
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Fatih Intekin 194231IASM

Real-Time Availability Prediction of Electric

Vehicle Charging Spots

Master’s Thesis

Supervisor: Sadok Ben Yahia

 Professor

Co-Supervisor: Wissem Inoubli

 Post-Doc Researcher

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Fatih Intekin 194231IASM

Elektrisõidukite Laadimiskohtade Reaalajas

Saadavuse Ennustus

Magistritöö

Juhendaja: Sadok Ben Yahia

 Professor

Kaasjuhendaja: Wissem Inoubli

 Post-Doc Researcher

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Fatih Intekin

03.01.2022

4

Abstract

This paper introduces a novel concept to predict the availability of electric vehicle

charging stations with high accuracy by both utilizing pre-existing machine learning and

deep learning models, techniques, tools and by developing new ones and to present the

outcome of prediction to the client systems, to vehicles’ multimedia systems, in a reliable

manner. The sample dataset used to train the machine learning and deep learning models

contains real-life electric vehicle charging point data from Tallinn, Estonia, and Paris,

France. Nevertheless, the idea of the system is to make it as generic as possible. Therefore,

it allows modifications in the future and can be applied to any city or place easily. Having

the destination input taken from the driver or the travel route is provided, the prediction

engine created predicts the availability of the charging spots on the route. To achieve this

outcome, machine learning and deep learning models are developed and trained with real-

life datasets in the scope of this research. Besides those, from the software perspective,

the system utilizes distributed systems to push prediction results to client applications or

services, calculated by consuming datasets, in a reliable manner and with high

availability. Although a limited number of existing implementations focus on availability

prediction of the electric vehicle charging spots, their prediction accuracy rate is not high

that users adopt them practically, or they do not fit in an end-to-end system that can

communicate with client applications easily or can be embedded into vehicles’

multimedia dashboards. However, according to recent research, electric vehicles become

more dominant day by day and bring the booming charging station numbers. Therefore,

this system provides value to its users regarding multiple aspects by helping them find

the most available charging station on their destination route, especially these days when

electric vehicles are trendy than ever, and their number has been increasing rapidly.

This thesis is written in English and is 42 pages long, including 5 chapters, 14 figures,

and 7 tables.

5

List of abbreviations and terms

ANN Artificial Neural Network

API Application Programming Interface

CNN Convolutional Neural Networks

CPU Central Processing Unit

CSV Comma-separated Values

DL Deep Learning

DNN Deep Neural Network

EV Electric Vehicle

GB Gigabyte

GHZ Gigahertz

GRU Gated Recurrent Unit

kNN K-Nearest Neighbour

KWH Kilowatt-hour

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multi-layer Perceptron

RF Random Forest

RMSE Root-Mean-Square Error

RNN Recurrent Neural Networks

SGD Stochastic Gradient Descent

SMAPE Symmetric Mean Absolute Percentage Error

SVM Support Vector Machine

URL Uniform Resource Locator

XGB XGBoost

6

Table of contents

1 Introduction ... 10

1.1 Problem Definition ... 11

1.2 Architectural Overview .. 12

1.3 Main Contributions ... 13

1.4 Structure of the Manuscript .. 14

2 Literature Review .. 15

2.1 State of the Art .. 15

2.2 Algorithms and Techniques Overview ... 19

2.2.1 Supervised Machine Learning Algorithms .. 19

2.2.2 Classification Algorithms .. 20

2.2.3 K-Nearest Neighbours (kNN) .. 21

2.2.4 Logistic Regression ... 22

2.2.5 Random Forest ... 23

2.2.6 Support Vector Machine (SVM) ... 25

2.2.7 Deep Learning and Artificial Neural Networks .. 27

2.2.8 Evaluation Metrics ... 30

2.3 Conclusion .. 32

3 Implementation .. 33

3.1 Data Scraping ... 33

3.1.1 Belib – Paris Data Source .. 34

3.1.2 Enefit VOLT – Estonia Data Source ... 35

3.2 Dataset .. 36

3.3 Feature Engineering .. 39

3.4 Baselines ... 41

3.5 Prediction Engine ... 43

3.6 Distributed Server-Side Software ... 44

3.7 Conclusion .. 45

4 Results and Evaluation .. 46

5 Summary .. 51

7

References .. 52

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 56

Appendix 2 – Data Scraper Code for Paris Belib Dataset .. 57

Appendix 3 – Data Scraper Code for Estonia Enefit Volt Dataset 58

Appendix 4 – Data Pre-processing Code for Paris Dataset .. 61

Appendix 5 – Data Pre-processing Code for Estonia Dataset .. 62

Appendix 6 – Baseline Models Code ... 63

Appendix 7 – ANN Model Code .. 65

8

List of figures

Figure 1. Simplified Problem Model .. 12

Figure 2. Architectural Overview of the End-to-End System .. 13

Figure 3. Comparison of Binary Classification and Multiclass Classification [16]. 21

Figure 4. Logistic Regression Curve and Equation [23]. ... 23

Figure 5. RF is made of multiple individual decision trees. ... 24

Figure 6. Highest margin hyperplane and support vectors for an SVM with 2 classes

[30]. .. 25

Figure 7. Deep Neural Network (ANN) representation [31]. ... 27

Figure 8. An overview of CNN architecture and training process [33]. 28

Figure 9. RNN allows previous outputs to be used as inputs while having hidden states

[35]. .. 29

Figure 10. One hidden layer MLP [36] .. 30

Figure 11. Enefit Volt’s Find the nearest charger page. ... 35

Figure 12. Architectural overview of the distributed software system. 45

Figure 13. ANN model prediction results for the Paris dataset. 48

Figure 14. ANN model prediction results for the Estonia dataset. 50

9

List of tables

Table 1. Belib Paris Dataset Model .. 36

Table 2. Belib charging spots status values and their description [43]. 37

Table 3. Enefit VOLT Estonia Dataset Model ... 38

Table 4. Enefit Volt Charging spots status values and their description 39

Table 5. Components used to run baseline models. ... 42

Table 6. Paris Dataset Performance Results (%) by Model. .. 46

Table 7. Estonia Dataset Performance Results (%) by Model 48

10

1 Introduction

As the variety of discussions regarding the environmental issues, pollution of the

atmosphere and the harmful effects of fossil fuels are growing altogether, electric vehicle

adoption by countries and by users all around the globe has also been rapidly increasing

day by day. According to the 2021 Global EV Outlook, there were 10 million electric

vehicles on the roads at the end of 2020. Moreover, electric vehicle registrations increased

by 41% in 2020, despite global car sales dropping 16% due to the COVID-19 pandemic.

Additionally, Europe became the world’s largest EV market for the first time, overtaking

China [1]. The world’s most prominent car manufacturers have already set specific dates

for producing only electric vehicles. For instance, BMW’s top-selling models, including

X3, X5, 3 Series and 5 Series have electric versions, and the company foresees that by

2030, half of their global sales will be electric cars. Another giant manufacturer General

Motors plans to stop selling gas and diesel vehicles by 2035. Mercedes and Volvo also

aim for going entirely EV by 2030 [2]. Advancements in manufacturing technologies and

having electric vehicles performances improved consistently, create a snowball effect in

the market which eventually increases consumer demand and drives manufacturers for

more innovative and economical solutions.

That being the case with electric vehicles, inevitably, the whole ecosystem surrounding

them also grows along the way. Charging infrastructure is one of the most significant

components of the electric vehicle ecosystem. Recent studies demonstrate a strong link

between EV adoption and the surrounding charging infrastructure. Charging stations not

being easily accessible, deficient in numbers, and inadequate quality or quantity, are some

of the main reasons preventing EV ownership growth. Researchers concluded that even

in a country such as Norway, where among the highest home charging availability

worldwide, public charging station infrastructure strongly affects increasing EV

ownership [3]. Another research carried out in Sweden, shows that an increased number

of public charging points, especially in urban areas, also increases the adoption rate of

EVs [4].

11

With a growing number of EVs and charging stations in both rural and urban areas all

around the globe, it becomes more and more challenging for EV drivers to find the most

convenient charging spots for their needs quickly and timely when they are on the road.

EV drivers either have to rely on external services and applications that display the

statuses of the charging spots’ that they operate or built, or they are supposed to find one

by trial and error. Moreover, those services displaying the status of their charging stations

can only provide the value of a current status, which is generally not adequate for drivers.

Forecasting the charging station’s future availability is vital, especially in today’s EV

ecosystem, where a car’s battery level is critical for a decent user experience. EV drivers

want to have the comfort of finding an available charging station suiting their needs not

only in the current moment but also a few moments later when they need it.

The work in this thesis ultimately aims to build an end-to-end system that consists of a

prediction engine that forecasts the availability of EV charging stations in real-time, a

distributed software components that provide the prediction outcomes to client

applications in a reliable and resilient manner. And the system built in the scope of this

thesis can be easily integrated within the EV’s multimedia systems.

1.1 Problem Definition

The work in this thesis essentially focuses on finding the answer to the following

question: “Having taken the EV driver’s route (start and destination) of the trip as an

input, which charging station is going to be the best one on the route, in terms of

availability?”.

For example, a simplified model of the problem and the aimed outcome can be seen in

Figure 1. The system predicts the availability rate for each charging station on the driver’s

route and displays it to the driver. Station 3 is considered the best in the above example

due to the highest availability rate.

12

To answer the question above, each possible status value probability of each station on

the drivers’ travel route must be calculated. And to be able to calculate the availability

probabilities, a prediction engine based on an ML/DL model must be built, and the

prediction results must be delivered to client systems.

1.2 Architectural Overview

Architectural overview of the entire system can be seen in Figure 2. The system as a

whole constitutes an end-to-end solution for end users, in this context, EV drivers. The

parts prior to Web Scraper, are not implemented or their details has not been discussed in

the scope of this thesis. Instead, ready-made solutions are utilized for those tasks. Web

Scraper, fetches the charging station’s data from server, preprocess the data, and generates

datasets. Those datasets feeds into the prediction engine, which is a trained ML/DL model

that actually performs the prediction. Afterwards, upon a request, results are transmitted

to a distributed software application, which is planned to be implemented with Kafka

consumers and producers. And finally, client applications, which can be either a mobile

application, web application or an application integrated into EV’s multimedia system,

request prediction results over a web.

Figure 1. Simplified Problem Model

13

1.3 Main Contributions

The main contribution of this thesis is that it proposes timely research that correlates with

increasing rates of EV adoption. Existing research gap on predicting EV charging

stations’ availability and the growing need to forecast the results are two of the few factors

which make this research valuable and competent.

Figure 2. Architectural Overview of the End-to-End System

14

Moreover, this research provides a high accuracy prediction rate that outperforms existing

works and baselines. Besides, it enables a generic solution that can be easily applied in

any given location or any given context. Scraping the usually not publicly available data

of charging stations in Estonia, a large dataset is made available for any machine to work

on.

And last but not least, the proposed solution is integrated into an end-to-end system and

can be used in practical, real-world scenarios, bringing value directly to the user

experience and the EV ecosystem.

1.4 Structure of the Manuscript

The rest of this paper is organized as the following. Chapter 2 presents the state-of-the-

artwork regarding the EV charging station availability prediction and related topics. Also,

it discusses prevalent algorithms and techniques used in machine learning and deep

learning. Chapter 3 describes the actual implementation steps of the dataset generation,

feature engineering, training, and testing machine learning/deep learning models and

developing prediction engines. Chapter 4 discusses the results obtained from the

implementation part, and finally, Chapter 5 consists of the paper’s conclusion, the

summary, and the future possibilities.

15

2 Literature Review

In this section, the state of the artwork for EV charging station availability prediction and

a few other relevant prediction/forecasting studies are examined and discussed. Secondly,

an overview is given for well-established ML and DL methods which are majorly used

for building prediction models. And lastly, the literature review is concluded.

2.1 State of the Art

There has been ongoing research and experimentation regarding electric vehicles and

their surrounding ecosystem in recent years. Several of them focus particularly on EV

charging infrastructure and are heavily rely on machine learning and deep learning

methods. In their study, F. Soldan et al. employed a similar approach to short-term

forecasting of EV charging stations occupancy probability, using big data streaming

analysis [5]. Researchers propose a big data streaming architecture for providing electric

charging station availability forecast after a certain number of times from the present time.

To train a streaming logistic regression model, batch data of past changes and real-time

data streams are used, to consider recurrent past situations and unexpected current events.

They discovered that their streaming model performs better than a model trained using

only historical data because the forecast model trained just using historical data can result

in accuracy errors, especially in the case of unexpected events such as a match for an EV

charging station that is close to a stadium. Researchers used Logistic Regression as a

classification model and increasingly updated the model using real-time data from the

actual occupancy of EV charging stations. The classification model and threshold 0.5

mark occupations as occupied (if greater than a threshold) or not occupied (lower than a

threshold).

They used precision, recall and F1-score metrics to evaluate their model’s result. The

latter have shown that occupancy probabilities from the streaming model are generally

lower than those from the batch model. However, the streaming forecasts display a higher

increase if a charging station is occupied. This increase is more evident with long charges,

16

whenever occupancy probabilities reach above 0.8. Researchers concluded that a model

with a better recall than precision would be chosen in the case of the need to forecast the

highest number of charges, with the risk of forecasting as a charge an event that will not

be confirmed as an actual charge.

On the contrary, a model with better precision than recall will be chosen when it is

necessary to forecast only correct charges, with the risk of losing some charge predictions

[5]. Besides those, there are a few notable weaknesses of this research. Firstly, the dataset

is not rich as it only consists of temporal variables. Moreover, only one model was applied

to the dataset. Finally, a proposed strength of mixing batch and real-time data is

performed randomly, without calibration.

In another research by A. Sao et al. [6], the authors established a novel deep learning

approach, Deep Fusion of Dynamic and Static Information model (DFDS), to forecast

charging station occupancy effectively. DFDS exploits the typical static patterns of the

individual charging stations, such as regular occupation rates or means occupation

concerning the time of the day, and the dynamic information, such as the current

occupation, daytime, and weekday to facilitate occupation predictions. Significant

contributions of the paper include that those researchers proposing a novel architecture

that effectively combines dynamic and static information. The model efficiently fuses

dynamic and static information to facilitate accurate forecasting. Also, the model has an

effective prediction rate, outperforming baselines in F1-score. DFDS uses a Gated

Recurrent Unit (GRU) based dynamic information encoder to capture the dynamic

occupancy of the charging stations.

Further, researchers use statistical features to capture the individual station’s typical

occupation pattern in the static information component. Finally, they fuse the dynamic

and static information and use a GRU-based decoder, called the fusion component, to

forecast charging station usage. Researchers again used a real-world dataset from Lower

Saxony, Germany, between August 2020 and December 2020. To evaluate their results,

the metrics used are Precision, Recall, and F1-Score. Researchers observed that dynamic

information helps achieve high precision, while static information enables a high recall.

As baseline ML and DL models, kNN, Random Forest, Logistic Regression, Support

Vector Machine, GRU + Fully Connected, and Sequence2Sequence models are used

along with the naïve statistical historical average. Experiments demonstrate that DFDS

17

outperforms the baselines by 3.45 percent points in F1-score on average. In addition, the

DFDS model has a Precision value of 73.12 percent, a recall value of 64.53, percent and

an F1-score value of 68.55 percent.

Besides the availability prediction of EV charging stations, several pieces of research

focus on EV charging behaviors and predicting future charging demand, using similar

machine learning and deep learning approaches. For example, in their paper, F. Qiao et

al. [7] aimed to predict future charging demand by building predictive models to

characterize behaviors of both registered long-term users and unregistered short-term

users. Even though the focus is not the charging station’s availability prediction, the

research has importance as it considers different user behaviors. For example, registered

users tend to use the system for longer terms. In contrast, unregistered users typically are

short-term users who use charging stations occasionally. Prediction design includes one

predictive model for registered and one for unregistered users. Working on a real-world

charging record dataset collected in Caltech, the study applies supervised learning-based

algorithms, specifically XGBoost, Support Vector Regression (SVR), and Gradient Boost

Decision Tree (GBDT) to predict sequences of future availability.

Registered/unregistered users used XGBoost to train two predictive models separately

and then combined middle prediction results to obtain final results. Researchers compared

their proposed prediction model with SVR, GBDT, and XGBoost and concluded that for

RMSE and MAPE, XGBoost performs the best in each time granularity. For MAPE,

GBDT performs better than SVR when time granularity is 15, 30, and 80 minutes, while

SVR performs better than GBDT in other cases [7].

With similar purposes, S. Shahriar et al. [8] used popular machine learning algorithms to

predict charging behavior, more specifically EV session duration and energy

consumption, mainly to provide smart scheduling and solve the strain on power grid

infrastructure due to the high-power requirements of the EVs. ACN (Adaptive Charging

Network) dataset [9] considers input features such as traffic and weather conditions and

local events. ACN is a public dataset that contains charging records from stations in

Caltech and JPL university campuses. Random Forest, SVM, XGBoost, and Deep

Artificial Neural Networks are taken as baselines, along with two additional ensemble

learning methods, Voting Regressor and Stacking Regressor. Researchers aggregated

three best performing models in the training phase into two ensemble models, which

resulted in improved cross validation scores. Results are compared based on RMSE,

18

MAE, R2 and SMAPE metrics. The work suggested that results outperform previous

works that report similar evaluation metrics.

Authors of [10] [11] [12] also worked on developing models to predict charging demand.

Y. Zhao et al. built a novel data-driven framework to ensure the safety of EVs and provide

reliable inputs for grid-load calculations. The framework is developed by individually

controlling the strongly linear and weakly non-linear contributions. The proposed

framework concurrently addresses the overfitting of non-linear networks using a low

proportion of training data and the poorly descriptive ability of linear networks under

complex environments. To validate the performance of the proposed prediction model,

actual real-world EV data and five existing high-performance prediction models (Linear

Regression, XGB, RF, and kNN) are employed. China’s national big data platform for

EVs: Dataset of National Monitoring and Management Center for New Energy Vehicles

is used as a real-world data source. Compared with existing prediction models (such as

the random forest, XGBoost, and neural network), the proposed framework persists with

evidently higher accuracy and stability over a wide range of the ratio between the number

of EVs used for testing and training; its mean absolute percentage error (MAPE) is

maintained at 2.5–3.8% when the ratio ranges from 0.1 to 1,000. However the prediction

model in this research may not obtain the accurate charging energy of an EV when the

SOC (state of charge) variation is tiny, i.e., 1–3%. There are many reasons for this, such

as unstable charging power at the beginning, sensor errors, etc [10].

A. Almaghrebi et al. also employed Linear Regression, XGBoost, RF, and SVM methods

to build a charging demand prediction model. They evaluated their results using the

Coefficient of determination (R2), RMSE and MAE metrics. In addition, researchers used

a real-world dataset containing charging sessions data from Nebraska, USA. Their result

demonstrates that XGBoost outperforms other methods with 6.68 kWh and 51.9% R2

[11]. Y. Kim et al. [12] study compared various modeling techniques, including

trigonometric exponential smoothing state space (i.e., Trigonometric, Box-Cox, Auto-

Regressive-Moving-Average (ARMA), Trend, and Seasonality (TBATS)),

autoregressive integrated moving average (ARIMA), artificial neural networks (ANN),

and long short-term memory (LSTM) modeling, based on past values and exogenous

variables. In addition, the models are evaluated based on MAPE. Researchers concluded

that privacy issues regarding driver information play an essential role in predicting

charging demand. They must be resolved to forecast power supply effectively, as in a

19

single station, exogenous variables do not significantly influence accuracy because

individual behavior is essential in determining consumption.

2.2 Algorithms and Techniques Overview

This section provides an overview and theoretical information, for the most prevalent

ML/DL algorithms and techniques mentioned in the previous state-of-the-art section. It

is worthy of note that the algorithms and techniques discussed in this section are chosen

based on the relevancy of the work provided in this thesis.

2.2.1 Supervised Machine Learning Algorithms

Machine learning can be defined as a branch of the Artificial Intelligence discipline. ML

focuses on using data and algorithms to imitate the way humans learn, gradually

improving its accuracy. Through various statistical methods and techniques, algorithms

are trained to make classifications and predictions. Generally, ML algorithms use

historical data to forecast the future values of desired output variables [13].

There are several machine learning methods, and they can usually be categorized under

four primary categories namely Supervised ML, Unsupervised ML, Semi-Supervised ML

and Reinforcement ML. However, since the algorithms used in the scope of this thesis

are all Supervised ML algorithms, other categories are not discussed in this chapter.

In supervised learning, the dataset being used has been pre-labeled and classified by users

to allow the algorithm to see how accurate its performance is [14]. Usually, in Supervised

learning, the person training the data knows a lot more about the training data than the

machine, so the person can feed labeled data into the machine which can be easily

classified later. Supervised ML has many use cases in real-world applications, including

classifying spam mails in a separate mail folder, self-driving cars classifying different

objects through image processing or, a web application of tourism agent forecasting how

many of the hotel rooms will be available on a specific date. A typical machine learning

algorithm consists of roughly three components. The first component, the decision

process, refers to the steps ML algorithm produces an estimate about a pattern in a data,

based on the input data provided. In addition, it can be defined as any calculations that

take in the data and return it into a guess at the kind of pattern the ML algorithm is looking

to find. The second component is called an error function. It’s a technique of measuring

20

how good the guess was served to evaluate the model’s prediction. It aims to quantify the

miss rate, regarding the guess performed by an algorithm. The last component is the

model optimization process. In this step, the algorithm looks at failures and then updates

it's decision process and means to come to the final decision thus next time miss will be

lower. If the model can fit better to the data points in the training set, it will adjust the

weights to reduce the discrepancy between the known examples and its estimations. This

evaluation and optimization process will be repeated autonomously until a predefined

accuracy threshold has been met [13] [14].

2.2.2 Classification Algorithms

Given that the ultimate goal of the research in this paper is to predict the probability of

each possible output of the EV charging stations, and since this output will be equal to

one of the finite numbers of status values, it can be stated that the model aimed to be built

trying to solve a multi-class classification.

Multiclass classification algorithms classify given input into one of the N possible classes.

These are supervised ML algorithms. Unlike binary classification, where you have only

two possible outcomes, multi-class classifications are not limited to or does not restrict

itself to any number of classes (See the comparison scheme in Figure 2). Therefore, two

classes are dependent (target) variables when the problem is a multi-class classification

problem. Multi-class classification assumes that each sample is assigned to one and only

one label: a fruit can be either an apple or a pear but not both at the same time [15]. Multi-

class classification algorithms have a broad scope of usage including image classification,

handwritten digit recognition, intent classification in NLP, and so on. In the scope of the

work of this thesis, the desired output consists of multiple classes of EV charging stations

availability statuses, such as “available,” “busy,” “unknown” etc. In addition to that, the

probability rate of each status value is intended to be calculated, so that the availability

percentage can be provided to the end-user. For instance, “Station 1 will be 96%

available.”

21

2.2.3 K-Nearest Neighbours (kNN)

K-Nearest Neighbour has always been one of the most popular supervised-learning

algorithms for multi-class classification and regression problems. In the simple sense,

kNN is based on estimating the class of the vector formed by the independent variables

of the value to be assessed, based on the information in which class the nearest neighbors

are dense. It is an easy-to-implement algorithm with simple usage; however, it performs

lazy learning and can be computationally expensive significantly as the number of

independent variables increases because it measures the distance between each data point

[17] [18].

In the kNN classifier, the distances between test data and the training data can be

identified by different measures. Euclidian distance function, the most common one, can

be seen in Equation 2.1. Others include the Minkowsky distance function in Equation 2.2

and the Manhattan distance function in Equation 2.3 [19].

 𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1 (2.1)

 𝑑(𝑥, 𝑦) = √(∑ |𝑥𝑖 − 𝑦𝑖|𝑃𝑛
𝑖=1)1 𝑝⁄ (2.2)

Figure 3. Comparison of Binary Classification and Multiclass Classification [16].

22

 𝑑(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 (2.3)

K in kNN is a hyperparameter that can be set to achieve the best possible fit of the

algorithm. It corresponds to the number of neighbors on which the calculation will be

performed. There are no predefined methods to find the best K value. Lower K values

might increase the chance of overfitting and leads to unstable decision boundaries, while

higher K values might result in overgeneralized results. One of the methods can be

deriving a plot between error rate and K, denoting values in a defined range. Then K value

is chosen as having the minimum error rate. However, small K values do not always suit

small datasets and big K values do not always serve big datasets [20] [21].

2.2.4 Logistic Regression

Logistic Regression is a binary classification algorithm intended for datasets with two

classes of categorical or numerical target variables. Therefore, it cannot be directly used

for multi-class classification. Instead, it requires a transformation of the model

beforehand.

One of the popular approaches for adapting Logistic Regression to multi-class

classification problems is to split the multi-class classification problems into multiple

binary classification problems and apply a standard logistic regression on each split

subproblem. Another approach is directly changing the logistic regression model to

support numerous class labels’ predictions. The probability distribution that defines

multi-class probabilities are called a multinomial probability distribution. A LR model

adapted to learn and predict a multinomial probability distribution is called Multinomial

Logistic Regression [22].

Changing Logistic Regression from binomial to multinomial probability requires a

change in the loss function that has been used to train the model. For example, the loss

function is changed from Log Loss to Cross-Entropy Loss function. And change is

applied to the output from a single probability value to one probability for each class label

[22].

23

Figure 4 demonstrates the logistic regression curve, equation, and linear regression line.

2.2.5 Random Forest

Random Forest is another widely used supervised machine learning algorithm, employed

for multi-class classification tasks. In essence, RF consists of many individual “decision

trees” that operate as an ensemble. In simpler terms, the model builds multiple decision

trees for different parts of the data and selects the final output based on majority voting

of individual decision trees in the multi-class classification [24].

RF has a few notable advantages. It has a low chance of overfitting, when sufficient trees

are in the RF model. It does not have too many hyperparameters; therefore, it’s easy to

use and implement. However, there’s a trade-off that many trees can make the algorithm

too slow and ineffective for real-time predictions. Because in general, RF algorithms can

be trained quickly, but they are slow to create forecasts after they are trained. And more

accurate predictions require more trees, which eventually results in a slower model [25].

Figure 4. Logistic Regression Curve and Equation [23].

24

The aforementioned “ensemble” can use two types of methods. The first of these methods

is called bagging, and it creates a different training subset from sample training data with

replacement, and the final output is based on majority voting. RF works with this bagging

principle. There’s also another method called Boosting, and basically, it combines weak

learners into strong learners by creating sequential models such that the final model has

the highest accuracy. Models such as AdaBoost and Gradient boosting are based on this

principle [26]. For example, XGBoost (Extreme Gradient Boosting) is a widespread high-

performance implementation of gradient boosting, consists of an extensive software

library and interfaces.

Gradient boosting refers to an approach where new models are created which predict the

residuals or errors of their prior models and then added together to make the final

prediction with a higher accuracy rate. It is called gradient boosting because it uses a

gradient descent algorithm to minimize the loss when adding new models [27]. The

gradient descent algorithm also has several subtypes: Stochastic Gradient Descent, Batch

Gradient Descent and Mini-Batch Gradient Descent.

Figure 5. RF is made of multiple individual decision trees.

25

2.2.6 Support Vector Machine (SVM)

Support Vector Machine is another supervised ML algorithm used for multi-class

classification. The main working principle of SVM is to find a hyperplane that classifies

or differentiates the output classes, which comprises data points plotted in an n-

dimensional space. Hyperplanes are decision boundaries that help classify the data points,

and many possible options of hyperplanes could be chosen, and the SVM algorithm has

a feature to ignore the outliers. SVM’s main objective is to find a hyperplane with the

highest margin value. Margin corresponds to the distance between a hyperplane and the

nearest data point. Figure 6 demonstrates a hyperplane with the highest margin. Samples

on the margin are called the support vectors [28] [29].

The loss function in SVM that helps maximize the margin is hinge loss, seen in Equation

2.4. The cost is 0 when the predicted value has the same sign as the actual value. The loss

value is calculated without the same sign [29].

 𝑐(𝑥, 𝑦, 𝑓(𝑥)) = {
 0, 𝑖𝑓 𝑦 ∗ 𝑓(𝑥) ≥ 1

 1 − 𝑦 ∗ 𝑓(𝑥) ≥ 1, 𝑒𝑙𝑠𝑒
 (2.4)

Figure 6. Highest margin hyperplane and support vectors for an SVM with 2 classes [30].

26

The regularization parameter is added to the SVM loss function to balance the margin

maximization and loss. After adding the regularization parameter, the loss function

equation is given in Equation 2.5 [29].

𝑚𝑖𝑛

 𝑤
𝜆 ∥ 𝑤 ∥2 + ∑(1 − 𝑦𝑖⟨𝑥𝑖 , 𝑤⟩)+

𝑛

𝑖=1

 (2.5)

Since the loss function is established, partial derivatives are taken concerning the weights

to find the gradients. Weights can be updated using the gradients, as shown in equations

2.6 and 2.7 [29].

𝛿

𝛿𝑤𝑘
 ∥ 𝑤 ∥2 = 2𝜆𝑤𝑘 (2.6)

𝛿

𝛿𝑤𝑘
 (1 − 𝑦𝑖⟨𝑥𝑖 , 𝑤⟩)+ = {

 0, 𝑖𝑓 𝑦𝑖⟨𝑥𝑖 , 𝑤⟩ ≥ 1
 −𝑦𝑖𝑥𝑖𝑘, 𝑒𝑙𝑠𝑒

 (2.7)

Only gradient has to be updated from the regularization parameter When there is no

misclassification, as in equation 2.8 [29].

𝑤 = 𝑤 – 𝛼 ∙ (2𝜆𝑤) (2.8)

A loss is included along with the regularization parameter to perform gradient update,

when there is a misclassification, as seen in equation 2.9 [29].

𝑤 = 𝑤 + 𝛼 ∙ (𝑦𝑖 ∙ 𝑥𝑖 − 2𝜆𝑤) (2.9)

27

2.2.7 Deep Learning and Artificial Neural Networks

Deep Learning can be considered as a subset of Machine Learning. The primary

difference between DL and ML derives from how their algorithms learn. In DL, the

majority of the feature extraction part is automated. The classical ML approach is more

dependent on manual human intervention to learn. Human experts determine the

importance or hierarchy of the features and understand the differences between data

inputs, which usually results in requiring more structured data. However, this part is

mainly eliminated in DL. DL does not necessarily need a labeled dataset, as it can use

unstructured raw data and automatically determine the set of features to distinguish or

classify outputs. A DL model can cluster inputs appropriately by observing patterns in

the data. It has more complex use cases, i.e., virtual assistants or fraud detection [13] [31].

Artificial Neural Networks, is an Artificial Intelligence branch that tries to mimic the

human brain through algorithms. ANN consists of four main components at a basic level:

inputs, weights, bias or threshold, and output. Each node, or artificial neuron, connects to

another and has an associated weight and threshold. If the output of any individual node

is above the specified threshold value, that node is activated, sending data to the next

layer of the network. Otherwise, no data is passed along to the next layer of the network.

The “deep” in deep learning refers to the depth of layers in a neural network [13]. And

has use cases in areas such as computer vision, natural language processing, and speech

recognition. There are several architectural approaches in ANN.

Figure 7. Deep Neural Network (ANN) representation [31].

28

2.2.7.1 Convolutional Neural Networks

CNN is mainly different from other ANN types by their superior performance with image,

speech or audio signal inputs. CNN has three main layers: Convolutional Layer, Pooling

Layer and Fully-Connected (FC) layer [32]. Figure 8 shows an example architectural

overview of CNN. First, a loss function calculates the model’s performance with specific

weights and kernels through forwarding propagation on training data. Then, weights and

kernels are updated accordingly to the loss value through backpropagation with gradient

descent optimization algorithm, e.g., ReLU (rectified linear unit) [33].

Figure 8. An overview of CNN architecture and training process [33].

The first two layers, convolutional and pooling layer, perform feature extraction. The

final FC layer maps the features into the final output, i.e., classification. A convolution

layer plays a significant role in CNN due to its mathematical operations, a linear operation

[33].

2.2.7.2 Recurrent Neural Networks

RNN is another type of ANN using sequential or time-series data. The main difference

between RNN and other ANN models is that RNN have a memory, and they take

information from prior inputs to influence the current inputs and outputs. Moreover, they

share parameters across each layer of the network. Feedforward networks have different

weights across different nodes. RNN, on the other hand, shares the same weight parameter

within network layers. An RNN is commonly used for ordinal and temporal problems

29

such as speech recognition, natural language processing, image captioning, and language

translation [34].

RNN uses a backpropagation through time (BPTT) algorithm to determine the gradients.

It is slightly different than the traditional backpropagation because it is specific to

sequence data. However, BPTT principles are the same as traditional backpropagation.

The model trains itself by calculating errors from its output to its input layer. These

calculations allow adjusting and fitting the parameters of the model appropriately. But

BPTT is different because it sums errors at each time step [34].

RNN has advantages such as processing input of any length and model size is not

increased with the input size. But it also has some disadvantages as computation is slow

and cannot consider any future input for the current state [35].

Figure 9. RNN allows previous outputs to be used as inputs while having hidden states

[35].

Bidirectional Recurrent Neural Networks (BRNN), Long Short-Term Memory (LSTM),

and Gated Recurrent Units (GRUs) are some of the popular variants of RNN architecture.

2.2.7.3 Multi-layer Perceptron

MLP is an algorithm that learns a function in Equation 2.10 by training on a dataset,

where 𝑚 is the number of dimensions for input and 𝑜 is the number of dimensions for

output [36].

 𝑓(⋅) ∶ 𝑅𝑚 → 𝑅𝑜 (2.10)

30

Figure 10 shows an example of MLP. The layer on the left is an input layer and consists

of a set of neurons representing the input features. Each neuron in the hidden layer

transforms the values from the previous layer with a weighted linear sum, and a non-

linear activation function. Finally, the output layer receives the values from the last hidden

layer and transforms them into output values [36].

One of the advantages of MLP is that it is capable of learning non-linear models, and it

is capable of learning models in real-time. But it also has some disadvantages, i.e., it is

sensitive to feature scaling, and it requires tuning several hyperparameters e.g., the

number of hidden neurons, layers, iterations, etc.

2.2.8 Evaluation Metrics

The accuracy and performance of the ML/DL models and algorithms mentioned above

are evaluated based on several predefined metrics. Evaluation metrics are used to measure

the quality of the model. There are many different types of evaluation metrics available,

including but not limited to classification accuracy, logarithmic loss, confusion matrix,

etc [37].

Figure 10. One hidden layer MLP [36]

31

Testing a model with multiple evaluation metrics is important because the model can

perform well on one measurement but may perform poorly on others from different

evaluation metrics.

Three commonly employed evaluation metrics for multi-class classification models are

examined.

2.2.8.1 Precision

Precision is defined as the fraction of relevant instances among the retrieved instances. It

is used to measure the model’s performance on counting the number of true positives

correctly out of all positive predictions made by the model [38] [39].

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2.10)

2.2.8.2 Recall

The recall is defined as the fraction of relevant instances that were retrieved. It measures

the model’s performance regarding the number of true positives correctly out of all the

actual positive values [38] [39].

 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2.11)

2.2.8.3 F1-Score

F1-Score takes both precision and recall into account. It can be defined as a “harmonic

mean” of precision and recall score.

 𝐹1 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.11)

32

2.3 Conclusion

In the most recent literature regarding the prediction of electric vehicle charging stations

availability and related topics, there is a variety of well-proven models, techniques,

algorithms, and frameworks of ML and DL. However, some of these methods are used

more often than others in researches.

Regarding state-of-the-art, it can be said that there’s a research gap that exists regarding

charging station availability prediction, as a focal point of many researches is charging

demand prediction. Moreover, challenges regarding accuracy and scalability play an

essential role in developing and improving of the models. However, reaching high

accuracy rates is not straightforward, as datasets can be inadequate or the employed

models might not be an optimal fit. Therefore, the main focuses of this thesis are directed

towards these weaknesses and deficiencies existing in the literature. That is the main

reason high scalability, reliability, and accuracy are emphasised throughout different

chapters.

This section provided a fundamental overview and theoretical information of these

prevalent models and techniques, most of which are also used during the implementation

part in this thesis, to establish the base for the work performed.

33

3 Implementation

The actual work implemented in this thesis can be summarized as the following. First,

data from two different sources is scraped and accumulated frequently to generate

datasets. Then, these two datasets are used for building ML/DL models. These models

built are then used to predict EV charging spots availability. And last but not least, the

prediction system built is integrated into an end-to-end distributed software system.

This section discusses the Data Scraping part and provides detailed info on the dataset

used in this research. Afterward, the Baselines part examines the result of base models

and methods discussed in the Related Works section applied on the dataset, and their

results are compared. Then, the Prediction Model part is the ultimate prediction engine

built for real-time prediction. In the final part, the end-to-end software system of which

the prediction engine is meant to be integrated is discussed.

3.1 Data Scraping

Data scraping is defined as a process of importing a human-readable form of information

from a website or a program into a spreadsheet, local file, or any kind of database [40]. It

is one of the most prevalent and most efficient methods for extracting data from any

source on the web.

To make any data available for training and testing by a machine, that data must be

scraped, cleaned, formatted, and preprocessed. In the scope of this thesis, two different

data sources are used and both sources were scraped separately, however with similar

techniques, and they were made available for machines to use.

For both data sources, scraping is performed with a predefined frequency by creating a

scheduled job on a personal computer and setting the job, so it runs once every half an

hour. Hence, two python scripts performing the actual scraping action have been regularly

run every half an hour. The scraping cronjob started to run in September 2021. However,

there are time intervals when it was stopped due to a technical issue or it failed and had

34

to be started over again. Except for times that it stopped scraping, data had been scrapped

from both data sources once in every 30 minutes since the day it started.

The scraper python scripts have some other similarities, too, as they both use the python

requests library [41] to make HTTP requests and parse their responses. In addition, the

CSV module [42] in the python standard library is used to write or append results into a

CSV file.

The following subsections discuss the actions performed during data scraping of two

separate data sources.

3.1.1 Belib – Paris Data Source

The first data source utilized in this research is an open dataset, and it contains data from

1822 different EV charging stations located in Paris, France. It provides geolocated real-

time availability data of charging points for EVs. The original title of the dataset in French

is: “Belib’ - Points de recharge pour véhicules électriques - Disponibilité temps reel”. The

English translation of the title is Belib - Charging points for electric vehicles - Real-time

availability [43]. The entire public network of supervised charging points and providing

real-time availability data is called Belib [44]. The Paris council voted to award a service

concession to a new operator, Total Marketing France (TMF), for the technical and

commercial operation of public charging stations in Paris. Concretely, the network of old

Autolib 'terminals will gradually be replaced by new terminals. At the end of the

deployment, Paris will then be equipped on the road with 433 charging stations for electric

vehicles (one station is equipped with several charging points). The new terminals will

be accessible via the new operator as they are installed [43]. The dataset is licensed with

Open Database License (ODbL) [45] and is contributed by TMF.

The data source has a public API provided with documentation [46]. Therefore, scraping

is performed via sending requests to this public API with appropriate parameters. The

complete code of the python script can be seen in Appendix 2. First, an HTTP GET

request is sent to the following URL:

“https://opendata.paris.fr/api/records/1.0/search/?dataset=belib-points-de-recharge-pour-

vehicules-electriques-disponibilite-temps-reel&q=&facet=statut_pdc&rows=2000”.

Then, as seen from the URL, the status facet is requested with a maximum of 2,000 rows

of EV stations from the Belib data source. Then, results are parsed and saved into a CSV

https://opendata.paris.fr/api/records/1.0/search/?dataset=belib-points-de-recharge-pour-vehicules-electriques-disponibilite-temps-reel&q=&facet=statut_pdc&rows=2000
https://opendata.paris.fr/api/records/1.0/search/?dataset=belib-points-de-recharge-pour-vehicules-electriques-disponibilite-temps-reel&q=&facet=statut_pdc&rows=2000

35

file each time the scraping is done. In total, more than 700,000 rows of data are parsed,

and each row represents a single charging station.

3.1.2 Enefit VOLT – Estonia Data Source

The second data source used in this master thesis is a private company operating in

Estonia, called Enefit Volt. Enefit Volt claims to be the largest charging network in

Estonia with more than 185 EV Charging stations all over the country. It has a variety of

chargers for different needs and constantly growing [47].

Enefit Volt has a “Find the nearest charger” page on their website (see Figure 11) where

they display charging spots on a map. Along with charging spots, availability, and a few

other information about the spot is displayed on the page. However, since Enefit VOLT

does not provide a public API, scraping performed a bit more differently than the previous

data source. The complete code of the python script can be found in Appendix 3. Briefly,

an asynchronous request that the webpage performs to reload data is imitated in the

python code. Request headers are created and a request is sent to a URL with longitude

and latitude parameters, covering the whole Estonia map. Like the first data source’s

script, a response is parsed and then appended to a CSV file. In total, more than 370,000

rows of data are parsed, and each row represents a single charging point.

Figure 11. Enefit Volt’s Find the nearest charger page.

36

3.2 Dataset

After the data is scraped from the data sources, rows are appended in a CSV file to

generate the actual dataset used for building the model. This section demonstrates what

those two datasets look like by providing their fields and descriptions.

The data model of the first dataset, Belib – Paris, France, can be seen in Table 1. It has

eight columns, most of which have categorical values.

Table 1. Belib Paris Dataset Model

Field Name Description

ID Identifier of the charging spot, e.g., FR*V75*EPX12*02*5

Status
The status value of the charging point, the value from the

Charging Points Status information table. (see Table 2) e.g.,

Disponible

Address
Full address (at least, the names of the road or the locality and

the town) of the station, e.g., 3, rue de la Gare, Belmont

Postal Code Postal code of the location of the Charging Point, e.g., 75015

Latitude
Charging Point’s geographical coordinate’s latitude value, e.g.,

48.8512

Longitude
Charging Point’s geographical coordinate’s longitude value,

e.g., 2.2913

Last Updated
Last time the charging station’s data is updated, in YYYY-

MM-DD’T’HH:mm:ssZZZZ format, e.g., 2021-10

16T10:36:04+00:00

Record Timestamp
The time row is recorded in the CSV file in YYYY-MM

DD’T’HH:mm:ss.SSSZZZZ format, e.g., 2021-10-

16T10:36:04.525000+00:00

The status field value set of the Belib dataset can be seen in Table 2. There are nine

possible values of status that can exist for a charging spot. The original French name for

the status value is also given since it is saved in the CSV file.

37

Table 2. Belib charging spots status values and their description [43].

Original Status

Value
Status Value in English Description

Disponible Available
The charging spot is

available, free to use.

Pas implémenté Not Implemented

For the moment charging spot

is not implemented by the

operator. The operator will go

back to “In Maintenance”

from the moment a

maintenance update has been

declared.

Occupé (en charge) Busy (in charge)

The charging spot is busy.

There is currently a charging

session.

En cours de mise en

service

In the process of

commissioning

The charging spot has not

been commissioned yet.

En maintenance In maintenance
The charging spot is in

maintenance.

Mise en service

planifiée
Planned commissioning

Commissioning is planned

and it will be available soon.

This step follows the status

“In the process of

commissioning.”

Supprimé Suppressed
The charging spot is removed

from the infrastructure.

Réservé Reserved The charging spot is reserved.

Inconnu Unknown

The status is unknown.

Terminal does not

communicate with the server,

because it is turned off, has

no network communication,

and is not in maintenance

mode.

The data model of the second Dataset, Enefit VOLT, Estonia, can be seen in Table 3. It

has twenty-three columns. Columns Socket [1-2] Max Power, Socket Count, and Socket

[1-2] Price have numerical values. The rest of the columns have categorical or semi-

categorical values.

38

Table 3. Enefit VOLT Estonia Dataset Model

Field Name Description

ID Identifier of the charging spot, e.g., 390

Name Name of the charging spot, e.g., Tallinn Ülemiste Keskus P-1

Status
The status value of the charging point, the value from the

Charging Points Status information table. (see Table 4), e.g.,

Available

Address
Full address of the charging spot, e.g., Akadeemia tee 15,

Tallinn

Charging Speed Speed of the charging station, e.g., Semi Fast

In Maintenance
A Boolean indicator showing whether the charging spot is in

maintenance, e.g., True

Latitude
Charging Point’s geographical coordinate’s latitude value, e.g.,

59.356

Longitude
Charging Point’s geographical coordinate’s longitude value,

e.g., 24.892

Access Level Charging station’s accessibility, e.g., Public

Socket Count How many sockets does the charging spot have? e.g., 2

Socket [1-2] Name Name of the individual socket(s), e.g., CHAdeMO

Socket [1-2] Status Status of the individual socket(s), e.g., Available

Socket [1-2] Type Type of the socket(s), e.g., TYPE_2_MENNEKES

Socket [1-2]

Charging Mode
Electrical charging mode of the socket, e.g., MODE 3

Socket [1-2] Max

Power (kWh)
Max power supplied by a socket in kWh, e.g., 50

Socket [1-2] kWh

Price
Price per kWh, e.g., 0.24 euro

Recorded

Timestamp

The time row is recorded in the CSV file in YYYY-MM DD

HH:mm:ss.SSS format, e.g., 2021-10-16 10:36:04.525000

39

The status field value set of the Enefit Volt dataset can be seen in Table 4. There are seven

possible values of status that can exist for a charging spot.

Table 4. Enefit Volt Charging spots status values and their description

Status Value Description

Available The charging spot is available, free to use.

Occupied
The charging spot is busy, occupied by

someone else.

Charging
The charging spot is busy. There’s currently a

charging session.

Paused Service is paused at the charging spot.

Faulted
The charging spot is faulted and needs to be

fixed before being used.

Unavailable
The charging spot is unavailable due to

technical problems.

Preparing The charging spot is preparing to be available.

Unknown
The status is unknown, no connection with the

server.

Today, the Paris Belib dataset has 700,000 records and the Estonia Enefit Volt dataset

has more than 387,000 records.

3.3 Feature Engineering

A feature engineering process and preprocessing of the datasets are necessary to utilize

these generated datasets. Feature engineering refers to the process or pipeline steps that

transform raw data into features used in machine learning algorithms. Predictive ML/DL

models consist of outcome variables and predictor variables, and during the feature

engineering most useful predictor variables are created and selected for the model [48].

Since there are two different datasets with several columns and data types, two separate

pre-processors are created for both of them. For feature engineering tasks, some of the

40

common python libraries are employed. Pandas, being one of those, is an open-source

and free library written for python and used for data manipulation and data analysis tasks.

It has many capabilities, including reading and writing data from and to CSV files into

memory, merging or slicing large datasets, and creating DataFrame objects with

integrated indexing [49]. Besides, the Pandas library makes it easy to manipulate and

preprocess of time-related and categorical data. Another python library employed for

various tasks is scikit-learn. It’s similarly an open-source and free library of mainly

machine learning. It allows easily and quickly building ML/DL models, running and

evaluating them. But it also has many other features regarding data processing and feature

engineering. It also works compatible with scientific libraries such as NumPy and SciPy

[50].

First, let’s examine the preprocessing of the Paris dataset. The complete code of the

python script can be seen in Appendix 4. Firstly, raw data is read from the CSV file and

assigned to a built-in dataframe object in the memory. Later, the “Last Updated” column,

which has a Datetime datatype, is parsed, and the following columns are generated: Year,

Month, Day, Hour, Minute, and Second. Then, the redundant columns are dropped from

the dataframe. Those dropped columns are: “ID,” “Last Updated,” “Record Timestamp,”

“Postal Code,” and “Address”. Next, normalization is applied to Latitude and Longitude

columns. Since those have semi-categorical arbitrary values, they cannot be used directly.

Instead, they must be converted to values between 1 and 0 as it is the scale of the

numerical data in other columns. Otherwise, an ML/DL model will encounter issues

regarding unscaled values. Therefore, Scikit Learn’s preprocessing module is used,

particularly MinMaxScaler function, with range parameter given tuple (0, 1). Pandas

get_dummies method is used for temporal columns, which were generated by parsing the

“Last Updated” column. This method converts categorical variables into indicator

variables [51]. A new field is created and filled with 1s and 0s for each minute in the data

column. For instance, if the Last Updated value equals “2021-10-15 13:21:53”, the

minute_21 column would be equal to 1 while all other minute columns would equal 0.

Lastly, the processed dataframe is saved to a new CSV file.

Pre-processing of the Estonia dataset also has similar steps. First, raw data is read from

the CSV file, and temporal fields are parsed with the same techniques. Then following

redundant columns are dropped from the dataframe: “ID,” “Name,” “Address,” “In

Maintenance,” “Socket Count”. And same as before, Latitude and Longitude fields are

41

scaled. get_dummies method in Pandas library is used for One-Hot Encoding on the

following columns: “Charging Speed,” “Access Level,” “Socket 1 Type,” “Socket 1

Charging Mode,” “Socket 2 Type,” “Socket 2 Charging Mode”. Later, differently from

the Paris preprocessor, sklearn.preprocessing module is used employed for a few

additional tasks. Numerical columns had values in different scales in the dataset. For

instance, some “Socket 1-2 Max Power (kWh)” fields have value of 50. However, some

other “Socket 1-2 kWh Price” fields have a value of 0.24. With scales irrelevant to each

other, ML models will result from output values. The complete code of python script can

be found in Appendix 5.

To solve this problem, MinMaxScaler method of sklearn.preprocessing module is used

for scaling the values of the following columns: “Socket 1 Max Power (kWh),” “Socket

2 Max Power (kWh),” “Socket 1 kWh Price,” “Socket 2 kWh Price”. feature_range

parameter of the MinMaxScaler is assigned with a tuple (0,1) so that these fields will get

values between 0 and 1. This method, dividing values by the maximum and minimum

values of that field, performs scaling in the background. As a result, all the values get a

number between 0 and 1.

3.4 Baselines

Baseline ML algorithms are K-NN, Logistic Regression, Random Forest and Support-

Vector Machine. The main reason for this is that those are the most prevalent algorithms

in state-of-the-art papers, which can for multi-class classification problems. Performances

of those baseline algorithms are compared by Precision, Recall, and F1-Score validation

metrics. Preprocessed datasets from the previous step are used for training and testing the

models. Training and test data are split before the model’s actual fitting. 70% of the data

is used as training data, and 30% is used as testing data. Built-in train_test_split method

in Scikit-Learn library is employed for this task. After the split, baseline models were fit,

and the prediction was performed. Apart from the difference of datasets and reading them

from CSV into the memory, identical code is used for Paris and Estonia data. Complete

python code for running the baseline models can be seen in Appendix 6.

K-NN model is used through Scikit-Learn library’s KNeighborsClassifier. It can take

optional parameters, and the n_neighbors parameter specifies the number of neighbors to

42

use during fitting [52]. n_neighbors parameter is assigned to 1 to make it the same as

state-of-the-art works.

The logistic Regression model is used through Scikit-Learn library’s LogisticRegression

class. This class applies regularization by default. The optimizer parameter is assigned

“lbfsg”. In addition, the “max_iter” parameter specifies the number of iterations taken for

the solvers to converge, and is set to 1,000 [53].

The Random Forest model is used through Scikit-Learn’s RandomForestClassifier.

n_estimators parameter specifies the number of trees in the forest and is assigned to 500,

to match state-of-the-artwork.

Support Vector Machine model is used through Scikit-Learn’s LinearSVC (Linear

Support Vector Classification). It is called with default parameters.

Once again, the Scikit-Learn library is used for evaluation metrics by importing its

metrics module. Built-in precision_score, recall_score, f1_score methods are called with

the average parameter assigned “weighted”. The weighted average calculates metrics for

each label and finds their average weighted by support (the number of true instances for

each label). This alters ‘macro’ to account for label imbalance; it can result in an F1 Score

that is not between precision and recall [54].

The system that the baseline methods ran on, including main hardware and software

components, can be seen in Table 5.

Table 5. Components used to run baseline models.

Component Name Model/Feature

Memory 16 GB

CPU Intel Core i7-1065G7 1.50 GHz

Environment Jupyter Notebook

Programming Language Python 3.7

43

3.5 Prediction Engine

Additional approaches than baseline ML algorithms are adopted to implement the actual

prediction engine. Because the prediction engine requires prediction outcomes to be

provided as probability rates, as opposed to plain ML methods, which provide one final

output among the possible classes. Additionally, more advanced and up to date techniques

must have been used to make the prediction engine real-time and increase its accuracy as

much as possible.

Regarding all those considerations, the Artificial Neural Networks model is built and used

for prediction engines. The complete python script used for creating ANN can be seen in

Appendix 7. For building the ANN model, some additional libraries and techniques are

used. Keras is a popular open-source deep learning library for python, used for defining

and training deep learning models. Keras allows users to create DL models easily and

quickly, enabling parallelization while running the models. It supports scaling, also can

use CPUs and GPUs. Moreover, Keras runs on top of the TensorFlow. TensorFlow is an

end-to-end open-source machine learning platform [55].

First encoding is applied on output label, status. Using Scikit Learn’s built-in

LabelEncoder function, the Status column is transformed into integer values starting from

0 and raising by one for each value. Afterward, a sequential model is created using Keras

and three layers are added. The first and second layers have a RELU activation function,

and the final output layer has a Softmax activation function configured. Then the model

is compiled with Categorical Cross entropy loss function and SGD optimizer, all built-in

Keras classes or methods. The activation function decides whether to activate a neuron

by calculating the weighted sum and adding more bias. The purpose of the activation

function is to delinearize the output of a neuron. Those Activation functions, mainly

Softmax are chosen because they assign decimal probabilities to each output class in a

multi-class classification problem. Those decimal probabilities add up to 1.0. This

additional constraint helps the training converge more quickly [56]. Additionally,

Softmax presumes that each sample of data is a member of exactly one class. This

characteristic makes it a perfect candidate because the outcome aimed to be reached in

this thesis matches this idea entirely. Ultimate desired output is sought to be probability

rates of possible availability classes, and Softmax enables this.

44

Since Keras does not have an F1-Score metric directly built-in, it was created manually.

Then, the Keras backend module is imported to calculate the number of true positives and

its rate to all positive predictions to extrapolate Precision. Finally, similar calculations

were applied for calculating the recall, and they are used to calculate F1 Score ultimately.

In the last part, Matplotlib is used to visualize the results. Matplotlib is another open-

source python library, that provides extensive object-oriented API for graphical plotting

and data visualization [57]. In addition, Matplotlib’s pyplot module is employed for

drawing bar plots to display availability prediction rates through charts.

3.6 Distributed Server-Side Software

The prediction engine is integrated into a distributed software system to transmit the

prediction results to the end users of the system, EV drivers. It is integrated through a

connector to become a part of the Kafka Producer application. Therefore, Kafka’s

prediction engine can be part of a distributed system, making it more reliable and resilient.

Kafka is an end-to-end event streaming platform that has several capabilities. Kafka

writes and reads streams of events, including continuous import/export of your data from

other systems, stores streams of events durably and reliably for as long as it’s needed, and

processes streams of events as they occur or retrospectively [58].

Figure 12 demonstrates the architectural overview of the system. Client applications,

which can either be a mobile application, web application, or a built-in application in

EV’s multimedia system, make a request to receive the final prediction result from the

Kafka producer. The prediction engine is connected to Kafka and sends the prediction

results whenever requested. Additionally, there’s a separate dashboard that can display

prediction stats. Kafka stands at the crossroads of the different components of the system.

It provides all the event streaming functionality in a distributed, highly scalable, fault-

tolerant, and secure manner. It can be deployed on bare-metal hardware, virtual machines,

containers, on-premise hardware and the cloud [58].

45

3.7 Conclusion

In this section, the entire implementation part of this thesis was discussed. First, a

thorough and meticulous effort is put into implementation starting with creating datasets

that constitute the main input for ML/DL models. For example, two countries’ EV

charging station data is frequently scraped/crawled from various sources and stored in

CSV files. Later, feature engineering is applied to those raw stored data to make it

compatible and ready to use in ML/DL models. Next, baseline ML models are trained

using Python frameworks and preprocessed datasets to make predictions. Then, the

creation of the ANN model as an ultimate real-time prediction engine is shown. Finally,

the software provides a distributed reliable end-to-end solution for client applications,

software application implementation, and prediction engine integration is discussed.

Figure 12. Architectural overview of the distributed software system.

46

4 Results and Evaluation

In this chapter, the results obtained in the previous implementation chapter is discussed.

Multi-class classification ML/DL models are evaluated against Precision, Recall, and F1

Score metrics, to measure and compare their performance.

Results by ML/DL approach for Paris data are given in Table 6. It can be seen that among

the ML baselines, RF gave the highest results in all metrics, with over a 95% rate. KNN

follows RF with a 94% rate in all metrics. In terms of F1 Score, SVM gave the lowest

rate with 59.54%, and Logistic Regression followed that with 60.44%.

On the other hand, the ANN model has lower scores than KNN and RF models, with

89.46% precision, 87.94% recall, and 88.69% F1 score. However, it should be kept in

mind that ANN predicts the rates for each possible outcome, and it can predict results in

real-time, whereas kNN has a lazy-learning approach. Therefore it can’t be used for real-

time predictions, and RF cannot provide output classes rates.

Table 6. Paris Dataset Performance Results (%) by Model.

APPROACH PRECISION RECALL F1-SCORE

K-NEAREST NEIGHBOURS 94.10 94.13 94.11

LOGISTIC REGRESSION 66.65 72.16 60.44

RANDOM FOREST 95.54 95.56 95.41

SUPPORT VECTOR MACHINE 66.41 71.90 59.54

ANN 89.46 87.94 88.69

Figure 13 shows the visualization of the first five prediction results from the ANN

prediction engine for the Paris dataset. The values correspond to percentages of status

47

outputs. For example, the first predicted result can be interpreted as: “Charging station is

93.89% Disponible (Available)”.

48

Results by ML/DL approach for Estonia data are given in Table 7. It can be seen that ML

baseline models yielded very close results, and they all have high scores. However, the

ANN model slightly outperformed all of its competitors in precision and F1 score.

Table 7. Estonia Dataset Performance Results (%) by Model

APPROACH PRECISION RECALL F1-SCORE

K-NEAREST NEIGHBOURS 94.11 94.19 94.21

LOGISTIC REGRESSION 94.35 96.63 94.81

RANDOM FOREST 94.78 96.02 95.17

SUPPORT VECTOR MACHINE 95.15 96.32 95.75

ARTIFICIAL NEURAL NETWORK 96.04 95.74 95.89

Figure 14 shows the visualization of the first five prediction results from the ANN

prediction engine for the Estonia dataset. The values correspond to percentages of status

outputs. For example, the first predicted result can be interpreted as: “Charging station is

99.69% Available”.

Figure 13. ANN model prediction results for the Paris dataset.

49

50

Figure 14. ANN model prediction results for the Estonia dataset.

As can be seen from the results, the results obtained in this thesis work outperform

existing literature reviews for all the evaluation metrics: precision, recall and F1 score.

Models have different evaluation scores for Paris and Estonia datasets because those have

various features. However, the Estonia dataset has higher scores in general because it can

be considered a richer dataset with many additional features i.e., price per kWh, Socket

Types, etc.

Although the ANN model has slightly lower scores than RF and KNN in evaluation

metrics for Paris dataset, it can perform predictions in real-time, on the contrary of KNN’s

lazy-learning approach, and it allows results to be provided as a percentage for each

output class, which is a highly preferred feature. Moreover, the ANN model is likely to

perform better with future improvements, when more records or more complex features

are in the dataset.

51

5 Summary

This thesis paper started with discussing literature review and state-of-the-artwork

regarding availability prediction or related topics of EV and its surrounding infrastructure

altogether with their main contributions, weaknesses, and models, methods, dataset they

used. In addition to that, prevalent and well-proven machine learning and deep learning

algorithms and techniques, tools used in those state-of-the-art papers are examined

comprehensively in the same chapter. With the extensive literature scan, a base and

justification are created to implement real-time availability prediction of electric vehicle

charging stations, which consists of a scalable prediction engine integrated into a

distributed server-side software application. In the implementation part, data scraping

from different sources, creation of datasets, feature engineering applied and the data

model is thoroughly discussed. Later, applying baseline machine learning models to

preprocessed data is explained, which were discussed in detail in related works chapter.

Next, the building and training of the Artificial Neural Networks model, which

corresponds to the actual prediction engine, is reported. The last part of the

implementation chapter examines integration with distributed server-side software.

Finally, in the previous chapter, the results are demonstrated visually, and commonly used

metrics evaluates performances of different models. The desired outcome is achieved by

a prediction engine built by an artificial neural network, as it can display probabilities of

electric vehicle charging station availabilities, with high evaluation scores, outperforming

existing works in the literature.

For future work, many possibilities exist regarding improving the work that has been

performed in this thesis. For example, the data scraping and feature engineering parts

were primarily performed manually. Further improvements are possible for automatizing

these processes. For instance, features that constitute importance and are not as critical

could be detected automatically, and differences could be logged when a specific feature

is excluded. That would, in the end, improve the model’s quality, accuracy and reliability

even more. Moreover, the prediction engine is only implemented for Paris and Estonia,

but it can be easily applied to different cities or countries in the future.

52

References

[1] IEA, “Global EV Outlook 2021,” IEA, Paris, 2021.

[2] Forbes, “Every Automaker’s EV Plans Through 2035 And Beyond,” [Online].

Available: https://www.forbes.com/wheels/news/automaker-ev-plans/.

[3] F. Schulz and J. Rode, “Public charging infrastructure and electric vehicles in

Norway,” Energy Policy, vol. 160, 2022.

[4] M. Henlock, “Strong link between charging infrastructure,” 2019. [Online].

Available: https://www.nordicenergy.org/wp-content/uploads/2019/04/Charging-

infrastructure-and-adoption-of-electric-vehicles_web.pdf.

[5] F. Soldan, E. Bionda, G. Mauri and S. Celacshi, “Short-term forecast of EV

charging stations occupancy probability using big data streaming analysis.,”

2021.

[6] A. Sao, N. Tempelmeier and E. Demidova, “Deep Information Fusion for

Electric Vehicle Charging Station Occupancy Forecasting,” 2021.

[7] F. Qiao and S. Lin, “Data-driven prediction of fine-grained EV charging

behaviors in public charging stations: Poster,” Proceedings of the Twelfth ACM

International Conference on Future Energy Systems (e-Energy '21), pp. 276-277,

2021.

[8] S. Shahriar, A. Al-Ali, A. H. Osman, D. Salam and N. Mais, “Prediction of EV

Charging Behavior Using Machine Learning,” IEEE Access, vol. 9, pp. 111576-

111586, 2021.

[9] Caltech, “Adaptive Charging Network Dataset,” [Online]. Available:

https://ev.caltech.edu/dataset.

[10] Y. Zhao, Z. Wang, Z.-J. M. Shen and F. Sun, “Data-driven framework for large-

scale prediction of charging energy in electric vehicles,” Applied Energy, vol.

282, 2021.

[11] A. Almaghrebi, F. Aljuheshi, M. Rafaie, K. James and M. Alahmad, “Data-

Driven Charging Demand Prediction at Public Charging Stations Using

Supervised Machine Learning Regression Methods,” Energies, vol. 13, 2020.

[12] Y. Kim and K. Sahm, “Forecasting Charging Demand of Electric Vehicles Using

Time-Series Models,” Energies, vol. 14, 2021.

[13] IBM, “Machine Learning,” 15 July 2020. [Online]. Available:

https://www.ibm.com/cloud/learn/machine-learning.

[14] Berkeley School of Information, “What Is Machine Learning?,” 26 June 2020.

[Online]. Available: https://ischoolonline.berkeley.edu/blog/what-is-machine-

learning/.

[15] J. Nabi, “Machine Learning — Multiclass Classification with Imbalanced

Dataset,” 22 December 2018. [Online]. Available:

https://towardsdatascience.com/machine-learning-multiclass-classification-with-

imbalanced-data-set-29f6a177c1a.

53

[16] “Multi-class Classification - One-vs-All & One-vs-One,” [Online]. Available:

https://wadhwatanya1234.medium.com/multi-class-classification-one-vs-all-one-

vs-one-993dd23ae7ca.

[17] Wikipedia, “k-nearest neighbors algorithm,” [Online]. Available:

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.

[18] O. Harrison, “Machine Learning Basics with the K-Nearest Neighbors

Algorithm,” 2018. [Online]. Available: https://towardsdatascience.com/machine-

learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761.

[19] L.-Y. Hu, M.-W. Huang, K. Shih-Wen and T. Chih-Fong, “The distance function

effect on k-nearest neighbor classification for medical datasets,” SpringerPlus,

vol. 5, no. 1, p. 1304, 2016.

[20] A. Band, “How to find the optimal value of K in KNN?,” 23 May 2020. [Online].

Available: https://towardsdatascience.com/how-to-find-the-optimal-value-of-k-

in-knn-35d936e554eb.

[21] I. Paryudi, “What Affects K Value Selection In K-Nearest Neighbor,”

International Journal of Scientific & Technology Research, vol. 8, no. 7, 2019.

[22] J. Brownlee, “Multinomial Logistic Regression With Python,” 1 January 2021.

[Online]. Available: https://machinelearningmastery.com/multinomial-logistic-

regression-with-python/.

[23] “Logistic Regression,” [Online]. Available:

https://www.saedsayad.com/logistic_regression.htm.

[24] T. Yiu, “Understanding Random Forest,” 12 June 2019. [Online]. Available:

https://towardsdatascience.com/understanding-random-forest-58381e0602d2.

[25] N. Donges, “A Complete Guide to the Random Forest Algorithm,” 22 July 2021.

[Online]. Available: https://builtin.com/data-science/random-forest-algorithm.

[26] S. E. R, “Understanding Random Forest,” 17 June 2021. [Online]. Available:

https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/.

[27] J. Brownlee, “A Gentle Introduction to XGBoost for Applied Machine

Learning,” 17 August 2016. [Online]. Available:

https://machinelearningmastery.com/gentle-introduction-xgboost-applied-

machine-learning/.

[28] S. Ray, “Understanding Support Vector Machine(SVM) algorithm from

examples (along with code),” [Online]. Available:

https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-

machine-example-code/.

[29] R. Gandhi, “Support Vector Machine — Introduction to Machine Learning

Algorithms,” 7 June 2018. [Online]. Available:

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-

learning-algorithms-934a444fca47.

[30] “Support-vector machine,” [Online]. Available:

https://en.wikipedia.org/wiki/Support-vector_machine.

[31] E. Kavlakoglu, “AI vs. Machine Learning vs. Deep Learning vs. Neural

Networks: What’s the Difference?,” 7 May 2020. [Online]. Available:

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-

neural-networks.

[32] IBM, “Convolutional Neural Networks,” [Online]. Available:

https://www.ibm.com/topics/convolutional-neural-networks.

54

[33] R. Yamashita, M. Nishio, K. Togashi and R. K. G. Do, “Convolutional neural

networks: an overview and application in radiology,” Insights Imaging, no. 9, pp.

611-629, 2018.

[34] IBM, “Recurrent Neural Networks,” [Online]. Available:

https://www.ibm.com/topics/recurrent-neural-networks.

[35] S. Amidi and A. Amidi, “Recurrent Neural Networks cheatsheet,” [Online].

Available: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-

neural-networks.

[36] “Neural network models (supervised),” [Online]. Available: https://scikit-

learn.org/stable/modules/neural_networks_supervised.html.

[37] “Evaluation Metrics,” [Online]. Available: https://deepai.org/machine-learning-

glossary-and-terms/evaluation-metrics.

[38] “Precision and recall,” [Online]. Available:

https://en.wikipedia.org/wiki/Precision_and_recall.

[39] A. Kumar, “Accuracy, Precision, Recall & F1-Score – Python Examples,” 1

October 2021. [Online]. Available: https://vitalflux.com/accuracy-precision-

recall-f1-score-python-example/.

[40] “What Is Data Scraping and How Can You Use It?,” [Online]. Available:

https://www.targetinternet.com/what-is-data-scraping-and-how-can-you-use-it/.

[41] “Requests: HTTP for Humans,” [Online]. Available: https://docs.python-

requests.org/en/latest/.

[42] “csv — CSV File Reading and Writing,” [Online]. Available:

https://docs.python.org/3/library/csv.html.

[43] “Belib' - Charging points for electric vehicles - Real-time availability,” [Online].

Available: https://opendata.paris.fr/explore/dataset/belib-points-de-recharge-

pour-vehicules-electriques-disponibilite-temps-

reel/information/?disjunctive.statut_pdc&disjunctive.postal_code&disjunctive.arr

ondissement.

[44] “Belib,” [Online]. Available: https://belib.paris/home.

[45] “Open Data Commons Legal Tools For Open Data,” [Online]. Available:

https://opendatacommons.org/licenses/odbl/.

[46] “Belib API,” [Online]. Available: https://opendata.paris.fr/explore/dataset/belib-

points-de-recharge-pour-vehicules-electriques-disponibilite-temps-

reel/api/?disjunctive.statut_pdc&disjunctive.arrondissement.

[47] [Online]. Available: https://enefitvolt.com/en/elektriauto-avalik-laadimine.

[48] “Feature Engineering,” [Online]. Available: https://www.omnisci.com/technical-

glossary/feature-engineering.

[49] “About pandas,” [Online]. Available: https://pandas.pydata.org/about/.

[50] L. Buitinck et al., “API design for machine learning software: experiences from

the scikit-learn project,” 2013.

[51] “pandas.get_dummies,” [Online]. Available:

https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html.

[52] [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html.

55

[53] [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.htm

l.

[54] [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.precision_score.html.

[55] “About Keras,” [Online]. Available: https://keras.io/about/.

[56] Google, “Multi-Class Neural Networks: Softmax,” [Online]. Available:

https://developers.google.com/machine-learning/crash-course/multi-class-neural-

networks/softmax.

[57] “matplotlib,” [Online]. Available: https://github.com/matplotlib/matplotlib.

[58] “Documentation,” [Online]. Available: https://kafka.apache.org/documentation/.

[59] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks - the ELI5

way,” 15 December 2018. [Online]. Available: https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53.

56

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Fatih Intekin

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Real-Time Availability Prediction of Electric Vehicle Charging Spots”

supervised by Sadok Ben Yahia and Wissem Inoubli

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

03.01.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

57

Appendix 2 – Data Scraper Code for Paris Belib Dataset

import requests

import json

import csv

base_api_url = "https://opendata.paris.fr/api/records/1.0/search/"

url_query = "?dataset=belib-points-de-recharge-pour-vehicules-electriques-
disponibilite-temps-reel&q=&facet=statut_pdc&rows=2000"

url = base_api_url + url_query

translation = {

 233: "e",

 235: "e",

 231: "c",

 201: "E",

 232: "e",

 239: "i",

 226: "a"

}

if __name__ == "__main__":

 response = requests.get(url)

 json_data = json.loads(response.text)

 if "records" in json_data:

 records = json_data["records"]

 with open('output.csv', 'a', newline='') as f:

 writer = csv.writer(f)

 for record in records:

 fields = record["fields"]

 if "ad_station" not in fields:

 continue

 writer.writerow(

 [fields["id_pdc"],

 fields["statut_pdc"].translate(translation),

 fields["ad_station"].translate(translation),

 fields["postal_code"],

 record["geometry"]["coordinates"][1],

 record["geometry"]["coordinates"][0],

 fields["last_updated"],

 record["record_timestamp"]

])

 else:

 print(response.text)

58

Appendix 3 – Data Scraper Code for Estonia Enefit Volt

Dataset

import time

import requests

import csv

from datetime import datetime

from requests.structures import CaseInsensitiveDict

bounds_url = "https://account.enefitvolt.com/stationFacade/findSitesInBounds"

site_id_url =
"https://account.enefitvolt.com/stationFacade/findStationsBySiteId"

station_id_url =
"https://account.enefitvolt.com/stationFacade/findStationById"

headers = CaseInsensitiveDict()

headers["authority"] = "account.enefitvolt.com"

headers["sec-ch-ua"] = '"Chromium";v="94", "Google Chrome";v="94", ";Not A
Brand";v="99"'

headers["x-csrf-token"] = "f0394462-8ce4-4455-bb13-8da5d9e7f189"

headers["sec-ch-ua-mobile"] = "?0"

headers["user-agent"] = "Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36"

headers["content-type"] = "application/json"

headers["accept"] = "application/json, text/javascript, */*; q=0.01"

headers["x-requested-with"] = "XMLHttpRequest"

headers["sec-ch-ua-platform"] = '"Windows"'

headers["origin"] = "https://account.enefitvolt.com"

headers["sec-fetch-site"] = "same-origin"

headers["sec-fetch-mode"] = "cors"

headers["sec-fetch-dest"] = "empty"

headers["referer"] =
"https://account.enefitvolt.com/findCharger?59.7690375,24.5722210,6z"

headers["accept-language"] = "tr,en-US;q=0.9,en;q=0.8,et;q=0.7"

headers["cookie"] =
"_vwo_uuid_v2=D143809F5A14894938F82877C063F27A7|9b131316e37077900c1ba99e1cf24
6fe; _ga=GA1.2.1979870556.1632123935;
_vwo_uuid=D143809F5A14894938F82877C063F27A7;
_vwo_ds=3%3Aa_0%2Ct_0%3A0%241632123934%3A16.35813981%3A%3A%3A2_0%2C1_0%3A1;
_gcl_au=1.1.1498007280.1632123977; _vis_opt_exp_3_combi=1;
cusid=1638032678770; cuvon=1638032678774; _vis_opt_s=8%7C;
_vis_opt_test_cookie=1; _vwo_sn=5908742%3A1; _gid=GA1.2.264020397.1638032680;
_dc_gtm_UA-1116889-58=1; JSESSIONID=3A183C0428FD8664D5B2215C3AA8A14A"

bounds_data =
'{"filterByIsManaged":true,"filterByBounds":{"northEastLat":60.74995507745642
,"northEastLng":35.33882252391387,"southWestLat":55.78451290564244,"southWest
Lng":14.267045180163871}}'

resp = requests.post(bounds_url, headers=headers, data=bounds_data).json()

records = resp['data'][1]

59

with open('ee.csv', 'a', newline='', encoding='utf-8') as f:

 writer = csv.writer(f)

 for number, record in enumerate(records):

 site_id_data = '{"filterByIsManaged":true,"filterBySiteId":"' +
str(record['id']) + '"}'

 site_id_resp = requests.post(site_id_url, headers=headers,
data=site_id_data).json()

 stations = site_id_resp['data'][1]

 if number % 8 == 1:

 time.sleep(2)

 for station in stations:

 station_id = station['id']

 url = station_id_url + '?stationId=' + str(station_id)

 station_id_resp = requests.get(url, headers=headers).json()

 data = station_id_resp['data']

 id = data['id']

 name = data['siteDisplayName'].strip()

 address = data['addressAddress1'] + ', ' + data['addressCity']

 charging_speed = data['chargingSpeedId']

 in_maintenance = data['inMaintenance']

 lat = data['latitude']

 lon = data['longitude']

 access_level = data['siteStationAccessLevel']

 station_status = data['stationStatusId']

 socket_count = len(data['stationSockets'])

 socket_1 = { "name": "", "status": "", "type": "",
"charging_mode": "", "max_power": "", "kwh_price": "" }

 socket_2 = socket_1.copy()

 sockets = data['stationSockets']

 if sockets[0]:

 socket_1['name'] = sockets[0]['name']

 socket_1['status'] = sockets[0]['socketStatusId']

 socket_1['type'] =
sockets[0]['stationModelSocketSocketTypeId']

 socket_1['charging_mode'] =
sockets[0]['stationModelSocketChargingMode']

 socket_1['max_power'] =
sockets[0]['stationModelSocketMaximumPower']

 socket_1['kwh_price'] =
sockets[0]['socketPrices'][0]['kwhPrice']

 if sockets[1]:

 socket_2['name'] = sockets[1]['name']

 socket_2['status'] = sockets[1]['socketStatusId']

 socket_2['type'] =
sockets[1]['stationModelSocketSocketTypeId']

60

 socket_2['charging_mode'] =
sockets[1]['stationModelSocketChargingMode']

 socket_2['max_power'] =
sockets[1]['stationModelSocketMaximumPower']

 socket_2['kwh_price'] =
sockets[1]['socketPrices'][0]['kwhPrice']

 writer.writerow(

 [id, name, station_status, address, charging_speed,
in_maintenance, lat, lon, access_level, socket_count,

 socket_1['name'], socket_1['status'], socket_1['type'],
socket_1['charging_mode'], socket_1['max_power'], socket_1['kwh_price'],

 socket_2['name'], socket_2['status'], socket_2['type'],
socket_2['charging_mode'], socket_2['max_power'], socket_2['kwh_price'],

 datetime.now()]

)

61

Appendix 4 – Data Pre-processing Code for Paris Dataset

import pandas as pd

%%

Read the raw data

data = pd.read_csv("./paris.csv")

data.head(10)

Datetime conversions

data["Date"] = pd.to_datetime(data["Last Updated"])

data["Date"] = data["Date"].dt.strftime("%Y-%m-%dT%H:%M:%S")

data['Year'] = pd.DatetimeIndex(data['Date']).year

data['Month'] = pd.DatetimeIndex(data['Date']).month

data['Day'] = pd.DatetimeIndex(data['Date']).day

data['Hour'] = pd.DatetimeIndex(data['Date']).hour

data['Minute'] = pd.DatetimeIndex(data['Date']).minute

data['Second'] = pd.DatetimeIndex(data['Date']).second

Drop redundant columns

df = data.drop(labels=["Date", "ID", "Last Updated", "Record Timestamp",
"Postal Code", "Address"], axis=1)

df.info()

Geolocation normalization

scaler = MinMaxScaler(feature_range=(0, 1))

cols = ["Latitude", "Longitude"]

df[cols] = scaler.fit_transform(df[cols])

df = pd.get_dummies(df, columns=["Year", "Month", "Day", "Hour", "Minute",
"Second"])

df.head()

df.to_csv('./paris_processed.csv', index=False)

62

Appendix 5 – Data Pre-processing Code for Estonia Dataset

import pandas as pd

from sklearn import preprocessing

from sklearn.preprocessing import MinMaxScaler

data = pd.read_csv("./ee.csv")

Datetime conversions

data["Date"] = pd.to_datetime(data["Recorded Timestamp"])

data["Date"] = data["Date"].dt.strftime("%Y-%m-%d %H:%M:%S")

data['Year'] = pd.DatetimeIndex(data['Date']).year

data['Month'] = pd.DatetimeIndex(data['Date']).month

data['Day'] = pd.DatetimeIndex(data['Date']).day

data['Hour'] = pd.DatetimeIndex(data['Date']).hour

data['Minute'] = pd.DatetimeIndex(data['Date']).minute

data['Second'] = pd.DatetimeIndex(data['Date']).second

Drop redundant columns

df = data.drop(labels=["ID", "Name", "Address", "In Maintenance",

 "Socket Count", "Socket 1 Status", "Socket 1 Name",
"Socket 2 Status", "Socket 2 Name",

 "Date", "Recorded Timestamp"], axis=1)

Geolocation normalization

df["Latitude"] = df["Latitude"].apply(lambda x: x/100)

df["Longitute"] = df["Longitute"].apply(lambda x: x/100)

df.head()

le = preprocessing.LabelEncoder()

df["Charging Speed"] = le.fit_transform(df["Charging Speed"])

df["Access Level"] = le.fit_transform(df["Access Level"])

df["Socket 1 Type"] = le.fit_transform(df["Socket 1 Type"])

df["Socket 1 Charging Mode"] = le.fit_transform(df["Socket 1 Charging Mode"])

df["Socket 2 Type"] = le.fit_transform(df["Socket 2 Type"])

df["Socket 2 Charging Mode"] = le.fit_transform(df["Socket 2 Charging Mode"])

scaler = MinMaxScaler(feature_range=(0, 1))

cols = [

 "Socket 1 Max Power (kWh)", "Socket 2 Max Power (kWh)",

 "Socket 1 kWh Price", "Socket 2 kWh Price"]

df[cols] = scaler.fit_transform(df[cols])

df = pd.get_dummies(df, columns=["Year", "Month", "Day", "Hour", "Minute",
"Second"])

df.to_csv('./ee_processed.csv', index=False)

63

Appendix 6 – Baseline Models Code

from sklearn import preprocessing, metrics, svm

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import LinearSVC

from sklearn.model_selection import train_test_split

import pandas as pd

import numpy as np

Read the processed data

df = pd.read_csv('./paris_processed.csv')

df = pd.read_csv('./ee_processed.csv')

Label encoding and creating of output

le = preprocessing.LabelEncoder()

Y = le.fit_transform(df["Status"])

Input columns

X = df.drop(["Status"], axis=1).values

Train Test Split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3) #
70% training and 30% test

K-NEAREST NEIGHBOUR

knn = KNeighborsClassifier(n_neighbors=1, n_jobs=-1)

knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

print("Precision:", metrics.precision_score(y_test, y_pred,
average='weighted'))

print("Recall:", metrics.recall_score(y_test, y_pred, average='weighted'))

print("F1 Score:", metrics.f1_score(y_test, y_pred, average='weighted'))

LOGISTIC REGRESSION

logisticRegr = LogisticRegression(solver='lbfgs', max_iter=15000)

logisticRegr.fit(X_train, y_train)

y_pred = logisticRegr.predict(X_test)

print("Precision:", metrics.precision_score(y_test, y_pred,
average='weighted', labels=np.unique(y_pred)))

print("Recall:", metrics.recall_score(y_test, y_pred, average='weighted',
labels=np.unique(y_pred)))

print("F1 Score:", metrics.f1_score(y_test, y_pred, average='weighted',
labels=np.unique(y_pred)))

RANDOM FOREST

clf = RandomForestClassifier(n_estimators=500, verbose=10)

clf.fit(X_train,y_train)

y_pred=clf.predict(X_test)

64

print("Precision:", metrics.precision_score(y_test, y_pred,
average='weighted', labels=np.unique(y_pred)))

print("Recall:", metrics.recall_score(y_test, y_pred, average='weighted',
labels=np.unique(y_pred)))

print("F1 Score:", metrics.f1_score(y_test, y_pred, average='weighted',
labels=np.unique(y_pred)))

SUPPORT-VECTOR MACHINE

lsvc = LinearSVC(verbose=1, max_iter=15000)

lsvc.fit(X_train, y_train)

y_pred=lsvc.predict(X_test)

print("Precision:", metrics.precision_score(y_test, y_pred,
average='weighted', labels=np.unique(y_pred)))

print("Recall:", metrics.recall_score(y_test, y_pred, average='weighted',
labels=np.unique(y_pred)))

print("F1 Score:", metrics.f1_score(y_test, y_pred, average='weighted',
labels=np.unique(y_pred)))

65

Appendix 7 – ANN Model Code

import pandas as pd

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import np_utils

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from keras import backend as K

import matplotlib.pyplot as plt

import tensorflow as tf

Read the data

df = pd.read_csv('./ee_processed.csv')

df.head()

Label encoding the output value

encoder = LabelEncoder()

encoded_Y = encoder.fit_transform(df["Status"])

dummy_Y = np_utils.to_categorical(encoded_Y)

Splitting training and test data

X = df.drop(["Status"], axis=1).values

X_train, X_test, y_train, y_test = train_test_split(X, dummy_Y,
stratify=dummy_Y)

Recall metric function

def recall_score(y_actual, y_predicted):

 pp = B.sum(B.round(B.clip(y_actual, 0, 1)))

 tp = B.sum(B.round(B.clip(y_actual * y_predicted, 0, 1)))

 return tp / (pp + B.epsilon())

Precision metric function

def precision_score(y_actual, y_predicted):

 prep = B.sum(B.round(B.clip(y_predicted, 0, 1)))

 tp = B.sum(B.round(B.clip(y_actual * y_predicted, 0, 1)))

 return tp / (prep + B.epsilon())

F1 score metric function

def f1_score(y_actual, y_predicted):

 recall = recall_score(y_actual, y_predicted)

 precision = precision_score(y_actual, y_predicted)

 return ((precision * recall) / (precision + recall + B.epsilon())) * 2

Build and compile the model

cce = tf.keras.losses.CategoricalCrossentropy(from_logits=False)

sgd = tf.keras.optimizers.SGD(learning_rate=0.3)

66

model = Sequential()

model.add(Dense(256, input_dim=26, activation='relu'))

model.add(Dense(8, activation='softmax'))

model.compile(loss="categorical_crossentropy",

optimizer=sgd,

metrics=[f1_m,

tf.keras.metrics.Precision(),

tf.keras.metrics.Recall()])

model.summary()

Fitting and evaluating the model

model.fit(X_train,y_train,verbose=1,batch_size=10, epochs=20)

model.evaluate(X_test,y_test,verbose=1,batch_size=4000)

y_pred=model.predict(X_test)

Status dictionary

status_dict={}

status_dict[0]='AVAILABLE'

status_dict[1]='UNKNOWN'

status_dict[2]='OCCUPIED'

status_dict[3]='CHARGING'

status_dict[4]='PAUSED'

status_dict[5]='FAULTED'

status_dict[6]='UNAVAILABLE'

status_dict[7]='PREPARING'

Visualization of the results

def
percentageOfPredictedClasses(list_,describe_by_text=False,figure=True,limit=5
):

 list_=list_[:limit]

 for rw in list_:

 tempo_dict={}

 for k in range(len(rw)):

 tempo_dict[rw[k]]=k

 rw=np.sort(rw)[::-1]

 x_temp,y_tempo=[],[]

 for k in range(len(rw)):

 x_temp.append(status_dict[tempo_dict[rw[k]]])

 y_tempo.append(rw[k])

 if describe_by_text:

 print(status_dict[tempo_dict[rw[k]]],':',rw[k],'%')

 if figure:

 fig, ax = plt.subplots(figsize=(7,4))

 # Horizontal Bar Plot

 ax.barh(x_temp,y_tempo, color='crimson')

 # Remove axes splines

67

 for s in ['top','bottom','left','right']:

 ax.spines[s].set_visible(False)

 # Remove x,y Ticks

 ax.xaxis.set_ticks_position('none')

 ax.yaxis.set_ticks_position('none')

 # Add padding between axes and labels

 ax.xaxis.set_tick_params(pad=5)

 ax.yaxis.set_tick_params(pad=10)

 # # Add x,y gridlines

 ax.grid(b=True, color='grey', linestyle='-.', linewidth=0.5,
alpha=0.2)

 # Show top values

 ax.invert_yaxis()

 # Add annotation to bars

 for i in ax.patches:

 ax.text(i.get_width(), i.get_y()+0.5,
str(round((i.get_width()), 4)),

 fontsize=10, fontweight='bold', color='grey')

 # Add Text watermark

 fig.text(0.9, 0.15, '%', fontsize=12, color='grey', ha='right',
va='bottom', alpha=0.5)

 # # Show Plot

 plt.show()

 print('#...#')

percentageOfPredictedClasses(y_pred,describe_by_text=False,figure=True,limit=
20)

	Author’s declaration of originality
	Abstract
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Problem Definition
	1.2 Architectural Overview
	1.3 Main Contributions
	1.4 Structure of the Manuscript

	2 Literature Review
	2.1 State of the Art
	2.2 Algorithms and Techniques Overview
	2.2.1 Supervised Machine Learning Algorithms
	2.2.2 Classification Algorithms
	2.2.3 K-Nearest Neighbours (kNN)
	2.2.4 Logistic Regression
	2.2.5 Random Forest
	2.2.6 Support Vector Machine (SVM)
	2.2.7 Deep Learning and Artificial Neural Networks
	2.2.7.1 Convolutional Neural Networks
	2.2.7.2 Recurrent Neural Networks
	2.2.7.3 Multi-layer Perceptron

	2.2.8 Evaluation Metrics
	2.2.8.1 Precision
	2.2.8.2 Recall
	2.2.8.3 F1-Score

	2.3 Conclusion

	3 Implementation
	3.1 Data Scraping
	3.1.1 Belib – Paris Data Source
	3.1.2 Enefit VOLT – Estonia Data Source

	3.2 Dataset
	3.3 Feature Engineering
	3.4 Baselines
	3.5 Prediction Engine
	3.6 Distributed Server-Side Software
	3.7 Conclusion

	4 Results and Evaluation
	5 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Data Scraper Code for Paris Belib Dataset
	Appendix 3 – Data Scraper Code for Estonia Enefit Volt Dataset
	Appendix 4 – Data Pre-processing Code for Paris Dataset
	Appendix 5 – Data Pre-processing Code for Estonia Dataset
	Appendix 6 – Baseline Models Code
	Appendix 7 – ANN Model Code

