
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Alex Antonis 134634IABB

DESIGNING A CONTROL SYSTEM WITH

SYSML AND SIMULINK

Bachelor’s thesis

Supervisor: Tõnu Näks

 MSc

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Alex Antonis 134634IABB

JUHTIMISSÜSTEEMI PROJEKTEERIMINE

SYSML’I JA SIMULINK’IGA

Bakalaureuse töö

Juhendaja: Tõnu Näks

 Tehnikateaduste

magister

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Alex Antonis

20.05.2019

4

Abstract

The purpose of this thesis is to create a consistent example of designing a control system

using SysML modeling language for describing the architecture and requirements of the

system and converting the system to Simulink for control algorithm design.

The thesis consists of two parts. In the first part, a model of the control system is created

based on the description of the system and in the second part, a realization of the created

model of the system is developed using Simulink. The thesis also includes a brief

overview of SysML and the tools and methodologies for binding SysML model with

Simulink.

The example developed in the thesis shall be suitable for demonstrating control system

design with SysML in the real-time software engineering course and to test a

methodology developed by AdaCore for transferring the constraints from the SysML

model to Simulink and their validity check by using GNATProver.

This thesis is written in English and is 34 pages long, including 6 chapters and 23 figures.

5

Annotatsioon

Juhtimissüsteemi projekteerimine SysML’i ja Simulink’iga

Käesoleva lõputöö eesmärgiks on koostada sidus näide juhtimissüsteemi

projekteerimisest kasutades SysML modelleerimiskeelt süsteemi arhitektuuri ja nõuete

kirjeldamiseks ning süsteemi teisendamisest Simulink’i juhtimisalgoritmi

konstrueerimiseks.

Töö jaguneb kaheks osaks. Esimeses osas luuakse valitud juhtimissüsteemi kirjelduste

põhjal süsteemi mudel, mis sisaldab süsteemi struktuuri ja voogusid süsteemi erinevate

osade vahel, funktsionaalseid ja ohutusnõudeid ning juhitava objekti olekumuutjate

seoseid parameetritena. Lõputöö teises osas luuakse loodud süsteemi mudeli põhjal

realisatsioon Simulinkis, mis hõlmab juhtimisalgoritmi ja mudelis toodud kitsenduste

realisatsiooni sünkroonsete monitoridena. Lisaks sisaldab töö ka lühiülevaadet SysML-st

ja vahendidest ning metoodikatest SysML-i mudeli sidumiseks Simulink-iga.

Töö tulemus peab võimaldama kasutada koostatud juhtimisüsteemi projekteerimise

näidet SysML modelleerimiskeele õpetamiseks reaalaja-tarkavaratehnika kursuses ja

testida firmas AdaCore väljatöötatavat metoodikat SysML mudelis toodud kitsenduste

ülekandmiseks Simulinki ja nende kehtivuse kontrolli GNATProver’i abil.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 34 leheküljel, 6 peatükki ja 23

joonist.

6

List of abbreviations and terms

SysML Systems Modeling Language

UML Unified Modeling Language

MBSE Model-based Systems Engineering

UML2 Unified Modeling Language 2

IBM International Business Machines

FTMS Fuel Thermal Management System

OMG Object Management Group

7

Table of contents

1 Introduction ... 9

2 Overview of the methodology ... 10

2.1 SysML .. 10

2.2 Example of a system model developed with SysML ... 12

2.2.1 Model organization .. 12

2.2.2 Structure of the system .. 13

2.2.3 Safety requirements ... 15

2.2.4 Analysis ... 16

2.3 Example of the same system modeled with Modelica ... 21

3 The case study ... 22

3.1 Model organization ... 22

3.2 Structure of the system ... 23

3.3 Flows between the system’s parts .. 24

3.4 Safety requirements as constraint blocks .. 26

3.5 Relationships between the status variables of the controlled object as parameters

 .. 27

4 Literature review of the means/methods about binding SysML model with Simulink 33

4.1 Model Transformation approach .. 33

4.2 Rhapsody .. 34

4.3 From Simulink to Eclipse UML2 ... 35

4.4 SysPhS .. 36

4.5 QGen ... 39

5 System behaviour and constraints in Simulink ... 40

6 Summary .. 42

References .. 43

Appendix 1 – FTMS properties with units and meanings .. 45

Appendix 2 – FTMS properties with units and meanings (cont.) 45

8

List of figures

Figure 1. Taxonomy of SysML diagrams [2] ... 11

Figure 2. Package diagram for the organization of the model.. 13

Figure 3. Block definition diagram for structure of the system...................................... 14

Figure 4. Internal block diagram for water heater context ... 15

Figure 5. Requirements diagram for controller performance ... 16

Figure 6. Block definition diagram for analysis context .. 17

Figure 7. Parametric diagram for analysis .. 18

Figure 8. Simulation data configuration ... 19

Figure 9. Selected properties to plot in the simulation ... 20

Figure 10. Simulation result ... 20

Figure 11. Properties and equations in Modelica ... 21

Figure 12. Simulation result ... 22

Figure 13. The organization of the model .. 23

Figure 14. Structure of the system .. 24

Figure 15. Interconnection between the system’s components 25

Figure 16. Safety requirements as constraint blocks .. 27

Figure 17. Analysis context .. 29

Figure 18. Relationships between constraints and parameters used for the analysis 30

Figure 19. Dataset for the simulation ... 31

Figure 20. Dataset for the simulation (cont.) .. 32

Figure 21. Simulation result ... 33

Figure 22. FTMS internal block diagram as a Simulink model 41

Figure 23. OutputTempRegulator observer .. 41

9

1 Introduction

As the technology develops more and more complex, so does the systems in different

kinds of fields. In order to deal with the growing complexity of designing and managing

these systems, a continuous development of different approaches are being made for

dealing with these challenges. One of these approaches is called systems engineering.

Systems engineering is a multidisciplinary approach to develop balanced system solutions

in response to diverse stakeholder needs [1]. These system solutions, which include the

management and technical aspects, must be developed in a way that all stakeholder needs

are satisfied with minimal risks that may affect the project. As systems engineering

approach is getting more widely used in many fields, a need to develop more enhanced

methodologies also includes the need to teach more and more people about this approach.

The purpose of this thesis is to create a design example of a small control system which

can later be used for teaching systems modeling with SysML1. Another aim of this work

is to use it for testing a new methodology for transferring the constraints from the SysML

model to Simulink2 in order to check the validity of these constraints.

This work consists of four parts. First part focuses on giving a brief overview of SysML

with an example of a small system model. Next part includes modeling a selected system

using this language, which includes modeling of its architecture, requirements,

constraints and interconnectivity between its parts. When this is done, the next part gives

a brief overview of different methods for binding together SysML and Simulink. The last

part focuses on transforming the system model into Simulink in order to model the

behaviour of the system and constraints of the system as observers.

1 https://www.omg.org/spec/SysML

2 https://www.mathworks.com/products/simulink.html

https://www.omg.org/spec/SysML
https://www.mathworks.com/products/simulink.html

10

2 Overview of the methodology

2.1 SysML

SysML is a graphical modeling language used for systems engineering and is intended to

support the requirements, analysis, specification, design, verification and validation of

systems. SysML enables the application of Model-based systems engineering (MBSE)

approach, which supports above-mentioned procedures of these systems. This overview

is a short summary of book by S. Fridenthal, A. Moore and R. Steiner [1].

SysML includes nine diagrams, which are used to describe different aspects of a system.

The taxonomy of these diagrams is shown in Figure 1 and it includes:

 Package diagram – the organization of a model divided into packages

 Requirement diagram – requirements and relationships with other requirements

and model elements.

 Activity diagram – behaviour of the system and its parts.

 Sequence diagram – message-based behaviour of the system and its parts.

 State machine diagram – behaviour of a system’s entity and its transition between

different states.

 Use case diagram – functionality of a system and how the users interact with it.

 Block definition diagram – the system’s structure divided into blocks and

including their properties, operations and relationships.

 Internal block diagram – interconnection between system’s internal components.

 Parametric diagram – constraints on property values and the relationship among

system properties.

11

Figure 1. Taxonomy of SysML diagrams [2]

When starting to build a system model the first thing to do is to create the top level

package diagram which describes the organization of the model. This diagram may

include packages for requirements, behaviour, structure and parametrics. Additional

packages may be included in this diagram if necessary.

As the package diagram is created, the modeler can now start to fill these packages with

corresponding type of diagrams. The modeler could start with creating the requirements

diagram which should be contained in the requirements package. After that, behaviour

package can be populated with activity, sequence, state machine and use case diagrams,

structure package with block definition and internal block diagrams and parametrics

package with all parametric diagrams. There is no strict rule for in which order the

diagrams must be modeled as it depends on several factors, including the available

information, the preferred MBSE method used or user’s personal preference on how to

organize the work. Also, there is no strict rule that one diagram must be fully completed

before starting to model another one as the diagrams can complement each other with

shared elements, making the whole modeling process iterative.

12

2.2 Example of a system model developed with SysML

In this paragraph a small system model is being developed using SysML language and a

modeling tool called Enterprise Architect1 by Sparx Systems. The model contains a small

subset of diagrams that can be designed with this language and also contains a simulation

which is being executed using OpenModelica2 modeling environment. The model

organization and naming of certain blocks are inspired by [1].

2.2.1 Model organization

As it was mentioned above, when starting to build a system model the first thing to do is

to create a top level package diagram for describing the organization of the model. In

Figure 2 there is shown a package diagram containing packages for describing the

model’s architecture. Currently, the diagram consists of three packages: Parametrics,

Structure and Requirements. Each of the package contains corresponding types of

diagrams and entities which are shown in packages. There is also a

SysMLSimConfiguration artifact represented in the diagram (as well as in the Parametrics

package) that contains the simulation of a block definition diagram that focuses on the

analysis of the system. When the initial organization of the model is done the next step is

to start designing the structure of the system.

1 https://sparxsystems.com/

2 https://openmodelica.org/

https://sparxsystems.com/
https://openmodelica.org/

13

Figure 2. Package diagram for the organization of the model

2.2.2 Structure of the system

The system being modeled depicts a process of boiling water in an electric kettle. Figure

3 features a block definition diagram describing the top level structure of the system with

all its parts and their relationships. The WaterBoilingDomain block is the top-level block

that provides the context for the system. The system consists of Kettle, which is a part of

the system and is connected with WaterBoilingDomain block via a line with a black

diamond symbol indicating a part association. Kettle block depicts a kettle or any other

type of container that contains water and has two properties: radius and height. Water

block is connected with Kettle block also via part association line as the water is contained

in the container, therefore is a part of it. Water has a property called amount as there is

always a certain amount of water being boiled. Water is connected to Environment block

via regular connector as there is no whole-part relationship between them. Environment

includes properties called tempEnv (temperature of the environment surrounding the

boiling system) and heatCoefficient (The proportionality constant between the heat flux

and the thermodynamic driving force for the flow of heat). The WaterBoilingDomain

block is also associated with a WaterHeater block which depicts a hot plate that applies

certain amount of power for boiling the water. It has a property called powerMax which

stands for the maximum amount of power it is capable of applying. WaterHeater in turn

is attached with a Controller block which regulates the power being used.

14

Figure 3. Block definition diagram for structure of the system

Figure 4 represents an internal block diagram that shows how the parts of the

WaterBoilingDomain block from the last figure are connected to each other. The dashed

lines with an arrowhead connecting the parts represent Item Flow which means that a

physical (e.g. heat) or a non-physical (e.g. information, signal) is sent between the small

squares called ports. The ports indicate the interfaces of the parts through which the

communication takes place. In this particular case, the Controller receives the

information of the current temperature of the water via Temperature signal sent from the

Water. Temp out port indicates that the signal is sent out from it and temp in indicates that

the signal is sent into it. After receiving the information about the temperature, the

Controller next sends the WaterHeater a Switch signal for switching on the heater. The

WaterHeater now sends the heat out into the Water and simultaneously the heat also starts

to radiate into the Environment. The Controller monitors the Water as it reaches the

boiling point and when the point is reached, a signal is sent to the Controller and from

there to the WaterHeater to switch off the heating.

15

Figure 4. Internal block diagram for water heater context

2.2.3 Safety requirements

As the initial structure of the system is designed, the modeler can now start creating a

requirement diagram describing the requirements that are set for the system. In Figure 5,

the Water Boiling Specification indicates a top-level requirement which in turn contains

more requirements. The requirements connected to each other via a line with the

crosshairs symbol indicates that one requirement contains other requirement(s) and can

be seen as a parent-child relationship. The next level requirement called Controller

Performance depicts the requirements that are precisely imposed on the behaviour of the

Controller. The Controller Performance requirement in turn is composed of two

requirements indicating the minimum and maximum temperature of the water between

which the Controller is allowed to regulate the power for the WaterHeater. The both

requirements, Maximum Temperature and Minimum Temperature, contain its id and text

which specifies the requirement.

16

Figure 5. Requirements diagram for controller performance

2.2.4 Analysis

Behaviour analysis is also another important part of system modeling as there is a need

to verify if the model satisfies the requirements with specified parameters and to find out

the best solutions. To carry out the analysis of the system, there are two diagrams which

are needed to perform this activity: block definition diagram and parametric diagram.

The parametric diagram contents are later verified in a simulation tool (OpenModelica in

our case).

As it was mentioned above, the first thing to do is to create a block definition diagram

containing all the constraints with equations and parameters. Figure 6 depicts such kind

of diagram for the Analysis Context. The main block in this diagram is

WaterBolingAnalysis block which is used for the analysis and it comprises of three

17

constraint blocks: EnvironmentModel, ControllerModel and

WaterBoilingTimeAnalysisModel. Each of the constraint blocks contain equations and

parameters that are used in them [3][4]. All the parameters from the constraint blocks are

also contained in the WaterBolingAnalysis block as properties. There is also a block called

WaterBolingDomain shown on diagram which is a reference from the Top Level

Hierarchy diagram from Figure 3 to show that it is the subject of the analysis.

Figure 6. Block definition diagram for analysis context

The parametric diagram created based on the Analysis Context diagram from Figure 6 is

represented in Figure 7. The diagram consists of three ConstraintProperties which are

defined in block definition diagram from Figure 6 and contain corresponding equations.

Each of the ConstraintProperty is connected with all the properties which are taken from

WaterBoilingAnalysis block in Figure 6 and are used in corresponding equations. There

are three properties that are connected with a directed line from one constraint to another:

power, temp and coefficient. The reason for this is that it shows that the value of the

property is taken from the solved equation of one constraint and is passed to another

constraint to solve its equations.

18

Figure 7. Parametric diagram for analysis

As the parametric diagram is done, now the simulation of it can be carried out by using a

separate simulation tool to analyse the results of these equations. In this case, a modeling

environment OpenModelica is used for the analysis.

In order to simulate the model, a SysMLSimConfiguration artifact needs to be opened.

The artifact contains all the blocks, constraints, properties and dependencies between all

of them. There is also a need to select which properties are constants and which are

variables that need to be plotted in the simulation. Figure 8 represents a list of the

properties with their type and initial value [3][5].

19

Figure 8. Simulation data configuration

As there is an interest to know how the temperature of the water changes at a time during

the heating process, the property that needs to be plotted is a property named temp (Figure

9). The result of the simulation is shown in Figure 10 where x-axis indicates time, y-axis

temperature and the red line indicates the change of temperature in time.

20

Figure 9. Selected properties to plot in the simulation

Figure 10. Simulation result

21

This first example represented the way of how to first model the system with diagrams

and then run the simulation. As it was shown, firstly the diagrams describing the system

in different aspects were created with Enterprise Architect and then the simulation was

run with OpenModelica based on one of the diagrams, a parametric diagram. The next

example represents an opposite way to create a system model as in this case the modeling

starts with OpenModelica.

2.3 Example of the same system modeled with Modelica

In this section, the same water boiling system model that was represented in the last

chapter, is now being developed with Modelica modeling language in OpenModelica

modeling environment. Given the simplicity of equation system we chose the flat-model

approach as described in chapter 12 of [6].

To start off with this example, the first thing to do is to create a new Modelica class with

a name WaterBoilingAnalysis. As the model is now created, the model needs to be

populated with all the same properties and equations that were used in the previous

example. In Figure 11 there is shown a model named WaterBoilingAnalysis populated

with properties including their unit and brief description in quotation marks. The

properties with parameter in front of them indicate constant whereas properties without

it indicate variables [3][5]. Next to the properties there are all the equations that will be

used in the simulation [3][4]. The result of the simulation is depicted in Figure 12 and it

is same as in Figure 10.

Figure 11. Properties and equations in Modelica

22

Figure 12. Simulation result

3 The case study

In this chapter, a model for a tactical aircraft’s dual tank fuel thermal management system

is being designed and described through different diagrams. These diagrams are designed

to describe the system from different aspects and include diagrams focused on system’s

structure and interconnectivity between its parts, functional and safety requirements and

the relationships between the status variables. The model of the system is created based

on the article written by N. Jain and B.M. Hencey [7] which describes how the system

works and is included with the schema of the system, equations and parameters with some

initial values and graphs based on different analyses. The goal of [7] is to compare

efficiency of different control algorithms. Our intention here is simply to show how

SysML model can be used to describe the controlled system and controller so we ignore

the cost calculation part in the paper.

3.1 Model organization

In Figure 13, a top level package diagram called Model organization is depicted to

describe the organization of the model. The diagram includes packages named

Parametrics and Structure, which in turn include corresponding diagrams and entities.

23

There is also a FuelThermalManagementSystemSimulation artifact represented in the

diagram (as well as in the Parametrics package) that contains the simulation. The

diagrams contained in these packages are shown and described in next subchapters.

Figure 13. The organization of the model

3.2 Structure of the system

A block definition diagram called Top Level Hierarchy is depicted in Figure 14 to

describe the structure of the fuel thermal management system. The

FuelThermalManagementSystemDomain block is the top-level block that provides the

context for the system. The top-level block is connected with ten other blocks that are

parts of the system. Each partitioning block is included with properties that are related to

the block and whose values are constant. The units and meanings of the properties are

included in figures in Appendix 1 and Appendix 2. The interconnection between the

system’s parts is described in the next section.

24

Figure 14. Structure of the system

3.3 Flows between the system’s parts

In Figure 15, an internal block diagram called FuelThermalManagementSystemDomain

is depicted to describe how the parts of the system interact with each other. Both

Recirculation Tank and Chilled Fuel Tank are contained with a certain amount of fuel

and chilled fuel, respectively. A certain amount of fuel exits the Recirculation Tank and

flows into the Flow Junction. The same process occurs with the Chilled Fuel Tank,

however, the chilled fuel first flows through the Transport Pump 1. Here, the Controller

receives information about the fuel’s temperature and sends a switch signal in order to

regulate the fuel mass flow rate if needed. From the first pump, the fuel next reaches the

Flow Junction. In the Flow Junction, the both fuels are mixed together and the mixed fuel

next reaches the Heater. In the Heater, the temperature of the fuel is being risen with the

waste heat that is absorbed from the other flight critical subsystems (mainly the engine)

of the aircraft that are not part of this particular system being described. After the heating

25

process, the fuel reaches the engine, where a certain amount of fuel is inserted into the

engine and the excessive fuel flows into the Transport Pump 2. In here, the Controller

receives information about the fuel’s temperature and sends a switch signal if needed to

regulate the mass flow rate through the pump. From the second pump, the fuel reaches

the Cooler, which is used to cool down the fuel back to its initial temperature. As the

cooling takes place, the excessive heat in the Cooler is released into the Atmosphere. The

cooled fuel finally flows back into the Recirculation Tank and the same process continues

as a loop.

Figure 15. Interconnection between the system’s components

26

3.4 Safety requirements as constraint blocks

Safety requirements for the controller are described in Figure 16 [8]. The diagram

includes five safety requirements setting expectations for the controller (connected with

<<satisfy>> relationship) and five constraint blocks (<<designConstraint>>) that depict

constraints as equations (connected with <<refine>> relationship). These equations show

what properties are inputs for the controller with their comparison and how the result of

the comparison is solved. In all of the constraint blocks in this diagram, it is shown, that

when the input properties satisfy the requirement, then the fuel mass flow rate (Mf)

remains as it is, however, if the properties exceed the limits, the fuel mass flow rate equals

0 as the controller shuts the pumps that the fuel flows through. The implementation of

these requirements in Simulink is later shown in paragraph 5.

27

Figure 16. Safety requirements as constraint blocks

3.5 Relationships between the status variables of the controlled object

as parameters

A block definition diagram in Figure 17 contains two regular blocks and six constraint

blocks that are used to carry out a simulation to analyse the rate of exergy destruction for

the different parts of the system. The main block in this diagram is the

28

FuelThermalManagementSystemAnalysis block which comprises of all the properties

from the linking constraint blocks that are used for the simulation. A

FuelThermalManagementSystemDomain block is used here as a reference block from the

Top Level Hierarchy block to show the subject of the analysis. As it was mentioned above,

the analysis consists of six constraint blocks, each containing equations that are used to

calculate certain measures of corresponding parts. As all of the six parts contain an

equation to calculate the rate of exergy destruction per time, the PumpModel also contains

three additional equations that are needed for the exergy destruction equation to be solved.

29

Figure 17. Analysis context

30

The parametric diagram on Figure 18 is created based on the Analysis Context diagram

on Figure 17 and is included with all the constraint blocks and its parameters from the

previous diagram. There are two properties, T0 and cP, which describe an ambient

temperature and specific heat of fuel respectively, that are linked with multiple blocks

while all the other properties that are exclusively used only in the equation of the certain

block are connected with a corresponding parameter. The simulation based on one of the

equations from one of the blocks is carried out in the next figure and the results are also

explained briefly.

Figure 18. Relationships between constraints and parameters used for the analysis

The dataset for the simulation is depicted in Figure 19 and 20 to show which properties

are constant and which variables. As it was mentioned above, all the properties describing

the rate of exergy destruction, including Xdestr, Xdestch, Xdesth, Xdestc, Xdestj, Xdestp

are variables in this simulation along with pump’s pressure differential (P), pump’s

31

pressure efficiency (nP) and the isentropic power consumption of the pump

(Wpisentropic). All the other properties are used as constants in the simulation. While

some of the values of the properties are taken from [7], there are several values taken

from other sources as well [9][10] and these values are approximate and do not reflect the

actual indicators of the properties.

Figure 19. Dataset for the simulation

32

Figure 20. Dataset for the simulation (cont.)

The simulation result is shown in Figure 21 and it depicts the rate of exergy destruction

in the heater as an example. X-axis indicates time in seconds while y-axis indicates the

exergy destruction rate in kilojoules. The chart shows how the total rate of exergy

destruction in the heater grows in each second and by the 100th second, the total exergy

destruction is approximately 4273 kJ. The rate itself is constant and is about 42.73 kJ per

second.

33

Figure 21. Simulation result

4 Literature review of the means/methods about binding

SysML model with Simulink

In order to verify the requirements that are set for the modeled system to satisfy, a number

of simulations are needed to be conducted. There are several different simulation

environments made for doing that job. In this thesis, a simulation environment called

MATLAB/Simulink is used to integrate SysML diagrams with it in order to create new

models that can be used to verify and validate the system’s requirements. However, there

are also several methods and tools in order to integrate these two together. Some of these

are briefly descripted in the following paragraphs containing summaries of different

research articles.

4.1 Model Transformation approach

This transformation approach is based on a MATLAB/Simulink code generator that

generates a MATLAB code from SysML models [11]. This approach consists of SysML

34

models, Acceleo1 code generation tool templates and SysML4Simulink profile.

SysML4Simulink is a model transformation profile that is used to generate Simulink

models from SysML source models. This profile consists of three additional stereotypes

that extend the existing SysML stereotypes and is used to ensure a better mapping

between SysML and Simulink. These three stereotypes are:

“SimulinkConstant” – used for indicating that a value remains constant

throughout each simulation.

“SimulinkBlock” – used for describing the components (blocks) and interactions

between them.

“SimulinkContentBlock” – used for describing the whole system.

The transformation starts with defining the mapping between SysML and Simulink

elements. The Acceleo templates are then created based on the mapping implementation.

The SysML model, which now corresponds to the SysML4Simulink profile, is used as an

input for the MATLAB code generator. The generator forms script files which can be

used to generate a Simulink model.

4.2 Rhapsody

Another way to integrate SysML model with Simulink is to use UML/SysML modeling

tool called Rational Rhapsody2 by IBM [12]. This tool has many capabilities that includes

not only modeling the systems, but also integrating the models with Simulink and

therefore simulating them. There are three ways for integration:

1. The first way is to import Simulink components into Rhapsody as some of

Simulink components are designated in the Rhapsody model. To start with, a C

code has to be generated from the corresponding Simulink models. As each

Simulink block in Rhapsody includes references to both generated C code and the

Simulink model, Rhapsody can infer the Simulink interface by reading the

Simulink model and compiling the C code into an executable code for simulating

1 https://www.eclipse.org/acceleo/

2 https://www.ibm.com/us-en/marketplace/systems-design-rhapsody

https://www.eclipse.org/acceleo/
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody

35

the model. One of the problems with this integration way is that the user can’t use

variable step solvers as the simulation results from using fixed step solvers may

not be accurate or may take a lot of time.

2. Another way is to create an S-function with Rhapsody. The user has to model a

part of a system in Rhapsody with SysML so an S-function could be generated

from it and then model the whole system in Simulink so the generated S-function

could be used in this model. Now the Simulink model can be executed. The

problem with this method is that only a part of the system can be modeled with

SysML and the rest has to be developed with another modeling language,

Simulink in particular, making it harder for the users to use Rhapsody for systems

engineering.

3. There is also a third way for integration in order to complement the two existing

ways. Firstly, the user has to model the whole system with SysML in Rhapsody

and then generate a Simulink model from it. S-functions and Model blocks are

converted respectively from defined behaviours in SysML diagrams and Simulink

models. Now the Simulink model can be simulated and the user can use variable

step solvers if needed.

4.3 From Simulink to Eclipse UML2

The integration from SysML to Simulink doesn’t necessarily have to start with designing

the system model in SysML first and then transform it into Simulink model, but could

also be done in the opposite way [13].

In this approach, a Simulink model of a realization of a function is first created. The

Simulink application then parses the model into mdl file and converts it into the Eclipse1

UML2 Framework. While the new model serves as a meta-model and includes Simulink

model hierarchy and the relationships between its elements, the model is imported into

the SysML model. Now all the components and realized functions in Simulink can be

1 https://www.eclipse.org/modeling/mdt/?project=uml2

https://www.eclipse.org/modeling/mdt/?project=uml2

36

modeled in various SysML structure and behaviour diagrams to represent their behaviour

and interconnection with each other.

4.4 SysPhS

In this approach, a standard called SysPhS1 is used to integrate SysML models with

Simulink [14]. The SysPhS is a standardized SysML extension for physical interaction

and signal flow simulation, created by the Object Management Group2 (OMG). This

standard describes the ways of integrating SysML models with simulation platforms

including Modelica3, Simulink and Simscape4, which is an extension of Simulink. As the

Simulink can be used only for signal flow modeling, the Simscape is needed for physical

interaction modeling. In the following section, a summarized overview of all the elements

that are used in the transitioning process is given to show how this standard works. The

overview describes transition only from SysML to Simulink and Simscape, but not

Modelica as it is not the interest of this topic.

1. Root element. All systems and simulation models include root elements that are

used to organize the model. SysML root elements are packages contained with

diagrams and their elements. A SysML package corresponds to a Simulink library

included with a model, both containing a system and to Simscape library.

2. Blocks and properties. Blocks in SysML represent classes of systems or

components and describe objects with shared features that can be structural or

behavioural. Properties are structural features of blocks that may include values

or usages of other blocks. SysML blocks with constraint properties correspond to

Simulink subsystem blocks and Simscape components, depending if Simscape is

included, while SysML blocks without constraint properties only correspond to

Simulink subsystem blocks.

1 https://www.omg.org/spec/SysPhS

2 https://www.omg.org/

3 https://www.modelica.org/modelicalanguage

4 https://www.mathworks.com/products/simscape.html

https://www.omg.org/spec/SysPhS
https://www.omg.org/
https://www.modelica.org/modelicalanguage
https://www.mathworks.com/products/simscape.html

37

3. Generalization. SysML includes generalization relationship which enables one

block reuse the other block’s features as the first block inherits all the properties

of the other. While SysML supports multiple generalizations of one block,

Simulink on the other hand does not support generalization as Simulink blocks

cannot inherit features from other blocks. To fix this, the features need to be

redefined in Simulink blocks. However, Simscape does support generalization but

it supports only single generalization of components, unlike SysML.

4. Property redefinition. In SysML, inherited properties by generalization of the

blocks can be modified by redefinition. Simulink on the other hand does not

provide redefinition because it does not support generalization of the blocks. To

solve this problem, Simulink’s elements that correspond to those properties that

redefine the inherited ones can be used to achieve the similar effect as SysML’s

redefinition. As with Simscape, it supports generalization, but not redefinition. In

this case, Simscape’s corresponding elements for multiple generalization or

inherited SysML properties can be used to achieve the redefinition effect.

5. PhSVariables and PhSConstants. There are three types of properties in SysML:

continuous, discrete and constant properties. Two of them, continuous and

discrete properties, are both stereotyped by PhSVariable. The difference between

these two property types is that continuous properties are included with

isContinuous=true and discrete properties with isContinuous=false while

PhSConstant stereotypes constant properties. In Simscape, continuous variables

correspond to PhSVariables and constant parameters to PhSConstants while

discrete variables are not supported by Simscape. Simulink, on the other hand,

does not correspond to PhSVariables nor PhSConstants but corresponds to SysML

value properties.

6. Ports and Flow Properties. In SysML, parts of the system are included with ports

and the connectors are drawn between the ports to describe the interactions

between the parts. These ports describe the flow of the properties in the way of

what type of properties and which way they flow. In order to model signal flow

with SysML, flow properties need to be stereotyped by a non-conserved

PhSVariable, typed by Real, Integer or Boolean and must flow either in or out of

the port. Simulink has three types of ports: inports, outports and connection ports.

38

SysML ports included with flow properties on port types modeled in above-

mentioned way correspond to Simulink inports or outports and to Simscape inputs

or outputs. Modeling physical interactions between system’s parts require flow

properties to be with inout flow property. Simulink provides connection ports for

representing bidirectional flows between ports and they need to be linked to

Simscape nodes, which support Simulink ports in order to achieve the

correspondence to SysML ports.

7. Connectors. In SysML, connectors are used to link blocks together via ports.

SysML connectors can correspond to Simulink lines in both ways, either

Simscape is included with Simulink or not. When Simscape is used with Simulink

and SysML connectors that run from a block without constraints to a block with

constraints via ports, the connector corresponds to a Simulink line called

connection. When a block with constraints is in turn connected to other blocks

without constraints, an additional block between them is needed to convert a

regular Simulink signal to a Simscape signal. As Simulink connection connects a

block with constraints to a converter block, a Simulink line connects a converter

block to a block without constraints. As in Simscape, the connectors that run from

a block with constraints in SysML correspond to connections in Simscape.

8. Blocks with constraints. Constraint blocks in SysML include constraint

properties, which are included with constraints that act as equations, and

parameters, which are being used in these equations. When signal flow is

considered, SysML constraint blocks correspond to Simulink S-functions in a way

that each S-function corresponds to a particular parameter in a SysML constraint

block. Variable names in S-functions are named with same names as SysML

parameters and PhSConstants, which are linked to constant parameters in SysML,

are replaced in S-functions with same or a different value. For signal flow,

Simscape provides a way to specify input and output signals for its components.

When physical interaction is considered, constraints in SysML blocks correspond

to the equations in Simscape components.

9. Default values and initial values. SysML has two ways to specify values for

properties: default values and initial values. While default values are only set

when instances are created, initial values are set when an instance has already

39

been created and this enables initial values to override default values. SysML

default values correspond to initial values of S-function variables in Simulink and

to initial values of Simscape variables and parameters.

10. Data types and units. In SysML, data types are called value types and they can

be linked to units, which are modeled with SysML Unit Block. Simulink inports

and outports can also contain units and some of the symbols for these units are

defined in Simulink and modelers can also create symbols on their own. These

newly defined symbols can also be used in Simscape where these unit symbols

can be used for variables and parameters.

11. State machines. SysML state machines are used to describe the behaviour of the

blocks and the SysML capabilities for concern to simulation include triggering

the transitions between states and the values that are sent from one object to

another through ports depending on the state. Simulink is provided with an

extension called StateFlow which is used for state machines and includes some

features of SysML state machines. StateFlow describes transitions and actions

performed depending on the state of an object. While state machines act as

separate behaviours in SysML, in StateFlow they are depicted as blocks. Even that

StateFlow is an extension for Simulink it does not extend for Simscape.

4.5 QGen

This approach consists of several steps in order to transform SysML models to Simulink

models using the QGen1 tool developed by AdaCore [15].

The first step is to describe the structure and the requirements of the system in SysML.

The structure is depicted in an internal block diagram and the requirements in a

requirement diagram. Next, the requirements are being formalized as the system-level

properties are rewritten as constraints in SPARK language. After this, all the blocks and

flows from the internal block diagram are converted into Simulink models using the QGen

tool. This transformation produces a subsystem hierarchy where the blocks from SysML

internal block diagram are converted into Simulink Subsystems. Additionally, SysML

1 https://www.adacore.com/qgen

https://www.adacore.com/qgen

40

ports are transformed into subsystem ports and the constraints into observers. As the

conversion from SysML to Simulink is done, the Simulink models can be populated with

algorithms that can be validated by simulation, as well as generate the models into

SPARK code and into C or Ada code in order to verify the models and to use the codes

for final implementation. These actions can be also performed by using the QGen tools

like QGen Verifier Tool and QGen code generator.

5 System behaviour and constraints in Simulink

The transformation of the internal block diagram from Figure 15 to a Simulink model is

shown in Figure 22. The Simulink model consists of system components and data flows

between them. The difference with SysML internal block diagram is that the model also

contains observers that are composed from the constraints in a requirement diagram in

Figure 16. The observers are depicted here as subsystems, that include the comparison of

the inputs that the observers monitor. If the inputs meet the requirements, the simulation

works as it should, but if it does not meet the requirements, then an Assertion block inside

the observer stops the simulation.

41

Figure 22. FTMS internal block diagram as a Simulink model

As an example, one of the observer’s, named OutputTempRegulator, internal composition

is shown in Figure 23. Three inputs that are monitored, named rTf, Th and rTh are being

compared if they meet the requirements with Relational Operator blocks and the Logical

Operator block named AND means that both of the comparisons results have to positive

so the simulation can work properly. All observers consist of a diagram implementing the

comparison logic and ending with an Assertion block.

Figure 23. OutputTempRegulator observer

42

6 Summary

As the amount of workload in this thesis shows that system modeling can be very time-

consuming activity and even more when the model is intended to be converted to

Simulink in order to design a control algorithm for the system. Ideally, the system

modeling should have continued with modeling several other aspects of the system with

use case diagram(s), activity diagram(s), sequence diagram(s), state machined diagram(s)

and maybe even with more diagrams of the diagram types that were used in this thesis to

get the whole system fully modeled, but that was not necessary for the purpose of this

work. As the required diagrams were composed in SysML, the next step was to transform

the system model into Simulink in order to model the behaviour of the system and

constraints of the system as observers that monitor the critical properties of the system.

Finalised Simulink models contain the observers and a skeleton of system architecture

without behaviour. Control algorithm design, which was initially also planned, was

excluded as the part of modeling system’s physical properties and simulating in Modelica

grew too big. This was considered sufficient in the scope of given work as the goal was

to demonstrate workflow.

The next steps in this research will be to complete the control algorithm descriptions, use

QGen to obtain Ada code annotated with pre- and postconditions and demonstrate the

proof of the properties on this code.

43

References

[1] Fridenthal, S., Moore, A. and Steiner, R., “A Practical Guide to SysML: The Systems

Modeling Language”, Morgan Kaufmann, 2015

[2] “What is SysML?” [Online] Available: http://www.omgsysml.org/what-is-sysml.htm

[27.02.2019]

[3] “Electric kettles” [Online] Available: https://www.explainthatstuff.com/how-electric-

kettles-work.html [20.02.2019]

[4] “Newton’s Law of Cooling” [Online] Available:

https://en.wikipedia.org/wiki/Newton%27s_law_of_cooling [06.03.2019]

[5] “Overall Heat Transfer Coefficient” [Online] Available:

https://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.html

[06.03.2019]

[6] Fritzson, P., “Principles of Object Oriented Modeling and Simulation with Modelica

3.3: A Cyber-Physical Approach”, Wiley-IEEE Press, 2015

[7] Jain, N., Hencey, B. M., „Increasing Fuel Thermal Management System Capability

via Objective Function Design“, 2016 American Control Conference (ACC), Boston

Marriott Copley Place, July 2016. Boston, MA, USA, pp. 549-556

[8] Doman, D. B., “Fuel Flow Control for Extending Aircraft Thermal Endurance Part II:

Closed Loop Control”, American Institute of Aeronautics and Astronautics, January

2016, pp. 1-23

[9] “Exergy Flow Rate” [Online] Available:

https://www.sciencedirect.com/topics/engineering/exergy-flow-rate [17.04.2019]

http://www.omgsysml.org/what-is-sysml.htm
https://www.explainthatstuff.com/how-electric-kettles-work.html
https://www.explainthatstuff.com/how-electric-kettles-work.html
https://en.wikipedia.org/wiki/Newton%27s_law_of_cooling
https://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.html
https://www.sciencedirect.com/topics/engineering/exergy-flow-rate

44

[10] “DS600-24A Type 6902 Fuel Transfer Pump Jaguar” [Online] Available:

https://www.eaton.com/ecm/idcplg?IdcService=GET_FILE&allowInterrupt=1&Revisio

nSelectionMethod=LatestReleased&noSaveAs=0&Rendition=Primary&dDocName=C

T_196067 [17.04.2019]

[11] Chabibi, B., Douche, A., Anwar, A., Nassar, M., “Integrating SysML with simulation

environments (Simulink) by model transformation approach”, 25th IEEE International

Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE), June 2016, pp. 148-150

[12] Sakairi, T., Palachi, E., Cohen, C., Hatsutori, Y., Shimizu, J., Miyashita, H.,

“Designing a Control System using SysML and Simulink”, SICE Annual Conference

(SICE), August 2012, Akita University, Akita, Japan, pp. 2011-2017

[13] Qamar, A., During, C., Wikander, J., “Designing Mechatronic Systems, a Model-

based Perspective, an Attempt to Achieve SysML-Matlab/Simulink Model Integration“,

2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,

Suntec Convention and Exhibition Center, Singapore, July 2009, pp. 1306-1311

[14] “SysML Extension for Physical Interaction and Signal Flow Simulation” [Online]

Available: https://www.omg.org/spec/SysPhS/About-SysPhS/ [05.04.2019]

[15] Naks, T., Aiello, M. A., Taft, S. T., “Using SPARK to Ensure System to Software

Integrity: A Case Study”, submitted to DeCPS 2019 - Workshop on Challenges and new

Approaches for Dependable and Cyber-Physical Systems Engineering, Ada-Europe, 11-

14 June 2019, Warsaw, Poland.

https://www.eaton.com/ecm/idcplg?IdcService=GET_FILE&allowInterrupt=1&RevisionSelectionMethod=LatestReleased&noSaveAs=0&Rendition=Primary&dDocName=CT_196067
https://www.eaton.com/ecm/idcplg?IdcService=GET_FILE&allowInterrupt=1&RevisionSelectionMethod=LatestReleased&noSaveAs=0&Rendition=Primary&dDocName=CT_196067
https://www.eaton.com/ecm/idcplg?IdcService=GET_FILE&allowInterrupt=1&RevisionSelectionMethod=LatestReleased&noSaveAs=0&Rendition=Primary&dDocName=CT_196067
https://www.omg.org/spec/SysPhS/About-SysPhS/

45

Appendix 1 – FTMS properties with units and meanings

Appendix 2 – FTMS properties with units and meanings

(cont.)

	Author’s declaration of originality
	Abstract
	Annotatsioon Juhtimissüsteemi projekteerimine SysML’i ja Simulink’iga
	List of abbreviations and terms
	Table of contents
	List of figures
	1 Introduction
	2 Overview of the methodology
	2.1 SysML
	2.2 Example of a system model developed with SysML
	2.2.1 Model organization
	2.2.2 Structure of the system
	2.2.3 Safety requirements
	2.2.4 Analysis

	2.3 Example of the same system modeled with Modelica

	3 The case study
	3.1 Model organization
	3.2 Structure of the system
	3.3 Flows between the system’s parts
	3.4 Safety requirements as constraint blocks
	3.5 Relationships between the status variables of the controlled object as parameters

	4 Literature review of the means/methods about binding SysML model with Simulink
	4.1 Model Transformation approach
	4.2 Rhapsody
	4.3 From Simulink to Eclipse UML2
	4.4 SysPhS
	4.5 QGen

	5 System behaviour and constraints in Simulink
	6 Summary
	References
	Appendix 1 – FTMS properties with units and meanings
	Appendix 2 – FTMS properties with units and meanings (cont.)

