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Abstract 

This paper introduces a novel concept to predict the availability of electric vehicle 

charging stations with high accuracy by both utilizing pre-existing machine learning and 

deep learning models, techniques, tools and by developing new ones and to present the 

outcome of prediction to the client systems, to vehicles’ multimedia systems, in a reliable 

manner. The sample dataset used to train the machine learning and deep learning models 

contains real-life electric vehicle charging point data from Tallinn, Estonia, and Paris, 

France. Nevertheless, the idea of the system is to make it as generic as possible. Therefore, 

it allows modifications in the future and can be applied to any city or place easily. Having 

the destination input taken from the driver or the travel route is provided, the prediction 

engine created predicts the availability of the charging spots on the route. To achieve this 

outcome, machine learning and deep learning models are developed and trained with real-

life datasets in the scope of this research. Besides those, from the software perspective, 

the system utilizes distributed systems to push prediction results to client applications or 

services, calculated by consuming datasets, in a reliable manner and with high 

availability. Although a limited number of existing implementations focus on availability 

prediction of the electric vehicle charging spots, their prediction accuracy rate is not high 

that users adopt them practically, or they do not fit in an end-to-end system that can 

communicate with client applications easily or can be embedded into vehicles’ 

multimedia dashboards. However, according to recent research, electric vehicles become 

more dominant day by day and bring the booming charging station numbers. Therefore, 

this system provides value to its users regarding multiple aspects by helping them find 

the most available charging station on their destination route, especially these days when 

electric vehicles are trendy than ever, and their number has been increasing rapidly. 

 

This thesis is written in English and is 42 pages long, including 5 chapters, 14 figures, 

and 7 tables.
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1 Introduction 

As the variety of discussions regarding the environmental issues, pollution of the 

atmosphere and the harmful effects of fossil fuels are growing altogether, electric vehicle 

adoption by countries and by users all around the globe has also been rapidly increasing 

day by day. According to the 2021 Global EV Outlook, there were 10 million electric 

vehicles on the roads at the end of 2020. Moreover, electric vehicle registrations increased 

by 41% in 2020, despite global car sales dropping 16% due to the COVID-19 pandemic. 

Additionally, Europe became the world’s largest EV market for the first time, overtaking 

China [1]. The world’s most prominent car manufacturers have already set specific dates 

for producing only electric vehicles. For instance, BMW’s top-selling models, including 

X3, X5, 3 Series and 5 Series have electric versions, and the company foresees that by 

2030, half of their global sales will be electric cars. Another giant manufacturer General 

Motors plans to stop selling gas and diesel vehicles by 2035. Mercedes and Volvo also 

aim for going entirely EV by 2030 [2]. Advancements in manufacturing technologies and 

having electric vehicles performances improved consistently, create a snowball effect in 

the market which eventually increases consumer demand and drives manufacturers for 

more innovative and economical solutions.  

That being the case with electric vehicles, inevitably, the whole ecosystem surrounding 

them also grows along the way. Charging infrastructure is one of the most significant 

components of the electric vehicle ecosystem. Recent studies demonstrate a strong link 

between EV adoption and the surrounding charging infrastructure. Charging stations not 

being easily accessible, deficient in numbers, and inadequate quality or quantity, are some 

of the main reasons preventing EV ownership growth. Researchers concluded that even 

in a country such as Norway, where among the highest home charging availability 

worldwide, public charging station infrastructure strongly affects increasing EV 

ownership [3]. Another research carried out in Sweden, shows that an increased number 

of public charging points, especially in urban areas, also increases the adoption rate of 

EVs [4]. 
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With a growing number of EVs and charging stations in both rural and urban areas all 

around the globe, it becomes more and more challenging for EV drivers to find the most 

convenient charging spots for their needs quickly and timely when they are on the road. 

EV drivers either have to rely on external services and applications that display the 

statuses of the charging spots’ that they operate or built, or they are supposed to find one 

by trial and error. Moreover, those services displaying the status of their charging stations 

can only provide the value of a current status, which is generally not adequate for drivers. 

Forecasting the charging station’s future availability is vital, especially in today’s EV 

ecosystem, where a car’s battery level is critical for a decent user experience. EV drivers 

want to have the comfort of finding an available charging station suiting their needs not 

only in the current moment but also a few moments later when they need it. 

The work in this thesis ultimately aims to build an end-to-end system that consists of a 

prediction engine that forecasts the availability of EV charging stations in real-time, a 

distributed software components that provide the prediction outcomes to client 

applications in a reliable and resilient manner. And the system built in the scope of this 

thesis can be easily integrated within the EV’s multimedia systems. 

1.1 Problem Definition 

The work in this thesis essentially focuses on finding the answer to the following 

question: “Having taken the EV driver’s route (start and destination) of the trip as an 

input, which charging station is going to be the best one on the route, in terms of 

availability?”.  

For example, a simplified model of the problem and the aimed outcome can be seen in 

Figure 1. The system predicts the availability rate for each charging station on the driver’s 

route and displays it to the driver. Station 3 is considered the best in the above example 

due to the highest availability rate. 
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To answer the question above, each possible status value probability of each station on 

the drivers’ travel route must be calculated. And to be able to calculate the availability 

probabilities, a prediction engine based on an ML/DL model must be built, and the 

prediction results must be delivered to client systems. 

1.2 Architectural Overview 

Architectural overview of the entire system can be seen in Figure 2. The system as a 

whole constitutes an end-to-end solution for end users, in this context, EV drivers. The 

parts prior to Web Scraper, are not implemented or their details has not been discussed in 

the scope of this thesis. Instead, ready-made solutions are utilized for those tasks. Web 

Scraper, fetches the charging station’s data from server, preprocess the data, and generates 

datasets. Those datasets feeds into the prediction engine, which is a trained ML/DL model 

that actually performs the prediction. Afterwards, upon a request, results are transmitted 

to a distributed software application, which is planned to be implemented with Kafka 

consumers and producers. And finally, client applications, which can be either a mobile 

application, web application or an application integrated into EV’s multimedia system, 

request prediction results over a web.  

 

 

Figure 1. Simplified Problem Model 



13 

1.3 Main Contributions 

The main contribution of this thesis is that it proposes timely research that correlates with 

increasing rates of EV adoption. Existing research gap on predicting EV charging 

stations’ availability and the growing need to forecast the results are two of the few factors 

which make this research valuable and competent. 

 

 

Figure 2. Architectural Overview of the End-to-End System 
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Moreover, this research provides a high accuracy prediction rate that outperforms existing 

works and baselines. Besides, it enables a generic solution that can be easily applied in 

any given location or any given context. Scraping the usually not publicly available data 

of charging stations in Estonia, a large dataset is made available for any machine to work 

on. 

And last but not least, the proposed solution is integrated into an end-to-end system and 

can be used in practical, real-world scenarios, bringing value directly to the user 

experience and the EV ecosystem. 

1.4 Structure of the Manuscript 

The rest of this paper is organized as the following. Chapter 2 presents the state-of-the-

artwork regarding the EV charging station availability prediction and related topics. Also, 

it discusses prevalent algorithms and techniques used in machine learning and deep 

learning. Chapter 3 describes the actual implementation steps of the dataset generation, 

feature engineering, training, and testing machine learning/deep learning models and 

developing prediction engines. Chapter 4 discusses the results obtained from the 

implementation part, and finally, Chapter 5 consists of the paper’s conclusion, the 

summary, and the future possibilities. 
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2 Literature Review 

In this section, the state of the artwork for EV charging station availability prediction and 

a few other relevant prediction/forecasting studies are examined and discussed. Secondly, 

an overview is given for well-established ML and DL methods which are majorly used 

for building prediction models. And lastly, the literature review is concluded. 

2.1 State of the Art 

There has been ongoing research and experimentation regarding electric vehicles and 

their surrounding ecosystem in recent years. Several of them focus particularly on EV 

charging infrastructure and are heavily rely on machine learning and deep learning 

methods. In their study, F. Soldan et al. employed a similar approach to short-term 

forecasting of EV charging stations occupancy probability, using big data streaming 

analysis [5]. Researchers propose a big data streaming architecture for providing electric 

charging station availability forecast after a certain number of times from the present time. 

To train a streaming logistic regression model, batch data of past changes and real-time 

data streams are used, to consider recurrent past situations and unexpected current events.  

They discovered that their streaming model performs better than a model trained using 

only historical data because the forecast model trained just using historical data can result 

in accuracy errors, especially in the case of unexpected events such as a match for an EV 

charging station that is close to a stadium. Researchers used Logistic Regression as a 

classification model and increasingly updated the model using real-time data from the 

actual occupancy of EV charging stations. The classification model and threshold 0.5 

mark occupations as occupied (if greater than a threshold) or not occupied (lower than a 

threshold).  

They used precision, recall and F1-score metrics to evaluate their model’s result. The 

latter have shown that occupancy probabilities from the streaming model are generally 

lower than those from the batch model. However, the streaming forecasts display a higher 

increase if a charging station is occupied. This increase is more evident with long charges, 
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whenever occupancy probabilities reach above 0.8. Researchers concluded that a model 

with a better recall than precision would be chosen in the case of the need to forecast the 

highest number of charges, with the risk of forecasting as a charge an event that will not 

be confirmed as an actual charge.  

On the contrary, a model with better precision than recall will be chosen when it is 

necessary to forecast only correct charges, with the risk of losing some charge predictions 

[5]. Besides those, there are a few notable weaknesses of this research. Firstly, the dataset 

is not rich as it only consists of temporal variables. Moreover, only one model was applied 

to the dataset. Finally, a proposed strength of mixing batch and real-time data is 

performed randomly, without calibration. 

In another research by A. Sao et al. [6], the authors established a novel deep learning 

approach, Deep Fusion of Dynamic and Static Information model (DFDS), to forecast 

charging station occupancy effectively. DFDS exploits the typical static patterns of the 

individual charging stations, such as regular occupation rates or means occupation 

concerning the time of the day, and the dynamic information, such as the current 

occupation, daytime, and weekday to facilitate occupation predictions. Significant 

contributions of the paper include that those researchers proposing a novel architecture 

that effectively combines dynamic and static information. The model efficiently fuses 

dynamic and static information to facilitate accurate forecasting. Also, the model has an 

effective prediction rate, outperforming baselines in F1-score. DFDS uses a Gated 

Recurrent Unit (GRU)  based dynamic information encoder to capture the dynamic 

occupancy of the charging stations.  

Further, researchers use statistical features to capture the individual station’s typical 

occupation pattern in the static information component. Finally, they fuse the dynamic 

and static information and use a GRU-based decoder, called the fusion component, to 

forecast charging station usage. Researchers again used a real-world dataset from Lower 

Saxony, Germany, between August 2020 and December 2020. To evaluate their results, 

the metrics used are Precision, Recall, and F1-Score. Researchers observed that dynamic 

information helps achieve high precision, while static information enables a high recall. 

As baseline ML and DL models, kNN, Random Forest, Logistic Regression, Support 

Vector Machine, GRU + Fully Connected, and Sequence2Sequence models are used 

along with the naïve statistical historical average. Experiments demonstrate that DFDS 
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outperforms the baselines by 3.45 percent points in F1-score on average. In addition, the 

DFDS model has a Precision value of 73.12 percent, a recall value of 64.53, percent and 

an F1-score value of 68.55 percent. 

Besides the availability prediction of EV charging stations, several pieces of research 

focus on EV charging behaviors and predicting future charging demand, using similar 

machine learning and deep learning approaches. For example, in their paper, F. Qiao et 

al. [7] aimed to predict future charging demand by building predictive models to 

characterize behaviors of both registered long-term users and unregistered short-term 

users. Even though the focus is not the charging station’s availability prediction, the 

research has importance as it considers different user behaviors. For example, registered 

users tend to use the system for longer terms. In contrast, unregistered users typically are 

short-term users who use charging stations occasionally. Prediction design includes one 

predictive model for registered and one for unregistered users. Working on a real-world 

charging record dataset collected in Caltech, the study applies supervised learning-based 

algorithms, specifically XGBoost, Support Vector Regression (SVR), and Gradient Boost 

Decision Tree (GBDT) to predict sequences of future availability. 

Registered/unregistered users used XGBoost to train two predictive models separately 

and then combined middle prediction results to obtain final results. Researchers compared 

their proposed prediction model with SVR, GBDT, and XGBoost and concluded that for 

RMSE and MAPE, XGBoost performs the best in each time granularity. For MAPE, 

GBDT performs better than SVR when time granularity is 15, 30, and 80 minutes, while 

SVR performs better than GBDT in other cases [7].  

With similar purposes, S. Shahriar et al. [8] used popular machine learning algorithms to 

predict charging behavior, more specifically EV session duration and energy 

consumption, mainly to provide smart scheduling and solve the strain on power grid 

infrastructure due to the high-power requirements of the EVs. ACN (Adaptive Charging 

Network) dataset [9] considers input features such as traffic and weather conditions and 

local events. ACN is a public dataset that contains charging records from stations in 

Caltech and JPL university campuses. Random Forest, SVM, XGBoost, and Deep 

Artificial Neural Networks are taken as baselines, along with two additional ensemble 

learning methods, Voting Regressor and Stacking Regressor. Researchers aggregated 

three best performing models in the training phase into two ensemble models, which 

resulted in improved cross validation scores. Results are compared based on RMSE, 
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MAE, R2 and SMAPE metrics. The work suggested that results outperform previous 

works that report similar evaluation metrics. 

Authors of [10] [11] [12] also worked on developing models to predict charging demand. 

Y. Zhao et al. built a novel data-driven framework to ensure the safety of EVs and provide 

reliable inputs for grid-load calculations. The framework is developed by individually 

controlling the strongly linear and weakly non-linear contributions. The proposed 

framework concurrently addresses the overfitting of non-linear networks using a low 

proportion of training data and the poorly descriptive ability of linear networks under 

complex environments. To validate the performance of the proposed prediction model, 

actual real-world EV data and five existing high-performance prediction models (Linear 

Regression, XGB, RF, and kNN) are employed. China’s national big data platform for 

EVs: Dataset of National Monitoring and Management Center for New Energy Vehicles 

is used as a real-world data source. Compared with existing prediction models (such as 

the random forest, XGBoost, and neural network), the proposed framework persists with 

evidently higher accuracy and stability over a wide range of the ratio between the number 

of EVs used for testing and training; its mean absolute percentage error (MAPE) is 

maintained at 2.5–3.8% when the ratio ranges from 0.1 to 1,000. However the prediction 

model in this research may not obtain the accurate charging energy of an EV when the 

SOC (state of charge) variation is tiny, i.e., 1–3%. There are many reasons for this, such 

as unstable charging power at the beginning, sensor errors, etc [10]. 

A. Almaghrebi et al. also employed Linear Regression, XGBoost, RF, and SVM methods 

to build a charging demand prediction model. They evaluated their results using the 

Coefficient of determination (R2), RMSE and MAE metrics. In addition, researchers used 

a real-world dataset containing charging sessions data from Nebraska, USA. Their result 

demonstrates that XGBoost outperforms other methods with 6.68 kWh and 51.9% R2 

[11]. Y. Kim et al. [12] study compared various modeling techniques, including 

trigonometric exponential smoothing state space (i.e., Trigonometric, Box-Cox, Auto-

Regressive-Moving-Average (ARMA), Trend, and Seasonality (TBATS)), 

autoregressive integrated moving average (ARIMA), artificial neural networks (ANN), 

and long short-term memory (LSTM) modeling, based on past values and exogenous 

variables. In addition, the models are evaluated based on MAPE. Researchers concluded 

that privacy issues regarding driver information play an essential role in predicting 

charging demand. They must be resolved to forecast power supply effectively, as in a 
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single station, exogenous variables do not significantly influence accuracy because 

individual behavior is essential in determining consumption. 

2.2 Algorithms and Techniques Overview 

This section provides an overview and theoretical information, for the most prevalent 

ML/DL algorithms and techniques mentioned in the previous state-of-the-art section. It 

is worthy of note that the algorithms and techniques discussed in this section are chosen 

based on the relevancy of the work provided in this thesis.  

2.2.1 Supervised Machine Learning Algorithms 

Machine learning can be defined as a branch of the Artificial Intelligence discipline. ML 

focuses on using data and algorithms to imitate the way humans learn, gradually 

improving its accuracy. Through various statistical methods and techniques, algorithms 

are trained to make classifications and predictions. Generally, ML algorithms use 

historical data to forecast the future values of desired output variables [13]. 

There are several machine learning methods, and they can usually be categorized under 

four primary categories namely Supervised ML, Unsupervised ML, Semi-Supervised ML 

and Reinforcement ML. However, since the algorithms used in the scope of this thesis 

are all Supervised ML algorithms, other categories are not discussed in this chapter.  

In supervised learning, the dataset being used has been pre-labeled and classified by users 

to allow the algorithm to see how accurate its performance is [14]. Usually, in Supervised 

learning, the person training the data knows a lot more about the training data than the 

machine, so the person can feed labeled data into the machine which can be easily 

classified later. Supervised ML has many use cases in real-world applications, including 

classifying spam mails in a separate mail folder, self-driving cars classifying different 

objects through image processing or, a web application of tourism agent forecasting how 

many of the hotel rooms will be available on a specific date. A typical machine learning 

algorithm consists of roughly three components. The first component, the decision 

process, refers to the steps ML algorithm produces an estimate about a pattern in a data, 

based on the input data provided. In addition, it can be defined as any calculations that 

take in the data and return it into a guess at the kind of pattern the ML algorithm is looking 

to find. The second component is called an error function. It’s a technique of  measuring 
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how good the guess was served to evaluate the model’s prediction. It aims to quantify the 

miss rate, regarding the guess performed by an algorithm. The last component is the 

model optimization process. In this step, the algorithm looks at failures and then updates 

it's decision process and means to come to the final decision thus next time miss will be 

lower. If the model can fit better to the data points in the training set, it will adjust the 

weights to reduce the discrepancy between the known examples and its estimations. This 

evaluation and optimization process will be repeated autonomously until a predefined 

accuracy threshold has been met [13] [14]. 

2.2.2 Classification Algorithms 

Given that the ultimate goal of the research in this paper is to predict the probability of 

each possible output of the EV charging stations, and since this output will be equal to 

one of the finite numbers of status values, it can be stated that the model aimed to be built 

trying to solve a multi-class classification. 

Multiclass classification algorithms classify given input into one of the N possible classes. 

These are supervised ML algorithms. Unlike binary classification, where you have only 

two possible outcomes, multi-class classifications are not limited to or does not restrict 

itself to any number of classes (See the comparison scheme in Figure 2). Therefore, two 

classes are dependent (target) variables when the problem is a multi-class classification 

problem. Multi-class classification assumes that each sample is assigned to one and only 

one label: a fruit can be either an apple or a pear but not both at the same time [15]. Multi-

class classification algorithms have a broad scope of usage including image classification, 

handwritten digit recognition, intent classification in NLP, and so on. In the scope of the 

work of this thesis, the desired output consists of multiple classes of EV charging stations 

availability statuses, such as “available,” “busy,” “unknown” etc. In addition to that, the 

probability rate of each status value is intended to be calculated, so that the availability 

percentage can be provided to the end-user. For instance, “Station 1 will be 96% 

available.” 
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2.2.3 K-Nearest Neighbours (kNN) 

K-Nearest Neighbour has always been one of the most popular supervised-learning 

algorithms for multi-class classification and regression problems. In the simple sense, 

kNN is based on estimating the class of the vector formed by the independent variables 

of the value to be assessed, based on the information in which class the nearest neighbors 

are dense. It is an easy-to-implement algorithm with simple usage; however, it performs 

lazy learning and can be computationally expensive significantly as the number of 

independent variables increases because it measures the distance between each data point 

[17] [18]. 

In the kNN classifier, the distances between test data and the training data can be 

identified by different measures. Euclidian distance function, the most common one, can 

be seen in Equation 2.1. Others include the Minkowsky distance function in Equation 2.2 

and the Manhattan distance function in Equation 2.3 [19]. 

 𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1   (2.1) 

 𝑑(𝑥, 𝑦) = √(∑ |𝑥𝑖 − 𝑦𝑖|𝑃𝑛
𝑖=1 )1 𝑝⁄   (2.2) 

 

Figure 3. Comparison of Binary Classification and Multiclass Classification [16]. 
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 𝑑(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1   (2.3) 

 

K in kNN is a hyperparameter that can be set to achieve the best possible fit of the 

algorithm. It corresponds to the number of neighbors on which the calculation will be 

performed. There are no predefined methods to find the best K value. Lower K values 

might increase the chance of overfitting and leads to unstable decision boundaries, while 

higher K values might result in overgeneralized results. One of the methods can be 

deriving a plot between error rate and K, denoting values in a defined range. Then K value 

is chosen as having the minimum error rate. However, small K values do not always suit 

small datasets and big K values do not always serve big datasets [20] [21]. 

2.2.4 Logistic Regression 

Logistic Regression is a binary classification algorithm intended for datasets with two 

classes of categorical or numerical target variables. Therefore, it cannot be directly used 

for multi-class classification. Instead, it requires a transformation of the model 

beforehand.  

One of the popular approaches for adapting Logistic Regression to multi-class 

classification problems is to split the multi-class classification problems into multiple 

binary classification problems and apply a standard logistic regression on each split 

subproblem. Another approach is directly changing the logistic regression model to 

support numerous class labels’ predictions. The probability distribution that defines 

multi-class probabilities are called a multinomial probability distribution. A LR model 

adapted to learn and predict a multinomial probability distribution is called Multinomial 

Logistic Regression [22]. 

Changing Logistic Regression from binomial to multinomial probability requires a 

change in the loss function that has been used to train the model. For example, the loss 

function is changed from Log Loss to Cross-Entropy Loss function. And change is 

applied to the output from a single probability value to one probability for each class label 

[22]. 
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Figure 4 demonstrates the logistic regression curve, equation, and linear regression line. 

2.2.5 Random Forest 

Random Forest is another widely used supervised machine learning algorithm, employed 

for multi-class classification tasks. In essence, RF consists of many individual “decision 

trees” that operate as an ensemble. In simpler terms, the model builds multiple decision 

trees for different parts of the data and selects the final output based on majority voting 

of individual decision trees in the multi-class classification [24]. 

RF has a few notable advantages. It has a low chance of overfitting, when sufficient trees 

are in the RF model. It does not have too many hyperparameters; therefore, it’s easy to 

use and implement. However, there’s a trade-off that many trees can make the algorithm 

too slow and ineffective for real-time predictions. Because in general, RF algorithms can 

be trained quickly, but they are slow to create forecasts after they are trained. And more 

accurate predictions require more trees, which eventually results in a slower model [25]. 

 

Figure 4. Logistic Regression Curve and Equation [23]. 

 

 

 

 

 

 

 

 



24 

 

The aforementioned “ensemble” can use two types of methods. The first of these methods 

is called bagging, and it creates a different training subset from sample training data with 

replacement, and the final output is based on majority voting. RF works with this bagging 

principle. There’s also another method called Boosting, and basically, it combines weak 

learners into strong learners by creating sequential models such that the final model has 

the highest accuracy. Models such as AdaBoost and Gradient boosting are based on this 

principle [26]. For example, XGBoost (Extreme Gradient Boosting) is a widespread high-

performance implementation of gradient boosting, consists of an extensive software 

library and interfaces.  

Gradient boosting refers to an approach where new models are created which predict the 

residuals or errors of their prior models and then added together to make the final 

prediction with a higher accuracy rate. It is called gradient boosting because it uses a 

gradient descent algorithm to minimize the loss when adding new models [27]. The 

gradient descent algorithm also has several subtypes: Stochastic Gradient Descent, Batch 

Gradient Descent and Mini-Batch Gradient Descent. 

 

 

Figure 5. RF is made of multiple individual decision trees. 
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2.2.6 Support Vector Machine (SVM) 

Support Vector Machine is another supervised ML algorithm used for multi-class 

classification. The main working principle of SVM is to find a hyperplane that classifies 

or differentiates the output classes, which comprises data points plotted in an n-

dimensional space. Hyperplanes are decision boundaries that help classify the data points, 

and many possible options of hyperplanes could be chosen, and the SVM algorithm has 

a feature to ignore the outliers. SVM’s main objective is to find a hyperplane with the 

highest margin value. Margin corresponds to the distance between a hyperplane and the 

nearest data point. Figure 6 demonstrates a hyperplane with the highest margin. Samples 

on the margin are called the support vectors [28] [29]. 

 

The loss function in SVM that helps maximize the margin is hinge loss, seen in Equation 

2.4. The cost is 0 when the predicted value has the same sign as the actual value. The loss 

value is calculated without the same sign [29]. 

 

 𝑐(𝑥, 𝑦, 𝑓(𝑥)) = {
 0,                                  𝑖𝑓  𝑦 ∗ 𝑓(𝑥)  ≥ 1 

   1 − 𝑦 ∗ 𝑓(𝑥) ≥ 1,    𝑒𝑙𝑠𝑒                          
  (2.4) 

 

 

 

Figure 6. Highest margin hyperplane and support vectors for an SVM with 2 classes [30]. 
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The regularization parameter is added to the SVM loss function to balance the margin 

maximization and loss. After adding the regularization parameter, the loss function 

equation is given in Equation 2.5 [29]. 

 

 

 
𝑚𝑖𝑛

             𝑤
𝜆  ∥ 𝑤 ∥2 +  ∑(1 −  𝑦𝑖⟨𝑥𝑖 , 𝑤⟩)+

𝑛

𝑖=1

 (2.5) 

 

Since the loss function is established, partial derivatives are taken concerning the weights 

to find the gradients. Weights can be updated using the gradients, as shown in equations 

2.6 and 2.7 [29]. 

 

 

𝛿

𝛿𝑤𝑘
 ∥ 𝑤 ∥2 =  2𝜆𝑤𝑘   (2.6) 

 

 
𝛿

𝛿𝑤𝑘
 (1 −  𝑦𝑖⟨𝑥𝑖 , 𝑤⟩)+ = {

 0,            𝑖𝑓      𝑦𝑖⟨𝑥𝑖 , 𝑤⟩ ≥ 1 
 −𝑦𝑖𝑥𝑖𝑘,    𝑒𝑙𝑠𝑒                              

 (2.7) 

 

Only gradient has to be updated from the regularization parameter When there is no 

misclassification, as in equation 2.8 [29]. 

 

 
𝑤 =  𝑤 –  𝛼 ∙  (2𝜆𝑤) (2.8) 

A loss is included along with the regularization parameter to perform gradient update, 

when there is a misclassification, as seen in equation 2.9 [29]. 

 

 
𝑤 =  𝑤 +  𝛼 ∙  (𝑦𝑖  ∙  𝑥𝑖  −  2𝜆𝑤) (2.9) 
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2.2.7 Deep Learning and Artificial Neural Networks 

Deep Learning can be considered as a subset of Machine Learning. The primary 

difference between DL and ML derives from how their algorithms learn. In DL, the 

majority of the feature extraction part is automated. The classical ML approach is more 

dependent on manual human intervention to learn. Human experts determine the 

importance or hierarchy of the features and understand the differences between data 

inputs, which usually results in requiring more structured data. However, this part is 

mainly eliminated in DL. DL does not necessarily need a labeled dataset, as it can use 

unstructured raw data and automatically determine the set of features to distinguish or 

classify outputs. A DL model can cluster inputs appropriately by observing patterns in 

the data. It has more complex use cases, i.e., virtual assistants or fraud detection [13] [31]. 

Artificial Neural Networks, is an Artificial Intelligence branch that tries to mimic the 

human brain through algorithms. ANN consists of four main components at a basic level: 

inputs, weights, bias or threshold, and output. Each node, or artificial neuron, connects to 

another and has an associated weight and threshold. If the output of any individual node 

is above the specified threshold value, that node is activated, sending data to the next 

layer of the network. Otherwise, no data is passed along to the next layer of the network. 

The “deep” in deep learning refers to the depth of layers in a neural network [13]. And 

has use cases in areas such as computer vision, natural language processing, and speech 

recognition. There are several architectural approaches in ANN. 

 

Figure 7. Deep Neural Network (ANN) representation [31]. 
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2.2.7.1 Convolutional Neural Networks 

CNN is mainly different from other ANN types by their superior performance with image, 

speech or audio signal inputs. CNN has three main layers: Convolutional Layer, Pooling 

Layer and Fully-Connected (FC) layer [32]. Figure 8 shows an example architectural 

overview of CNN. First, a loss function calculates the model’s performance with specific 

weights and kernels through forwarding propagation on training data. Then, weights and 

kernels are updated accordingly to the loss value through backpropagation with gradient 

descent optimization algorithm, e.g., ReLU (rectified linear unit) [33]. 

 

Figure 8. An overview of CNN architecture and training process [33]. 

 

The first two layers, convolutional and pooling layer, perform feature extraction. The 

final FC layer maps the features into the final output, i.e., classification. A convolution 

layer plays a significant role in CNN due to its mathematical operations, a linear operation 

[33]. 

 

2.2.7.2 Recurrent Neural Networks 

RNN is another type of ANN using sequential or time-series data. The main difference 

between RNN and other ANN models is that RNN have a memory, and they take 

information from prior inputs to influence the current inputs and outputs. Moreover, they 

share parameters across each layer of the network. Feedforward networks have different 

weights across different nodes. RNN, on the other hand, shares the same weight parameter 

within network layers. An RNN is commonly used for ordinal and temporal problems 
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such as speech recognition, natural language processing, image captioning, and language 

translation [34]. 

RNN uses a backpropagation through time (BPTT) algorithm to determine the gradients. 

It is slightly different than the traditional backpropagation because it is specific to 

sequence data. However, BPTT principles are the same as traditional backpropagation. 

The model trains itself by calculating errors from its output to its input layer. These 

calculations allow adjusting and fitting the parameters of the model appropriately. But 

BPTT is different because it sums errors at each time step [34]. 

RNN has advantages such as processing input of any length and model size is not 

increased with the input size. But it also has some disadvantages as computation is slow 

and cannot consider any future input for the current state [35]. 

 

Figure 9. RNN allows previous outputs to be used as inputs while having hidden states 

[35]. 

 

Bidirectional Recurrent Neural Networks (BRNN), Long Short-Term Memory (LSTM), 

and Gated Recurrent Units (GRUs) are some of the popular variants of RNN architecture. 

2.2.7.3 Multi-layer Perceptron 

MLP is an algorithm that learns a function in Equation 2.10 by training on a dataset, 

where 𝑚 is the number of dimensions for input and 𝑜 is the number of dimensions for 

output [36]. 

 

 
 𝑓(⋅) ∶  𝑅𝑚  →  𝑅𝑜  (2.10) 
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Figure 10 shows an example of MLP. The layer on the left is an input layer and consists 

of a set of neurons representing the input features. Each neuron in the hidden layer 

transforms the values from the previous layer with a weighted linear sum, and a non-

linear activation function. Finally, the output layer receives the values from the last hidden 

layer and transforms them into output values [36]. 

One of the advantages of MLP is that it is capable of learning non-linear models, and it 

is capable of learning models in real-time. But it also has some disadvantages, i.e., it is 

sensitive to feature scaling, and it requires tuning several hyperparameters e.g., the 

number of hidden neurons, layers, iterations, etc. 

2.2.8 Evaluation Metrics 

The accuracy and performance of the ML/DL models and algorithms mentioned above 

are evaluated based on several predefined metrics. Evaluation metrics are used to measure 

the quality of the model. There are many different types of evaluation metrics available, 

including but not limited to classification accuracy, logarithmic loss, confusion matrix, 

etc [37]. 

 

 

Figure 10. One hidden layer MLP [36] 
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Testing a model with multiple evaluation metrics is important because the model can 

perform well on one measurement but may perform poorly on others from different 

evaluation metrics. 

Three commonly employed evaluation metrics for multi-class classification models are 

examined. 

2.2.8.1 Precision 

Precision is defined as the fraction of relevant instances among the retrieved instances. It 

is used to measure the model’s performance on counting the number of true positives 

correctly out of all positive predictions made by the model [38] [39]. 

 

 
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2.10) 

 

2.2.8.2 Recall 

The recall is defined as the fraction of relevant instances that were retrieved. It measures 

the model’s performance regarding the number of true positives correctly out of all the 

actual positive values [38] [39]. 

 

 
 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2.11) 

 

2.2.8.3 F1-Score 

F1-Score takes both precision and recall into account. It can be defined as a “harmonic 

mean” of precision and recall score. 

 

 
 𝐹1 = 2 ∗  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (2.11) 
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2.3 Conclusion 

In the most recent literature regarding the prediction of electric vehicle charging stations 

availability and related topics, there is a variety of well-proven models, techniques, 

algorithms, and frameworks of ML and DL. However, some of these methods are used 

more often than others in researches.  

Regarding state-of-the-art, it can be said that there’s a research gap that exists regarding 

charging station availability prediction, as a focal point of many researches is charging 

demand prediction. Moreover, challenges regarding accuracy and scalability play an 

essential role in developing and improving of the models. However, reaching high 

accuracy rates is not straightforward, as datasets can be inadequate or the employed 

models might not be an optimal fit. Therefore, the main focuses of this thesis are directed 

towards these weaknesses and deficiencies existing in the literature. That is the main 

reason high scalability, reliability, and accuracy are emphasised throughout different 

chapters. 

This section provided a fundamental overview and theoretical information of these 

prevalent models and techniques, most of which are also used during the implementation 

part in this thesis, to establish the base for the work performed.
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3 Implementation 

The actual work implemented in this thesis can be summarized as the following. First, 

data from two different sources is scraped and accumulated frequently to generate 

datasets. Then, these two datasets are used for building ML/DL models. These models 

built are then used to predict EV charging spots availability. And last but not least, the 

prediction system built is integrated into an end-to-end distributed software system. 

This section discusses the Data Scraping part and provides detailed info on the dataset 

used in this research. Afterward, the Baselines part examines the result of base models 

and methods discussed in the Related Works section applied on the dataset, and their 

results are compared. Then, the Prediction Model part is the ultimate prediction engine 

built for real-time prediction. In the final part, the end-to-end software system of which 

the prediction engine is meant to be integrated is discussed. 

3.1 Data Scraping 

Data scraping is defined as a process of importing a human-readable form of information 

from a website or a program into a spreadsheet, local file, or any kind of database [40]. It 

is one of the most prevalent and most efficient methods for extracting data from any 

source on the web. 

To make any data available for training and testing by a machine, that data must be 

scraped, cleaned, formatted, and preprocessed. In the scope of this thesis, two different 

data sources are used and both sources were scraped separately, however with similar 

techniques, and they were made available for machines to use.  

For both data sources, scraping is performed with a predefined frequency by creating a 

scheduled job on a personal computer and setting the job, so it runs once every half an 

hour. Hence, two python scripts performing the actual scraping action have been regularly 

run every half an hour. The scraping cronjob started to run in September 2021. However, 

there are time intervals when it was stopped due to a technical issue or it failed and had 



34 

to be started over again. Except for times that it stopped scraping, data had been scrapped 

from both data sources once in every 30 minutes since the day it started. 

The scraper python scripts have some other similarities, too, as they both use the python 

requests library [41] to make HTTP requests and parse their responses. In addition, the 

CSV module [42] in the python standard library is used to write or append results into a 

CSV file. 

The following subsections discuss the actions performed during data scraping of two 

separate data sources. 

3.1.1 Belib – Paris Data Source 

The first data source utilized in this research is an open dataset, and it contains data from 

1822 different EV charging stations located in Paris, France. It provides geolocated real-

time availability data of charging points for EVs. The original title of the dataset in French 

is: “Belib’ - Points de recharge pour véhicules électriques - Disponibilité temps reel”. The 

English translation of the title is Belib - Charging points for electric vehicles - Real-time 

availability [43]. The entire public network of supervised charging points and providing 

real-time availability data is called Belib [44]. The Paris council voted to award a service 

concession to a new operator,  Total Marketing France (TMF), for the technical and 

commercial operation of public charging stations in Paris. Concretely, the network of old 

Autolib 'terminals will gradually be replaced by new terminals. At the end of the 

deployment, Paris will then be equipped on the road with 433 charging stations for electric 

vehicles (one station is equipped with several charging points). The new terminals will 

be accessible via the new operator as they are installed [43]. The dataset is licensed with 

Open Database License (ODbL) [45] and is contributed by TMF. 

The data source has a public API provided with documentation [46]. Therefore, scraping 

is performed via sending requests to this public API with appropriate parameters. The 

complete code of the python script can be seen in Appendix 2. First, an HTTP GET 

request is sent to the following URL: 

“https://opendata.paris.fr/api/records/1.0/search/?dataset=belib-points-de-recharge-pour-

vehicules-electriques-disponibilite-temps-reel&q=&facet=statut_pdc&rows=2000”. 

Then, as seen from the URL, the status facet is requested with a maximum of 2,000 rows 

of EV stations from the Belib data source. Then, results are parsed and saved into a CSV 

https://opendata.paris.fr/api/records/1.0/search/?dataset=belib-points-de-recharge-pour-vehicules-electriques-disponibilite-temps-reel&q=&facet=statut_pdc&rows=2000
https://opendata.paris.fr/api/records/1.0/search/?dataset=belib-points-de-recharge-pour-vehicules-electriques-disponibilite-temps-reel&q=&facet=statut_pdc&rows=2000
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file each time the scraping is done. In total, more than 700,000 rows of data are parsed, 

and each row represents a single charging station. 

3.1.2 Enefit VOLT – Estonia Data Source 

The second data source used in this master thesis is a private company operating in 

Estonia, called Enefit Volt. Enefit Volt claims to be the largest charging network in 

Estonia with more than 185 EV Charging stations all over the country. It has a variety of 

chargers for different needs and constantly growing [47]. 

Enefit Volt has a “Find the nearest charger” page on their website (see Figure 11) where 

they display charging spots on a map. Along with charging spots, availability, and a few 

other information about the spot is displayed on the page. However, since Enefit VOLT 

does not provide a public API, scraping performed a bit more differently than the previous 

data source. The complete code of the python script can be found in Appendix 3. Briefly, 

an asynchronous request that the webpage performs to reload data is imitated in the 

python code. Request headers are created and a request is sent to a URL with longitude 

and latitude parameters, covering the whole Estonia map. Like the first data source’s 

script, a response is parsed and then appended to a CSV file. In total, more than 370,000 

rows of data are parsed, and each row represents a single charging point.  

 

 

Figure 11. Enefit Volt’s Find the nearest charger page. 
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3.2 Dataset 

After the data is scraped from the data sources, rows are appended in a CSV file to 

generate the actual dataset used for building the model. This section demonstrates what 

those two datasets look like by providing their fields and descriptions. 

The data model of the first dataset, Belib – Paris, France, can be seen in Table 1. It has 

eight columns, most of which have categorical values.  

Table 1. Belib Paris Dataset Model 

 

Field Name Description 

ID Identifier of the charging spot, e.g., FR*V75*EPX12*02*5 

Status 
The status value of the charging point, the value from the 

Charging Points Status information table. (see Table 2) e.g., 

Disponible 

Address 
Full address (at least, the names of the road or the locality and 

the town) of the station, e.g., 3, rue de la Gare, Belmont 

Postal Code Postal code of the location of the Charging Point, e.g., 75015 

Latitude 
Charging Point’s geographical coordinate’s latitude value, e.g., 

48.8512 

Longitude 
Charging Point’s geographical coordinate’s longitude value, 

e.g., 2.2913 

Last Updated 
Last time the charging station’s data is updated, in YYYY-

MM-DD’T’HH:mm:ssZZZZ format, e.g., 2021-10 

16T10:36:04+00:00 

Record Timestamp 
The time row is recorded in the CSV file in YYYY-MM 

DD’T’HH:mm:ss.SSSZZZZ format, e.g., 2021-10-

16T10:36:04.525000+00:00 

 

 

 

The status field value set of the Belib dataset can be seen in Table 2. There are nine 

possible values of status that can exist for a charging spot. The original French name for 

the status value is also given since it is saved in the CSV file.  
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Table 2. Belib charging spots status values and their description [43]. 

 

Original Status 

Value 
Status Value in English Description 

Disponible Available 
The charging spot is 

available, free to use. 

Pas implémenté Not Implemented 

For the moment charging spot 

is not implemented by the 

operator. The operator will go 

back to “In Maintenance” 

from the moment a 

maintenance update has been 

declared. 

Occupé (en charge) Busy (in charge) 

The charging spot is busy. 

There is currently a charging 

session. 

En cours de mise en 

service 

In the process of 

commissioning 

The charging spot has not 

been commissioned yet. 

En maintenance In maintenance 
The charging spot is in 

maintenance. 

Mise en service 

planifiée 
Planned commissioning 

Commissioning is planned 

and it will be available soon. 

This step follows the status 

“In the process of 

commissioning.” 

Supprimé Suppressed 
The charging spot is removed 

from the infrastructure. 

Réservé Reserved The charging spot is reserved. 

Inconnu Unknown 

The status is unknown. 

Terminal does not 

communicate with the server, 

because it is turned off, has 

no network communication, 

and is not in maintenance 

mode. 

 

 

The data model of the second Dataset, Enefit VOLT, Estonia, can be seen in Table 3. It 

has twenty-three columns. Columns Socket [1-2] Max Power, Socket Count, and Socket 

[1-2] Price have numerical values. The rest of the columns have categorical or semi-

categorical values. 
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Table 3. Enefit VOLT Estonia Dataset Model 

 

Field Name Description 

ID Identifier of the charging spot, e.g., 390 

Name Name of the charging spot, e.g., Tallinn Ülemiste Keskus P-1 

Status 
The status value of the charging point, the value from the 

Charging Points Status information table. (see Table 4), e.g., 

Available 

Address 
Full address of the charging spot, e.g., Akadeemia tee 15, 

Tallinn 

Charging Speed Speed of the charging station, e.g., Semi Fast 

In Maintenance 
A Boolean indicator showing whether the charging spot is in 

maintenance, e.g., True 

Latitude 
Charging Point’s geographical coordinate’s latitude value, e.g., 

59.356 

Longitude 
Charging Point’s geographical coordinate’s longitude value, 

e.g., 24.892 

Access Level Charging station’s accessibility, e.g., Public 

Socket Count How many sockets does the charging spot have? e.g., 2 

Socket [1-2] Name Name of the individual socket(s), e.g., CHAdeMO 

Socket [1-2] Status Status of the individual socket(s), e.g., Available 

Socket [1-2] Type Type of the socket(s), e.g., TYPE_2_MENNEKES 

Socket [1-2] 

Charging Mode 
Electrical charging mode of the socket, e.g., MODE 3  

Socket [1-2] Max 

Power (kWh) 
Max power supplied by a socket in kWh, e.g., 50 

Socket [1-2] kWh 

Price 
Price per kWh, e.g., 0.24 euro 

Recorded 

Timestamp 

The time row is recorded in the CSV file in YYYY-MM DD 

HH:mm:ss.SSS format, e.g., 2021-10-16 10:36:04.525000 
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The status field value set of the Enefit Volt dataset can be seen in Table 4. There are seven 

possible values of status that can exist for a charging spot. 

 

Table 4. Enefit Volt Charging spots status values and their description 

 

Status Value Description 

Available The charging spot is available, free to use. 

Occupied 
The charging spot is busy, occupied by 

someone else. 

Charging 
The charging spot is busy. There’s currently a 

charging session. 

Paused Service is paused at the charging spot. 

Faulted 
The charging spot is faulted and needs to be 

fixed before being used. 

Unavailable 
The charging spot is unavailable due to 

technical problems. 

Preparing The charging spot is preparing to be available. 

Unknown 
The status is unknown, no connection with the 

server. 

 

 

Today, the Paris Belib dataset has 700,000 records and the Estonia Enefit Volt dataset 

has more than 387,000 records. 

3.3 Feature Engineering 

A feature engineering process and preprocessing of the datasets are necessary to utilize 

these generated datasets. Feature engineering refers to the process or pipeline steps that 

transform raw data into features used in machine learning algorithms. Predictive ML/DL 

models consist of outcome variables and predictor variables, and during the feature 

engineering most useful predictor variables are created and selected for the model [48]. 

Since there are two different datasets with several columns and data types, two separate 

pre-processors are created for both of them. For feature engineering tasks, some of the 
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common python libraries are employed. Pandas, being one of those, is an open-source 

and free library written for python and used for data manipulation and data analysis tasks. 

It has many capabilities, including reading and writing data from and to CSV files into 

memory, merging or slicing large datasets, and creating DataFrame objects with 

integrated indexing [49]. Besides, the Pandas library makes it easy to manipulate and 

preprocess of time-related and categorical data. Another python library employed for 

various tasks is scikit-learn. It’s similarly an open-source and free library of mainly 

machine learning. It allows easily and quickly building ML/DL models, running and 

evaluating them. But it also has many other features regarding data processing and feature 

engineering. It also works compatible with scientific libraries such as NumPy and SciPy 

[50]. 

First, let’s examine the preprocessing of the Paris dataset. The complete code of the 

python script can be seen in Appendix 4. Firstly, raw data is read from the CSV file and 

assigned to a built-in dataframe object in the memory. Later, the “Last Updated” column, 

which has a Datetime datatype, is parsed, and the following columns are generated: Year, 

Month, Day, Hour, Minute, and Second. Then, the redundant columns are dropped from 

the dataframe. Those dropped columns are: “ID,” “Last Updated,” “Record Timestamp,” 

“Postal Code,” and “Address”. Next, normalization is applied to Latitude and Longitude 

columns. Since those have semi-categorical arbitrary values, they cannot be used directly. 

Instead, they must be converted to values between 1 and 0 as it is the scale of the 

numerical data in other columns. Otherwise, an ML/DL model will encounter issues 

regarding unscaled values. Therefore, Scikit Learn’s preprocessing module is used, 

particularly MinMaxScaler function, with range parameter  given tuple (0, 1). Pandas 

get_dummies method is used for temporal columns, which were generated by parsing the 

“Last Updated” column. This method converts categorical variables into indicator 

variables [51]. A new field is created and filled with 1s and 0s for each minute in the data 

column. For instance, if the Last Updated value equals “2021-10-15 13:21:53”, the 

minute_21 column would be equal to 1 while all other minute columns would equal 0. 

Lastly, the processed dataframe is saved to a new CSV file. 

Pre-processing of the Estonia dataset also has similar steps. First, raw data is read from 

the CSV file, and temporal fields are parsed with the same techniques. Then following 

redundant columns are dropped from the dataframe: “ID,” “Name,” “Address,” “In 

Maintenance,” “Socket Count”. And same as before, Latitude and Longitude fields are 
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scaled. get_dummies method in Pandas library is used for One-Hot Encoding on the 

following columns: “Charging Speed,” “Access Level,” “Socket 1 Type,” “Socket 1 

Charging Mode,” “Socket 2 Type,” “Socket 2 Charging Mode”. Later, differently from 

the Paris preprocessor, sklearn.preprocessing module is used employed for a few 

additional tasks. Numerical columns had values in different scales in the dataset. For 

instance, some “Socket 1-2 Max Power (kWh)” fields have value of 50. However, some 

other “Socket 1-2 kWh Price” fields have a value of 0.24. With scales irrelevant to each 

other, ML models will result from output values. The complete code of python script can 

be found in Appendix 5. 

To solve this problem, MinMaxScaler method of sklearn.preprocessing module is used 

for scaling the values of the following columns: “Socket 1 Max Power (kWh),” “Socket 

2 Max Power (kWh),” “Socket 1 kWh Price,” “Socket 2 kWh Price”. feature_range 

parameter of the MinMaxScaler is assigned with a tuple (0,1) so that these fields will get 

values between 0 and 1. This method, dividing values by the maximum and minimum 

values of that field, performs scaling in the background. As a result, all the values get a 

number between 0 and 1. 

3.4 Baselines 

Baseline ML algorithms are K-NN, Logistic Regression, Random Forest and Support-

Vector Machine. The main reason for this is that those are the most prevalent algorithms 

in state-of-the-art papers, which can for multi-class classification problems. Performances 

of those baseline algorithms are compared by Precision, Recall, and F1-Score validation 

metrics. Preprocessed datasets from the previous step are used for training and testing the 

models. Training and test data are split before the model’s actual fitting. 70% of the data 

is used as training data, and 30% is used as testing data. Built-in train_test_split method 

in Scikit-Learn library is employed for this task. After the split, baseline models were fit, 

and the prediction was performed. Apart from the difference of datasets and reading them 

from CSV into the memory, identical code is used for Paris and Estonia data. Complete 

python code for running the baseline models can be seen in Appendix 6. 

K-NN model is used through Scikit-Learn library’s KNeighborsClassifier. It can take 

optional parameters, and the n_neighbors parameter specifies the number of neighbors to 
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use during fitting [52]. n_neighbors parameter is assigned to 1 to make it the same as 

state-of-the-art works. 

The logistic Regression model is used through Scikit-Learn library’s LogisticRegression 

class. This class applies regularization by default. The optimizer parameter is assigned 

“lbfsg”. In addition, the “max_iter” parameter specifies the number of iterations taken for 

the solvers to converge, and is set to 1,000 [53]. 

The Random Forest model is used through Scikit-Learn’s RandomForestClassifier. 

n_estimators parameter specifies the number of trees in the forest and is assigned to 500, 

to match state-of-the-artwork. 

Support Vector Machine model is used through Scikit-Learn’s LinearSVC (Linear 

Support Vector Classification). It is called with default parameters. 

Once again, the Scikit-Learn library is used for evaluation metrics by importing its 

metrics module. Built-in precision_score, recall_score, f1_score methods are called with 

the average parameter assigned “weighted”. The weighted average calculates metrics for 

each label and finds their average weighted by support (the number of true instances for 

each label). This alters ‘macro’ to account for label imbalance; it can result in an F1 Score 

that is not between precision and recall [54].  

The system that the baseline methods ran on, including main hardware and software 

components, can be seen in Table 5. 

Table 5. Components used to run baseline models. 

 

Component Name Model/Feature 

Memory 16 GB 

CPU Intel Core i7-1065G7 1.50 GHz 

Environment Jupyter Notebook 

Programming Language Python 3.7 
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3.5 Prediction Engine  

Additional approaches than baseline ML algorithms are adopted to implement the actual 

prediction engine. Because the prediction engine requires prediction outcomes to be 

provided as probability rates, as opposed to plain ML methods, which provide one final 

output among the possible classes. Additionally, more advanced and up to date techniques 

must have been used to make the prediction engine real-time and increase its accuracy as 

much as possible. 

Regarding all those considerations, the Artificial Neural Networks model is built and used 

for prediction engines. The complete python script used for creating ANN can be seen in 

Appendix 7. For building the ANN model, some additional libraries and techniques are 

used. Keras is a popular open-source deep learning library for python, used for defining 

and training deep learning models. Keras allows users to create DL models easily and 

quickly, enabling parallelization while running the models. It supports scaling, also can 

use CPUs and GPUs. Moreover, Keras runs on top of the TensorFlow. TensorFlow is an 

end-to-end open-source machine learning platform [55]. 

First encoding is applied on output label, status. Using Scikit Learn’s built-in 

LabelEncoder function, the Status column is transformed into integer values starting from 

0 and raising by one for each value. Afterward, a sequential model is created using Keras 

and three layers are added. The first and second layers have a RELU activation function, 

and the final output layer has a Softmax activation function configured. Then the model 

is compiled with Categorical Cross entropy loss function and SGD optimizer, all built-in 

Keras classes or methods. The activation function decides whether to activate a neuron 

by calculating the weighted sum and adding more bias. The purpose of the activation 

function is to delinearize the output of a neuron. Those Activation functions, mainly 

Softmax are chosen because they assign decimal probabilities to each output class in a 

multi-class classification problem. Those decimal probabilities add up to 1.0. This 

additional constraint helps the training converge more quickly [56]. Additionally, 

Softmax presumes that each sample of data is a member of exactly one class. This 

characteristic makes it a perfect candidate because the outcome aimed to be reached in 

this thesis matches this idea entirely. Ultimate desired output is sought to be probability 

rates of possible availability classes, and Softmax enables this. 
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Since Keras does not have an F1-Score metric directly built-in, it was created manually. 

Then, the Keras backend module is imported to calculate the number of true positives and 

its rate to all positive predictions to extrapolate Precision. Finally, similar calculations 

were applied for calculating the recall, and they are used to calculate F1 Score ultimately. 

In the last part, Matplotlib is used to visualize the results. Matplotlib is another open-

source python library, that provides extensive object-oriented API for graphical plotting 

and data visualization [57]. In addition, Matplotlib’s pyplot module is employed for 

drawing bar plots to display availability prediction rates through charts. 

3.6 Distributed Server-Side Software 

The prediction engine is integrated into a distributed software system to transmit the 

prediction results to the end users of the system, EV drivers. It is integrated through a 

connector to become a part of the Kafka Producer application. Therefore, Kafka’s 

prediction engine can be part of a distributed system, making it more reliable and resilient. 

Kafka is an end-to-end event streaming platform that has several capabilities. Kafka 

writes and reads streams of events, including continuous import/export of your data from 

other systems, stores streams of events durably and reliably for as long as it’s needed, and 

processes streams of events as they occur or retrospectively [58].  

Figure 12 demonstrates the architectural overview of the system. Client applications, 

which can either be a mobile application, web application, or a built-in application in 

EV’s multimedia system, make a request to receive the final prediction result from the 

Kafka producer. The prediction engine is connected to Kafka and sends the prediction 

results whenever requested. Additionally, there’s a separate dashboard that can display 

prediction stats. Kafka stands at the crossroads of the different components of the system. 

It provides all the event streaming functionality in a distributed, highly scalable, fault-

tolerant, and secure manner. It can be deployed on bare-metal hardware, virtual machines, 

containers, on-premise hardware and the cloud [58]. 
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3.7 Conclusion 

In this section, the entire implementation part of this thesis was discussed. First, a 

thorough and meticulous effort is put into implementation starting with creating datasets 

that constitute the main input for ML/DL models. For example, two countries’ EV 

charging station data is frequently scraped/crawled from various sources and stored in 

CSV files. Later, feature engineering is applied to those raw stored data to make it 

compatible and ready to use in ML/DL models. Next, baseline ML models are trained 

using Python frameworks and preprocessed datasets to make predictions. Then, the 

creation of the ANN model as an ultimate real-time prediction engine is shown. Finally, 

the software provides a distributed reliable end-to-end solution for client applications, 

software application implementation, and prediction engine integration is discussed.

 

 

Figure 12. Architectural overview of the distributed software system. 
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4 Results and Evaluation 

In this chapter, the results obtained in the previous implementation chapter is discussed. 

Multi-class classification ML/DL models are evaluated against Precision, Recall, and F1 

Score metrics, to measure and compare their performance. 

Results by ML/DL approach for Paris data are given in Table 6. It can be seen that among 

the ML baselines, RF gave the highest results in all metrics, with over a 95% rate. KNN 

follows RF with a 94% rate in all metrics. In terms of F1 Score, SVM gave the lowest 

rate with 59.54%, and Logistic Regression followed that with 60.44%.  

On the other hand, the ANN model has lower scores than KNN and RF models, with 

89.46% precision, 87.94% recall, and 88.69% F1 score. However, it should be kept in 

mind that ANN predicts the rates for each possible outcome, and it can predict results in 

real-time, whereas kNN has a lazy-learning approach. Therefore it can’t be used for real-

time predictions, and RF cannot provide output classes rates.  

Table 6. Paris Dataset Performance Results (%) by Model. 

APPROACH PRECISION RECALL F1-SCORE 

K-NEAREST NEIGHBOURS 94.10 94.13 94.11 

LOGISTIC REGRESSION 66.65 72.16 60.44 

RANDOM FOREST 95.54 95.56 95.41 

SUPPORT VECTOR MACHINE 66.41 71.90 59.54 

ANN 89.46 87.94 88.69 

 

 

Figure 13 shows the visualization of the first five prediction results from the ANN 

prediction engine for the Paris dataset. The values correspond to percentages of status 
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outputs. For example, the first predicted result can be interpreted as: “Charging station is 

93.89% Disponible (Available)”. 
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Results by ML/DL approach for Estonia data are given in Table 7. It can be seen that  ML 

baseline models yielded very close results, and they all have high scores. However, the 

ANN model slightly outperformed all of its competitors in precision and F1 score.  

Table 7. Estonia Dataset Performance Results (%) by Model 

 

APPROACH PRECISION RECALL F1-SCORE 

K-NEAREST NEIGHBOURS 94.11 94.19 94.21 

LOGISTIC REGRESSION 94.35 96.63 94.81 

RANDOM FOREST 94.78 96.02 95.17 

SUPPORT VECTOR MACHINE 95.15 96.32 95.75 

ARTIFICIAL NEURAL NETWORK 96.04 95.74 95.89 

 

 

Figure 14 shows the visualization of the first five prediction results from the ANN 

prediction engine for the Estonia dataset. The values correspond to percentages of status 

outputs. For example, the first predicted result can be interpreted as: “Charging station is 

99.69% Available”. 

 

 

Figure 13. ANN model prediction results for the Paris dataset. 
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Figure 14. ANN model prediction results for the Estonia dataset. 

 

As can be seen from the results, the results obtained in this thesis work outperform 

existing literature reviews for all the evaluation metrics: precision, recall and F1 score. 

Models have different evaluation scores for Paris and Estonia datasets because those have 

various features. However, the Estonia dataset has higher scores in general because it can 

be considered a richer dataset with many additional features i.e., price per kWh, Socket 

Types, etc. 

Although the ANN model has slightly lower scores than RF and KNN in evaluation 

metrics for Paris dataset, it can perform predictions in real-time, on the contrary of KNN’s 

lazy-learning approach, and it allows results to be provided as a percentage for each 

output class, which is a highly preferred feature. Moreover, the ANN model is likely to 

perform better with future improvements, when more records or more complex features 

are in the dataset.  
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5 Summary 

This thesis paper started with discussing literature review and state-of-the-artwork 

regarding availability prediction or related topics of EV and its surrounding infrastructure 

altogether with their main contributions, weaknesses, and models, methods, dataset they 

used. In addition to that, prevalent and well-proven machine learning and deep learning 

algorithms and techniques, tools used in those state-of-the-art papers are examined 

comprehensively in the same chapter. With the extensive literature scan, a base and 

justification are created to implement real-time availability prediction of electric vehicle 

charging stations, which consists of a scalable prediction engine integrated into a 

distributed server-side software application. In the implementation part, data scraping 

from different sources, creation of datasets, feature engineering applied and the data 

model is thoroughly discussed. Later, applying baseline machine learning models to 

preprocessed data is explained, which were discussed in detail in related works chapter. 

Next, the building and training of the Artificial Neural Networks model, which 

corresponds to the actual prediction engine, is reported. The last part of the 

implementation chapter examines integration with distributed server-side software. 

Finally, in the previous chapter, the results are demonstrated visually, and commonly used 

metrics evaluates performances of different models. The desired outcome is achieved by 

a prediction engine built by an artificial neural network, as it can display probabilities of 

electric vehicle charging station availabilities, with high evaluation scores, outperforming 

existing works in the literature. 

For future work, many possibilities exist regarding improving the work that has been 

performed in this thesis. For example, the data scraping and feature engineering parts 

were primarily performed manually. Further improvements are possible for automatizing 

these processes. For instance, features that constitute importance and are not as critical 

could be detected automatically, and differences could be logged when a specific feature 

is excluded. That would, in the end, improve the model’s quality, accuracy and reliability 

even more. Moreover, the prediction engine is only implemented for Paris and Estonia, 

but it can be easily applied to different cities or countries in the future. 
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Appendix 2 – Data Scraper Code for Paris Belib Dataset 

import requests 

import json 

import csv 

 

base_api_url = "https://opendata.paris.fr/api/records/1.0/search/" 

url_query = "?dataset=belib-points-de-recharge-pour-vehicules-electriques-
disponibilite-temps-reel&q=&facet=statut_pdc&rows=2000" 

url = base_api_url + url_query 

 

translation = { 

    233: "e", 

    235: "e", 

    231: "c", 

    201: "E", 

    232: "e", 

    239: "i", 

    226: "a" 

} 

 

if __name__ == "__main__": 

    response = requests.get(url) 

    json_data = json.loads(response.text) 

 

    if "records" in json_data: 

        records = json_data["records"] 

 

        with open('output.csv', 'a', newline='') as f: 

            writer = csv.writer(f) 

            for record in records: 

                fields = record["fields"] 

                if "ad_station" not in fields: 

                    continue 

                writer.writerow( 

                    [fields["id_pdc"],  

                    fields["statut_pdc"].translate(translation), 

                    fields["ad_station"].translate(translation), 

                    fields["postal_code"],  

                    record["geometry"]["coordinates"][1], 

                    record["geometry"]["coordinates"][0], 

                    fields["last_updated"], 

                    record["record_timestamp"] 

                ]) 

    else: 

        print(response.text) 
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Appendix 3 – Data Scraper Code for Estonia Enefit Volt 

Dataset 

import time 

import requests 

import csv 

from datetime import datetime 

from requests.structures import CaseInsensitiveDict 

 

bounds_url = "https://account.enefitvolt.com/stationFacade/findSitesInBounds" 

site_id_url = 
"https://account.enefitvolt.com/stationFacade/findStationsBySiteId" 

station_id_url = 
"https://account.enefitvolt.com/stationFacade/findStationById" 

 

headers = CaseInsensitiveDict() 

headers["authority"] = "account.enefitvolt.com" 

headers["sec-ch-ua"] = '"Chromium";v="94", "Google Chrome";v="94", ";Not A 
Brand";v="99"' 

headers["x-csrf-token"] = "f0394462-8ce4-4455-bb13-8da5d9e7f189" 

headers["sec-ch-ua-mobile"] = "?0" 

headers["user-agent"] = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) 
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36" 

headers["content-type"] = "application/json" 

headers["accept"] = "application/json, text/javascript, */*; q=0.01" 

headers["x-requested-with"] = "XMLHttpRequest" 

headers["sec-ch-ua-platform"] = '"Windows"' 

headers["origin"] = "https://account.enefitvolt.com" 

headers["sec-fetch-site"] = "same-origin" 

headers["sec-fetch-mode"] = "cors" 

headers["sec-fetch-dest"] = "empty" 

headers["referer"] = 
"https://account.enefitvolt.com/findCharger?59.7690375,24.5722210,6z" 

headers["accept-language"] = "tr,en-US;q=0.9,en;q=0.8,et;q=0.7" 

headers["cookie"] = 
"_vwo_uuid_v2=D143809F5A14894938F82877C063F27A7|9b131316e37077900c1ba99e1cf24
6fe; _ga=GA1.2.1979870556.1632123935; 
_vwo_uuid=D143809F5A14894938F82877C063F27A7; 
_vwo_ds=3%3Aa_0%2Ct_0%3A0%241632123934%3A16.35813981%3A%3A%3A2_0%2C1_0%3A1; 
_gcl_au=1.1.1498007280.1632123977; _vis_opt_exp_3_combi=1; 
cusid=1638032678770; cuvon=1638032678774; _vis_opt_s=8%7C; 
_vis_opt_test_cookie=1; _vwo_sn=5908742%3A1; _gid=GA1.2.264020397.1638032680; 
_dc_gtm_UA-1116889-58=1; JSESSIONID=3A183C0428FD8664D5B2215C3AA8A14A" 

bounds_data = 
'{"filterByIsManaged":true,"filterByBounds":{"northEastLat":60.74995507745642
,"northEastLng":35.33882252391387,"southWestLat":55.78451290564244,"southWest
Lng":14.267045180163871}}' 

 

resp = requests.post(bounds_url, headers=headers, data=bounds_data).json() 

records = resp['data'][1] 
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with open('ee.csv', 'a', newline='', encoding='utf-8') as f: 

    writer = csv.writer(f) 

    for number, record in enumerate(records): 

        site_id_data = '{"filterByIsManaged":true,"filterBySiteId":"' + 
str(record['id']) + '"}' 

        site_id_resp = requests.post(site_id_url, headers=headers, 
data=site_id_data).json() 

        stations = site_id_resp['data'][1] 

         

        if number % 8 == 1: 

            time.sleep(2) 

 

        for station in stations: 

            station_id = station['id'] 

 

            url = station_id_url + '?stationId=' + str(station_id) 

            station_id_resp = requests.get(url, headers=headers).json() 

            data = station_id_resp['data'] 

 

            id = data['id'] 

            name = data['siteDisplayName'].strip() 

            address = data['addressAddress1'] + ', ' + data['addressCity'] 

            charging_speed = data['chargingSpeedId'] 

            in_maintenance = data['inMaintenance'] 

            lat = data['latitude'] 

            lon = data['longitude'] 

            access_level = data['siteStationAccessLevel'] 

            station_status = data['stationStatusId'] 

            socket_count = len(data['stationSockets']) 

             

            socket_1 = { "name": "", "status": "", "type": "", 
"charging_mode": "", "max_power": "", "kwh_price": "" } 

            socket_2 = socket_1.copy() 

 

            sockets = data['stationSockets'] 

            if sockets[0]: 

                socket_1['name'] = sockets[0]['name'] 

                socket_1['status'] = sockets[0]['socketStatusId'] 

                socket_1['type'] = 
sockets[0]['stationModelSocketSocketTypeId'] 

                socket_1['charging_mode'] = 
sockets[0]['stationModelSocketChargingMode'] 

                socket_1['max_power'] = 
sockets[0]['stationModelSocketMaximumPower'] 

                socket_1['kwh_price'] = 
sockets[0]['socketPrices'][0]['kwhPrice'] 

            if sockets[1]: 

                socket_2['name'] = sockets[1]['name'] 

                socket_2['status'] = sockets[1]['socketStatusId'] 

                socket_2['type'] = 
sockets[1]['stationModelSocketSocketTypeId'] 
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                socket_2['charging_mode'] = 
sockets[1]['stationModelSocketChargingMode'] 

                socket_2['max_power'] = 
sockets[1]['stationModelSocketMaximumPower'] 

                socket_2['kwh_price'] = 
sockets[1]['socketPrices'][0]['kwhPrice'] 

 

            writer.writerow( 

                [id, name, station_status, address, charging_speed, 
in_maintenance, lat, lon, access_level, socket_count,  

                socket_1['name'], socket_1['status'], socket_1['type'], 
socket_1['charging_mode'], socket_1['max_power'], socket_1['kwh_price'], 

                socket_2['name'], socket_2['status'], socket_2['type'], 
socket_2['charging_mode'], socket_2['max_power'], socket_2['kwh_price'], 

                datetime.now()] 

            ) 
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Appendix 4 – Data Pre-processing Code for Paris Dataset 

import pandas as pd 

 

# %% 

# Read the raw data 

data = pd.read_csv("./paris.csv") 

data.head(10) 

 

# Datetime conversions 

data["Date"] = pd.to_datetime(data["Last Updated"]) 

data["Date"] = data["Date"].dt.strftime("%Y-%m-%dT%H:%M:%S") 

data['Year'] = pd.DatetimeIndex(data['Date']).year 

data['Month'] = pd.DatetimeIndex(data['Date']).month 

data['Day'] = pd.DatetimeIndex(data['Date']).day 

data['Hour'] = pd.DatetimeIndex(data['Date']).hour 

data['Minute'] = pd.DatetimeIndex(data['Date']).minute 

data['Second'] = pd.DatetimeIndex(data['Date']).second 

 

# Drop redundant columns 

df = data.drop(labels=["Date", "ID", "Last Updated", "Record Timestamp", 
"Postal Code", "Address"], axis=1) 

df.info() 

 

# Geolocation normalization 

scaler = MinMaxScaler(feature_range=(0, 1)) 

cols = ["Latitude", "Longitude"] 

df[cols] = scaler.fit_transform(df[cols]) 

 

df = pd.get_dummies(df, columns=["Year", "Month", "Day", "Hour", "Minute", 
"Second"]) 

df.head() 

 

df.to_csv('./paris_processed.csv', index=False) 
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Appendix 5 – Data Pre-processing Code for Estonia Dataset 

import pandas as pd 

from sklearn import preprocessing 

from sklearn.preprocessing import MinMaxScaler 

 

data = pd.read_csv("./ee.csv") 

 

# Datetime conversions 

data["Date"] = pd.to_datetime(data["Recorded Timestamp"]) 

data["Date"] = data["Date"].dt.strftime("%Y-%m-%d %H:%M:%S") 

data['Year'] = pd.DatetimeIndex(data['Date']).year 

data['Month'] = pd.DatetimeIndex(data['Date']).month 

data['Day'] = pd.DatetimeIndex(data['Date']).day 

data['Hour'] = pd.DatetimeIndex(data['Date']).hour 

data['Minute'] = pd.DatetimeIndex(data['Date']).minute 

data['Second'] = pd.DatetimeIndex(data['Date']).second 

 

# Drop redundant columns 

df = data.drop(labels=["ID", "Name",  "Address", "In Maintenance", 

                       "Socket Count", "Socket 1 Status", "Socket 1 Name", 
"Socket 2 Status", "Socket 2 Name", 

                       "Date", "Recorded Timestamp"], axis=1) 

 

# Geolocation normalization 

df["Latitude"] = df["Latitude"].apply(lambda x: x/100) 

df["Longitute"] = df["Longitute"].apply(lambda x: x/100) 

df.head() 

 

le = preprocessing.LabelEncoder() 

df["Charging Speed"] = le.fit_transform(df["Charging Speed"]) 

df["Access Level"] = le.fit_transform(df["Access Level"]) 

df["Socket 1 Type"] = le.fit_transform(df["Socket 1 Type"]) 

df["Socket 1 Charging Mode"] = le.fit_transform(df["Socket 1 Charging Mode"]) 

df["Socket 2 Type"] = le.fit_transform(df["Socket 2 Type"]) 

df["Socket 2 Charging Mode"] = le.fit_transform(df["Socket 2 Charging Mode"]) 

 

scaler = MinMaxScaler(feature_range=(0, 1)) 

cols = [ 

    "Socket 1 Max Power (kWh)", "Socket 2 Max Power (kWh)",  

    "Socket 1 kWh Price", "Socket 2 kWh Price"] 

df[cols] = scaler.fit_transform(df[cols]) 

 

df = pd.get_dummies(df, columns=["Year", "Month", "Day", "Hour", "Minute", 
"Second"]) 

df.to_csv('./ee_processed.csv', index=False) 
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Appendix 6 – Baseline Models Code 

from sklearn import preprocessing, metrics, svm 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.svm import LinearSVC 

from sklearn.model_selection import train_test_split 

import pandas as pd 

import numpy as np 

 

# Read the processed data  

# df = pd.read_csv('./paris_processed.csv')  

df = pd.read_csv('./ee_processed.csv') 

 

# Label encoding and creating of output 

le = preprocessing.LabelEncoder() 

Y = le.fit_transform(df["Status"]) 

 

# Input columns 

X = df.drop(["Status"], axis=1).values 

 

# Train Test Split 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3) # 
70% training and 30% test 

 

# K-NEAREST NEIGHBOUR  

knn = KNeighborsClassifier(n_neighbors=1, n_jobs=-1) 

knn.fit(X_train, y_train) 

y_pred = knn.predict(X_test) 

print("Precision:", metrics.precision_score(y_test, y_pred, 
average='weighted')) 

print("Recall:", metrics.recall_score(y_test, y_pred, average='weighted')) 

print("F1 Score:", metrics.f1_score(y_test, y_pred, average='weighted')) 

 

# LOGISTIC REGRESSION    

logisticRegr = LogisticRegression(solver='lbfgs', max_iter=15000) 

logisticRegr.fit(X_train, y_train) 

y_pred = logisticRegr.predict(X_test) 

print("Precision:", metrics.precision_score(y_test, y_pred, 
average='weighted', labels=np.unique(y_pred))) 

print("Recall:", metrics.recall_score(y_test, y_pred, average='weighted', 
labels=np.unique(y_pred))) 

print("F1 Score:", metrics.f1_score(y_test, y_pred, average='weighted', 
labels=np.unique(y_pred))) 

 

#  RANDOM FOREST 

clf = RandomForestClassifier(n_estimators=500, verbose=10) 

clf.fit(X_train,y_train) 

y_pred=clf.predict(X_test) 
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print("Precision:", metrics.precision_score(y_test, y_pred, 
average='weighted', labels=np.unique(y_pred))) 

print("Recall:", metrics.recall_score(y_test, y_pred, average='weighted', 
labels=np.unique(y_pred))) 

print("F1 Score:", metrics.f1_score(y_test, y_pred, average='weighted', 
labels=np.unique(y_pred))) 

 

# SUPPORT-VECTOR MACHINE  

lsvc = LinearSVC(verbose=1, max_iter=15000) 

lsvc.fit(X_train, y_train) 

y_pred=lsvc.predict(X_test) 

print("Precision:", metrics.precision_score(y_test, y_pred, 
average='weighted', labels=np.unique(y_pred))) 

print("Recall:", metrics.recall_score(y_test, y_pred, average='weighted', 
labels=np.unique(y_pred))) 

print("F1 Score:", metrics.f1_score(y_test, y_pred, average='weighted', 
labels=np.unique(y_pred))) 
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Appendix 7 – ANN Model Code 

import pandas as pd 

import numpy as np 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.utils import np_utils 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from keras import backend as K 

 

import matplotlib.pyplot as plt 

import tensorflow as tf 

 

# Read the data 

df = pd.read_csv('./ee_processed.csv') 

df.head() 

 

# Label encoding the output value 

encoder = LabelEncoder() 

encoded_Y = encoder.fit_transform(df["Status"]) 

dummy_Y = np_utils.to_categorical(encoded_Y) 

 

# Splitting training and test data 

X = df.drop(["Status"], axis=1).values 

X_train, X_test, y_train, y_test = train_test_split(X, dummy_Y, 
stratify=dummy_Y) 

 

# Recall metric function 

def recall_score(y_actual, y_predicted): 

    pp = B.sum(B.round(B.clip(y_actual, 0, 1))) 

    tp = B.sum(B.round(B.clip(y_actual * y_predicted, 0, 1))) 

    return tp / (pp + B.epsilon()) 

 

# Precision metric function 

def precision_score(y_actual, y_predicted): 

    prep = B.sum(B.round(B.clip(y_predicted, 0, 1))) 

    tp = B.sum(B.round(B.clip(y_actual * y_predicted, 0, 1))) 

    return tp / (prep + B.epsilon()) 

 

# F1 score metric function 

def f1_score(y_actual, y_predicted): 

    recall = recall_score(y_actual, y_predicted) 

    precision = precision_score(y_actual, y_predicted) 

    return ((precision * recall) / (precision + recall + B.epsilon())) * 2 

 

 

# Build and compile the model 

cce = tf.keras.losses.CategoricalCrossentropy(from_logits=False) 

sgd = tf.keras.optimizers.SGD(learning_rate=0.3) 
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model = Sequential() 

model.add(Dense(256, input_dim=26, activation='relu')) 

model.add(Dense(8, activation='softmax')) 

model.compile(loss="categorical_crossentropy",  

optimizer=sgd,  

metrics=[f1_m, 

tf.keras.metrics.Precision(), 

tf.keras.metrics.Recall()]) 

model.summary() 

 

# Fitting and evaluating the model 

model.fit(X_train,y_train,verbose=1,batch_size=10, epochs=20) 

model.evaluate(X_test,y_test,verbose=1,batch_size=4000) 

y_pred=model.predict(X_test) 

 

# Status dictionary 

status_dict={} 

status_dict[0]='AVAILABLE' 

status_dict[1]='UNKNOWN' 

status_dict[2]='OCCUPIED' 

status_dict[3]='CHARGING' 

status_dict[4]='PAUSED' 

status_dict[5]='FAULTED' 

status_dict[6]='UNAVAILABLE' 

status_dict[7]='PREPARING' 

 

# Visualization of the results 

def 
percentageOfPredictedClasses(list_,describe_by_text=False,figure=True,limit=5
): 

    list_=list_[:limit] 

    for rw in list_: 

        tempo_dict={} 

        for k in range(len(rw)): 

            tempo_dict[rw[k]]=k 

     

        rw=np.sort(rw)[::-1] 

        x_temp,y_tempo=[],[] 

        for k in range(len(rw)): 

            x_temp.append(status_dict[tempo_dict[rw[k]]]) 

            y_tempo.append(rw[k]) 

            if describe_by_text: 

                print(status_dict[tempo_dict[rw[k]]],':',rw[k],'%') 

 

        if figure: 

            fig, ax = plt.subplots(figsize=(7,4)) 

 

            # Horizontal Bar Plot 

            ax.barh(x_temp,y_tempo, color='crimson') 

 

            # Remove axes splines 
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            for s in ['top','bottom','left','right']: 

                ax.spines[s].set_visible(False) 

 

            # Remove x,y Ticks 

            ax.xaxis.set_ticks_position('none') 

            ax.yaxis.set_ticks_position('none') 

 

            # Add padding between axes and labels 

            ax.xaxis.set_tick_params(pad=5) 

            ax.yaxis.set_tick_params(pad=10) 

 

            # # Add x,y gridlines 

            ax.grid(b=True, color='grey', linestyle='-.', linewidth=0.5, 
alpha=0.2) 

 

            # Show top values  

            ax.invert_yaxis() 

 

            # Add annotation to bars 

            for i in ax.patches: 

                ax.text(i.get_width(), i.get_y()+0.5, 
str(round((i.get_width()), 4)), 

                        fontsize=10, fontweight='bold', color='grey') 

 

            # Add Text watermark 

            fig.text(0.9, 0.15, '%', fontsize=12, color='grey', ha='right', 
va='bottom', alpha=0.5) 

 

            # # Show Plot 

            plt.show() 

 

        print('#...........................................#') 

 

percentageOfPredictedClasses(y_pred,describe_by_text=False,figure=True,limit=
20) 
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