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Abstract 

 
The topic of the master's thesis is "Application of Machine Learning Methods to Industrial 

Equipment Fault Detection". The thesis aims to find methods based on machine learning 

techniques for predicting the occurrence of malfunctions on the equipment during 

operation. This topic was formulated on the personal initiative of the author. The data for 

the work was collected at Enefit Power AS, which is part of the Eesti Energia group. This 

research proposes a methodology for diagnostics and fault detection based on machine 

learning techniques such as linear regression, logistic regression, Random Forest, etc. 

Additionally, the research presents the anomaly detection method developed initially in 

R, and then technologically prepared for implementation at the enterprise production 

process. 

As a result of the work, it was found that the PPR and linear regression algorithms perform 

best based on the sample data. PPR model was 94.7% on the test data. The linear 

regression algorithm after additional training showed the model descriptive ability on the 

test data by 90.79%. Then a linear regression algorithm was integrated into the company's 

production process to detect equipment anomalies. 

Keywords: industrial equipment, malfunction detection, machine learning models, R, 

anomaly detection, master's thesis.  

This thesis is written in English and is 64 pages long, including 8 chapters, 67 figures and 

7 tables. 
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Annotatsioon 

 

Masinõppe meetodite rakendamine tööstusseadmete rikete 

tuvastamiseks 
 

Magistritöö teema on "Masinõppe meetodite rakendamine tööstusseadmete rikete 

tuvastamiseks". Lõputöö eesmärk on leida meetodid seadmete talitlushäirete esinemise 

prognoosimiseks töötamise ajal. Tootmisprotsesside mitmekesisus tähendab paljude 

seadmete kasutamist, mis nõuavad õigeaegset hooldust. Mis omakorda põhineb 

tänapäevaste diagnostikameetodite kasutamisel rikete tuvastamisel.  See teema sõnastati 

autori algatusel. Andmed töö jaoks koguti Eesti Energia kontserni ettevõttes Enefit Power 

AS. Selles uurimistöös pakutakse välja rikete tuvastamise metoodika, mis põhineb 

masinõppe tehnikatel nagu lineaarne regressioon, logistiline regressioon, juhuslik mets 

jne. Lisaks tutvustatakse uuringus anomaaliate tuvastamise meetodit, mis on algselt välja 

töötatud R-is ja seejärel tehnoloogiliselt ette valmistatud ettevõtte tootmisprotsessis 

rakendamiseks. Nende uuringute abil lahendatavate praktiliste probleemide ring on väga 

lai. Diagnostika, tõrke tuvastamine ei ole täielik loetelu nendest valdkondadest, kus selle 

töö tulemusi saab kasutada. 

Samuti autor uuris oma töös rikete tuvastamise kahte erinevat meetodit, võrdles neid 

omavahel tõhususe ja kasutusmugavuse osas ning kirjeldas meetodite eeliseid ja 

puuduseid. Töö tulemusena leiti, et PPR ja lineaarse regressiooni algoritmid toimivad 

kõige paremini. PPR algoritmi mudeli kirjeldusvõime testandmetel oli 94.7%. Lineaarse 

regressiooni algoritm pärast mudeli täiendavat õppimist näitas mudeli kirjeldusvõime 

testandmetel 90,79%. Lineaarse regressiooni muudel oli integreeritud ettevõtte 

tootmisprotsessi seadmete rikete tuvastamiseks. 

Olga Dunajeva osales aktiivselt Tallinna Tehnikaülikooli Virumaa Kolledži tööjuhina. 

Tema akadeemilised teadmised andsid olulise panuse töösse.  

Märksõnad: tööstusseandmed, rikete tuvastamine, masinõppemudelid, R, anomaaliate 

tuvastamine, magistritöö. 

See lõputöö on kirjutatud inglise keeles ja on 64 lehekülge pikk, sealhulgas 8 peatükki, 

67 joonist ja 7 tabelit. 
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List of abbreviations and terms 

 
APCS Automatic process control system 

BIT Business Info Technology 

BIT 

IO 

Business Info Technology 

Artificial intelligence  

LR 

LNG 

Linear regression 

Liquefied natural gas 

ML 

MRO 

RMSE  

𝑅2 

Machine learning 

Maintenance and repair 

Root mean square error 

Determination coefficient 

RF Random forest, ML algorithm 

TG Turbine generator 
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1 Introduction 

The topic of this master's thesis - Application of Machine Learning Methods to Industrial 

Equipment Fault Detections. The thesis is based on data from the production process of 

the Enefit Power AS enterprise, which is part of the Eesti Energia group, but the results 

of the research can also be applied to the production processes of other enterprises.  

The Eesti Energia group is the largest energy company in Estonia. The main activity of 

the company is the production of electricity, as well as liquid fuels such as shale oil and 

gasoline. The variety of production processes implies the use of a wide range of 

equipment that requires timely maintenance. Which, in turn, should be based on modern 

diagnostic methods. The research main idea was formed from the analysis of the real 

situation at the company, which the operating personnel faced during the equipment 

operation. The situation occurred at the Estonian Power Plant in 2017 during the turbine 

No. 8 operation. During work, the operational staff could not identify the malfunction 

occurrence on the equipment in time. That caused difficulties in the equipment operation 

and led to unforeseen costs for the enterprise. This situation clearly shows the need to 

predict the malfunctions occurrence on the equipment. Necessary to find and investigate 

a method that will inform the operating personnel about the equipment condition 

deterioration before the consequences are tangible for the enterprise. This served as the 

main motivation for writing this work, the relevance of which lies in the search for 

effective methods for detecting equipment malfunctions at the initial stage of their 

formation. 

Machine learning (ML) is the path to smarter and faster data-driven decision-making 

when performing predictive maintenance [1]. An excellent example of the 

implementation of ML technology is Santos, an oil company in Australia, specializing in 

the exploration and production of oil and gas, the production of petroleum products, and 

liquefied natural gas (LNG). The company's ML technologies were used to predict 

equipment failure and increase production. With data from equipment, the company can 

predict equipment failure with 87% accuracy in 48 hours. Using this time as a buffer, the 

company can initiate preventive maintenance so that the equipment continues to operate 

and maintain a constant production level [2]. 

This master's thesis aims to develop a methodology for detecting malfunctions of 

industrial equipment based on machine learning methods and techniques for its 
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implementation using the example of the Enefit Power AS enterprise. The use of machine 

learning methods to diagnose equipment malfunctions will allow Enefit Power AS to 

meet modern innovative standards. Nowadays these methods are not yet applied in the 

production process at the Eesti Energia group. Therefore, during the research, it was 

important to form a basis for introducing new methods into company daily life. 

To achieve this goal, the author set the following tasks: 

▪ Collect historical data on the production process for a sufficiently long period. 

▪ Study machine learning methods that are appropriate for the data and the chosen 

topic, create fault prediction models, and compare their performance. 

▪ Develop a methodology for detecting faults and technology for its implementation 

on the example of the enterprise Enefit Power AS. 

During this research, the author used such machine learning methods as linear and logistic 

regression, Random Forest (RF), neural networks, MARS, PPR. Based on the R 

programming language, the author has created fault prediction models, evaluated their 

efficiency, as well as the implementation possibility in the production process to Enefit 

Power AS. Based on this research, the author proposes a technique for detecting 

malfunctions and anomalies in the operation of industrial equipment, and technology for 

its implementation in the production process of an enterprise. The data was collected from 

the Enefit Power AS enterprise info servers. The practical part was implemented into 

Honeywell enterprise management system. 

This master's thesis includes several chapters. In Chapter 2 the other authors related works 

in this direction are indicated. Chapter 3 describes the process of collecting data and 

choosing the right machine learning methods for the planned task. Further, the work 

describes two independent research methods. Chapter 4 describes a method for detecting 

faults based on cases/precedents that have occurred on the equipment in previous 

operations. Chapter 5 discusses an alternative method for detecting equipment anomalies, 

which is well applicable to mechanisms where there is no precedents history. Chapter 6 

discusses the prospects and opportunities for further project development. Chapter 7 

summarizes the obtained results and compares the two methods for detecting equipment 

malfunctions, as well as describes the benefits of incorporating the technology into plant 

daily life and the business case. Chapter 8 summarizes the results of the entire project. 
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2 Related works 

The fault prediction topic on industrial equipment is popular, therefore, similar articles 

can be found in the public domain. The article "Прогнозирование отказов 

оборудования в условия малого количества поломок" published in the journal 

"Вестник Череповецкого государственного университета“, describes methods of 

creating models for predicting equipment failures based on the Random Forest ML 

algorithm. The article presents the main stages of model development and configuration. 

The model includes several sub-models that predict equipment failure using real and 

predictable sensor examples. A graph of the difference between actual and predicted 

signal values for the next period is used to identify failures and deviations. The model is 

trained on regular data, and the model is tuned on past failure data [3]. 

The TerraLink website offers an already developed special solution that can significantly 

reduce the number of downtime and malfunctions incidents, as well as reduce possible 

operating costs. The solution is a software product that collects, stores, and processes real-

time data, which is transferred to a prediction model, where the equipment failure 

probability is determined based on machine learning algorithms [4]. As a result, the user 

receives a full-fledged tool in the form of a dashboard that allows controlling 

technological processes and predict possible failures. A solution based on a mathematical 

model that allows identifying failures and equipment stops in advance. 

The article by Viktor Maltsev "Predictive analytics for the effective use of equipment" 

presents application examples of the ML methods to improve the enterprise asset 

management efficiency. Shows the benefits that companies have received after 

introducing the technology into their daily life. 

These advantages are: 

▪ improvement of exploration, production, 

▪ reduction of unplanned downtime, 

▪ optimization of equipment repairs, 

▪ cost reduction, 

▪ determination of the optimal operating conditions for the equipment, 

▪ development of long-term plans for capital and current repairs [2]. 
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The article uses many graphs, from which it is seen that predicting technologies have 

changed the activities of the enterprise towards a more economical distribution of existing 

assets. For some companies, it was possible to achieve a result when the prediction of 

failures occurred 48 hours before their actual occurrence. This is a very good indicator 

because during this time it is possible to manage preventive measures and prevent 

negative developments [2]. 

Anton Krudinov's presentation "Using data from sensors to predict the technical condition 

of equipment" paid much attention to strategies for carrying out maintenance and repairs 

of equipment. 

The presentation shows the following strategies: 

▪ work to failure, 

▪ scheduled maintenance in time, 

▪ planned maintenance according to operating time, 

▪ maintenance as per condition, 

▪ predictive maintenance [5]. 

The differences of the listed strategies from each other are shown. It also presents tasks 

and approaches to predicting the technical condition of the equipment. Approaches to 

predicting the technical condition of the equipment are divided in the article into two 

classes: machine learning and engineering calculation. Methods for detecting anomalies 

on equipment during operation and predicting failures are used for the machine learning 

class. For the class of engineering analysis, it is proposed to use Multiphysics simulation 

models [5]. 

The review of articles helped the author to broaden horizons in the field of industrial 

equipment diagnostics and to pick out some useful ideas for this work. The basic idea is 

that fault detection can be done in several ways. The first method is based on fault 

detection by precedents. The second method is based on detecting anomalies on the 

equipment. Each of their methods has its advantages and disadvantages. In this thesis, 

both techniques have been applied. The research involved data collected at the enterprise. 

Besides, the review of articles helped to better organize the research structure following 

the topic of the project. 
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3 Research strategy formation  

This research is divided into several subtasks that form the overall work structure. Each 

subtask is responsible for a specific stage in the project. An important aspect is that the 

result of a particular sub-task serves as a starting point for the next task. In general, the 

work takes on a strict sequence of steps, which is easy to navigate. 

For successful research work, it is necessary to divide the activities into certain steps. The 

thesis is conditionally divided into two stages. The first stage is preparatory. This stage 

includes the information collection, data collection and preparation in the form suitable 

for further research, suitable ML algorithms and their performance metrics selection. 

Below are the steps to prepare for the research: 

▪ collection information about existing data storage systems at the enterprise, 

▪ collection information about the equipment, 

▪ software selection, 

▪ data collection and preprocessing, 

▪ ML algorithms selection, 

▪ performance metrics selection for evaluating ML algorithms [6]. 

The preparatory research tasks stages are presented in Figure 1. 

 

Figure 1. Preparatory stages of research tasks. 

The second stage is associated with the research methodology itself. Previously collected 

data should be splitted into train and test samples. On this stage, the researcher creates 

ML models, which were identified in the preparatory phase. Each created model must be 

validated on a test sample. The algorithms performance is evaluated using selected 

metrics. Only after the model has proven its performance on the test dataset, it will be 

possible to start implementation it into the production process. At this stage begins the 
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model applied use phase. Control data is passed through the model to obtain valuable 

information for the enterprise. 

This chapter contains subtasks that are universal and should be performed regardless of 

the goal and further research progress. This will be done in the thesis next chapters, 

devoted to methods of detecting faults and anomalies on equipment. 

3.1 Collection information about existing storage systems at the 

enterprise 

At large enterprises, processes are divided into production segments, which cannot be 

controlled without modern automation and computer technology. An automated process 

control system (APCs) designed to control the enterprise [7]. 

As a rule, each control system includes information servers. The tasks of these servers are 

to collect and store process historical data with a certain discreteness. Information servers 

have functionality that allows providing necessary data about the process for the specified 

period. Each server has a different user interface. Therefore, the researcher task is to 

familiarize with the server’s functionality, as well as with the information that is available 

to the user. For this thesis, the Power and Oil Plants information server’s functionality 

was studied in detail.  

3.2 Collection information about the equipment 

Many rotating mechanisms are involved at the enterprise production processes. These can 

be turbine units, pumps, blowers, gas blowers, fans, etc. The most interesting for research 

are powerful rotating mehanisms, especially if these mechanisms are presented in the 

process in a single quantity. This equipment failure leads to a complete stop of the entire 

production process. Major equipment breakdown can lead to large financial losses for the 

enterprise. The subtask of the researcher is to identify the critical equipment involved in 

the process. For this purpose, the equipment is classified according to its importance. 

After classification should be paid attention to the equipment that is at the top of the 

criticality list. 

In this research, turbine units were identified as critical plant equipment. They are 

complex installations consisting of several units interacting with each other. Therefore, 
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the focus of further research is on this enterprise’s equipment. At other industrial 

enterprises, the key equipment may be alternative units, which are selected based on the 

specifics of a particular production process. 

3.3 Software selection 

Different software has different preferences for the data structure. In this research, the 

following two software products were used to create ML models: Weka and RStudio. 

Weka (short for Waikato Environment for Analysis Knowledge) is a modern platform for 

applied ML. This is free software, the advantage of which is that various ML models are 

already built into this product functionality. A distinctive feature of this platform is many 

tuning parameters for precise operating algorithm adjustment when constructing models, 

as well as when using them to generate predictive values [8]. 

RStudio is free software, based on the R programming language, and has a wide range of 

functionality for the researcher [9]. With R and RStudio data can be processed, analysed, 

and visualized. The product has a huge number of additional packages that can be used 

for various purposes in different research areas. The difference between these products 

lies in the ability of R and RStudio to organize research in the form of scripts executed in 

the form of program code. 

3.4 Data collection and preprocessing 

For this research, information obtained from different servers was presented in the form 

of tabular data stored in * .csv format. 

By no means always, the initial data received from the corporate repository have a clear 

structure. Besides, the raw data is often distorted and unreliable: it may contain values 

outside the acceptable ranges (noise), outliers, and missing values. Therefore, the task of 

preliminary preparation of the initial data often arises. Data preprocessing techniques 

usually refer to adding, removing, or transforming values. 

Data cleaning consists of identifying and removing errors and inconsistencies in the data 

to improve the sample quality. Invalid values may appear in the data because of the any 

sensors malfunction. Such values introduce errors in the research, can lead to inadequate 

statistics and incorrect conclusions and therefore should be removed from the dataset. The 
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second reason for deleting data is equipment transients’ modes such as starts, stops, and 

equipment checks, in which the equipment is unstable. Therefore, it is advisable to 

remove data from the samples referring to the equipment operation in transient modes.  

Missing or unreliable data are not always removed, sometimes replaced (imputed) with 

the mean or median. The choice of a particular method depends on the data amount and 

the appropriateness of their use in the research [10]. During the data cleansing phase, the 

researcher also converts data types, aggregate attributes, fills in missing values, and gets 

rid of noise and outliers [10]. 

Data transformations to reduce the effects of data skew, or outliers, can lead to significant 

model performance gains [11]. Variable conversion refers to data normalization or 

transformation. Normalization allows data to be scaled to a single range for further use in 

various machine learning models. In practice, the following normalizing attributes 

methods are most common: 

▪ Minimax - linear data transformation in the range [0...1], where the minimum and 

maximum scaled values correspond to 0 and 1, respectively, 

▪ Z-scaling data based on mean and standard deviation: Divide the difference 

between the variable and the mean by the standard deviation [12]. 

Some models perform better with normalized data and give better predictive results [12]. 

3.5 Machine learning algorithms selection 

ML model is the result obtained by training a ML algorithm using data [6]. The machine 

learning algorithms used in this research are described in subsections 3.5.1–3.5.5. 

3.5.1 Logistic regression 

The logistic regression model is designed to solve the problem of predicting the value of 

the continuous dependent variable Y based on the values of independent variables 

(predictors) - real X1, ... Xn, provided that this dependent variable can take values in the 

interval from 0 to 1. Possible use the logistic regression and for solving problems with a 

binary response when the dependent variable can take only two values 0 (the event did 

not happen) and 1 (the event happened) [11]. Based on the values of the predictors, the 

probability of accepting one or another value of the dependent variable Y is calculated 

[13]. 
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Formula (1) represents the Logistic  Regression equation. 

    𝑌 = 𝑒𝑥𝑝(𝑏0 + 𝑏1 ∗ 𝑥1+. . . +𝑏𝑛 ∗ 𝑥𝑛)/[1 + 𝑒𝑥𝑝(𝑏0 + 𝑏1 ∗ 𝑥1+. . . +𝑏𝑛 ∗ 𝑥𝑛)]      (1) 

The main task for the logistic regression model is classification, which in this thesis is 

used in the method of fault detecting by precedents, where the data is classified according 

to the presence or absence of equipment malfunctions. 

3.5.2 Linear regression 

Linear regression is a regression model used to express the linear dependence of the 

dependent variable Y on the independent variables X1, ... Xn [11]: 

Formula (2) represents the linear regression equation. 

                              𝑌 = b0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑛𝑥𝑛                   (2) 

The coefficients of the Linear Regression equation are selected to minimize the sum of 

squared deviations (SSE) between the observed and predicted values [11]. 

Formula (3) represents the SSE equation. 

                                              𝑆𝑆𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1
        (3) 

Where 𝑦𝑖  – are observed values, and �̂�𝑖 - are model predicted values for sample. 

Linear Regression is used in this investigation for both use case fault detection and 

equipment anomaly detection methods. 

3.5.3 Random Forest 

Random Forest is an ensemble ML algorithm, where results from several decision trees 

are combined. Decision trees form a class of learning algorithms that recursively partition 

the dataset into smaller more pure subsets in order to solve a classification or regression 

problem. To measure the purity of obtained subsets the information entropy measure is 

used for classification and SSE for regression problem. Random Forest uses bootstrap 

samples with replacement to build multiple de-correlated trees that then will be averaged 

in case of regression problem. In case of classification problem majority votes in the 

terminal nodes will be used for making a prediction. Random Forest also uses random 

subsets of predictors for each split and as a result has significant improvements in 

prediction accuracy comparing to a single tree [14]. 
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3.5.4 Neural networks 

Algorithms based on neural networks is a simplified program based on the principles of 

the human brain. A neural network is built from many neurons, each of which is 

connected to the rest through synapses. Each of the neurons receives information, 

processes it, and then transfers the result to the next neuron. The information received by 

the neuron has a certain weight, which is set through the synapse settings. The more 

significant the input information has, the more a certain neuron is involved in making the 

final decision. The neural networks learning process occurs by changing the weights of 

the connections joining the neurons. Neural networks have several layers [15]. The 

complexity of a neural network depends on its number (Figure 2).  

 

Figure 2. Neural networks [16]. 

Each neuron has several input channels and only one output channel (Figure 3) [17].

 

Figure 3. Neuron circuit [17]. 

The function F (S) is used to activate the neuron. The sum of all outcomes of the signals 

X1, X2,…, Xn and the weights of these signals w1, w2,…, wn is fed to the input of the 
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function. The neuron calculates the output Y signal. The most used are linear and 

sigmoidal activation functions [17]. 

Complex neural networks perform successfully with tasks that other ML algorithms 

cannot carry out [15]. 

3.5.5 MARS and PPR models 

Multivariate adaptive regression splines (MARS). MARS is a flexible regression 

modelling of large data sizes that looks for interactions and nonlinear relationships that 

help maximize prediction accuracy (Figure 4). 

 

Figure 4. Difference of MARS model from Linear Regression [18]. 

MARS is generalization of linear regression, which builds the relationship between the 

dependent and independent variables using so-called basis functions of the form (𝑥 − 𝑡)+  

and (𝑡 − 𝑥)+ , where “+” means positive part, so that (𝑥 − 𝑡)+ = 𝑥 − 𝑡, if 𝑥 > 𝑡 or 0 

otherwise. As the value 𝑡 for each predictor Xj each its observed value xij may be 

considered [18]. 

Projection pursuit regression (PPR). PPR adapts additive models in the sense that it 

first projects a matrix of these explanatory variables in the optimal direction and then 

applies to smooth functions to those explanatory variables. 

Assume 𝑋𝑇 = (𝑋1, 𝑋2, … , 𝑋𝑝) is a vector with p variables. Y is the corresponding 

response variable. ωm, m = 1,2,…, M is parameter vector with p elements. 

Formula (4) represents the Projection Pursuit Regression equation.        

                                           𝑓 (𝑋) =  ∑ 𝑔𝑚 (𝜔
𝑇

𝑚
𝑋)𝑀

𝑚=1                       (4) 



20 

The new feature 𝑉𝑚 = 𝜔
𝑇

𝑚
𝑋   is a linear combination of input variables X. The additive 

model is based on the new features. Here ωm is a unit vector, and the new feature Vm is 

actually the projection of X on ωm. It projects the p-dimensional independent variable 

space onto the new M-dimensional feature space. This is similar to the principal 

component analysis except that the principal component is orthogonal projection, but it 

is not necessarily orthogonal here [19]. 

3.6 Performance metrics selection for evaluating ML algorithms 

Performance metrics are the ML model quality indicators. There are many different 

metrics, the choice of which depends on the research objectives (Figure 5). 

 

Figure 5. Metrics for evaluating model accuracy. 

For classification tasks, there are performance metrics such as Confusion matrix, 

Accuracy, Precision, Recall, Sensitivity, F-Measure, etc. [20]. 

To evaluate a binary classification model, the results of which are marked as positive 

and negative, the Confusion Matrix is often used, which contains 4 cells: 

▪ True positive (TP), objects that have been classified as positive and actually 

positive (belonging to this class), 

▪ True negative (TN) objects that have been classified as negative and actually 

negative (do not belong to this class), 

▪ False positive (FP) objects that have been classified as positive but actually 

negative, 

▪ False-Negative (FN) objects that have been classified as negative but actually 

positive [20]. 
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Based on the confusion matrix are calculated classification algorithms additional metrics. 

Formulas (5) represent metrics equations [20].  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
   𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  

2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 
  

Most of the tasks in this research are performed using regression models. To evaluate 

the performance of such models, the following most common metrics were selected: 

▪ RMSE - Root mean square error 

▪ 𝑅2 – Determination coefficient 

The root-mean-square-error equations represents the formula (6). 

                                         𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
                                               (6) 

Where yi – actual values, and �̂�𝑖 - model predicted results for the sample, n is the total 

number of errors [21]. 

The 𝑅2 (r-square) metric indicates the predictive accuracy of regression models 

measuring the proportion of variance for a dependent variable that is explained by 

predictors. In the statistical literature, this measure is called the coefficient of 

determination. A very common definition of this metric is the model r-square 𝑅2 [11]. 

The coefficient of determination 𝑅2  equations represents the formula (7). 

                                             𝑅2 =  1 − 
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

                                            (7) 

Where ∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1  - sum of squares of regression residuals; 𝑦𝑖, �̂�𝑖 - actual and 

projected values of the explained variable [11]. 

∑ (𝑦𝑖 − �̅�𝑖)2𝑛
𝑖=1  - total sum of squares of regression residuals. 

�̅� =
1

𝑛
∑ 𝑦𝑖𝑛

𝑖=1  - the average of the actual values. 

The metric 𝑅2 values can range from 0 (unsuitable match) to 1 (perfect match). The closer 

the coefficient value is to 1, the better the model will fit the data [11]. 
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4 Case-based fault detection method 

The idea behind the case-based fault detecting method is the data used to build ML models 

is labeled according to the presence of problems on the equipment [22]. The data is 

classified manually. Data collected when there is a problem with the equipment is 

classified as True (1). Data collected in the absence of a fault is classified as False (0). 

The objective of the method is to process the incoming training sample to create logistic 

regression and linear regression models that will be able to distribute data across classes. 

In the present investigation, the results of both models were analysed to conclude which 

model is best suited for the fault detection method. To evaluate the model performance, 

several test samples were collected. For the logistic regression model, the following 

metrics were evaluated: precision, recall, F-measure, confusion matrix. For the linear 

regression model, such performance metrics as RMSE and R2 were evaluated. Specific 

minimum requirements for the model’s quality metrics were set individually when 

analysing the obtained results and coordinating them with the production processes in 

which these models were planned to be used. Only after that, it will be possible to think 

about using the obtained models with control data in the enterprise production process. 

The measurements for an arbitrarily chosen period of equipment operation can be used as 

control data sets. The control samples contain only incoming measurements, without 

preliminary classification. The model, based on the experience gained during the training 

stage, predicts the values Yi. In our case, for logistic regression, the predicted variables 

values will be numbers from 0 to 1. For linear regression, the values may differ up or 

down from 0 and 1. Values of 0 in the predicted variables Yi will mean no problems on 

the equipment. Values of 1 in predicted Yi variables will indicate problems on the 

equipment. These predictions will be the main goal of the case-based fault detection 

method. 

Information about intermediate values between 0 and 1 in the predicted variable Y for 

regression models will be very valuable. This can be interpreted as intermediate changes 

in the equipment state. Intermediate values of the predicted variables can be used to 

generate warning signals to maintenance personnel about deteriorating equipment 

conditions. So, it becomes possible to predict the situation until the moment when the 

problem becomes obvious and inform the maintenance personnel about malfunction in 

advance. 
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This chapter provides information about the research objects and the instruments used in 

the investigation with a focus on the case-based fault detecting method. Structurally, the 

research in this chapter is broken down into the following steps: 

▪ Datasets creation 

▪ Models formation 

▪ Checking models performance 

▪ Testing models in real processes 

4.1 Datasets creation 

The data for the investigation were collected from the unit No. 8 control system 

information server of the Estonian Power Plant. The control system is based on METSO 

DNA equipment. The METSO DNA system includes many programs that provide 

information in the form of graphs, tables, diagrams, etc. A distinctive feature of the 

METSO DNA system is the integration of the information server functionality into 

Microsoft Excel. With the help of an additionally installed component in Excel, it 

becomes possible to request information of interest directly from the info server and 

receive an Excel spreadsheet filled with the data. 

Several samples were collected for the research. All samples have the same structure but 

differ only in the class being classified. The classified class can be either True (1) or False 

(0), depending on the selected turbine operational period. This classification was done 

manually based on information from turbine operation before and after overhaul. The 

attribute Y is the target variable in predictive models. All datasets have been tested for 

outliers - unreliable sensor measurements. Subsequently, such values at which the 

equipment worked on transient processes were removed from the data. 

The samples were collected for the period: 

▪ from 26/11/2015 + one week, 12 variables and 10003 rows, 

▪ from 08/01/2016 + one week, 12 variables and 10080 rows, 

▪ from 06/07/2017 + one week, 12 variables and 10080 rows, 

▪ from 19/07/2017 + one week, 12 variables and 8641 rows, 

▪ from 23/12/2017 + one week, 12 variables and 10080 rows, 

▪ from 20/01/2019 + one week, 12 variables and 10080 rows. 
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The sampling period is chosen equal to 10 seconds. That is every 10 seconds, the 

presented data stores up-to-date information about the sensor measurements status. The 

data for these periods were saved in CSV format. 

The samples contain the sensor measurements as: 

▪ turbine speed, 

▪ control signal to control valve 1, 

▪ control signal to control valve 2, 

▪ control signal to control valve 3, 

▪ feedback signal from valve 1, 

▪ feedback signal from valve 2, 

▪ feedback signal from valve 3, 

▪ generalized output signal of the turbine controller, 

▪ electrical load of the turbine, 

▪ turbine power regulator mismatch, 

▪ turbine speed regulator mismatch. 

The last column in the data table is the Y classifier - an indicator of whether the data is 

True (1, problem) or False (0, no problem). To did this, an additional column was created 

in the dataset. This column was being filled with data based on known information about 

the period when the turbine is operated with the fault and when the fault has been 

eliminated (Figure 6). 

 

Figure 6. Creating a column with a fault class. 

The last step in forming the samples was removing the column with the timestamp and 

time creation of each line since ML algorithms should not predict data based on date and 

time values. 

The training dataset was created based on data for the turbine operation period from 

19/07/17 + one week and from 23/12/17 + one week. Data from 19/07/17 classified as 

«True B2 (1)». This means that the equipment was in a worn-out condition before the 
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overhaul. At this time, turbine malfunctions were noticed. The sensor measurements in 

the presence of mechanical problems on the equipment were included in the dataset. Data 

from 23/12/17 were classified as «False B (0)». This means that the equipment was in 

good condition after a major overhaul. Figure 7 shows the algorithm for generating 

classes for the available data. 

 

Figure 7. Algorithm for the formation of data classes. 

Two samples with different classes were merged into one training set with 18721 rows 

(Figure 8). 

 
Figure 8. Combining datasets with different classes. 

The remaining data are test samples. They are necessary to evaluate and compare 

predictive models. 

The test datasets from 08/01/2016 and from 20/01/2019 are turbine operation data 

samples after the repair. During the repair, mechanical wear-out on the equipment was 

eliminated, and the turbine was brought back to its original state. In the Figure 4.2 these 

datasets are represented by the «False A (0)» and «False C (0)» classes. The difference 

lies in the time between the next turbine major overhaul. The data were obtained at the 

beginning of the periods of turbine operation, after each of the repair cycles. This suggests 

that there is no mechanical wear-out on the equipment. 

The test datasets from 26/11/2015 and from 06/07/2017 represent the samples that were 

collected at the end of the turbine operation cycle, before the next major overhaul. The 

variation lies in the time difference between the next turbine major overhaul. During these 
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periods, the turbine worked for a rather large amount of time, and the equipment was 

subjected to prolonged mechanical stress during operation. This suggests the presence of 

mechanical worn-out on the equipment. In the Figure 4.2 these datasets are represented 

by the classes "True A (1)" and "True B (1)". 

In this thesis linear regression and logistic regression models were fitted on the training 

set and evaluated on the test sets. Chapter 4.6 generalized conclusions, characterizing the 

case-based fault detection method on the equipment. 

4.2 Preliminary data analysis  

Figure 9 represents the distribution of the turbine electrical load for the training dataset.

 

Figure 9. Load distribution histogram for the training dataset. 

The load distribution lies in a wide range of different turbine operating modes. The 

correlation matrix shows the presence of strongly related variables (Figure 10). Control 

signals to valves and feedback measurements from these valves cause such a dependence. 
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Figure 10. Correlation matrix of the training sample. 

Also, it can be noted that the turbine speed and speed controller mismatch did not 

correlate with other variables. This is because when the turbine is synchronized with the 

electrical power system, the turbine speed remains constant over the entire operating load 

range and depends only on the frequency in the electrical network. The speed controller 

only works in transient modes until the generator is connected to the electrical network. 

Therefore, the speed controller mismatch was not correlated with other data. 

Below is a comparison of the turbine load, turbine controller output, and power regulator 

mismatch distributions concerning the presence or absence of equipment problems in the 

training set (Figure 11). 

 

Figure 11. Comparison of distributions regarding the presence or absence of problems on the equipment. 

Visual analysis of the distributions shows a slight increase in the amplitude of the turbine 

regulator mismatch in the presence of a problem on the equipment. 

Below is a graph of the actual turbine load for the training sample and a visual separation 

border of different classes in the data using a vertical line (Figure 12). 
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Figure 12. Turbine load in the training sample. 

On the left side of the graph are the loads in the presence of a defect/wear-out on the 

turbine before overhaul.  On the right side - loads in the absence of defects after overhaul. 

It is visually seen that the operation modes in various classes differ. The operation mode 

in the True (1) class is more stable, but there are several strong changes in the load towards 

decreasing. This class is dominated by the turbine operating modes closer to the rated 

load (215 MW). The operation mode in the False (0) class shows a large number, but less 

noticeable changes in the load over the period participating in the sample. This class is 

dominated by turbine operating modes in a wide range of operating loads (from 190 to 

215 MW). 

4.3 Formation of ML models 

4.3.1 Linear regression 

The R programming language with the RStudio development environment was used to 

create ML models. The list of available models is very extensive. However, at this stage, 

the author is limited to the creation of linear and logistic regression models. This is 

because these models are easy to integrate into the enterprise management system. 

A linear regression model was created based on the training sample. The model task is to 

predict a class value that indicates the presence or absence of a problem on the equipment. 

The final model was selected with the Akaike Information Criteria (AIC), that iteratively 

removed the least significant components from the linear regression model [23]. 

The formula (8) presents the linear regression model equation. 
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Y = – 44.53 + [Rotation speed] * 0.004793 – [Current to valve1] * 0.03096 + [Current to 

valve 2] * 0.03566 + [Current to valve 3] * 0.0377 + [Positioner 1] * 0.03835 + 

[Positioner 2] * 0.004589 + [Positioner 3] * 0.1745 – [Turbine controller output] * 

0.07026 - [Power] * 0.01355 + [Power regulator mismatch] * 0.04785      (8) 

The RMSE for the training dataset was 0.13. The model’s r-square 𝑅2  was 92.6%. 

The most significant attributes were positioner # 3 feedback, turbine controller output, 

and power regulator mismatch. The feedback signal from positioner # 3 turned out to be 

the most influential attribute because this valve # 3 is the main regulating element that 

maintains a stable turbine load. Control valves # 1 and # 2 are generally fully open in 

most operating modes. Until a certain period, they do not participate in load regulation. 

The purpose of the turbine controller is to maintain a specific, target load. The appearance 

of gaps in the regulating elements will lead to an increase in the turbine controller output 

signal oscillation and the power regulator mismatch. This is because the controller will 

try to compensate for the gaps to keep the valve in a certain position. These arguments 

explain why these features had the greatest impact on the model predicted values. 

4.3.2 Logistic regression 

A logistic regression model was created from the training sample. The model task is to 

predict a class value, which indicates the presence or absence of a problem on the 

equipment. The WEKA software was used to build the model. The reason was the 

possibility of comparing two software products, and the accumulating of certain 

experience to work on both platforms. The logistic regression model metrics for the 

training dataset are shown in Table 1. 

Table 1. Logistic regression model metrics for the training dataset. 

Correctly classified values (Accuracy) 99.98% 

Incorrectly classified values 0.01% 

Precision 1 

Recall 1 

F-Measure 1 

Confusion matrix 

a     b   <-- classified as 

10079     1 |     a = False 

   1    8640 |     b = True 
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4.4 Validation on Test Data 

4.4.1 Test sample from 20/01/2019 + one week 

In the test data for the period from 20/01/2019 + one week, the turbine control system 

state was classified as False (0), without wear. So, the expected model prediction is 0. 

A comparison of the predicted and actual values and the linear regression model residuals 

are presented below (Figure 13). The red line on the actual vs predicted graph marks the 

expected result of the classification. The linear regression model RMSE = 0.65. 

 

Figure 13. Predicted values distribution and model residuals. 

Below are graphs of the predicted class values and the turbine actual load (Figure 14). 

 

Figure 14. Graphs of the classifier predicted values and the turbine actual load. 

In the predicted class values, there are significant amplitude fluctuations associated with 

a change in the turbine load downward. During turbine stable operation at rated load, the 

amplitude fluctuations decreased significantly within the range from 0.55 to 0.7. The 

average of the predicted class values was 0.64. 

The predicted values for the logistic regression model are shown in Figure 15. 
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Figure 15. Predicted values distribution result for the logistic regression model. 

The logistic regression model performed better with the classification task on the test 

sample for the period from 20/01/1919 year + one week. The predicted class values are 

fully consistent with the manual classification in the sample. Logistic regression model 

metrics on the test sample are shown in Table 2. 

Table 2. Logistic regression model metrics on the test sample. 

Correctly classified values (Accuracy) 100.00% 

Incorrectly classified values 0.00% 

Precision 1 

Recall 1 

F-Measure 1 

Confusion matrix 

a     b   <-- classified as 

10080     0 |     a = False 

     0        0 |     b = True 

From the above can be concluded that the mean of the predicted values for the linear 

regression model did not match the labelled class in the test data, but at the same time, 

for the logistic regression model, the predicted values completely matched with the 

expected. 

4.4.2 Test sample from 06/07/17 + one week 

In the test data starting from 06/07/2017 + one week, the state of the turbine control 

system was classified as worn-out True (1). So, the expected model prediction is 1. 
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A comparison of the predicted and actual values and the linear regression model residuals 

are presented below (Figure 16). The red line on the actual vs predicted graph marks the 

expected result of the classification. The model RMSE = 0.14. 

 
Figure 16. Predicted values distribution and model residuals. 

Below are graphs of the predicted class values and the turbine actual load (Figure 17). 

The average of the predicted class values was 0.96. 

 

Figure 17. Graphs of the classifier predicted value and the turbine actual load. 

The predicted values for the logistic regression model are shown in Figure 18.  

 

Figure 18. Predicted values distribution result for the logistic regression model. 
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The predicted class values generally matched manual classification in the sample. 

However, these values are not evenly distributed across the entire data range. There was 

a fairly large number of values in which the classifier readings were reversed. The logistic 

regression model performance has deteriorated (Table 3). 

Table 3. Logistic regression model metrics on the test sample. 

Correctly classified values (Accuracy) 88.71% 

Incorrectly classified values 11.28% 

Precision 1 

Recall 0.88 

F-Measure 0.94 

Confusion matrix 
a     b   <-- classified as 

     0         0 |     a = False 

1138   8942|     b = True 

The linear regression model performed better with the classification task for the test 

sample starting on 06/07/17 + one week. For the linear regression model, the predicted 

values show amplitude jumps from 0.8 to 1.4. There are also strong jumps associated with 

changes in the turbine load. But the readings are not reversed, as was found in the logistic 

regression model. The worn-out state of the control system was confirmed by the 

predictions of both models. 

4.4.3 Test sample from 08/01/16 + one week 

In the test data from 08/01/2016 + one week, the turbine control system state was 

classified as not worn-out False (0). So, the expected model prediction is 0. 

Below are graphs of the predicted class values and the turbine actual load (Figure 19). 

 
Figure 19. Graphs of the classifier predicted value and the turbine actual load. 

The model RMSE = 0.82. The average of the predicted class values was 0.77. 



34 

The predicted values for the logistic regression model are shown in Figure 20. 

 

Figure 20. Predicted values distribution result for logistic regression model. 

The predicted class values did not match the manual classification in the sample. There 

was a fairly large number of values in which the classifier readings were reversed. 

Logistic regression model metrics on the test sample are shown in Table 4. 

Table 4. Logistic regression model metrics on the test sample. 

Correctly classified values (Accuracy) 32.31% 

Incorrectly classified values 67.68% 

Precision 1 

Recall 0.32 

F-Measure 0.48 

Confusion matrix 

a     b   <-- classified as 

3257    6823 |     a = False 

    0          0   |     b = True 

On a sample starting from 08/01/16 + one week, both models showed results that did not 

correspond to the expected ones. It can be assumed that this is not due to the ML models 

poor performance, but to an error in the manual data classification in the test sample. This 

may indicate that during the repair work on the turbine at the end of 2015, the repair was 

not carried out in full volume. The averaged predicted value for the linear regression 

model (0.77) indicates that the control system mechanical wear-out at that time was 77%. 

This is even though the turbine has just come out of an overhaul. It should be noted here 

that this experiment tested the model created on the 2017 training data against the 2016 

test data. In reverse time sequence. 
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This observation may indicate a lack of this method for predicting equipment failures. In 

this method, the correct data classification for the construction of predictive models plays 

an important role. An error in data classification can significantly affect the performance 

of the entire method. Therefore, before classifying the data, it is necessary to collect 

additional information about the amount of overhaul in each case. Often, access to such 

information is limited. This can lead the researcher to classify the data based only on 

assumptions, as was done in this case. But further results analysis showed that this 

assumption does not always correspond to reality. The dataset was classified incorrectly. 

4.4.4 Test sample from 26/11/15 + one week. 

In the test data for the period from 26/11/2015 + one week, the turbine control system 

condition was classified as a worn-out True (1). So, the expected model prediction is 1. 

Below are graphs of the predicted class values and the turbine actual load (Figure 21). 

The model RMSE = 2.0. The average of the predicted class values was 0.73. 

 
Figure 21. Graphs of the classifier predicted value and the turbine actual load. 

The model RMSE was very large. This is because the test sample contains data for the 

turbine operation transition period, i.e., when the turbine was started up. This shown in 

the actual load graph. There were no similar transient modes in the training sample, so 

the model is greatly mistaken for such operation modes. This indicates that it is necessary 

to approach to the test sample preparation more carefully and remove turbine transient 

modes operation from it. The predicted values for the logistic regression model are shown 

in Figure 22.  
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Figure 22. Predicted values distribution result for the logistic regression model. 

The predicted class values did not match to manual classification in the sample. There 

was a fairly large number of values in which the classifier readings were reversed. 

Logistic regression model metrics on the test sample are shown in Table 5. 

Table 5. Logistic regression model metrics on the test sample. 

Correctly classified values (Accuracy) 31.10% 

Incorrectly classified values 68.89% 

Precision 1 

Recall 0.3 

F-Measure 0.47 

Confusion matrix 

 a        b   <-- classified as 

      0          0 |     a = False     

6892     3111|     b = True 

On the sample starting from 26/11/15 + one week, the logistic regression model showed 

results that did not correspond to the expected ones. Most of the values were 

misclassified. In turn, evaluating the linear regression model results, the average predicted 

value equal to 0.73 coincides with the expected result. Data classification in the sample 

has been performed correctly. The regulation system wear-out was 73% on average. 

At this stage, a lot of comparative tests between logistic and linear regression models have 

been carried out. In most cases, the best results were achieved using linear regression 

models. Therefore, in the next experiments only linear regression models will be used. 
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4.4.5 Test sample from 19/07/17 + one week 

In the test data for the period from 19/07/2017 + one week, the turbine control system 

condition was classified as worn-out True (1). So, the expected model prediction is 1. 

Note this period takes part in the training dataset formation. 

Below are graphs of the predicted class values and the turbine actual load (Figure 23). 

The model RMSE = 0.08. The average of the predicted class values was 0.96. 

 

Figure 23. Graphs of the classifier predicted value and the turbine actual load. 

The model RMSE is very low. Because this period takes part in the training dataset 

formation. The predicted values correspond to the labelled values in the dataset. There 

were jumps in the amplitudes of the predicted values from 0.8 to 1.2. Some of the 

predictions looked like “outliers”. They were more noticeable at a lower turbine load. 

4.5 Additional training of the linear regression model 

During the research, the author has repeatedly come across the fact that the changes in 

turbine load strongly affects the formation of the predicted value for the test samples. The 

impression is that the model begins to predict not the presence of defects on the 

equipment, but a change in the turbine operating modes. However, changing the turbine 

operating mode is a typical operation dictated by the power system requirement to 

produce electricity at a certain point in time, that has nothing to do with the presence or 

absence of defects on the equipment. To get rid of this pattern, an attempt was made to 

additionally train the model by introducing new data into the training set. This action will 

expand the range of possible equipment operation modes in the training dataset, thereby 

the model will learn to distinguish a greater number of operation modes and respond less 

to them when forming predictive values. The data from the previous training sample were 

merged with additional data starting from 06/07/2017 + one week. These data were 
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classified as True (1) – wear-out on the turbine was present. The addition of new data to 

the training sample for this period was chosen due to the observation, that this sample had 

the smallest classification error in the previous test results. A new linear regression model 

was built using the new training sample. 

The new model RMSE was 0.12. The model r-square was 93%. The previous model had 

RMSE of 0.13 and an r-square of 92%. Hence the model performance was improved. The 

new model was validated on a test dataset for the period from 20/01/2019 + one week, 

which were already used to validate the previous model. In this sample, the turbine control 

system state has been classified as wear-free False (0). This time, the RMSE was not 

calculated, because it was already known that the data classification in this test dataset 

was done incorrectly, and the model error will be large in any case. 

Below are the comparative graphs of the predicted values for the new and for the previous 

model (Figure 24). The left graph shows the predicted values of the new model. The right 

graph shows the predicted values of the previous model for comparison. For both models, 

the same test dataset from 20/01/2019 + one week was used. 

 

Figure 24. Comparative graphs of predicted values for the new and previous models. 

The graphs comparison shows that it was not possible to get rid of fluctuations in the 

predicted values associated with a change in load. But at the same time, the range of 

predicted values became narrower at a stable turbine load. This confirms the assumption 

that the introduction of new, verified data into the training dataset increases the model 

predictive accuracy. The average predicted value increased from 0.65 to 0.74. The 

completed model also confirmed that the regulation system state after overhaul for the 

period 20/01/19 remained worn-out. 
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4.6 Generalized conclusion by the case-based fault detection method 

The case-based method discussed in this chapter needs to be supplemented with 

additional research. For this method, it is necessary to collect information about 

cases/faults on the equipment and include the data over the fault’s lifetime in the training 

dataset. The more accurately the precedent data are collected, then more accurate model 

will be obtained. For the case-based fault detection method, the best results were achieved 

using linear regression models. But it should be noted that for the test dataset from 

20/01/2019 + one week, the logistic regression model showed the best predicting results. 

Table 6 summarizes the linear regression models results for training and test datasets. 

Table 6. Model results for training and test datasets. 

Linear 

regression model 
Dataset type used RMSE R

2
 

Manual 

Classifier 

Predicted 

classifier 

Basic model 
Training set from 

19/07/17 + 23/12/17  
0.13 92.6% - - 

Basic model Test set from 20/01/2019 0.65 - 0 0.64 

Basic model Test set from 06/07/2017 0.14 - 1 0.96 

Basic model Test set from 08/01/2016 0.82 - 0 0.77 

Basic model Test set from 26/11/2015 2.0 - 1 0.73 

Basic model Test set from 19/07/2017 0.08 - 1 0.96 

Additionally 

trained model 

Training set from 

19/07/17 + 23/12/17 + 

06/07/17  

0.12 93% - - 

Additionally 

trained model 
Test set from 20/01/2019 - - 0 0.74 

This method of predicting equipment malfunctions can be used in an applied sense, and 

this method takes place in existence. However, there are some disadvantages. The most 

significant disadvantage of this method is the incorrect manual data classification during 

creating datasets, which can affect the model performance. When classifying the data, the 

researcher relied only on the fact that the turbine was out of overhaul, and based on this 

information, he classified the data as FALSE (0). Obtained result analysis shows that this 

is not always true. The obtained predicted values show that the performed maintenance 

does not guarantee the restoration of control system to the original state, not worn-out. 

Most likely, in some years, repairs are not carried out fully and the control system 

components are not affected during repairs. Only this can explain the fact why the 
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predicted value immediately after the repair was on average about 0.6 (dataset from 

20/01/2019) or about 0.8 (dataset from 20/01/2019), and did not approach zero, as the 

researcher expects. This observation greatly reduces the confidence in this fault prediction 

method. Therefore, this fault detection method is suitable only for those enterprises where 

it is guaranteed to obtain accurate information about the amount of repair work performed 

on the equipment. 

The second disadvantage was that the data for the True (1) class was collected from a 

single-use case that happened on the equipment on 09/07/2017. It was at this time when 

a malfunction on the equipment exposed itself from a technological point of view. In other 

cases, the data was classified as True (1) only based on the one-year operation cycle 

before the major overhaul. As such, the operating personnel did not have any equipment 

complaints. In the data manual classification, the presence of wear-out on the equipment 

was made only based on the assumption about the previous long period operation. There 

is no documentary evidence of the wear-out presence on the equipment. Also, the next 

possible malfunction on the equipment can develop in a completely different scenario, 

about which the model does not know anything and, accordingly, it will not be able to 

predict them. A possible way out of this situation is to create a generalized sample, which 

will combine different equipment operation periods. But because of the reasons indicated 

above, there is a possibility that, due to misclassified classes, the generalized sample will 

be unreliable and will not give good results when building a model. 

The third disadvantage is the predicted value jumps, which are associated with a change 

in the turbine load. But changing the load, in terms of power generation technology, is a 

standard operation. The predicted value responds to load changes, which can also lead to 

result misinterpretation. In some cases, a change in the turbine load is perceived by the 

model as a malfunction/wear-out. The predicted value becomes higher than 1. Thus, this 

method requires additional research and improvements before it can be used in an applied 

sense at the enterprise. This conclusion gives reason to consider another alternative fault 

detection method based on detecting anomalies on equipment, which ideology differs 

significantly from the precedent-based method. Here the model learns to predict the good 

equipment condition. Any significant deviation from the healthy condition can be 

perceived as an anomaly in the equipment. The recorded anomaly will already provide a 

basis for more detailed research on what causes of this equipment behaviour. The method 

for detecting anomalies on equipment is discussed in the next chapter of this work.  
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5 Method for detection anomalies on equipment 

Anomalies in control systems involves the following aspects (Figure 25) 

▪ anomalies based on the absolute measurements of one sensor, 

▪ anomalies based on the absolute measurements of the joint sensor’s behavior, 

▪ atypical patterns in the sensor measurements, 

▪ global patterns in the joint behavior of the several sensor measurements [5]. 

 

Figure 25. Anomalies in the behaviour of sensor measurements [5]. 

The idea behind the method for searching for anomalies on equipment is to create such a 

ML model that will predict the good condition of the equipment. Moreover, any deviation 

of the predicted value from the normal will be perceived as a malfunction. The schematic 

algorithm of the anomaly detection method is shown in Figure 26. 

 

Figure 26. Algorithm of the anomaly search method [3]. 
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The oil plant Enefit 280 turbine was chosen as the object of the research. The oil plant 

turbine has a rated power of 30 MW. Figure 27 shows the appearance of the operator 

display in the Honeywell plant control system, as well as the measurements that were 

involved in the research. 

 

Figure 27. Turbine and generator measurements. 

Each measurement in the control system has a unique KKS code. The KKS code has a 

strict formation structure. Therefore, it determines the belonging of any sensors to one of 

the functional types of measurements, such as temperature, vibration, axial displacement, 

pressure, flow rate, etc. 

The mechanical sensor measurements of the turbine and generator were used to create the 

models. Complete list of measurement points can be found via the link in the Appendix 

2 (Turbine and generator measurement points Enefit 280). 

During this research, such predictive models as linear and nonlinear regression, Random 

Forest, Neural Networks, MARS and PPR were created. 

All models predict the turbine load value Y (GX01BV001) based on the mechanical 

measurements (bearings temperature, rotor and generator vibration, lubrication oil 

temperature, cooling air temperature, etc.). 
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5.1 Data collecting and quality control 

The data was collected from the oil plant information server. The data server is part of 

Honeywell-based control system. To work with data in the Honeywell system, a 

specialized client program Uniformance Studio is provided. The program functionality 

allows to request information about the process and display it in the form of tables and 

graphs. The functionality of the Uniformance Studio program was used to obtain the oil 

plant turbine operation data.  

To create training and test datasets were collected sensor measurements characterizing 

the turbine unit operation for the period from 24/11/2020 to 21/12/2020. The data were 

split between the training and test datasets. For the training dataset, were used the turbine 

operation data for 3 weeks from 24/11/2020 to 16/12/2020 (Figure 28). The training 

dataset consists of 46 variables and 21142 rows. 

 

Figure 28. Period for training data. 

For the test dataset required for testing and validating the model, was used the turbine 

operation data for 4 days from 18/12/2020 to 21/12/2020 (Figure 29). The test dataset 

consists of 46 variables and 2883 rows.  

The datasets were uploaded to RStudio for further research. In RStudio, the sample was 

checked for consistency and the absence of missing values. All attributes in the datasets 

are in numeric data format. 
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Figure 29. Test data period. 

5.2 Preliminary data analysis 

The turbine load distribution in the training dataset is presented in Figure 30. The 

histogram in Figure 30 shows the main turbine load lying in the range from 13 to 30 MW. 

The average turbine load during the training period was 21.5 MW. This range is the 

nominal operating area for this turbine. Oil plant turbine does not work at loads below 13 

MW. The histogram also shows several zero load values associated with several periods 

of turbine shutdown. These data were deliberately left in the training dataset to "teach" 

model to predict the equipment stopped state as well. Otherwise, every time the turbine 

is stopped, there would be sharp jumps in the prediction values. 

 

Figure 30. Turbine load distribution histogram. 
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Figure 31 shows the attributes correlation coefficients concerning the turbine active load 

Y (GY01BE001). 

 

Figure 31. Attributes correlation coefficients concerning the turbine active load. 

Most of the attributes are strongly correlated with Y, except for GX01BT020_Value and 

GX01BT017_Value. 

The hierarchical clustered correlation matrix in Figure 32 shows the presence of groups 

of closely related attributes, which indicates a multicollinearity problem [24].  

 

Figure 32. Attribute correlation matrix. 

It is also notable that two features GX01BT020_Value and GX01BT017_Value do not 

correlate with others and with each other. 
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Some typical features’ distributions are presented in Figure 33. All plots can be found via 

the link in Appendix 2. 

 

Figure 33. Feature distribution histograms. 

The analysis of the features’ histograms makes it possible to conclude that the features’ 

distributions are asymmetric, vary within different limits, which means that features 

require transformations.  

Figure 34 explains the relationship of attributes with the turbine current load. Both linear 

and non-linear relationships are present, with many zero values that reflect the stopped 

state of the equipment. All plots can be found via the link in Appendix 2. 

 

Figure 34. Graphs of the attribute’s relationships with the turbine current load. 

5.3 Creating a linear regression model 

A linear regression model was created based on the training dataset. The model task is to 

predict the turbine load based on the remaining measurements. The final model was 

selected with the Akaike Information Criteria (AIC), that iteratively removed the least 

significant variables from the regression model. The obtained linear regression models, 
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before and after the AIC variable selection, can be found via the link in Appendix 2 

(Linear Regression model Enefit 280). 

The model RMSE for the training dataset was 0.59. The model r-square 𝑅2 was 98.8%. 

Figure 35 presents the linear regression model’s residuals plots, which indicate the 

presence of outliers. 

 

Figure 35. Linear regression model residuals distribution diagrams. 

Checking for multicollinearity by calculating the inflation variance factors (VIF) also 

showed the presence of unacceptably high VIF values, which can lead to inaccurate model 

predictions [11]. Several measurements of the generator winding's temperature turned out 

to be the most problematic. There is a technological explanation for the issue of 

multicollinearity for these points. The generator winding's temperature has a linear 

dependence on the active load. 

A graph of the predicted values versus the actual values of the turbine load for the train 

dataset is presented in Figure 36. The graph shows that the model is poor at predicting 

values at zero loads, that is, the operating mode when the turbine was stopped. Variations 

in the predicted values were found in the range from -8 to +10 MW, which can be 

explained by the fact that the training dataset provides data for the turbine shutdown 

period in a limited amount. To improve the model quality at zero workloads, it is 

necessary to add additional data to the training dataset corresponding to the turbine 

stopped operating state. 
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Figure 36. Predicted values relative to the turbine load actual values for training dataset. 

5.4 Model validation on the test set 

The test set for model validation is based on turbine mechanical sensors measurements 

for the period from 18/12/2020 to 21/12/2020. The turbine load distribution histogram 

over the test period shows that the values are in the range from 20 to 26 MW (Figure 37). 

The average load for the test period was 22.9 MW. 

 

Figure 37. Turbine load distribution histogram for the test period. 

A comparison of the predicted and actual values of the turbine load and the model’s 

residuals for the test dataset are presented in Figure 38. The large model errors are noted 

when the turbine load was below 13 MW. This observation is explained by the fact that 

according to the production technology, the turbine does not work in such modes. 

Consequently, these operation modes are not represented in the training dataset, therefore, 

the model has not learned to predict values for these modes. At loads above 13 MW, the 

model predicting quality improves, and the errors become smaller.  
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Figure 38. Predicted values distribution and model errors for the test dataset. 

On the test data model's  𝑅2 = 89.72% and RMSE = 0.64.  

Figure 39 shows the predicted (left graph) and the actual turbine load values (right graph) 

for the test dataset. From these graphs it can be concluded that at rated turbine loads, the 

model predicts values with high accuracy. No jumps in the predicted values were found. 

 

Figure 39. Predicted (left graph) and actual (right graph) turbine load distribution. 

5.5 Methods for improving the model quality 

An initial analysis of the linear regression model performance showed that some 

disadvantages need to be eliminated. These disadvantages are the lack of accuracy in 

predicting zero values and operating modes below 13 MW. Additionally, was found 

model attributes high multicollinearity. To correct these disadvantages, numerous 

attempts have been made to improve the model quality. 

5.5.1 Data normalization 

Attribute’s normalization allows to bring all variables to one unified scale. Data 

normalization was performed by using the Z-scaling method, which is recommended for 
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most cases [12]. After normalization, the data has a mean of 0 and a standard deviation 

of 1. After transforming the variables, a new linear regression model was fitted to the 

training dataset. The model was tested on the test dataset, which has also been previously 

normalized. For the normalized test dataset RMSE was 5.86. Thus, the attributes 

normalization led to an increase RMSE for the predicted values. This finding was 

unexpected because normalization usually increases the model quality. 

5.5.2 Data transformation 

The aim of data transformation is to obtain a symmetric distribution of the target variable 

Y [25]. In this case, all the turbine load Y values were raised to the third power. In Figure 

40 on the left side presented the Y distribution before the transformation. It is seen that 

the data is shifted to the left. The Y distribution after the transformation is seen in Figure 

40 on the right side. After the transformation Y has an approximately normal distribution. 

 

Figure 40. Attribute Y distribution before and after transformation. 

A new linear model was created based on the transformed training dataset and tested on 

the test dataset, which was previously transformed in the same way. After obtaining the 

predicted values, the back-transformation was applied to return values to the original 

scale. After the back-transformation RMSE for the test data set was 0.91. This metric 

turned out to be worse than on the data without transformation. 

5.5.3 Using the cross-validation function 

The essence of this method is that the training dataset is split into several parts. One of 

these parts is used to test the model, and the rest are used to train the model. Then the 

parts are interchanged in such a way that each of them will consistently participate both 
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in training the model and in testing it. The results of each cycle are averaged together for 

a final score. Using the cross-validation with 5 layers and 10 repetitions, the linear 

regression model was validated based on the training dataset. The model r-square 𝑅2 

remained at 89.64% and RMSE was 0.64. After the cross-validation, the model accuracy 

remains at the same level, which indicates that there is no overfitting of the model. 

After applying these methods, the model quality metrics either deteriorated or remained 

at the same level. Thus, it was decided to use the original model in further research, 

without any transformations. 

5.5.4 Additional linear regression model training 

During the research, it was repeatedly noticed that the linear regression model did not 

perform with the prediction of turbine load zero values. To eliminate this disadvantage, 

additional data were collected for the period of turbine downtime. Data was collected for 

the period from 17/01/2021 to 22/01/2021. Additional data has been added to the original 

training dataset. Based on the combined dataset, a new linear regression model was 

created. Figure 41 shows the predicted values for the training dataset. 

 

Figure 41. Predicted values distribution for training dataset 

Even though the training sample contains data for 4 days of turbine downtime, visual 

graph inspection showed no improvement in predicting zero values. Then the model was 

validated on test data. The model r-square increased to 90.79%. The RMSE decreased to 

0.57. Thus, the new data introduction into the training dataset improved the linear model 

quality. 
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5.6 Process equipment fault simulation 

In this chapter, the focus has been on analyzing the predicted value behavior when some 

equipment faults occur. It is necessary to determine how much the predicted value will 

deviate from the initial one in the event of any malfunctions on the equipment occurs. 

Several experiments were performed, the essence of which was to activate the 

malfunctions occurrence on equipment by simulating some attributes in the test data. In 

the test samples, some data was manually modified to further analyze the predicted value 

behavior on the changed data. Several small sub-datasets were taken from the total test 

dataset, each of which contained 100 observations. The timing of these sub-datasets was 

randomly selected. In each of these sub-datasets, the data was unchanged in the first 50 

observations, and manual changes were made to the data from 50 to 100 rows. 

For the first experiment, the temperature sensor GX01BT012 (Rear axial bearing 

temperature) was simulated (increased) from 76 to 86 degrees. This attribute was selected 

based on the largest correlation with the turbine load (0.93). Based on this sub-dataset, 

the turbine load predicted values ware obtained. The left graph in Figure 42 shows the 

bearing temperature rise from 76 to 86 degrees in the last 50 observations. The right graph 

in Figure 42 shows how the model predicted values reacted to the temperature change by 

increasing the load from 22.7 MW to 26.7 MW. 

 

Figure 42. Bearing temperature sensor GX01BT012 increase simulation. 

The turbine load average predicted value for the last 50 observations has increased by 

4.36 MW. Thus, simulating a 10-degree temperature rise in one of the bearings led to a 

significant increase in the predicted turbine load. 

Next an increase in the vibration sensor values GY01BV007 (Full vibration of the 

generator - in front of the axial) from 0.3 to 2 mm/s step was simulated. This time, the 

attribute was selected based on the smallest correlation with the turbine load (0.48). This 
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simulation result is shown in Figure 43. The left graph shows the process of increasing 

the generator vibration sensor values from 0.3 to 2 mm/s in the last 50 observations. The 

right graph shows that the model predicted values responded to the vibration level change 

by increasing the load from 23.2 MW to 25.3 MW. Thus, simulating an increase in 

generator vibration sensor values by 1.7 mm/s led to an increase in the predicted turbine 

load by 2.67 MW. 

 

Figure 43. Generator vibration sensor GY01BV007 increase simulation. 

The last experiment was to simulate both an increase in the temperature sensor 

GX01BT012 values and an increase in the vibration level GY01BV007 sensor values 

using the simulations from the previous experiments. The purpose of this experiment was 

to test the hypothesis of the cumulative effect of two or more attributes on the model's 

predicted values. It is assumed that the combined effect of two or more attributes will 

have a cumulative effect on the turbine load predicted values. This simulation result is 

shown in Figure 44. 

 

Figure 44. Temperature bearings GX01BT012 and generator vibration GY01BV007 sensors increase simulation. 

The increase in bearing temperature joined with increased vibration levels, increased the 

predicted load from 22.8 MW to 29.2 MW. Thus, simulating an increase in the bearing 
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temperature by 10 degrees with a simultaneous increase in the generator vibration level 

by 1.7 mm/s led to an increase in the predicted turbine load by 6.85 MW. Hence, changing 

the values of two or more attributes leads to a joint, stronger effect on the model predicted 

values. It can be expected further that a greater number of measurement deviations from 

normal values will lead to an even greater effect on the predicted load values. This 

observation is valuable for applying the model to the enterprise management system. 

5.7 Alternative machine learning models 

Several attempts have been made to improve the original linear regression model, but no 

significant improvement has been achieved. Therefore, alternative models using other 

ML algorithms were created based on the same data sets. All created models and related 

plots can be found via the link in Appendix 2. 

5.7.1 Random Forest model 

To create a Random Forest model, the initial number of regression trees was set to 400. 

Figure 45 shows that the model error after 200 trees did not decrease. Therefore, the 

number of regression trees was reduced to 200 to optimize computing performance. 

 

Figure 45. Model errors concerning the number of "decision trees". 

A comparison of the predicted and actual values and the Random Forests model’s 

residuals for the test dataset are presented in Figure 46. 
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Figure 46. Random Forest model predictions and residuals for the test dataset. 

Several attempts were made to improve the Random Forest model by changing the 

parameters. The best results achieved for the model RMSE and r-square were 0.85 and 

86% respectively. The Random Forest model performs worse on the test dataset compared 

to the linear regression model. 

5.7.2 Neural Network 

A comparison of the Neural Network model predicted and actual values and the Neural 

Network model residuals for the test dataset are presented in Figure 47. 

 

Figure 47. Neural Network model predictions and residuals. 

The RMSE of the Neural Network model was 1.24. The model r-square 𝑅2 was 87%. The 

performance of the Neural Network model turned out to be worse than that of the linear 

regression and Random Forest models. The high RMSE of the Neural Network model 
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does not allow it to be successfully used in the method for detecting anomalies on 

equipment. 

5.7.3 Nonlinear regression model 

The nonlinear model differs from the linear model by the presence of additional 

polynomials of different degrees based on some of the original predictors. Component 

residual plots can be used to decide, which polynomial attributes and of what degree 

should be add to the model (Figure 48). All plots can be found in the link in Appendix 2. 

 

Figure 48. Attributes residuals distribution. 

A comparison of the nonlinear model predicted and actual values and the model residuals 

for the test dataset are presented in Figure 49.  

 

Figure 49. Nonlinear regression model predictions and residuals. 
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The RMSE for the nonlinear regression model was 0.72. The model r-square 𝑅2  was 

91%. The linear regression model, which has been further trained by adding new data into 

the training dataset has the lowest RMSE so far. 

5.7.4 MARS and PPR models 

Additionally, two machine learning models, MARS and PPR, were tested. The RMSE of 

the MARS model on the test data was 0.64 and model r-square 𝑅2 was 89.65%. The result 

of the MARS model turned out to be worse than its predecessors.  

The PPR model RMSE error on the test data was 0.52 and model r-square 𝑅2 was 94.7%. 

This is the best metric of all the previously reviewed models. The visualization of the 

PPR model on the training data shows the best results in predicting zero values (Figure 

50). It shows a strong correlation between the predicted and actual load values.  

 

Figure 50. PPR model visualization on training data. 

For the test date the same conclusions can be made (Figure 51). 

 

Figure 51. PPR model visualization on test data. 

This is the best result among all the previously reviewed models. 
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5.8 Linear regression model integration into the enterprise 

management system 

Previous research has identified the ML model leading in terms of high r-square and low 

RMSE. This model became the PPR. But in the applied sense, the PPR model is difficult 

to implement into an enterprise management system. The obtained models’ comparison 

shows that the linear regression model is slightly inferior to the PPR model in terms of 

predicting quality. However, at the same time, the linear regression model has a 

significant advantage over other models considered in the research. This advantage lies 

in the easy integration of the linear regression model into the enterprise management 

system. The linear regression R model final formula for the research data is shown in 

Figure 52. 

Y (GY01BE001_Value) = GX01BZ001_Value + GX01BZ002_Value + GX01BV005_Value + GX01BV007_Value + 

GX01BT011 _Value + GX01BT012_Value + GX01BT013_Value + GX01BV001_Value + GX01BV002_Value + 

GX01BT014_Value + GX01BV003_Value + GX01BV004_Value + GX01BV008_Value + GX01BV009_Value + 

GX01BV010_Value + GY01BV005_Value + GY01BV006_Value + GY01BV007_Value + GY01BT010_Value + 

GY01BV001_Value + GY01BV002_Value + GY01BV003_Value + GY01BV004_Value + GY01BT011_Value + 

GY01BV008_Value + GY01BV009_Value + GY01BV010_Value + GY01BT005_Value + GY01BT004_Value + 

GY01BT003_Value + GY01BT002_Value + GY01BT001_Value + GY01BT012_Value + GY01BT013_Value + 

GY01BT014_Value + GX01BT016_Value + GX01BT015_Value + GX01BT018_Value + GX01BT019_Value + 

GX01BT314_Value + GX01BP309_Value 

Figure 52. Linear regression model formula. 

Using above formula, the predicted value of Y (GY01BE001) is calculated based on all 

remaining variables in the formula. A certain coefficient is assigned to each 

attribute/variable, which determines the influence of this attribute on the final calculation 

result. These coefficients were presented in the chapter devoted to the linear regression 

model creation. Thus, using this formula with the coefficients applied to each attribute, 

the linear regression model was integrated into the enterprise management system. At the 

oil plant, the industrial automated system Honeywell is used to control the process. For 

integration into the enterprise automation system, was selected an additionally trained 

linear regression model after the removing insignificant components. This allows to 

optimize the number of attributes involved in the calculations and reduces the load on the 

Honeywell controllers calculating capability. AUXCALC mathematical modules were 

used for calculations in the Honeywell engineer software environment. This module has 

restrictions on the number of inputs, so the general formula was divided into several 

fragments. Measurements from turbine and generator sensors were connected to each 
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module following the regression formula. The calculating result of each module was 

transferred to the next module. Thus, the entire linear regression formula was reproduced 

in the Honeywell control system program logic. Figure 53 shows a calculations fragment 

in the first logical unit AUXCALCA1. 

 

Figure 53. Calculations fragment in the first logical unit AUXCALCA1. 

The module configuration parameters indicate the formula by which the AUXCALCA1 

module calculates. The formula for the AUXCALCA1 module is as follows: 

P[1] + P[2]*(12.170114) + P[3]*(-11.290135) + P[4]*(-3.028353) + P[5]*(-0.745362) + 

P[6]*(-10.027987) 

The first calculation result after AUXCALCA1 module is passed to the second module 

AUXCALCA2 (Figure 54). 

 

Figure 54. Calculations fragment in the second logical unit AUXCALCA2. 
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The formula for the AUXCALCA2 module is as follows: 

P[1] + P[2]*(-1.200780) + P[3]*(0.437879) + P[4]*(0.558494) + P[5]*(-0.009829) + 

P[6]*(-0.187109) 

The calculation in the rest of the mathematical modules AUXCALC similarly takes place, 

until all attributes are involved in the calculations. In each of the math modules, the 

formula contains the coefficients corresponding to the connected attributes. The final 

value is calculated at the output of the last mathematical module, which is the turbine load 

predicted value. The program's general view for calculating the predicted value is shown 

in Figure 55. 

 

Figure 55. Program general view for calculating the predicted value. 

Additionally, the calculated output value was averaged using the ROLLAVGA module 

(Figure 56). 

 

Figure 56. ROLLAVGA module for averaging the predicted value. 
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ROLLAVGA averages the output to prevent sudden jumps in the predicted values during 

turbine transients’ modes such as a sudden stop or a load rise. The averaging time was 

adjusted by changing the module setting parameters. For this research, the averaging time 

was chosen equal to 5 minutes. After averaging, the calculated predicted value was 

connected to the DACA module input. The DACA module is designed to create an 

interface for displaying measurements on a certain operator screen. Also, this module 

formed the organization of recording measurements in the historical database. Recording 

values in the historical database allows displaying measurements in the form of a graph 

for a certain period. After the DACA module, were generated emergency messages to 

operating personnel about the deterioration of the situation at the turbine. For this 

operation, the predicted turbine load value was compared with the actual load in the 

AUXCALC10 module (Figure 57). 

 

Figure 57. Emergency messages formation to operating personnel. 

At the output of the AUXCALCA10 module, was formed absolute deviation between 

predicted and actual values. After the AUXCALCA10 module, two comparison modules 

were organized. They are designed to generate a warning and alarm signals for the 

enterprise operating personnel. The warning limit was chosen to be 3 MW. The alarm 

limit was chosen to be 6 MW. The signal boundaries were selected based on the analysis 

of predicted value behavior during the fault’s simulation. 



62 

After the calculation, the predicted values of the turbine load were recorded on the 

enterprise information server. Below are the comparative graphs of the actual (blue graph) 

and predicted (green graph) turbine load (Figure 58). 

 

Figure 58. Comparative graphs of actual and predicted turbine load. 

According to the graph, it can be determined that the average deviation of the predicted 

load value from the actual value was fixed at 1.5 - 2 MW. This deviation is acceptable 

and did not indicate any negative processes. Below is a more detailed graph of the time 

when the turbine was stopped. The graph shows that with a certain delay, the predicted 

value begins to follow the actual turbine load. Additionally, fluctuations in the predicted 

values at zero loads were noted (Figure 59). 

 

Figure 59. Turbine shutdown moment. 
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5.9. Conclusions regarding the method of detecting for anomalies on equipment 

The statistical performance of created ML models is summarized in Table 7. The model 

with the best results is marked in yellow. The model that has been integrated into the 

enterprise management system is highlighted in green. 

Table 7. Generalized model results. 

Model Dataset type used RMSE 𝑹𝟐 

Basic linear regression 

model 

Test dataset from 18/12/2020 to 

21/12/2020 
0.64 89.72% 

Basic linear regression 

model 

Test dataset from 18/12/2020 to 

21/12/2020. Data normalization 
5.86 - 

Basic linear regression 

model 

Test dataset from 18/12/2020 to 

21/12/2020 Data transformation 
0.91 - 

Basic linear regression 

model after the cross-

validation function 

Test dataset from 18/12/2020 to 

21/12/2020 
0.64 89.64% 

Additionally, trained 

linear regression model. 

Test dataset from 18/12/2020 to 

21/12/2020 
0.57 90.79% 

Model Random Forest 
Test dataset from 18/12/2020 to 

21/12/2020 
0.85 86% 

 Neural Network 
Test dataset from 18/12/2020 to 

21/12/2020 
1.24 87% 

Nonlinear regression 

model 

Test dataset from 18/12/2020 to 

21/12/2020 
0.72 91% 

Model MARS 
Test dataset from 18/12/2020 to 

21/12/2020 
0.64 89.65% 

Model PPR 
Test dataset from 18/12/2020 to 

21/12/2020 
0.52 94.7% 

During the research, several attempts were made to improve the linear model: 

▪ By normalizing data. This experiment showed that the prediction error increases. 

▪ By raising the actual load values to the third power. This experiment showed that 

the prediction error increases. 

▪ By validating the existing model using the cross-validation function. This 

experiment showed that the prediction error changes insignificantly, which 

indicates that there is no overfitting of the model. 

▪ By additional training of the linear regression model by introducing new data into 

the training set. This experiment improved the linear regression model 

performance. 

The following results were obtained for simulating equipment faults: 

▪ Individually, a change in temperature sensor values led to a difference in the 

predicted and actual load values equal to 4.36 MW. 
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▪ Individually, changing only the vibration bearing sensor values led to a difference 

in the predicted and actual load values equal to 2.67 MW. 

▪ Anomalies simulation in two variables, in particular an increase in the bearing 

temperature by 10 degrees and an increase in generator vibration by 1.7 units, led 

to a significant increase in the predicted turbine load. The average difference 

between the predicted turbine load and the actual load for the simulated period 

was 6.85 MW. 

The hypothesis of the cumulative effect of two or more attributes was confirmed. Changes 

to the values of two or more attributes have a stronger combined effect on the model 

predicted values. It can be expected further that a greater number of measurement 

deviations from normal will lead to an even greater effect on the predicted load values. 

This observation was used to apply the model in an enterprise management system. 

The Random Forest model showed the best results on the training data, but on the test 

data the model quality significantly deteriorated, and as a result, the model quality metrics 

were inferior to linear regression model. 

The performance of the Neural Network model turned out to be worse than that of the 

linear regression and Random Forest models. The Neural Network model high RMSE not 

allow it to be successfully used in the method of detecting for anomalies on the 

equipment. 

The linear regression model has been integrated (programmed) into Honeywell's 

automation plant management system. The linear regression model was chosen for 

integration because of its rather easy execution in the programming environment. This 

was described in detail in chapter 5.8. Honeywell's system calculates the turbine predicted 

load in real-time. By calculating the difference between the predicted load and the actual 

load values, the deviation was obtained in the form of a numerical value. The average 

deviation of the predicted load value from the actual value was fixed at 1.5 - 2 MW. This 

deviation is acceptable and does not indicate any negative processes. A greater difference 

between the values will lead to the generation of warning signals to the operating 

personnel about the occurrence of an anomaly on the equipment.  
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6 Work development direction 

The material in this chapter is devoted to further project development. This material is 

not implemented yet, but it can be considered as a theoretical starting point. As the result 

of the model fitting process, described in the section 4.5, the following linear regression 

model equation was obtained for the case-based fault detection method: Y = – 44.53 + 

[Rotation speed] * 0.004793 – [Current to valve1] * 0.03096 + [Current to valve 2] * 

0.03566 + [Current to valve 3] * 0.0377 + [Positioner 1] * 0.03835 + [Positioner 2] * 

0.004589 + [Positioner 3] * 0.1745 – [Turbine controller output] * 0.07026 - [Power] * 

0.01355 + [Power regulator mismatch] * 0.04785                    

For the equipment anomaly detection method, a similar formula has been implemented in 

Honeywell's enterprise management system and has proven to work. Therefore, the 

formula derived from the case-based fault detection method can be similarly implemented 

in the process control system (DCS). Thus, the system will calculate the predicted value 

of Y in a range [0, 1] in real-time.  

To create alarms about equipment wear-out, it is necessary to divide the possible range 

of allowable Y values into classes, for example: 

▪ Y  [0, 0.4) - the problem does not exist, 

▪ Y  [0.4, 0.7) - the problem exists, not critical, 

▪ Y  [0.7, 1] - the problem exists, it is critical. 

Now, it is possible to create a logical module in the control system, the task of which will 

be to calculate the predicted value of Y in real-time, compare with the specified limits 

and generate final information messages to the operating personnel (Figure 60). 

 
Figure 60. Logic for alarms creation. 
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At this stage of the project, this section is a theoretical hypothesis that will need to be 

confirmed or refuted. To confirm the hypothesis, it is necessary to organize the recording 

of the predicted values of Y in the historical database for further observation. Over time, 

when the equipment is in operation, occur natural wear-out of mechanical elements. If 

the hypothesis is correct, then the predicted values of Y should increase smoothly towards 

the 1 at the end of the equipment operation cycle (before the repair). After a major 

overhaul, the predicted values Y should lie around 0. The observation results will give 

grounds to draw certain conclusions about the efficiency of this method. 

The case-based fault detection method used Estonian Power Plant turbine No. 8 operation 

data. Working with the data, it was possible to draw an important conclusion that each 

time after repairs, the behavior of the equipment changes in the process. ML model 

classified repaired state of with a large difference for the test datasets, which were taken 

immediately after the repair, but in different years. This means, that the method of 

detecting the faulty state of equipment using ML algorithms requires further 

development. To minimize errors in the case-based fault detection method, it is necessary 

to create a training dataset in a more complex way. It is necessary to collect data several 

days before and after each cycle of equipment operation. This means collecting data for 

a week of equipment operation before and after the next major overhaul. Below is the 

algorithm for creating a training dataset for the model (Figure 61). 

 

Figure 61. Algorithm for creating a training sample for the model. 

The obtained data samples must be combined into one generalized dataset, which will be 

used as training dataset for various ML models (Figure 62). 



67 

 

Figure 62. Algorithm for combining data into one generalized dataset. 

The expected result of this action is that machine learning algorithms will be able to learn 

to perceive the healthy state of the equipment as one class, regardless of in which overhaul 

cycle the sample was collected. The deteriorated condition of the equipment, accordingly, 

should be perceived as a different class. Significant differences must form between the 

different classes. In this case, the presented fault detection method will give an expected 

result.  

In this investigation, there is no information about overhauls volume at turbine No. 8. The 

research result showed that the predicted values after some overhauls did not match with 

the expected result. The reason for the obtained observations can be explained by the 

assumption that in some years the overhaul was not carried out fully. Therefore, the 

model, immediately after the repair, predicts the worn-out equipment condition. At this 

project stage, these assumptions can neither be confirmed nor refuted. Therefore, the 

above material remains a theoretical starting point for further research. The key point for 

the precedent-based fault detection is the need to classify the samples based on 

information from repair services about the overhauls volume carried out in each cycle of 

equipment operation. Only in this case it will be possible to create a proper training 

dataset, and successfully use it in the fault detection method.  
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7 Conclusions 

In this thesis two methods of industrial equipment fault detection were studied: the fault 

detection by precedents and the detecting anomalies on the equipment. Based on the 

research results, can conclude that both fault detection methods can be successfully used 

to generate a correct and accurate message about equipment failures. Experimental results 

show that machine learning algorithms can recognize changes in the state of equipment 

during its operation. 

However, the precedent-based fault detection method revealed some disadvantages that 

must be eliminated before using it in a real process. It is necessary to classify the samples 

more carefully based on information from the repair services. Only then will be possible 

to minimize errors in data classification and this will make it possible to successfully use 

the fault detection method on equipment. Before introducing precedents-based fault 

detection method into the technological process, are required additional tests at the 

enterprise equipment. The investigation showed that after the new data introduction, the 

predictive model becomes stronger and more accurate. This suggests that prediction 

results will get even better over time with adding new, additional data to the model. 

Finally, this research provided insight into the ongoing changes in equipment after 

overhaul. This work can serve as a basis for further investigation for finding a more exact 

method for identification of equipment faults. 

The main aim of this work was to develop a methodology for detecting malfunctions of 

industrial equipment based on ML methods and technologies for its implementation at 

the enterprise. The ML model developed as the result of the research of the method of 

detecting anomalies has been successfully integrated into the enterprise management 

system. The malfunction development will provoke a change in the several sensors 

response close to the faulty node. Due to the cumulative effect, the several attributes 

influence on the model predicted value would be significant. Already in the early stages, 

a warning signal would be generated to the operating personnel about the equipment 

abnormal behavior. This point has been created two alarm levels in the Honeywell 

management system. For the warning signal, the deviation limit was chosen equal to 3 

MW. For the alarm, the deviation limit was chosen to be 6 MW. Such a deviation will 

signal that anomalous appearances are beginning to occur on the equipment. Not in all 

cases, the deviation will be associated with a malfunction. These can be any changes in 
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the equipment operating modes. A situation may arise when some operation mode is not 

included in the training dataset. In this case, for the predicting model, this operation mode 

will be considered as a deviation. It may be necessary to retrain the linear regression 

model with the new operation mode involvement in the training dataset. When the 

operating mode did not change, and the deviation of the actual load from the predicted 

value continues to increase, it is necessary to examine the sensor's measurements more 

closely. There is a high probability that mechanical faults begin to develop on the 

equipment. The implemented method of detecting anomalies makes it possible to notice 

negative changes at the earliest stages of their formation. This will make it possible to 

take appropriate steps to prevent further negative developments. The preventive steps are 

taken at the initial stage, ultimately, will give an economic effect during the operation of 

the equipment. 

7.1 Expected benefit analysis and business case 

During operation, the equipment is exposed to a large number of negative factors. Such 

factors are mechanical loads, which contribute to a change in the material strength 

characteristics and a change in the initial geometric dimensions. The technical condition 

of the equipment is deteriorating. After overcoming a certain limit, equipment failure 

occurs, that is, the inability to perform its functions. To restore operability, it is necessary 

to carry out maintenance and repair (MRO) of the equipment. The negative effects on the 

equipment are accidental. Therefore, equipment failure can occur at any time in the 

operation cycle. The following are the well-known strategies applicable to equipment 

maintenance and repair (Figure 63). 

 

Figure 63. Maintenance and repair strategies [5]. 
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Currently, the company applies three strategies applicable to maintenance and repair. The 

first strategy is called Work to Failure. This strategy is the simplest and does not require 

tracking the equipment's technical parameters. This strategy applies to ancillary 

equipment, the failure of which, in general, is not capable of stopping the production 

process of the entire plant. But in some situations, under an unfavorable set of 

circumstances, such a strategy can lead to long downtime. Therefore, if possible, this 

strategy should be avoided when organizing maintenance. The second and third strategies 

that are used in the enterprise are called "Preventive maintenance". The essence of these 

strategies is that equipment repairs are planned. The differences lie in the method of 

calculating the mechanisms operating time. The timing calculation is based on the 

equipment operation calendar cycles. The time-based strategy is based on the machine's 

actual operating time calculation. For this, some counters are provided in the control 

systems, which are activated at the moment when receiving a signal about the 

mechanism's active state. 

All the above strategies have significant disadvantages. The equipment operation to 

failure provokes a chain negative reaction of one faulty unit to the system neighboring 

elements. The failure development stages are shown in Figure 64. 

 

Figure 64. Failure development stages [5]. 

Before finally falling, some faulty equipment units affect nearby elements for a long time. 

Thus, subjecting them to increased wear-out. Ultimately, when the complete failure 

moment of the initial node comes, the system neighboring elements have already become 

unusable. In this case, it is necessary to repair a lot of nodes, which, in economic terms, 

is significantly more expensive. The method for determining a malfunction at the initial 

stage of its development will allow the equipment to be disconnected from work in time. 
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In this case, only the primary unit needs to be repaired, and the remaining elements would 

remain in good technical condition. 

Scheduled maintenance has the disadvantage that by the time/date of repair, the resource 

of some equipment has not yet been exhausted (Figure 65). 

 

Figure 65. Changing the state of equipment [26]. 

This leads to ineffective use of the enterprise's repair facilities. Therefore, when 

organizing maintenance, it is necessary to use other strategies based on more complex 

algorithms. 

The use of ML models allows to implementation strategy called “Repair as per condition” 

in the enterprise's daily life. The essence of this strategy is to apply a predictive approach 

to equipment repair and maintenance, which makes it possible to determine in advance 

possible equipment failures (Figure 66).  

 

Figure 66. Organization of predictive maintenance strategy [26]. 

The equipment is operated until the moment of the predicted failure. The alarm threshold 

is selected individually for each type of equipment. The main criterion for organizing a 
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threshold value is to analyses the influence of a node on neighboring elements. The main 

task is to maintain the equipment in operation until the moment when a change in the state 

of one node begins to negatively affect the entire system. Based on the model's predicted 

values, possible schedule equipment repairs at the right time (Figure 67). 

 

Figure 67. Difference between maintenance strategies [26]. 

As a result, predicting failures will reduce the time during which the equipment was in 

repair, thereby increasing the operational reliability of the entire enterprise. The expected 

benefit from the technology introduced into the process is achieved by reducing the 

number of unplanned equipment downtime. Besides, the technology allows for improved 

equipment repair planning. This will reduce the waiting time for spare parts, ultimately 

minimizing plant downtime. The combination of the above arguments suggests that the 

introduction of fault detection methods in the enterprise technological process will lead 

to a decrease in total costs, which is one of the most important economic goals of any 

enterprise. 

7.2 Discussion of the results 

The research showed many observations, the answers to which are presented below. 

It was found that for the anomaly detection method, many models performed poorly at 

predictions below 10-13 MW. This observation can be explained as follows, that the 

training dataset does not have operation modes at such a load. Therefore, the model "did 
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not learn" to predict such modes. According to the turbine operation technology, modes 

at such low loads are not used. The operating personnel start the turbine into operation 

and immediately loads the active power over 13MW.  Which explains the insufficient 

predicting accuracy at low loads. 

The second observation was the lack of accuracy in predicting zero loads. This is because 

there are not enough intervals with such a load in the training dataset. An attempt was 

made to improve the model by adding additional data into the training dataset for the 

operational time when the turbine was stopped. This made it possible to improve the 

model quality and more accurately predict values at zero loads. 

The third observation was noted that there were many zero values in some of the data. 

This is due to the turbine vibration sensor measurements, at the turbine stopped state, 

which are normal operating measurements. Therefore, there is no need to take any 

additional action with this observation. In the process of adding additional data for the 

period of turbine downtime, such zero measurements were added even more, since there 

is no vibration on the stopped turbine. The above answers revealed the reasons why the 

models are not behaved enough accurately in some turbine operating modes. 

The next discussion was related to the PPR model result. This model has shown the best 

results in terms of model performance metrics. But this model integration into the 

enterprise system is a rather difficult task. Of course, models can be found that perform 

better than linear regression. However, the linear regression model can be programmed 

in any control system. In this research, the applied meaning of the model was critical. 

Since the aim of the thesis was to develop a model that will successfully work in the 

enterprise management system and provide operating personnel with information about 

the malfunction occurrence. 

The last discussion was related to the issue of developing the model in real-time. Indeed, 

during the turbine operation, new data is constantly being received. A question was raised 

about the possibility of implementing additional model training with new data in real-

time. The expected result of this action would be an increased predictive accuracy of the 

model. But this functionality is not provided in the Honeywell programming 

environment. It is possible to perform the additional model training with some other 

statistical software and the prepared model integrate into the Honeywell system. But, as 

with other issues in this discussion chapter, this can be viewed as a space for the further 

development of the project.  
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8 Summary 

The master’s thesis focuses on the application of machine learning methods to detect 

faults on industrial equipment. For industrial enterprises, the topic of this work is 

relevant. All key components of production processes depend on reliable, uninterrupted 

equipment operation.  

The goal of the master's thesis was to develop a methodology for detecting malfunctions 

on industrial equipment based on machine learning methods and the technology of its 

implementation into the enterprise management system. 

In this thesis two methods of industrial equipment fault detection were studied: the fault 

detection by precedents and the detecting anomalies on the equipment. Based on the data 

collected from the Enefit Power AS enterprise info servers a number of ML models were 

fitted to predict the occurrence of malfunctions on the equipment during operation. 

Programming language R and WEKA software were used for ML models building. 

For the case-based fault detection method linear and logistic regression models were 

created to predict problems on the equipment. For the linear regression model, the RMSE 

on the training data was 0.13. The model r-square was 92.6%. The logistic regression 

model correctly classified 99.98% of the training data. On the test samples, was found a 

large scatter in the model's quality metrics. Comparative metrics analysis showed that for 

some datasets, the logistic regression model performed better with the classification task. 

Moreover, on other test datasets, the linear regression model achieved the best 

performance. As a result, the final choice was made in favor of the linear regression 

model.  The results of this method were summarized at the end of the Chapter 4. The 

discovered disadvantages and ways to eliminate them were described in detail. 

For the method of detecting anomalies on equipment a variety of ML models have been 

created, such as linear and nonlinear regression, neural networks, Random Forest, MARS 

model, PPR model. For the linear regression model, many attempts have been made to 

improve model quality. Summarized results are shown in Table 7. The best performance 

for the test sample was achieved with the PPR model, the RMSE on the test data was 

0.52, r-square was 94.7%. However, due to its simplicity the linear regression model was 

chosen for integration in the enterprise management system. The linear regression model 

quality metrics are very slightly inferior to the quality metrics of the PPR model. For the 
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final linear regression model, the RMSE on the test data was 0.57, r-square was 90.79%. 

The applied value in this work means the model integration in the Honeywell automated 

control system to calculate the turbine load predicted values in real-time. The predicted 

value historical graphs attached to the project prove that the calculations in real-time are 

fully consistent with the expected results. The graphs visually show that the average 

deviation of the predicted load value from the actual value was found equal to 1.5 - 2 

MW during normal turbine operation. Such deviations are acceptable and do not indicate 

the development of any negative processes. However, large deviations (3 MW for 

warning, 6 MW for alarm) will trigger an alarm on the equipment, signaling the 

development of an anomaly. To validate this assumption, the research performed an 

equipment fault simulation. To simulate faults, abnormal manual changes were made to 

the original data. After introducing anomalous values for some measurements into the 

test samples, was analyzed the model calculated response. The bearing temperature 

increase simulation by 10 degrees with a simultaneous increase in the generator vibration 

by 1.7 mm/s led to an increase in the turbine load predicted value by 6.85 MW from the 

initial one. It can be expected that more measurement deviations from normal values will 

lead to an even greater impact on the predicted value. Malfunction simulation has proven 

that these anomalies will not go unnoticed by operating personnel if they occur on the 

equipment in real life. 

Separately, the project noted that the developed methods are innovative for Enefit Power 

AS. The uniqueness of the work lies in the fact that the author was able to share and 

distribute the accumulated world experience in this area to the Enefit Power AS 

enterprise. This research proposes a methodology for diagnostics and fault detecting 

based on machine learning techniques. The technique is technologically prepared for 

implementation in the enterprise production process. Uninterrupted equipment operation 

at the enterprise is of great importance during the production of electricity and liquid 

fuels. Therefore, the developed methods that will reduce equipment downtime are very 

valuable for the enterprise. 

It should be noted separately that the found methods are universal and applicable to any 

interested enterprise mechanisms. The information is presented in the project in such a 

way that it was possible to use this work as a methodological guide for integrating the 

considered methods in any industrial enterprise.  
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Appendix 2 

Link to the repository containing the RStudio analytical part code, tables and files with 

datasets that took part in the project. 

https://gitlab.cs.ttu.ee/dmitri.poljakov/application-of-machine-learning-methods-to-industrial-

equipment-fault-detection 

 

Case-based fault detection 

1. RStudio analytical part (code, plots, tables, models) 

1.1. Case-based fault detection method 

2. Datasets 

2.1. RStudio datasets 

2.2. WEKA datasets 

 

Anomaly detection 

3. RStudio analytical part (code, plots, tables, models) 

3.1. Anomaly detection method part1 

3.2. Anomaly detection method part2 

3.3. Anomaly detection method part3 

4. RStudio datasets 

5. Tables 

5.1. Turbine and generator measurement points Enefit 280 

5.2. Linear regression model Enefit 280 

 


