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Abstract 
Low power finite state machine synthesis 

Low power synthesis has gained significant attention in recent years. The 
thesis is a result of the investigations into development of energy-efficient 
Finite State Machine (FSM) design. The current research focuses on a technique 
to reduce dynamic power dissipation of the FSM. FSM partitioning and state 
encoding are two virtually identical concepts that lie at the heart of the 
presented approach of synthesis of a low power FSM. 

We target the reduction of the average switching activity for an FSM in 
the state variables by minimizing the number of bit changes during state 
transitions. The technique introduces a fundamentally new methodology of 
finding state encoding for an FSM described by the State Transition Graph 
(STG).A new state encoding technique for a low power FSM based on the 
concept of weakly crossed edge cuts is presented. The basic idea of this 
approach is that the code length is equal to the number of encoding partitions on 
the set of states and to the number of edge cuts on a set of state transitions in the 
STG. The set of edge cuts is constructed with aim to minimize the Boolean 
(Hamming) distance between the codes of the neighbor states (connected with a 
transition). 

Using a probabilistic description of an FSM, we have adapted our 
strategy to propose a state encoding algorithm that minimizes the Hamming 
distance between the codes of the states with high transition probability. The 
framework we have developed is a general formulation of a state encoding 
problem that links a probabilistic description of an FSM to its power 
dissipation.  

Minimizing the switching activity by modifying the state encoding of an 
FSM by itself does not always guarantee reduced total power dissipation, 
because the power consumed in the combinatorial part is not accounted for. The 
most popular technique to reduce power in the FSM is Dynamic Power 
Management (DPM). We specify the proposed state encoding strategy using 
technique of FSM partitioning which is one of DPM techniques. Decomposition 
has been shown as a very effective technique for synthesis of a low power FSM. 

 A new complex approach to a low power FSM design which consists of 
two phases: FSM decomposition and FSM state encoding is presented. 
Moreover, these phases are tightly connected, which gives the possibility of 
solving the task of construction a network of interacting and interconnected 
machines with given restrictions on the structure. 

The most important result of the presented research is the complete 
framework developed for synthesis of a low power FSM. The key to success of 
this work is a combination of a novel heuristic approach and well-known 
approved techniques and methods. 
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Lühike ülevaade 
Lõplike automaatide madala energiatarbega süntees 

Käesoleva doktoritöö on pühendatud madala energiatarbega lõplike 
automaatide (edasises automaat; inglise keeles Finite State Machine) 
projekteerimise alastele arendusuuringutele. Uuringute keskseks põhiteemaks 
on automaatide dünaamiliste võimsuskadude vähendamise meetodite ja 
algoritmide väljatöötamine. Töös on esitatud madala energiatarbega 
automaatide sünteesi käsitlus, mis baseerub automaadi tükeldamisel ja tema 
olekute kodeerimisel, mis on käesolevas kontekstis kaks peaaegu kattuvat 
mõistet. 

Doktoritöös esitatakse uus madala energiatarbega automaatide olekute 
kodeerimise meetod, mis baseerub automaadi siirdegraafi (State Transition 
Graph) tükeldamisel nõrgalt seotud lõigete alusel. Pakutud meetod toob sisse 
põhimõtteliselt uue olekute kodeerimise metodoloogia graafiga kirjeldatud 
automaatide jaoks.  

Töö eesmärgiks on automaatide olekumuutuste keskmise 
ümberlülitumise aktiivsuse vähendamine, minimeerides olekusiirete käigus 
muutvate olekukoodi järkude arvu. Seejuures on olekukoodi pikkus määratud 
olekute kooditükelduste hulga võimsusega, mis omakorda võrdub automaadi 
siirdegraafi lõikete arvuga. Lõigete hulk konstrueeritakse nii, et siirdega seotud 
naaberolekute vaheline loogiline e. Hammingu kaugus oleks minimaalne. 

Kasutades automaatide tõenäosuslikku kirjeldust on väljatöötatud 
kodeerimisstrateegiat  edasi arendatud ning pakutud välja olekute 
kodeerimisalgoritm, mis minimeerib kõrge siirdetõenäosusega olekukoodide 
vahelise Hammingu kauguse. Väljatöötatud raamistik annab olekute 
kodeerimise üldise määratluse, mis seob automaatide tõenäosusliku kirjelduse 
võimsuskadudega. 

Automaadi olekute ümberlülitamise aktiivsuse minimeerimine ei 
garanteeri iseenesest alati üldise võimsuskao vähenemist, kuna pole arvestatud 
automaadi realisatsiooni kombinatoorse osa poolt tarbitavat energiat. 
Automaadi võimsuskadude summaarsel minimeerimisel kasutatakse automaadi 
dünaamilise võimsuskontrolli meetodeid (Dynamic Power Management), 
milliste hulka kuulub ka automaadi dekomponeerimine. Baseerudes 
dekomoneerimismeetodil on käesolevas töös esitatud automaadi olekute 
kodeerimisstrateegia ning uus kompleksne lähenemine madala energiatarbega 
automaatide projekteerimisele, mis koosneb kahest etapist: automaadi 
dekomponeerimisest ja automaadi olekute kodeerimisest. Veelgi enam, need 
etapid on omavahel väga tihedalt seotud, mis antud struktuuripiiranguid 
arvestades võimaldab lahendada omavahel ühendatud ja vastastiktoimega 
komponentautomaatide võrgu projekteerimise ülesandeid.  

Käesoleva doktoritöö oluliseimaks tulemuseks ongi täieliku raamistiku 
loomine madala energiatarbega automaatide sünteeks. Nimetatud tulemus 
saavutati eelkõige tänu uue heuristilise lähenemise õnnestunud seostamisele 
varasemate hästituntud meetoditega. 
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111   INTRODUCTION  
Power consumption has become a primary concern in the design of 

Integrated Circuits (ICs). Two independent factors have contributed for this. On 
one hand, low power consumption is essential to achieve longer autonomy for 
portable devices. On the other hand, increasingly high circuit density and higher 
clock frequencies are creating heat dissipation problems which in turn raise 
reliability concerns and lead to more expensive packaging. Huge effort has been 
invested to come up with a wide range of design solutions that help solve the 
power dissipation problem for different types of electronic devices, components 
and systems.  

The thesis focuses on a technique to solve the problem of reducing the 
power dissipated in synchronous sequential circuits range from Register 
Transfer Level (RTL) power management. More precisely, we present 
techniques applicable at RT-level that have proven to hold good potential for 
power optimization in practical design environments. 
 

 
 

1.1 Switching activity as main factor for low power 
FSM synthesis 
We propose a novel approach for the low power synthesis of synchronous 

Finite State Machines (FSM) starting at the RT-level of design specification. 
Since in Complementary Metal-Oxide Semiconductor (CMOS) technology the 
largest fraction of power dissipation is caused by signal switches, our approach 
deals with the reduction of switching activity. 

In the CMOS technology, overall power consumption can be partitioned 
in three main components [57]: P=Pdyn+Psc+Plk. Pdyn is the dynamic or switching 
power. It is due to charging and discharging load capacitance. Psc (short-circuit 
power) is caused by the currents flowing from supply to ground when pairs of 
PMOS/NMOS transistors are conducting simultaneously. Finally, Plk (leakage 
power) is static in nature and it originates mainly from sub-threshold MOS 
conduction. In most current CMOS IC technologies, Pdyn is dominant [1], [7].  

During normal operation of well designed CMOS circuits, power 
consumption is determined by the switching activity in the circuit [27], [41]: 

clkddSWLdyn fVACP 2

2
1

=  
(1) 

Here CL is the load of a circuit node, Vdd
2 is the supply voltage, fclk is the 

clock frequency and ASW is the switching activity of the node, defined as the 
expected number of logic transitions during one clock cycle.  

Pdyn reduction targets the minimization of one or more factors in the 
equation above. The parameters that influence the dynamic dissipation are the 
voltage, the capacitance, the frequency of the switching activities. Voltage and 
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capacitance are limited by the technology used; hence, ways to reduce dynamic 
dissipation are focused on decreasing frequencies of switching activities [41]. 

The average power dissipation is proportional to the average switching 
activity [6], [66]. A good approximation of the average switching activity is the 
switching probability). Given the input switching probability it is possible to 
calculate the probability of the state transitions in an FSM [26], [45]. 

At the gate level the average switching activity at the output of a gate i in 

a time period T is the average number of signal transitions [6]: ( )
T

nTn trans
i = , 

where ntrans is the number of transitions during time period T. 
The switching (transition) probability is the limit value of the switching 

activity when the observation time goes to infinity [17]: ( )Tnp iTi →∞= lim .  
According to [27], [41], the power dissipation at the gate level can be 

regarded to be proportional to its switching activity. Then the average overall 
power dissipation Ptot is a function of the average power dissipated by each gate 
gi during one clock cycle Tcycle as follows: 

( ) ( )∑
=

=
G

i
ii

cycle

dd

tot gEgC
T

V
P

1

2

2
1

 

 
 

(2) 

 
Here Vdd

2 is the supply voltage, C(gi) is the capacitive load at the output 
of gate gi, E(gi) is the switching activity of the gate gi and G is the set of all 
gates in the circuit [76].  

The intention of low power design is to diminish the value of Ptot. 
Voltage Vdd and clock cycle Tcycle are assumed to be fixed. The thesis 
concentrates on reducing the power consumption at the gate level by reducing 

of the term ( ) ( )∑
=

G

i
ii gEgC

1
 in (2). This can be done by determining a register 

configuration and a combinational structure [14]. 
Basically, our approach provides a workbench-like method taking in two 

particular low power optimization techniques and a strategy for their 
application. The two techniques are deactivation of the parts of the circuit which 
are not doing useful work and shut them down by either turning off the power 
supply or the clock signal and appropriate state encoding. 

Using our strategy, we consider the data-dependent or DPM technique 
[51] in order to exploit both techniques in a suitable way. Depending on the 
special application-specific requirements presented state encoding can be 
applied separately or in a combination with the power management technique 
manner. In the case of combined application our state encoding approach is 
capable to consider state encoding constrains resulting from the disabling the 
inactive parts of the circuit.  
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1.2 FSM state encoding targeting reduction of 
switching activity  
The currently used technologies for design of sequential circuits usually 

consist of several independent phases [6], [27] among which the step of 
encoding is one of significance. In general, an encoding (or assignment) 
problem is to assign (binary) codes to attribute to symbolic states, satisfying the 
cost metrics, through the minimization of a given cost function. The problem is 
NP-complete, indeed the optimum encoding can be found by exhaustive 
enumerating all the possible assignments, carrying out logic synthesis for each 
assignment and then picking the one that has the least area. This method is 
computationally too expensive. Hence, different heuristic methods are used to 
obtain a solution. The problem is a classic in switching circuit’s theory [58]. 
However, recently the encoding problem is again gaining momentum. The one 
of predominant reasons of that is a demand of energy efficient designs. In the 
last few years the problem of increasing the power consumption through the 
phase of encoding during sequential circuit design has become a primary and a 
major concern. Many various works devoted to encoding use different models, 
methods and heuristics have been reported to address the power-efficient design 
at different levels of abstraction [1], [57]. 

The main investigation object in the current thesis is an FSM that was 
generated and presented in the form of State Transition Graphs (STG) or State 
Transition Tables (STT). Currently is discussed only the problem of assigning 
the internal states of an FSM with unique binary codes. State encoding 
determines the number of flip-flops that are required to hold the state and 
influences the complexity of the combinational logic used to realize the next 
state and output of a synthesized state machine. The number of flip-flops must 
be sufficient to represent the number of states as a binary number. A machine 
with n states will require at least log2n flip-flops to store the encoded 
representation of the states, but it could have more. The task of finding the state 
encoding with minimum required code length is most widespread. In the 
presented research the task of state encoding with minimal required number of 
bits is also considered.   

A code that changes by only one bit between adjacent codes will reduce 
the simultaneous switching of adjacent physical signal lines in a circuit, thereby 
minimizing the possibility of electrical crosstalk. These codes also minimize 
transitions thought intermediate states, when state changes occur in the 
operation of the actual hardware. The problem of intermediate transitions arises 
because flip-flops in the state register do not change simultaneously. When 
more that one bit changes to make a state transition and the bit do not switch 
simultaneously, an intermediate state is present momentarily in the state 
register. This could have undesirable consequences. Hence, the strategic aim of 
the investigation is the development of the optimal (code length → minimum 
code length) FSM state encoding that minimizes the number of state variables 
that changes their value when an FSM moves between two adjacent states. 
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Ideally, if we can guarantee that each state transition results in a single state 
variable change, than we will have optimally reduced the switching activity 
associated with registers in the given FSM. 

Modifying of the state encoding is most of the popular technique to 
reduce power in an FSM [6], [46], [50], [71], [77]. The state encoding has been 
extensively studied because it is a crucial step in the synthesis of the controller 
circuitry. Early researches were focused on finding a state encoding that 
minimizes area of the circuit [13], [17], [20], [67], [71]. More recently, a 
number of low power state encoding techniques target the reducing of switching 
activity have been proposed [37], [47], [55], [56], [75], [77]. The problem of 
Minimum Weighted Hamming Distance [61] was firstly formulated in 1992. 
This problem considers the reducing of switching activity of input state lines on 
next state logic during state encoding. The objective function in encoding 
techniques is to minimize the Weighted Hamming Distance. Despite of that the 
Minimum Weighted Hamming Distance does not exhibit a high absolute 
accuracy this metric is still relevant and quite effective [4], [6], [55], [56], [66]. 

The state encoding for power dissipation in an FSM has received a lot of 
attention. It would be impossible to report in detail on all different approaches 
that have been proposed. We restrict our attention to those state encoding 
methods that are either very commonly used or representative of a class of 
techniques.  

In 1994, Olson et al. used a linear combination of switching activity of 
the next state lines and the number of literals as the cost function [56].  

In 1995, Benini and De Michelli presented the aim of the low power state 
assignment is the minimization of register switches in the synthesized circuit 
which is approximated by the register switching rate. Usually this minimization 
is performed by a simulated annealing procedure utilizing weighted state 
transitions [6].  

In 1997, Surti at al. presented the Huffman-code architecture to realize 
encoding using two different code lengths [69]. Switching activity is reduced by 
decreasing the expected number of state bits switched less than ⎡log2|S|⎤. The 
state set S of the FSM is decomposed into two sets based on the limited state 
probabilities. The state set with very high probability is encoded with less than 
⎡log2|S|⎤ bits. The other state set, being less probable, is encoded using more 
than ⎡log2|S|⎤ bits. Therefore authors use two code lengths for one state 
machine. 

In 1998, Tsui et al. [72] used simulated annealing as a search strategy to 
find a low power state encoding that accounts for both the switching activity of 
the next state lines and switched capacitance of the next state and output logic. 

In 1999 it was proposed that the register switching activity can be 
reduced by an adapted state assignment [29]. The state assignment procedure 
for power and complexity consists of the following three steps: selection of a 
suitable subset of all possible facets (trade-off between complexity and power), 
based on this subset criterion of a partial state encoding for complexity 
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reduction, completion the partial encoding by exploiting the remaining 
optimization apace to minimize the register switching rate. 

In 2000, Silvano provided a general frame work for low power state 
assignment, starting from a probabilistic description of the FSM. The authors 
consider the state assignment process as composed of two tasks: symbolic state 
ordering and state encoding. The state ordering determines a propriety list of 
symbolic states to be used during the successive phase of encoding. The weight 
of each edge in the STG reflects the transition probabilities inside the 
corresponding pairs of states. Authors define encoding techniques to assign 
binary codes to the symbolic states to reduce the switching activity of state 
registers [4], [66].  

Area and power can be reduced using a number of encoding variables 
over the minimum required to distinguish among the states. A state assignment 
algorithm for the synthesis of multi-level low power controllers is presented in 
[46]. The proposed algorithm follows a two step strategy. Each one works with 
a different cost function. The first step targets area minimization. A partial 
encoding is derived using area oriented criteria. In the second step, this partial 
code is completed with the aim to reduce the register switching activity. The 
multi-criteria approach is taken and the increasing in the number of state bits 
over the minimum is explored. 

Wu and Pedram [78] presented the state assignment technique called 
priority encoding which uses multi-code assignment plus clock gating to reduce 
power dissipation in sequential circuits. During the low-power design of 
combinational circuits they have found that blocking the redundant signals and 
shutting off the redundant parts in circuit is effective method to low the energy 
dissipation [77]. The priority-based state assignment exploits the redundant 
state codes to mask the clock to some of the flip-flops. Some states do not 
require binary assignment of all state variables. When the system is in such 
state, the unused state variables become redundant. Because the corresponding 
flip-flops are not used, they can be isolated from the clock to reduce their power 
dissipation. 

Combined parameter “area and registers switching rate” is presented in 
[38]. For providing a trade-off between two parameters authors estimate the 
efficiency of variant for area reduction, and restrict the solution space by means 
of two thresholds. They increase the probability to find a power reduced design 
in the remaining space. 

Venkataraman et al. use Genetic Algorithm (GA) for simultaneous 
partitioning and state encoding of an FSM with power reduction as the objective 
[74]. They constructed GALLOP – an FSM synthesis tool targeting low power. 
It differs from previous works by performing state assignment and partitioning 
simultaneously using GA and using steady state probabilities to bias the initial 
population to wards giving better results. The tool yields circuits which 
consume considerably less power than those obtained by the use of earlier 
known low power synthesis procedures. 
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The method proposed in [62] is not mutually exclusive with any of these 
state assignment techniques, but complements them. A representative of 
existing low power state assignment algorithms attempts to minimize switching 
activity by reducing the Hamming distance between the states with high state 
transition probability between them. Various cost functions combined with 
these probabilities are suggested to control both area and power. 

In 2003, Eggermont et al. introduce the profiling-based state-assignment 
technique for low power that utilizes dynamic loop information extracted from 
an FSM profiling data [21]. Authors proposed three different loop-based state 
assignment algorithms. The depth-first search (DFS) algorithm performs an 
exhaustive search over the FSM encoding space using the loop information for 
intermediate cost estimates of an encoding. The loop-based DFS algorithm 
performs a similar search on a loop-by-loop basis, where the loops are ordered 
in the descending order of weight. The per-state algorithm encodes the states 
individually, on the same loop-by-loop basis.  
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1.3 FSM decomposition for RTL power 
management 
The development of Computer-Aided Design (CAD) techniques for 

power minimization has been a very active area of research [41], [57] because 
power dissipation has recently emerged as one the most critical design 
constraints [52]. A wide range of techniques has already been proposed for the 
optimization of logic circuits for low power.  

Power management methods are among the most effective techniques for 
power reduction [57]. The most representative data-dependent power 
management techniques that have recently been proposed are pre-computation, 
guarded evaluation, gated-clock FSM and FSM decomposition. Each of these 
techniques uses a different approach to identify the input conditions for which 
the circuit (or part of) can be disabled. These methods detect periods of time 
during which parts of the circuit are not doing useful work and shut them down 
by either turning off the power supply or the clock signal. Several methods have 
been presented that perform shutdown on a clock-cycle base. Depending on the 
input conditions at the beginning of a clock-cycle, the clock driving some of the 
registers in the circuit can be inhibited, thus reducing the switching activity in 
the fan-out of those registers. These techniques are referred to as data-dependent 
or dynamic power management techniques. Dynamic power management is a 
concept that includes various design methods and techniques and is based on 
shutting down the parts of the circuit that are not currently active [8], [42]. 

High-level logic synthesis produces a combined description of data-path 
and control logic. The latter is normally in the form of a transition structure, 
whose most familiar representation is an FSM or a collection of machines. The 
translation of such an FSM into a structural description presents opportunities 
for reducing power consumption [41]. 

In static CMOS circuits, the probabilistic average switching activity of 
the circuit is a good measure of the average power dissipation of the circuit. 
Methods that can efficiently compute the average switching activity, and thus 
power dissipation, in CMOS combinational [54] and sequential [72] circuits 
have been developed. 

Power consumption in a synchronous FSM can be reduced by 
partitioning it into a number of coupled component machines where only the 
part that is involved in a state transition is clocked [14].  

In sequential circuit design, an effective approach to reduce power 
dissipation is to “turn off” portions of the circuit [12], and hence reduces the 
switching activities in the circuit. This approach is motivated by the observation 
that, for an FSM, active transitions occur only within a subset of states in a 
period time. Therefore, it is possible to synthesize an FSM in such way that 
only the part of the circuit which computes the state transitions and outputs will 
be turned on while all other parts will be turned off, power consumption will be 
reduced. 

The design of state machines can be made with a special state machine 
design tool and companion optimizer, then the necessary of optimizing the state 
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assignment for the performing constraints is arising. Machine decomposition or 
partitioning can be regarded as a first phase of the state machine encoding. In 
other words, machine decomposition and state encoding are virtually identical 
concepts. Decomposition of an FSM into a group of component state machines 
requires additional state encoding constraints because of assigning binary codes 
to each state of all component machines. Composite encoding of all component 
machine (or encoding of a network of component machines) with aim to 
minimize the size of representations is considered as extended optimization 
problem.  

In the next review some of approaches present different strategies for low 
power consumption which is based on the principle of decomposition [12], [39], 
[41], [42], [50]-[53], [60], [65], [70], [74], and [78].  

In [12], the combinational logic block is partitioned and the active part is 
decided basing on the encoding of the present state. The states selected for one 
of the component machines are all encoded in such a way that the enable signal 
is always on for first combinational logic while it is off for the second 
combinational logic. Conversely, for all states in the other sub-FSM, the 
enabled signal is always off for the first combinational logic while it is on for 
the second combinational logic. Consequently, for all the transitions within the 
first component machine, only the first combinational logic will be active and 
vice-versa. 

The basic idea of the clock-gating technique in [51] is to decompose the 
STG of an FSM into two component machines that jointly produce an input-
output behavior which is equivalent to that of the original machine. Power is 
saved because, except for transitions between the two component machines, 
only one of the component machines needs to be clocked. The technique 
follows a standard decomposition structure. The states are partitioned by 
searching for a smaller subset of states with high probability of transitions 
among these states and a low probability of transitions between the other states. 
This subset of states will then constitute a small sub-FSM that is active most of 
the time. When the small sub-FSM is active, the other larger sub-FSM can be 
disabled. Consequently, power is saved because most of the time only the 
smaller, more power-efficient, component machine is clocked. 

In 2000 orthogonal partitioning with the gated clock architecture was 
used in [65] for low power realization of FSM. An FSM with n state is 
decomposed into two approximately √n state machines interacting with each 
other and running concurrently. When one or both the machines have a self-
loop, then clock and primary inputs are disabled for the respective 
machine/machines. Therefore for all the self-edge conditions, the inputs and 
clock of the respective machine are disabled to reduce the switching activity and 
thereby the power. 

The clock gating technique based on FSM decomposition presented in 
[50] has been modified in [52]. A serious limitation of the previously proposed 
techniques is that they require the STG of the FSM to be given or extracted 
from the circuit. Since the size of the STG can be exponential on the number of 
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registers in the circuit, explicit techniques can be applied to relatively small 
sequential circuits. The authors present an approach to perform FSM 
decomposition by direct manipulation of the circuit. This methodology allows 
avoiding both disadvantages of the previous method: the explicit extraction of 
the STG and computation of the transition relations. The computation of the 
exact transition probabilities changes to simulation of approximate transition 
probabilities and this approximation uses in the partition algorithm. Register-
disabling signal are added to the decomposed circuit, hence the overall 
switching activity is minimized. 

In 2002 the problem of optimizing FPGA (Field Programmable Gate 
Array)-based FSM circuits for low power has been considered [70]. The 
decomposition architecture like in [12] was evaluated in terms of area-time-
power. Using the transition probability distribution an FSM is partitioned into 
two or more component machines such that minimize the sum of transition 
probabilities between component machines. Only one component machine is 
active at a time, meanwhile the other is disabled to save power. The 
transference of control between the machines is based on the values of the 
inputs and actual states. 

Unlike previous works which focused only on either controller or data-
path in 2003 authors present a decomposition technique that takes both 
controller and data-path into consideration [40]. The extended Finite State 
Machine was decomposed into several extended component machines taking 
state probability and resource sharing into account. At any time also only one 
component machine is active while the others are idle. By turning off idle 
circuits, the switching activity reduced and power consumption minimized. 

In [74] an approach based on a Genetic Algorithm (GA) for simultaneous 
partitioning of an FSM with power reduction as objective was presented. The 
partition scheme decomposes the set of states of an FSM into two subsets 
implemented by two component machines. Such partition is a partition of the 
combinational logic of the sequential circuit into two sub-circuits each of which 
computes the sequential circuit outputs and next states for different state-
transitions. Using GA and steady state probabilities authors proposed a 
methodology to estimate cost function for designing of a low power FSM.  
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Objectives and motivations 
To define objectives of the thesis let us do some conclusions. 
Conclusion 1 – the logic synthesis for achieving low-power consumption 

is still one of the most important problems in the energy-efficient design of ICs. 
Nowadays researchers show several reasons [27]. First, many ICs are employed 
in mobile battery-powered systems, where the lifetime of the battery decreases 
as the power consumption of ICs and peripherals grows. Second, low-power 
design is required to either satisfy technical feasibility from a thermal profile 
standpoint, or to reduce the cost of the package and cooling means.  

Thus, economic, ecological and ethical reasons mandate the development 
of energy-efficient ICs. 

Conclusion 2 – during the minimization of switching activity the circuit is 
transformed by adding logic that localizes computation in such a way that 
switching is substantially reduced. The cost of the added logic is amortized by 
significant switching activity reduction on many circuit nodes at the same time. 
In the case of minimization of switching capacitance, transformations directly 
optimize logic-level approximations of dynamic power consumption. These 
techniques are generally local in scope, and overall power reduction is the 
compound effect of a large number of local transformations. 

The goal is to find a proper trade-off regarding combined parameter 
“area and switching rate” in the encoding procedure. The simultaneous 
consideration of area and register switching rate in a common low power 
design strategy is based on the common optimization of both parameters.  

Conclusion 3 – low power FSM synthesis is conventionally identified 
with low power state encoding [6], [72]. The minimization of the register 
transitions has to be combined with an appropriate implementation of the 
combinational logic for obtaining a global power saving [66], so the state 
encoding can be the starting point for further optimization of the combinational 
part.  

The power-oriented cost function should account for the minimization of 
the number of logic transitions of the state registers between two successive 
clock cycles, assuming the power consumption is proportional to the switching 
activity on the state bit lines of the machine (2). Hence, an effective state 
encoding technique should assign adjacent binary codes to state pairs 
characterized by very high transition probability. 

Conclusion 4 – partitioning has been shown as effective technique for 
reducing power in an FSM [12], [9], [39], and [52]. Partitioning decomposes a 
given FSM into two or more coupled component machines. When one 
submachine is active, the inputs to the other component machine are turned off 
to reduce power dissipation. Hence, except when there is a transition between 
two different component machines, only one component machine is active at 
time.  

There is a need for a development of general approach to an FSM 
partitioning and state encoding with power reduction as the objective. 
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1.4 Outline of the thesis 

The rest of the thesis is organized as follows. It is divided into five main 
chapters. The thesis contains description of the investigated problem, 
implementation discussions, examples and conclusions.  

Chapter 2 presents some basic concepts from the classic machine theory 
and algebraic structure theory of sequential machines that will be used 
throughout the thesis. 

Chapter 3 deals with the problem of state encoding for a low power FSM. 
This chapter consists of four subchapters. Introduction discusses the traditional 
sequential logic synthesis technique for low power – state encoding. The main 
subchapter of the current chapter introduces a new encoding strategy for low 
power FSM based on the concepts of weakly crossed edge cuts. A proposed 
algorithm is illustratively described in detail. The comparison among several 
encoding methods is added. A practical application was confirmed by series of 
experimental results. 

Chapter 4 describes FSM decomposition as an effective technique of 
DPM for power reduction. Three types of decomposition were presented. The 
first type is multiplicative decomposition which is based on the algebraic theory 
and is constructed by a set of partitions on the set of states of a decomposable 
machine. The second and the third types are additive and generalized additive 
decompositions, which are based on the identification in the STG of sub-
routines or co-routines. A sub-routine/co-routine corresponds to a fragment of 
the STG augment with a wait state. Additive decomposition is constructed by a 
partition on the set of states of decomposable machine, while generalized 
additive decomposition is constructed by a cover on the set of states of 
decomposable machine. 

The low power FSM optimization task consists of decomposition and 
further encoding. Decomposition applies additional restrictions – decomposition 
constraints. After multiplicative decomposition encoding of the network of 
component machines is a composite encoding of component machines with 
decomposition constraints – blocks of partitions from a complete system of 
partitions. After additive and generalized additive decomposition we apply an 
independent encoding of component machines based on the heuristic described 
in the previous chapter. 

Chapter 5 summarizes main contributions and outlines possible directions 
for future investigations. 
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222   PRELIMINARIES 

2.1 Basic automata theory concepts  
Over the years, many important problems in sequential circuit synthesis 

and optimization have been approached using concepts from automata theory. 
Traditionally, FSM is a discrete dynamical system translating sequences of 
input vectors into sequences of output vectors. An FSM has a set of states and 
of transitions between states; the transitions are triggered by input vectors and 
produce output vectors. The states can be seen as recording the past input 
sequence, so that when the next input is seen a transition can be produced based 
on the information of the past history. If a system is such that there is no need to 
look into past history to decide what output to produce, it has only one state and 
therefore it yields a combinational circuit. From the other side, systems whose 
past history cannot be condensed in a finite number of states are not physically 
realizable. 

It is widely recognized that the FSM is used to model the work of digital 
devices, and reachability analysis is a powerful approach to retrieve information 
from such model. Because of their finite nature, FSM yield better to describe, to 
analyze and to synthesize of intricate digital systems than any other alternative 
models. Moreover, the FSM is often the formalism of choice for specifying the 
behavior of sequential components [22]. 

 
Behavior representation of an FSM 

Traditionally, associated with a circuit, an FSM is represented as 
algebraic quintuple: sets of states, inputs and outputs, and two functions – 
transition and output.  

Definition 2.1 A Finite State Machine is a discrete dynamic system 
translating sequences of input vectors into sequences of output vectors and 
defined as A=(S,I,O,δ,λ):  

 S is a finite nonempty set of states;  
 I is a finite nonempty set of inputs; 
 O is a finite nonempty set of outputs; 
 δ: S×I→S is called the transition (or next state) function; 
 λ: S→O (Moore FSM) and S×I→O (Mealy FSM) is called output 

function.  
States S, I and O are nonempty. Functions δ and λ are multiple-output 

Boolean functions: an l input, r output Boolean function F, is a mapping from 
an l-dimensional Boolean space to an r-dimensional Boolean space F: Bl→Br, 
where B={0,1}. Bl is called the domain of F, and Br is called the co-domain of 
F. If r>1 the F is multiple output function. The sets of inputs I={x1, x2, …, xl}, 
where xi∈I is a binary input variable and outputs O={y1, y2, …, yr}, where yi∈O 
is a binary output variable are considered as structural inputs and outputs of an 
FSM. The domain of next state function is D(δ)→S×Dl, D={0,1}. The domain 
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of output function is D(λ)→Dr, D={0,1} (Moore FSM) and D(λ)→S×Dr, 
D={0,1} (Mealy FSM). 

An FSM can be represented by two equivalent structures, a State 
Transition Graph (STG) and, a State Transition Table (STT).  The first is 
graphical, second is tabular representation form. The two representations are 
equivalent.  

Definition 2.2 Given an FSM A=(S,I,O,δ,λ), the State Transition Graph 
STG(A)=(V,E) is a labeled directed graph where each state in S corresponds to a 
vertex in V labeled v and each transition in δ corresponds to a directed edge in E 
labeled e. 

The STG for the FSM “bbara” [48] is depicted in Figure 2-1, where 
e1:¬x3x4∨x3¬x4∨¬x3¬x4, e2:¬x1¬x2x3x4, e3:x2x3x4, and e4:x1¬x2x3x4. Each edge in 
the STG corresponds to an entry in the state table.  

 
Figure 2-1 State transition graph for the FSM “bbara” 

 
The states of the STG are labeled with the unique symbolic state names, 

whereas the edges are labeled with the corresponding inputs and outputs values.  
The state table is simply the list of edges of the STG. An example of STT 

for the FSM “bbara” is presented in Table 2-1. 
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Table 2-1 State transition table for the FSM “bbara”  
№ Present state Input Next state 
1 st0 ¬x3x4∨x3¬x4∨¬x3¬x4∨¬x1¬x2x3x4 st0 
2  x2x3x4 st1 
3  x1¬x2x3x4 st4 
4 st1 ¬x3x4∨x3¬x4∨¬x3¬x4 st1 
5  ¬x1¬x2x3x4 st0 
6  x2x3x4 st2 
7  x1¬x2x3x4 st4 
8 st2 ¬x3x4∨x3¬x4∨¬x3¬x4 st2 
9  ¬x1¬x2x3x4 st1 

10  x2x3x4 st3 
11  x1¬x2x3x4 st4 
12 st3 ¬x3x4∨x3¬x4∨¬x3¬x4∨x2x3x4 st3 
13  ¬x1¬x2x3x4 st7 
14  x1¬x2x3x4 st4 
15 st4 ¬x3x4∨x3¬x4∨¬x3¬x4 st4 
16  ¬x1¬x2x3x4 st0 
17  x2x3x4 st1 
18  x1¬x2x3x4 st5 
19 st5 ¬x3x4∨x3¬x4∨¬x3¬x4 st5 
20  ¬x1¬x2x3x4 st4 
21  x2x3x4 st1 
22  x1¬x2x3x4 st6 
23 st6 ¬x3x4∨x3¬x4∨¬x3¬x4∨x1¬x2x3x4 st6 
24  ¬x1¬x2x3x4 st7 
25  x2x3x4 st1 
26 st7 ¬x3x4∨x3¬x4∨¬x3¬x4 st7 
27  ¬x1¬x2x3x4 st8 
28  x2x3x4 st1 
29  x1¬x2x3x4 st4 
30 st8 ¬x3x4∨x3¬x4∨¬x3¬x4 st8 
31  ¬x1¬x2x3x4 st9 
32  x2x3x4 st1 
33  x1¬x2x3x4 st4 
34 st9 ¬x3x4∨x3¬x4∨¬x3¬x4 st9 
35  ¬x1¬x2x3x4 st0 
36  x2x3x4 st1 
37  x1¬x2x3x4 st4 

 
Notice that both the STG and the STT completely define the input-output 

behavior of the FSM, but they do not provide any information regarding the 
circuit implementation. In that sense, STG and STT can be considered as 
behavioral representation of an FSM. 
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2.2 Basic algebraic structure theory concepts 
In the early sixties Hartmanis was one of the first to work on an 

algebraization of the notion of logical or functional dependences in an FSM. His 
“Algebraic Structure Theory of Sequential Machines” [28] presented 
fundamental tools for describing two concepts, namely, “information” and 
“information dependence”. The importance of this theory lies in the fact that it 
provides a direct link between algebraic relationships and physical realizations 
of machines. The formal techniques are very closely related to modern algebra. 
It has an abstract beauty combined with the challenge of physical interpretation 
and application. It falls squarely in the interdisciplinary area of applied algebra, 
which is a part of engineering mathematics. 

 
Partitions and partition pair algebra 

We regard a partition on a finite set as an instrument for analyzing this 
set.  

Definition 2.3 A partition π on S is a collection of disjoint nonempty 
subsets of S whose set union is S, i.e. π=(Ba) such that Ba∩Bb=∅ for a≠b and 
∪(Ba)=S. We refer to the sets of π as blocks of π and designate the block which 
contains s by Bπ(s). 

Otherwise a set π of subsets of S, is a partition of S if  
- No element of π is empty; 
- The union of the elements of π is equal to S; 
- The intersection of any two elements of π is empty (the elements of π 

are pair-wise disjoint) 
Hence, a partition on a finite set can be interpreted as an algebraic form 

of the notion of information. According to this interpretation, the zero partition 
contains maximum information while the unit partition contains minimum 
information about the set.  

The notion of partition is the particular case of the notion of cover: a 
cover ϕ of a set S is a collection of subsets B of S whose union is S. More 
generally, if B⊆S and ϕ  is a collection of subsets of S whose union contains B, 
then ϕ  is said to be a cover of S. 

Now we describe how partitions on a set can be “multiplied” and 
“added”. These operations and the subsequently defined ordering of partitions 
play a central role in the structure theory of sequential machines and form a 
basic link between machine concepts and algebra.  

If π1 and π2 are partitions on S, then: 
First, π1⋅π2 is the partition on S such that s≡t(π1⋅π2) if and only if s≡t(π1) 

and s≡t(π2). 
Second, π1+π2 is the partition on S such that s≡t(π1+π2) if and only if there 

exists a sequence in S s=s0, s1, …, sn=t for which either si≡si+1(π1) or si≡si+1(π2), 
10 −≤≤ ni .  
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The basic research object in structure theory of sequential machines is a 
partition pair [48]. To study of machine structure is begun in following 
definition with a formal notion of concept “information dependence”. 

Definition 2.4 A partition pair (π, π’) on the machine A=(S,I,O,δ,λ) is an 
ordered pair of partitions on S such that s≡t(π) implies δ(s, x)≡δ(t, x)(π’) for all 
x in I.  

Thus (π, π’) is a partition pair (p.p.) on S if and only if the blocks of π are 
mapped into the blocks of π’ by S. That is, for every x in I and Bπ in π, there 
exists a Bπ’ in π’ such that δ(Bπ, x)⊆Bπ’. 

The concept of partition pairs based on the idea, that the first partition in 
a pair has enough information to calculate the second one. 

Next we determine for a given partition π, which partitions π’ can be 
used to make a partition pair (π, π’) on S. 

Definition 2.5 If π is a partition on S of A, let m(π)=∏(πi|(π, πi) is a p.p. 
on A) and M(π)=Σ(πi|(πi, π) is a p.p. on A). 

Informally speaking, for a given partitionπ, the partition m(π) describes 
the largest amount of information which we can compute about the next state of 
A knowing only π (i.e. the block of π which contains the present state of A). 
Similarly, for a given partition π’, the partition M(π’) describes the least amount 
of information we must have about the present state of A to compute π’ for the 
next state.  

 
Partition pairs and a component machine 

Partitioning methods allow transforming a source FSM into a set of 
smaller interconnecting and interacting machines. Let consider a circuit C with 
m flip-flops, i.e., there are m state variables of the set of states S in the FSM, A, 
associated to C, the entire state space for machine A is Sm. Each state variable 
corresponds to a coordinate vector of this Boolean m-space. And let πi a state 
partition of A is a partition of S. Each component of the state partition 
represents a Boolean subspace consisting of the coordinate vectors 
corresponding to the state variables in the partition component.   

Each block of the state partition πi identify a set of components of the 
next state function. This set of components can be seen as the next state 
function of a sub-FSM of the given machine.  

Let πi be the state partition inducting state decomposition on machine A. 
For each πi, there is an associated FSM, Ai=(Si,Iiδi) where δi is the partitioned 
next state function.  

Definition 2.6 A component machine is a triple A=(S,I,δ): 
 S=(s1, s2, …, sM) is a set of the component machines states; 
 I=(x1, x2, …, xL) is a set of primary input symbolic variables of the 

component; 
 δ: D(δ)→S is a multiple valued next state function for component with 

domain D(δ)=D1×…×DL×S and co-domain S. Here, Di represents a set 
of values each xi may assume.  
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The set (Ai | i∈I=(1, …, n)) of all the component machines Ai represents the 
decomposed FSM network obtained from the original machine A when its set of 
states is decomposed according of πi. 

Definition 2.7 A FSM network we treat as a system N=(SN,IN,ON,δN,λN), 
where: 

 SN={Ai=(Si,Iiδi)|i={1, … ,n}} is a set of state machines referred to as 
component machines; 

 IN  is a set of network external inputs; 
 ON  is a set of network external variables; 
 δN: (×Sj)×IN→Ii nji ≤≤ ,1 – machine connecting rules; 
 λN: (×Si)×IN→O – network output function. 
 
As mentioned above, on the set of states S of the source original FSM A 

we chose a state partitions πi. Next we define some information partitions which 
are induced on A by a network that defines A. These “associated” partitions on 
A may be thought of as a global characterization (on A) of the information used 
and computed in a component machine of network. It is natural correspondence 
between local and global properties that allows us to approach the structure of 
machines with partition pair algebra.  

For each component machine can be separated two partition pairs. The 
partition pair I-S determines the dependence between external input of the 
network and state of the component machine. The pair S-S reflects the 
dependence between previous and next states of the component. Partitions π(S) 
and τ(S) are partitions on the set of states and η(X) is a partition on the set of 
inputs for all x∈X and for all s∈S. The equivalencies specifying τ(S) and η(X) 
are: ( ) ( ) ( )( )πδδτ xtxsts ,, ≡↔≡  and ( ) ( ) ( )( )πδδη bsasba ,, ≡↔≡ . 
According to [28] these pairs form pair algebras associated with the component 
machine.  

Suppose that the state behavior of a machine A is realized by network and 
suppose that s=α(s1, s2, …, sn) and t=α(t1, t2, …, tn) are states of A; a and b are 
inputs to A, than let  

( )its π≡ if and only if si=ti; 
( )jits ,ρ≡  if and only if fi,j(si)=fi,j(ti); 

( )iba μ≡  if and only if fi,j(i(a))=fi,j(i(b)). 

 
Figure 2-2 Associated partitions for the component 
machine Ai 
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Main conditions of decomposition of an FSM 
It is not an overstatement to tell that the decomposition task is one of the 

most intricate and actual problem at complex discrete devices synthesis. 
Commonly, the FSM decomposition task is representing of an original FSM as 
its network realization. It means that, we construct such network of 
interconnecting and interacting component machine that it must realizes the 
work of an original FSM. As mathematical tool for do this we chose partition 
pair algebra. In our opinion it is expedient algebraic system for research of FSM 
structural properties. The basic element of the theory is partition which can be 
interpreted as a measure or equivalent of information the source set. Thus, 
character of possible FSM partitions is caused by properties of partitions on the 
set of states of the original FSM. In other words, the process of finding a good 
decomposition of the original machine into set of component machines can be 
called machine partitioning [28].   

There, we should emphasize that at the decision of practical problems we 
are not satisfied with any machine partitioning. Depending on conditions of the 
given task, on construction of a network various additional conditions are 
imposed. Moreover, the decomposition approach can be widely used to 
investigate all kinds of internal functional dependences of an FSM. As 
frameworks of this work do not assume of search of effective decomposition, 
then we consider necessary and sufficient condition for existence of FSM 
decomposition in general. 

Next, we present a fundamental theorem of machine decomposition. 
Given a machine A=(S,I,O,δ,λ) and partitions πi and ρi,j on S and μi on I 

for 1≤i,j≤n; then there exists a network such that realizes the state behavior of A, 
and πi, ρi,j, μi are associated partitions on A if and only if the following 
conditions hold: 

( )iSS
i

iji M πρπ −≤∏ ,  for all i; 

( )iSIi M πμ −≤  for all i; 

iji πρ ≥, for all i and j; 

0=∏
i

iπ . 

This theorem show that a network can be built to certain specifications on 
what information is to be stored where and what carry information is to be used 
in computing states. Additional associated partition can be defined to study 
carries to output logic.   

Summarizing, the main condition of general FSM decomposition is 
equality to zero partition (zero partition is the partition whose elements are the 
singleton subsets of the set) of product of all selected partitions on the set of the 
states of the FSM. These partitions are called complete set of partitions. From 
informational point of view, while a partition on the set of states of a source 
FSM is some measure of information about corresponding component sub-
FSM, the zero partition on the set of states of decomposed FSM contains 
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complete information about it. Partitions ρi,j are additional information 
partitions for partitions πi, which represent the flows of information from other 
component machines. Thus, component sub-FSM Ai receives information flow 
from itself, which is illustrated by partition πi and from other component 
machines, which is illustrated by product of partitions∏

j
jiρ .  The problem of 

search suitable partitions ρi,j rests on the state assignment problem of network 
[28]. It is well known that the selection of binary codes to represent the internal 
states of the machine is one of the central problems in the physical realization of 
sequential machines.  

Partition MS-S(πi) describes amount of information we must have about 
the present state of Ai to compute πi for the next state. In other words, amount of 
information received by the given machine from itself and from other machines 
should be sufficient to compute the next state. In this way, the first and the third 
conditions of main decomposition theorem are executed. The second condition 
can be interpreted as follows. Partition μi illustrates how much information from 
input need to work of component FSM Ai.  

 
Partitions search problem 

Two products C and C’ are in the relations of consensus (C con C’) if and 
only in they have opposite values (0 and 1) exactly in one bound component. 
Two covers ϕ1 and ϕ2 are in consensus if and only if there are C∈ϕ1 and C’∈ϕ2 
which are in consensus [14]. 

For every x∈I we define such symmetric binary relation ω on S that spωsq 
(p≠q) if and only if for some sr exist α-transitions (sr,sp,αrp) and (sr,sq,αrq) such 
that correspondent input conditions αrp and αrq are in consensus [68]. As a 
result of transitive closure operations of relation ω we will receive symmetric 
and transitive relation on S which we represent as partition with don’t care 
(PDC) [28] and call primary αi-partition on S. 

If x∈I, than αi(x) is PDC on S such, that si∼sj(αi(x)) means that transitions 
from state si to state sj are the same if input variable x is masked (si and sj are 
“indistinguishable” by the input channel x). 

For every PDC τ we put in accordance partition π∈G(τ), which defines 
component machine Ai in the network N. The number of states of component 
machines is equal to the number of blocks in corresponding partition π [35]. 

Let is the sum α(I) (the least upper bound) of all α-partitions αi(x) such 
that x∈I and Ai is a component FSM which is constructed in accordance with 
some partition from G(α(I)) than behavior of Ai does not depend on all prime 
inputs of network from I if and only if π≥α(I) . 
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333   STATE ENCODING FOR A LOW POWER FSM 

3.1 Introduction 
In the “Future of Logic Synthesis and Verification” [27] Brayton predicts 

that in future most sequential synthesis methods will not be used for two 
reasons. First reason, in his opinion, is that only relatively small designs can be 
handled. Second, sequential synthesis will not be used because it is hard to 
verify if the changed design matches the original. He writes in one of his 
challenge: “it is known how to drive, for a node in a network of interacting 
FSMs, the set of all permissible behaviours that can be placed at the node 
without changing the functionality of the network. However, that is very 
expensive computation in additions; the method gives all possible solutions, and 
the next task to drive a good one. This is also an expensive computation. In 
many situations, there already exists a (particular) solution. Thus instead of 
finding all possible solutions, operate directly on the particular one to find a 
good one. This may circumvent both of the computationally expensive tasks 
mentioned above…” 

Despite of such pessimistic prediction this work tries to defence 
sequential synthesis methods targeting the reduction of power dissipation. 
Power can be minimized by appropriate synthesis of logic. The goal in this case 
is to minimize the switched capacitance of the circuit by low power driven logic 
minimization techniques [1]. 

State Encoding is one of the traditional techniques for sequential logic 
synthesis for low power. Synthesis of sequential circuits for low power is an 
area of research that promises to result in large power savings. The step that 
translates a representation where some variables are symbolic into one where 
they are all binary-valued is called encoding. An encoding must at least be 
correct, which means that the encoded representation must behave as the 
symbolic representation (usually an encoding must establish an injection from 
symbols to codes); but more interestingly, it is often required that the encoded 
implementation satisfies some further condition or optimality criteria.  

Encoding plays an important role in determining the structure and 
complexity of the resulting FSM in terms of the number of nodes required to 
implement the output and next logic. Encoding also affects the switching 
activity of the state variables and hence the internal signals in the circuit [66]. 

Classically, the problem of the encoding of an FSM which arises during 
the design of controllers is formulated as that of obtaining a binary code for 
each state of the FSM so that given design criteria are optimized. Typical design 
constrains are the construction if the circuit with a minimal amount of logic or 
that the circuit can be easily testable, or it consumes low power [75]. Recently 
reduced power consumption has become a critical design parameter because of 
several well known reasons [57] and synthesis algorithms as well as design 
techniques targeted towards low power have been developed at different levels 
[14]. 
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Concerning encoding aiming low power, research was targeted to reduce 
switching activity in the state registers. Codes should be given such that the 
Hamming distance of the codes of those states with a high transition probability 
of a transition between them is minimized. Reducing the switching activity of 
state bits contributes to reduce the dynamic power dissipation of the state 
register and in CMOS circuits the major contributor to power consumption is 
dynamic power. 

The dynamic power dissipation in the combinational part of the circuit is 
very difficult to estimate, even after the state encoding is determined [55]. At 
the beginning there are already several different realizations to choose from, 
depending on what kind of technology will be used. Later, when the gate level 
implementation is known, the exact computation of the dynamic power 
dissipation including glitches is often intractable, since it requires the 
examination of all possible pairs of input patterns of the combinational logic. 

In CMOS circuits, power is consumed during charging and discharging of 
the load capacitances. Average power dissipation is proportional to the average 
switching activity [6]. A good approximation of the average switching activity 
is the switching probability. In order to estimate the power consumption the 
signal and transition probabilities are calculated [49], [66]. 

These probabilities depend on the input patterns, the delay model, and the 
circuit structure. Given the input switching probability, it is possible to calculate 
the probability of the state transitions in an FSM. 

Power and switching activity estimation for sequential circuits are 
significantly more difficult, because the probability of the circuit being in any of 
its possible states has to be computed. Given a circuit with n flip-flops there are 
2n possible states. At any given instant, the probability that the circuit is in a 
particular state can be distinct across all the states. 

To compute the exact state probabilities of the machine we use the 
Chapmann Kolmogorov equations for discrete-time Markov Chains [41]. The 
method requires the solution of a linear system of equations of size 2n, where n 
is the number of flip-flops in a machine.  

The main idea of this chapter is to present an approach to optimize the 
state encoding for low power embedded controllers, given the probabilistic 
model of the FSM. If we press for a general solution, we need to find a method 
that does not assume a particular STG structure and is not heavily constrained 
on the number of state variables to use. Thus we use the probabilistic model of 
an FSM to obtain state assignments that minimize the average number of signal 
transitions on the state lines for a general STG. 
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3.2 A new state encoding technique 
3.2.1 Problem statement 

In this section we introduce a new FSM state encoding technique. The 
problem of FSM state encoding can be formulated by the following way. For 
the given FSM={I, S, O, δ, λ} an encoding is a process of assigning to each 
value of a symbolic variable {S} a unique combination of values of a set of 
logic variables defined on {0,1}k [14]. 

Given the set of symbols S=(s1, s2, …, sn) for an FSM a state encoding is 
given by an integer k and an injective functions e: S→{0,1}k.  

 
Encoding Matrix 

The codes of the symbols are represented by a Boolean state encoding 
matrix kSBE ×∈  with n rows presenting state codes and k columns 
corresponding to state variables, the umber of which is the unknown of the 
problem. Each row of E is the encoding of a symbol.  

An important degree of freedom to be exploited during the state encoding 
of an FSM is the choice of the number of state variables, k. To have enough 
codes, it is necessary that ⎡ ⎤ Skk ≤≤2log , where |S| is the cardinality of S. 

The classical combinatorial problem is search for the FSM encoding with 
minimum code length k→min. The strategy of most power-driven state 
encoding algorithms consists of introducing the minimum possible number of 
state bits k to minimize the corresponding number of registers [14]. 

As an example, for the FSM “bbtas” from [48] an arbitrary state encoding 
matrix E is presented in the Table 3-1. 

Table 3-1 Arbitrary state encoding matrix for the FSM “bbtas” 
states codes 

st0 001 
st1 011 
st2 111 
st3 110 
st4 100 
st5 000 

 
 

STG Representation 
FSM state encoding problem can be described as a process of embedding 

codes of states of an FSM into a complete Boolean graph. 
An undirected graph G(V, E) is a pair (V, E), where V={v1, v2, …, vn} is 

a set of vertices and E={e1, e2, …, em} is a set of edges (unordered pairs from 
V). It presents a binary relation on V. 

For the FSM “bbtas” the undirected graph is presented on the Figure 3-1. 
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Figure 3-1 Undirected graph for the FSM “bbtas” 

A symmetric Boolean graph where vertices correspond to Boolean space 
elements and edges connect adjacent vertices is a complete Boolean graph [92]. 

On the Figure 3-2 the complete Boolean graph for 3-dimension Boolean 
space is depicted. 

 
Figure 3-2 Complete Boolean graph for 3-dimension Boolean space 

 
Matrix Representation 

Below we present a matrix description of an FSM given by STG [19], 
[93]. 

The incidence matrix of an undirected graph G is an n×m matrix [bij] 
where n and m are the number of vertices and edges respectively, such that aij=1 
if the vertex vi and edge eij are incident and 0 otherwise. 

The incidence matrix is related to the adjacency matrix of a graph. 
The adjacency matrix for a finite undirected graph G on n vertices is an 

n×n Boolean matrix where the entry aij=1 if and only if there exists an edge 
joining vertex i and vertex j. The adjacency matrix of an undirected graph is 
symmetric. 

The degree, dG(vi) of a vertex vi in a graph G is the number of edges 
incident to vi. 

The matrix description: the incidence matrix and adjacency matrix 
corresponding to the FSM “bbtas” are presented in the Table 3-2. 

 
Table 3-2 Adjacency and incidence matrices for the FSM “bbtas” 

vi\vi st0 st1 st3 st4 st5 d(vi)  vi\ei 0 
1 

1 
2 

2 
3 

3 
4 

4 
5 

0 
5 

st0  1   1 2  st0 1     1 
st1 1  1   2  st1 1 1     
st2  1  1  2  st2  1 1    
st3   1  1 2  st3   1 1   
st4    1  2  st4    1 1  
st5 1    1 2  st5     1 1 

000

100

010 

001

110

101

011

111

st1 st2

st0

st5 st4

st3
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The set of neighbors, called a (open) neighborhood NG(vi) for a vertex vi 
in a graph G, consists of all vertices adjacent to vi but not including vi. When vi 
is also included, it is called a closed neighborhood, denoted by NG[vi]. 

 
Optimization & Cost Functions 

An encoding is a typical logic synthesis procedure which includes FSM 
restructuring to obtain a logic description that can be mapped optimally into a 
target technology. Often optimization is done first independent from 
technology. Optimization depends not only on the target technology, but also on 
the cost functions: besides area, speed and power consumption are growing 
importance [41].  

The state encoding problem is an optimization problem whose solution 
can be measured in terms of a cost function and such that the cost functions 
attains a minimum value.  

In general, in the coding theory [75] the following three properties of a 
code are analyzed: code length, total number of valid codes and the minimum 
Hamming distance between two adjacent codes. We consider an encoding cost 
function based on the third parameter, the minimum Hamming distance between 
two adjacent codes ci and cj: 

An encoding cost function O is ( )∑=
ji

ji ccHO
,

, . 

 The Hamming distance is the number of positions in two strings of equal 
length for which the corresponding elements are different. Put another way, it 
measures the number of substitutions required to change one for the other. 

Attention has also been paid for FSM state encoding for low power. A 
power-oriented cost function accounts for the minimization of the number of 
logic transitions of the state registers between two successive clock cycles, 
assuming the power consumption is proportional to the switching activity on the 
state bit lines of the machine [66]. The minimization of the register transitions 
has to be combined with an appropriate implementation of the combinational 
logic for obtaining a global power saving, so the state encoding can be the 
starting point for further power optimization of the combinational part. 

The cost function consider the sum of the Hamming distances H(ci,cj) 
between the codes ci, cj being assigned to all pairs of states si, sj among which a 
transition can occur [42].  

A power-oriented cost function Opower is ( )∑ ⋅=
ji

jijipower ccHwO
,

, , , 

where wi,j is a weight of transition between states si and sj. 
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Graph Weighing 
To compute wi,j we use the probabilistic model of an FSM described 

below.  
Given the FSM description and the input probabilities, we estimate the 

transition probabilities for each edge in the STG, by modeling the FSM as a 
Markov chain. The input probability distribution can be obtained by simulating 
the FSM at a higher level of abstraction in the context of its environment or by 
direct knowledge from the designer [6]. 

An FSM is described by an STG defined by a vertex (state) set S={s1, s2, 
.., sn} and a related directed edge set representing the set of transitions from one 
state to another. The STG of the FSM “bbtas” with six states and two inputs is 
presented on the Figure 3-3. The “-“symbol represents don’t care entry. 

 
Figure 3-3 Directed STG for the FSM “bbtas” 

We use information about probabilities to compute a static probabilistic 
model of the FSM which will give the transition probabilities for the FSM. We 
do this by interpreting the STG as a Markov chain. A Markov chain is a 
representation of a finite Markov process, a stochastic model where the 
probability distribution at any time depends only on the present state and do not 
on how the process arrived in that state [45]. The Markov chain model for the 
STG can be described by a directed graph with a structure isomorphic to the 
STG and with weighted edges. For a transition from state si to state sj, the 
weight pi,j on the corresponding edge represents the conditional probability of 
the transition (i.e., the probability of a transition to state sj given that the 
machine was in state si). Symbolically this can be expressed as: 
pi,j=prob(next=si|present=sj). The edges with zero conditional probability are 
never drawn in the graph representation of the Markov chain. 

The conditional transition probabilities assuming equiprobable and 
independent input signals for the FSM “bbtas” are presented on the Figure 3-4. 

st1 st2 

st0 

st5 st4 

st3 

00 

01 
1- 

00 

01 
1- 

00 

01 
1- 

00 

01 
1- 00 

01 
1- 

01 
1- 

00 
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Figure 3-4 Conditional probability distribution for the FSM “bbtas” 

 
The set of values of all condition probabilities is called the conditional 

probability distribution. The conditional probability distribution is easily found 
from the input probability distribution and by observing for which input 
configurations the FSM performs its state transitions [9], [25]. 

Conditional transition probabilities are used as a rough approximation to 
the transition probabilities [6]. We need to calculate the probability of a 
transition taking the present state into account. These probabilities are called 
total transition probabilities, Pi,j, and can be calculated from the state 
probabilities, where the state probability, Pi represents the probability that the 
machine is in a given state si [43]: Pi,j=pi,j⋅Pi. 

The next step is computation the state probabilities. These values are not 
time-dependent [6]. This implies that as the observation time increases, the 
probability that the machine is in each of its states converges to a constant 
(stationary) set of real numbers. In other words, we receive a steady state 
probability vector vect whose elements are stationary state probabilities.  

We do not discuss in the current work such STG’s for which the 
stationary state probabilities do not exist and refer readers for more information 
to [45]. 

Let P be the conditional transition probability matrix whose entries pi;j 
are the conditional transition probabilities, and vect the steady state probability 
vector whose components are the state probabilities Pi. Then we compute the 
steady state probabilities by solving the system of n+1 Chapman Kolmogorov 

equations [6], [45]: vectT⋅P=vectT, ∑
=

=
n

i
iP

1
1. 

The stationary state probabilities calculated solving the system above for 
the FSM “bbtas” are shown in Figure 3-5. The Figure shows the total transition 
probabilities (the products pi,j⋅Pi) on the edges. Note that the probabilities for 
self-loops (P0,0=0.029, P3,3=0.176, P4,4=0.176, P5,5=0.176) are not shown only 
because we are not interested in edge that do not imply any state transition. 

st1 st2 

st0 

st st4 

st3 p0,0=1/4 

p0,1=3/4 
p1,2=3/4 

p2,3=3/4 

p3,3=3/4 

p4,4=3/4 p5,5=3/4 

p1,0=1/4 p2,1=1/4 

p3,4=1/4 p5,0=1/4 

p4,5=1/4 
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Figure 3-5 State probabilities and total transition 
probabilities for the FSM “bbtas” 

Once the total transition probabilities have been calculated, we transform 
the original STG into a weighted graph which preserves only the relevant 
information needed for state encoding. All the unreachable states and self-loops 
are eliminated from the graph. The STG is transformed into an undirected graph 
by converting all multiple-directed edges into a single undirected edge. 

The weighted STG will be the starting point for the power-oriented state 
encoding algorithm. For the FSM “bbtas” the weighted STG is shown on the 
Figure 3-6. 

 
Figure 3-6 Weighted graph for the FSM “bbtas” 
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3.2.2 Weakly crossed edge cuts encoding algorithm 
The main idea of our approach is an economical covering of the set of 

transitions by weakly crossed edge cuts. To form such edge cuts we construct a 
set of two blocks partitions called as encoding partitions on the set of states of 
an FSM. The number of encoding partitions corresponds to the code length. We 
consider the minimum number of state variables to find a set of distinct codes. 

 
Necessary definitions 

Definition 3.1 An encoding partition π on S is a collection 
( ) ( ){ }sBsB 01 ,=π of two disjoint subsets B1∩B0=∅ of S whose set union is S: 

B1∪B0=S (B1 is the unit block and B0 is the zero block).  
 
Note that we mark out two notions of a decision of FSM state encoding 

problem. The encoding e which has been received during applying of an 
encoding algorithm is called as received encoding. A perfect encoding (or ideal 
encoding) is an encoding such that the sum of Hamming distances between two 
adjacent states is equal to the number of all transitions of FSM. In other words, 
the perfect encoding is the encoding where the Hamming distance between two 
adjacent states is equal to 1. 

 
Definition 3.2 A transition between states si and sj with Hamming 

distances H(ci,cj) between the codes ci, cj more than 1 is called complicated 
transition. 

 
Definition 3.3 An additional switching that is necessary to be done to 

change state variable besides required switching (single state variable change) is 
called redundant switching. 

 
Next we introduce an evaluation to estimate the efficiency of received 

encoding. 
Definition 3.4 A summary defect of an encoding e is defined by a number 

of complicated transitions and the sum of their redundant switching. 
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Heuristic algorithm 
The STG representation of an initial FSM is given: (G(V, E)), V=(v1, v2, 

…, vn) – set of vertices and E=(e1, e2, …, em) – set of edges.  
Preliminary step 

 The adjacency and the incidence matrices are constructed. 
Example: we illustrate how our encoding algorithm works on the FSM 

“bbara” [48]. The undirected graph for the FSM “bbara” is depicted on the 
Figure 3-7. Table 3-3 and Table 3-4 are presented the adjacency and incidence 
matrices for the considered FSM. 

 

 
Figure 3-7 Undirected graph for the FSM “bbara” 
Table 3-3 Adjacency matrix for the FSM “bbara” 

vi\vi 0 1 2 3 4 5 6 7 8 9 d(vi) 
0  1   1     1 3 
1 1  1  1 1 1 1 1 1 8 
2  1  1 1      3 
3   1  1   1   3 
4 1 1 1 1  1  1 1 1 8 
5  1   1  1    3 
6  1    1  1   3 
7  1  1 1  1  1  5 
8  1   1   1  1 4 
9 1 1   1    1  4 

Table 3-4 Incidence matrix for the FSM “bbara” 

v i\
e i,

j 

0-
1 

0-
4 

0-
9 

1-
2 

1-
4 

1-
5 

1-
6 

1-
7 

1-
8 

1-
9 

2-
3 

2-
4 

3-
4 

3-
7 

4-
5 

4-
7 

4-
8 

4-
9 

5-
6 

6-
7 

7-
8 

0 1 1 1                   
1 1   1 1 1 1 1 1 1            
2    1       1 1          
3           1  1 1        
4  1   1       1 1  1 1 1 1    
5      1         1    1   
6       1            1 1  
7        1      1  1    1 1 
8         1        1    1 

st0 st1 st2 

st9 

st4 
st5 st8 

st7 st6 

st3 
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The algorithm constructs a set of encoding partitions. The number of 
encoding partitions is equal to k=⎡log2n⎤, where n is a number of vertices in 
STG and k is a code length. Each encoding partition πr consists of two blocks: 
the unit and the zero blocks which are represented by variable sets B1

r and B0
r 

respectively, kr ≤≤1 .  
 
First Step  
 A partition π∏ on the set of states S of the machine is equal to unit 

partition π∏=πI (unit partition is the partition where all elements of S are 
in one block, π∏=πI={s1, s2, …, sn}). 

 The sets B1
r and B0

r are empty at the beginning, i. e. B1
0=∅ and B0

0=∅. 
 A vertex vi with maximal d(vi) from the adjacency matrix is selected as 

a starting point.  
 Selected vertex vi is placed in the set B1

1={vi}.  
 
The procedure of calculation the edge cut weight increment γ1(B1

r, vc) 
by adding vertex vc to the set B1

r 
For each undistributed vertices vc this increment of the set B1

r is 
calculated by the following way:  

γ1(B1
r,vc)=d(vc)-2|N’(vc)| (3) 

where d(vc) is the degree of the vertex vc and N’(vc) is the set of neighbors 
for the vertex vc, which consists of all vertices from the set B1

r adjacent to vc. 
From the degree of the vertex vc we subtract the double number of its neighbors.  

A cardinality of an edge cut is the number of edges which has been cut. 
The increment γ1(B1

r,vc) allow observing on the cardinality of constructed edge 
cut.  

By using the adjacency matrix the first vertex vc with the minimal 
increment is selected. The selected vertex vc is added to the set B1

r, so it 
becomes equal to {vi, vc}.  

Usually the procedure of calculation of the increment by adding vertex vc 
to the set B1

r, choosing the best vertex and extending the set B1
r repeats until a 

cardinality of B1
r reaches  approximately the half of a cardinality of V. 

However, as it was mentioned above, we observe on the cardinality of 
constructed edge cut with aim to minimize it. If adding of the next vertex 
increases a cardinality of constructed edge we do not add this vertex to the 
considered set. 

The vertex vc in the set B1
r is also checked on a nearness to the set B0

r in 
case if this set is not empty: γ0(B0

r,vc)=d(vc)-2|N’’(vc)|, is the increment by 
adding vertex vc to the set B0

r, d(vc) is the degree of the vertex vc and N’’(vc) is 
the set of neighbors for the vertex vc, which consists of all vertices from the set 
B0

r adjacent to vc.  
If the vertex vc has the same increment γ1(B1

r,vc)=γ0(B0
r,vc) for both sets 

B1
r and B0

r, we place this vertex to such set B1
r or B0

r that minimizes the 
cardinality of constructed edge cut. 
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An encoding partition πr has the unit block equal to the set B1
r and the 

zero block equal to the set B0
r. From the incidence matrix all rows which 

correspond to the vertices of the set B0
r are deleted. The rest rows (rows which 

correspond to the vertices of the set B1
r) are summed component-wise by 

modulo two. The set of edges marked with 1 in the resulting Boolean vector 
form the edge cut of the encoding partition πr. 

 
Example, π∏=πI={st0, st1, st2, st3, st4, st5, st6, st7, st8, st9}; 
B1

1=B0
1=∅; selected vertex v1, d(v1)=8; B1

1={v1}, |EC| –  the cardinality 
of the edge cut. 
Using (3) vertex v0 with minimal increment, 1 (column γ1

1 in Table 3-5: 
d(v0)=3, N’(v0)=1 and hence γ1

1(v0)=3-2⋅1=1) is selected; B1
1={v1,v0}.  

Then we calculate the increment to the set B1
1 for all rest vertices. Next 

we select the vertex v9 with the increment γ1
0(v9)=4-2⋅2=0, B1

1={v1,v0,v9} and 
then the vertex v8 with the increment γ1

9(v8)=4-2⋅2=0, B1
1={v1,v0,v9,v8}. The 

next appropriate vertex to add to the set B1
1 is vertex v6 with the increment 

γ1
8(v6)=3-2⋅2=-1, but we need to check this vertex on the increment to the set 

B0
1={v2,v3,v4,v5,v7}: γ0

6(v6)=3-2⋅2=-1. The cardinality of the set B1
1 is equal to 

|B1
1|=9, if we add the vertex v6 to the set B1

1 the cardinality of the set 
B1

1={v1,v0,v9,v8,v6} will be equal to |B1
1|=10. Thus, we do not add the vertex v6 

to the set B1
1. 

π1={{st0,st1,st8,st9};{st2,st3,st4,st5,st6,st7}} 
Table 3-5 Construction of the first encoding partition for the FSM “bbara” 

vi\vi 0 1 2 3 4 5 6 7 8 9 d(vi) γ1
1 γ1

0 γ1
9 γ1

8 γ0
6 

0  1   1     1 3 1     
2  1  1 1      3 1 1 1   
3   1  1    1  3 3 3 3   
4 1 1 1 1  1  1 1 1 8 6 4 2   
5  1   1  1    3 1 1 1   
6  1    1   1  3 1 1 1 -1 -1 
7  1  1 1  1 1   5 3 3 3   
8  1   1    1 1 4 2 2 0   
9 1 1   1   1  0 4 2 0    

B1
1           1 0 9 8   

B0
1              2,3,4,5,7 6  

|EC|           8 9 9 9   
 

Table 3-6 First edge cut for the FSM “bbara”  
vi\ei,

j 
0 
1 

0 
4 

0 
9 

1 
2 

1 
4 

1 
5 

1 
6 

1 
7 

1 
8 

1 
9 

2 
3 

2 
4 

3 
4 

3 
7 

4 
5 

4 
7 

4 
8 

4 
9 

5 
6 

6 
7 

7 
8 

8 
9 

1 1   1 1 1 1 1 1 1             
0 1 1 1                    
9   1       1        1    1 
8         1        1    1 1 
  1  1 1 1 1 1         1 1   1  
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Next Steps 

 The construction of the next encoding partition, r=r+1. 
 The partition π∏ is equal to π∏=π∏×πr. 
 Select an arbitrary edge (vi, vj) from the previous edge cut. 
 Set B1

k={vi, vj}. 
 Repeat until kr ≤ . 

 
Example, construction of the second encoding partition, r=2; π∏={{st0, 

st1, st8, st9};{st2, st3, st4, st5, st6, st7}}; an arbitrary edge from the first edge 
cut (v7,v8); B1

2={v7,v8}, Table 3-7. 
The vertices v3 and v6 have the same increment γ1

7,8(v3/v6)=3-2⋅1=1, the 
vertex v3 is added to the set B1

2={v7,v8,v3}. The column γ1
3 demonstrates the 

increment of all rest vertices to the set B1
2. The vertices v2 and v6 have also the 

same increment γ1
3(v2/v6)=3-2⋅1=1, vertices v6 is added to the set 

B1
2={v7,v8,v3,v6}. B0

2={v2,v4,v5} because the second block of partition π∏ is 
blocked. γ1

6(v1)=8-2⋅3=2 and γ1
6(v9)=4-2⋅1=2 we check these vertices on the 

increment to the set B0
2={v2,v4,v5}: γ0

1(v1)=8-2⋅3=2 and γ0
1(v9)=4-2⋅1=2. The 

vertex v1 is added to the set B1
2={v7,v8,v3,v6,v1}. 

π2={{st1,st3,st6,st7,st8};{st0,st2,st4,st5,st9}} 
Table 3-7 Construction of the second encoding partition for the FSM 
“bbara”  

vi\vi 0 1 2 3 4 5 6 7 8 9 d(vi) γ1
7,8 γ1

3 γ1
6 γ0

1 
0  1   1     1 3 3 3 3  
1 1  1  1 1 1 1 1 1 8 4 4 2 2 
2  1  1 1      3 3 1   
3   1  1   1   3 1    
4 1 1 1 1  1  1 1 1 8 4 2   
5  1   1  1    3 3 3   
6  1    1  1   3 1 1   
9 1 1   1    1  4 2 2 2 2 

B1
2           7,8 3 6 1  

B0
2             2,4,5 0,9  

|EC|           7 8 9 11  
 

Table 3-8 Second edge cut of the FSM “bbara” 
vi\ei,

j 
0 
1 

0 
4 

0 
9 

1 
2 

1 
4 

1 
5 

1 
6 

1 
7 

1 
8 

1 
9 

2 
3 

2 
4 

3 
4 

3 
7 

4 
5 

4 
7 

4 
8 

4 
9 

5 
6 

6 
7 

7 
8 

8 
9 

7        1      1  1    1 1  
8         1        1    1 1 
3           1  1 1         
6       1            1 1   
1 1   1 1 1 1 1 1 1             
 1   1 1 1    1 1  1   1 1  1   1 
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Example, construction of the third encoding partition, r=3; π∏={{st0, 
st9};{st1, st8};{st2, st4, st5};{st3, st6, st7}}; an edge from the second edge cut 
is (v0,v1); B1

3={v0,v1}. The first two blocks of the partition π∏ are blocked, then 
B0

3={v8,v9}. The vertices v1 and v5 have the same minimal increment 
γ1

0,1(v1/v5)=3-2⋅1=1, we select the vertex v5 and B1
3={v0,v1,v5}, and 

B0
3={v8,v9,v2,v4} since the third block of the product partition is blocked. Finally 

we add the vertex v6 with minimal increment γ1
5(v6)=3-2⋅2=-1 to the set 

B1
3={v0,v1,v5,v6}, Table 3-9 and Table 3-10. 

π3={{st0,st1,st5,st6};{st2,st4,st3,st7,st8,st9}} 
 
Table 3-9 Construction of the third encoding partition for the FSM 
“bbara”  

vi\vi 0 1 2 3 4 5 6 7 8 9 d(v) γ1
0,1 γ0

5 γ1
5 

2  1  1 1      3 1  1 
3   1  1    1  3 3  3 
4 1 1 1 1  1  1 1 1 8 4  2 
5  1   1  1    3 1 3  
6  1    1   1  3 1  -1 
7  1  1 1  1 1   5 3  3 
8  1   1    1 1 4    
9 1 1   1   1   4    

B1
3           0,1 5  6 

B0
3           8,9 2,4  3,7 

|EC|           9 10  9 
 

Table 3-10 Third edge cut for the FSM “bbara”  
vi\ei,

j 
0 
1 

0 
4 

0 
9

1 
2

1 
4

1 
5

1 
6

1 
7

1 
8

1 
9

2 
3

2 
4

3 
4

3 
7

4 
5

4 
7

4 
8

4 
9

5 
6 

6 
7 

7 
8 

8 
9 

0 1 1 1                    
1 1   1 1 1 1 1 1 1             
5      1         1    1    
6       1            1 1   
  1 1 1 1   1 1 1     1     1   
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Example, construction of the forth encoding partition, r=4; 
π∏={{st0};{st1};{st2, st4};{st3, st7};{st5};{st6};{st8}; {st9}}; an edge from 
the third edge cut (v0,v4); B1

4={v0,v4}; B0
4={v0,v4}, Table 3-11 and Table 3-12. 

π4={{st0, st1, st4, st5, st6, st7, st8, st9};{st2, st3}} 
Table 3-11 Construction of the fourth encoding partition for the FSM 
“bbara”  

vi\vi 0 1 2 3 4 5 6 7 8 9 d(v) γ1
0,4 γ1

9 γ1
8 γ1

1 γ1
5 γ1

6 
1 1  1  1 1 1 1 1 1 8 4 2 0    
2  1  1 1      3       
3   1  1   1   3 1 1 1 1 1 1 
5  1   1  1    3 1 1 1 -1   
6  1    1  1   3 3 3 3 1 -1  
7  1  1 1  1  1  5 3 3 1 -1 -1 -3 
8  1   1   1  1 4 2 0     
9 1 1   1    1  4 0      

B1
4           0,4 9 8 1 5 6 7 

B0
4           2      3 

|EC|           9 9 9 9 8 7 4 
 

Table 3-12 Fourth edge cut for the FSM “bbara” 
vi\ei,

j 
0 
1 

0 
4 

0 
9 

1 
2

1 
4 

1 
5 

1 
6 

1 
7 

1 
8 

1 
9

2 
3 

2 
4 

3 
4 

3 
7 

4 
5 

4 
7 

4 
8 

4 
9 

5 
6 

6 
7 

7 
8 

8 
9 

0 1 1 1                    
4  1   1       1 1  1 1 1 1     
9   1       1        1    1 
8         1        1    1 1 
1 1   1 1 1 1 1 1 1             
5      1         1    1    
6       1            1 1   
7        1      1  1    1 1  
    1        1 1 1         

 
 
Concluding Step 

 Check if the partition π∏ is equal to the zero partition: 
π∏=π1×π2×…×πr=π0 (zero partition is partition where each 
symbol of S is in one block: π0={{s1}, {s2}, …, {sn}}) 

 Calculate the number of complicated transitions, the number of 
redundant switching and the summary defect of encoding. 
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Example, π∏={{st0}, {st1}, {st2}, {st3}, {st4}, {st5}, {st6}, {st7}, 
{st8}, {st9}}=π0. The encoding matrix for the FSM “bbara” is presented in 
Table 3-13. 

Table 3-13 Encoding matrix for the FSM “bbara” 
states codes 

st0 0100 
st1 0000 
st2 1111 
st3 1011 
st4 1110 
st5 1100 
st6 1000 
st7 1010 
st8 0010 
st9 0110 

 
Table 3-14 Hamming distance of all edge cuts for the FSM “bbara”  

0 
1 

0 
4 

0 
9 

1 
2 

1 
4 

1 
5 

1 
6 

1 
7 

1 
8 

1 
9 

2 
3 

2 
4 

3 
4 

3 
7 

4 
5 

4 
7 

4 
8 

4 
9 

5 
6 

6 
7 

7 
8 

8 
9 

 1  1 1 1 1 1         1 1   1  
1   1 1 1    1 1  1   1 1  1   1 
 1 1 1 1   1 1 1     1     1   
   1        1 1 1         

1 2 1 4 3 2 1 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1 
 
Number of complicated transitions is equal to 8; number of redundant 

switching is equal to11; O(eperfect)=22, O(ereceived)=33 and hence the defect of the 
encoding 50%, Table 3-14. 
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Power-oriented algorithm 
The STG representation of an FSM is given: (G(V, E)), V=(v1, v2, …, vn) 

– set of vertices and E=(e1, e2, …, em) – set of edges.  
 
Preliminary step 

 The weights of vertices and the weights of edges are calculated. 
The set of vertices and the set of edges are resorted by decreasing 
order. 

 The adjacency and incidence matrices are constructed. 
 
Example, the set of vertices and the set of edges of FSM “bbara” are 

putted in decreasing order by the weights; and the adjacency and incidence 
matrices are presented in Table 3-15 and Table 3-16. 

 
Table 3-15 Adjacency matrix for the FSM “bbara” 

 

w
(v

i)  

0.
26

7 

0.
19

7 

0.
15

5 

0.
13

4 

0.
13

4 

0.
04

9 

0.
03

7 

0.
01

6 

0.
00

9 

0.
00

2  

w(vi) vi\vi 1 4 0 2 3 5 7 6 8 9 d(vi) 
0.267 1  1 1 1  1 1 1 1 1 8 
0.197 4 1  1 1 1 1 1  1 1 8 
0.155 0 1 1        1 3 
0.134 2 1 1   1      3 
0.134 3  1  1   1    3 
0.049 5 1 1      1   3 
0.037 7 1 1   1   1 1  5 
0.016 6 1     1 1    3 
0.009 8 1 1     1   1 4 
0.002 9 1 1 1      1  4 

 
Table 3-16 Incidence matrix for the FSM “bbara” 

v i\
e i,

j 

1-
2 

1-
4 

0-
1 

0-
4 

2-
3 

4-
5 

2-
4 

3-
4 

3-
7 

1-
5 

1-
7 

5-
6 

1-
6 

4-
7 

7-
8 

1-
8 

6-
7 

4-
8 

8-
9 

1-
9 

0-
9 

4-
9 

1 1 1 1       1 1  1   1    1   
4  1  1  1 1 1      1    1    1 
0   1 1                 1  
2 1    1  1                
3     1   1 1              
5      1    1  1           
7         1  1   1 1  1      
6            1 1    1      
8               1 1  1 1    
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The algorithm constructs a set of encoding partitions. The number of 

encoding partitions is equal to k=⎡log2n⎤, where n is a number of vertices in 
STG and k is a code length. Each encoding partition πr consists of two blocks: 
the unit and the zero blocks which are represented by variable sets B1

r and B0
r 

respectively, kr ≤≤1 .  
 
First Step  
 A partition π∏ on the set of states S of the machine is equal to unit 

partition π∏=πI.  
 The sets B1

r and B0
r are empty at the beginning, i. e. B1

0=∅ and B0
0 =∅. 

 The first edge (vi, vj) from the incidence matrix is selected as a starting 
point. 

 Vertices of the selected edge (vi, vj) are placed in the set B1
1, so the 

latter takes value {vi, vj}.  
 

The procedure of calculation the edge cut weight increment γ1(B1
r, vc) 

by adding vertex vc to the set B1
r 

For each undistributed vertices vc this increment of the set B1
r is 

calculated by the following way:  
γ1(B1

r,vc)=d(vc)-2|N’(vc)| (4) 
where d(vc) is the degree of the vertex vc and N’(vc) is the set of neighbors 

for the vertex vc, consists of all vertices from the set B1
r adjacent to vc but not 

including vc. From the degree of the vertex vc we subtract the double value of its 
neighbors because  

A cardinality of an edge cut is the number of edges which has been cut. 
The increment γ1(B1

r,vc) allow observing on the cardinality of constructed edge 
cut.  

By using the adjacency matrix the first vertex vc with the minimal 
increment is selected. The selected vertex vc is added to the set B1

r, so it 
becomes equal to {vi, vj, vc}.  

Usually the procedure of calculation of the increment by adding vertex vc 
to the set B1

r, choosing the best vertex and extending the set B1
r repeats until a 

cardinality of B1
r reaches  approximately the half of a cardinality of V. 

However, as it was mentioned above, we observe on the cardinality of 
constructed edge cut with aim to minimize it. If adding of the next vertex 
increases a cardinality of constructed edge, we do not add this vertex to the 
considered set. 

The vertex vc in the set B1
r is also checked on a nearness to the set B0

r in 
case if this set is not empty: γ0(B0

r,vc)=d(vc)-2|N’’(vc)|, is the increment by 
adding vertex vc to the set B0

r, d(vc) is the degree of the vertex vc and N’’(vc) is 
the set of neighbors for the vertex vc, consists of all vertices from the set B0

r 
adjacent to vc but not including vc.  

If the vertex vc has the same increment γ1(B1
r,vc)=γ0(B0

r,vc) for both sets 
B1

r and B0
r, we place this vertex to such set B1

r or B0
r that minimizes the 
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cardinality of a constructed edge cut. In case of for some vertex vc we have the 
same increment and the adding of this vertex do not change the cardinality of a 
constructed edge we do not increase the set B1

r. 
 An encoding partition πr has the unit block equal to the set B1

r and the 
zero block equal to the set B0

r. From the incidence matrix all rows which 
correspond to the vertices of the set B0

r are deleted. The rest rows (rows which 
correspond to the vertices of the set B1

r) are summed component-wise by 
modulo two. The set of edges marked with 1 in the resulting Boolean vector 
form the edge cut of an encoding partition πr. 

 
Example, π∏=πI={{st0}, {st1}, {st2}, {st3}, {st4}, {st5}, {st6}, {st7}, 
{st8}, {st9}}; B1

1=B0
1=∅; the selected edge (v1,v2); B1

1={v1,v2}. 
Vertex v0 is the first vertex with minimal increment, 1 (column γ1

1,2 in 
Table 3-17, γ1

1,2(v0)=3-2⋅1=1, (4)); B1
1={v1,v2,v0}. Then we calculate the 

increment of the set B1
1 for all rest vertices. Thus vertex v9 combines into two 

edges (v9;v1) and (v9;v0) with respect to the set B1
1={v1,v2,v0} and the minimal 

number of increment for vertex v9 is γ1
0=4-2⋅2=0. We stop of forming the set 

B1
1={v1,v2,v0,v9} on the vertex v9, because for the next vertex v4 we have the 

same increment to both sets γ1
4=γ0

4. Moreover, the cardinality of the edge cut is 
equal to 10, see Table 3-18, if we add the last vertex v4, B1

1={v1,v2,v0,v9,v4} the 
cardinality of the edge cut is also would be equal to 10, so we do not add the 
vertex v4 to the set B1

1.  
π1={{st0, st1, st2, st9};{st3, st4, st5, st6, st7, st8}} 

Table 3-17 Construction of the first encoding partition for the FSM 
“bbara” 

vi\vi 1 4 0 2 3 5 7 6 8 9 d(vi) γ1
1,2 γ1

0 γ1
4 γ0

4 
4 1  1 1 1 1 1  1 1 8 4 2 0 0 
0 1 1        1 3 1    
3  1  1   1    3 1 1 1  
5 1 1      1   3 1 1 1  
7 1 1   1   1 1  5 3 3 3  
6 1     1 1    3 1 1 1  
8 1 1     1   1 4 2 2 0  
9 1 1 1      1  4 2 0   

B1
1           1,2 0 9   

B0
1             3,5,6,7,8  4 

|EC|           9 10 10 10  
 

Table 3-18 First edge cut for the FSM “bbara”  
vi\ei 1 

2 
1 
4 

0 
1 

0 
4 

2 
3 

4 
5 

1 
7 

5 
6 

1 
9 

1 
6 

4 
7 

7 
8 

1 
8 

6 
7 

2 
4 

3 
4 

3 
7 

4 
8 

8 
9 

1 
5 

0 
9 

4 
9 

1 1 1 1    1  1 1   1       1   
2 1    1          1        
0   1 1                 1  
9         1          1  1 1 
  1  1 1  1   1   1  1    1 1  1 
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Next Steps 
 The construction of the next encoding partition, r=r+1. 
 The partition is equal to π∏=π∏×πr. 
 Select the first edge (vi, vj) from the previous edge cut. 
 Set B1

k={vi, vj}. 
 Repeat until kr ≤ . 

 
Example, construction of the second encoding partition, r=2; π∏={{st0, 

st1, st2, st9}; {st4, st5, st6, st7, st8, st9}}; the first edge from the first edge cut 
(v1,v4); B1

2={v1,v2,v4}. 
To the set B1

2={v1,v2,v4} the vertices v0 and v3 are added because they 
have the smallest increment, see Table 3-19. For the last vertex we have the 
increment γ1

5 to the set B1
2: γ1

5(B1
2)=3-2*2(edges (v1,v5) and (v4,v5))=-1 and the 

cardinality of the edge cut is equal to 10, Table 3-19 and Table 3-20.  
 
π2={{st0, st1, st2, st3, st4, st5};{st6, st7, st8, st9}} 
 

Table 3-19 Construction of the second encoding partition for the FSM 
“bbara”  

vi\vi 1 4 0 2 3 5 7 6 8 9 d(v) γ1
1,2,4 γ1

0 γ0
0 γ1

5 γ0
5 

0 1 1        1 3 -1     
3  1  1   1    3 -1 -1 3   
5 1 1      1   3 -1 -1 3 -1 1 
7 1 1   1   1 1  5 1 1 5   
6 1     1 1    3 1 1 3   
8 1 1     1   1 4 0 0 2   
9 1 1 1      1  4 0     

B1
2           1,2,4 0 3  5  

B0
2            9   6,7,8  

|EC|           13 12 11  10  
 

Table 3-20 Second edge cut of the FSM “bbara” 
vi\ei 1 

2 
1 
4 

0 
1 

0 
4 

2 
3 

4 
5 

8 
1 

2 
4 

3 
4 

3 
7 

5 
1 

7 
1 

5 
6 

7 
4 

7 
8 

6 
7 

6 
1 

8 
4 

8 
9 

9 
1 

9 
0 

9 
4 

1 1 1 1    1    1 1     1   1   
2 1    1   1               
4  1  1  1  1 1     1    1    1 
0   1 1                 1  
3     1    1 1             
5      1     1  1          
       1   1  1 1 1   1 1  1 1 1 
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Example, construction of the third encoding partition, r=3; π∏={{st0, st1, 

st2}; {st3, st4, st5}, {st6, st7, st8}, {st9}}; the first edge from the first edge cut 
(v8,v1); B1

3={v1,v2,v4,v8}, Table 3-21 and Table 3-22.  
 
π3={{st1,st2,st3,st4,st7,st8,st9};{st0,st5,st6}} 
 
Table 3-21 Construction of the third encoding partition for the FSM “bbara”  

vi\vi 1 4 0 2 3 5 7 6 8 9 d(v) γ1
1,2,4,8 γ1

9 γ0
9 γ1

7 γ1
7 

0 1 1        1 3 -1     
3  1  1   1    3 -1 -1 3   
5 1 1      1   3 -1 -1 3   
7 1 1   1   1 1  5 -1 -1 3 -3 3 
6 1     1 1    3 1 1 1   
9 1 1 1      1  4 -2     

B1
3           1,2,4,8 9 3  7  

B0
3            0 5  6  

|EC|           13 11 10  7  
 

Table 3-22 Third edge cut for the FSM “bbara”  
vi\e

i 

1 
2 

1 
4 

0 
1

0 
4

2 
3

4 
5

8 
1

2 
4

3 
4

3 
7

5 
1

7 
1

5 
6

7 
4

7 
8

6 
7

6 
1

8 
4

8 
9 

9 
1 

9 
0 

9 
4 

1 1 1 1    1    1 1     1   1   
2 1    1   1               
4  1  1  1  1 1     1    1    1 
8       1        1   1 1    
9                   1 1 1 1 
3     1    1 1             
7          1  1  1 1 1       
   1 1  1     1     1 1    1  

 
 
Example, forth encoding partition, r=4; π∏={{st0}, {st1, st2}, {st3, st4}, 

{st5}, {st6}, {st7, st8}, {st9}}; the first edge from the first edge cut (v0,v1); 
B1

4={v0,v1}. To the set B1
4={v0,v1} we subsequently add the vertices v9, v8, v6, 

and v4, because they have the smallest increment, Table 3-23. The last 
undistributed vertex v5 has the increment to the both sets: B1

4={v0,v1,v9,v8,v6,v4} 
and B1

4={v2,v7,v3}, γ1
5(B1

4)=3-2*1(edge(v4,v5))=1 and γ1
5(B0

4)=3-2*2(edges 
(v3,v5) and (v3,v7))=-1. Despite of that the increment of vertex v5 to the set B0

4 is 
smaller than to the set B1

4 we decide to add the vertex v5 to the set 
B1

4={v0,v1,v9,v8,v6,v4,v5}, because the cardinality of the edge cut is equal to 7, 
Table 3-24. If we do not add the vertex v5 to the set B1

4, the cardinality would be 
equal to 10. 
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π4={{st0,st1,st4,st5,st6,st8,st9};{st2,st3,st7}} 
 
Table 3-23 Construction of the fourth encoding partition for the FSM “bbara” 

vi\vi 1 4 0 2 3 5 7 6 8 9 d(v) γ1
0,1 γ1

9 γ1
8 γ1

4 γ1
5 

4 1 1 1 1  1  1 1 1 8 4 2 0   
3  1  1   1    3 3 3 3   
5 1 1      1   3 1 1 1 -1  
7 1 1   1   1 1  5 3 3    
6 1     1 1    3 1 1 1 1 -1 
8 1 1     1   1 4 2 0    
9 1 1 1      1  4 0     

B1
4           0,1 9 8 4 5 6 

B0
4           2  7 3   

|EC|           9 9 9 9 8 7 
 
Table 3-24 Fourth edge cut for the FSM “bbara” 

vi\e
i 

1 
2 

1 
4 

0 
1

0 
4

2 
3

4 
5

8 
1

2 
4

3 
4

3 
7

5 
1

7 
1

5 
6

7 
4

7 
8

6 
7

6 
1

8 
4

8 
9 

9 
1 

9 
0 

9 
4 

0   1 1                 1  
1 1 1 1    1    1 1     1   1   
9                   1 1 1 1 
8       1        1   1 1    
4  1  1  1  1 1     1    1    1 
5      1     1  1          
6             1   1 1      
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 42

Concluding Step 
 Check if the partition π∏ is equal to the zero partition: π∏=π0. 
 Calculate the number of complicated transitions, the number of 

redundant switching and the summary defect of the encoding. 
 
Example, π∏={{st0}, {st1}, {st2}, {st3}, {st4}, {st5}, {st6}, {st7}, 

{st8}, {st9}}=π0. The encoding matrix for the FSM “bbara” is presented in 
Table 3-25. 

Table 3-25 The encoding matrix for the FSM “bbara” 
states codes 

st0 1101 
st1 1111 
st2 1110 
st3 0110 
st4 0111 
st5 0101 
st6 0001 
st7 0010 
st8 0011 
st9 1011 

 
Table 3-26 Hamming distances of all edge cuts for the FSM “bbara”  
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1       1 1   1  1 1 1       
1 1 1 2 1 1 2 2 1 1 2 3 1 2 1 2 3 1 1 1 2 2 

 
Number of complicated transition is equal to 10; number of redundant 

switching is equal to 12; Opower(eperfect)=0.2215, Opower(ereceived)=0.2757 and hence 
the defect of the encoding 24.4%, Table 3-26. 
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3.2.3 Comparison of encoding methods 
The encoding problem is NP-complete; therefore most of the proposed 

state assignment techniques rely on heuristic solutions, which are using 
problem-solving techniques based on experience [57]. 

In this sub-section we select five state-of-the-art encoding methods to 
compare with the proposed encoding. These methods are Huffman-Style 
Encoding by Surti [69], One Level Tree (OLT) by Silvano [66], POW3 by 
Benini [6], Spanning Tree Based (STB) by Nőth [55], and Deep First Search 
(DFS) by Eggermont [21]. All of these approaches have the aim to reduce the 
dynamic power dissipation in synchronous sequential circuits by reducing the 
register switching activity. The reduction of the average switching activity 
targets the minimization of the number of bit changes during the FSM state 
transitions. 

Common to these approaches is the starting data that includes the initial 
description of an FSM as the STG and a probabilistic model to present the 
stochastic behavior of an FSM. The initial STG is transformed into the weighted 
undirected graph. The graph is weighted using the probabilistic description of 
the FSM. A good approximation of the average switching activity is the 
switching probability (or transition probability) [6]. Given the input switching 
probability it is possible to calculate the probability of the state transitions in an 
FSM. This information is used to find an encoding that minimizes the switching 
activity of the variables. The Huffman encoding algorithm works with the 
vertex-weighted undirected graph, while POW3, OLT and STB use the edge-
weighted undirected graph.  

 
1. Using Huffman-Style Encoding higher probability states have 

shorter code length while lover probability states have longer code 
length [69]. Huffman encodings for the FSM “bbara” is presented in 
Table 3-27.  

This approach may not always be practical since variable code lengths 
have significant management overhead. 
 

Table 3-27 Huffman encoding for the FSM “bbara”  
w(vi) vi k1 k2 k3 k4 k5 k6 
0.268 st1 1 1 - - - - 
0.195 st4 1 0 - - - - 
0.155 st0 0 1 0 - - - 
0.134 st2 0 1 1 - - - 
0.134 st3 0 0 1 - - - 
0.049 st5 0 0 0 1 1 - 
0.037 st7 0 0 0 1 0 - 
0.016 st6 0 0 0 0 1 - 
0.009 st8 0 0 0 0 0 1 
0.003 st9 0 0 0 0 0 0 
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2. One Level Tree encoding uses an edge-weighted undirected graph to 
state ordering and thus to assign a priority to the symbolic states. 
When the order is defined the well-known Gray code is used [4]. For 
example, the edge e1,2 has maximal weight, let the state has code 
0000, then state st2 has code 0001, the next edge ordered by weights 
is the edge e1,4 then the state st4 can be encoded as 0010. Next 
follows the edge e0,1 and the state st0 has the code 0100 and etc. Table 
3-28 presents the OLT encoding for the FSM “bbara”.  

The problem arises if several edges have the same weight. 
 

Table 3-28 OLT encoding for the FSM “bbara” 
ei w(ei) states codes 

1-2 0,668 st1 0000 
  st2 0001 

1-4 0,661 st4 0010 
0-1 0,577 st0 0100 
2-3 0,268 st3 0011 
4-5 0,246 st5 0110 
3-7 0,134 st7 1011 
5-6 0,049 st6 0111 
7-8 0,037 st8 1010 
8-9 0,009 st9 1110 

 
 
 
3. POW3 encoding minimizes the Hamming distance between the codes 

of the states connected by transition with high probability. The 
encoding approach assigns the adjacent codes for the states 
correspond to weights of edges, w(ei). These weights are recomputed 
in the cost function after each previous variable assignment [6]. For 
example, the edges e5,6, e7,8, and e8,9 have smallest weights, let k1=1 
for the states st6, st8 and st9, then only two edges e5,6 and e7,8 have the 
Hamming distance equals to 1. Next the weights which correspond to 
selected edge are redoubled. Table 3-29 demonstrates the 
construction of POW3 encoding for the FSM “bbara”.  

The solution is not globally optimal because the method is not 
considering the impact that the choice of one state variable has on the 
other state bits. 
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Table 3-29 POW3 encoding for the FSM “bbara”  
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1-2 0.668 st1 0 0 0.668 0 0 0.668 0 1 1.336 1 
  st2 0   0   1   1 

1-4 0,661 st4 0 0 0,661 0 0 0,661 0 0 0,661 0 
0-1 0,577 st0 0 0 0,577 1 1 1.154 0 1 2.308 1 
2-3 0,268 st3 0 0 0,268 0 0 0,268 1 0 0,268 0 
4-5 0,246 st5 0 0 0,246 1 1 0.492 0 1 0.984 0 
3-7 0,134 st7 0 0 0,134 1 1 0.268 1 1 0.536 0 
5-6 0,049 st6 1 1 0,098 0 1 0.196 1 3 0.784 0 
7-8 0,037 st8 1 1 0,074 0 1 0.148 0 3 0.592 0 
8-9 0,009 st9 1 0 0,009 1 0 0,009 1 2 0.027 1 

 
 
4. The Spanning Tree Based encoding construct a maximum spanning 

tree of the undirected graph and formulate the state encoding problem 
as an embedding of the spanning tree into a Boolean hypercube of 
unknown dimension [55]. In presented approach the limitation to a 
predetermined number of bits for the state encoding is removed. In 
case of several edges have the highest weight the division of spanning 
tree is ambiguous. Figure 3-8 illustrates the maximum weighted 
spanning tree for the FSM “bbara”. The highest weighted edge e1,2 is 
selected, the degree of node v1 is equal d(v1)=3 and the degree of node 
v2 is equal to d(v2)=2, dmax=3.  

 

 
Figure 3-8 Maximum weighted spanning tree for the FSM “bbara” 

 
The edge e1,2 is removed and it is leaved two sub-trees, Figure 3-9. 
When we divide the maximum weighted spanning tree into the two 
sub-trees we select the highest weighted edge, e1,2, which does not 
increase the degree of the nodes. In case of some edges have the 
highest weight the division of spanning tree is ambiguous. 

st0 st1 st2 

st9 

st4 
st5 st8 

st7 st6 

st3 
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Figure 3-9 Two sub-trees for the FSM “bbara”  

 
Next, adjacent codes are applied to both sub-trees, Figure 3-9 and 
Table 3-30. 

Table 3-30 STB encoding for “bbara” FSM 
states codes 

st0 0001 
st1 0000 
st2 0010 
st3 0110 
st4 0100 
st5 1100 
st6 1110 
st7 0111 
st8 1111 
st9 1101 

 
 

5. The Deep First Search (DFS) encoding utilizes dynamic loop 
information extracted from FSM profiling data [21]. First, FSM run 
under a relevant input data, state profiling collects information about 
a state register trace. Second, loop detection searches for loops in the 
state trace. Loops are identified by the repeated occurrence of the 
same state in the trace, and each discovered loop is stored and 
counted to obtain the frequency of the loops. Third, to each state 
assign a unique code. For some circuits proposed algorithms gives 
more power dissipation due to the larger state register. Hence the 
code length is bigger than expected. The DFS can not be used for 
very large circuits. For the FSM “bbara” the loop 1→2→1 has the 
weight 100, while the loop 1→2→3→4→1 has the weight 50 and the 
loop 1→4→1 is a (nested) inner loop with weight 25. These loops are 
encoded using adjacent codes, Table 3-31. 

st0 st1 st2 

st9 

st4 st5 

st8 

st7 st6 

st3 

0001 0000 

0100 1100 

1110 

0010 

0110 

0111 

0101 
1101 



 47

Table 3-31 DFS encoding for “bbara” FSM 
states codes 

st0 0100 
st1 0000 
st2 0001 
st3 0011 
st4 0010 
st5 0110 
st6 0111 
st7 1011 
st8 1010 
st9 1000 
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Table 3-32 summarizes the comparison among several discussed power-
oriented encoding methods for the FSM “bbara”. 

Table 3-32 Comparison among several encoding methods for the FSM 
“bbara” 

  Hamming Distances H(ci,cj) 
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1-4 0,042 1 1 1 1 1 1 
1-2 0,041 1 1 1 1 1 1 
0-1 0,036 1 1 1 1 1 1 
0-4 0,022 2 2 2 2 2 2 
2-3 0,017 1 1 1 1 1 2 
4-5 0,015 1 1 1 1 1 1 
2-4 0,008 2 2 2 2 2 2 
3-4 0,008 1 1 1 1 1 1 
3-7 0,008 1 1 1 1 1 1 
5-1 0,006 2 2 2 2 2 2 
7-1 0,005 3 3 3 3 3 2 
5-6 0,003 1 1 1 1 1 1 
6-1 0,002 3 3 3 3 3 2 
7-4 0,002 2 2 2 2 2 1 
7-8 0,002 1 1 1 1 1 1 
8-1 0,001 2 2 2 2 2 2 
6-7 0,001 2 2 2 2 2 1 
8-4 0,001 1 1 1 1 1 1 
8-9 0,001 1 1 1 3 1 1 
9-1 0,0003 1 1 3 3 3 2 
9-0 0,0001 2 3 2 2 2 2 
9-4 0,0001 2 2 2 4 2 1 
Complicated 
Transitions 

10 10 11 12 11 9 

Redundant 
Switching 

12 13 14 18 14 9 

Cost 
Function Opower 

0.276 0.277 0.278 0.279 0.277 0.283 

Defect (%) 24.4 24.5 24.7 25.7 24.5 27.7 
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3.2.4 Further improvement of the received encoding 
As it was mentioned above, the proposed state encoding technique is 

based on a greedy choice of an appropriate vertex added to a constructed edge 
cut. In this subsection we present some ways to improve the received encoding.  

In computer science a search algorithm takes a problem as input and 
returns a solution to the problem, usually after evaluating a number of possible 
solutions. Searching algorithms can be divided into uninformed search 
algorithms which use the simplest, most intuitive method of searching and 
informed search algorithms which use heuristic to apply knowledge about the 
structure of the search space try to reduce the amount of the time spent for 
searching. 

List search, tree search and graph search are uninformed search 
algorithms. The goal of list search algorithm is to find one element of a set by 
some key. Tree search is specialized version of search algorithms, which takes 
the properties of trees into account. Many of the problems in graph theory can 
be solved using graph search algorithms which are extensions of the tree search 
algorithms [81]. 

 
Tree search techniques 

Tree search algorithms are the heart of searching techniques [88]. These 
search nodes of trees, whether that tree is explicit or implicit (generated on the 
go). The basic principle is that a node is taken from a data structure, its 
successors examined and added to the data structure. By manipulating the data 
structure, the tree is explored in different orders for instance level by level or 
reaching a leaf node first and backtracking.  

A tree is a widely-used computer data structure that emulates a tree 
structure with a set of linked nodes. Each node has zero or more child nodes, 
which are below it in the tree. A node that has a child is called the child’s parent 
node. A child has at most one parent; a node without a parent is called the root 
node (or root). Nodes with no children are called leaf nodes. 

The root of the tree corresponds to an initial situation of the problem. 
Other vertices associate with situations which can be achieved in process of 
solution of the problem. There are two basic types of tree. In an unordered tree, 
there is no distinction between the children of a node --- none is the “first child” 
or “last child”. A tree in which such distinctions are made is called ordered tree. 
Ordered trees are by far the most common form of tree data structure. The root 
selection gives an orientation to the tree when all paths are from the root to the 
other vertices. An arc, or directed edge, is an ordered pair of vertices. In tree 
arcs correspond to simple operations that represent the steps in process of 
solution of the problem. Arcs connect the vertices, which correspond to 
situations. A situation presented by a vertex characterizes a wide variety of 
different next steps that described by arcs outgoing from the considered vertex. 
Some situations present solutions of the problem.  
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Figure 3-10 A fragment of tree search for the second encoding partition 
for the FSM “bbara” 

 
Example, Figure 3-10 presents a fragment of tree search for the 

constructing the second encoding partition for the FSM “bbara”. The root is {1, 
2, 4}. Arcs correspond to variants of choice of the next vertex to add to the 
constructed set. We have received ten leaf nodes that correspond to the six 
various unit blocks of the second encoding partition. 

 
Randomization 

Randomization is a process of making something random. Randomization 
is a core principle in the statistical theory of design of experiments which is a 
methodology for solving optimization problem [81]. 

Under randomization of our encoding technique we imply a process of 
making a list of rest undistributed vertices random. We form a register of 
rewriting of rest vertices and then choose more appropriate vertex to construct 
an encoding partition.  

Example, Table 3-7 demonstrates the construction of the second 
encoding partition for the FSM “bbara”. We start the construction with a 
selection of an arbitrary edge (e7,8) from the previous edge cut. Obviously, that 
the choice of other edge as a starting point perhaps has different result of 
construction from the received partition. We can form a register of rewritings of 
edges from the previous edge cut to find better decision. Also we form a register 
of rewritings of vertices (v3,v6) with minimal increment (γ1

7,8(v3/v6)=1) with aim 
to select the most appropriate vertex to construct of an encoding partition. We 
select the first vertex v3. Next we choose between two vertices v2 and v6 
(γ1

3(v2/v6)=1), and prefer the vertex v6 because we receive the best decision. 
Using randomization at a selection of next appropriate vertex to construct 

an encoding partition greatly reduces a search among rest undistributed vertices.  
Tree search and randomization techniques were used for machine 

realization of the proposed encoding method. 
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3.3 Experimental results 
To evaluate the performance of the proposed state encoding algorithm we 

use the benchmark set [48]. This is an industry-standard benchmark suite. Table 
3-33 shows the benchmarks, the number of states each FSM consists of, and the 
number of codes available to the state encoding algorithms for the minimum 
size of the state register. Furthermore, the table lists the number of transitions. 

Table 3-33: Benchmarks statistics  
benchmark states codes transitions 

bbara 10 16 60 
bbsse 13 16 56 

beecount 7 8 28 
cse 16 16 91 

dk14 7 8 56 
dk15 4 4 32 
dk16 27 32 108 
dk17 8 8 32 
dk27 7 8 14 

dk512 15 16 30 
donfile 24 32 96 

ex1 20 32 138 
ex4 14 16 21 
ex6 8 8 34 
keyb 19 32 170 
log 17 32 28 

mark1 13 16 33 
opus 10 16 22 

planet 48 64 115 
pma 24 32 74 
s1 20 32 107 
s8 5 8 32 

sand 32 32 184 
shiftreg 8 8 16 

sse 13 16 48 
tbk 32 32 104 
tma 20 32 96 

train11 11 16 15 
We have applied our encoding algorithm Weakly Crossed Edge Cut to all 

FSM benchmarks and we present a summary of the results, Table 3-34. FSM 
state encoding for low power dissipation do not target the circuit switching 
activity directly, but instead minimize only the state register switching activity.  

The switching activity is expressed as the number of bit changes in the 
state register, or the number of signal changes in the circuit, that occurred 
during the simulation. During the simulation, each state transition will cause at 
least one bit to change in the state register. Therefore, the number of state 
transitions forms a lower bound for the state register switching activity.  
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Table 3-34 Defect of the encodings (ª - longer code) 
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bbara 24.0 24.1 24.6 25.0 26.0 27.2 
bbsse 15.1 15.1 15.7 16.0 16.1ª 19.0 

beecount 5.3 5.3 5.5 5.5 5.4ª 6.9 
cse 4.6 5.6 7.8 8.0 4.9ª 10.3 

dk14 34.1 34.1 44.8 44.8 34.1ª 52.0 
dk15 19.8 19.8 19.8 19.8 19.8ª 21.1 
dk16 80.2 - 85.6 91.5 73.7ª 104.0 
dk17 22.7 22.8 23.5 23.5 23.4ª 25.5 
dk27 16.3 18.8 17.8 19.8 19.8 23.9 

dk512 18.4 18.4 29.4 35.2 25.2ª 39.8 
donfile 83.0 - 91.8 110.1 74.8ª 111.8 

ex1 29.8 30.4 49.5 55.5 34.8ª 68.8 
ex4 10.2 10.2 12.0 14.2 11.4 14.8 
ex6 25.8 25.8 29.6 27.9 - 27.9 
keyb 1.3 1.3 1.3 1.3 1.3 1.6 
log 4.0 - - 4.7 4.0ª - 

mark1 29.8 30.2 - - - 44.4 
opus 30.8 30.8 - 32.4 32.4ª - 

planet 32.8 - 52.3 64.7 27.7ª 80.1 
pma 22.3 34.3 - - 22.3ª - 
s1 54.8 - 66.1 75.2 48.9ª 88.4 
s8 14.4 14.5 29.3 33.7 14.5 38.9 

sand 33.7 - 47.7 56.4 18.1ª 80.0 
shiftreg 14.1 14.1 35.6 46.7 14.1ª 50.1 

sse 15.1 15.1 - - 16.0ª - 
tbk 78.0 - 88.8 90.4 35.5ª 100.3 
tma 14.6 26.6 40.1 45.5 28.9 50.9 

train11 13.3 13.4 46.8 50.7 23.5 54.9 
The benchmarks bbtas, kirkmann, lion, lion9, mc, modulo12, tav, train4 

are encoded perfectly, resulting in an average state register switching activity of 
100%, or only one bit change for each state transition.  

As expected, DFS [21] encoding finds the optimal state encoding solution 
for some FSM for a minimal width state register. The reason for this is the 
relatively low number of transitions for the number of states. The STB [55] 
guarantees to find the optimal state encoding solution because this algorithm 
utilizes (where needed) wider state registers, which relieves one of the 
constraints of the other low power state encodings. This allows the algorithm to 
obtain lower state register switching activities, at the cost of a larger chip area 
for the state register.  
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3.4 Summary 
The research presented in the Chapter 3 focuses on the problem of 

minimizing the power consumption in synchronous sequential circuits, which is 
an indispensable component of any power optimization and synthesis 
environment for digital circuits. Based on the concept of an economical 
covering of the set of transitions by weakly crossed edge cuts we propose an 
effective technique to solve the state encoding problem for an FSM targeting 
power minimization.  

Weakly Crossed Edge Cut encoding method uses the STG to describe of 
an FSM. The probabilistic model of an FSM is constructed by using the 
stochastic behavior of an FSM. For the given FSM description and the 
knowledge of the input probabilities the transition probabilities for the STG are 
calculated. The input probability distribution can be obtained by simulating the 
FSM at a higher level of abstraction in the context of its environment, or by 
direct knowledge from the designer. Transition probability information for each 
edge in the STG can then be determined by modeling the STG as a Markov 
chain. We describe the Markov chain model for the STG by a directed graph 
with a structure isomorphic to the STG and with weighted edges. The 
conditional probability distribution is found from the input probability 
distribution. The total transition probabilities are calculated. Then, we compute 
the steady state probabilities by solving the system of equations. Using the total 
transition probabilities the original STG is transformed into weighted graph 
which preserves only the relevant information needed for state encoding. Two 
matrices, the adjacency matrix and incidence matrix, are constructed by using 
the vertex-weighted and the edge-weighted graphs simultaneously.  

The main idea of our technique is to find a state encoding that minimizes 
the number of state variables that change their value when FSM moves between 
two adjacent states. We construct a set of encoding partitions that corresponds 
to a set of weakly crossed edge cuts for the STG of an FSM. The framework of 
constructing of a set of weakly crossed edge cuts was developed in general 
enough to update for exploration of the algorithm for the optimization of the 
FSM that takes into account the reducing of switching activity. Power-oriented 
encoding algorithm was implemented and ran on standard benchmark circuits. 
We found that the presented state encodings allows low power FSM synthesis. 
Our results confirm that state encoding has an impact on power dissipation in 
the overall circuit. 
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444   DECOMPOSITION FOR A LOW POWER FSM 

4.1 Introduction 
 
In the previous chapter the problem of FSM state encoding has received 

considerable attention, because it is an important step in the process of 
sequential circuit synthesis. The FSM state encoding problem can be also 
viewed with relation to the FSM decomposition problem. Recently 
decomposition of the FSM has attracted attention of researchers for power 
reduction [9], [12], [51].  

FSM decomposition is an organic part of logic synthesis process of 
sequential circuits [14], [41], and [58]. A complex FSM can be decomposed 
into simpler ones in order to recieve more efficient implementation. The task of 
decomposition has been a classic problem of the discrete system theory for 
many years [3], [28]. Decomposition of the FSM is a topic that waxes and 
wanes in importance. The fundamental works were done in the 1960s [28], 
became less interesting during the era of Very Large Scale Integration (VLSI) 
[27], and is becoming more important again with pervasive use of 
programmable logic and low power applications in digital design [1].  

A large hardware behavioral description is decomposed into several 
smaller ones. One goal is to make the synthesis problem more tractable by 
providing smaller sub-problems that can be solved efficiently. Another goal is 
to create descriptions that can be synthesized into a structure that meets the 
design constraints. In the past, the synthesis focused on quality measures based 
on area and performance [64]. The continuing decrease in feature size and 
increase in chip density in recent years have given rise to consider 
decomposition theory for low power as a new dimension of design process [9], 
[12], [29], [30], [39], [41], [42], [50]-[53], [60], [65], [70], [74], and [78]. 

Usually, the task of FSM decomposition is a representation of the original 
FSM as its network realization. It means that, we construct such a network of 
the connected and interacted component machines which should realize 
behavior of the original FSM. Moreover, each component machine should 
satisfy some of given conditions.  

Indeed, such a statement of the FSM decomposition task is common in 
sense of understanding of an overall object of machine decomposition. This 
work is concentrated on investigations of the pair method of decomposition 
[28]. The structural properties of machine are described in pair algebra terms. 
The character of possible decomposition of machine is caused by properties of 
partitions on the set of the states of this machine. Interaction of several 
machines can be imagined by mutual information depending on what is 
reflected by elements of pair algebra. Moreover, the task of FSM decomposition 
and problem of states encoding are virtually identical concepts. Thus, the 
problem of assigning a binary code to all states of original machine leads to the 
problem of assigning a binary code to the blocks of partitions. Therefore, the 
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task of FSM decomposition can be formulated in a manner of apparatus of 
partitions. 

Given the STG of a circuit controller, the optimization task consists of 
decomposing and encoding the graph in order to prepare it for logic synthesis. 
Decomposition techniques produce interconnected machines from one large 
FSM, and they can be divided into two categories [42]: those based on the 
algebraic theory [28] and those based on the identification in the STG of sub-
routines or co-routines [15]. A sub-routine/co-routine corresponds to a fragment 
of the STG augment with a wait state. Shutdown techniques can be applied to 
the individual machines because only one is active at a given point of time [10]. 
Both approaches to decomposition try to minimize the activity along the lines 
connecting the component machines, which tend to drive heavier loads. 
Decomposition naturally helps tackling the complexity issue [42]. 

We regard three categories of FSM decompositions: multiplicative, 
additive and generalized additive. 

Multiplicative Decomposition is the general method of FSM 
decomposition. The decomposition is called “multiplicative” because the graph 
of the source FSM is embedded into a product of smaller graphs. This method 
enables synthesis of a network of interacting component machines 
corresponding to a complete set of partitions on the set of states of the source 
FSM. Each component machine corresponds to a partition on the set of the 
states. All the states belonging to a single block in a submachine are given the 
same code in that component machine. Therefore, there is no way of 
distinguishing between two states belonging to a single block in a submachine 
without recourse to information from other component machines. A block of 
states in a partition effectively corresponds to the state in the submachine 
associated with that partition. The functionality of the source machine is 
maintained in the decomposed machine if the partitions associated with the 
decomposition such that their product is the zero-partition on the set (every 
block of partition consists exactly of one state). 

The idea of the Additive Decomposition is to introduce an additional 
“idle” state into component machines. The graph of an FSM is partitioned into 
node disjoint subsets. The network of machines consists of components working 
alternatively in time, i.e. all components except one are suspended in one of 
extra state (the “wait” state). The network of interacting component machines 
corresponds to a given partition on the set of the states of the source FSM. The 
number of the component machines in the network is equal to the number of the 
blocks and the number of the states of the component machines is equal to the 
number of the states in the corresponding block of a given partition plus 1. 

The Generalized Additive Decomposition proceeds from a given cover on 
the set of the states of the source FSM. Each component machine corresponds 
to a subset of the set of the states of the source FSM. This method is a more 
generalized approach based upon the previous method (more than one machine 
could be active executing a computation at any given time while the other 
component machines are idle). 
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4.2 FSM decomposition technique 
Because the traditional approach to FSM design involves solving at least 

two difficult combinatorial problems (state minimization and state encoding 
[58]), the attempt to implement a united strategy has been undertaken. The FSM 
decomposition problem is classic in the machine theory [28] just like the state 
encoding problem. Various approaches based on different heuristics have been 
investigated [1], [27], [58].  

An FSM can be decomposed into smaller interacting machines in order to 
achieve different optimizations, such as area, performance, power consuming 
and testability. The range of our interests comes to power optimization. We 
proceed from the idea that proposed heuristics for state encoding and techniques 
of logic optimization work better for smaller circuits as opposed to larger ones. 
In general, if a good decomposition can be found, smaller areas for a  
decomposed FSM over a single lumped circuit will result. Taking into 
consideration the performance, the decomposed circuits can be clocked faster 
than the source machine, due to smaller critical path delays. At the same time, 
FSM decomposition may provide a solution that partitions the whole circuit into 
parts working alternatively. In this case, the switching activity of the circuit can 
be greatly reduced. 

The main problem of the decomposition procedure is the choice of a 
partition system [14]. We have also emphasized that in the current work we deal 
only with decomposition methods based on the algebraic structure partition 
theory [28]. In the introduction to the current chapter, we have mark out three 
variants of partition systems: a complete system of partitions, a partition and a 
cover of the set of the states of the decomposable FSM. In general, 
decomposition using a partition and a cover on the set of the states of the 
decomposable machine can be regarded as a particular case of more common 
decomposition method using a complete system of partitions. Thus, the results 
received during multiplicative decomposition can be extended into additive and 
generalized additive decompositions. 

The way to select (or construct) a partition (a set of partitions) is not 
discussed in the thesis. We leave this question open for future investigations. 
However, it is needed to underlain that the key condition of existing 
decomposition for a given FSM must be executed. In subchapter 2.2 we present 
the main condition of FSM decomposition in a general way. 

To avoid significant complications during the decomposition procedure, 
it is necessary to keep certain tactics. One of the essential foundations of 
optimization methods of the decomposition synthesis is a strategy of global and 
local transformations [35]. The strategy consists of two logical transformations 
of the source FSM. The global or primary (coarse) transformation fragments the 
source FSM into a group of its pieces. Clearly, the way of this fragmentation 
depends on given conditions, or is dictated by a required basis. As a rule, more 
important requirements are expected to be executed at this stage.  

The stage of global transformations will entail the formation of 
decomposition constraints. Consequently, already at this stage the main 
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restrictions on the basis and structure of the network should be executed. 
Among such restrictions, we are able to allocate, for example, the restriction on 
the number of component machines in the network, the restriction of the 
number of states of component machines, the restriction on the number of 
binary inputs of component machines, the restriction on the number of binary 
inputs of each component machines, etc. Every one of such restrictions 
demands the decision of the certain subtask at the stage of choosing the partition 
system. Moreover, depending on the given task, we can have the necessity to 
build a network with several restrictions. All above-mentioned is an occasion of 
creation a flexible method of global transformations realization of the source 
FSM on the partitions basis. The second step of the decomposition procedure is 
the step of determining of structure of the network. Here we define the number 
of machines in the network, inputs and outputs of each components and also 
connections between them. 

When the system gets accustomed after impact of global transformations, 
here arises a question of more delicate (fine) optimization. The accurate 
definition of the received parts, detection and the specification of information 
connections and final clarifying of the decomposable FSM as a whole are 
ultimate aims of action of local transformations.   

During the action of local transformations, we are interesting in 
component-wise optimization. After determining the structure of the network, 
here arises the task of optimum encoding, a task of searching for optimum input 
and output alphabets of the component machines, connection functions, and the 
network output. Generally speaking, the stage of local transformation means 
working directly with each component machine. During this process takes place 
an original swapping of complexity from the connection functions and the 
network output to the output functions of the component machines. Obviously, 
that optimization on the stage of local transformations also requires a local 
criterion.  

The strategy of global and local transformations at FSM decomposition 
based on the concept of pair method also consists of two consistent steps. On 
the global transformation step we realize rough decomposition of the source 
FSM. Thus, the source FSM is strictly divided into a set of component 
machines, which satisfy the given restrictions. As a result of global 
transformations, we have a network of component machines which realizes the 
source FSM.  

The next stage is local transformations. During this phase, we have  the 
possibility for a more detailed and delicate specification of the parts received on 
the previous step. Local transformations of the component machines allow 
constructing of its internal inputs and outputs. Moreover, local transformations 
give us resources for the optimization of internal connections between 
component machines.  

The main goal of FSM decomposition is division on a symbiosis of 
global and local transformations is an opportunity to avoid full excess at the 
optimization. It is well known that exact solution of optimal decomposition is 
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practically not feasible. Therefore, the strategy of global and local 
transformations gives us an opportunity of more differentiated approach to the 
problem of searching for optimum decomposition.  

 
We illustrate how works the proposed procedure of FSM decomposition 

on the FSM “opus” [48]. The state transition and output table the FSM “opus” is 
presented in Table 4-1. 

Table 4-1 State transition and output table for the FSM “opus”  
№ Present state Input Next state Output 
1 init0 x3 init0 y1y2 

2  ¬x3 init1 y1y2 
3 init1 x3 init0 y1y2 
4  ¬x3¬x4

 init1 y1y2 
5  ¬x3x4 init2 y1y2y6 
6 init2 x3 init0 y1y2 
7  ¬x3 init4 y1y2y4 
8 init4 x3

 init0 y1y2 
9  ¬x3x4 init4 y1y2y4 

10  ¬x3¬x4 IOwait - 
11 IOwait x3 init0 y1y2 
12  x1¬x2¬x3¬x4 init1 y1y2 
13  ¬x3x4 init2 y1y2y6 
14  ¬x1¬x2¬x3¬x4 IOwait - 
15  ¬x1x2¬x3¬x4¬x5 read0 y1y3 
16  x1x2¬x3¬x4¬x5 write0 y1y5 
17  ¬x1x2¬x3¬x4x5 RMACK y1 
18  x1x2¬x3¬x4x5 WMACK y1 
19 RMACK x3 init0 y1y2 
20  ¬x3x5 read0 y1y3 
21  ¬x3¬x5 RMACK y1 
22 WMACK ¬x3 init0 y1y2 
23  x3¬x5 write0 y1y5 
24  ¬x3x5 WMACK y1 
25 read0 x3 init0 y1y2 
26  ¬x3 read1 y1y3y6 
27 read1 x3 init0 y1y2 
28  ¬x3 IOwait - 
29 write0 x3 init0 y1y2 
30  ¬x3 IOwait - 
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4.2.1 Decomposition constraints 
In the previous we describe the notion of restrictions which are applied 

on the structure of the network. For example, we would like to apply the 
restriction on the number of inputs in each component machine in the network. 
Such restrictions have effect on the construction of each partition from the 
complete system of partitions for decomposition of the source FSM. Each 
partition from the complete system of partitions represents the work of one 
component machine in the network. The blocks of the partition describe the 
states of the correspondent component machine. The set of all blocks of all 
partitions from the complete set of partitions present the global states of the 
network of machines and form the set of decomposition constraints. 

We introduce tree heuristic methods for global transformations executing.  
In our scenario, the first heuristic method corresponds to the primary 

transformation of an FSM should begin with a separation of its inputs. Mainly, 
it is explained by desire to mark out some inputs, which are not essential for 
some component machine. The follows method breaks up into two consecutive 
steps, each of which allows the process of complete set of partitions choice. 

The second heuristic method for global transformation of the source FSM 
allow to identify the most probable behaviors in a sequential component.  

The third method is global transformation of the source FSM with aim to 
separate outputs. The method provides a systematic way to separate outputs 
among component machines. 

Various decomposition techniques based on partition on the set of states 
of decomposable machine produce various sets of constraints.   

The set of decomposition constraints for the network of machines defined 
by a complete system of partitions {πi}, 1≤i≤n is a set 
{ }i

j jniB
i

ππ ≤≤≤≤ 1,1| , where 
i

Bπ  are the blocks of partitions from {πi} 

and |πi | is the number of blocks in πi. For the constructed network of machines 
the number of decomposition constraints is equal to the total number of blocks 
in the complete system of partitions. 

The set of decomposition constraints for the network of machines defined 
by a partition π is a set { }ππ ≤≤ jB j 1| , where πB are the blocks of partition π 
and |π| is the number of blocks in π. 

Similarly the set of decomposition constraints for the network of 
machines constructed by a cover on the set of states of decomposable machine 
is defined. 

In general we present a matrix formulation for the decomposition 
constraints as follows [36]: for the given set of states S of the decomposable 
machine the constraint matrix is a matrix with nc rows and ns columns. nc is 
equal to the number of constrains and ns is equal to the number of symbols in S. 
Entry (i, j) is 1 if and only if the ith constraint contains symbol j, otherwise it is 
0. 

Tables 4-2, 4-3 and 4-4 present tree matrices of decomposition 
constraints for the FSM “opus”. 
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Decomposition with a separation of inputs (multiplicative decomposition) 
Decomposition of the source FSM with separation of inputs implies 

partial or full division of all input signals between the component machines.  
 
First step  

 Calculating of α-partitions on the set of inputs of a decomposable FSM 
 
Example, we illustrate the calculation of α-partitions on the FSM 

“opus”: 
α(x1)={{init1,IOwait}; {read0,write0}; {RMACK,WMACK}; 
{init0,init2,init4,read1}},
α(x2)={{init1,write0,WMACK}; {IOwait,read0,RMACK}; 
{init0,init2,init4,read1}}, 
α(x3)={{init0,init1,init2,init4,IOwait,read0,write0,RMACK,WMACK,read1}}, 
α(x4)={{init0,read1};{init1,init2,init4,IOwait,read0,write0,RMACK,WMACK}} 
α(x5)={{read0,RMACK}; {write0,WMACK};  
{init0,init1,init2,init4,IOwait,read1}}. 
 
Second Step 

 Generating of a complete system of partitions {π} on the set of states S 
of a decomposable FSM 

Intuitively, at the current step we have a certain freedom at the choice of 
complete system of partitions. On the first step of this method, by search of α-
partitions we have been strictly limited to their definition. Quite opposite, the 
second step does not limit us to a rule of addition of α-partitions.  Each step 
generates one next partition which fills up set {π} empty at the beginning.  At 
the forming of the first partition π1 from the set of partitions we consecutively 
enlarge the zero partition πI by addition with some α-partitions. However, there 
are some variants of partitions increasing. It is clear, that imposing additional 
restrictions, we can make process of forming partitions more flexible. Thus, the 
restriction on the number of component machines dictates the number of 
partitions in complete set of partitions. The number of blocks in partitions 
determines the number of states of the corresponding component machines.  

 
Example, the partition π1 describes the work of the first component 

machine “opus_1” which does not depend on the inputs x2 and x5; the partition 
π2 describes the work of the second component machine “opus_2” which does 
not depend on the input x1; the product of π1 and π2 is equal to zero partition and 
the complete system of partitions for the FSM “opus” is π={π1,π2}: 
π1={{init1,write0,WMACK};{IOwait,read0,RMACK};{init0,init2,init4,read1}} 
and π2={{init1,IOwait,init0}; {write0,read0,init2}; {WMACK,RMACK,init4}; 
{read1}}. 

The sets of inputs for both component machines “opus_1” and “opus_2” 
are I1=(x1, x3, x4) and I2=(x2, x3, x4, x5). 
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Table 4-2 Constraint matrix for the network “opus” after multiplicative 
decomposition 
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c0 0 1 0 0 0 0 1 0 0 1 
c1 0 0 0 0 1 1 0 1 0 0 
c2 1 0 1 1 0 0 0 0 1 0 
c3 1 1 0 0 1 0 0 0 0 0 
c4 0 0 1 0 0 0 0 1 0 1 
c5 0 0 0 1 0 1 1 0 0 0 
c6 0 0 0 0 0 0 0 0 1 0 

 
 

Decomposition based on state probability distribution (additive 
decomposition) 

First Step 
 Calculating of the distribution of steady state probabilities  
 
Example, for the FSM “opus” we have the distribution of steady state 

probabilities calculated using the probabilistic model of the FSM described 
above: 

Pinit0=0.500 
Pinit1=0.334 
Pinit2=0.088 
Pinit4=0.058 
PIOwait=0.017 
Pread0=0.0006 
Pwrite0=0.0006 
PRMACK=0.0006 
PWMACK=0.0006 
Pread1=0.0006 
After performing sensitive analysis of state probability distribution of the 

considered FSM “opus”, we decide to decompose it into the network of two 
component machine where the first component machine consists of states with 
probability greater than P times the probability of the most frequently occurring 
state. 
 
Second Step 

 Generating a partition πp on the set of states of a decomposable FSM 
 
Example, the 0.9-ordered partition πp for the FSM “opus” is 

πp(S)={{init0,init1,init2,init4,IOwait}; 
{read0,write0,RMACK,WMACK,read1}} 
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Table 4-3 Constraint matrix for the network “opus” after additive 
decomposition 
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c0 1 1 1 1 1 0 0 0 0 0 
c1 0 0 0 0 0 1 1 1 1 1 

 
 

Decomposition with separation of outputs (generalized additive 
decomposition) 

First Step 
 Calculating a partitions on the set of outputs of a decomposable FSM 
 
Example, we divide the FSM “opus” into the network of two component 

machines, the partitions on the set of inputs are: 
O1={y1,y2,y4} 
π(O1)={{init0,init2,write0,read1}; 
{init1,init4,IOwait,read0,RMACK,WMACK}} 
O2={y1,y2,y3,y5,y6} 
π(O2)={{init0,init1,IOwait,read0,read1,write0,WMACK,WMACK}; 
{init2,init4}}. 
 
Second Step 

 Generating a cover ϕ on the set of states of a decomposable FSM 
 
Example, the cover ϕ on the set of states S of the FSM “opus” is 

ϕ(S)={{init0,init2,init4,write0,read1}; 
{init0,init1,IOwait,read0,write0,read1,RMACK,WMACK}}. 

 
Table 4-4 Constraint matrix for the network “opus” after generalized 
additive decomposition 
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4.2.2 Information relationship measures 
The problem of low power synthesis corresponds to an optimal 

decomposition of an FSM reduced to choice of partitions on the set of states of 
prototype machine [65]. For evaluation of the networks, the informational 
modeling based on entropy measure is considered. It enables to enhance the 
decomposition partition search for low power synthesis [32], [33].  

We propose measures to enable qualitative and quantitative analysis of 
the information structure and information flows of a FSM network to control 
low-power synthesis of a sequential circuit [DDECS’02], [MIEL’02], 
[StZag’02]. 

Let E = {e1, e2, …, en} be a set of events which may occur with the 
probabilities p1, p2, … , pn. This set of events is complete that is 
p1+p2+…+pn=1. 

Entropy of E (denoted by H(E)) is given by [11], [45]: 

∑
∈

⋅−=
Ee

epepEH )(log)()( 2   

As an event, we can consider the state of occupation or state transition of 
FSM. The entropy of partition π is [35]: 

∑
∈

⋅−=
π

π
B

BpBpH )(log)()( 2   

Here the probability of the block B⊆S is defined as the cumulative 
occupation probability of the states in B. 

Entropy of the network of machines [35] corresponding to the set of 
partitions, N={π1,π2, …, πn},  is equal to the sum of entropies of partitions of N.  

For partition pair 〈πi, πj〉 the conditional entropy is: 
( ) ( ) ( )ijiji HHH πππππ −⋅=,   

To estimate the power consumption (1), one has to calculate the 
switching factor of the circuit. Entropy is related to switching activity that is if 
the signal switching is high, it is likely that entropy is high also [44]. 
Theoretically confirmed high correlation proves that partition entropy is suitable 
for estimating corresponding component machines [73] which make it a good 
measure for partition choice for appropriate decomposition [35]. For estimation 
of switching activity of an FSM as complete set of events, we consider the set 
of all transitions (corresponding to edges of the STG) in the FSM, Ti. To 
estimate switching activity, we have to take into account only events related to 
changing of states. Criterion of switching activity of component machine Ai, is 
H(Ti) decreased by self-loop component: 

( ) [ ])(log)()(log)( 2
1

2 iiiiii
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ijiijii
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Affirmation. For FSM A, Hsw(A) is maximal if transitions of the FSM are 
equiprobable: 



 64

( )

( )AH

AH
NR sw

ni
i

sw

sw
∑
≤≤= 1)(  

 
(5) 

To be useful for high-level power analysis, the switching activity has to 
be used in conjunction with an estimator for the complexity of the target circuit 
[2]. Since we want to keep the independence from the actual implementation of 
the circuit, we need an encoding independent measure of the complexity of the 
circuit. We suppose, that the measure for complexity of a controller (which is 
synthesized from the FSM description in the design process) approximated by 
the number of rows in the state transition table of the corresponding FSM 
description. It is shown [38] that for low-power design this measure is good as 
parameter of area estimation.  

To calculate this parameter we need to find the symbolic cover of the 
discrete function Fi: D(δ)→πi. Given the FSM, we first assign one-hot codes to 
all states. Then symbolic minimization is applied to the one-hot coded machine 
using multi-valued logic minimization. The result is a symbolic cover, Ki, of the 
Fi. Each element of the symbolic cover is a symbolic prime implicant, that is a 
triple 〈β, B’, B〉 where B’ is the set of states (block of partition M(π)) which 
transit to the next state contained in the same block B of the partition π under 
input condition β. The number of prime implicates, |Ki|, is proportional to 
number of rows in the transition table of the corresponding component machine.  

From this convincing argument: 
( ) ii

compl KAC =   

Next, we define the complexity measure for the network relative to the 
source FSM: 

( )
( )

( )AK

AK
NR ni

i
compl

∑
≤≤= 1  

 
(6) 

In additional, we present the integral criterion (including two parameters 
(5) and (6)) for search decomposition partitions as geometric mean of switching 
measure of order and area: 

( ) ( )NRNRN complsw ⋅=Ω )(   

The value of this estimation takes into account the parameters area 
(capacitance) and register switching rate simultaneously. 

 
Example, we apply introduced notions to the example FSM “dk15” [48] 

for which the exact state occupation probabilities are computed, Figure 4-1.  
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Figure 4-1 STG of the FSM “dk15” with transition probabilities 

Final or limiting probabilities of the states for the FSM “dk15” are 
P(S)={0.2435; 0.3809; 0.3339; 0.0417}, entropy of this complete set is 
H=1.7463. We decompose the FSM “dk15” into a network of two component 
machines. We select two different partitions systems: 
[π1={{st1,st4},{st2},{st3}}, π2={{st1},{st2,st4},{st3}}] and  
[τ1={{st1,st2,st3},{st4}}, τ2={{st1},{st2},{st3,st4}}].  

According to [28] M(π1)=M(π2)={{st1},{st2},{st3},{st4}}, and 
M(τ1)={{st1,st2,st3},{st4}}, M(τ2)= {{st1},{st2},{st3},{st4}}. Entropy of 
partitions in the first case H(π1)=1.575 and H(π2)=1.550; total entropy of states 
after decomposition H(N1)=3.125. In case of the second decomposition system 
H(τ1)=0.250, H(τ2)=1.557, H(N2)=1.808. Transition tables of component 
machines for both cases are presented in Table 4-5 and Table 4-6. 

 
Table 4-5 Transition tables for the component machines in the network N1 

Present 
state 

Next 
state 

qi,j piqi,j  Present 
state 

Next 
state 

qi,j piqi,j 

st1 st1 0.333 0.095  st4 st4 0.25 0.061 
 st2 0.375 0.107   st5 0.375 0.091 
 st3 0.292 0.083   st6 0.375 0.091 

st2 st2 0.500 0.190  st5 st5 0.453 0.191 
 st3 0.500 0.190   st4 0.141 0.060 

st3 st3 0.125 0.042   st6 0.406 0.172 
 st1 0.625 0.209  st6 st6 0.125 0.042 
 st2 0.250 0.083   st4 0.500 0.167 
      st5 0.375 0.125 

 
 

 

st1 st2 

st3 st4 

p1,1= 0.061 
p1,2= 0.091 

p2,2= 0.190 

p3,2= 0,167 

p2,3= 0.190 

p4,2= 0.016 p3,1= 0.190 

p1,3= 0.010 
p41= 0.016 

p3,3= 0.083 
p3,4= 0.042 

p4,3= 0.042 
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Table 4-6 Transition tables for the component machines in the network N2 
Present 

state 
Next 
state 

qi,j piqi,j  Present 
state 

Next 
state 

qi,j piqi,j 

st1 st1 0.977 0.936  st3 st3 0.25 0.061 
 st2 0.023 0.022   st4 0.375 0.091 

st2 st1 1.000 0.042   st5 0.375 0.091 
     st4 st4 0.500 0.190 
      st5 0.500 0.190 
     st5 st5 0.250 0.094 
      st3 0.495 0.186 
      st4 0.255 0.096 
 
Total entropy of transitions before decomposition Esw(A)=5.873 and total 

entropy of transitions after decomposition in the first case Eest(N1)=3.125, in the 
second case Eest(N2)=1.808. The integral criterions for the both networks are 
Cest(N)=0.368 and Cest(N)=1.083 and it is illustrate the complexity of 
implementation.  

We have presented the approach for implementation-independent low 
power partitioning synthesis that attempts to minimize the average number of 
signal transitions at the sequential circuit nodes through DPM. It is shown that 
decomposition yields attractive power reduction in the final implementations. 
What makes entropy especially useful from decomposition and coding point of 
view is fact, that partitions, which are incomparable under the least upper bound 
and the largest lower bounds in classic lattice, usually do have different entropy 
values, so they become comparable from the power consumption point of view. 
The idea of using entropy based on informational measures can be also 
extended to other phases of logic synthesis also. 



 67

4.2.3 Decomposition procedure 
The synthesis of the network of machines in the proposed decomposition 

procedure implies of determining the structure of the network and encoding of 
the network of machines. 

The structure of the network under multiplicative decomposition 
For the FSM A={S,I,O,δ,λ} and the complete system of partitions {πi}, 

1≤i≤n on the set of states S of A we define the network N with n component 
machines Ai={Si,Ii,δi} in accordance to the pairs (S,πi), 1≤i≤n [28]. The number 
of component machines is equal to the number of partitions in the complete 
system of partitions. Each partition πi defines one component machine Ai. The 
number of states of Ai is equal to the number of blocks in πi. The component 
machine Ai is defined as follows: 

The set of states Ai=Bj, 1≤j≤m, where Bj∈πi, 1≤i≤n is the jth block of the 
partition πi. 

The sets of inputs Ii for each component machines Ai defines by using the 
operator MI-S(πi) on the set of inputs of FSM A [28]. 

The set of internal binary outputs Zo
i for each component machines Ai 

describes by partitions πi. 
The set of internal binary inputs ZI

i for each component machines Ai 
defines by using operator MS-S(πi) [28]. MS-S(πi) describes the information 
received from the other components of the network sufficient for the component 
machine Ai to compute its next state. 

 
Example, for the FSM “opus” we have  

A1(π1)={{init1,write0,WMACK}; {IOwait,read0,RMACK}; 
{init0,init2,init4,read1}}, A2(π2)={{init1,IOwait,init0}; {write0,read0,init2}; 
{WMACK,RMACK,init4}; {read1}}. 
A1(s)={st0,st1,st2},  
A2(s)={st3,st4,st5,st6}. 
MI-S(π1)={x1, x3, x4}, 
MI-S(π2)={x2, x3, x4, x5}, 
MS-S(π1)={{RMACK,read1,write0}; {init4}; IOwait}; {WMACK,init0}; {init1}; 
{init2,read0}}, 
MS-S(π2)={{read0}; {init2}; {IOwait}; {init1}; {init4}; {init0,read1,write0}; 
{RMACK,WMACK}}. 
Zo

i(π1)={z1
1, z1

2} 
Zo

i(π2)={z2
1, z2

2} 
ZI

i(π1)={z2
1, z2

2} 
ZI

i(π1)={z1
1, z1

2} 
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Figure 4-2 Structure of the network “opus” under multiplicative 
decomposition 

 
Table 4-7 State transition table for the component machine “opus_1”  

№ Present state Input Next state 
1 st0 x4z2

1¬z2
2∨¬z2

1z2
2∨x3z2

1  st0 
2  ¬x3z2

1z2
2 st1 

3  ¬x3¬z2
1¬z2

2∨¬x3¬x4¬z2
2
 st2 

4 st1 x3z2
1∨x3z2

2∨x4z2
1z2

2 st0 
5  ¬x3 ∨¬x3¬x4z2

2 st1 
6  ¬x3¬z2

1z2
2 st2 

7 st2 ¬z2
1z2

2∨x3z2
1∨x4z2

2
 st0 

8  x1¬x3¬x4z2
1z2

2 st1 
9  ¬x3¬z2

1z2
2∨¬x1¬x3¬x4z2

1 st2 
 

Table 4-8 State transition table for the component machine “opus_2”  
№ Present state Input Next state 
1 st3 x2x3z1

1∨¬x2x3z1
2∨z1

1z1
2∨x2¬x4z1

2∨¬x2¬x4z1
1 st3 

2  x2¬x3x4¬z1
1z1

2∨¬x2¬x3x4z1
1¬z1

2∨x2¬x3¬x5z1
1¬z1

2 st4 
3  x2¬x3¬x4x5z1

1¬z1
2
 st5 

4 st4 ¬z1
1z1

2∨x3z1
1 st3 

5  ¬x3z1
1z1

2 st5 
6  ¬x3z1

1¬z1
2 st6 

7 st5 x3z1
1∨x3z1

2∨¬x4z1
1z1

2
 st3 

8  ¬x3x5z1
1¬z1

2∨¬x3x5¬z1
1z1

2 st4 
9  ¬x3x4z1

1z1
2∨¬x3¬x5z1

1¬z1
2∨¬x3¬x5¬z1

1z1
2 st5 

10 st6 z1
1z1

2 st3 
 
 
 

opus_1 opus_2 

x1          x3  x4    x2 x5  

z1
1   

z1
2 

z2
1   

z2
2 

y1 y2  y3 y4 y5 y6 
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The structure of the network under additive decomposition 
For the FSM A={S,I,O,δ,λ} and the partition π={B1,…,Bn} on the set of 

states of A, where Bi(i=1,…,n) is a block of this partition we define the network 
N with n component machines Ai={Si,Ii,Oi,δi,λi} in accordance to the pair (S,π) 
[5]. The number of component machines is equal to the number of blocks in the 
partition π.  

The FSM Ai is defined as follows. The set of states Si=Bi∪sidle where Bi is 
the ith block of the partition π and sidle is the additional (extra wait [70]) state in 
Ai, such state exists in each component machine. To define the sets of inputs Ii 
and outputs Oi in Ai we put the sets Ii(s), Oi(s), Gi(s), and Ti(s) in accordance to 
each state s of the FSM A: Ii(s) is the set of inputs in all conjunctions for the 
transitions from s, Oi(s) is the set of outputs for all transitions from the states s, 
Gi(s) is the set of states from which there are transitions to the state s and a in 
not included in Gi(s): Gi(s)={sj|δi(sj,x)=s, x∈I, sj≠s}, Ti(s) is the set of states to 
which there are transitions from the state s; s is not included in Ti(s): 
Ti(s)={si|δi(s,x)=si, x∈I, si≠s}. 

For each block Bi(i=1,…,n) of the partition π we define the following sets 
[5]: I(Bi) is the set of inputs at all transitions from the states of the block Bi in 
the transition table of the FSM A, O(Bi) is the set of outputs at all transitions 
from the states of the block Bi in the transition table of the FSM A, 
G(Bi)={sj|δi(sj,x)=s, x∈I, sj∉Bi, s∈Bi} is the set of states not included in Bi, form 
which there are transitions to the states of Bi in the FSM A, and 
T(Bi)={si|δi(s,x)=si, x∈I, si∉Bi, s∈Bi} is the set of states not included in Bi, to 
which there are transitions from the states of Bi in the FSM A. 
Q(Bi)={s|δi(sj,x)=s, x∈I, sj∉Bi, s∈Bi} is the subset of states of Bi, to which there 
are transitions from the states not included in Bi (from the states of T(Bi)) in the 
FSM A. 

Next we define the set of inputs Ii in the component machine Ai: 
Ii=I(Bi)∪Zi

I, where Zi
I
 is the set of additional inputs which connect other 

component machines with the machine Ai. To define Zi
I we put the additional 

inputs z of the component machine in accordance to each state s∈Q(Bi). The 
number of elements in Zi

I is the number of additional inputs in the component 
machine Ai and is equal to the number of states in Q(Bi): Zi

I={z|δi(sj,x)=s, x∈I, 
si∉Bi, s∈Bi}. Thus, if there is a transition from sj to s in the FSM A and s∈Bi (s 
is the state of the component machine Ai) and si∉Bi (si is not the state of Ai), 
then there is an additional input z in the machine Ai. 

Similarly, we define the set of additional outputs Zi
O which connect the 

machine Ai Ai with other components in the network. To define Zi
O we put the 

additional output z of the component machine Ai in accordance to each state 
s∈T(Bi). The number of elements in Zi

O is the number of additional outputs in 
the component machine Ai is equal to the number of states in T(Bi). Thus, if 
there is a transition from s to si in the FSM A and s∈Bi (s is the state of the 
component machine) and si∉Bi (si is not the states of Ai), then there is an 
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additional output z in the machine. The sets Q(Bi) and T(Bi) define the sets of 
additional input Zi

I and output Zi
O in the component machine Ai. 

The transition function δi and the output function λi in the component 
machine Ai are defined as follows. Let δ(si,x)=s; λ(si,x)=y be the transition in the 
FSM A. If si,s∈Bi; si and s are the states of the same machine Ai, then δi(si,x)=s; 
λi(si,x)=y is the transition in the machine Ai. If si∈Bi, sj∈Bj; si and sj are the states 
of two different machines Ai and Aj, then the component machine Ai transits 
from the state si to the additional state sidle with the output Oi and the additional 
output zO: δi(si,x)=sidle; λi(si,x)=y∪{zO}. The additional output of the component 
machine Ai is the input of the component machine Aj. This input zI produces the 
transition from the additional state sidle to the state s with the output y0 in the 
machine Aj: δj(sidle,zI)=s; λj(sidle,zI)=y0. y0 corresponds to the output vector 
containing only zero components, none of y1, …, ym  are written in the column 
“output” at the transition (sidle,s) in the machine Aj. 

 
Example, for the FSM “opus” and the decomposition partition π=πp, 

πp(S)=[(init0,init1,init2,init4,IOwait);(read0,write0,RMACK,WMACK,read1)] 
we define the network “opus” based on state probability distribution under 
additive decomposition, Figure 4-3. 

 
Figure 4-3 Structure of the network “opus” based on probability 
extraction 

B1(πp)={init0,init1,init2,init4,IOwait}, 
B2(πp)={read0,write0,RMACK,WMACK,read1}; 
B1(s)={st0,st1,st2,st3,st4,stidle},  B2(s)={st0,st1,st2,st3,st4,stidle}; 
 The sets Ii(s), Oi(s), Gi(s), and Ti(s) for the FSM “opus” are presented in 
Table 4-9. 
I(B1)={x1, x2, x3, x4, x5},     I(B2)={x3, x5}; 
O(B1)={y1, y2, y3, y4, y5, y6},     O(B2)={y1, y2, y3, y6}; 
G(B1)={read0,write0,RMACK,WMACK,read1}, G(B2)={init0,IOwait}; 
T(B1)= {read0,write0,RMACK,WMACK},   T(B2)={init0,IOwait}; 
Q(B1)={init0,IOwait},      
Q(B2)={read0,write0,RMACK,WMACK}. 

x1x2x3x4x5 

y1y2 y3y4y5y6  

z1 z2 

 

 
 
z3, z4, 
z5, z6 

 
opus_p 

 
opus_add 
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Table 4-9 The state parameters of the FSM “opus” 
State Ii(s) Oi(s) Gi(s) Ti(s) 
init0 x3 y1y2 init1, init2, init4, IOwait, 

RMACK, WMACK, 
read0, 

read1, write0 

init1 

init1 x3x4 y1y2y6 init0, IOwait, read0 init0 
init2 x3 y1y2y4 init1, IOwait init0,init4 
init4 x3x4 y1y2y4

 init2 init0,IOwait 
IOwait x1x2x3x4x5 y1y2y3y5y6 init4, read1,write0 init0,init1,init2, 

RMACK,WMACK, 
read0,write0 

RMACK x3x5 y1y2y3 IOwait init0,read0 
WMACK x3 y1y2y5 IOwait init0,write0 

read0 x3 y1y2y3y6 IOwait, RMACK init0,read1 
read1 x3 y1y2 read0 init0,IOwait 
write0 x3 y1y2 IOwait, WMACK init0,IOwait 

 Additional inputs: Z1
I={z1, z2}, Z2

I={z3, z4, z5, z6}; 
 Additional outputs: Z1

O={z3, z4, z5, z6}, Z2
O={z1, z2}. 

 Table 4-10 and Table 4-11 present the transition tables for the component 
machines “opus_p” and “opus_add”. 

Table 4-10 State transition and output table for the component machine 
“opus_p”  

№ Present state Input Next state Output 
1 st0 x3 st0 y1y2 

2  ¬x3 st1 y1y2 
3 st1  x3

 st0 y1y2 
4  ¬x3¬x4 st1 y1y2 
5  ¬x3x4 st2 y1y2y6 
6 st2 x3 st0 y1y2 
7  ¬x3 st4 y1y2y4 
8 st3 x3

 st0 y1y2 
9  ¬x3x4 st3 y1y2y4 

10  ¬x3¬x4 st4 - 
11 st4 ¬x1¬x2¬x3¬x4 st0 y1y2 
12  x1¬x2¬x3¬x4 st1 y1y2 
13  ¬x1x2¬x3¬x4¬x5 st2 y1y2y6 
14  x1x2¬x3¬x4¬x5 st4 - 
15  ¬x1x2¬x3¬x4¬x5 stidle z3 y1y3 
16  x1x2¬x3¬x4¬x5 stidle z4 y1y5 
17  ¬x1x2¬x3¬x4x5 stidle z5  y1 
18  x1x2¬x3¬x4x5 stidle z6 y1 
19 stidle z1 st0 - 
20  z2 st4 - 
21  ¬z1¬z2 stidle - 
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Table 4-11 State transition and output table for the component machine 
“opus_add”  

№ Present state Input Next state Output 
1 st0 x3 stidle z1 y1y2 

2  ¬x3 st4 y1y3y6 
3 st1 x3 stidle z1 y1y2 
4  ¬x3 stidle z1 
5 st2 x3 stidle z1 y1y2 
6  ¬x3x5 st0 y1y3 
7  ¬x3¬x5 st2 y1 
8 st3 x3 stidle z1 y1y2 
9  ¬x3x5 st0 y1y5 

10  ¬x3¬x5 st3 y1 
11 st4 x3 stidle z1 y1y2 
12  ¬x3 stidle z1 
13 stidle z3  st0 - 
14  z4  st1 - 
15  z5  st2 - 
16  z6 st3 - 
17  ¬z3¬z4¬z5¬z6 stidle - 
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The structure of the network under generalized additive decomposition 
For the FSM A={S,I,O,δ,λ} and the cover ϕ={B1,…,Bn}, Bi⊆S, s∈Bi ⇔ 

O(s)∩Oi≠∅ on the set of states of A in accordance to the pair (S, πy) we define 
the network N with n component machines Ai={Si,Ii,Oi,δi,λi} [5]. The number of 
component machines is equal to the number of blocks in the cover ϕ.  

The state s will be in the block Bi of cover ϕ if there is at least one output 
from the block Bi of the partition πy at the transitions from this state. The same 
state s will be in several blocks of ϕ, for example, in Bi and Bj, if O(s)∩Oi≠∅  
and O(s)∩Oj≠∅, i.e. the output from Bi and Bj are produced at the transitions 
from s. 

In exact the same way, we define the cover ϕtt on the set of rows of the 
transition table of A in accordance to the pair (S, πy): ϕtt={B1

tt,…,Bn
tt}, Bi

tt⊆S, 
r∈Bi

tt ⇔ O(r)∩Oi≠∅. The row r will be in the block Bi
tt of the cover ϕtt, if at 

least one output from the block Bi
tt of the partition πy is written in this row r. 

Just as for ϕ, the same row r will be in several blocks of ϕtt, for example, in Bi
tt 

and Bj
tt, if O(r)∩Oi≠∅  and O(r)∩Oj≠∅, i.e. the output from Bi

tt and Bj
tt are 

written in the row r. 
Component machine Ai is defined as follows: 
Si=Bi∪sidle is the set of states, where Bi is the ith block of the cover ϕ and 

sidle is the additional state in Ai, such state exists in each component machine. 
Ii=I(Bi

tt)∪Zi
I is the set of inputs in the component machine Ai, where 

( ) ( )U
i
tt

tt

Br

ii rIBI
∈

= , Ii(r) is the set of inputs in the row r of the FSM A transition 

table and Bi
tt is the ith block of the cover ϕtt. 

Zi
I={z|δi(si,x)=s, x∈I, si∉Bi, s∈Bi}, x is the input signal at the transition 

from si to s, s∈Bi. The additional input z in the component machine Ai in 
accordance to each s∈Bi exists if there is at least one transition to this state s 
from the state sj not included in Bi in the FSM A. 

Oi=O(Bi)∪Zi
O is the set of outputs in the component machine Ai, where, 

Oi(Bi) is the ith block of the partition πy. 
Zi

O={z|δ(s,x)=sj, x∈I, s∈Bi, sj∈Bj, s∉Bi, (i≠j)}. The additional output z in 
the component machine Ai in accordance to each s∉Bi exists if the following 
two conditions are concurrent: 

- there is a transition from the state s included in Bi to the state sj 
not included in Bi in the machine A; 

- there is at least one block Bj (i≠j) such that sj is included in Bj and 
is s not included in Bj among the blocks of the cover ϕ.  

Next we define the transition δi and output λi functions in component 
machines. Assume that here is a transition from s to sj with the input x and the 
output Oi in the FSM: δ(si,x)=s; λ(si,x)=Oi. Consider the corresponding 
transitions in component machine. Let ∑i be the set of component machine with 
the state si, ∑j be the set of component machine with the state sj, and ∑ij=∑i∩∑j 
be the set of component machine with the states si and sj. If Ak∈∑ij, then in Ak: 
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δk(si,x)=s. If Ai∈∑i\∑ij (si is the state of Ai and sj is not the state of Ai), then in Ai: 
δi(si,x)=sidle. 

Output function for the machine Al∈∑i (si is the state of Al and it is also 
possible that sj is the state of Al): λl(si,x)=Oi∩Ol. Moreover, one and only one 
machine from ∑i, for example Ar, must have the output signal zr, which forces 
each machines Av∈∑i\∑ij (if this set is not empty) to transit from the additional 
state sidle to sj. In the machine Ar∈∑i: λr(si,x)= Oi∩Or∪{zr}. If Am∈∑i\∑ij (sj is 
the state of Am and si is not the state of Am), then in Am: δm(sidle,zk)=sj; 
λm(sidle,zk)=y0. 

 
Example, for the FSM “opus” and the decomposition cover ϕ(S)={{init0, 

init2, init4, write0, read1}; {init0, init1, IOwait, read0, write0, read1, RMACK, 
WMACK}} we define the network “opus” under generalized additive 
decomposition, Figure 4-4. 

 
Figure 4-4 Structure of the network “opus” under generalized additive 
decomposition 

 
Table 4-12 State transition and output table for the FSM “opus_O1”  
№ Present state Input Next state Output 
1 st0 x3 st0 y1y2 

2  ¬x3 stidle z1 y1y2 
3 st1 x3 st0 y1y2 
4  ¬x3 st2 y1y2y4 
5 st2 x3

 st0 y1y2 
6  ¬x3x4 st2 y1y2y4 
7  ¬x3¬x4 stidle z2 
8 st3 x3 st0 y1y2 
9  ¬x3 stidle z2 

10 st4 x3 st0 y1y2 
11  ¬x3 stidle z2 
12 stidle z3 st1 - 
13  ¬z3 stidle - 

 
 

opus 
O1

 

opus 
O2

 

x1 x2 x3 x4 x5 

z1    
z2 

y4 y1 y2  y3 y5 y6

z3
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B1(ϕ)={init0,init2,init4,write0,read1}, 
B2(ϕ)={init0,init1,IOwait,read0,write0,read1,RMACK,WMACK}; 
B1∩B2={init0,write0,read1}. 
For the FSM “opus”, Table 4-1, we have: 
B1(ϕtt)={1,2,6,7,8,9,10,27,28,29,30}, 
B2(ϕtt)={1,2,3,4,5,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, 
29,30}; 
B1∩B2={1,2,27,28,29,30}. 

 B1(s)={st0,st1,st2,st3,st4,stidle}, B2(s)={st0,st1,st2,st3,st4,st5,st6,st7,stidle}. 
 I(B1)={x3, x4},   I(B2)={x1, x2, x3, x4, x5}.  
 O(B1)={y1, y2, y4},    O(B2)={y1, y2, y3, y5, y6}. 
 Additional inputs: Z1

I={z3}, Z2
I={z1, z2}, outputs: Z1

O={z1, z2}, Z2
O={z3}. 

 Transition tables for the component machines “opus_O1”and “opus_O2” are 
presented in Table 4-12 and Table 4-13. 

Table 4-13 State transition and output table for the FSM “opus_O2”  
№ Present state Input Next state Output 
1 st0 x3 st0 y1y2 

2  ¬x3 st1 y1y2 
3 st1 x3 st0 y1y2 
4  ¬x3¬x4

 st1 y1y2 
5  ¬x3x4 stidle z3y1y2y6 
6 st2 x3 st0 y1y2 
7  x1¬x2¬x3¬x4 st1 y1y2 
8  ¬x3x4 stidle z3y1y2y6 
9  ¬x1¬x2¬x3¬x4 st2 - 

10  ¬x1x2¬x3¬x4¬x5 st5 y1y3 
11  x1x2¬x3¬x4¬x5 st7 y1y5 
12  ¬x1x2¬x3¬x4x5 st3 y1 
13  x1x2¬x3¬x4x5 st4 y1 
14 st3 x3 st0 y1y2 
15  ¬x3x5 st5 y1y3 
16  ¬x3¬x5 st3 y1 
17 st4 ¬x3 st0 y1y2 
18  x3¬x5 st7 y1y5 
19  ¬x3x5 st4 y1 
20 st5 x3 st0 y1y2 
21  ¬x3 st6 y1y3y6 
22 st6 x3 st0 y1y2 
23  ¬x3 st2 - 
24 st7 x3 st0 y1y2 
25  ¬x3 st2 - 
26 stidle z1 st1 - 
27  z2 st2 - 
28  ¬z1¬z2 stidle - 
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4.2.4 Encoding of the network of machines  

The problem of assigning a binary code to all states of machine leads to 
the problem of assigning a binary code to the blocks of partitions. Extended 
logic optimization problem is to find an encoding of blocks of states of a 
machine with aim to modify the size of its minimum representation. 

State encoding of the network of machines after multiplicative 
decomposition and state encodings in case of additive and generalized additive 
decompositions have one fundamental difference. When we assign a binary 
code to the states of decomposable FSM after multiplicative decomposition we 
are taking into consideration the fact that this state exerts on states of each 
component machine in the network.  

In case of additive decomposition we apply independent encoding to each 
component machine in the network. It is because the state of decomposable 
FSM presents strongly only in one component machine. 

We decompose an FSM using generalized additive decomposition we 
also encode each component machine independently. However in this case we 
have the situation when one state has the different code depending on the work 
of corresponding components. 

 
State encoding of the network of machines after multiplicative 

decomposition 
In [WsBP’04] we propose the encoding method for the network of 

machines based on the measure of information relationship and guarantee the 
minimum code length for given decomposition constraints. It is important to 
note that the solution of this task is tightly connected with classical 
combinatorial problem – face hypercube embedding [24].  

We use the standard approach to define the problem of state encoding of 
the FSM which was described in the Chapter 3. State encoding of the network 
of machines can be modeled by a binary constraint matrix with nr×ns dimension, 
whose nr rows are the optimized cover corresponding to the symbol set S under 
consideration. The matrix has as many columns as ns symbols in the set of states 
S. The fundamentally difference between encoding of the FSM and the network 
of machines consists in meaning that the encoding of the network of machines 
should satisfy to decomposition constrains. Here we accentuate that we form the 
encoding partitions with stringent restriction from the complete system of 
partition (decomposition constraints). It means that we are definitely limited in 
generation of encoding partitions. 

Encoding problem has always a solution satisfying the constraints [75]. 
The encoding of ns symbols in a field may require more than |log2 ns| bits. Hence 
the search for a minimum bit encoding is relevant. The problem of finding the 
minimum k and related encoding such that is decomposition constraints 
satisfied is called face hypercube embedding [14], [23], [24].  

The constructing a Boolean hypercube with aim of state assignment (or 
encoding) of FSM is presented in [59]. The process is the sequence of n steps, 
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after which n-dimensional Boolean hypercube is obtained. The n-component 
Boolean vectors are assigned to the vertices of the hypercube where the 
neighborhoods relation between the vectors presented by the edges of the 
hypercube. 

Approach of encoding of the network of machines presented in the 
current work is distinguished from [59] by two peculiarities. First is that we 
assigned each states of the network of machines to Boolean vectors, not the 
states of one FSM. Second peculiarity is that constructing a Boolean hypercube 
in our approach is with using the measure of informational relationship. 

Our desire to evaluate the contents of information in encoding partitions 
with respect to information in the complete system of partitions is likewise the 
concept of information relationship by Jozwiak [31]. The information 
relationships and measures enable to analyze relationships between the modeled 
information streams and constitute an important analysis apparatus that can be 
used for analysis and synthesis of various information systems. In the field of 
fixed task, i.e. encoding of the network of machines, we are interesting in 
relationships between information in information streams described by coding 
partitions and completed information reflected by system of partitions.  

Information in discrete systems is considered by values of some signals 
or variables which can be represented by a set system. A certain set system 
gives information about elements of a set on which this system was described. 
We deal with set system defined on some set as a compatibility relation.  

When we think about relationships between information in information 
streams described by encoding partitions and complete system of partitions we 
are interesting in combined information about these streams. Encoding partition 
is the two-block partition on the set of states S of decomposable FSM and 
complete system of partitions is the set system on the set S. Then we interpret 
product of the set system and the partition as joint information [WsBP’04]. 

 
Example, for the network “opus” after multiplicative decomposition the 

encoding matrix is presented in Table 4-14. 
Table 4-14 Encoding matrix for decomposable FSM “opus” after 
multiplicative decomposition and encoding matrix of the network “opus” 

States Codes  Constraints Codes 
init0 1001  c0 0--0 
init1 000  c1 0--1 
init2 1011  c2 1--1 
init4 1101  c3 -00- 

IOwait 0001  c4 -01- 
Rmack 0101  c5 -10- 
Wmack 0100  c6 1111 
read0 0011    
read1 1111    
write0 0010    
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Independent state encoding of component machines in the network after 
additive and generalized additive decompositions 

As a result of FSM decomposition stage, we receive the network of 
interacted and interconnect component machines. In contrast to the network of 
machines described in previous section in case of additive decomposition the 
network consists of components working alternatively in time. It means that all 
component machines except one are suspended in one of extra state – the “wait” 
or “idle” state. We do not need to keep in mind the information about global 
state of the network. In one particular period of time only one machine is active 
while the other machines are in “wait” state. It is gives us possibility to encode 
each machine in the network independently. Usually the number of states of 
component machines is less than the number of states of decomposable FSM. 
Hence we can find the encoding with shorter encoding length. 

Next we apply the new low power state encoding method presented in 
Chapter 3 to the component machines in the network in case of additive and 
generalized additive decomposition.  

Example, the encoding matrices after independent state encoding for the 
component machine “opus_p” and “opus_add” are presented in Table 4-15. 
Table 4-16 presents the same encoding for the component machines “opus_O1” 
and “opus_ O2”. 

Table 4-15 Encoding matrices for the component machines “opus_ p” 
and “opus_ add” 

States Codes  States Codes 
st0 010  st0 101 
st1 000  st1 010 
st2 001  st2 001 
st3 110  st3 100 
st4 100  st4 110 
stidle 111  stidle 000 

 
Table 4-16 Encoding matrices for the component machines “opus_O1” 
and “opus_ O2” 

States Codes  States Codes 
st0 000  st0 0100 
st1 011  st1 0001 
st2 ---  st2 0010 
st3 ---  st3 0110 
st4 ---  st4 1000 
stidle 001  st5 1110 

   st6 1100 
   st7 1010 
   stidle 0000 
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Optimization of the network under multiplicative decomposition 
This step of decomposition procedure enables to optimize the network of 

machines [16] under multiplicative decomposition in terms of the number of 
internal binary connections. In [BEC’04] we illustrate that the proposed 
encoding technique allows minimizing the total number of internal binary 
variables between component machines by generation of new M-partitions [28] 
after encoding of the network of machines. M(πi) keeps amount of information 
needed for ith component machine in the network. In other words, the operator 
M(πi) gives the maximum front partition of partition pair. Informally speaking, 
for a given partition πi the partition M(πi) describes the least amount of 
information we must have about the present state of the machine to the next 
state (i.e., the block of πi which contains the next state of the machine). If 
partition M(πi) is less or equal to multiplication of partitions from {πi} that it 
means that ith component machine receives enough information from 
component machines with which it is connected accordingly relation of 
connection to compute the next state. 

 
Example, we have selected the FSM “bbtas” [48]. To decompose the 

FSM we select an arbitrary complete system of two partitions: [π1={{st0, 
st1},{st2, st3},{st4, st5}};π2={{st0, st2},{st1, st3},{st4};{st5}}].  

The M(πi) are M(π1)={{st0}, {st1, st2}, {st3},{st4},{st5}} and 
M(π2)={{st0},{st1},{st2},{st3},{st4},{st5}}. The structure of the network 
“bbtas” is depicted on the Figure 4-5. The internal binary connections are:  

z1
1={{st0, st1, st2, st3},{st4, st5}}; 

z1
2={{st0, st1}, {st2, st3, st4, st5}}; 

z2
1={{st0, st2, st4},{ st1, st3, st5}}; 

z2
2={{st0, st2, st5},{ st1, st3, st4}}. 

 
Figure 4-5 Structure of the network “bbtas” before optimization 

We have applied the proposed encoding and as a result have received the 
encoding matrices, Table 4-17. The second matrix in the Table 4-17 presents the 
codes of the states of the network “bbtas” which are presented by blocks of 

bbtas_1 bbtas_2 

            x1  x2    

z1
1   

z1
2 

z2
1   

z2
2 

y1 y2  
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partitions from the complete system of partitions. The first three rows of the 
matrix correspond to blocks of the first partition and next four rows correspond 
to blocks of the second partition. 

Table 4-17 Encoding matrices for decomposable FSM “bbtas”  
States Codes  Constraints Codes 

st0 110  c0 -10 
st1 010  c1 -01 
st2 101  c2 -00 
st3 001  c3 1-- 
st4 100  c4 0-- 
st5 000  c5 100 

   c6 000 
 
New encoding enables optimization of the network of machines in terms 

of number of internal binary connections by generation of new M-partitions: 
M(π1)={{st0}, {st1,st2}, {st3}, {st4},{st5}} and M(π2)={{st0,st3,st5}, {st1}, 
{st2}, {st4}}. The new realization of the “bbtas” network is depicted on the 
Figure 4-6. The internal binary connections are:  

z1
1={{st0, st1, st4, st5},{st2, st3}}; 

z1
2={{st0, st1}, {st2, st3, st4, st5}}; 

z2
1={{st0, st2, st4},{ st1, st3, st5}}. 

 
Figure 4-6 Structure of the network “bbtas” after optimization 
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4.3 Experimental results 
The part of the experimental results reported in current subchapter has 

been presented in the articles mentioned in list of publications. All circuits are 
from industrial MCNC benchmarks suite [48]. Experiments were run on java 
applets on various aspects on decomposition and synthesis from the project 
Decomposition & Synthesis (D&S) [18]. The series of applets of the project 
D&S is a decomposition software system which is on the one hand a research 
tool and on the other hand it is an educational system [BEC’02], and 
[EUROCON’03].   

The experiments carried on decomposition software system because of 
common standard of output files was supplemented with commercial design 
frames – SYNOPSIS and SIS: A System of Sequential Circuits System [63].  

 
Stochastic investigation of an FSM 

We have first report the stochastic investigation of FSM decomposition 
which has been done using FSMNet Stochastic Explorer Applet (available: 
http://www.pld.ttu.ee/applets/probability/). Applet represents an FSM or a FSM 
network stochastic exploration tool, providing user with a possibility to carry 
out some entropic evaluations. 

To ensure that partition entropy is a good indicator of implementation 
complexity, experiments have been carried on hundreds of machines [35]. They 
proved that the correlation between of decomposition partition πi and the 
complexity of sub-FSM Ai (area) are very high (more than 0,95). What makes 
entropy especially useful from decomposition point of view is fact, that 
partitions that are incomparable under the least upper bound and the largest 
lower bounds in classic lattice usually do have different entropy values [34], so 
they become comparable from the power consumption point of view.  

 Two experiments were performed [DDECS’02]: 
 We show the difference D* between the maximum switching activity 

max(Hsw(A)) and switching activity for assumption of equiprobability of 
primary input patterns Hsw(A). This is done to emphasize that if we have 
not real distribution of inputs, the assumption of their eqiprobability 
(which is sometimes used) is doubtful for estimation. 

 The second part is devoted to the two-component decomposition with 
estimates. The first sub-FSM corresponds to two-block partition of the 
set of states that has the minimum entropy by comparison with other 
partitions of the same rank. We can consider this partition of set space 
as the first step for iterative process of decomposition. 

 
 

 

http://www.pld.ttu.ee/applets/probability/
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Table 4-18 Stochastic analysis and partition examples 
C

irc
ui

ts
 

(H
sw

(A
))

 

m
ax

(H
sw

(A
))

 

D
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(D
*)

%
 

H
sw

(A
1)

 

H
sw

(A
2)

 

H
sw

(N
1)

 

bbtas 2.4025 3.5850 1.1824 61.01 0.5313 1.9770 2.5083 
beecount 1.2816 4.5236 3.2420 28.33 0.0543 1.2408 1.2951 

dk15 1.7463 3.5850 1.8386 48.71 0.2502 1.5498 1.8000 
dk27 2.6737 3.7004 1.0267 72.25 0.2762 2.5425 2.8187 
lion 1.1983 3.3219 1.4036 57.75 0.9183 1.0000 1.9183 
mc 1.4216 3.0000 0.5784 47.39 0.2285 0.6984 0.9269 
s8 2.2566 3.7004 1.4439 60.98 0.8366 1.5219 2.3586 

 
 

Complexity criteria based on state probability distribution 
Table 4-19 summarizes of area estimation and power consumption for the 

set of selected benchmarks using commercial design frame (SYNOPSIS). These 
parameters were chosen as complexity criteria for decomposable system. 

The complexity of the components depends not only on the number of 
states [10], but also on the number of inputs. Most sequential components have 
large state space that cannot be enumerated in a reasonable amount of time. 
However, the input distribution gives us the possibility to external control of 
machines behavior. Evidently that if we can mark out from all FSM inputs such 
that have the most informational content, we will have the techniques for 
external input division. Accordingly of this assumption, informational laden 
inputs direct the states which are compose the network of two components.  

Table 4-19 Area and power estimation for decomposable machine 
 

Circuits 
 

States 
 

Inputs 
 

Cells 
Area  

combin unit 
Area  

noncombin 
unit 

Power  
net switch (μW) 

log 17 9 71 91 35 1,1147 
dvram 35 8 100 136 42 1,1103 
nucpwr 29 13 90 120 35 1,0246 

sync 52 19 147 223 42 1,3254 
planet 48 7 237 356 42 6,5247 
ex6 8 5 72 107 21 2,9367 
opus 10 5 54 79 28 2,6848 
ex4 14 6 48 66 28 1,1102 
rie 29 9 98 135 35 1,0383 

 
An experiment for circuits in Table 4-20 illustrates the complexity 

parameters for first component. Table 4-21 presents the values of these 
parameters for second component machine. 



 83

Table 4-20 Area and power estimation for the first component machine 
 

Circuits 
 

State 
 

Inputs 
 

Cells 
Area  

combin 
unit 

Area  
noncombin 

unit 

Power  
net switch (μW) 

log 5 3 22 28 11 0,6682 
dvram 6 3 21 29 9 0,5788 
nucpwr 8 5 28 38 11 0,711 

sync 18 6 50 76 15 0,9879 
planet 17 2 82 123 15 4,964 
ex6 7 2 50 75 15 2,9367 
opus 3 1 15 22 8 2,2909 
ex4 5 1 15 20 9 0,7084 
rie 11 4 39 54 14 1,0383 

 
Table 4-21 Area and power estimation for the second component machine 

 
Circuits 

 
State 

 
Inputs 

 
Cells 

Area combin 
unit 

Area  
noncombin 

unit 

Power  
net switch 

(μW) 
log 5 5 31 39 15 0,5210 

dvram 8 5 31 42 13 0,5700 
nucpwr 7 8 33 43 13 0,3899 

sync 8 13 44 66 13 0,4134 
planet 7 5 52 78 10 1,9657 
ex6 2 3 28 42 9 0,0001 
opus 4 4 26 37 14 0,7192 
ex4 4 5 22 30 13 0,4501 
rie 4 5 24 32 9 0,5098 

 
 

 

The comparison of decomposition techniques  
In the experiment was used tree applets of D&S: Multiplicative 

Decomposition (available: http://www.pld.ttu.ee/applets/dsa/), Additive 
Decomposition (available: http://www.pld.ttu.ee/applets/decS/), and 
Generalized Additive decomposition (available:  
http://www.pld.ttu.ee/applets/decO/).  

Table 4-22 contains the results of comparative experiments of 
decomposition techniques and approaches. The area estimation was done using 
the commercial design frame (SYNOPSIS). This parameter was chosen for 
complexity criteria for decomposition system [EUROCON’03]. 

 
 
 

 

http://www.pld.ttu.ee/applets/dsa/
http://www.pld.ttu.ee/applets/decS/
http://www.pld.ttu.ee/applets/decO/
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Table 4-22 Results of comparison and implementation 
 

Circuits 
Total # of states of 

component 
machines 

Total # of states (alt. 
approach) 

Area combinat 
ratio 

log 12 19 0.75 
dvram 14 37 0.50 
nucpw 15 31 0.68 
sync 26 54 0.67 

planet 24 50 0.59 
ex6 9 10 1.14 
opus 7 12 0.78 
ex4 9 16 0.75 

 
The promising application of our technique is low power design of 

control-dominated discrete systems. The idea of partition for low power is that 
in behavioral descriptions of hardware, a small set of computation often 
accounts for most of the computational complexity as well as power dissipation. 
The decomposition focuses on power dissipation as the main criteria of design 
optimization. Techniques based on disabling the input/state registers when some 
input conditions are met have been proposed and shown to be among the most 
effective in reducing the overall switching activity in sequential circuits.  

Our reasoning proceeds from the premise that the solution of the problem 
of FSM synthesis for low power can be reduced to the FSM decomposition with 
distributed primary output/input variables and appropriate synthesis of 
machines network. Results confirmed that it is possible to significantly reduce 
switching activity of implementation and that significant reduction in power 
consumption could be achieved without performance degradation. 

 
State encoding of the network of machines 

The experimental investigations described in this section present the 
efficiency of our new encoding algorithm of the network of machines 
[WsBP’04]. The experiment was done using Network Encoding function of Java 
Applet on Multiplicative Decomposition (available: 
 http://www.pld.ttu.ee/applets/dsa/).  

The strategy of the algorithm allows demonstrating the resources by two 
experiments. The first experiment is oriented to the encoding of the network of 
machines in general. The second experiment is practical application of the 
algorithm to the network of machines optimization.  

The goal of the first experiment is to illustrate the efficiency of proposed 
algorithm for encoding of the network of machines. We compare the time of 
finding the best decision between exact and heuristic algorithm. Our goal is to 
execute both algorithms of full search with same tests. Tests are containing 
from 6 to 17 states. As can be seen from the Table 4-23 heuristic algorithms 
executes the full search about two times faster than algorithm without heuristics. 

http://www.pld.ttu.ee/applets/dsa/
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Table 4-23 Comparison of exact and heuristic algorithms 

  Exact  Heuristic Average 
States #1 #2 #3 #1 #2 #3 Exact Heuristic 

6 0 0 0 0 0 0 0,00 0,00 
7 0 0 0 0 0 0 0,00 0,00 
8 3 3 3 0 1 1 3,00 0,67 
9 6 4 1 1 1 0 3,67 0,67 

10 3 1 6 1 1 1 3,33 1,00 
11 4 8 1 2 3 1 4,33 2,00 
12 29 29 13 6 10 1 23,67 5,67 
13 27 91 10 7 31 1 42,67 13,00 
14 27 33 74 7 14 34 44,67 18,33 
15 65 6 73 46 2 23 48,00 23,67 
16 23 Time 

out 
44 17 212 37 - 88,67 

17 58 Time 
out 

Time 
out 

11 112 177 - 100,00 

 
The second experiment considers a problem to show an efficiency of the 

algorithm. As our goal is to find decision with minimal number of bits, we can 
compare the first answer found with our heuristics and minimal decision. As 
can be seen from the Table 4-24 the difference is not essential. However, the 
difference grows with increase in quantity of states. 

 
Table 4-24 Comparison of the results of the algorithm and the shortest 
decision 

 Found decision Shortest decision Difference 
States #1 #2 #3 #1 #2 #3  

6 3 3 3 3 3 3 0 
7 3 3 3 3 3 3 0 
8 4 4 4 4 4 4 0 
9 4 4 4 4 4 4 0 

10 4 4 4 4 4 4 0 
11 5 5 4 5 5 4 0 
12 5 5 5 5 5 4 1 
13 6 5 4 5 5 4 1 
14 6 6 5 5 5 5 2 
15 6 5 5 6 5 5 0 
16 6 5 6 6 5 6 0 
17 5 6 6 5 5 5 2 
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Comparison among new encoding method and well-known encodings 

Experiment was carried with aim to compare the standard encoding 
methods using in SYNOPSIS and proposed encoding for the network of 
machines. We compare three importance parameters: entropy of the network of 
machines, Table 4-25, area implementation, Table 4-26 (I – first component 
machine, II – second component machine), and power consumption, Table 4-27. 

Table 4-25 Entropy of the network of machines 
Circuits Binary Gray One Hot New 
bbara 2,844 2,892 4,042 2,778 
bbtas 2,878 2,733 3,746 2,602 

beecount 1,283 1,770 2,144 1,283 
cse 1,542 2,111 1,856 1,226 

dk27 2,777 2,964 3,988 2,771 
ex4 3,917 3,863 4,940 3,670 

mark1 0,988 0,983 0,781 0,976 
opus 1,714 2,577 2,825 1,714 

 
Table 4-26 Area results 

 Binary Gray One Hot New 
Circuits I II I II I II I II 
bbara 32 21 35 21 39 42 38 28
bbtas 20 21 31 21 23 42 21 21

beecount 34 21 32 21 32 42 30 21
cse 172 28 180 28 143 112 194 28

dk27 20 21 22 21 19 49 20 21
ex4 66 28 64 28 30 98 67 28

mark1 65 28 61 28 52 98 70 28
opus 79 28 68 28 56 63 79 28

 
Table 4-27 Power consumption results (μw) 

Circuits Binary Gray One Hot New 
bbara 0,8505 0,9126 0,9766 0,8116 
bbtas 0,6952 0,7068 0,8992 0,6176 

beecount 0,9856 1,0394 1,1287 0,9556 
cse 3,1439 3,6804 3,7449 2,9881 

dk27 0,5751 0,5908 0,5925 0,5489 
ex4 1,1102 1,1036 1,0572 0,9025 

mark1 1,2315 1,2684 1,5245 1,0618 
opus 2,6848 2,2019 2,0264 2,4876 
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Optimization of the network of machines 
Through the experiment was used Java Applet on Multiplicative 

Decomposition (available: http://www.pld.ttu.ee/applets/dsa/). For each 
benchmark circuit we generated the system of two partitions with the maximum 
(or close by maximum) number of constraint with aim to emphasize how the 
coding length is increased at the decomposition by using the standard coding 
methods using in SIS. We decompose a prototype N state machine into two 
interacting component machines with N1 and N2 states such that 
⎡logN⎤<⎡logN1⎤+⎡logN2⎤. The main condition of such partitioning is that the 
sum of the number of constraints must be less or equal to the number of states 
of source FSM. Table 4-28 summarizes the results obtained using proposed 
encoding algorithm.  

 
Table 4-28 Comparison of the results of the algorithm  

Circuits #states #constr∑ #len∑ #lennew reduc (%) 
cse 16 15 7 5 28,6 

dk16 27 21 8 6 25,0 
donfile 24 23 8 6 25,0 

ex1 20 18 6 5 16,7 
ex4 14 12 6 4 33,3 

keyb 19 18 7 5 28,6 
kirkman 16 15 7 5 28,6 
planet 48 37 10 7 30,0 
pma 24 22 8 6 25,0 
s1 20 19 8 6 25,0 

s208 18 15 7 6 14,3 
s420 18 16 7 5 28,6 
s510 47 42 10 7 30,0 
s820 25 22 8 6 25,0 
s832 25 24 8 6 25,0 
sand 32 30 9 6 33,3 
tbk 32 31 9 7 22,2 

 
In the Table 4-28, #states is the number of states in FSM, #constrΣ is the 

total number of constraints in the first and in the second partitions respectively, 
#lenΣ is the length of encoding need to code the sum of generated constraint, 
#lennew is the code length in the new encoding algorithm and the last column 
reduc (%) is reduction of coding length in percents. From the table it can be 
seen that using the encoding algorithm results in average reduction of coding 
length of 24%. The results are practically good for circuits with larger number 
of states. Thus, for circuit’s planet and s510 the reduction of coding length is up 
to 30%.  

http://www.pld.ttu.ee/applets/dsa/
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4.4 Summary 
Step by step procedure for the construction of the network of component 

machines is described in detail. The methodology of global and local 
transformations gives opportunity to divide complicated process of 
decomposition into two sequential stages.  

The stage of global transformations characterizes the mechanism for 
rough decomposition of the source FMS into the network of component 
machines. The mechanism of decomposition based on the theory of partition 
pair algebra determines by a complete system of partitions, a partition, or a 
cover on the set of states of a decomposable FSM. Using this tool we have 
proposed three variants of restrictions applied on the network of machines. First 
is the restriction on inputs separation between component machines in the 
network. Second is the restriction on computational complexity of component 
machines according to state probability distribution of the decomposable 
machine. Third is the restriction on outputs separation between component 
machines. As well as we add the restriction on the number of component 
machines in the network – no more than two components in the network. The 
step of global transformations also determines the structure of the network of 
component machines. 

Local transformations consist of encoding of component machines, 
optimization of the network by reducing the number of internal binary variables 
and defining the basis of the networks. In accordance to the structure of the 
network we have proposed two encodings – composite encoding of the network 
of machines and independent encoding of each component machines. In case of 
encoding of the network of machines we complete the procedure of 
decomposition by stage of optimization of the network.  

Multiplicative, additive and generalized additive FSM decomposition 
techniques are presented. Multiplicative decomposition uses a complete system 
of partitions can be regarded as a general case of decomposition based on the 
theory of partition pair algebra. At that time additive and generalized additive 
decompositions are special cases of general decompositions.  

Additive decomposition which is built on a decomposition partition on 
the set of states of a decomposable machine can be replaced by multiplicative 
decomposition where a complete system of partitions built in following way: 
the first block of a partition is replaced in the first partition in which other block 
consist of states not included in the first block; the second block of a partition is 
replaced in the second partition and etc. In other words, we replace a partition 
by a complete system of partitions in which the number of partitions is equal to 
the number of blocks in a decomposition partition. 

The component machines defined by partitions from the complete system 
of partitions are interconnected and interacted machines that will be work 
simultaneously or in series. In case of additive or generalized additive 
decomposition the network will be consist of component machines such that 
only one of the component machine is active in time period while other 
component machines wait in idle state. 
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Decomposition strategies target low power FSM 
We have described three power-managed FSM decomposition strategies: 

decomposition with a separation of inputs, decomposition based on probability 
distribution and decomposition with a separation of outputs. These strategies are 
based on the classic decomposition theories. We have extended it and have 
developed the framework employ it for power optimization. 

Decomposition of FSM with separation of inputs of an original FSM 
allows separating so called “active” and “lazy” inputs [64]. By “active” inputs 
we mean primary inputs with high probability. The method of separation of 
inputs of decomposable machine based on the concept of α-partitions allows 
moving “lazy” inputs away from the selected component machine. It is 
important to note that the calculation of α-partitions has polynomial 
computational complexity. The results confirmed that significant reduction in 
power consumption could be achieved using proposed methodology of primary 
inputs separation.  

The idea of optimizing complex digital systems based on probabilistic 
analysis of an FSM has been extensively exploited [57]. The main challenge in 
the implementation of these techniques is to effectively partition a design in 
such a way that commonly executed computations can follow a highly 
optimized path without being slowed down by the circuitry needed for dealing 
with all corner cases [10]. In this work we introduce the technique for 
identifying the most probable behaviors in FSM and building a dedicated logic 
block that correctly implements such behaviors. Presented concept can be 
exploited for power optimization. Decomposition techniques reported sizable 
power reduction [42]. Using additive decomposition we present an source FSM 
as a network of component machines such that only one machine is active. 
When one component machine identifying with most probable states of the 
source FSM is enables the other machine (or machines) is “frozen”, thereby 
nullifying switching activity.  

Separation of outputs by decomposition of an original FSM leads to 
several important advantages. We consider the decomposition technique for 
controller and data-path simultaneously. The decomposition procedure that can 
be applied for an FSM with Data-path (FSMD model) [68] was considered. 
Output partitioning can be regarded as functional partition approach for low-
power synthesis at RT-level. The reasons why FSMD functional partitioning 
can significantly reduce the switching activities at the registers and the 
functional modules and only one (subset) of machines is (are) executing a 
computation at any given time while the other processors will be idle. In 
addition to reducing power, FSMD functional partitioning also provides 
solutions to a variety of synthesis problems. Comparative experiments and 
approaches used in [29], [40], and [53] showed that such architecture need 
considerably less implementation area. Moreover, decomposition with 
distribution of outputs among component machines (corresponding to the given 
cover on the set of states of decomposable FSM) does not possible to achieve 
using alternative decomposition approaches. 
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555   CONCLUSION AND FUTURE DIRECTION 

5.1 Thesis summary  
The research described in the thesis concentrates on the problem of 

reducing the dynamic power dissipation in synchronous sequential circuits 
modeled by FSM. The most popular technique to reduce power in an FSM is to 
modify the state encoding with aim to minimize the Hamming distance of the 
most probable state transitions. Other idea for a low power FSM is the use of 
power management. That is, to shutdown the blocks of hardware in these 
periods where they are not producing useful data. Shutdown can be fulfilled in 
three ways: by turning off the power supply, by disabling the clock signal, or by 
“freezing” (blocking) the input data. Under the last category falls FSM 
decomposition method. The basic idea of decomposition is to disable the 
inactive part of an FSM. The deactivation is reached either by blocking the 
inputs or power-down by clock gating the part of the circuit that is not used. 
This reduces switching activity and hence, the total power dissipation. 

The importance of the synthesis of sequential circuits for low power is 
considered in the first chapter of the thesis. The second chapter consists of main 
concepts from the machine theory and from the algebraic structure theory of 
sequential machines. The next two chapters concentrate on the corresponding 
area of research and describe the results obtained by the author. This chapter 
summarizes some particular conclusions, introduces the general conclusion of 
the thesis and outlines some suggestions to improve the presented tool and 
methodologies. 

The main results of the work are: 
1. An overview of state encoding methods to reduce the power 

consumption for sequential circuit modeled by FSM has been presented. 
The reduction of the average switching activity of the state variables is 
minimizing the number of bit changes during state transitions. The 
problem of finding of an appropriate state encoding for a low power FSM 
is connected with the problem of Minimum Weighted Hamming 
Distance. Hence, the main result is the development of a new heuristic 
method of state encoding with aim to minimize weighted hamming 
distance. 

2. A novel technique for FSM state encoding with aim to minimize the 
number of states variables that change their value when FSM moves 
between two adjacent states was developed. At the heart of the presented 
approach lies the strategy of constructing a set of edge cuts for a set of 
states of an FSM. Each edge cut corresponds to an encoding partition on 
the set of states of an FSM and to one bit in a binary state encoding 
matrix.  

3. The presented technique was updated to the problem of state 
encoding for a low power FSM that links to a probabilistic description of 
an FSM. The switching probability (or transition probability) has a good 
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approximation to the average switching activity that is proportional to the 
average power dissipation.  

4. Basing on the overview, the subset of state-of-the-art encoding 
methods was selected to compare with the proposed technique. 
Experimental results were conducted on a set of MCNC benchmark 
circuits. For all benchmarks our state encoding produced circuits with lees 
(or equal in several cases) switching activity that selected methods.  

5. An overview of FSM decomposition methods has been described. 
Recent attempts using decomposition for a low power FSM realization 
was classified. More general, an original FSM decomposed into a set of 
state machines interacting with each other and running concurrently. 
When machines have a self-loop clock and primary inputs are disabled for 
the respective machine/machines, therefore several of them require 
primary input disabling AND gates and clock disabling AND gate as 
well. In this case could be obtained significant power reduction along 
with area reduction. In other case, an STG is partitioned into several 
pieces, each piece being implemented as a separate machine with a wait 
state. Only one of the sub-machines is active and other sub-machines are 
in the resent state. Therefore, the clock for inactive sub-machines can be 
gated and primary inputs can be disabled which reduces the switching 
activity and hence total power dissipation. 

6. A new FSM decomposition procedure was presented. The proposed 
procedure based on the concepts of global and local transformations of an 
FSM during its partitioning. The step of global transformations allows 
determining the wishful structure of the network of machines. The step of 
local transformations gives possibility of component-wise optimization, 
including state encoding of the network of machines. We would like to 
emphasize that the current work more focus on the construction of a 
network of machines for the given decomposition; and less concentrated 
on the finding of such decompositions. Nevertheless, several variants of 
decomposition for a low power FSM were proposed. 

7. Experimental results have been obtained of a set of MCNC 
benchmark circuits using java-based applets of the project D&S. Looking 
at the empirical results; one may deduce that our framework of 
decomposition for a low power FSM is enough comprehensive tools for 
the complete investigation of various decomposition styles.  
General conclusion of the thesis is that the problem of low power 

synthesis of an FSM is tightly connected with the classical combinatorial 
problems – FSM decomposition and FSM state encoding. Therefore, a new 
heuristic to FSM state encoding has been presented. A novel approach to FSM 
decomposition has been elaborated. 

An estimation of the success of the work can be done by analyzing the 
practical application of the work. The key to the advantage of this work is a 
combination of a novel heuristic approach with well-known approved 
techniques and methods.   
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5.2 Future work 
The thesis addressed the synthesis of FSM targeted low power 

dissipation. The problem was considered from two aspects. We proposed an 
FSM state encoding approach aiming at reducing the switching activity and 
combined it with one of dynamic power management techniques. From 
experimental analysis of the investigation presented in the thesis follows the 
practical efficacy. This fact justifies our strategy to solve the former and extend 
it later to the later. 

We want to generalize the existing FSM state encoding approach and 
algorithm in the following directions: 

- Solve the problem of finding the optimal state encoding solution due to 
insignificant increasing the number of state registers, this is an important 
practical problem, 

- Solve the problem of finding state encoding for the FSM with a large 
number of states.  
The other issue is a proposal for optimization of an approach for 

hierarchical test generation for FSM after low power state encoding. An 
ongoing work in this field have been presented in [EWDTW’05b]. We have 
made an attempt to apply the proposed strategy to test generation that is used on 
two levels: behavioral level in terms of an FSM and gate level. We hope that the 
knowledge, which was obtained after low power encoding, will help to enhance 
test generation of a low-power FSM and decrease test generation time. 

Elaboration of decomposition procedures based on quality relationship 
measures also deserves further investigation. We plan to study both global and 
local measures.  

An interesting direction for future work is to design the Globally 
Asynchronous Locally Synchronous (CALS) system [89]. Synchronous digital 
design is approaching a critical point, with clock distribution becoming an 
increasingly costly and complicated issue, and power consumption rapidly 
emerging as a major concern. Asynchronous digital design styles promise to 
liberate digital systems from clock skew problems, offer the potential for low 
power and high performance, and encourage a modular design philosophy. The 
preliminary analysis confirms that power consumption could be achieved 
without essential performance degradation. It is promising that the GALS 
paradigm could be used for composing blocks specified as FSM and making 
them communicate asynchronously to avoid the difficult and power consuming 
task of distributing the global clock to all parts of the circuits. Our future task is 
to elaborate partitioning techniques of state-based descriptions targeting the 
network of synchronous units which are interacting asynchronically. 

Future work also involves extending the design automation in the 
educational system using opportunities of education via Internet [79].  

In conclusion, numerous challenging problems and open issues pave the 
road towards system level tools for power and performance optimization, but 
we believe that this remains the primary research direction for the next few 
years. 
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