received the
encoding matrices, Table 4-17. The second matrix in the Table 4-17 presents the
codes of the states of the network “bbtas” which are presented by blocks of

bbtas_1 bbtas_2

 x1 x2

z1
1

z1
2

z2
1

z2
2

y1 y2

 80

partitions from the complete system of partitions. The first three rows of the
matrix correspond to blocks of the first partition and next four rows correspond
to blocks of the second partition.

Table 4-17 Encoding matrices for decomposable FSM “bbtas”
States Codes Constraints Codes

st0 110 c0 -10
st1 010 c1 -01
st2 101 c2 -00
st3 001 c3 1--
st4 100 c4 0--
st5 000 c5 100

 c6 000

New encoding enables optimization of the network of machines in terms

of number of internal binary connections by generation of new M-partitions:
M(π1)={{st0}, {st1,st2}, {st3}, {st4},{st5}} and M(π2)={{st0,st3,st5}, {st1},
{st2}, {st4}}. The new realization of the “bbtas” network is depicted on the
Figure 4-6. The internal binary connections are:

z1
1={{st0, st1, st4, st5},{st2, st3}};

z1
2={{st0, st1}, {st2, st3, st4, st5}};

z2
1={{st0, st2, st4},{ st1, st3, st5}}.

Figure 4-6 Structure of the network “bbtas” after optimization

bbtas_1 bbtas_2

 x1 x2

z1
1

z1
2

z2
1

y1 y2

 81

4.3 Experimental results
The part of the experimental results reported in current subchapter has

been presented in the articles mentioned in list of publications. All circuits are
from industrial MCNC benchmarks suite [48]. Experiments were run on java
applets on various aspects on decomposition and synthesis from the project
Decomposition & Synthesis (D&S) [18]. The series of applets of the project
D&S is a decomposition software system which is on the one hand a research
tool and on the other hand it is an educational system [BEC’02], and
[EUROCON’03].

The experiments carried on decomposition software system because of
common standard of output files was supplemented with commercial design
frames – SYNOPSIS and SIS: A System of Sequential Circuits System [63].

Stochastic investigation of an FSM

We have first report the stochastic investigation of FSM decomposition
which has been done using FSMNet Stochastic Explorer Applet (available:
http://www.pld.ttu.ee/applets/probability/). Applet represents an FSM or a FSM
network stochastic exploration tool, providing user with a possibility to carry
out some entropic evaluations.

To ensure that partition entropy is a good indicator of implementation
complexity, experiments have been carried on hundreds of machines [35]. They
proved that the correlation between of decomposition partition πi and the
complexity of sub-FSM Ai (area) are very high (more than 0,95). What makes
entropy especially useful from decomposition point of view is fact, that
partitions that are incomparable under the least upper bound and the largest
lower bounds in classic lattice usually do have different entropy values [34], so
they become comparable from the power consumption point of view.

 Two experiments were performed [DDECS’02]:
 We show the difference D* between the maximum switching activity

max(Hsw(A)) and switching activity for assumption of equiprobability of
primary input patterns Hsw(A). This is done to emphasize that if we have
not real distribution of inputs, the assumption of their eqiprobability
(which is sometimes used) is doubtful for estimation.

 The second part is devoted to the two-component decomposition with
estimates. The first sub-FSM corresponds to two-block partition of the
set of states that has the minimum entropy by comparison with other
partitions of the same rank. We can consider this partition of set space
as the first step for iterative process of decomposition.

http://www.pld.ttu.ee/applets/probability/

 82

Table 4-18 Stochastic analysis and partition examples
C

irc
ui

ts

(H
sw

(A
))

m
ax

(H
sw

(A
))

D
*

(D
*)

%

H
sw

(A
1)

H
sw

(A
2)

H
sw

(N
1)

bbtas 2.4025 3.5850 1.1824 61.01 0.5313 1.9770 2.5083
beecount 1.2816 4.5236 3.2420 28.33 0.0543 1.2408 1.2951

dk15 1.7463 3.5850 1.8386 48.71 0.2502 1.5498 1.8000
dk27 2.6737 3.7004 1.0267 72.25 0.2762 2.5425 2.8187
lion 1.1983 3.3219 1.4036 57.75 0.9183 1.0000 1.9183
mc 1.4216 3.0000 0.5784 47.39 0.2285 0.6984 0.9269
s8 2.2566 3.7004 1.4439 60.98 0.8366 1.5219 2.3586

Complexity criteria based on state probability distribution
Table 4-19 summarizes of area estimation and power consumption for the

set of selected benchmarks using commercial design frame (SYNOPSIS). These
parameters were chosen as complexity criteria for decomposable system.

The complexity of the components depends not only on the number of
states [10], but also on the number of inputs. Most sequential components have
large state space that cannot be enumerated in a reasonable amount of time.
However, the input distribution gives us the possibility to external control of
machines behavior. Evidently that if we can mark out from all FSM inputs such
that have the most informational content, we will have the techniques for
external input division. Accordingly of this assumption, informational laden
inputs direct the states which are compose the network of two components.

Table 4-19 Area and power estimation for decomposable machine

Circuits

States

Inputs

Cells
Area

combin unit
Area

noncombin
unit

Power
net switch (μW)

log 17 9 71 91 35 1,1147
dvram 35 8 100 136 42 1,1103
nucpwr 29 13 90 120 35 1,0246

sync 52 19 147 223 42 1,3254
planet 48 7 237 356 42 6,5247
ex6 8 5 72 107 21 2,9367
opus 10 5 54 79 28 2,6848
ex4 14 6 48 66 28 1,1102
rie 29 9 98 135 35 1,0383

An experiment for circuits in Table 4-20 illustrates the complexity

parameters for first component. Table 4-21 presents the values of these
parameters for second component machine.

 83

Table 4-20 Area and power estimation for the first component machine

Circuits

State

Inputs

Cells
Area

combin
unit

Area
noncombin

unit

Power
net switch (μW)

log 5 3 22 28 11 0,6682
dvram 6 3 21 29 9 0,5788
nucpwr 8 5 28 38 11 0,711

sync 18 6 50 76 15 0,9879
planet 17 2 82 123 15 4,964
ex6 7 2 50 75 15 2,9367
opus 3 1 15 22 8 2,2909
ex4 5 1 15 20 9 0,7084
rie 11 4 39 54 14 1,0383

Table 4-21 Area and power estimation for the second component machine

Circuits

State

Inputs

Cells

Area combin
unit

Area
noncombin

unit

Power
net switch

(μW)
log 5 5 31 39 15 0,5210

dvram 8 5 31 42 13 0,5700
nucpwr 7 8 33 43 13 0,3899

sync 8 13 44 66 13 0,4134
planet 7 5 52 78 10 1,9657
ex6 2 3 28 42 9 0,0001
opus 4 4 26 37 14 0,7192
ex4 4 5 22 30 13 0,4501
rie 4 5 24 32 9 0,5098

The comparison of decomposition techniques
In the experiment was used tree applets of D&S: Multiplicative

Decomposition (available: http://www.pld.ttu.ee/applets/dsa/), Additive
Decomposition (available: http://www.pld.ttu.ee/applets/decS/), and
Generalized Additive decomposition (available:
http://www.pld.ttu.ee/applets/decO/).

Table 4-22 contains the results of comparative experiments of
decomposition techniques and approaches. The area estimation was done using
the commercial design frame (SYNOPSIS). This parameter was chosen for
complexity criteria for decomposition system [EUROCON’03].

http://www.pld.ttu.ee/applets/dsa/
http://www.pld.ttu.ee/applets/decS/
http://www.pld.ttu.ee/applets/decO/

 84

Table 4-22 Results of comparison and implementation

Circuits
Total # of states of

component
machines

Total # of states (alt.
approach)

Area combinat
ratio

log 12 19 0.75
dvram 14 37 0.50
nucpw 15 31 0.68
sync 26 54 0.67

planet 24 50 0.59
ex6 9 10 1.14
opus 7 12 0.78
ex4 9 16 0.75

The promising application of our technique is low power design of

control-dominated discrete systems. The idea of partition for low power is that
in behavioral descriptions of hardware, a small set of computation often
accounts for most of the computational complexity as well as power dissipation.
The decomposition focuses on power dissipation as the main criteria of design
optimization. Techniques based on disabling the input/state registers when some
input conditions are met have been proposed and shown to be among the most
effective in reducing the overall switching activity in sequential circuits.

Our reasoning proceeds from the premise that the solution of the problem
of FSM synthesis for low power can be reduced to the FSM decomposition with
distributed primary output/input variables and appropriate synthesis of
machines network. Results confirmed that it is possible to significantly reduce
switching activity of implementation and that significant reduction in power
consumption could be achieved without performance degradation.

State encoding of the network of machines

The experimental investigations described in this section present the
efficiency of our new encoding algorithm of the network of machines
[WsBP’04]. The experiment was done using Network Encoding function of Java
Applet on Multiplicative Decomposition (available:
 http://www.pld.ttu.ee/applets/dsa/).

The strategy of the algorithm allows demonstrating the resources by two
experiments. The first experiment is oriented to the encoding of the network of
machines in general. The second experiment is practical application of the
algorithm to the network of machines optimization.

The goal of the first experiment is to illustrate the efficiency of proposed
algorithm for encoding of the network of machines. We compare the time of
finding the best decision between exact and heuristic algorithm. Our goal is to
execute both algorithms of full search with same tests. Tests are containing
from 6 to 17 states. As can be seen from the Table 4-23 heuristic algorithms
executes the full search about two times faster than algorithm without heuristics.

http://www.pld.ttu.ee/applets/dsa/

 85

Table 4-23 Comparison of exact and heuristic algorithms

 Exact Heuristic Average
States #1 #2 #3 #1 #2 #3 Exact Heuristic

6 0 0 0 0 0 0 0,00 0,00
7 0 0 0 0 0 0 0,00 0,00
8 3 3 3 0 1 1 3,00 0,67
9 6 4 1 1 1 0 3,67 0,67

10 3 1 6 1 1 1 3,33 1,00
11 4 8 1 2 3 1 4,33 2,00
12 29 29 13 6 10 1 23,67 5,67
13 27 91 10 7 31 1 42,67 13,00
14 27 33 74 7 14 34 44,67 18,33
15 65 6 73 46 2 23 48,00 23,67
16 23 Time

out
44 17 212 37 - 88,67

17 58 Time
out

Time
out

11 112 177 - 100,00

The second experiment considers a problem to show an efficiency of the

algorithm. As our goal is to find decision with minimal number of bits, we can
compare the first answer found with our heuristics and minimal decision. As
can be seen from the Table 4-24 the difference is not essential. However, the
difference grows with increase in quantity of states.

Table 4-24 Comparison of the results of the algorithm and the shortest
decision

 Found decision Shortest decision Difference
States #1 #2 #3 #1 #2 #3

6 3 3 3 3 3 3 0
7 3 3 3 3 3 3 0
8 4 4 4 4 4 4 0
9 4 4 4 4 4 4 0

10 4 4 4 4 4 4 0
11 5 5 4 5 5 4 0
12 5 5 5 5 5 4 1
13 6 5 4 5 5 4 1
14 6 6 5 5 5 5 2
15 6 5 5 6 5 5 0
16 6 5 6 6 5 6 0
17 5 6 6 5 5 5 2

 86

Comparison among new encoding method and well-known encodings

Experiment was carried with aim to compare the standard encoding
methods using in SYNOPSIS and proposed encoding for the network of
machines. We compare three importance parameters: entropy of the network of
machines, Table 4-25, area implementation, Table 4-26 (I – first component
machine, II – second component machine), and power consumption, Table 4-27.

Table 4-25 Entropy of the network of machines
Circuits Binary Gray One Hot New
bbara 2,844 2,892 4,042 2,778
bbtas 2,878 2,733 3,746 2,602

beecount 1,283 1,770 2,144 1,283
cse 1,542 2,111 1,856 1,226

dk27 2,777 2,964 3,988 2,771
ex4 3,917 3,863 4,940 3,670

mark1 0,988 0,983 0,781 0,976
opus 1,714 2,577 2,825 1,714

Table 4-26 Area results

 Binary Gray One Hot New
Circuits I II I II I II I II
bbara 32 21 35 21 39 42 38 28
bbtas 20 21 31 21 23 42 21 21

beecount 34 21 32 21 32 42 30 21
cse 172 28 180 28 143 112 194 28

dk27 20 21 22 21 19 49 20 21
ex4 66 28 64 28 30 98 67 28

mark1 65 28 61 28 52 98 70 28
opus 79 28 68 28 56 63 79 28

Table 4-27 Power consumption results (μw)

Circuits Binary Gray One Hot New
bbara 0,8505 0,9126 0,9766 0,8116
bbtas 0,6952 0,7068 0,8992 0,6176

beecount 0,9856 1,0394 1,1287 0,9556
cse 3,1439 3,6804 3,7449 2,9881

dk27 0,5751 0,5908 0,5925 0,5489
ex4 1,1102 1,1036 1,0572 0,9025

mark1 1,2315 1,2684 1,5245 1,0618
opus 2,6848 2,2019 2,0264 2,4876

 87

Optimization of the network of machines
Through the experiment was used Java Applet on Multiplicative

Decomposition (available: http://www.pld.ttu.ee/applets/dsa/). For each
benchmark circuit we generated the system of two partitions with the maximum
(or close by maximum) number of constraint with aim to emphasize how the
coding length is increased at the decomposition by using the standard coding
methods using in SIS. We decompose a prototype N state machine into two
interacting component machines with N1 and N2 states such that
⎡logN⎤<⎡logN1⎤+⎡logN2⎤. The main condition of such partitioning is that the
sum of the number of constraints must be less or equal to the number of states
of source FSM. Table 4-28 summarizes the results obtained using proposed
encoding algorithm.

Table 4-28 Comparison of the results of the algorithm

Circuits #states #constr∑ #len∑ #lennew reduc (%)
cse 16 15 7 5 28,6

dk16 27 21 8 6 25,0
donfile 24 23 8 6 25,0

ex1 20 18 6 5 16,7
ex4 14 12 6 4 33,3

keyb 19 18 7 5 28,6
kirkman 16 15 7 5 28,6
planet 48 37 10 7 30,0
pma 24 22 8 6 25,0
s1 20 19 8 6 25,0

s208 18 15 7 6 14,3
s420 18 16 7 5 28,6
s510 47 42 10 7 30,0
s820 25 22 8 6 25,0
s832 25 24 8 6 25,0
sand 32 30 9 6 33,3
tbk 32 31 9 7 22,2

In the Table 4-28, #states is the number of states in FSM, #constrΣ is the

total number of constraints in the first and in the second partitions respectively,
#lenΣ is the length of encoding need to code the sum of generated constraint,
#lennew is the code length in the new encoding algorithm and the last column
reduc (%) is reduction of coding length in percents. From the table it can be
seen that using the encoding algorithm results in average reduction of coding
length of 24%. The results are practically good for circuits with larger number
of states. Thus, for circuit’s planet and s510 the reduction of coding length is up
to 30%.

http://www.pld.ttu.ee/applets/dsa/

 88

4.4 Summary
Step by step procedure for the construction of the network of component

machines is described in detail. The methodology of global and local
transformations gives opportunity to divide complicated process of
decomposition into two sequential stages.

The stage of global transformations characterizes the mechanism for
rough decomposition of the source FMS into the network of component
machines. The mechanism of decomposition based on the theory of partition
pair algebra determines by a complete system of partitions, a partition, or a
cover on the set of states of a decomposable FSM. Using this tool we have
proposed three variants of restrictions applied on the network of machines. First
is the restriction on inputs separation between component machines in the
network. Second is the restriction on computational complexity of component
machines according to state probability distribution of the decomposable
machine. Third is the restriction on outputs separation between component
machines. As well as we add the restriction on the number of component
machines in the network – no more than two components in the network. The
step of global transformations also determines the structure of the network of
component machines.

Local transformations consist of encoding of component machines,
optimization of the network by reducing the number of internal binary variables
and defining the basis of the networks. In accordance to the structure of the
network we have proposed two encodings – composite encoding of the network
of machines and independent encoding of each component machines. In case of
encoding of the network of machines we complete the procedure of
decomposition by stage of optimization of the network.

Multiplicative, additive and generalized additive FSM decomposition
techniques are presented. Multiplicative decomposition uses a complete system
of partitions can be regarded as a general case of decomposition based on the
theory of partition pair algebra. At that time additive and generalized additive
decompositions are special cases of general decompositions.

Additive decomposition which is built on a decomposition partition on
the set of states of a decomposable machine can be replaced by multiplicative
decomposition where a complete system of partitions built in following way:
the first block of a partition is replaced in the first partition in which other block
consist of states not included in the first block; the second block of a partition is
replaced in the second partition and etc. In other words, we replace a partition
by a complete system of partitions in which the number of partitions is equal to
the number of blocks in a decomposition partition.

The component machines defined by partitions from the complete system
of partitions are interconnected and interacted machines that will be work
simultaneously or in series. In case of additive or generalized additive
decomposition the network will be consist of component machines such that
only one of the component machine is active in time period while other
component machines wait in idle state.

 89

Decomposition strategies target low power FSM
We have described three power-managed FSM decomposition strategies:

decomposition with a separation of inputs, decomposition based on probability
distribution and decomposition with a separation of outputs. These strategies are
based on the classic decomposition theories. We have extended it and have
developed the framework employ it for power optimization.

Decomposition of FSM with separation of inputs of an original FSM
allows separating so called “active” and “lazy” inputs [64]. By “active” inputs
we mean primary inputs with high probability. The method of separation of
inputs of decomposable machine based on the concept of α-partitions allows
moving “lazy” inputs away from the selected component machine. It is
important to note that the calculation of α-partitions has polynomial
computational complexity. The results confirmed that significant reduction in
power consumption could be achieved using proposed methodology of primary
inputs separation.

The idea of optimizing complex digital systems based on probabilistic
analysis of an FSM has been extensively exploited [57]. The main challenge in
the implementation of these techniques is to effectively partition a design in
such a way that commonly executed computations can follow a highly
optimized path without being slowed down by the circuitry needed for dealing
with all corner cases [10]. In this work we introduce the technique for
identifying the most probable behaviors in FSM and building a dedicated logic
block that correctly implements such behaviors. Presented concept can be
exploited for power optimization. Decomposition techniques reported sizable
power reduction [42]. Using additive decomposition we present an source FSM
as a network of component machines such that only one machine is active.
When one component machine identifying with most probable states of the
source FSM is enables the other machine (or machines) is “frozen”, thereby
nullifying switching activity.

Separation of outputs by decomposition of an original FSM leads to
several important advantages. We consider the decomposition technique for
controller and data-path simultaneously. The decomposition procedure that can
be applied for an FSM with Data-path (FSMD model) [68] was considered.
Output partitioning can be regarded as functional partition approach for low-
power synthesis at RT-level. The reasons why FSMD functional partitioning
can significantly reduce the switching activities at the registers and the
functional modules and only one (subset) of machines is (are) executing a
computation at any given time while the other processors will be idle. In
addition to reducing power, FSMD functional partitioning also provides
solutions to a variety of synthesis problems. Comparative experiments and
approaches used in [29], [40], and [53] showed that such architecture need
considerably less implementation area. Moreover, decomposition with
distribution of outputs among component machines (corresponding to the given
cover on the set of states of decomposable FSM) does not possible to achieve
using alternative decomposition approaches.

 90

555 CONCLUSION AND FUTURE DIRECTION

5.1 Thesis summary
The research described in the thesis concentrates on the problem of

reducing the dynamic power dissipation in synchronous sequential circuits
modeled by FSM. The most popular technique to reduce power in an FSM is to
modify the state encoding with aim to minimize the Hamming distance of the
most probable state transitions. Other idea for a low power FSM is the use of
power management. That is, to shutdown the blocks of hardware in these
periods where they are not producing useful data. Shutdown can be fulfilled in
three ways: by turning off the power supply, by disabling the clock signal, or by
“freezing” (blocking) the input data. Under the last category falls FSM
decomposition method. The basic idea of decomposition is to disable the
inactive part of an FSM. The deactivation is reached either by blocking the
inputs or power-down by clock gating the part of the circuit that is not used.
This reduces switching activity and hence, the total power dissipation.

The importance of the synthesis of sequential circuits for low power is
considered in the first chapter of the thesis. The second chapter consists of main
concepts from the machine theory and from the algebraic structure theory of
sequential machines. The next two chapters concentrate on the corresponding
area of research and describe the results obtained by the author. This chapter
summarizes some particular conclusions, introduces the general conclusion of
the thesis and outlines some suggestions to improve the presented tool and
methodologies.

The main results of the work are:
1. An overview of state encoding methods to reduce the power

consumption for sequential circuit modeled by FSM has been presented.
The reduction of the average switching activity of the state variables is
minimizing the number of bit changes during state transitions. The
problem of finding of an appropriate state encoding for a low power FSM
is connected with the problem of Minimum Weighted Hamming
Distance. Hence, the main result is the development of a new heuristic
method of state encoding with aim to minimize weighted hamming
distance.

2. A novel technique for FSM state encoding with aim to minimize the
number of states variables that change their value when FSM moves
between two adjacent states was developed. At the heart of the presented
approach lies the strategy of constructing a set of edge cuts for a set of
states of an FSM. Each edge cut corresponds to an encoding partition on
the set of states of an FSM and to one bit in a binary state encoding
matrix.

3. The presented technique was updated to the problem of state
encoding for a low power FSM that links to a probabilistic description of
an FSM. The switching probability (or transition probability) has a good

 91

approximation to the average switching activity that is proportional to the
average power dissipation.

4. Basing on the overview, the subset of state-of-the-art encoding
methods was selected to compare with the proposed technique.
Experimental results were conducted on a set of MCNC benchmark
circuits. For all benchmarks our state encoding produced circuits with lees
(or equal in several cases) switching activity that selected methods.

5. An overview of FSM decomposition methods has been described.
Recent attempts using decomposition for a low power FSM realization
was classified. More general, an original FSM decomposed into a set of
state machines interacting with each other and running concurrently.
When machines have a self-loop clock and primary inputs are disabled for
the respective machine/machines, therefore several of them require
primary input disabling AND gates and clock disabling AND gate as
well. In this case could be obtained significant power reduction along
with area reduction. In other case, an STG is partitioned into several
pieces, each piece being implemented as a separate machine with a wait
state. Only one of the sub-machines is active and other sub-machines are
in the resent state. Therefore, the clock for inactive sub-machines can be
gated and primary inputs can be disabled which reduces the switching
activity and hence total power dissipation.

6. A new FSM decomposition procedure was presented. The proposed
procedure based on the concepts of global and local transformations of an
FSM during its partitioning. The step of global transformations allows
determining the wishful structure of the network of machines. The step of
local transformations gives possibility of component-wise optimization,
including state encoding of the network of machines. We would like to
emphasize that the current work more focus on the construction of a
network of machines for the given decomposition; and less concentrated
on the finding of such decompositions. Nevertheless, several variants of
decomposition for a low power FSM were proposed.

7. Experimental results have been obtained of a set of MCNC
benchmark circuits using java-based applets of the project D&S. Looking
at the empirical results; one may deduce that our framework of
decomposition for a low power FSM is enough comprehensive tools for
the complete investigation of various decomposition styles.
General conclusion of the thesis is that the problem of low power

synthesis of an FSM is tightly connected with the classical combinatorial
problems – FSM decomposition and FSM state encoding. Therefore, a new
heuristic to FSM state encoding has been presented. A novel approach to FSM
decomposition has been elaborated.

An estimation of the success of the work can be done by analyzing the
practical application of the work. The key to the advantage of this work is a
combination of a novel heuristic approach with well-known approved
techniques and methods.

 92

5.2 Future work
The thesis addressed the synthesis of FSM targeted low power

dissipation. The problem was considered from two aspects. We proposed an
FSM state encoding approach aiming at reducing the switching activity and
combined it with one of dynamic power management techniques. From
experimental analysis of the investigation presented in the thesis follows the
practical efficacy. This fact justifies our strategy to solve the former and extend
it later to the later.

We want to generalize the existing FSM state encoding approach and
algorithm in the following directions:

- Solve the problem of finding the optimal state encoding solution due to
insignificant increasing the number of state registers, this is an important
practical problem,

- Solve the problem of finding state encoding for the FSM with a large
number of states.
The other issue is a proposal for optimization of an approach for

hierarchical test generation for FSM after low power state encoding. An
ongoing work in this field have been presented in [EWDTW’05b]. We have
made an attempt to apply the proposed strategy to test generation that is used on
two levels: behavioral level in terms of an FSM and gate level. We hope that the
knowledge, which was obtained after low power encoding, will help to enhance
test generation of a low-power FSM and decrease test generation time.

Elaboration of decomposition procedures based on quality relationship
measures also deserves further investigation. We plan to study both global and
local measures.

An interesting direction for future work is to design the Globally
Asynchronous Locally Synchronous (CALS) system [89]. Synchronous digital
design is approaching a critical point, with clock distribution becoming an
increasingly costly and complicated issue, and power consumption rapidly
emerging as a major concern. Asynchronous digital design styles promise to
liberate digital systems from clock skew problems, offer the potential for low
power and high performance, and encourage a modular design philosophy. The
preliminary analysis confirms that power consumption could be achieved
without essential performance degradation. It is promising that the GALS
paradigm could be used for composing blocks specified as FSM and making
them communicate asynchronously to avoid the difficult and power consuming
task of distributing the global clock to all parts of the circuits. Our future task is
to elaborate partitioning techniques of state-based descriptions targeting the
network of synchronous units which are interacting asynchronically.

Future work also involves extending the design automation in the
educational system using opportunities of education via Internet [79].

In conclusion, numerous challenging problems and open issues pave the
road towards system level tools for power and performance optimization, but
we believe that this remains the primary research direction for the next few
years.

 93

REFERENCES
[1] Abdollahi A., and M. Pedram, “Low power RT-level synthesis

techniques: a tutorial”, to appear in IEEE Proceedings on
Computers and Digital Techniques, 2005.

[2] Ashar P., S. Devadas and A. R. Newton, “Testability Driven
Synthesis of Interacting Finite State Machines”, (ICCD’90), IEEE
International Conference of Computer Design: VLSI in Computers
and Processors. Proc., pp. 273-276, 1990.

[3] Ashar P., S. Devadas and A. R. Newton, “A Unified Approach to
the Decomposition and Re-decomposition of Sequential Machines”,
in Proc. of the 27th Design Automation Conference (DAC’90), pp.
601-606, 1990.

[4] Baccheta P., L. Daldoss, D. Sciuto and C. Silvano, “Lower-Power
State Assignment Techniques for Finite State Machines”, IEEE
International Symposium on Circuits and Systems (ISCAS’00),
pp.II-641-II-644, 2000.

[5] Baranov S. Logic Synthesis for Control Automata, Kluwer
Academic Publishers, 1994.

[6] Benini L. and G. De Micheli, “State Assignment for Lower Power
Dissipation”, IEEE Journal of Solid State Circuits, vol. 30, no 3,
pp. 258-268, 1995.

[7] Benini L., G. De Micheli, E. Macii, M. Poncino, and R. Scarsi,
“Symbolic Synthesis of Clock-gating Logic for Power Optimization
of Control-oriented Synchronous Networks”, in Proc. European
Design and Test Conf., pp. 514-520, 1997.

[8] Benini L, “Automatic Synthesis of Sequential Circuits for Low
Power Dissipation”, Ph.D. Thesis, Dept. of Electrical Engineering
Stanford University, 1997.

[9] Benini L., G. De Micheli, and F. Vermeulen, “Finite State Machine
Partitioning for Low Power”, in Proc. of the IEEE International
Symposium on Circuits and Systems (ISCAS’98), pp. 5-8, 1998.

[10] Benini L., G. De Micheli, A. Lioy, E. Macii, G. Odasso, and M.
Poncino, “Synthesis of Power-managed Sequential Components
Based on Computational Kernel Extraction”, Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transaction on,
vol. 20, No. 9, pp. 1118-1130, 2001.

[11] Cheng K.T. and V.D. Agrawal, “An Entropy Measure for the
Complexity of Multi-output Boolean Functions”, Proc. of the 27th
Design Automation Conference (DAC’90), pp. 302-305, 1990.

[12] Chow S-H., Y-C. Ho, and T. Hwang, “Low Power Realization of
Finite State Machines – A Decomposition Approach”, Design
Automation of Electronic Systems, ACM Transactions on, vol. 1,
No. 3, pp 315-340, 1996.

 94

[13] De Micheli G., R. Brayton, A. L. Sangiovanni-Vincentelli “Optimal
State Assignment for Finite State Machines”, IEEE Transactions on
Computer-Aided Design, Vol. CAD-4, no.3, pp 269-285, 1985.

[14] De Micheli G., “Synthesis and Optimization of Digital Circuits”,
McGraw-Hill, 1994.

[15] Devadas S., and A.R. Newton, “Decomposition and Factorization
of Sequential Finite State Machines”, IEEE Trans. on Computer-
Aided Design, CAD-8, no. 11, pp.1206-1217, 1989.

[16] Devadas S., “Optimizing Interacting Finite State Machines Using
Sequential Don’t Cares”, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 10, pp.1473-1484, 1991.

[17] Devadas S., H-K. Ma, A.R. Newton, A. Sangiovanni-Vincentelli,
“MUSTANG: State Assignment of Finite State Machines Targeting
Multilevel Logic Implementation”, IEEE Trans. on Computer-
Aided Design, CAD-7, no. 12, pp.1290-1300, 1998.

[18] D&S Applets. Available: http://www.pld.ttu.ee/dildis
[19] Douglas B. West, “Introduction to graph theory” (2ed). Upper

Saddle River: Prentice Hall, 2001.
[20] Du X., G. Hachtel, B. Lin and R. Newton, “MUSE: A Multilevel

Symbolic Encoding Algorithm for State Assignment”, IEEE Trans.
on CAD/ICAS, vol. CAD-10, no.4, pp. 28-38, 1991.

[21] Eggermont R, “PROSA: Profiling-based State Assignment for Low
Power Dissipation”, MSc Thesis, Delft University of Technology,
Netherlands, 2003.

[22] Geiger M. and T. Müller-Wipperfürth, “FSM Decomposition
Revisited: Algebraic Structure Theory Applied to MCNC
Benchmark FSMs“, 28th ACM/IEEE Design Automation
Conference (DAC’91), pp. 182-185, 1991.

[23] Goldberg E.I., T. Villa, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli, “A Fast and Robust Exact Algorithm for Face
Embedding”, Intl. Conf. on Computer-Aided Design (ICCAD’97),
pp. 296-303, 1997.

[24] Goldberg E.I., T. Villa, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli, “Theory and Algorithms for Face Hypercube
Embedding”, IEEE Trans. on Comp., vol. 17, no 6, pp. 472-488,
1998.

[25] Hachtel G., E. Macii, A. Pardo and F. Somenzi, “Probabilistic
Analysis of Large Finite State Machines”, 31st ACM/IEEE Design
Automation Conference (DAC’94), pp. 270-275, 1994.

[26] Hachtel G., E. Macii, A. Pardo and F. Somenzi, “Markovian
Analysis of Large Finite State Machines”, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transaction on, vol. 15,
No. 12, pp. 1479-1493, 1996.

[27] Hassoun, S., Sasao, T., editors. Logic Synthesis and Verification,
Kluwer Academic Publishers, 2002.

http://www.pld.ttu.ee/dildis

 95

[28] Hartmanis J. and R. E. Stearns, “Algebraic Structure Theory of
Sequential Machines”, Englewood Cliffs, N. J.: Prentice-Hall,
1966.

[29] Hwang E., F. Vahid, and Y.-C. Hsu, “FSMD Functional
Partitioning for Low Power”, in Proc. DATE Conf., pp.22-28,
March 1999.

[30] Jozwiak L., J.C. Kolsteren, “An Efficient Method for the Sequential
General Decomposition of Sequential Machines”, Micro-processing
and Microprogramming, North Holland, vol. 32, pp. 657-664,
1991.

[31] Jozwiak L., “Information Relationships and Measures in
Application to Logic Design”, Proc IEEE Int. Symposium on
Multiple-Valued Logic, pp. 228-235, 1999.

[32] Jozwiak L. and A. Chojnacki, “High-quality Sub-function
Construction in Functional Decomposition Based on Information
Relationship Measures”, Design, Automation and Test in Europe
(DATE’01), pp.383-390, 2001.

[33] Jozwiak L. and A. Chojnacki, “Effective and Efficient FPGA
Synthesis through Functional Decomposition Based on Information
Relationship Measures”, Proc. Euromicro Symposium on Digital
Systems Design (DSD’01), pp. 30-37 2001.

[34] Keevallik A., and T. Lausmaa, “Informational Operators of Finite
Automata”. Transaction of Tallinn Technical University, vol.708,
pp. 20-25, 1990.

[35] Keevallik A., M. Kruus, J. Udre, “Informational Modeling of FSM
Networks”, MIXDES, Poznan, pp. 167-172, 1997.

[36] Koegest M., O. Coudert, and ST. Rülke, “A Generalized
Constraint-Driven State Encoding Strategy ”, in Proc.
EUROMICRO’99, 1999.

[37] Koegest M., ST. Rülke, H. Sübe, and I. Lemberskis, “Derivation of
Constraints for Lower Power State Encoding”, in Proc. 42nd Riga
Technical University Conference, Section on Electronics and
Telecommunications (RTUCET’01), pp.107-112, 2001.

[38] Koegest M., S. Rülke, G. Franke and M. J. Avedillo, “Two Criteria
Constraint-Driven FSM State Encoding for Lower Power”, IEEE,
pp.94-99, 2001.

[39] Lee W-K., and Tsui C-Y., “Finite State Machine Partitioning for
Low Power”, in Proc. of the IEEE International Symposium on
Circuits and Systems (ISCAS’99), pp. 306-309, 1999.

[40] Lee M-H., Hwang T-T., and Huang S-Y., “Decomposition of
Extended Finite State Machine for Low Power Design”, in Proc. of
the IEEE Design, Automation and Test in Europe Conference and
Exhibition (DATE’09), 2003.

[41] Macii E., “Sequential Synthesis and Optimization for Lower
Power”, Lower Power Design in Deep Submicron Electronics,

 96

NATO ASI Series, Series E: Applied Sciences, vol. 337, pp. 321-
353, 1997.

[42] Macii E., M. Pedram and F. Somenzi, “High-level Power
Modeling, Estimation and Optimization”, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transaction on, vol. 17,
No. 11, pp. 1061-1079, 1998.

[43] Marculescu D., R. Marculescu and M. Pedram, “Stochastic
Sequential Machine Synthesis Targeting Constrained Sequence
Generation”, Proc. of the 33rd ACM/IEEE Design Automation
Conference (DAC’96), pp. 696-701, 1996.

[44] Marculescu D., R. Marculescu, and M. Pedram, “Information
Theoretic Measures for Power Analysis”, IEEE Trans. Computer-
Aided Design, vol. 15, pp. 599-610, 1996.

[45] Marculescu D., “Information Theoretic and Probabilistic Measures
for Power Analysis of Digital Circuits”, Ph. D. Thesis, Dept of
Electrical Engineering University of Sourthen Calofornia, 1998.

[46] Martinez M., M. J. Avedillo, J. M. Quintana, and J. L. Huertas, “A
Dynamic Model for the State Assignment Problem”, DATE’98, pp.
835-839, 1998.

[47] Martinez M., M. J. Avedillo, J. M. Quintana, M. Koegest, S. Rülke,
and H. Suesse, “New Lower Power State Assignment Approach”,
Design of Circuits and Integrated Systems Conference (DCIS’00),
pp. 181-187, 2000.

[48] McElvain K., LGSynth’93 Benchmark Set: Version 4.0. Available:
http://www.cbl.ncsu.edu/benchmarks, 1993.

[49] Monteiro J. C, and S. Devadas, “Techniques for the Power
Estimation of Sequential Logic Circuits under Use-Specified Input
Sequence and Programs”, in Proc. Intl. Symp. Lower Power
Design, 1995.

[50] Monteiro J. C, Devadas S., and Glosh A., “Sequential Logic
Optimization For Lower Power Using Input-disabling”, IEEE
Trans. Computer-Aided Design, vol. 17, no 3, pp. 279-284, 1998.

[51] Monteiro J. C. and A. L. Oliveria, “Finite State Machine
Decomposition for Low Power”, Design Automation Conference
(DAC’98) pp. 758 – 763, 1998.

[52] Monteiro J. C. and A. L. Oliveria, “FSM Decomposition by Direct
Circuit Manipulation Applied to Low Power Design”, in Proc. Asia
and South Pacific Design Automation Conference (ASP-DAC’00)
pp. 351-358, 2000.

[53] Monteiro J. C. and A. L. Oliveria, “Implicit FSM Decomposition
Applied to Lower-Power Design”, IEEE Trans. VLSI Syst., vol 10,
pp. 560-565, 2002.

[54] Najm, Goel, and Hajj, “Power Estimation in Sequential Circuits”,
Proc of the 32th DAC, pp. 635-640, 1995.

http://www.cbl.ncsu.edu/benchmarks

 97

[55] Nőth W. and R. Kolla, “Spanning Tree Based State Encoding for
Lower Power Dissipation”, Technical report, Dept. of Computer
Science, University of Wűrzburg, 1998.

[56] Olson E. and S. M. Kang, “Low-Power State Assignment for Finite
State Machines”, in Proc. of Int. Workshop on Low Power Design,
pp. 63-68, 1994.

[57] Pedram M., “Power Minimization in IC Design: Principles and
Applications”, ACM Trans. Design Automat. Electron. Syst., vol.1,
pp. 3-56, 1996.

[58] Perkowski M., “Digital Design Automation: Finite State Machine
Design”, Record of Northcon’86, pp. 11/0.1 - 11/0.14, Seattle,
1986.

[59] Pottosin Yu. V. “Assembling: A Boolean hypercube: an approach
to state assignment of finite state machines”, in Proc. of the Second
Int. conference CAD DD’97, Minsk, pp. 54-59, 1997.

[60] Roy S., P. Banerjee, and M. Sarrafzadeh, “Partitioning Sequential
Circuits for Low Power”, VLSI Design, Proc. 8th International
Conference, pp. 212 – 217, 1998.

[61] Roy K., and S. Prasad, “Syclop: Synthesis of CMOS Logic for Low-
Power Application”, in Proc. of Int’l Conf. on Computer Design,
pp. 464-467, 1992.

[62] Selvaraj H., M. Rawski, and T. Luba, “FSM Implementation in
Embedded Memory Blocks of Programmable Logic Devices Uses
Functional Decomposition”, in Proc. Intl. Conf. on Information
Technology: Coding and Computing, IEEE Comp. Society, pp.
355-360, 2002.

[63] Sentovich E., K. Singh, et. al. “SIS: A System of Sequential Circuits
Synthesis”, Tech. Rep. M92/41. Electronic Research Laboratory.
Colleague of Engineering. University of California, Berkley, 1992.

[64] Shelar R., M. Desai, and H. Naraian, “Decomposition of Finite
State Machines for Area, Delay Minimization”, Proc. IEEE Conf.
on Computer Design (ICCD’99), pp. 620-625, 1999.

[65] Shelar R., H. Narayanan, and M. P. Desai, “Orthogonal
Partitioning and Gate Clock Architecture for Lower Power
Realizations of FSMs”, IEEE Int. ASIC/SOC Conference, pp. 266-
270, 2000.

[66] Silvano C., “Power Estimation and Optimization Methodologies for
Digital Circuits and Systems”, Ph.D. Thesis in Information
Engineering, Università degli Studi di Brescia, 2000.

[67] Story J.R., H.J. Harrison, E.A. Reinhard, “Optimum State
Assignment for Synchronous Sequential Circuits”, IEEE Trans. on
Comp., vol. c-21, no 12, pp. 1365-1373, 1972.

[68] Sudnitson A., “Register Transfer Low Power Design Based on
Controller Decomposition”, in Proc. IEEE 24th International

 98

Conference on Microelectronics (MIEL 2004), Nis, Yugoslavia,
pp.735-738, 2004.

[69] Surti P. and L. F. Chao, “Lower Power FSM Design Using
Huffman-Style Encoding”, IEEE European Design and Test
Conference (EDTC-97), pp. 521-525, 1997.

[70] Sutter G., E. Todorovich, S. Lopez-Buedo and E. Boemo, “FSM
Decomposition for Lower Power in FPGA”, Lecture Notes in
Computer Science, Vol.24, no.38, pp.350-359, 2002.

[71] Tsui C-Y, M. Pedram and A. M. Despain, “Efficient Estimation of
Dynamic Power Dissipation with an Application”, in Proc.
ACM/IEEE Intl. Conference on Computer-Aided Design, pp.224-
228, 1993.

[72] Tsui C-Y, M. Pedram and A. M. Despain, “Lower-Power State
Assignment Targeting Two- and Multilevel Implementation”, IEEE
Trans. on Computer-Aided Design, vol. 17, no 12, pp.1281-1291,
1998.

[73] Tyagi A., “Entropic Bounds on FSM Switching”, IEEE Trans.
VLSI Syst., vol. 5, pp. 456-464, 1997.

[74] Venkataraman G., Reddy S.M., Pomeranz I., “GALLOP: Genetic
Algorithm Based Lowe Power FSM Synthesis by Simultaneous
Partitioning and State Assignment”, 6th Intl. on VLSI Design, 2003.

[75] Villa T., “Encoding Problems in Logic Synthesis”, PhD Thesis in
Electrical Engineering and Computer Science, University of
California at Berkley, 1995.

[76] Yuan L-P., C-C. Teng, and S-M. Kang, “Statistical Estimation of
Average Power Dissipation in Sequential Circuits”, 34th Design
Automation Conference (DAC’97), pp. 377-382, 1997.

[77] Wu X., M. Pedram, and L. Wang, “Multi-code state assignment for
low power design”, IEEE Proceedings - Circuits, Devices and
Systems, Vol. 147, No. 5, pp. 271-275, 2000.

[78] Wu X., and M. Pedram, “Low power sequential circuit design by
using priority encoding and clock gating”, in Proc. of Symp. on
Low Power Electronics and Design, pp. 143-148, 2000.

[79] Wuttke H.-D., Henke K., R. Peukert, “Internet Based Education:
An Experimental Environment for Various Educational Purposes”,
in Proc. of the IASTED Int. Conf. on Computers and Advanced
Technology in Education, IASTED/Acta Press No. 292, pp. 50-54,
1999.

 99

OTHER BIBLIOGRAPHY
The list of additional bibliography that was also used during the

preparation of the thesis is presented below.

[80] Ashar, P., Devadas, S., and Newton, A. R. Sequential Logic

Synthesis. Boston: Kluwer Academic Publishers, 1992.
[81] Brassard G., P. Bratley, “Fundamentals of Algorithms”, pp. 136-

142, 291-292.
[82] Hennie F.C., “Finite-State Models for Logical Machines”, John

Wiley, New York, 1968.
[83] Kohavi Z., “Switching and Finite Automata Theory”, McGraw-Hill,

New York, 1970.
[84] Krohn K., J.L. Rhodes, “Algebraic Structure Theory of Machines I:

the Decomposition Results”, Trans. American Math Soc., CXVI
1965.

[85] Marculescu D., R. Marculescu and M. Pedram, “Sequence
Compaction for Probabilistic Analysis of Finite State Machines”,
in Proc. of the 34th ACM/IEEE Design Automation Conference
(DAC’97), pp.12-15, 1997.

[86] Martinez M., M. J. Avedillo, J. M. Quintana, and J. L. Huertas, “An
Algorithm for Facet-Constrained Encoding of Symbols Using
Minimum Code Length”, DATE’99, pp. 521-525, 1999.

[87] Papoulis A., "Probability, Random Variables, and Stochastic
Processes", McGraw-Hill Co., 1984.

[88] Ross K. A. and C. R. B. Wright, “Discrete Mathematics”,
Englewood Cliffs, New Jersey, 1992.

[89] J. Sparso, S. Furber, Principles of Asynchronous Circuit Design,
Kluwer Academic Publishers, 2001.

[90] Villa T., A. Sangiovanni-Vincentelli, “NOVA: State Assignment of
Finite State Machines for Optimal Two-level Logic
Implementation”, IEEE Trans. on Computer-Aided Design., CAD-
9, no 9, pp. 905-924, 1990.

[91] Wu Q., M. Pedram and X. Wu., “Clock-gating and its application
to low power design of sequential circuits”, IEEE Trans. on
Circuits and Systems Part 1, Vol. 47, No. 3, pp. 415-420, 2000.

[92] Закревский А. Д., “Алгоритмы синтеза дискретных
автоматов (The Algorithms of Synthesis of Discrete Automata)”,
Nauka (in Russian), 1971.

[93] Закревский А. Д., “Логический синтез каскадных схем (Logic
Synthesis of Cascade Circuits)”, Nauka (in Russian), 1981.

[94] Закревский А. Д., Потосин Ю. В., Черемисинова Л.Д.,
“Основы логического проектирования (Logic Design Bases)”,
Minsk (in Russian) 2004.

 100

Curriculum Vitae

1. Personal Data

Name Elena Fomina
Date of birth 07.04.1974
Citizenship Estonian
Marriage status single
Children no

2. Contact Data
Address Raja str. 15 Tallinn, 12618, Estonia
Phone +372 620 22 55
E-mail elfom@staff.ttu.ee

3. Education
 1999 entered Ph.D studies in TUT (Tallinn

University of Technology), faculty of CE
(Computer Engineering)

 1996-1999, TUT, faculty of CE, M.Sc
 1991-1996, TUT, faculty of CE, engineer

4. Languages
English advanced
French elementary
Estonian good
Russian native

5. Professional
Experience

 2004- TUT, Dept of CE, researcher

6. Academic Degree

 Master of Science in Computer Engineering,
TUT, 1999

7. Research Interests

 Synthesis of digital circuits
 FSM decomposition and state encoding
 Low power FSM realization

 101

Elulookirjeldus

1. Isikuandmed
Nimi Elena (Jelena) Fomina
Süniaeg 07.04.1974
Kodakondsus Eesti
Perekonnaseis valaline
Lapsed ei ole

2. Kontaktandmed
Aadress Raja tänav 15 Tallinn, 12618, Eesti
Telefon +372 620 22 55
E-posti aadress elfom@staff.ttu.ee

3. Hariduskäik
 1999 doktorantuur TTÜs (Tallinna

Tehnikaülikool), ATI (arvutitehnika
institut)

 1996-1999, TTÜ, ATI, tehnikamagister
 1991-1996, TTÜ, ATI, enseneer

4. Keelteoskus
Englise kõrg
Prantsuse alg
Eesti hea
Vene emakeel

5. Teeninduskäik
 2004- TTÜ, ATI, teadur

6. Kaitstud Lõpputööd

 Tehnikamagister, TTÜ, 1999

7. Teadustöö Põhisuunad
 Digitaalskeemide süntees

 Lõplike automaatide dekompositsioon
ja kodeerimine

 Automaatide madala energiatarbega
realisatsioonid

 102

Dissertations Defended at Tallinn University of
Technology on Informatics and System Engineering

	
	1 Introduction
	1.1 Switching activity as main factor for low power FSM synthesis
	1.2 FSM state encoding targeting reduction of switching activity
	1.3 FSM decomposition for RTL power management
	 Objectives and motivations

	1.4 Outline of the thesis
	2 Preliminaries
	2.1 Basic automata theory concepts
	Behavior representation of an FSM

	2.2 Basic algebraic structure theory concepts
	
	Partitions and partition pair algebra
	Partition pairs and a component machine
	Main conditions of decomposition of an FSM
	Partitions search problem

	3 State Encoding for a Low Power FSM
	3.1 Introduction
	3.2 A new state encoding technique
	3.2.1 Problem statement
	
	Encoding Matrix
	
	STG Representation
	
	Matrix Representation
	
	Optimization & Cost Functions
	
	 Graph Weighing

	3.2.2 Weakly crossed edge cuts encoding algorithm
	
	Necessary definitions
	
	 Heuristic algorithm
	 Power-oriented algorithm

	3.2.3 Comparison of encoding methods
	
	3.2.4 Further improvement of the received encoding
	Tree search techniques
	
	Randomization

	3.3 Experimental results
	3.4 Summary
	

	4 Decomposition for a Low Power FSM
	4.1 Introduction
	4.2 FSM decomposition technique
	
	4.2.1 Decomposition constraints
	 Decomposition with a separation of inputs (multiplicative decomposition)
	
	Decomposition based on state probability distribution (additive decomposition)

	
	
	
	Decomposition with separation of outputs (generalized additive decomposition)

	4.2.2 Information relationship measures
	4.2.3 Decomposition procedure
	The structure of the network under multiplicative decomposition
	The structure of the network under additive decomposition
	
	 The structure of the network under generalized additive decomposition

	4.2.4 Encoding of the network of machines
	State encoding of the network of machines after multiplicative decomposition
	
	 Independent state encoding of component machines in the network after additive and generalized additive decompositions
	 Optimization of the network under multiplicative decomposition

	

	4.3 Experimental results
	
	Stochastic investigation of an FSM
	
	Complexity criteria based on state probability distribution
	
	
	The comparison of decomposition techniques

	
	
	State encoding of the network of machines
	
	
	 Optimization of the network of machines

	4.4 Summary
	Decomposition strategies target low power FSM

	5 Conclusion and Future Direction
	5.1 Thesis summary
	5.2 Future work

	 References
	 Other bibliography

