
Long-Range Navigation for
Unmanned Off-Road Ground Vehicle

ROBERT HUDJAKOV

P R E S S

THESIS ON MECHANICAL ENGINEERING E72

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Mechanical Engineering

Department of Mechatronics

Dissertation was accepted for the defense of degree of Doctor of
Philosophy in Engineering on December 12, 2012.

Supervisor:

Prof. Mart Tamre
Department of Mechatronics, Tallinn University of Technology

Opponents:

Prof. Petri Kuosmanen
Aalto University, Finland

Prof. Johannes Steinbrunn
Hawassa University, Ethiopia

Prof. Jüri Vain
Tallinn University of Technology, Estonia

Defense of the thesis: January 16, 2013

Declaration:

Herby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

Robert Hudjakov

Copyright: Robert Hudjakov, 2012
ISSN 1406-4758
ISBN 978-9949-23-396-0 (publication)
ISBN 978-9949-23-397-7 (PDF)

MEHHANOTEHNIKA E72

Kaugmaa navigatsioonisüsteem
maastikuvõimekusega

autonoomsetele liikuritele

ROBERT HUDJAKOV

5

Contents

Contents .. 5
Abbreviations ... 7
Introduction .. 8

Main Objective of the Thesis ... 9
Structure of the Thesis .. 9

1. Review of the Literature ... 12
1.1 UGV Navigation ... 12
1.2 UGV and UAV Collaboration ... 12
1.3 Terrain Classification Using Aerial 3D Point Cloud 13
1.4 Aerial Image Classification .. 15
1.5 Cost Map Generation & Path Planning .. 16
1.6 Synchronizing UAV and UGV Maps ... 16
1.7 Chapter Summary ... 17

2. Theoretical Foundations ... 19
2.1 Theoretical Background ... 19
2.2 Artificial Neural Networks ... 22
2.3 Convolutional Neural Networks ... 26
2.4 Training .. 31

2.4.1 Method A .. 31
2.4.2 Method B .. 31
2.4.3 Method A versus Method B .. 32
2.4.4 Training Procedure ... 33

2.5 Cost Map Generation.. 34
2.6 Path Planning .. 39
2.7 Cyclic Update and Self-Supervised Learning 41

3. Numerical Experiments .. 43
3.1 Test Setup ... 43
3.2 Classification Capability .. 49

3.2.1 Outskirts Overlearning Analysis .. 54
3.2.2 Classifier Size Analysis .. 58

3.3 Cost Map Generation & Path Planning .. 60
3.3.1 The Outskirts .. 61
3.3.2 The Fen ... 64

3.4 Reversed Processing Pipeline ... 67
3.5 Implementation & Performance ... 69

3.5.1 Reference Implementation ... 69
3.5.2 Heterogeneous Computing ... 70
3.5.3 Performance ... 74

4. Conclusions .. 78
4.1 Summary .. 78
4.2 The Main Scientific Contributions ... 78
4.3 Future Work .. 79

Marin
Rectangle

6

References .. 80
List of Publications ... 84
Abstract .. 85
Kokkuvõte .. 87
Curriculum Vitae .. 90
Elulookirjeldus ... 91

7

Abbreviations
UGV Unmanned Ground Vehicle

UAV Unmanned Aerial Vehicle

LIDAR Light Detection And Ranging

GIS Geographic Information System

ANN Artificial Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

API Application Programming Interface

SDNN Space Displacement Neural Network

FPGA Field-Programmable Gate Array

DARPA Defense Advanced Research Projects Agency

LAGR Learning Applied to Ground Robots

A* A-star algorithm

D* D-star algorithm

8

Introduction
The last decade has seen introduction of multiple unmanned ground vehicles
(UGV) for both road and off-road use. The development of road driving
autonomous vehicles fueled by DARPA Grand Challenges has led to usable
prototypes with more than 300 000 accident free driving miles on public roads
[1]. The Head of General Motors research division, Alan Taub, has promised
self-driving cars to be in production by 2020 [2]. The progress of off-road
capable UGV systems has been modest. There is a need for off-road capable
UGV in both military and civil applications: autonomous environment
monitoring, load bearing or as a platform for complex machinery. A project
started by Estonian Defense Forces with an intention to build an off-road
capable UGV platform supported by UAVs serves as the motivation of the
current thesis.

Navigating in an unstructured off-road environment leads to a set of
challenges not present in structured environments, such as compressible
obstacles (tall grass, bushes) and negative obstacles (ditches). Due to the
changing nature of unstructured environments the availability of up to date
navigation maps is limited, forcing UGV to rely on the onboard navigation
system that is restricted by a vehicle’s perception range. In addition, the
existing navigation maps will be rendered useless in crisis situations that
introduce a significant amount of obstructions over large areas, such as
hurricanes, earthquakes or military conflicts. The limited climbing ability of
UGV robots forces them to wander in search of passage.

The autonomous navigation capability of an off-road UGV is hindered by
the short perception range of its onboard sensors. The direct perception range
of an UGV is mostly limited by its height and sensor quality. Reliable
perception distance of stereo cameras is in the order of magnitude of 10 m, the
distance can be increased to 100 m by guesswork. LIDARs have higher
perception distance, but they too are limited by height of the sensor. Obstacle
detection using stereo vision or LIDAR alone gives insufficient information
for navigation in natural environments. Thus, it is required to understand the
surroundings. Compressible obstacles, such as grass or mud, demand extra
sensors to be detected. In addition to finding the obstacles, the UGV must
categorize them based on their properties – this capability can be utilized for
developing a long-range navigation system.

The aim of this study is to reduce wandering in unknown terrain by
generating ad hoc navigation maps using overhead imagery and data gathered
by an UGV. We propose a system that can be used for map generation and
path planning on an unknown terrain using orthorectified UAV or satellite
imagery. The system learns from labels applied by the UGV and extrapolates
the gathered knowledge on overhead imagery onto a wider area, effectively
improving the perception range of the robot beyond immediate range of its
onboard sensors. The created ad hoc map will help to shorten UGV path, to
reduce its energy consumption, to increase average speed and – most
importantly – to reduce breakdowns.

9

Before an UGV mission begins, an UAV makes a pass over the designated
target area returning fresh terrain imagery; optionally satellite imagery can be
used. An UGV operator will then be able to use the imagery to predict time
and UGV energy requirements for a predefined mission. If the full mission is
not attainable with the current UGV battery charge, the operator can choose
between aborting the mission or adjusting its objectives.

After the UGV is dispatched, it has to navigate autonomously through a set
of waypoints using onboard sensors for obstacle avoidance and the long-range
navigation system for route selection. The long-range system is adaptive to
new input and is capable of learning from the new data gathered by the UGV
as it navigates through the waypoints. This adaptiveness allows the UGV to
generate maps in unknown environments and to navigate in changing
environments such as flooding or forest fires.

Main Objective of the Thesis

Scientific Objectives

• Development of a long-range navigation method for an off-road
capable UGV that utilizes aerial and satellite imagery

• Development of an aerial imagery classifier using deep learning
approach

• Development of a self-assessment algorithm for graceful failure

The objective of the thesis is to develop an intelligent long-range
navigation method for an off-road capable UGV that utilizes monocular aerial
or satellite imagery. The navigation system must be able to cope with
unknown and changing terrain. The off-road environment is both unstructured
and unpredictable, requiring the navigation system to be adaptive, able to
learn new kinds of obstacles on the go. The environment is also changing
(flooding, forest fires); the navigation system must be able to reevaluate the
traversability of terrain and update the generated route when fresh data
arrives.

An extra constraint is that the system will be deployed on a small battery
powered UGV. The analysis of large-scale terrain for long-range navigation
can be computationally expensive. The size of the batteries, however, limits
available processing capacity. The resulting navigation system must be
computationally efficient to be viable.

Structure of the Thesis

The body of the thesis starts with a review of literature, which describes some
previous studies in the field and in the fields related to this thesis. The review
section is by no means exhaustive, it only refers to cherry picked works that
are relevant to this thesis. A deficiency in an off-road UGV navigation system
and current solutions are described. In the final part of the chapter problems

10

encountered in current solutions are summarized and arguments in favor of
our alternative are proposed.

The review of the literature is followed by a section dedicated to
theoretical work: it covers orthophoto analysis, cost map generation, path
planning and a usage scenario. For orthophoto analysis we use a classifier that
combines feature extraction and image classification. The first part of the
theoretical section describes in detail the classifier and its properties that make
this specific classifier particularly suitable for the task.

The following two chapters focus on cost map generation and path
planning. The overhead imagery classifier takes a small pattern from the
imagery as an input and returns a feature vector as an output. Each element of
this vector represents a likelihood that a corresponding feature is detected on
the input pattern. The cost map can be generated solely using the list of
detected features, but for added robustness we use prior knowledge to extract
the confidence of the classifier for each feature. At path planning the used
method is briefly described and challenges that are unique to our system are
discussed. Namely, the aerial imagery classification is a relatively expensive
step. Reversing the processing pipeline and evaluating aerial imagery on
need-to-know basis, increases the efficiency of the system in well defined
environments.

To conclude the theoretical section we describe a usage scenario that
explains how the system can be used for completing a mission. The time and
energy requirements of the mission can be roughly estimated prior to the
mission, using existing aerial imagery and a generic classifier, allowing the
operator to adjust the objectives and the extent of the mission as needed. After
the UGV is dispatched it will gather fresh information about the environment.
Cyclic update mechanism allows the classifier to learn from the fresh data
gathered by the UGV, improving its classification capability and enabling
better path generation. The cyclic update keeps the system adaptive, able to
recognize new obstacles and to reroute around those obstacles.

The theoretical section is followed by a practical part. We made a series of
experiments using manually labeled aerial imagery from the Estonian Land
Board database and satellite imagery from the Google Earth database. The
main objective of these experiments was to analyze the capability of the
system to perform on a known terrain and its ability to cope with an unknown
terrain. At the end of the practical sections we describe the performance
challenges of applying the system to overhead imagery covering large
territories and propose a solution that utilizes heterogeneous computing
hardware.

In the system analysis, first, the classifier is analyzed. The capability of the
classifier is checked against a manually labeled dataset, on both structured and
unstructured terrains, using aerial and satellite imagery. The measured results
are further validated against a GIS database.

In addition to measuring the peak capability of the classifier we want to
extract its confidence information. The confidence of the system can be

11

conveyed to the UGV – on high certainty clear areas it can use high speed
movement profile, while on low certainty areas it should use caution and rely
solely on local navigation capabilities. To obtain the confidence information
we utilize prior knowledge – the classifier is executed on a dataset with
known labels and an estimate of its capability is calculated from the measured
results. To verify the classifiers capability of expressing its confidence we
prepared intentionally weakened classifiers for both structured and
unstructured terrain.

The classifier tests are followed with combined tests that include cost map
generation and path planning. The features detected by the classifier, along
with associated certainties, are converted to traversal costs, which are utilized
by the path planner. The objective of the combined tests is to demonstrate the
capability of the proposed system in both structured and unstructured
environment. We demonstrate path planners’ ability to generate a safe route
from start to finish with both a well- and an under-performing classifier. These
tests are set up to be easily verifiable – the generated path must follow a road
avoiding obstacles even in low confidence scenarios.

The practical section is concluded by a short description of the developed
software and assessment of system performance. Processing of a large
overhead image with the proposed classifier on a CPU is a prohibitively
expensive operation for a battery powered UGV (in terms of time and used
energy). To overcome performance related challenges we explored different
ways of utilizing heterogeneous computing hardware and present a solution
that reduces the classification time and energy consumption by two orders of
magnitude in comparison to a CPU implementation.

12

1. Review of the Literature

1.1 UGV Navigation

Majority of current UGV navigation systems use expert systems that rely on
various pre-programmed criteria for distinguishing the features of the
surrounding environment. The traversability of the features is evaluated and
used for driving. The algorithms typically begin with ground level extraction,
followed by detection of objects above the ground – those are classified either
as obstacles or soft barriers. The worst drawback of the expert systems is the
lack of flexibility, the robots that depend on manually pre-programmed
algorithms tend to bog down in unstructured environments [3]. Furthermore,
the reliable perception range of UGV mounted instruments that is severely
limited by the jolting of the moving vehicle is not a helpful. The effective
perception range of LIDAR sensors is reduced to the range of stereo cameras:
below 30 meters.

In order to increase UGV flexibility DARPA (Defense Advanced Research
Projects Agency) launched LAGR (Learning Applied to Ground Robots)
project targeted at creating intelligent UGV navigation systems. The robots
using intelligent navigation systems are capable of learning from the past
experiences and from activities of instructors. Perhaps the ability of the
intelligent robots to perceive the environment beyond the stereo range of the
cameras is most important.

“Creating a machine that can navigate autonomously and intelligently
outdoors and off-road is an enormous challenge whose difficulty is well
appreciated by all those who try. While it is fairly simple to program a vehicle
to go from a waypoint to a waypoint over a smooth ground, as soon as
potential obstacles block the straight-line path, the task becomes much more
difficult. The autonomous navigation system has to determine which objects
in the path of the vehicle can be safely traversed and at what speed, and which
objects need to be avoided completely” [3].

1.2 UGV and UAV Collaboration

The concept of fusing UAV and UGV sensors for navigation purposes was
first proposed by Stentz et al. [4, 5] to discover obstacles that are hard to
detect in time from a fast moving ground vehicle. A notable hazard is a
negative obstacle, such as a pothole or a ditch, which is occluded to mobile
vehicle cameras until the vehicle is close. They proposed to use a “flying eye”
sensor that scouts ahead of the ground vehicle detecting hazards. Their
motivation was to increase an off-road mobile vehicle autonomy from human
operator during the DARPA funded PerceptOR program: “The PerceptOR
program seeks to remedy the poor performance of extended tele-operation by
introducing significant autonomous perception, reasoning, and planning
onboard the UGV, while directed by a remote human operator who can assist
the UGV when it is unable to determine the best course of action. By
introducing this autonomy, it is expected that the frequency and intensity of

13

human involvement at the remote command post can be greatly reduced,
enabling a single operator to control multiple vehicles and reducing the
bandwidth required between the UGV and the operator” [4].

The flying eye gathers 3D geometry (point cloud acquired by LIDAR or
stereo cameras) and geo-references it using pose estimation sensors. The geo-
referenced 3D geometry is sent back to the UGV over wireless link and fused
with the UGV onboard sensors for navigation. The data provided by the UAV
was used to extract “penetrability” and “compressibility” information about
terrain using stochastic algorithms – the penetrability correlates to availability
of geometric obstacles and is softened by compressibility criteria. For
example, tall grass is categorized as an obstacle by penetrability analysis but
softened to traversable terrain by compressibility criteria.

They made four experiments to validate the concept [4]: UGV without
prior knowledge, UGV with prior knowledge, UGV with outdated prior
knowledge, and UGV with online UAV sensor. Comparison of the UGV
mission with prior knowledge to the mission without it shows 40% reduction
in the mission time and 20% reduction in the traveled distance. Even the
mission with outdated prior knowledge (an obstacle was introduced on a
desired path) was 10% shorter (distance and time) than the mission without
prior knowledge. The comparison of mission with online flying eye and prior
knowledge to the mission with only prior knowledge shows significant but not
dramatic improvement in the traveled distance (Figure 6 in [5]) – usage of
flying eye altered the traveled path when new obstacles were detected but
after the obstacle was bypassed, the UGV returned to the predetermined path.

1.3 Terrain Classification Using Aerial 3D Point Cloud

Focus in terrain classification for an off-road unmanned ground vehicle is
mainly on interpreting 3D point cloud returned by LIDAR or stereo cameras.
An helicopter equipped with a LIDAR flying at height of 400m can acquire a
point cloud with a density of 1 to 52 points per square meter with a range
resolution of 1cm and point positional accuracy between 10 and 30 cm [6].

Stefanik et al. [7] used stereo vision for the 3D point cloud generation and
for environment mapping. Unlike LIDAR solution, the stereo camera
approach requires no helicopters to sweep the entire area. Stereo cameras can
produce the point cloud even on a hovering vehicle, helping with vertical
takeoff and landing. Stereo cameras produce a dense point cloud (2200
points/m2) using cameras attached to the autonomous helicopter from a low
height of 40 m. The cameras have a resolution of 1600x1200 pixels covering
846 m2 area with each shot. The best case vertical accuracy of the resulting
point cloud is approximately 0.6 m across the 33 m x 25 m area. The article
speculates that the system can run in real time with 5 frames per second,
consuming 10W when implemented on FPGAs.

Off-road terrain classification for navigation using 3D point cloud
generally emphasizes extracting explicit features, such as ground surface,
vegetation [8], manmade structures (buildings, roads) [9 – 11] or manmade

14

obstacles (concertina wire) [12]. Cost map for path planning generally
considers ground smoothness (lack of trenches, large rocks and vertical walls)
and vegetation penetrability (grass vs. trees). Load bearing (ground) surface
extraction from an UAV point cloud is important for it is the primary input for
ground vehicle path planning. For a high-speed run a smooth surface with a
small slope angle is preferred and all trenches and walls should be avoided.

Vandapel et al. [13] have proposed two methods for ground surface
extraction: multi echo based filtering and cone based filtering. Multi echo
based filtering utilizes a property of a LIDAR – it returns multiple results
when it measures sparse foliage. The results are clustered by height using k-
means clustering and the lowest cluster is assumed to be a ground surface for
any given area. Cone based filtering is based on a fact that volume below
ground point must not contain any other point (important for distinguishing
tree canopy from ground). Everything above ground is considered to be
vegetation.

Secondary input in their work for cost map generation is “vegetationess”
of the ground, defined as the ratio of data points above ground level to total
data points in a given area. The vegetationess of terrain is related to the
penetrability of terrain – grasslands have low vegetationess and are
traversable for robot but dense bushes have higher vegetationess and are thus
harder to penetrate. The total cost of each node on a cost map is the
combination of traversing cost (from ground surface) and vegetationess; the
uneven surfaces and dense foliage are avoided, resulting in safe path.

Generally, LIDAR data acquired by a flying sensor is classified in few
discrete steps: the point cloud is divided into small regions in the scale of 1
square meter. From the point cloud that falls into the region, a set of
parameters is extracted: maximum height difference between the points,
standard deviation, average value, ground surface, etc. The parameters are
then used as inputs for linear (such as k-means) [13, 14] or nonlinear (such as
neural networks) [15 – 18] classifier. In addition to point cloud parameters,
the classifier may also use other inputs, such as RGB values from cameras or
LIDAR signal reflectance [10, 11, 15].

Terrain classification methods that directly classify each point in point
cloud using its neighbors [19, 20] are infrequently used because of computing
requirements they impose. In addition, the density of the point cloud is higher
(some points are few centimeters apart) than essential for global path
planning.

Using 3D point cloud for terrain classification has multiple drawbacks [7].
The price of LIDARs is high compared to cameras. LIDARs are heavier than
cameras, especially those with suitable resolution, which makes them
unsuitable for a small UAV. The point cloud produced by stereo cameras has
high resolution, but has to be acquired from relatively low height to maintain
the resolution and to keep the precision under control. For navigation it is
preferable to acquire data about a wide area around a desired UGV path and
this can only be done from a height of hundreds of meters at least.

15

The long-range navigation systems developed are intended for low
hanging fruits and they utilize a high definition high precision 3D cloud for
terrain classification, but the difficulty of acquiring the point cloud for a large
area severely limits their usefulness. It is far more practical to use monocular
imagery for navigation as it is more readily available and can be easily
acquired. High resolution satellite imagery covering most of the world is
freely available from Google and Bing maps databases or from commercial
providers such as TerraServer. Relatively up-to-date aerial imagery can be
downloaded from GIS databases. Fresh aerial imagery can easily be acquired
by an UAV, the imagery can be updated during the mission to detect changes
in the environment.

1.4 Aerial Image Classification

Using monocular aerial imagery, terrain is mostly classified in the context of
automation of GIS database creation. Mayer reviews a long list articles [21]
focused on building extraction and Mena [22] lists nearly 250 publications
covering road extraction for GIS database update. However, GIS data
extraction methods for navigation are non-adaptive. They rely on hand-crafted
algorithms that are architected to find a very specific feature on aerial
imagery. UGV navigation systems that rely on pre-programmed algorithms
for feature detection fall apart in unstructured environments. Jackel et al.
report, “The off-road world is so complex that it is virtually impossible to pre-
program a vehicle to successfully deal with every environmental condition it
might encounter. Unfortunately, most systems today tend to be preconfigured
for the expected environment and cannot adapt to unforeseen circumstances.
For example, suppose that a vehicle will be driving through a mature forest. In
such an environment, much of the ground is either bare or littered with
impassable downed trees and branches. If the vehicle is programmed to avoid
all objects on the ground that are higher than 20 cm, it will be unable to
traverse a sunlit clearing where there is compressible tall grass” [3].

Heidarsson et al. [23] use aerial imagery in HSV and CIELab color spaces
for obstacle detection on water surface. The obstacles are used for unmanned
surface vehicle navigation. They use a set of simple filters (average,
deviation, edge detection and H channel entropy from HSV image) as feature
extractors and a small fully connected neural network layer as a classifier. The
classification is done pixel by pixel, the context of the pixel is largely
discarded, e.g. the edge detection filter transmits the steepness of the edge but
discards the shape of the edge. The neural network is trained using labels
produced by a surface vessel, which uses sonars for obstacle detection. In
overhead imagery, they use satellite data from Google and Bing maps
database.

Heidarsson reported excellent classification capability (over 90%) on a
calm lake and a calm harbor. The results are expected because the calm water
is nearly featureless, especially, when compared to feature rich surrounding
environment in a chosen experiment. Edge detection and standard deviation

16

filters return blank image for water area and light up on feature rich ground
area, high classification results can be achieved by simply labeling featureless
areas as water. The method falls apart when water surface contains features,
such as wave crests or vegetation. Finding a good set feature extraction filters
for a wide variety of environments and weather conditions is a difficult task,
testing the filters in various conditions is even a more laborious task.

1.5 Cost Map Generation & Path Planning

In order to execute path planning, the features detected on aerial imagery have
to be transformed into a form that enables comparison. For instance, if a path
planner has to route a robot through an area that contains both sand and solid
ground, then it is not sufficient to say that the solid ground is preferable for
driving but it is also necessary to specify how much better the solid ground
over sand is. The selected area is segmented into nodes for path planning,
each node is assigned a “traveling cost”. The job of the path planner is to
route the UGV through the nodes so that the total traveling cost is minimized.
The exact unit of the traveling cost depends on the objective: “energy” [16]
can be used to increase power efficiency or “probability of getting stuck” [24]
can be used to reduce risks, a mixture of both can be used for safe and
efficient planning. Assigning 10 times higher traveling cost to sand than to
solid ground usually means that the path planner is willing to make 10 m
deroute on solid ground in order to avoid 1 m of sand.

The level of detail used during cost map generation varies from roughly
predicting the terrain type [16, 24] to estimating the position of each UGV tire
on top of the ground surface and calculating UGV pitch/roll [25]. The trend is
to use multi level navigation systems where global planner roughly predicts
the terrain traversability and generates a rough path to destination [26-28].
The short-range decision making on how to traverse each segment of the
generated path is left on the local navigation system.

Once the cost map is generated, the path can be planned. A good search
algorithm for fully classified areas is an A* algorithm [29], which is an
extension to Dijkstra’s algorithm [30]. The drawback of the A* algorithm is
its performance cost in partially classified areas where the path has to be
updated as new data becomes available. Stenz proposed a D* algorithm [31]
to overcome the necessity to reevaluate the whole area when new information
becomes available. The D* algorithm, however, is largely replaced by a
simpler and more efficient D*-lite algorithm from Koenig et al. [32]. Gerkey
et al. [33] claimed the D* algorithm to be slow for small scale path planning
and suggested usage of a gradient based planner instead [34].

1.6 Synchronizing UAV and UGV Maps

One of the challenges in using aerial imagery for ground vehicle navigation is
coherency of UGV local maps and overhead imagery. The UAV and UGV
positions can not be estimated precisely because the inertial navigation
systems tend to drift. The global navigation systems have errors caused by a

17

long list of sources, such as atmospheric effects, clock errors and signal
reflections. Position estimate can be improved by using receivers that support
Differential GPS, but the availability of DGPS stations is not guaranteed. The
errors in UAV and UGV location and pose estimation cause mismatch
between UGV local map and overhead imagery. The UGV local map and
global map generated by overhead imagery must be synchronized, the most
common technique is fitting of the maps using distinct key points from both
maps.

 In their survey paper, Martial et al. [35] cover localization and mapping
solutions for both 3D input (point cloud) and 2D input (camera images). All
the methods described focus on defining distinct signature points on both
maps, finding a set of corresponding points and using them for defining
coordinate transformation. In the case of 3D point cloud, a local neighborhood
is used for computing the local shape descriptors or “signatures” [8]. In the
case of 2D images a set of features or “landmarks” [36] that can be detected
from various camera angles are recorded along with camera pose estimates.
An alternative for fitting with 2D images that is especially suitable for
overhead imagery is usage of a multi frame Structure From Motion (SFM)
methods. The SFM interprets multiple images taken with a monocular camera
at different positions as stereo imagery and uses it for point cloud generation.
The generated point cloud can then be matched using techniques developed
for 3D sensors. However, the point cloud generated using the SFM method is
inferior in quality to stereo cameras and can not be used for terrain
classification for navigation.

The major limiting factor in synchronizing the two maps is the computing
capacity. Given large data sets, searching a corresponding match for each
point in both maps is computationally infeasible. Choosing a good algorithm
for signature point selection will greatly reduce the count of points to be
matched, bringing the required computing capacity to manageable levels.
After a preliminary correspondence between the two maps is established, the
transformation can be improved by using detailed data.

The established transformation function between the two maps enables
fusing data of the two. The maps are, however, not equal. The local map is
more valuable in areas that are explored by a robot whilst global maps are
probably a more reliable source for the rest of the area. Fusing of the maps
with attached uncertainty information has been described by Elfes et al. [37]
and Oriolo et al. [38].

1.7 Chapter Summary

Off-road UGV robots with the capability of environment labeling are
available. However, their navigation system is short-sighted, which is a
serious problem for an off-road capable UGV. The short-sightedness can be
cured by using a flying eye sensor, the existing solutions rely on 3D point
cloud provided by an UAV. There are two major problems with existing

18

solutions: they are rigid in their functionality and acquisition of 3D point
cloud is difficult.

The rigidity in functionality manifests, in particular, in the inability to learn
from experiences. The rigid, pre-programmed, algorithms do not work well in
off-road terrain. It is practically infeasible to create algorithms that account
for all the circumstances the off-road robot will meet. The fixed-functionality
algorithms tend to break down in unstructured environments where the
properties of obstacles are unpredictable. The adaptive algorithms that are
taught by example or from experience are superior in natural environments.

The 3D point cloud is typically acquired either from relatively low height
with stereo cameras or from high height using a LIDAR. Acquisition from
low height poses collision risks to an UAV and limits the area that can be
scanned with one shot due to occlusion by tall objects. The high flying sensors
have much wider field of view and thus can examine a larger area with less
scanning, but the required high-precision LIDARs are heavy and expensive.
From technical point of view it is more convenient and cost-efficient to use a
monocular camera mounted on a high-flying UAV, but the required image
processing task is much harder to solve.

In addition to the flying sensor, alternative ways to acquire overhead
imagery are available. There are existing databases for aerial imagery, for
satellite imagery, for 3D point cloud, and for preclassified GIS data. The two
problems with existing databases are freshness of information and level of
detail. The fresh high-fidelity data is usually available only for cities and areas
with high population density. The image quality of remote off-road areas is
often lower, but the situation with aerial imagery is much better than with a
LIDAR point cloud. The level of detail for classified data in GIS databases for
off-road remote areas is meager at best. Among the choices, the overhead
imagery has best coverage and is most often updated.

There is a need for an adaptive system capable of working with monocular
overhead imagery that is able to learn.

19

2. Theoretical Foundations

2.1 Theoretical Background

The backbone of this thesis is the overhead imagery classifier, as it is the most
difficult part of the puzzle to solve. The classifier must take an orthorectified
aerophoto as an input, detect features on it and return some kind of map as an
output. The map is then used by a cost map generator that prepares the data
for path planning.

The aerial imagery provided by an UAV is georeferenced and
orthorectified; it has been adjusted for shift, scale, camera tilt angle, lens
distortion, and topographical relief of the terrain. Because there is a
conversion from image coordinates to geometrical coordinates, the classifier
can focus on images and work within image coordinates. The desired output
of the overhead image classifier is a feature vector for each pixel in the image,
each element of this feature vector expresses confidence of the classifier that
the corresponding feature is detected at the given pixel position. Another way
to represent the output is feature masks; for every feature in the feature vector
a mask can be plotted.

Aerial imagery classification algorithms typically consist of two steps:
feature extraction from input images and linear classification based on the
detected features [39]. Feature extraction is a step where a list of parameters is
extracted from an image, such as “spectral signatures, vegetation indices,
transformed images, textural or contextual information, multitemporal images,
multisensor images, and ancillary data” [39]. The linear classification step
will then detect objects on the image based on the detected features. Our UGV
must be off-road capable, i.e. the feature extractor algorithm must perform on
images acquired from wildly varying environments and the linear classifier
must be able to recognize a prohibitively large set of object categories based
on detected features. Given the variety in unstructured terrain it is excessively
difficult to build a universal aerial imagery classifier that is independently
capable of analyzing aerial imagery without assistance from additional
sensors.

To classify aerial imagery for navigation purposes we can lean on UGV
onboard sensors; the UGV onboard navigation system must be capable of
labeling the environment for path finding and obstacle avoidance.
Transferring of the labels assigned by an UGV to aerial imagery provides the
classifier with prior knowledge, enabling usage of machine learning
algorithms. Machine learning allows us to introduce concepts to a computer
based on labeled samples: from specific (building) to generic (obstacle).
Learning the overhead imagery features from an UGV greatly simplifies the
classification task. Instead of detecting all possible feature classes from every
input image we only have to detect the feature classes that an UGV is able to
recognize –1 the classifier is trained to detect the labels provided by an UGV.

20

It is no longer required from the classifier to “know” all terrains but instead it
can “learn” the local terrain from an UGV.

The resulting classifier is highly flexible because it adapts to terrain,
weather and illumination conditions. Because of stochastic nature of machine
learning we must use caution during interpreting the results. Before the UGV
has gathered a sufficient amount of information about the environment, the
overhead imagery classifier is unreliable and can not be trusted. Instead of
defining an arbitrary threshold for “sufficient” information we decided to
build our system to be able to cope with uncertainties of the classifier. We can
measure the capability of the classifier by using only part of labels returned by
the UGV for training the classifier and leaving the rest for testing. The
capability of the classifier can then be used for weighting the contribution
from the long-range navigation system – while classifier confidence is low,
the UGV should rely on local navigation capabilities and gradually increase
its reliance on the long-range navigation system as its confidence increases.

The machine learning algorithms in general are parameterizable functions,
parameters of which are taught using known samples. As a simple solution,
we could implement the linear classifier as a machine learning algorithm that
uses the set of feature extraction algorithms as its input [15, 40], but that
would leave us with a challenge of finding a good set of feature extraction
algorithms. Instead, we suggest using a machine learning algorithm that
combines feature extraction and linear classification: convolutional artificial
neural network.

The convolutional ANN utilizes a key property of images: nearby pixels
are more closely related than scattered pixels. Some of the additional
properties of convolutional ANNs are shift invariance, rotation invariance and
scale invariance [40]. Shift invariance is helpful because when we are looking
for a house in the input pattern it may be in any part of the pattern, it does not
have to be in the corner where it was during training. Scale invariance helps to
detect all sizes of buildings or trees, not just the ones that were present in the
training set. Due to shared weights in convolutional layers the variable space
is smaller; the training of the classifier takes less time and can be done with
smaller data sets than with conventional fully connected neural networks.

The convolutional ANN configuration proposed in this thesis is based on a
configuration used for handwritten character recognition [41]. The optical
character recognition was done on grayscale imagery, but aerial imagery is a
24 bit RGB. Converting the color imagery to RGB results in a loss of valuable
information. To accommodate the color input we decided to extend the
network by introducing three input patterns to the network instead of one –
one pattern per color channel. We could have made the one input pattern
larger but the mapping of the convolutional kernels to the input pattern would
have been unnecessarily complicated without any benefits. An upside to our
chosen approach is that the classifier can easily be extended to fit infrared
imagery to our classifier when need arises – infrared is just another color
channel.

21

The color information is invaluable because it gives cues about the
material – vegetation (grass, weed, bushes) dominates in the green color
channel while rigid objects (dirt, rocks, tree trunks) tend to be brown [5]. In
addition, pixel-by-pixel comparison of red and near-infrared color channels
can be used for measuring the chlorophyll content and thus can be used as an
alternative robust approach to detect vegetation [42, 43]. The chlorophyll
content strongly correlates to the compressibility of the terrain – softer
materials, such as grass and leaves, tend to have high chlorophyll content
while tree branches and rocks have low or none.

To describe the useful properties of a convolutional neural network it is
necessary to explain its inner workings. The following chapter contains a
short introduction to mathematics behind neural networks in general, followed
by an introduction to convolutional neural networks accompanied by
comments of how various properties are utilized in the current work. Further
paragraphs describe classifier training set creation and classifier output
processing and path planning.

22

2.2 Artificial Neural Networks

The objective of this section is to briefly introduce artificial neural networks
(ANNs) and how they work. Next, convolutional neural networks are covered
along with a description of why specific properties of a convolutional neural
network are useful in the context of the current work. The objective, however,
is not to convey the history of the artificial neural networks or its relations to
human brain. For the sake of brevity, only the basic mathematical framework
is covered – for a more detailed account, LeCun’s “Efficient backprop” [44]
or Bishop’s “Pattern recognition and machine learning” [40] is recommended.

The basic computational unit of an ANN is a neuron. A neuron is typically
connected to other neurons using weights. Every neuron has an output; the
value of the neuron output is usually calculated as the function of the
weighted sum of the connected neuron outputs. The neurons in an ANN are
organized into two or more layers; every neuron in a layer is usually only
connected to the neurons in the previous layer. The neurons in the first layer
are called input neurons; their output values are set explicitly. The last layer of
an ANN is called the output layer and the intermediate layers are hidden
layers. To evaluate an ANN its inputs have to be set and the output values of
all neurons have to be calculated one layer at a time.

The values of output neurons in an ANN depend only on the values of
input neurons and network weights. The basic idea behind ANNs and artificial
intelligence in general is that the weights and thus the function performed by
an ANN is trained. Training of an ANN is done by evaluating a set of inputs
with known output values and adjusting the weights in the ANN to minimize
the difference between the ANN output and the known output.

First, let us consider a very simple dual layer fully connected feed forward
network with two neurons in the input layer and one neuron in the output
layer (Figure 1). The neuron in the output layer is connected to both neurons
in the input layer and to an extra bias neuron by using weights.

Figure 1. A simple ANN network

23

The value of the output neuron is calculated by eq. (1):

 ܺ ൌ ൫ܨ ܻ൯ ൌ ܨ ቌ ܺିଵ ݓ ቍ, (1)

where ܺ is the output value of the output neuron, ܻ is the weighted sum before the activation function,

F is an activation function (tanh), ܺିଵ is the value of jth input neuron, ݓ is the value of weight connecting neurons ܺିଵ and ܺିଵ , ܺ is the bias neuron and its values fixed to 1.

In essence the ANN executes a nonlinear function mapping input variables ܺିଵ to output variables ܺ controlled by the set of variables ݓ.
We are using tanh function as an activation function because it is a

sigmoid function that is symmetrical over the coordinate axis. The tanh
function is easy to calculate and also the derivative of tanh (we need it later)
is also easy to calculate using eq. (11):

ݕ ൌ ݀ tanh ሺݔሻ݀ݔ ൌ 1 െ ሻ (2)ݔଶሺ݄݊ܽݐ

The simple two layer network is useful for illustrative purposes but not for
much else. Usually the ANNs are more complicated containing multiple
inputs, multiple outputs and hidden layers. For example, the Figure 2 presents
the ANN configuration most frequently used that has K input neurons, L
neurons in the hidden layer and M output neurons. The ANN is an example of
a fully connected network, where each neuron in a layer is connected to every
other neuron in the previous layer. It can approximate any continuous function
on a compact input domain to arbitrary accuracy, provided it has enough
neurons in the hidden layer [40].

24

Figure 2. A simple network with one hidden layer

The values of neurons in an ANN output layer are defined by the values of
neurons in the input layer and the weights through the equation (1). A popular
way to find the values for weights is to train them using a backpropagation
algorithm. The backpropagation algorithm feeds patterns with known output
values to the network and propagates them through the network. Once the
network output vector is calculated, it is compared to the expected output to
find an error vector. The errors at the output layer are then backpropagated to
previous layers and are used to adjust weights in the network.

For training we need a sample dataset of inputs with known output values.
We start training by randomizing all weights in the ANN, then select samples

one by one from the dataset, initialize the network inputs ܺିଵ in Figure 1 to
sample and calculate the network outputs ܺ using formula (1). Now that we
have the network output, we compare it to the known output to find the error
for each output neuron [44]:

߲ܺܧ߲ ൌ ܺ െ ܶ , (3)

where

 ܺ is the network output for a given input sample,

 ܶ is the expected value for a given input sample,

డாడ is the error at the output neuron.

25

The error of output before the activation function is

߲ܧ߲ ܻ ൌ Ԣ൫ܺܨ ൯ ߲ܺܧ߲ (4)

and the error at the previous layer neuron is proportional to the weight it is
connected to:

ିଵܧ߲ ൌ ߲ܺିଵܧ߲ ൌ ݓ ߲ܧ߲ ܻ . (5)

The share of the error for a weight is proportional to the signal it is
carrying:

ݓ߲ܧ߲ ൌ ܺିଵ ߲ܧ߲ ܻ . (6)

During training we feed multiple samples through a network,
backpropagate the errors and adjust the weights by the coefficient from
equation (6). To achieve steady improvement during training the weights
should be gradually adjusted using a learning rate:

ሻݐሺݓ ൌ ݐሺݓ െ 1ሻ െ ߟ (7) ,ݓ߲ܧ߲

where

ݐሺݓ ,ሻ is the value of the weight after adjustmentݐሺݓ െ 1ሻ is the value of the weight before adjustment, ߟ is the learning rate, డாడ௪ is the adjustment factor from equation (6).

To acquire the best result out of the training dataset it should be fed
through the network in multiple epochs. After each epoch the learning factor
should be decreased to improve the accuracy of the approximation function
the network performs.

This section described the basic functionality of an artificial neural
network. ANNs approximate complex functions by combining a large set of
simple but trainable functions. The fundamental unit of an ANN is a neuron
that executes the simple function using trainable parameters. The neurons are
organized into layers so that neurons in a given layer are only connected to the
previous layer. The layers are executed one by one, each prior layer output is
input for the next layer.

“Whole is more than sum of its parts” – Aristotle.

26

2.3 Convolutional Neural Networks

Even though large enough neural networks can be trained to approximate any
function, they are not necessarily efficient and there are additional constraints
in the task at hand that make usage of a large fully connected neural network
infeasible. Because we want to be able to use overhead imagery soon after we
have dispatched the UGV, the classifier must be trainable even with a small
set of samples, but large fully connected neural networks have huge internal
variable spaces that need equally huge sample sets for training. In addition to
the data set requirement, it takes much time (in processor core hours) and
energy to actually train those variable spaces.

Convolutional neural networks support specific mechanisms, such as local
receptive fields, weight sharing and sub-sampling that are particularly useful
for feature extraction from images. In the following samples, a small
convolutional neural network is built and its useful properties are described.
The samples are organized in several steps; each step introducing and
describing a new feature.

In order to feed grayscale image elements (patterns) into a network we will
build an artificial neural network that has an input layer, one hidden layer and
one output layer. The input layer must have as many neurons as the pattern
has pixels to ensure one to one relationship. In order to feed patterns into the
network let us arrange the neurons in the input layer into a two- dimensional
array (feature map) and copy the pixel intensity values from the pattern
directly to the input layer neurons (Figure 3). For color images (RGB or
YUV) we can separate the image into color channel and use a separate feature
map for each color channel.

Figure 3. Image pixel intensities are directly transferred to input layer neurons. In
order to illustrate convolutional kernels we append a gray background to all neurons
connected by the kernel and use bold gray arrow to point where those neurons are
connected to

The centerpiece of the convolutional neural network theory is a notion of a
kernel; a convolutional kernel is a set of weights that connects multiple
previous layer neurons to a next layer neuron. In the above image the neurons
that are connected by a convolutional kernel are encapsulated in gray
rectangle and the neuron they are all connected to is at the other end of the
wide gray arrow. The ANN in (Figure 3) connects all the input layer neurons

27

to just one neuron in the hidden layer and therefore it is not particularly
interesting.

On the following sample (Figure 4), only a subset of input layer neurons is
connected to each of the hidden layer neurons by using a convolutional
kernel. An important thing to note here is that all the subsets of input layer
neurons are connected to the next layer by using the same shared kernel so
that there are only 9 weights (actually 9 weights + 1 bias) connecting the input
layer and the hidden layer in the figure. The neural network is called
convolutional because in essence the kernels perform a convolution operation.

Figure 4. A convolutional layer. All neurons in the convolutional layer are connected
to a set of previous layer neurons by using a shared kernel

Weight sharing has many useful properties. As there are fewer weights in
the network, the variable space of the network is significantly smaller and the
network can be trained using fewer samples. For an UGV it is important
because it has to roam and gather local data used for training the classifier –
the less data is needed the faster the long-range system can be used.

Each kernel works on a small subset of the input pattern and as such can be
perceived as a local receptive field, the kernels are capable of extracting
localized features from the input pattern. The network is organized in such a
way that it extracts small features from the input pattern and based on the
combination of those features it decides if an object is present on the input
pattern or no. If the convolutional layer detects a chimney, an antenna and
roofing tiles, the fully connected layer can decide that there is a building
present in the input pattern.

Because the signals from different parts of the input layer are propagated
to the next layer by using the same convolutional kernel, the network is shift-
invariant. It helps to detect features on the input pattern, no matter in which
corner of the input pattern they are found. Locating the precise position of a

28

feature in the input pattern potentially even hurts the classifier capability to
identify the input pattern because the positions will vary for different
instances of the feature [45].

To further reduce the precision of feature position detection, sub-sampling
layers are used (Figure 5). The sub-sampling layers “perform local averaging
and sub-sampling, reducing the resolution of the feature map, and reducing
the sensitivity of the output to shifts and distortions” [45]. Each neuron in the
sub-sampling layer is connected to four neurons in the previous layer; it
aggregates the output of the connected four neurons by using a trainable
kernel.

Figure 5. Sub-sampling layer, its purpose is to downsample resolution of the previous
layer to reduce sensitivity to distortions

Simard et al. [41], however, have shown (link) that the sub-sampling layer
can be combined with the convolutional layer. To illustrate that we reorganize
the hidden layer neurons from Figure 4 into a convolutional feature map, as
shown in (Figure 6). The neurons in the feature maps are connected to the
previous layer by using convolutional kernels, but the kernels skip every other
row/column in the previous layer. In the illustration the 5x5 input layer is
connected to 2x2 hidden layer; without row/column skipping the hidden1
layer would have to be 3x3. While the hidden layer size is insignificant in the
current example, in practical samples the input patterns and feature maps are
larger and the effect becomes more dominant.

29

Figure 6. Integrated sub-sampling layers. To reduce the resolution of the input pattern
the convolutional kernel skips every other column and row during mapping.
NB! The neurons in the convolutional layer are organized into a 2D grid; not to be
confused with the sub-sampling layer in Figure 5

The invariance to geometric transformations can be increased by
introducing multiple alternating convolutional and sub-sampling layers into
the network [45] – or in the case of Simard et al. [41] by stacking multiple
feature maps. The progressive loss in resolution should be compensated by
increasing the count of feature maps in each layer.

It is also important to have multiple feature maps in each layer because the
feature maps connect to the previous layer by using shared kernels. Each
kernel is roughly capable of extracting a single feature from the previous
layer, i.e. to increase the count of detected features we need to increase the
count of feature maps. It should be noted, however, that the features a kernel
will extract are not high level, such as tree or chimney but rather low level
items, such as cross-hatching of specific pattern of pixels. Multiple high level
objects may share the same low level features.

The reference configuration chosen as a classifier in our project was based
on suggestions made by Simard et al. [41]. We chose to use three or four
29x29 pixel patterns for RGB and infrared color channels in the input layer,
one for each color channel. The features on an aerial imagery with a
resolution of 0.8 m per pixel fit comfortably into the input 29x29 input
pattern, for higher resolution imagery we might need to increase the input
pattern size and kernel size. The first convolutional layer contains six 13x13
feature maps, the second convolutional layer contains fifty 5x5 feature maps
and the third hidden layer is a linear fully connected layer with 100 neurons
(Figure 7). Both convolutional layers use 5x5 kernels.

30

Due to the used sub-sampling method, the layer sizes are linked. If a
feature map edge size on the previous layer is x, then the next layer edge size
can be calculated using formula (x – kernel_size) / 2 + 1. Hence the feature
maps in the network have sizes 29x29, 13x13 and 5x5. Because the sub-
sampling layers are integrated into the feature map, the first hidden layer
feature maps are only 13x13 pixels, without sub-sampling it would be 25x25
pixels (we use 5x5 kernels). Similarly, the second convolutional layer feature
maps are 5x5 pixels instead of 9x9 pixels.

Figure 7. Classifier structure

In essence the reference ANN is a fusion of two separate ANNs with three
layers both – the first three layers can be viewed as a dedicated feature
extractor and the last three layers are a linear classifier. The third layer in this
case is shared; it is the output layer of the feature extractor and the input layer
for the linear classifier.

31

2.4 Training

An artificial neural network is a generic tool; even the specific convolutional
ANN configuration described above is a relatively generic tool that can be
trained to solve arbitrary image processing problems. The specific capabilities
of the classifier must therefore be described by the structure of the network
and by the data set used for training. More specifically it is important to
describe the method of data gathering used to build the training data set.

We have two methods of training data set preparation: one is derived from
a handwritten character recognition field [41, 45] (Method A) and the other is
inspired by an UGV navigation system [46] (Method B). Both methods can be
used for training the classifier, but they result in classifiers that have distinctly
different properties.

2.4.1 Method A

Method A is based on the idea that the convolutional ANN is capable of
extracting distinct features from the input pattern and the linear classifier layer
can then be trained to report presence of objects in the input pattern. In
layman's terms each classifier output is trained to answer simple questions,
such as “Is there a building in the input pattern?”, “Is there a tree in the input
pattern?” or “Is there some grass in the input pattern?”. All the classifier
outputs are independent, there can be multiple object classes simultaneously
present in the input pattern.

During construction of the training set special care must be taken to ensure
that each object is represented in the input pattern by an adequate number of
pixels, e.g. every object in the input pattern has to be on at least x pixels or not
be present at all. The classifier must have enough data to extract features from
and if the training set contains patterns where an object is represented only by
few pixels on the input pattern, it will only confuse the classifier diminishing
its capabilities.

For numerical experiments with 29x29 input patterns we used a threshold
of 100 pixels – patterns where objects were represented by less than 100
pixels were discarded. Overall about 40% of the generated samples were
discarded because of this criterion – to obtain a training set of 30000 patterns
we had to generate about 50000 patterns.

2.4.2 Method B

Method B will train the classifier to detect the category of a single pixel in the
input image, particularly the pixel in the center of the pattern. The classifier
will then answer the question “Which category does the pixel in the center of
this pattern belong to?”. The categories are exclusive and thus the classifier
outputs are dependent on each other.

During construction of the training set we discarded patterns where the
selected pixel was over-specified (labeled to belong into multiple categories).
We also balanced the training set by making sure that all categories were

32

represented by an equal amount of patterns. Overall about 46% of generated
samples were discarded because of those criteria – to obtain a training set of
30 000 patterns we had to generate about 56 000 patterns.

It is important to note that the classifier outputs are trained to be
independent, but when evaluating unknown patterns the classifier may declare
that some of the patterns have multiple features present, particularly in the
feature border regions. While we could use the Bayes’ theorem to decide
which feature class has the highest probability and suppress all other outputs,
it is better to forward all the output values to the cost map calculation
algorithm presented in section 0. For instance, if a pixel is classified to be
simultaneously road and grass with 50% probability for both classes, the
traveling cost at this pixel will be somewhere between road and grass.

2.4.3 Method A versus Method B

The main advantage of Method A is the input quality requirement, during
composition of the training set the expected output values for each input
pattern have to be provided. The training method deemphasizes exact
locations of features on the input pattern only requiring a feature to be present
to be detected. It is useful when the features on the input patterns are ill
defined, i.e. it is very difficult to produce pixel precise definitions of features,
especially at feature border region. Image and label coherency is difficult to
achieve and having an additional invariance built into the classifier is
beneficial.

The second advantage of Method A is the computing performance of the
classifier; the output of Method A gives information about the whole 29x29
pixel input pattern while the output of Method B only gives information about
a single pixel. By using Method A it is possible to obtain preliminary results
by classifying an aerial image at a coarse level and then to refine the results
by choosing overlapped patterns, but with Method B one must either classify
the aerial imagery pixel by pixel or choose to skip pixels risking missing of
important features.

The main advantage of Method B is spatial resolution of the output as
illustrated in Figure 8. It allows us to classify every pixel in the aerial image
(apart from some pixels on the image edge) while the spatial resolution of
Method A is limited to its pattern size. It is possible to increase the resolution of
Method A by choosing overlapped patterns but the output will still be smudgy
because Method A does not specify the location of a feature in the input pattern.

Figure 8. Comparison of classification methods: hand-classified mask for buildings (left),
classifier output with Method A (center) and Method B (right)

33

2.4.4 Training Procedure

The actual training procedure is quite straightforward; it is done using a
training data set that contains a set of patterns with known (expected) output
values. Before training all network weights are randomized and learning rate
is initialized to a predefined value (0.01). During training the patterns are
loaded from the training data set one by one, color channels are separated and
the ANN input layer neurons are initialized to the pixel intensity values. After
the input layer is initialized, the first hidden layer can be evaluated by using
equation (1), the first hidden layer outputs are then used as second hidden
layer inputs, which are also evaluated and it proceeds until the last layer is
evaluated.

After the forward propagation step is complete, the last layer output (ANN
output) is subtracted from the expected value to find the network error. The
errors at the output layer neurons are backpropagated to the penultimate layer
neurons using (4) and (5), from where they are backpropagated to previous
layers until the errors are defined for the first hidden layer neurons. Next, the
errors are divided between the weights using equation (6), for shared weights
the errors from different sources are added together. Finally, the weights are
adjusted by the fraction of the error using equation (11).

The patterns in the training set are introduced to the classifier for learning
in multiple epochs. After each epoch the learning rate is slightly reduced,
stabilizing the learning process. To avoid dependence on the order in which
the patterns are introduced to the classifier we randomize the training set
before each epoch.

To increase the learning rate we used a gradient based method that will
assign an additional learning rate parameter to each weight. The parameter,
called a diagonal hessian, was calculated before each epoch in a “boosting”
phase – 500 patterns were evaluated to find the diagonal hessian value. The
method increases the learning rate of the network threefold without
introducing much computing overhead [44].

The training procedure is identical for both Method A and Method B – the
difference is only in how the training data set is generated. Resulting
classifiers, however, have distinctly different properties. Method A is more
robust to input errors while Method B has higher output resolution. After a
classifier has been trained, it can be used for object detection on overhead
imagery and for long-range path planning. The classifier output is not directly
usable for path planning, the following section will describe the challenges
and solutions to converting the classifier output into a form that can be used as
path planner input.

34

2.5 Cost Map Generation

The path planner algorithm we are using is A*. The A* algorithm requires a
set of connected nodes with predetermined positive costs for moving between
the nodes and results with minimal cost path through the nodes from start
position to destination. This section will describe how we use the classifier to
generate the set of nodes and calculate the associated costs. In addition, we
propose a simple cost function that takes into account the uncertainty of the
classifier.

To generate the nodes we take an aerial image, divide it into a grid of
29x29 patterns and feed the patterns into the classifier. The classifier returns a
feature vector for each pattern that can be used for cost map generation. For
the simplest approach we take each 29x29 pattern as a node and calculate the
cost of moving into that node based on the feature vector. The problem with
dividing the input image into 29x29 pixel patterns is that it reduces both the
horizontal and the vertical resolution of input by 29 times. It is especially
problematic with a classifier that uses training Method B, then we obtain
information about every 29th pixel. To increase the resolution we use
overlapping patterns: the first pattern origin is at coordinate (0; 0), the second
pattern is n pixels further away at (n; 0), etc. (where n is the scaling factor).

The feature vectors returned by the classifier are raw classifier outputs and
thus not directly usable for cost map generation, we need to convert the
classifier outputs to feature presence probability estimations. In theory the
classifier outputs are trained to be 1.0 when a feature is present on the input
pattern and -1.0 when the feature is not present. If features are well
distinguishable from the background, the classifier output values tend to
acuminate around -1.0 and +1.0 (Figure 9) and feature probability can be
estimated using a simple threshold function: if the output value is over 0, we
can say the feature is there and if not, we can assume it is missing on the
input pattern.

However, a more prosaic case is encountered when the searchable features
blend into the background and are hard to detect, resulting in a lower
classification rate. In that case the classifier outputs are in the range of 1.7 to
1.7 (limited by used sigmoidal activation function), the density functions will
coalesce (Figure 10) and it is difficult to differentiate if the feature is present
or not. The low classification rate can be caused by a large number of
variables, such as a too small training set, spatial discord between training
data and overhead image or distortions in the overhead image. Robust cost
map generation solution needs information about the features detected on the
input pattern coupled with continuous confidence information – not just
discrete probabilities of 0 and 1.

35

Figure 9. Density functions of network output when detecting buildings. Black line
represents the density of the classifier output when the input pattern contains a
building and gray line is the density of the classifier output, when the input does not
contain a building

We need to convert the feature vector into a probability vector, each
element of which represents the probability that the feature is present on the
input pattern. In this case Bayesian approach that uses prior knowledge suits
best. The Bayes’ theorem states that

(8)

where

 is the probability of feature class k when the classifier output
value is x,

 is the probability of output x when it is known that the input
belongs to feature class k,

 is the probability of class k,

is the probability of classifier output x (can be calculated
using cm 2).

36

The p(x) in Bayes’ theorem the denominator can be calculated using the
sum rule:

ሻݔሺ ൌ ሻܥሺሻܥ|ݔሺ , (9)

where

 ሻ is the probability of output x when it is known that the inputܥ|ݔሺ
belongs to feature class k,

 .ሻ is the probability of class kܥሺ

To find the class-conditional densities p(x|Ck) and the prior class
probabilities p(Ck) for each feature class we divide the training set into two.
The training set contains the known output values for each pattern, so it is
easy to extract the patterns that contain a given feature (class C1) and the ones
that do not (class C2). After evaluating both data sets with the classifier we
can plot out the class conditional densities for both classes p(x|C1) and
p(x|C2).

Figure 10 illustrates the class conditional densities p(x|C1) and p(x|C2) for
a feature class that is not easily distinguishable from the background. The
black line is the density of the classifier output on the data set where the
corresponding feature was present, i.e. probability of the network output x
when it is known that all input patterns contained feature class C1. The gray
line represents the density of the network output x on the dataset where the
feature was missing on the input pattern (class C2).

The probabilities of classes p(C1) and p(C2) are easy to calculate – they are
the ratios of patterns in the divided data set to the full training set. For
instance, if we have 30 000 patterns in a training set and 10 000 of them
contained the given feature, then the probability of a feature being present on
the pattern is p(C1) =10 000/30 000=0.33 and the probability of a feature
missing is p(C2) = 20 000/30 000=0.66. Using class-conditional densities and
probabilities of classes, the probability of output can be calculated using eq.
(11) and from there the probability for each feature being present on the input
pattern can be calculated using eq. (8). Specifically, we are interested in the
probability of the feature being present p(C1) on the input pattern given the
network output x: p(C1|x).

37

Figure 10. Class-conditional densities p(x|C1) (black) and p(x|C2) (gray) for a
classifier output

In order to use the uncertainty of the classifier (probability of the feature
being present) in the node cost calculation we need to define the cost of the
unknown input. It will be used as the cost of the node if the certainty of
presence for all features in the input pattern is 0. We want to have the cost of
an easily traversable terrain (roads) to be lower than an unknown terrain and
the cost of an impassable terrain (buildings) to be higher than that of an
unknown terrain. The equation we are proposing has the following form:

ݐݏܿ ൌ ݓሻሺܤ ܿ௨ , (10)

where

O is the classifier output vector,

B is the Bayesian function that maps the classifier output to probability,

W is the weight vector,

cu is the cost of the unknown terrain.

To make the cost of roads smaller than cu we use negative weights for
terrain features that are easily traversable and positive weights for features
that are difficult to traverse. Finally, we add extra check to make sure the cost
for the node is positive (11); the nodes with negative cost may lock A*
algorithm into a loop where it keeps returning into the same node, thus
breaking the algorithm.

38

ݐݏܿ ൌ ݔܽܯ ൭ ݓሻሺܤ ܿ௨ , ܿ൱, (11)

where

 cmin is the minimal traversal cost that must be a positive number.

In addition to Bayes’ function, we explored the usefulness of cumulative
distribution functions created from density functions (Figure 9, Figure 10).
One of the distribution functions gives us a probability that a feature class is
present on the input pattern, depending on the classifier output. The other
distribution function represents the probability that the feature class is not
missing on the input pattern, also depending on the classifier output. Both of
the distribution functions represent a probability of a feature being present, by
choosing various combination methods we can bias the cost map generation.
Multiplication of the distribution functions, for example, gives us probability
mapping that requires detection of the feature “presence” and an extra
confirmation that the feature is “not missing” on the input pattern. The
multiplication function thus emphasizes the correct feature detection. The best
results, however, are achieved by using Bayes’ theorem.

The objective of converting the classifier output to probabilities and
generation of cost map is path planning. We use a training data set to evaluate
class conditional densities of classifier outputs, and use them in Bayes’
theorem to estimate the probability of feature presence depending on the
classifier output. The feature presence information along with confidence is
used for cost map generation; the next section will demonstrate how it can be
used for path planning.

39

2.6 Path Planning

Path planning is done by the A* algorithm, which is an improvement over
Dijkstra’s algorithm [30]. It generates the lowest cost path from a given start
point to the destination point. As mentioned above, the A* algorithm requires
a set of nodes with an associate cost of moving from one node to the
neighboring node.

The A* algorithm is best summarized by a tutorial written by Patrick
Lester:

1) Add the starting square (or node) to the open list.
2) Repeat the following:
a) Look for the lowest F cost square on the open list. We refer to this as

the current square.
b) Switch it to the closed list.
c) For each of the 8 squares adjacent to this current square …

● If it /.../ is on the closed list, ignore it. Otherwise do the following.

● If it is not on the open list, add it to the open list. Make the current
square the parent of this square. Record the F, G, and H costs of the
square.

● If it is on the open list already, check to see if this path to that square
is better, using G cost as the measure. A lower G cost means that this
is a better path. If so, change the parent of the square to the current
square, and recalculate the G and F scores of the square. /.../

d) Stop when you:

● Add the target square to the closed list, in which case the path has
been found /.../, or

● Fail to find the target square, and the open list is empty. In this case,
there is no path.

3) Save the path. Working backwards from the target square, go from each
square to its parent square until you reach the starting square. That is your
path. [47]

The algorithm maintains a list of working items (open list) and a list of
processed items (closed list). Each item has two costs associated: H is an
heuristic value that estimates the distance of the current node from the
destination and G is the cost of moving from the start node to a given item,
the F cost is the sum of H and G. The G cost of the start node is 0; the cost of
moving from the start node to the neighboring node is taken from the cost
map calculated using equation (11). By working from the start node towards
the end node we assign the G cost of each neighboring node as the cost of the
current node + the value from the cost map calculated using equation (11), as
specified in step c.

Development of a path planner is a separate field of research not covered
in this thesis. We chose to use the A* algorithm [29] because it generates the
lowest cost path from the start point to the end point, allowing us to
demonstrate our system. When the system has to deal with highly changing

40

environments and continuous replanning, the D* [31, 48] or D* Lite [32]
algorithms may be more appropriate. The A* and D* algorithms may be too
slow for UGV local navigation, but they are suitable for planning in large-
scale environments [33].

One thing to note, however, is that the path planning algorithm does not
use the cost of all nodes. To evaluate the cost of a node we need to trigger the
classifier which is a relatively costly process in terms of computer cycles.
There is a possibility to integrate the path planner, cost map generator and
terrain classifier for greater performance. Instead of evaluating full aerial
image with a classifier for a cost map generator and a path planner, we could
reverse the pipeline and evaluate the aerial imagery on a need-to-know basis.
When the path planner needs a cost of a node that it does not have, it will
request it from a path planner which in turn triggers the classifier. The
classifier then evaluates the corresponding portion of aerial imagery, returns
the result to the classifier which in turn calculates the cost for the path
planner.

The classification of aerial imagery pattern by pattern on a need-to-know
basis, however, neglects the benefits we receive from batch processing
(section 3.5). Processing of a large set of patterns in parallel on a
heterogeneous hardware is significantly more efficient than the classification
of individual patterns.

To combine benefits of the integrated pipeline and batch processing we
could take a hint from computing memory architecture, namely from caching.
When a CPU needs to load an operand for an instruction that is not present in
the on-die cache, it has to make a request for the relatively slow random
access memory (RAM). Loading a single byte from RAM is a relatively slow
operation, but loading subsequent bytes from RAM is much faster and it is
very often a case when an argument is needed to be loaded from RAM the
processor will soon need another argument from nearby memory location.
Thus, to optimize the memory access when a single argument is needed from
slow RAM memory, the whole page of about 1024 bytes is loaded into on-die
cache instead.

In the case of path planning, when a path planner needs the cost of a node
that has not been classified yet it is very likely that it will soon need the cost
of its neighboring nodes, and their neighbors too. Instead of classifying a
single node from aerial image, the cost map generator could trigger batch
classification of a rectangular area with an edge length of a few hundred
meters.

The path planner takes the cost map as an input and generates the lowest cost
path from the start node to the destination node. Integrating the path planner
with the cost map generator and terrain classifier may significantly reduce the
area that is needed to be evaluated on aerial imagery and thus improve the
performance of the system.

41

2.7 Cyclic Update and Self-Supervised Learning

In the previous theoretical section we described a classifier that is capable of
extracting features from aerial imagery; the classifier can be trained offline
using manually labeled input for training and then used on an aerial imagery
for cost map generation and path planning. Relying on manual labeling,
however, will impose significant limitations to the system as the manual
labeling is a time consuming process and having an operator classifying aerial
imagery would largely defeat the purpose of having autonomous machinery.
For practical uses we must acquire the training labels autonomously utilizing
the UGV onboard sensors; preferably in a cyclic manner to keep the system
dynamic, capable of adapting to a changing environment.

Before the UGV is dispatched, the operator may need to analyze the
feasibility of the mission. For preliminary analysis, we propose a generic
overhead imagery classifier trained in a similar environment to be applied to
either aerial or satellite imagery for cost map generation. In case of events that
have significantly affected the passability of the environment, such as
earthquakes or flooding, the area should be scanned by an UAV for fresh
imagery. The generated cost map can then be used for path planning through
target objectives helping to estimate mission energy requirement and duration.
Having an estimation of energy requirements will also help to plan ahead the
extent of the mission and adjust the objectives to match the UGV battery
charge.

The UGV mission can be planned in a set-and-forget mode, where the
UGV will autonomously execute the mission, or in an assisted mode, where
the operator can contribute to path planning. The natural operator inputs for
our system are mid-term waypoints and exclusion zones on aerial imagery.
The midterm waypoints allow for an operator to adjust the generated path as
necessary and insert explicit knowledge into the system about fords or bridges
over rivers or mountain passes. The exclusion zones can be used to divert the
UGV from dangerous zones such as minefields, and as extra safety inputs –
rivers, lakes or steep slopes on mountains can be marked as exclusion zones to
minimize the risk of classifier misjudgments. Alternatives to exclusion zones
are safety zones – regions where UGV may travel. Safety zones limit the
UGV traversal to the specified area, in this case the robot may only travel on
the terrain that is explicitly enabled by the operator.

The UGV can be dispatched with an untrained or a generic classifier. As
the UGV navigates the environment, it will create a local map by applying
labels to the surrounding area that can be used together with overhead
imagery to train the classifier. Introducing new labeled patterns to the
classifier training set will reinforce its capability of detecting known features
and recognizing new features. The updated classifier can in turn be used to
evaluate the overhead imagery for updated cost map generation and for
planning an updated path to the next waypoint. The data gathering, classifier
training, cost map generation and path planning should be executed in cycles

42

with period of few minutes (Figure 11); it will keep the system adaptive,
capable of learning new obstacles and pathways.

Figure 11. Cyclic update

It is important to maintain the diversity of the classifier training set [49]. If
the UGV travels on a monotonous terrain for an extended period it may
saturate the training set with similar patterns degrading the capability of the
classifier to work in other types of terrain. The training set should keep an
even amount of patterns representing each feature in addition to patterns that
hold no feature. As new data is gathered it should substitute outdated patterns
from the training set but not completely. The training set should keep
representatives from older periods as “permanent memory” to be able to
detect the old features when they reoccur.

The generic classifier has some classification capability while an untrained
classifier has zero confidence in the output. The confidence of the classifier
output can be used as a long-term navigation contribution factor – with an
untrained classifier the UGV should rely on the on-board navigation system
and gradually give the control over to the long-range system as its capability
increases. In addition, the confidence of the classifier is reflected in the cost
map generation – the cost of low confidence nodes is close to the cost of
unknown terrain Cu. In the areas where the terrain traversal cost is low, the
UGV can use the high-speed traversal mode. For the areas where the cost is
close to Cu, the UGV should use the normal mode – as if the overhead
imagery classifier was missing. Finally, in the areas where the cost is high, the
UGV should take extreme caution and use slow speed.

43

3. Numerical Experiments

3.1 Test Setup

To validate the capability of our terrain classifier, cost map generator and path
planner, we prepared two aerial photographs from the Estonian Land Board
database: one image from the outskirts of Tallinn (Figure 12) and the other
from a fen (Figure 13) and classified them manually for reference. The
outskirts image covers approximately a four-square kilometer area and the fen
image covers approximately two square kilometers. We used the Estonian
Land Board xGIS database because their images and imagery acquired by
UAV had similar resolution and because the images are already orthorectified
and georeferenced.

Figure 12. Outskirts of Tallinn

The outskirts area was chosen because it represents a suburban area with
low population density. In addition to roads, there are also large batches of
grass that can be used to shorten the path, buildings that should be avoided
and rubble piles that also pose a threat to our UGV. For classifier training and
evaluating we chose a small area from the center of the image with a size of
approximately 5% of the whole image (source image has a size of 3114x1994
pixels and the hand-classified area had a size of 706x401 pixels) and manually
labeled it producing a mask for each feature we were looking for. In total, we
created four masks: one for buildings, roads, grass and rubble (Figure 14).

44

Figure 13. The fen area

The weights used for cost map generation were selected such that the UGV
would prefer roads for navigation avoid buildings and occasionally take
shortcuts over grass when detour is inexpedient.

45

Figure 14. Classified area from the outskirts (top) and the feature masks (bottom): red
for buildings, blue for roads, green for grass and brown for debris

The fen area (Figure 15) was chosen because it represents a low and wet
natural terrain that is very hard to traverse for an UGV. The area contains
multiple drainage canals, a low river that should be avoided and a few grassy
maintenance tracks. At the manual labeling step we created three feature
masks for the whole fen area – roads, water and trees. During cost map
generation we focused on the track, avoiding trees and especially water.

46

Figure 15. Fen (top) and its feature masks (bottom): blue for water, red for tracks and
green for trees

In addition to aerial imagery, we prepared a satellite imagery of the
suburban area for comparison. The satellite imagery was acquired from
Google maps database, upscaled to identical resolution with aerial imagery
and the same area that was used for aerial imagery data set creation was
classified manually to obtain a comparable dataset. The satellite imagery,
however, was taken on a different year, at a different time of the year and
different time of the day and it had approximately 4x lower resolution (pixels
per meter). The satellite imagery covers the same territory, but because it was
taken from a different year, it contains some of the objects that aerial imagery
did not, i.e. some of the construction projects were completed and related
debris was cleaned up. Also, because the aerial imagery was acquired in
summer, it has high grass content where the satellite imagery, which was
acquired in early spring, has mud (Figure 16).

47

Figure 16. Comparison of aerial (top) and satellite (bottom) imagery

During the manual labeling process, it was difficult to precisely identify
the feature borders due to limited resolution of the input – for dirt roads
without no lining it is impossible to be pixel precise; we had difficulties even
with well-defined structures such as buildings. To reduce the amplitude of the
errors produced by manual classification we produced the masks on higher
resolution imagery and then scaled both the input image and masks down by

48

2x. The resulting image resolution (0.8 m/pixel) is well suited for the
classifier 29x29 pixel input pattern, as the features of the input image will fit
comfortably into a pattern. Using lower resolution image would make details
too small to detect and would make it difficult to detect higher-order objects
based on those features. Higher resolution images would make the individual
features too large, thus the input image would only contain a few of the
features.

As mentioned above, we used a reference configuration for the classifier in
our numerical experiments; it had three 29x29 neuron input patterns for RGB
color channels, six 13x13 neuron feature maps on the first hidden layer, fifty
5x5 feature maps on second hidden layer, 100 neurons on the third fully
connected hidden layer and three (fen) or four (outskirts) neurons on the fully
connected output layer. The feature maps were connected to the previous layer
using 5x5 convolutional kernels. Choosing a reference network allowed us to
have a steady baseline against which to compare the effect of improvements,
as we kept updating our system.

49

3.2 Classification Capability

It is important to measure the capability of the classifier because it determines
the capability of the whole long-range navigation system. The faster the
classifier learns an environment the faster we can use the navigation system
for path planning. High certainty output from classifier enables UGV to use of
high speed driving profiles in known areas. This section covers the various
aspects related to the utilization of the classifier.

With a training set of 30 000 patterns the classification rate converges
around optimum at around 20 epochs of training, the Figure 17 illustrates
convergence rates of a large set of classifiers with the count of internal
variables ranging from 35 000 to 535 000. The classification rate for reference
configuration, containing 135 000 internal variables, converged after about 15
epochs of training. All the numerical experiments reported in this thesis were
performed with the reference classifier configuration; to analyze the capability
of the classifier we trained it for at least 20 epochs on each data set.

Figure 17. Convergence of the classification rate. The chart plots the correct
classification rate of a set of classifiers with the internal variable count varying from
35 000 to 535 000 on the outskirts data set

For training Method A on the data set generated from the outskirts aerial
imagery we achieved the combined classification rate of 97.9%; on 97.9% of
the patterns the classifier could correctly detect all four feature classes. For
training Method B on the same data set we achieved the classification rate of
88%. Seemingly Method A produces better classification results but in reality
the two methods are not directly comparable because they produce different
outputs (Figure 8); Method A will detect if the features are present on the

50

input pattern, while Method B will categorize on pixel on the input pattern.
Because Method B has a more detailed output, it also has a higher error rate.

On the data set generated from the fen area, we achieved the combined
classification rate of 73.7% with Method A and 83.5% with Method B. The
much higher road detection capability of Method B can be attributed to
training data set construction: with Method B we construct a balanced data set
where all features are equally represented. For Method A we pick patterns
randomly into the training set; the tracks make up a small area of fen image
and thus they are under-represented in the training data set. To validate the
claim we produced an ad hoc balanced data set for the fen region using
Method A; each of the three features were present on at least 25% of the
patterns and 25% of the patterns were featureless. On this balanced data set,
we achieved 84.4% road detection capability of Method A – better than 79.2%
of the unbalanced data set but still short of 90.2% of Method B. The ad hoc
experiment indicates that the training set balancing contributes to the
increased classification rate of Method B on the fen data set, but does not
fully explain it.

Comparison of classification results for aerial and satellite imagery shows
(Table 1) that the classifier works equally well on both. The classification rate
of satellite imagery is even higher, which is unexpected, because the aerial
imagery has higher resolution and more details. We also made tests to see if
we can substitute aerial imagery for satellite imagery and found that we can
use a classifier that was trained on aerial imagery for path planning on
satellite imagery but not vice versa. The classification rate, when trained on
one dataset and used on the other, e.g. when trained on aerial imagery and
used on satellite imagery, is low, but we observed dramatic improvement
when we retrained the classifier on the correct data set for one epoch. Hence,
use of a previously trained classifier as a starting point for different image
source classification is a worthwhile endeavor.

The classifier is trained using an aerial imagery and manually created
feature masks. To evaluate the classifier capability visually we can classify the
same aerial imagery and plot the masks by using classifier output. The feature
masks produced by the classifier can then be compared against manually
created labels. Figure 18 presents both manually created and classifier
generated feature masks for three features from outskirts area: buildings,
roads and grass. The feature masks have been generated with both training
Method A and Method B for comparison.

51

Table 1. Comparison of classification rates for different classification methods on
aerial and satellite datasets [%]

Feature Class Buildi
ngs

Grass Debris Roads Trees Water Total

Fen, aerial
imagery,
Method A

 79.2 99.4 92.8 73.7

Fen, aerial
imagery,
Method B

 90.2 98.2 93.6 83.5

Outskirts, aerial
imagery,
Method A

99.4 99.8 98.8 99.7 97.9

Outskirts,
satellite imagery,
Method A

99.7 99.9 99.6 99.8 98.9

Outskirts, aerial
imagery,
Method B

97.9 94.1 97.9 97.1 88

Outskirts,
satellite imagery,
Method B

97.4 96.3 98.6 96.9 89.9

The Figure 18 illustrates one of the challenges with the classifier training
Method A: low spatial resolution. With pixel edge size of 29 pixels and image
resolution of 0.8 m/px the classifier input pattern covers 23x23 m area. If
grass is detected in any part of the input, the corresponding output will have
high value; even if a small patch of grass is detected, it will be smudged out to
an area that has a radius of 32 m (input pattern diagonal). The input of the
Figure 18 contains a set of narrow roads and small buildings surrounded by
grass, because all features will be smudged out by 32 m and grass is abundant
in the input pattern, the feature mask for grass is oversaturated.

52

Figure 18, Comparison of a well-trained classifier outputs with reference. The first
column has reference feature masks for buildings, roads and grass. The following
columns have feature masks generated by the classifier with training Method A and
training Method B

53

Figure 19. Comparison of under-trained classifier outputs with reference. The first
column has reference feature masks for buildings, roads and grass. The following
columns have feature masks generated by the classifier with training Method A and
training Method B

Below in section 3.3 we assess the capability of the system to perform in
low confidence scenarios. A classifier that is applied to imagery, with features
that it is unable to recognize (due to insufficient training or incomplete
training set), must express its uncertainty in the output. Figure 19 presents
outputs of two classifiers that have received insufficient training, the certainty
of the classifier output is expressed using pixel intensity – darker pixels

54

indicate higher certainty of feature detection and lighter pixels show lower
certainty.

The feature masks presented in the Figure 19 demonstrate that the
classifier is capable of expressing its uncertainty in the output. As can be seen,
with Method B, on distinctly identifiable features (buildings, roads), the
uncertainty is the highest at the feature borders, making feature maps look
blurred. The certainty of the classifier is later utilized for cost map generation
and path planning.

Our experience shows that on a training set of 30 000 patterns the peak
classification rate is achieved after about 20 epochs of training, before that the
classifier output expresses a significant amount of uncertainty. The
classification rates for the fen data set are in an expected range, but the
classification rates of over 99% on the outskirts dataset are suspicious and a
hint for overlearning. The following section makes an attempt to estimate the
extent of overlearning on the outskirts dataset.

3.2.1 Outskirts Overlearning Analysis

The high classification rates on the outskirts dataset hint for overlearning; the
testing and training datasets might not be large enough or have too high
overlap. Visual inspection of a larger classified area (Figure 20) supports the
suspicion – the roads within the manually labeled area used for training are
detected better than those outside that area. The current section tries to
measure the scale of the overlearning problem in the outskirts dataset.

Figure 20. The top row represents buildings and the bottom row roads. The buildings
(top row) are well detected within and outside the training area in the middle of the
image. Some of the roads (bottom row) outside the training region, however, remain
undetected, particularly in the lower left parts of the images

55

To estimate the extent of the problem we prepared another dataset (Figure
21) for the same outskirts area. The labeling of the new dataset was done
using the Estonian Land Board xGIS database; it contains only one feature
category – buildings. The reason we use only one feature category is that
other features marked in the xGIS database are not coherent with the provided
imagery. For example, the roads in the xGIS database do not necessarily
overlap with roads on the aerial image and some pieces of roads are not
present in the xGIS database at all (Figure 22). We are using the xGIS
database because it allows us to label a large-scale map that is prohibitively
difficult to label by hand.

Figure 21. Validation dataset with buildings marked with red tint

The xGIS data coherency with aerial imagery (Figure 22) is an important
issue during classifier capability evaluation – inclusion of patterns with
invalid known values into the training set will degrade the classification rate
of the resulting classifier. Even if the GIS database is up-to-date and accurate
it is still inferior to manually labeled input. The reason is that not all the
features marked on the xGIS database are visible from aerial image: some are
covered by vegetation, others are in the shadow of a larger structure or look
just like another feature. For example, patterns from a large apartment
building with faded tar roofing look just like patterns from a parking lot and
training the classifier to categorize the roof patterns as buildings will reduce
the classification rate of both buildings and roads. The manual labeling
process, however, will assign labels to features based on what they look like,
producing data sets that are more suitable for evaluating the classifier
capabilities.

To evaluate the classifier performance hand classified input is preferred
because it contains features that are actually extractable from aerial image. To

56

exploit the classifier the GIS database suits better, because even though it has
no way of detecting some of the features using aerial image alone, including
indistinguishable features in a learning set, it will reduce the confidence
assigned to those features. The cost map algorithm uses the classifier
uncertainty as an input and if the probability mapping functions are chosen
with safe path in mind the path planner will reroute the UGV around the
features whenever it is practical.

Figure 22. Discord between aerial imagery and xGIS database. The xGIS data for
roads (blue) is often shifted relative to aerial imagery (1), the road data overlaps with
grass. Some of the areas that could be labeled as roads during manual labeling (2)
are not present on the xGIS database. The xGIS data for buildings (red) may be
shifted relative to aerial imagery (3)

In our experiment we divided the image (Figure 21) into two – the top half
was used for testing and the bottom half for training the classifier. Splitting
the image allowed us to eliminate any overlap between the training and the
testing set. Because the image is significantly larger than in previous tests we
also increased the size of the training set from 30 000 samples to 100 000 to
compensate for higher building diversity.

By running the experiment on the new testing set, we achieved Method A
classification rate of 91.4%, lower than 99.4% than in the Table 1. The
classification rate of the training set is still 98.7%, indicating that for the
original outskirts dataset large pattern overlap existed between test and
training datasets. The classification rate on the test set for Method B was also
91.4%, lower than 97.9% in the Table 1. The classification rate on the training
set was 97.5%, again indicating the overlearning.

By classifying the xGIS outskirts control set with both Method A and
Method B, we achieved an equal classification rate of 91.4%. The
classification rates were lower than those for manually labeled data (Table 1)
due to three reasons: overlearning, dataset quality and reduced feature count.
The source of overlearning is the fact that we generated both training and
testing datasets from the same area. The dataset quality means that xGIS
labels are not coherent with the aerial imagery, producing invalid samples to
data and increasing the classifier error rate. The low feature count increases
the error rate because by including only one feature into the training set the
samples with other features were under-represented. The visual inspection of

57

an aerial imagery classified with the xGIS classifier labeled some parking lots
as buildings. If we had had a good road mask during training, that would have
contained the parking lots, the classification rate would probably have been
better.

The analysis shows that even though the overtraining problem is real and it
exists, its extent is not excessively large. The manually labeled area in the
outskirts region was small, causing overlap between training and testing
samples, helping the classifier reach over 99% classification rates. The
classifier, however, reached over 90% classification rate on an unfair control
data set, which is plentiful for the current task.

58

3.2.2 Classifier Size Analysis

An important challenge with artificial neural networks is to find an optimal
size of the network, increasing the size of the network improves its
capabilities but also requires more samples to train and more processing
power to run. It is particularly important to have training data available; large
networks have large sets of internal variables that have to be trained, requiring
large sets of labeled samples for training.

The proposed classifier combines two steps in one ANN: feature extraction
and classification of extracted features. Our proposed ANN contains five
layers, but it can be interpreted as a combination of two separate ANNs: first
three layers can be seen as a convolutional ANN with one hidden layer and
the last three layers as fully connected ANN with one hidden layer. The third
layer of the classifier is then simultaneously an output layer for the
convolutional ANN and an input layer for the fully connected classifier. The
feature is extracted by the convolutional layers and classified by the fully
connected one.

“The approximation properties of feed-forward networks have been widely
studied (Funahashi, 1989; Cybenko, 1989; Hornik et al., 1989; Stinchecombe
and White, 1989; Cotter, 1990; Ito, 1991; Hornik, 1991; Kreinovich, 1991;
Ripley, 1996) and found to be very general. Neural networks are therefore
said to be universal approximators. For example, a two-layer network with
linear outputs can uniformly approximate any continuous function on a
compact input domain to arbitrary accuracy, provided the network has a
sufficiently large number of hidden units” [40]. Because an ANN with one
hidden layer is a universal approximator, it is sufficient to have one hidden
layer on the convolutional and one hidden layer on the fully connected part of
the classifier. The quest for finding the optimal networks size is reduced to
finding the count of neurons on the classifier layers.

The sizes of feature maps on the convolutional layers of ANN are
interdependent. In order to connect 29x29 neuron input feature map to the
next layer feature map with a 5x5 convolutional kernel, the second layer
feature map has to have a size of 25x25 neurons. Because we are skipping
every other row and column for subsampling the feature maps on the second
layer must to have a size of 13x13 neurons and on the third layer 5x5. The
quest for finding the optimal classifier size simplifies to finding the optimal
count of feature maps on hidden convolutional layers and finding the count of
neurons on the fully connected layer, given a set of training patterns.

We trained a range of classifier configurations on two datasets – a small
training set consisting of 500 patterns and a large one consisting of 30 000
patterns from the outskirts area. We trained a list of classifiers on both
datasets for 30 epochs and plotted the final classification rate into a chart
(Figure 23). The list of classifiers was built around a reference configuration;
the additional configurations were generated by halving or doubling the count
of neurons on the hidden layers of the reference configuration. For instance, in
addition to the reference classifier, we used ones that had 3 or 12 feature maps

59

on the first hidden layer, 25 or 100 feature maps on the second hidden layer,
50 or 200 neurons on the third hidden layer. We also included multiple
combinations of the halved/doubled layers; one configuration where all
hidden layers were halved, another one where all hidden layers were doubled,
yet another one where only convolutional layers were halved, etc.

Figure 23. Effect of classifier size on classification capability. The chart contains data
from two datasets – a small dataset consisting of 500 patterns (orange) and a large
data set consisting of 30000 patterns (blue). The reference classifier configurations
are highlighted.

Unsurprisingly, we found that the ANN configurations with lesser internal
variables performed better on small datasets and the ANN configurations with
large internal variable spaces performed better on larger datasets. We also
found that given the fixed amount of training patterns, it is more efficient to
increase the count of feature maps on convolutional layers than to increase the
count of neurons on the fully connected layer because, due to shared weights,
increasing the count of feature maps contributes less to increasing the variable
space.

We found that halving the reference classifier size reduced its classification
capability on a large training set and doubling the reference classifier size
reduced its capability on a small training set without significant improvement
on a large dataset. Hence, our chosen reference classifier is a good fit for
various scenarios from small training sets containing few hundred patterns to
large training sets containing tens of thousands of patterns.

60

3.3 Cost Map Generation & Path Planning

The main objective of the cost map generator is to translate the classifier
output into a form that the path planner can use; not only should it transmit
the information about roads and obstacles, but it should also pass the
information about classifier certainty. The cost map generator uses feature
vectors produced by the orthophoto classifier as an input and produces a cost
map used by the path planner as an output. For cost calculation we need to
convert the feature vectors to probability vectors by using Bayes’ theorem in
section 0. The need for the Bayes’ function arises from the stochastic nature of
the classification problem – the low amount of information about classifiable
features leaves room for confusion, which is reflected in the classifier output
value.

The conversion for each output can be found using the training dataset; to
find the mapping function we split the training set into two – one where the
given feature is known to be present on the input pattern and the other where
the given feature is known to be missing on the input pattern. After evaluating
the training set with the classifier we obtain two class-conditional density
functions: p(x|C1) and p(x|C2). In addition, we can calculate the prior class
probabilities p(C1) and p(C2) as ratios of the divided training set sizes to the
full training set. Using the class-conditional densities, prior class probabilities,
Bayes’ equation (8) and the sum rule (11) we can estimate the probability of
the feature being present depending on the classifier output value.

To describe the performance of the cost map generator we prepared
samples at both locations (outskirts and fen), using both training methods
(Method A and B) and using a well- and an under-trained classifier. The
under-trained classifiers were prepared to compare the performance and
capability to transmit the confidence information of various mapping
functions in low-confidence scenarios. In essence, they are classifiers with
reference configuration that have had limited exposure to the training set,
causing them to have lower classification capability. To illustrate the cost map
generator capability we plot its output by converting the cost value into pixel
luminosity – black pixels have the lowest traversal cost (roads) and white
pixels have the highest traversal cost (buildings, water).

The cost map generated with an untrained classifier has zero certainty and
thus the nodes are set to the fixed cost of unknown node cu. The outputs of the
untrained classifier do not depend on the inputs because the randomized
weights will have high enough value to saturate the sigmoid functions. The
Figure 24 plots a cost map generated with the untrained classifier, it can be
used as reference for evaluating the following illustrations: all pixels on “real”
cost maps that are darker than the reference are marked to be traversable and
all pixels lighter than the reference are obstacles.

61

Figure 24. The flat cost map generated using an untrained classifier. The image is
meant to be used as reference for evaluating the following cost maps – this grade of
gray represent the cost of an unknown terrain

The quality of the resulting cost maps and generated paths is evaluated
visually. The obstacles must be highlighted on the cost maps with a light color
and the roads should be marked with a black color; none of the obstacles
should be marked as low cost area. The cost map generated using an under-
trained classifier must have lower contrasts than the one generated using a
well-trained classifier because the cost map generation algorithm eq. (11)
gravitates the low confidence classifier outputs towards the cost of unknown
terrain cu. In addition, the generated path should follow roads and avoid
obstacles whenever feasible.

3.3.1 The Outskirts

The outskirts sample (Figure 26, Figure 27) contains a small subset of the test
image, the area was chosen small for illustrative purposes. The objective is to
generate a path from one end of a cul-de-sac to the end of another cul-de-sac
avoiding obstacles and seeking roads whenever possible. The safe path from
start to finish follows the roads, but there is a possibility to take a shortcut
over the grass which is riskier because of a pile of debris nearby (Figure 25).

62

Figure 25. Outskirts test case – the path starts and ends at cul-de-sac. The objective is
to generate a path from start location to finish avoiding obstacles and preferring
roads. Either one of the hand drawn paths are desirable outputs for the path planner

To evaluate the training method on the outskirts dataset using classification
Method A we prepared a well-trained classifier with a combined classification
rate (rate of correctly identifying all features on the input pattern) of 99% and
a under-trained classifier with a combined classification rate of 31%; the
combined classification rates with Method B were 89% and 43%,
respectively. The classifier detects four feature categories on the input image:
buildings, roads, grass and debris, for path planning we assigned category
weights of 30, -30, -20 and 20, respectively; the unknown terrain cost cu is set
at 30. The weights are chosen so that when a classifier detects both buildings
and roads at the same location with equal uncertainty, the weight of buildings
(30) will cancel out the roads (-30) and the location will have the cost of
unknown terrain cu.

As explained section 0, Method A has low spatial resolution. For any given
location on the input image the classifier will detect all features that are within
certain radius from the location. The radius of the circle is equal to the
diagonal of the classifier input pattern, for the Figure 26 the radius is 32 m.
Since the input pattern consists predominantly of small buildings and roads
that are surrounded by grass, it is detected almost everywhere on the input
pattern causing the generated cost maps (Figure 18) to be offset by the weight
of the grass (~20 m). The effect does not affect the traveling cost of roads,
because they are already at minimum value, but it will bring down the
traveling cost of buildings close to that of the unknown terrain. This can be
observed on generated cost maps (Figure 26) – the buildings are
predominantly gray, close to the unknown terrain.

As expected, the cost map generated using an under-trained classifier has
lower contrasts caused by low confidence of the classifier. The obstacles stand

63

out from the background and the outputs from the path planner follow desired,
albeit different paths.

Figure 26. Input (left), generated cost maps and traveling paths for a small subset of
the outskirts region using training Method A. The first cost map and path (middle) is
generated using a well-trained classifier. The right cost map is generated using an
under-trained classifier. Weights used for buildings, roads, grass and debris are 30, -
30, -20, 20

The training Method B produces a classifier that has pixel-precise output
allowing more detailed cost maps (Figure 27). All features are well detected,
but the classifier has high uncertainty at the feature borders – at road edges
and at building walls. The classifier uncertainty manifests correctly in the cost
maps: the borders of the feature mentioned have the cost of the unknown
terrain and the well-trained classifier produces higher contrasts than the
under-trained classifier. The path generated using the well-trained classifier
follows the desired route, but the under-trained solution took a longer route.
The detour was caused by the under-trained classifier, misclassifying the
beginning of a street as an obstacle. The path planner, however, fell back
gracefully rerouting, using a parallel street.

Figure 27. Input (left), generated cost maps and traveling paths for a small subset of
the outskirts region using training Method B. The first cost map and path (middle) is
generated using the well-trained classifier. The right cost map is generated using the
under-trained classifier. Weights used for buildings, roads, grass and debris are 30, -
30, -20, 20

64

Overall, the training Method B performs better in the suburban
environment due to higher spatial resolution – the produced cost maps are
easier to validate for a human operator. Both methods produced traversable if
not desirable paths even in a low certainty condition.

3.3.2 The Fen

On the fen sample (Figure 30, Figure 31) we chose the start and finish to be
on the two ends of a waterlogged track that crosses the area (Figure 28). The
tracks are filled with water and are hard to distinguish from the background,
on harder patches of land they disappear altogether. The path must cross
drainage channels (leading to the stream present in the area) at two locations –
preferably at fords that are not explicitly marked, but may be predicted by
following tracks. The sample area is much larger than the one chosen for the
outskirts covering about 1 square kilometer, the approximate length of the
desired path is about 2 km.

Figure 28. The fen test case. Blue and red lines are desired paths for a path planner

The well-trained classifier prepared for the experiment had a combined
classification rate of 91% with Method A and 86% with Method B. The under-
trained classifier had a classification rate of 52% with Method A and 73%
with Method B. The classifiers were trained to detect three feature classes on
the input image – water, roads and trees; the feature weights used for cost map
generation were 30, -30 and 20.

Outskirts area was fully covered by feature masks of the four selected
input, making the outskirts area fully defined. The three classes defined for
the fen, however, cover only a small proportion of the total input. Large
patches of input image contain no defined features and the cost map must
associate them with the cost of the unknown terrain. Of the features present
only the trees are visually well distinguishable; the stream banks are under

65

vegetation and thus difficult to recognize. Of the three, the tracks are most
difficult to detect – during manual labeling we could pick up the track from
where it is well visible and trace it from there until it disappears, but the
classifier evaluates the map pattern by pattern and has to make the judgment
based on local information. To detect a track on an input pattern it has to be
clearly visible and distinguishable from the background.

A significant part of high error rate for tracks responsible for a large
amount of false positives in Figure 30 and Figure 31, can be attributed to
overlabeling of the input image during the manual labeling step. Closer
examination of the manual labeling output revealed that the tracks are traced
further than they are visible, to the point where they can be guessed by a gap
between bushes (Figure 29). The overmarking introduced patterns to the
training data that claimed track presence but contained no evidence of the
tracks confusing the classifier.

Figure 29. Overlabeling of the fen: The barely visible track disappears on the harder
surface, but manual labeling followed the road using extra clues from the gaps
between the bushes, confusing the classifier

The cost maps generated using the classifier that was trained using Method
A (Figure 30) are excellent for path planning, the low spatial resolution of
Method A is not an issue on the large open environment. The stream and
drainage channels are detected and the tracks are recovered with high enough
certainty to use them in path planning. The produced paths followed the tracks
where they were visible and crossed the drainage channels at or near the fords,
avoiding crossing the stream.

Comparing the well-trained classifier output to the one of the under-trained
classifier is difficult because of the large featureless regions in the input. The
trees are distinctly visible on the input pattern and are correctly detected even
with the under-trained classifier, but the stream is less precisely defined and
the under-trained classifier has high uncertainty on the water output. Both the
well-trained and the under-trained classifiers struggle with detecting tracks
due to overlabeling and have noise in the output, albeit noise with low
certainty.

66

Figure 30. Cost map generation and path planning in fen using classifier training
Method A

The classifier training Method B (Figure 31) exhibited similar behavior
during cost map generation to Method A (Figure 30). The path generated
using the well-trained classifier closely followed a desired route even though
the under-classified did not cross the first channel at for but near it. The
classifier again struggles with tracks producing an output with significant
noise. The noise, however, was less apparent with the under-trained classifier
that had low confidence in the track output.

Figure 31. Cost map generation and path planning in fen using classifier training
Method B

The spatial resolution of Method B might even be a disadvantage because
at some patches of the stream the floating water plants were classified as
unknown terrain, while the less accurate Method A marked the whole area as
an obstacle.

Both classifier training methods are suitable for aerial imagery analysis.
The classification Method B has an edge in the dense suburban environment
while the less precise Method A has a slight edge in the natural environment.
The cost map generation algorithm is capable of expressing the uncertainty of
the classifier and the path planner uses that information during routing.

67

3.4 Reversed Processing Pipeline

Reversing the processing pipeline and classifying aerial image on demand
basis may significantly reduce the area that needs to be classified. The terrain
classification is an expensive step in terms of time and energy. Wasting
computing resources of our battery powered UGV on unnecessary image
classification takes away energy that could be used for extending the mission.

The samples in Figure 32 illustrate the area used for path planning on the
outskirts imagery, the cost map for those samples are plotted in (Figure 27).
The pixels actually used for path planning are highlighted with white color.
For the well-trained classifier (left image in Figure 32) the area used for path
planning was just a small fraction of the whole input image while for the
under-trained classifier (right image in Figure 32) the area used was even
larger than the plotted region. Both of the used areas are significantly (90%
and 30%) smaller than the overall aerial imagery used for the input, reducing
the classification time and saving energy. This falls in line with our overall
experience – the higher the uncertainty on the cost map the larger area is used
for path planning.

Figure 32. Path planning in the outskirts – highlighted area marks the nodes used by
the path planner. The path on the left image is produced using the well-trained
classifier and the path on right image is produced using the under-trained classifier

The featureless natural environments (left image Figure 33) have high
classifier uncertainty and thus the savings from reversing the pipeline are
minimal. Combination of featureless natural environments with the under-
trained classifier (right image in Figure 33) produces worst case cost maps
whereas the effect of reversing the processing pipeline is negligible – the cost
map generator has to classify practically the whole mission zone.

68

Figure 33 Path planning in fen – highlighted area marks the nodes used by the path
planner. The path on the left image is produced using the well-trained classifier and
the path on the right image is produced using the under-trained classifier

Our experiments have shown that the reversing of the processing pipeline
has the greatest effect on well-defined environments where a clear path to the
designated location exists. The optimization does not affect the worst case
scenario – in natural environments with high uncertainty we still need to
classify the whole aerial image for path planning. The achieved reduction of
the overhead imagery classification time is over 90% in urban areas and less
in natural environments.

69

3.5 Implementation & Performance

In the numerical experiments custom-made software was used. The software
allows us to generate the training and testing datasets, to train and evaluate the
classifier, to generate the cost map and to plan a path from a given start point
to a given destination. The objective of this section is to sketch the structures
of the prepared programs without detailed implementation, advanced
functionality or specific optimization techniques used. The second objective is
to describe challenges and a solution to an efficient classification of a large
scale area.

3.5.1 Reference Implementation

For our numerical experiments we built an artificial neural network on a high
level programming language, namely C#. For building the ANN four kinds of
programming objects were used: Layers, Neurons, Connections and Weights
(Figure 34). All neurons in an ANN were organized into five layers; neurons
within a layer are independent of each other (not connected to each other).
During the evaluation of the ANN the layers are executed one by one in a
serial manner. Because the neurons within a layer are independent, they can
be evaluated in parallel, achieving performance boost from multicore
processors.

The neurons in different layers are connected to each other using
connection objects. The connection objects are necessitated by usage of
convolutional layers; they allow us to selectively connect a neuron to any
other neuron by a weight object. Because a convolutional layer uses shared
weights, we also need the weight objects, multiple connections may reference
to the same weight object. The architecture is generic enough to be used for
all layers in the classifier.

The neurons in the convolutional layers are connected to the previous layer
using 5x5 shared kernels. In practice it means that each neuron in a
convolutional layer maintains a list of 26 connection objects (25 + bias) per
feature mask in the previous layer. The connection objects within a single
kernel will all refer to the same 26 weight objects. The neurons on the fully
connected layers, however, are connected to all previous layer neurons. In a
program it means that each output layer neuron is connected to 101 (100
neurons + bias in a reference configuration) neurons on the previous layer,
each connection object references to a unique weight object.

All the information about the ANN is contained within the objects.
Neurons maintain a list of connections to the previous layer and an output
value that is used during the forward propagation phase. In addition, the
neurons maintain a list of connections to the next layer and an error value that
is used during the back propagation step. Weights support value, learning rate
and diagonal hessian properties; the latter is used by the gradient based
learning technique. Connections maintain references to the previous layer

70

neuron, the next layer neuron and weight objects. Finally, the layers maintain
a list of associated neurons.

Figure 34. Classifier architecture. The neurons N are assembled into layers, the
neurons on different layers are connected using connection C, using weights W

3.5.2 Heterogeneous Computing

The classifier implemented in a high level language has a respectable
performance of 800 input patterns per second with a reference configuration
on a quad core i7-920 processor, but for evaluating large aerial images it falls
short. To classify a 1 square kilometer area with a resolution of 0.8 m per
pixel we need to evaluate roughly one and a half million patterns, with the
reference classifier it takes half an hour to evaluate the area. Having a 130W
CPU running for half an hour at maximum power consumption to calculate
few kilometers ahead is not a viable solution for a battery powered mobile
platform.

A solution to our performance problems is heterogeneous computing
hardware. Focus in the last 40 years of CPU and compiler development has
been mostly on improving the performance of single threaded applications
[50]. The first 30 years of processor development saw a steady rate of serial
workload performance improvements from ever increasing processor clock
speed and smarter compilers, allowing software developers to be “lazy”,
implementing predominantly serial algorithms. The large legacy of
applications relying on serial algorithms has forced the processor makers to
seek additional ways to improve single threaded performance, besides
shrinking node size and improving clock rate. Modern CPUs support a host of
technologies that sacrifice die area and power for improved single threaded

71

performance, such as out of order, speculative, superscalar execution,
pipelining, and caching. The continuous pursuit for higher serial performance
has led to current situation where it takes an order of magnitude more energy
to schedule an instruction than to execute it.

The last decade has seen the emergence of affordable hardware that is
focused on parallel workloads – GPUs. Historically the development of GPUs
was fueled by CAD/CAM applications and 3D gaming. First 3D games were
running on CPUs but a desire to improve screen resolution and frame rates led
to dedicated fixed function hardware. Demand for improved graphics led to
introducing programmability into some steps of fixed function pipeline; the
per pixel algorithms used for lighting and shadowing in particular led to a
massively parallel low latency architecture. Further improvements in the field
led to abolishment of fixed function pipeline in favor of fully programmable
hardware that can be used for general purpose computing, supported by a few
fixed function units.

Modern GPUs dedicate most of their die area to simple processors that are
optimized for executing mathematical functions; the foundations of 3D
gaming, after all, are mathematical. Like CPUs the GPUs have hit a power
wall, but have chosen different compromises. The CPUs push high clock rates
for higher single threaded performance while GPUs utilize lower clock rates
and larger dies with more processing units instead (near the limit the clock
rate and energy consumption are exponentially linked). For example, top-of-
the-line Intel i7-3960X CPU supports 6 cores running at 3.3 GHz versus top-
of-the-line AMD Radeon HD 7970 GPUs 2048 cores running at 925 MHz.
Instead of using large on-die caches the GPUs utilize high bandwidth off-die
memory bus.

The heterogeneous computing is an umbrella term for systems that utilize a
variety of processing units. There are multiple software APIs available for
exploiting parallel hardware, such as nVidia’s CUDA, Microsoft’s
DirectCompute or AMD’s Stream. We chose to use a vendor independent API
supported on multiple platforms including CPUs and GPUs: OpenCL.

The OpenCL is not meant for writing applications, it is rather intended to
accelerate the performance critical parts of the program by running it on
parallel hardware. It can not automatically accelerate existing applications, as
it requires extensive modifications and restructuring for algorithms to utilize
the OpenCL capabilities.

The centerpiece of an OpenCL is a notion of computing kernel. A
computing kernel is a function that implements a relatively simple algorithm
and is meant to be executed in parallel. For example, to multiply two
1000x1000 matrixes we can write a kernel that computes the value of a single
element in the resulting matrix and schedule 1 000 000 of those kernels to be
launched on parallel hardware. Each computing kernel in this case is
responsible for calculating a single element on the result matrix.

The OpenCL supports two programming models – data parallel and task
parallel approaches. The data parallel approach is useful when a large

72

problem can be divided into smaller sub-problems that can be executed in
parallel. Like in the example above where multiplication of two 1000x1000
matrixes was divided between 1 000 000 tasks, each responsible for
calculating one element in the result matrix. Task parallel approach is useful
when a simpler algorithm has to be applied on a large dataset. For example, to
calculate the determinant of a million 10x10 matrixes we can schedule 1 000
000 threads, each responsible for calculating the whole determinant of one
matrix.

To classify a large overhead image that covers multiple square kilometers,
both approaches are viable – we can calculate each neuron output in a layer in
parallel resulting in the data parallel approach and we can evaluate all patterns
in the input image in parallel with each kernel, evaluating the whole ANN
resulting in the task parallel approach. To find out which approach is better we
implemented both.

For the task parallel approach we implemented a kernel that executes the
whole forward propagation step of the classifier in a serial manner. The task
parallel approach is very reminiscent of embedded programming: there are
many hardware limitations that have to be avoided and all data structures must
be explicitly allocated at compile time, but in comparison to the data parallel
approach the programming is quite straightforward. Each computational
kernel extracts one input pattern from the aerial image using fixed function
texture hardware, initializes ANN inputs, evaluates the ANN layer by layer
and saves the outputs into the pre-allocated memory area. By running the
kernels in parallel we can evaluate multiple patterns at the same time.

For the data parallel approach we need to dismantle the classifier – it
consists of five layers that must be executed one by one in a serial manner, but
each layer itself can be evaluated in a parallel manner. We implemented the
data parallel approach using four different kernels that process input image
one pattern at a time. The first kernel loads the pattern from aerial image and
initializes the network input layer using 29x29=841 threads; each thread is
responsible for fetching one pixel from the input image and coping the
individual color values to the memory buffer allocated for first layer neurons.
The second kernel evaluates the first hidden layer using 13x13x6=1014
threads; each thread is responsible for evaluating one neuron output. The third
kernel evaluates the second hidden layer using 5x5x150=1250 threads; again
each thread calculates one neuron output. The last kernel is used to calculate
the two last fully connected layers, to increase parallelism we use up to 512
threads per neuron. Each thread is responsible for multiplying a portion of
connected weights and previous layer outputs, the portions are added together
using three parallel reduction steps.

There is an alternative way to evaluate a large overhead image with the
data parallel approach: space-displacement neural networks (SDNN) [45].
When overlapping patterns are evaluated with a convolutional ANN, some of
the calculations are repeated, because the convolutional kernels that are
applied to the overlapping area produce the same outputs. The SDNNs

73

eliminate the repeated calculations by increasing the input pattern size to
contain the whole image; instead of overlapping input patterns that make up
an image it has one pattern that does not have overlap (Figure 35). The input
pattern size increase also affects the size of convolutional layers. The fully
connected layers will transform into convolutional layers with shared weights.
Effectively the SDNN is a large convolutional neural network that produces
the same output that we normally would achieve by applying a small
convolutional network to all locations on an input image. To train the weights
in the SDNN we still use the conventional convolutional ANN, we only use
the SDNN for speeding up the evaluation of a large overhead imagery.

Figure 35. Evaluating overlapping patterns has repeated calculations in a
convolutional layer. SDNNs reduce calculations by combining the overlapping input
patterns into a single larger input pattern evaluated by a single ANN

Again, an SDNN is a convolutional ANN with the input layer as large as
the input image and the output layer 4x smaller in both x and y directions due
to double subsampling. The large feature maps of SDNN enable us to examine
the inner workings of the convolutional neural networks. The Figure 36 enlists
a few feature maps from the hidden layers for the image in Figure 14. Because
the SDNN will transform the fully connected layer with 100 neurons into a
convolutional layer with 100 feature maps, we can also plot feature maps
from the third layer. It is easy to visually verify the features a feature layer
extracts. For example, the first pattern on the leftmost column in Figure 36
extracts the roads (the features are substantially darker than the background)
from the input image, the second pattern extracts grass from the input image
and the third pattern extracts buildings.

74

Figure 36. Internal states of an SDNN. Leftmost image plots the 6 feature maps of the
first hidden layer, middle image plots 6 of 50 feature maps on the second hidden layer
and the right image plots 6 of 100 feature maps on the third hidden layer. The feature
maps are representative samples from each layer and are not directly related

3.5.3 Performance

For performance evaluation we measure three parameters – throughput and
latency and energy requirement. The throughput is the performance of the
system in terms of processed patterns per second. The throughput is main
concern during the classification of a large overhead image that consists of

75

millions of patterns. Energy consumption, like the throughput, is relevant
during the evaluation of overhead imagery; evaluating a large overhead image
with a reference classifier on a 130 W CPU may take hours, making the
system unsuitable for a battery powered vehicle. We define latency as time it
takes from presenting the classifier with an input pattern to having the
classification result. The latency is important during the training phase where
inputs are presented to the classifier one by one.

We observed the throughput of the task parallel approach to be higher than
the data parallel approach on a large input size (Figure 37) due to higher
parallelism that helps to hide memory latencies. Because of the small caches
the GPUs are very sensitive to memory access patterns and the semi-random
neuron access pattern in convolutional layers diminishes the performance. On
highly parallel tasks the memory latencies can be hidden – when a computing
kernel thread is blocked by a memory access it will suspend the current thread
and perform calculations of another scheduled thread, the suspended thread
will be resumed after the memory access operation is completed. The memory
latency hiding only works if there is enough scheduled threads per execution
unit, this explains the dependency of the task parallel approach on the input
dataset size.

Figure 37. Classifier throughput in patterns per second on different platforms. The
chart includes set up time that is spent on allocating device memory and copying data
over from RAM to the device memory. The performance of the data parallel approach
improves with a higher pattern count because the proportion of the setup time to the
execution time decreases

76

The training of the classifier is done one pattern at a time, to improve the
training speed we need to reduce the time it takes to evaluate a single pattern.
Thus for training we can not use the approaches that rely on batch processing
such as SDNN or task parallel approach. Our experiments (Table 2) show that
the evaluation of patterns on a heterogeneous platform and training on the
CPU is not a viable approach because of the time it takes to transfer data to
and from device memory diminishes all benefits of high computing capability.
To take advantage of the computing capacity the whole forward and back
propagation cycle has to perform on the GPU. We do not have an optimized
classifier implementation for the GPU that does the training step but
according to our experience the back propagation step is about 2.2 times
slower than the forward propagation on the data parallel kernel. Considering
the peak evaluation rate of the data parallel kernel on a single GTX 570 GPU
is about 12 000 patterns per second we should achieve the training rate of
5500 patterns per second with a reference classifier configuration.

Table 2. Time it takes to evaluate a single pattern.The values include set up time
required for allocating device memory buffers and for transferring data to and from
the device memory

System configuration Latency [ms]
Dual GTX 285 with data parallel kernel 20.3
Dual GTX 285 with task parallel kernel 211
Dual GTX 570 with data parallel kernel 3.4
Dual GTX 570 with task parallel kernel 51
i7-920 CPU with data parallel kernel 12
i7-920 CPU with task parallel kernel 3.7
i7-920 CPU with reference implementation 1.3

The reference C# classifier has the throughput of 800 patterns/s on i7-920
CPU. As calculated above, it takes half an hour to classify 1 500 000 patterns
required for evaluating 1 square kilometer of area at 0.8 m/pixel image
resolution. The task parallel GPU classifier has 90 000 patterns/s on 2x GTX
570 GPU, to evaluate the same area on the GPU it takes only 17 seconds. By
implementing the slowest step – classification of a large aerial image – on a
heterogeneous computing architecture we gained over 110x improvement in
the throughput.

Classification of 1 square kilometer of terrain with reference C#
implementation on 130 W CPU took half an hour and 234 kJ of energy;
evaluating the same area on 440 W GPUs only takes 17 seconds and 7.5 kJ of
energy, reducing the energy consumption by more than 30x. The energy gain
is even more significant if we take the whole computer power into account.

The throughput of the SDNN is not included in the Figure 37, but we
achieved the throughput of over 65 000 patterns per second with a single GTX
285 GPU or over 360 000 patterns per second on a single GTX 570 GPU. The
reported throughput is measured at the output of the SDNN, it is already

77

compensated for the resolution reduction from subsampling. We did not
evaluate the classification rate of the SDNN on a dual GPU system, but by
splitting the input image into two and evaluating the halves on separate GPUs
we can achieve nearly double performance. The performance of SDNNs can
be attributed to high parallelism and memory access efficiency – it has
comparable parallelism to the task parallel approach and comparable memory
access efficiency of the data parallel approach. Classification of a 1 square
kilometer area with SDNNs using the 440 W GPUs took 2.08 s and 915 J of
energy, making it over 860 times faster and 250 times more energy efficient
than the CPU based reference solution, even when not considering the power
consumption of the rest of the computer.

To test the concepts proposed in this thesis we built a high-performance
classifier using a high level programming language. By implementing the
classifier on heterogeneous computing hardware we gained over 100x
classification throughput and over 30x energy efficiency over the reference
implementation. By further optimizing the calculations using space
displacement neural networks we gained over 800x classification throughput
and over 250x energy efficiency over the reference classifier. Using GPU
implementation it takes nine days to evaluate the whole 45 000 square
kilometer surface of Estonia with a $1000 PC, much less than 2.7 years with
the CPU based reference implementation. Classifying the same area with
SDNNs takes only 1.7 hours, but results in a cost map that has 4x lower
resolution in both horizontal and vertical direction.

78

4. Conclusions

4.1 Summary

The current thesis proposes a long-range navigation system that is capable of
learning from an UGV local navigation system and is able to extrapolate the
gathered knowledge beyond the UGV’s immediate perception range. The
system is adaptive, able to learn from the UGV on the go, making it suitable
for navigating in unknown or changing environments. The “deep learning”
approach has produced a system that is capable of navigating in both
structured and unstructured environments using aerial or satellite imagery.

Classification of an aerial imagery is a difficult task that is prone to errors.
A part of this thesis is dedicated to finding the confidence of the overhead
imagery classifier and utilizing it during path planning. Our numerical
experiments on the manually labeled real terrain show that the system is
capable of expressing its uncertainties. The uncertainties can be used for
fusing local and global navigation systems. The UGV can concentrate on local
navigation capabilities on an unknown terrain that has low confidence and
follow the generated route through areas with high confidence.

To use the proposed system on a battery powered UGV is challenging due
to high computing capacity requirement. Processing of a large overhead
imagery with the proposed classifier requires excessive amounts of computing
resources that consume equally large amounts of energy. The thesis proposes a
cost effective solution to the performance challenge using heterogeneous
computing hardware. The resulting increase in speed and reduction of energy
consumption over the CPU based implementation is more than two orders of
magnitude.

Even though the lack of real world experiments with working UGV and
UAV systems decreases the credibility of this work, the results obtained from
manually labeled areas indicate feasibility of the proposed system for long-
term navigation. The adaptiveness of the system supported by high classifier
capability and built-in failsafe make it suitable for a wide range of UGV
solutions.

4.2 The Main Scientific Contributions

● Development of a novel intelligent long-range navigation method for
an off-road vehicle that relies on monocular overhead imagery.

● Proof of the suitability of convolutional neural networks for overhead
imagery classification.

● The developed method has built-in failsafe: the uncertainty of the
classifier can be measured using prior knowledge. The UGV can fall
back to the onboard navigation system in areas where the certainty of
the long-range system is low.

79

4.3 Future Work

Our UGV robot is currently incapable of labeling the environment around it,
forcing us to perform numerical experiments with manually classified data.
For manual labeling we used relatively specific classes (building, road, grass)
that were easily identifiable for human rather than generic classes (obstacle,
clearance) that are more natural for an UGV [33, 51]. However, it has been
demonstrated [51, 52] that the classifier trained with Method B is capable of
detecting generic classes. We suggest that the same applies to training Method
A, but it has to be confirmed experimentally.

Using generic classes simplifies inclusion of new features because the
feature set has a fixed size. With specific features it is required to add another
output to the classifier every time the UGV detects a new feature class. With
generic features it is only required to include the feature in the training set,
there is no need to reconfigure the classifier. Another upside is that there is no
need for the UGV to explicitly define the new feature; it only has to mark it as
an obstacle or clearance. During the following update cycles the classifier will
learn the feature, will be able to recognize it on the aerial imagery and use it
for path updating.

The classifier using generic feature classes has constant configuration and
predictable performance that does not depend on the specific count of
detected features. The variable space of that classifier is fixed, there is a limit
of how many features it can learn to recognize – the UGV might meet more
obstacle types (buildings, trees, rocks, lakes, etc) than the fixed size classifier
is capable of learning. Our proposed system has built-in failsafe: if the feature
count increases beyond the limit, the classification capability degrades and the
confidence of the system declines. As the confidence decreases, the UGV will
de-emphasize the long-range navigation system and falls back to onboard
navigation capability.

The fixed variable space necessitates fixed training set sizes, the patterns
have to be managed in the training set. A classifier with the finite variable
space is incapable of learning an infinite amount of feature classes, forcing us
to limit the training set size. Hadsell et al. have suggested [49] using a
balanced ring buffer as a short-term memory. This could be coupled with
another buffer that would act as a long term memory. Maintenance of the long
term memory, however, is an open topic.

The ultimate intention is to run the system online on an UGV in a cyclic
manner. After our UGV obtains labeling capabilities we need to reassess the
chosen classifier configuration, reevaluate the classifier performance and test
the system in real world experiments.

80

References
1. Urmson C. The self-driving car logs more miles on new wheels,

[Online] http://googleblog.blogspot.hu/2012/08/the-self-driving-car-
logs-more-miles-on.html (7 Aug 2012).

2. General Motors. Self-Driving Vehicles Could be Ready by End of
Decade, [Online]
http://media.gm.com/content/media/us/en/gm/news.detail.html/content/P
ages/news/us/en/2011/Oct/1016_autonomous.html (16 Okt 2011).

3. Jackel L. D., Krotkov E., Perschbacher M., Pippine J. and Sullivan
C. The DARPA LAGR program: Goals, challenges, methodology, and
phase I results, J. Field Robotics, 2006, vol. 23, pp. 945–973.

4. Stentz T., Kelly A. and Rander P. Integrated Air/Ground Vehicle
System for Semi-Autonomous Off-Road Navigation, Robotics Institute,
2002, p. 18.

5. Stentz A., Kelly A., Rander P., Herman H., Amidi O., Mandelbaum
R., Salgian G. and Pedersen J. Real-time, multi-perspective perception
for unmanned ground vehicles, Robotics Institute, 2003, p. 16.

6. Vandapel N., Donamukkala R. R. and Hebert M., Unmanned Ground
Vehicle Navigation Using Aerial Ladar Data, The International Journal
of Robotics Research, 2006, vol. 25, pp. 31–51.

7. Stefanik K. V., Gassaway J. C., Kochersberger K. and Abbott A. L.
UAV-based stereo vision for rapid aerial terrain mapping, GIScience &
Remote Sensing, 2011, vol. 48, pp. 24–49.

8. Vandapel N. and Hebert M. 3D rover localization in airborne ladar
data, Experimental Robotics VIII, 2003 pp. 156–167.

9. Wang O., Lodha S. K. and Helmbold D. P. A bayesian approach to
building footprint extraction from aerial lidar data, 3D Data Processing,
Visualization, and Transmission, Third International Symposium on,
2006, 192–199.

10. Charaniya A. P., Manduchi R. and Lodha S. K. Supervised
Parametric Classification of Aerial Lidar Data, Computer Vision and
Pattern Recognition Workshop, 2004, p 30.

11. Silver D., Sofman B. and Vandapel N. Experimental Analysis of
Overhead Data Processing To Support Long Range Navigation,
Intelligent Robots and Systems, International Conference on, 2006, pp.
2443–2450.

12. Vandapel N. and Hebert M. Finding Organized Structures in 3-D
Ladar Data, Intelligent Robots and Systems, International Conference
on, 2004, vol 1, pp. 786–791.

13. Vandapel N., Donamukkala R. R. and Hebert M. Experimental
Results in Using Aerial LADAR Data for Mobile Robot Navigation, Field
and Service Robotics, 2003, pp. 103–112.

81

14. Tamm T. and Remm K. Estimating the parameters of forest inventory
using machine learning and the reduction of remote sensing features,
International Journal of Applied Earth Observation and Geoinformation,
2009, vol. 11, no. 4, pp. 290–297.

15. Sofman B. and Stentz A. Terrain Classification from Aerial Data to
Support Ground Vehicle Navigation, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMURI-TR-05-39, 2006.

16. Sofman B., Ratliff E. L., Cole J. and Vandapel N. Improving Robot
Navigation Through Self-Supervised Online Learning, Journal of Field
Robotics 2006, vol. 23, pp. 1059–1075.

17. Dima C. S., Vandapel N. and Hebert M. Classifier fusion for outdoor
obstacle detection, Robotics and Automation, Conference on, 2004, vol.
1, pp. 665–671.

18. Tamm T. Riigimetsa takseerandmete kasutamine eesti metsade
kaugseires tehisõppe rakenduse abil, Magistritöö, Tartu Ülikool, 2005.

19. Hebert M. and Vandapel N. Terrain classification techniques from
ladar data for autonomous navigation, Robotics Institute, 2003, p. 411.

20. Dima C. S., Vandapel N. and Hebert M. Sensor and classifier fusion
for outdoor obstacle detection: an application of data fusion to
autonomous off-road navigation, Applied Imagery Pattern Recognition
Workshop, Proceedings on, 2003, pp. 255–262.

21. Mayer H. Automatic object extraction from aerial imagery a survey
focusing on buildings, Computer vision and image understanding, 1999,
vol. 74, pp. 138–149.

22. Mena J. State of the art on automatic road extraction for GIS update: a
novel classification, Pattern Recognition Letters, 2003, vol. 24, pp.
3037–3058.

23. Heidarsson H. K. and Sukhatme G. S. Obstacle detection from
overhead imagery using self-supervised learning for Autonomous
Surface Vehicles, Intelligent Robots and Systems, International
Conference on, 2011, pp. 3160–3165.

24. Hadsell R., Sermanet P., Ben J., Erkan A., Scoffier M., Kavukcuoglu
K., Muller U. and LeCun Y. Learning long-range vision for
autonomous off-road driving, Journal of. Field Robotics, 2009, vol. 26,
pp. 120–144.

25. Vandapel N., Donamukkala R. and Hebert M. Experimental results in
using aerial ladar data for mobile robot navigation, Field and Service
Robotics, 2006, pp. 103–112.

26. Hadsell R., Erkan A., Sermanet P., Ben J., Kavukcuoglu K., Muller
U. and LeCun Y. A multi-range vision strategy for autonomous offroad
navigation, Robotics and Applications, Proceeding on, 2007, vol. 1, p. 7.

27. Kelly A. and Stentz A., Rough terrain autonomous mobility part 2: An
active vision, predictive control approach, Autonomous Robots, 1998,

82

vol. 5, pp. 163–198.

28. Kelly A., Stentz A., Amidi O., Bode M., Bradley D., Diaz-Calderon
A., Happold M., Herman H., Mandelbaum R. and Pilarski T. Toward
reliable off road autonomous vehicles operating in challenging
environments, The International Journal of Robotics Research, 2006, vol.
25, pp. 449–483.

29. Hart P., Nilsson N. and Raphael B. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths, IEEE Transactions on Systems
Science and Cybernetics, 1968, vol. 4, pp. 100–107.

30. Dijkstra E. W. A note on two problems in connexion with graphs,
Numerische mathematik,1959, vol. 1, pp. 269–271.

31. Stentz A. Optimal and Efficient Path Planning for Unknown and
Dynamic Environments, International Journal of Robotics and
Automation, 1993, vol. 10, pp. 89–100.

32. Koenig S. and Likhachev M. Fast replanning for navigation in
unknown terrain, Robotics, IEEE Transactions on, 2005, vol. 21, pp.
354–363.

33. Gerkey B. P. and Konolige K. Planning and control in unstructured
terrain, Workshop on Path Planning on Costmaps, 2008.

34. Konolige K. A gradient method for realtime robot control, Intelligent
Robots and Systems, International Conference on, 2000.

35. Hebert M., Deans M., Huber D., Nabbe B. and Vandapel N. Progress
in 3-D Mapping and Localization, 9th International Symposium on
Intelligent Robotic Systems, 2001.

36. Vandapel N. and Chatila R. Affine trackability for landmark selection
in natural environment, Intelligent Robots and Systems, International
Conference on, 2002, vol. 1, pp. 37–42.

37. Elfes A. Occupancy grids: A stochastic spatial representation for active
robot perception, The Sixth Conference on Uncertainty in AI, 1990, vol.
2929.

38. Oriolo G., Ulivi G. and Vendittelli M. Fuzzy maps: a new tool for
mobile robot perception and planning, Journal of Robotic Systems,
1997, vol. 14, pp. 179–197.

39. Lu D. and Weng Q. A survey of image classification methods and
techniques for improving classification performance, International
Journal of Remote Sensing, 2007, vol. 28, pp. 823-870.

40. Bishop C. M. Pattern Recognition and Machine Learning, New York,
Springer-Verlag Inc., 2006.

41. Simard P. Y., Steinkraus D. and Platt J. C. Best practices for
convolutional neural networks applied to visual document analysis,
Seventh International Conference on Document Analysis and
Recognition, 2003, vol. 2, pp. 958–962.

83

42. Bradley D., Thayer S., Stentz A. and Rander P. Vegetation detection
for mobile robot navigation, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-04-12, 2004.

43. Bradley D. M., Unnikrishnan R. and Bagnell J. Vegetation detection
for driving in complex environments, In Robotics and Automation, IEEE
International Conference on, 2007, pp. 503–508.

44. Lecun Y., Bottou L., Orr G. B. and Muller K. R. Efficient BackProp,
Lecture Notes in Computer Science, 1998, vol. 1524, pp. 5–50.

45. Lecun Y., Bottou L., Bengio Y. and Haffner P. Gradient-based
learning applied to document recognition, Proceedings of the IEEE 86,
1998, vol. 11, pp. 2278–2324.

46. Hadsell R., Erkan A., Sermanet P., Scoffier M., Muller U. and Lecun
Y. Deep belief net learning in a long-range vision system for
autonomous off-road driving, Intelligent Robots and Systems,
International Conference on, 2008, pp. 628–633.

47. Lester P. A* Pathfinding for Beginners, [Online]
http://www.policyalmanac.org/games/aStarTutorial.htm (9. Aug 2012).

48. Stentz A. The Focussed D* Algorithm for Real-Time Replanning,
International Joint Conference on Artificial Intelligence, 1995, vol. 14,
pp. 1652–1659.

49. Hadsell R., Sermanet P., Ben J., Erkan A., Han J., Muller U. and
LeCun Y. Online Learning for Offroad Robots: Spatial Label
Propagation to Learn Long-Range Traversability, Robotics: Science and
Systems, 2007, vol. 11, p. 32.

50. Glaskowsky P. N. NVIDIA’s Fermi: the first complete GPU computing
architecture., whitepaper, 2009.

51. Sermanet P., Hadsell R., Scoffier M., Grimes M., Ben J., Erkan A.,
Crudele C., Miller U. and LeCun Y. A multirange architecture for
collision-free off-road robot navigation, Journal of Field Robotics, 2009,
vol. 26, pp. 52–87.

52. LeCun Y., Muller U., Ben J., Cosatto E. and Flepp B. Off-road
obstacle avoidance through end-to-end learning, Advances in neural
information processing systems, 2006, vol. 18, p. 739.

84

List of Publications
1. Hudjakov, R.; Tamre, M. Comparison of Aerial Imagery and Satellite

Imagery for Autonomous Vehicle Path Planning. In: Proc.of the 8th
International Conf. of DAAAM Baltic, Industrial Engineering, Tallinn,
Estonia, 19–21 April, 2012. Ed. by Otto. T. Tallinn, Estonia: Tallinn
University of Technology Press, 2012, 301–308.

2. Hudjakov, R.; Tamre, M. Ortophoto analysis for UGV long-range
autonomous navigation. Estonian Journal of Engineering, 2011, 17(1),
17–27.

3. Hudjakov, R; Tamre, M. Aerial Imagery Based Long-Range Path
Planning for Unmanned Ground Vehicle. In: 7th International Conf.
Mechatronics Systems and Materials MSM 2011, Kaunas,
Lithua11nia, 7–9 July, 2011. Ed. by Skiedraite, I., Baskutiene, J.,
Dragašius, E. Lithuania: Kaunas University of Technology Press, 2011,
1–7.

4. Hudjakov, R.; Tamre, M. Aerial Imagery Terrain Classification for
Long-Range Autonomous Navigation. In: Proc. of the 7th International
Conference of DAAAM Baltic Industrial Engineering, 22-24 April
2010. Ed. by Küttner, R.. Tallinn: Tallinn Technical University Press,
2010, 530–535.

5. Hudjakov, R; Tamre, M. Aerial Imagery Terrain Classification for
Long-Range Autonomous Navigation. In: Proc. of International
Symposium on Optomechatronic Technologies: ISOT2009. Ed. by
Okyay Kaynak. IEEE, 2009, 88–91.

85

Abstract
The navigation capabilities of existing off-road unmanned ground vehicles are
severely limited by the perception capabilities of the vehicles’ on-board
sensors. The reliable perception distance of the on-board sensors does not
surpass 40m limiting the driving capabilities of an UGV to those of a human
driver in dense fog. The objective of this thesis is to generate ad hoc
navigation maps for an UGV, enabling smarter path planning, faster
movement and reduced energy consumption.

The thesis proposes an intelligent long-range navigation method that learns
from the UGV local navigation system and extrapolates the knowledge about
local environment into wider area using overhead imagery. The proposed
navigation method has built-in failsafe allowing UGV to fall back to local
navigation system when the long-range system is not adequate. The method
has energy efficient implementation that utilizes heterogeneous hardware,
enabling deployment on battery powered vehicles.

The thesis consists of five parts: introduction, short review of literature,
theoretical foundations, practical experiments and conclusion. The
introduction presents the objectives of the thesis and describes its structure.
The following review of the literature chapter discusses problems in existing
off-road capable navigation systems and proposed solutions. In addition the
review of the literature chapter offers a brief summary of works in areas
related to this thesis – aerial imagery classification, path planning and
combining of maps from multiple sources.

The review of the literature is followed by a theoretical section, that
focuses on orthophoto analysis, cost map generation, path planning and brings
forth a possible usage scenario for the results of this work. For orthophoto
analysis we proposed convolutional neural networks based classifier, that
combines trainable feature extractors and a linear classifier. The useful
properties of this classifier are described in detail in the context of off-road
navigation task.

The classifier output is further analyzed in Bayesian framework to find
confidence information attached to extracted feature vectors. The classifier
outputs a feature for each input pattern, each element of this vector represents
the likelihood that corresponding feature is present on input pattern. In order
to account this likelihood into cost map generation we need to convert it to
probability. The conversion is done by extracting probability density functions
for each feature class from classifier training set and using them in Bayes’
theorem.

For cost map generation we first define a cost of unknown terrain, it is
defined to be lower than the cost of obstacles but higher than the cost of
clearances. This constant is used if classifier uncertainty is zero, for nonzero
values the cost will gravitate towards it as confidence decreases. In addition
we attach a weight to each feature class; the traveling cost of an area is
weighted sum of feature probabilities that is offset by the cost of unknown

86

terrain. A special care is taken to ensure the traveling cost of an area remains
positive at all times, otherwise it would break path planning algorithms.

The produced cost map is used for path planning. The path planner itself is
not the subject of this thesis, but significant performance advantages can be
gained from combing path planner, cost map generator and terrain classifier.
The terrain classification step is a relatively expensive one performance wise,
reversing the evaluation pipeline and triggering the classifier on need-to-know
basis both increases the reaction time of the navigation system and reduces the
energy consumption.

The theoretical section is followed by a practical one that focuses on
evaluating the capabilities of proposed navigation system. The main objective
of the theoretical section is to demonstrate the navigation systems path
planning ability on a known terrain and its self-assessment ability on an
unknown terrain. The experiments made in the course of this chapter use
manually labeled aerial imagery from Estonian Land Board database and
satellite imagery form Google Maps database.

The classifier capability is evaluated by comparing the classifier output
against manually labeled aerial and satellite imagery and against labels from a
GIS database. The classifier has shown an excellent classification ability
achieving over 90% correct classification rate on all the tests. For validating
the Bayesian filter a set of weakened classifiers were prepared that were
trained with insufficient and noisy data. The experiments show that the
processed classification result of those weakened classifiers has low
confidence attached to features. The confidence information is used by cost
map generation algorithm, which gravitates the cost of areas with low
confidence vectors towards the cost of unknown terrain.

The classifier capability analysis is followed by a set of combined tests
that cover aerial imagery classification, cost map generation and path
planning. The objectives of combined tests are twofold: to demonstrate the
path planning capability of the navigation system as a whole and to show the
behavior of the system with weakened classifier. The combined tests show
that the navigation system is able to work under bad conditions when the
surroundings of UGV are unfamiliar to the classifier.

The practical section is concluded by a subsection that addresses the main
weakness of the classifier – the convolutional neural networks are large
systems that require equally large computing capacities to operate. Execution
of the proposed classifier on a CPU is unreasonable, because it requires the
full power of a multicore processor for real time operation, which is a burden
for a battery powered vehicle. The thesis proposes a solution executing on
heterogeneous computing architecture, which reduces the energy consumption
by more than 250 times and reduces analyzing time by more than 850 times.

The body of the doctoral thesis is summarized by a conclusion chapter,
which outlines the main achievements and future-oriented ideas.

87

Kokkuvõte
Olemasolevate autonoomsete sõidukite maastikuvõimekusele on oluliseks
piiranguks pardal olevate andurite nägemisulatus. Liikuva sõiduki rappu-
misest tulevad häired piiravad usaldusväärse nägemiskauguse umbes
neljakümnele meetrile, mis omakorda langetab autonoomse sõiduki maksi-
maalse võimekuse paksus udus liikuva autojuhi tasemele. Töö eesmärk on
genereerida laiemat maa-ala hõlmavad ad hoc kaardid võimaldamaks
targemat teekonna planeerimist, kiiremat sõitmist ja väiksemat energiakulu.

Käesoleva doktoritöö raames on välja töötatud intelligentne kaugmaa
navigatsioonisüsteem, mis õpib sõiduki lokaalselt navigatsioonisüsteemilt ja
ekstrapoleerib kogutud teadmise laiemale maa-alale, kasutades lisaks satelliit-
või aerofotosid. Pakutud navigatsioonisüsteem on suuteline hindama oma
võimekust vähendamaks süsteemi eksimisest tulenevaid riske – süsteemi
võimekuse langedes võib sõiduk ümber lülituda lokaalsele navigatsiooni-
süsteemile. Töös on esitatud ka heterogeensetel arvutisüsteemidel põhinev
lahendus, mis sobib patareitoitel töötavale sõidukile.

Töö koosneb viiest osast: sissejuhatusest, põgusast kirjanduse ülevaatest,
teoreetilisest osast, praktilisest osast ja kokkuvõttest. Sissejuhatuses püsti-
tatakse doktoritöö eesmärgid ning kirjeldatakse ülesehitust. Sissejuhatusele
järgnev kirjanduse ülevaate peatükk käsitleb probleeme olemasolevates
maastikuvõimekusega UGV navigatsioonisüsteemides ja seni pakutud
lahendustes. Lisaks teeb kirjanduse ülevaade põgusa kokkuvõtte käesoleva
tööga otseselt seotud valdkondadest: aerofotode klassifitseerimisest, teekonna
planeerimisest ning mitmest allikast pärinevate kaartide ühildamisest.

Kirjanduse ülevaatele järgneb töö teoreetiline osa, mis käsitleb ortofoto
analüüsi, maastiku läbitavuse hindamist, teekonna planeerimist ning toob esile
ühe võimaliku töö tulemuste kasutamise stsenaariumi. Ortofotode analüüsiks
on esitatud konvulutsioonilistel närvivõrkudel põhinev klassifikaator, mis
ühendab tunnuste valimise ja näidistel põhineva järeldamise süsteemi.
Teoreetilise osa esimesed alapeatükid on pühendatud valitud klassifikaatori
detailse ülesehituse kirjeldamiseks, tuues eraldi välja omadused, mis teevad
selle antud ülesande lahendamiseks sobivaks.

Järgnevad teoreetilise osa alapeatükid keskenduvad maastiku läbitavuse
hindamisele ja teekonna planeerimisele. Ortofoto analüüs käib väike tükk
korraga, klassifikaatori väljundiks on tükile vastav tunnusvektor. Iga selle
vektori element on funktsioon vastava tunnuse esinemise tõenäosusest
klassifikaatori sisendis. Leidmaks funktsiooni, mis teisendab klassifikaatori
väljundvektori tõenäosusvektoriks, on kasutatud Bayesi teoreemi. Klassifi-
kaatori väljundi teisendamine tõenäosuseks on oluline klassifikaatori
pädevuse hindamiseks, mis võimaldab robotil vältida tundmatut maastikku
või läheneda võõrale piirkonnale ettevaatlikult, kasutades aeglast kiirust ja
lokaalset navigatsioonisüsteemi.

Igale tunnusele on seatud vastavusse maastiku läbitavuse hinnang.
Hindamaks ortofoto tükil kujutatud maastiku läbitavust kombineeritakse

88

saadud tõenäosusvektor tunnustele omistatud hinnangutega. Teekonna planee-
rimisel jagatakse ortofoto väikesteks tükkideks ning leitakse igale tükile
vastava maastiku läbitavuse hinnang. Teekonna planeerimise algoritm leiab
seejärel vähima summaarse läbitavuse hinnanguga teekonna antud
alguspunktist lõpp-punkti.

Iga ortofoto tüki tunnusvektori leidmine on arvutusmahukuse ja energia-
kulu poolest kallis operatsioon. Suurte aerofotode klassifitseerimiseks kuluv
energia võib olla akutoitega autonoomsele robotile oluliseks koormaks.
Integreerides teekonna planeerija ortofoto klassifikaatoriga, saab juhtida
analüüsi protsessi klassifitseerimaks ainult neid ortofoto tükke, mida reaalselt
kasutatakse. Teekonna planeerimise algoritmi käsitleva alapeatüki lõpus kir-
jeldatakse üht võimalikku meetodit planeerija ja klassifikaatori ühendamiseks.

Töö teoreetilisele osale järgneb praktiline osa, mis keskendub pakutud
navigatsioonisüsteemi võimekuse uurimisele. Tehtud eksperimentide peamine
eesmärk on demonstreerida navigatsioonisüsteemi suutlikkust planeerida
teekonda nii robotile tuttaval maastikul kui ka võõras keskkonnas. Eksperi-
mentides on kasutatud käsitsi sildistatud Eesti Maa-ameti aerofotosid ja
Google’i kaardirakendusest pärit satelliitfotosid.

Klassifikaatori võimekuse uurimiseks on võrreldud klassifikaatori väljun-
dit inimese poolt sildistatud aero- ja satelliitfotodega nii maastikul kui ka
asulapiirkonnas. Lisaks on saadud tulemused kõrvutatud ka Maa-ameti
geograafilise info andmebaasiga. Kõikides tehtud katsetes on klassifikaator
näidanud suurepärast sildistamisvõimekust, saavutades üle 90% klassifitsee-
rimise määra.

Klassifikaatori pädevuse hinnangu algoritmi kontrollimiseks on ette
valmistatud meelega nõrgestatud klassifikaatorid. Nende klassifikaatorite
treenimiseks on kasutatud ebapiisavalt väikest ja mürarikast andmebaasi.
Katsed näitavad, et nõrgestatud klassifikaatorite väljundiks on tunnused,
millele on omistatud madal leidmise tõenäosus. Seda tõenäosust kasutab
maastiku läbitavuse hindamise algoritm, mis lähendab ebapädeva klassi-
fikaatori poolt antud maastiku läbitavuse hinnangu tundmatu maastiku omale.

Klassifikaatori võimekuse analüüsile järgnevad kombineeritud testid, mis
sisaldavad aerofoto klassifitseerimist, maastiku läbitavuse hindamist ja
teekonna planeerimist. Komplekssete eksperimentide peamine eesmärk on
demonstreerida navigatsioonisüsteemi kui terviku töövõimet ja näidata
ebapädeva klassifikaatoriga süsteemi käitumist. Kombineeritud testid
näitavad, et pakutud navigatsioonisüsteem on võimeline töötama ka kehvades
oludes, kui ümbruskond on klassifikaatorile võõras.

Praktilise osa lõpetab konvulutsiooniliste närvivõrkude peamist nõrkust
adresseeriv alapeatükk. Konvulutsioonilised närvivõrgud on väga suured ning
spetsiifilise ehitusega aparaadid, mille kasutamiseks on tarvis suuri arvutus-
võimsusi. Pakutud klassifikaatori täitmine traditsioonilise keskprotsessori peal
on ebamõistlik, kuna reaalajas navigeerimiseks läheb tarvis suure voolutar-
bega mitmetuumalist protsessorit, mis koormab liikuri akut. Käesoleva dok-
toritöö raames on välja töötatud pakutud heterogeensetel arvutisüsteemidel

89

põhinev lahendus, mille arvutusvõimsus ületab 850 korda neljatuumalise
keskprotsessori oma, vähendades samal ajal energiatarvet 250 korda.

Doktoritöö sisulise osa lõpetab kokkuvõttev peatükk, milles on välja
toodud peamised saavutused ning tulevikku suunatud ideed.

90

Curriculum Vitae

1. Personal data
 Name Robert Hudjakov
 Date and place of birth 14 Nov 1979, Tallinn

2. Contact information
 Address Mäepealse 16-20, 12619 Tallinn, Estonia
 Phone +372 52 45 445
 E-mail robert.hudjakov@gmail.com

3. Education

Institution Graduation
Year

Field of study/degree

Tallinn Polytechnic School 2001 Computers and Computer
Networks

Tallinn University of
Technology

2005 B.Sc. in Engineering Physics

Tallinn University of
Technology

2007 M.Sc. Cum Laude in
Engineering Physics

4. Language competence/skills
 Estonian Fluent
 English Fluent
 Russian Intermediate

5. Professional Employments
JOT Estonia Ltd. 2000–2008 Software Engineer
IPTE Estonia Ltd. 2008–... Software Engineer

91

Elulookirjeldus

1. Isikuandmed
 Nimi Robert Hudjakov
 Sünniaeg ja -koht 14. nov. 1979, Tallinn

2. Kontaktandmed
 Aadress Mäepealse 16-20, 12619 Tallinn, Estonia
 Telefon +372 52 45 445
 E-mail robert.hudjakov@gmail.com

3. Haridustee

Õppeasutus Lõpetamise
aeg

Haridus

Tallinna Polütehnikum 2001 Arvutid ja arvutivõrgud
Tallinna Tehnikaülikool 2005 B.Sc. tehnilises füüsikas
Tallinna Tehnikaülikool 2007 M.Sc. cum laude tehnilises

füüsikas

4. Keelteoskus
 Eesti Emakeel
 Inglise Ladus
 Vene Kesktase

5. Teenistuskäik
JOT Estonia Ltd. 2000–2008 Tarkvarainsener
IPTE Estonia Ltd. 2008–... Tarkvarainsener

92

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

MECHANICAL AND INSTRUMENTAL ENGINEERING

1. Jakob Kübarsepp. Steel-Bonded Hardmetals. 1992.

2. Jakub Kõo. Determination of Residual Stresses in Coatings &Coated
Parts. 1994.

3. Mart Tamre. Tribocharacteristics of Journal Bearings Unlocated Axis.
1995.

4. Paul Kallas. Abrasive Erosion of Powder Materials. 1996.

5. Jüri Pirso. Titanium and Chromium Carbide Based Cermets. 1996.

6. Heinrich Reshetnyak. Hard Metals Serviceability in Sheet Metal Forming
Operations. 1996.

7. Arvi Kruusing. Magnetic Microdevices and Their Fabrication methods.
1997.

8. Roberto Carmona Davila. Some Contributions to the Quality Control in
Motor Car Industry. 1999.

9. Harri Annuka. Characterization and Application of TiC-Based Iron Alloys
Bonded Cermets. 1999.

10. Irina Hussainova. Investigation of Particle-Wall Collision and Erosion
Prediction. 1999.

11. Edi Kulderknup. Reliability and Uncertainty of Quality Measurement.
2000.

12. Vitali Podgurski. Laser Ablation and Thermal Evaporation of Thin Films
and Structures. 2001.

13. Igor Penkov. Strength Investigation of Threaded Joints Under Static and
Dynamic Loading. 2001.

14. Martin Eerme. Structural Modelling of Engineering Products and
Realisation of Computer-Based Environment for Product Development. 2001.

15. Toivo Tähemaa. Assurance of Synergy and Competitive Dependability at
Non-Safety-Critical Mechatronics Systems design. 2002.

16. Jüri Resev. Virtual Differential as Torque Distribution Control Unit in
Automotive Propulsion Systems. 2002.

17. Toomas Pihl. Powder Coatings for Abrasive Wear. 2002.

18. Sergei Letunovitš. Tribology of Fine-Grained Cermets. 2003.

19. Tatyana Karaulova. Development of the Modelling Tool for the Analysis
of the Production Process and its Entities for the SME. 2004.

20. Grigori Nekrassov. Development of an Intelligent Integrated
Environment for Computer. 2004.

93

21. Sergei Zimakov. Novel Wear Resistant WC-Based Thermal Sprayed
Coatings. 2004.

22. Irina Preis. Fatigue Performance and Mechanical Reliability of Cemented
Carbides. 2004.

23. Medhat Hussainov. Effect of Solid Particles on Turbulence of Gas in
Two-Phase Flows. 2005.

24. Frid Kaljas. Synergy-Based Approach to Design of the Interdisciplinary
Systems. 2005.

25. Dmitri Neshumayev. Experimental and Numerical Investigation of
Combined Heat Transfer Enhancement Technique in Gas-Heated Channels.
2005.

26. Renno Veinthal. Characterization and Modelling of Erosion Wear of
Powder Composite Materials and Coatings. 2005.

27. Sergei Tisler. Deposition of Solid Particles from Aerosol Flow in Laminar
Flat-Plate Boundary Layer. 2006.

28. Tauno Otto. Models for Monitoring of Technological Processes and
Production Systems. 2006.

29. Maksim Antonov. Assessment of Cermets Performance in Aggressive
Media. 2006.

30. Tatjana Barashkova. Research of the Effect of Correlation at the
Measurement of Alternating Voltage. 2006.

31. Jaan Kers. Recycling of Composite Plastics. 2006.

32. Raivo Sell. Model Based Mechatronic Systems Modeling Methodology in
Conceptual Design Stage. 2007.

33. Hans Rämmal. Experimental Methods for Sound Propagation Studies in
Automotive Duct Systems. 2007.

34. Meelis Pohlak. Rapid Prototyping of Sheet Metal Components with
Incremental Sheet Forming Technology. 2007.

35. Priidu Peetsalu. Microstructural Aspects of Thermal Sprayed WC-Co
Coatings and Ni-Cr Coated Steels. 2007.

36. Lauri Kollo. Sinter/HIP Technology of TiC-Based Cermets. 2007.

37. Andrei Dedov. Assessment of Metal Condition and Remaining Life of In-
service Power Plant Components Operating at High Temperature. 2007.

38. Fjodor Sergejev. Investigation of the Fatigue Mechanics Aspects of PM
Hardmetals and Cermets. 2007.

39. Eduard Ševtšenko. Intelligent Decision Support System for the Network
of Collaborative SME-s. 2007.

40. Rünno Lumiste. Networks and Innovation in Machinery and Electronics
Industry and Enterprises (Estonian Case Studies). 2008.

94

41. Kristo Karjust. Integrated Product Development and Production
Technology of Large Composite Plastic Products. 2008.

42. Mart Saarna. Fatigue Characteristics of PM Steels. 2008.

43. Eduard Kimmari. Exothermically Synthesized B4C-Al Composites for
Dry Sliding. 2008.

44. Indrek Abiline. Calibration Methods of Coating Thickness Gauges. 2008.

45. Tiit Hindreus. Synergy-Based Approach to Quality Assurance. 2009.

46. Karl Raba. Uncertainty Focused Product Improvement Models. 2009.

47. Riho Tarbe. Abrasive Impact Wear: Tester, Wear and Grindability
Studies. 2009.

48. Kristjan Juhani. Reactive Sintered Chromium and Titanium Carbide-
Based Cermets. 2009.

49. Nadežda Dementjeva. Energy Planning Model Analysis and Their
Adaptability for Estonian Energy Sector. 2009.

50. Igor Krupenski. Numerical Simulation of Two-Phase Turbulent Flows in
Ash Circulating Fluidized Bed. 2010.

51. Aleksandr Hlebnikov. The Analysis of Efficiency and Optimization of
District Heating Networks in Estonia. 2010.

52. Andres Petritšenko. Vibration of Ladder Frames. 2010.

53. Renee Joost. Novel Methods for Hardmetal Production and Recycling.
2010.

54. Andre Gregor. Hard PVD Coatings for Tooling. 2010.

55. Tõnu Roosaar. Wear Performance of WC- and TiC-Based Ceramic-
Metallic Composites. 2010.

56. Alina Sivitski. Sliding Wear of PVD Hard Coatings: Fatigue and
Measurement Aspects. 2010.

57. Sergei Kramanenko. Fractal Approach for Multiple Project Management
in Manufacturing Enterprises. 2010.

58. Eduard Latõsov. Model for the Analysis of Combined Heat and Power
Production. 2011.

59. Jürgen Riim. Calibration Methods of Coating Thickness Standards. 2011.

60. Andrei Surzhenkov. Duplex Treatment of Steel Surface. 2011.

61. Steffen Dahms. Diffusion Welding of Different Materials. 2011.

62. Birthe Matsi. Research of Innovation Capasity Monitoring Methodology
for Engineering Industry. 2011.

63. Peeter Ross. Data Sharing and Shared Workflow in Medical Imaging.
2011.

64. Siim Link. Reactivity of Woody and Herbaceous Biomass Chars. 2011.

95

65. Kristjan Plamus. The Impact of Oil Shale Calorific Value on CFB Boiler
Thermal Efficiency and Environment. 2012.

66. Aleksei Tšinjan. Performance of Tool Materials in Blanking. 2012.

67. Martinš Sarkans. Synergy Deployment at Early Evaluation of
Modularity of the Multi-Agent Production Systems. 2012.

68. Sven Seiler. Laboratory as a Service – A Holistic Framework for Remote
and Virtual Labs. 2012.

69. Tarmo Velsker. Design Optimization of Steel and Glass Structures. 2012.

70. Madis Tiik. Access Rights and Organizational Management in
Implementation of Estonian Electronic Health Record System. 2012.

71. Marina Kostina. Reliability Management of Manufacturing Processes in
Machinery Enterprises. 2012.

