THESIS ON POWER ENGINEERING,
ELECTRICAL ENGINEERING, MINING ENGINEERING D82

Research and Development of
Storage Based Energy Management
System for Households

DENIS LEBEDEV




TALLINN UNIVERSITY OF TECHNOLOGY
School of Engineering, Department of Electrical Power Engineering and
Mechatronics

This dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Power Engineering and Geotechnology on February 1, 2017

Supervisors: Senior Research Scientist, Argo Rosin, Dr.Sc.Eng.,
Department of Electrical Power Engineering and
Mechatronics,
Tallinn University of Technology

Opponents: Auxiliary Professor, Jodo Martins, Ph.D.,
Department of Electrical Engineering,
Faculty of Sciences and Technology,
Universidade Nova de Lisboa, Portugal

Associate Professor Anna Mutule, Dr.sc.ing.,
Institute of Power Engineering,

Faculty of Power and Electrical Engineering,
Riga Technical University, Latvia

Defense of the thesis: March 28, 2017

Declaration:

Hereby 1 declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology, has not been submitted for any academic degree.

Denis Lebedev.....uuuuveveeeveeeeeeinennn...

* Xk
* *
* *
* *
gk
]

European Union
European Social Fund Investing in your future

Copyright: Denis Lebedev, 2017

ISSN 1406-474X

ISBN 978-9949-83-080-0 (publication)
ISBN 978-9949-83-081-7 (PDF)



ENERGEETIKA. ELEKTROTEHNIKA. MAENDUS D82

Energiasalvestil pohineva energiahaldussiisteemi
uurimine ja viljatootamine kodumajapidamistele

DENIS LEBEDEV

=

RJASTUS






Acknowledgements

I would like to express my sincere gratitude to my supervisor, Senior Researcher
Argo Rosin, for his very skillful guidance, encouragement, and unbelievable
patience during this work.

Many thanks to all my colleagues from TUT who have supported me in my
mission all these years.

Moreover, I would like to thank Mare-Anne Laane for revising and editing
English texts in my articles and this thesis.

My special thanks are due to my family and my friends for their support,
patience and care throughout the years of my study.

Thank you all!

Denis Lebedev






Table of Contents

LIST OF PUBLICATIONS ..ottt 9
ABBREVIATIONS ...ttt 12
SYMBOLS ...ttt sttt st 14
INTRODUCTION ...ttt 16
1. STATE OF THE ART AND RECENT ADVANCES OF DEMAND SIDE
MANAGEMENT .....ocoiiiitiiiereee ettt 19
1.1 Open electricity MArKet .........cccvevieiieiieieeieee e 19
1.2 Demand side management possibilities in households............cccccovierennne. 21
1.3 Energy storage technologies for demand side management.......................... 23
1.4 Demand for stored energy to cover household electricity consumption........ 25
2. RESEARCH AND DEVELOPMENT OF CONTROL ALGORITMS.................. 31
2.1 Research of recent mathematical models for energy shifting within constraints
OF EMS ettt et ettt 31
2.2 Development of day-ahead price based control algorithm ..............ccceeeeeee. 33
2.3 Development of real-time price based control algorithm ...........cccccceeenenee. 37
24 Evaluation of BESS control algorithms...........ccccceoeiininiiininieeeee e 40
3.  RESEARCH AND DEVELOPMENT OF THE NEW ENERGY MANAGEMENT
SYSTEM ..ottt sttt sttt sttt sttt sttt 43
3.1 Design of the New Energy Management SyStem ..........c..ccceevvevreeveeveneennens 43
3.1.1 Introduction to the basic concept of the Energy Management System . 43
3.1.2 Design of the new Energy Management System ...........cceceevveerveennennen. 46
3.13 Power Unit With StOTage........cccvevvieriieiieierieeeie e 49
3.14 Auxiliary Control Unit........cccecveeiiiieiienieniieeeieeie e 49
32 Software of EMS and Data Flow between Subsystems........c.ccccceeevcnenene 50
3.2.1 INEOAUCHION. ....eeeiieiieeieeeee e 50
322 PLC SOfTWALE ...ttt 52
323 PC software — “PriceGrabber” ...........cccoeeerierieiiieeeieeeeseeseeee e 54
324 Design of HMI software (Graphical User Interface control application
with common Workflow guideline) ...........ccooeeviieriiriinieieiee e 55



4. ECONOMICAL EVALUATION AND VERIFICATION OF EMS...........c..c..... 60

4.1 Economical evaluation and required electricity price difference................... 60

4.2 Comparison of 1 kWh price for different battery types.........ccocveevvecvrnvennnnns 64
5. CONCLUSIONS AND FUTURE WORK .......cccccvetmminineinnecnieecneiceneenene 68
REFERENC ES ..ottt ettt ettt s 71
ABSTRACT ...ttt ettt s 76
KOKKUVOTE ..ot 77
ELULOOKIRJELDUS ......cciniiiiiiiieiininieineieitnteieieteaeet ettt reses et nesesesseseeenen 78
CURRICULUM VITAE ......cioiiiiiiiiiininciieettee ettt ettt 80
APPENDIX 1. PROGRAM LISTING ,,PriceGrabber............cccooeeinreenireenneenenas 83
APPENDIX 2. COPIES OF PUBLICATIONS ......cciiiriiieinirieieeieieieseee e 85



LIST OF PUBLICATIONS

[I] Lebedev, D.; Rosin, A.; Auviirt, A. (2012). Profitability of Energy Storages
for Household Load Scheduling. In: 11th International Symposium "Topical
Problems in the Field of Electrical and Power Engineering". Doctoral School of
Energy and Geotechnology. II : Parnu, Estonia, January 16-21, 2012, Ed. Zakis,
J. Elektriajam, 70—75.

[II] Melentjev, S.; Lebedev, D. (2013). Overview of Simplified Mathematical
Models of Batteries. In: J. Zakis (Ed.). 13th International Symposium "Topical
problems in the field of electrical and power engineering". Doctoral School of

Energy and Geotechnology. II : in memoriam of professor Juhan Laugis : Pérnu,
Estonia, January 14-19, 2013 (231-235). Parnu: Elektriajam.

[III] Rosin, A.; Auvéairt, A.; Lebedev, D. (2012). Analysis of operation times
and electrical storage dimensioning for energy consumption shifting and

balancing in residential areas. Electronics and Electrical Engineering, 4 (120), 15
-20.

[IV] Rosin, A.; Auviirt, A.; Lebedev, D. (2012). Energy storage dimensioning
and feasibility analysis for household consumption scheduling based on
fluctuations of Nord Pool Spot price. Przeglad Elektrotechniczny, 88(1a), 37 -
40.

[V] Lebedev, D.; Rosin, A. (2014). Modelling of Electricity Spot Price and Load
Forecast Based New Energy Management System for Households. 55th
International Scientific Conference on Power and Electrical Engineering of Riga
Technical University (RTUCON), Riga Technical University, Riga, October 14,
2014. Latvia: IEEE, 222-226.

[VI] Lebedev, D.; Rosin, A. (2015). Practical Use of the Energy Management
System with Day-Ahead Electricity Prices. 2015 IEEE 5th International
Conference on Power Engineering, Energy and Electrical Drives
(POWERENG), Riga, Latvia, May 11-13. IEEE.

[VII] Lebedev, D.; Rosin, A.; Kiitt, L. (2016). Simulation of Real Time
Electricity Price Based Energy Management System, IEEE IECON 2016, The
42nd Annual Conference of IEEE Industrial Electronics Society, October 24-27,
2016.

[VII] Auvéirt, A.; Rosin, A.; Belonogova, N.; Lebedev, D. (2011). Nord Pool
Spot price pattern analysis for households energy management. [n: 7th
International Conference-Workshop Compatibility and Power Electronics
(CPE2011), Tallinn, Estonia, June 01-03, 2011: 1EEE, 2011, 103 - 106.



[IX] Auviirt, A.; Rosin, A.; Miiilir, M.; Lebedev, D. (2011). Nord Pool Spot
price fluctuation analysis for energy management of household appliances. 10th
International Symposium "Topical Problems in the Field of Electrical and Power
Engineering", Doctoral School of Energy and Geotechnology. Parnu, Estonia,
January 10-15. Ed. R. Lahtmets. Tallinn, Estonia: Estonian Society of Moritz
Hermann Jacobi, 91-94.

In Appendix 2, copies of publications with classification 1.1 and 3.1 are
included.

10



Author’s Contribution to the Publications
Author’s contribution to the papers included in the thesis is as follows:

[I] Denis Lebedev is the main author of the paper, responsible for the literature
review, data collection and calculations. He had a major role in writing and
presented the paper at 11th International Symposium "Topical Problems in the
Field of Electrical and Power Engineering". Doctoral School of Energy and
Geotechnology. II. 2012.

[II] Denis Lebedev co-authored the paper, responsible for the literature review,
data collection, and some of the calculations. He had a minor role in writing.

[III] Denis Lebedev participated in writing the paper, he was responsible for
literature review and data collection. He had a minor role in writing.

[IV] Denis Lebedev participated in writing the paper and was responsible for
data collection and some of the calculations. He had a minor role in writing.

[V] Denis Lebedev is the main author of the paper, responsible for data
collection, calculations and modeling. He had a major role in writing and
presented the paper at 55th International Scientific Conference on Power and
Electrical Engineering of Riga Technical University (RTUCON 2014).

[VI] Denis Lebedev is the main author of the paper, responsible for data
collection, calculations and modeling. He had a major role in writing. Co-author
Argo Rosin presented the paper at 5th International Conference on Power
Engineering, Energy and Electrical Drives (POWERENG 2015).

[VII] Denis Lebedev is the main author of the paper, responsible for the
literature review, data collection and calculations. He had major role in writing
and presented the paper at 42nd Annual Conference of the IEEE Industrial
Electronics Society (IECON2016).

[VIII] Denis Lebedev participated in writing the paper and was responsible for
data collection and literature review. He had a minor role in writing.

[IX] Denis Lebedev co-authored the paper, responsible for the literature review,
data collection. He had a minor role in writing.

11



ABBREVIATIONS

A

Ah
AC
AGM
ASCII
DB
BCDS
BESS
BM
CAES
CET
CPU
DAA
DC
DCE
DMC
DoD
DR
DSO
DTE
ECMA
EE
EMS
ES
EV
GUI
GWh
HD
HEMS
HMI
HVAC
1SO
1/0
kW
kWh

Ampere

Ampere-hour

Alternating current

Absorbent glass mat

American Standard Code for Information Interchange
Data block

Battery charge discharge schedule
Battery energy storage system
Battery Monitor

Compressed air energy storage
Central European Time

Central processing unit

Day-Ahead algorithm

Direct current

Data circuit-terminating equipment
Digital Multi Control

Depth of discharge

Demand response

Distribution system operators

Data terminal equipment

European Computer Manufacturers Association
Energy Efficiency

Energy Management System
Electricity storage

Electric Vehicle

Graphical user interface
Gigawatt-hour

Holidays

Home Energy Management Scheduler
Human Machine Interface

Heating, Ventilation, Air Conditioning
Independent system operator
Inputs/Outputs

Kilowatt

Kilowatt-hour

12



LA
LAD
MW
MWh
NP
PC
PHES
PLC
PROFINET
PU
PV
RTC
RTO
RTM
RTP
RTPA
SCADA
SCL
SFE
SQL
SR
SMA
SMES
SOC
STC
TCP/IP
TIA
TOU
TSO
TW
TWh
UML
VB
WD

Lead acid

Ladder Logic

Megawatt

Megawatt-hour

Nord Pool

Personal Computer

Pumped hydroelectric energy storage
Programmable Logic Controller
Process Field Net

Power Unit

Photovoltaic

Real-Time control

Regional transmission organization
Real-Time monitoring

Real-Time price

Real-Time price algorithm
Supervisory Control and Data Acquisition
Structured Control Language

Supply function equilibrium
Structured Query Language
Spinning Reserves

Simple moving average
Superconducting magnetic energy storage
State of charge

Stochastic scheduling control
Transmission Control Protocol and the Internet Protocol
Totally Integrated Automation

Time of Use

Transmission system operator
Terawatt

Terawatt-hour

Unified Modeling Language

Visual Basic

Weekdays

13



SYMBOLS

Calg
Cpuu
Crrpa

Ctot
DayP
DayP,
At
Epars
E c

E c,t

E dir,c
EDOD

P grid

day average cost with use of an algorithm

day total cost with use of DAA

total cost of energy for particular time period 7 with use of RTPA
daily sum cost without the use of EMS

day profit achieved by EMS

required day profit to return investment to EMS

time step

energy balance at hour ¢

electricity consumption

electricity consumption at the hour ¢

direct consumption of electricity generated by a generation system
energy capacity equals to battery Depth of Discharge amount
electricity generated (or grid electricity) at the hour ¢

initial required energy capacity of battery bank

required maximum energy capacity for battery bank

total losses of electricity

electricity generated by a generation system

indirect consumption of electricity generated by a generation
system

daily demand for stored energy

surplus of generated electricity

total cost of EMS

forecasted electricity price

required electricity price difference

margin for decrease of maximum level price

margin for decrease of minimum level price

actual battery current

charging current from the grid

actual battery charge

relative daily demand for stored electricity compared to the total
demand

maximum level price

minimum level price

auxiliary variable for indexing

auxiliary variable for indexing

auxiliary variable

round-trip efficiency of energy storage

charging efficiency of energy storage

discharging efficiency of energy storage

charging power

discharging power

power from the grid

14



Pload load consumption

P power output of energy storage

Pr maximum profit generated by algorithm
0 battery capacity

R battery internal resistance

Rp polarization resistance

SOC() state of charge at the end of time slot ¢

t index for time

T time period consists of ¢ slots

14 actual battery voltage

Vo battery constant voltage

Vv’ exponential voltage

x1 decision variable (1 — for charging)

x2 decision variable (1 — for discharging)

z coefficient shows required difference between minimum and

maximum prices

15



INTRODUCTION

Motivation

The last year’s period has seen a process of fundamental change in electricity
supply industries. The deregulation of numerous power markets around the
world, mainly the US and EU, has created liberalized markets with an optional
or mandatory spot market [1]. As a result of that change, the Power Exchanges
appeared as a consolidated entity where the supply and demand meet [2].
Assistance of the trading short-term standardized products is the significant goal
of exchange-based spot markets. They provide other advantages, like a neutral
price reference and a neutral marketplace, clearing and settlement service, safe
counterpart and easy admission [3]. The latter allows for relatively small
members participating in the energy market. Sharing by these members of
renewable energy sources and hybrid systems, such as electric energy storage
with wind turbines and photovoltaic panels, has increased electricity production
remarkably and has influenced price formation in the power markets. In the
open-market economic conditions and policies, efforts to find realistic models to
define prices of electricity are essential for the evaluation of power grids [4]. In
contrast to commodities, electricity moves permanently between market
participants. As a result, a fair balance must be maintained between generation
and consumption every hour — 365 days per year [5]. This is one of the
differences from financial markets, though it is an opportunity for end customers
to be involved in the trading process all the time. However, energy spot markets
could have different features and time frame options. One of the largest in
Europe, Nord Pool (NP), initially in 1993, covered only Norwegian market
operations. During the next six years, it combined all Scandinavian countries to
one pool [2]. Today, already 80 companies from 20 countries and regions, like
Nordic and Baltic, trade on the two time frame markets. Total power amounts to
almost 500 TWh in the day-ahead market and 5 TWh in the intraday market [6].
These are two main time frames in two specific markets. The first is the Elspot
day-ahead market with physical delivery. The products traded are power
contracts on a daily basis with one hour duration and block bids. The hourly
contracts cover hour by hour all 24 hours of the following day. The intraday
market is Elbas, which mostly supplements day-ahead market and secures the
essential balance between physical contracts of the participants in the power
market. The trading products are one hour physical delivery contracts, trading of
which takes place around the clock to one hour before distribution [3]. It should
be noted that most of the power volume handled by NP is transacted on the day-
ahead market, but the benefit of intraday market in power regulation is obvious.

From April 1%, 2010, the Estonian electricity market joined the NP bidding
area with the help of Estonian national grid company Elering. It should be
mentioned here that the constraint in the electricity market participation was an
annual draw of electricity in 2 GWh. Nevertheless, since January 1st, 2013, all
participants in Estonia became eligible consumers in the fully open electricity
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market [7]. It would be unfair not to mention this motivation fact, which has
opened possibilities of demand side management for small consumers and their
households in Estonia. The idea consists in the assets planning needed to meet
the demand of the following day or hour, and encourage the end user to acquire
less grid energy during peak price hours and move the time of energy use to off-
peak times [8].

Thesis objectives and tasks

The main objective of the thesis is to study the possibility to use electrical
energy storage for balancing of energy consumption in households and
development of a new energy management system. Another aim is to develop
algorithms for energy management in day-ahead and intraday electricity market
conditions with the help of electrical energy storage.

This research is important because many theoretical approaches are
encountered in electrical energy storage control, but still practical
implementations of these systems are scarce, especially those for small
customers who live in apartments, i.e. those for households. The public in
general tends to believe that customers are well aware of the electricity market in
Estonia since it has been fully open for several years; however, price stochastic
fluctuations and their influence on small consumers has been scarcely studied.
On the other hand, reduction of energy storage costs and small-scale renewable
sources bring new participants to the Estonian electricity market. Thus, the task
of the thesis regarding to the theoretical part is to determine the benefits of
energy storage with open electricity market prices also for smaller customers.
Furthermore, installation of the small-scale energy management system, like the
practical part of the thesis task, is essential to confirm the theoretical part in the
limits of Estonian energy market activity. Therefore, studies in that area are
required.

Research tasks

The task is to create a Research and Development of Storage Based Energy
Management System (EMS) for households, which includes:
1. Overview of open electricity market and demand side management
technologies, research of energy storages suitable for household systems
2. Development and evaluation of control models for electrical energy
storage based on the electricity market price with different time
resolution
3. Design and development of a new Energy Management System, with a
description of sub- systems
4. Research of economical evaluation of the Energy Management System,
verification of the system by practical measurements.
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Contribution of the thesis and novelty

The scientific contributions of the thesis can be summarized as the research
and development of a new energy management system for typical households
with the use of a battery energy storage system as follows:

review of NP electricity markets and energy storage technologies;
analysis of load patterns and time dependence of electricity consumption
in typical households;

research and development of day-ahead price based control
model/algorithm (price trading time frame 24 hour) for a new storage
based EMS;

research and development of real-time price based control
model/algorithm (price trading time frame 1 hour) for a new storage
based EMS;

development of architecture of a new storage based EMS;

development of supervision models/algorithms for a new storage based
EMS;

and the practical result, as a part of dissemination, which includes:

new energy storage integrated energy management system;

new software for control of the energy management system (including
server PC with data management and fetching data from energy
operator);

economical evaluation and verification of EMS

control guidelines for the new energy management system with an
overview of prospective development possibilities.

Thesis outline

The thesis is divided into four chapters, the Introduction and Conclusions.

Chapter 1 provides an overview of the open electricity NP market and
energy storage technologies for demand side management.

Chapter 2 studies mathematical models for energy shifting with a battery
energy storage system (BESS), development of day-ahead price and
real-time price based control algorithm.

Chapter 3 describes the research and development of the new Energy
Management System.

Chapter 4 presents economical evaluation of the new Energy
Management System.
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1. STATE OF THE ART AND RECENT ADVANCES
OF DEMAND SIDE MANAGEMENT

1.1 Open electricity market

Governments have considered the electricity production as a primary
industrial segment throughout times. It is required to control electricity industry
effectively because of its strategic meaning for industrial growth. Furthermore,
electricity industry usually had monopoly characteristics and tended to impact
environmental and social factors. Despite private ownership of the electric
utilities in some countries, they still had wide-ranging financial and safety
planning, and environmental control by the governments because of the lack of
competition in the potentially competitive generation and supply business [9].
This situation started to change in the early 1980s when the process of
deregulation of electricity market was developing in South America and spread
to other world. Since the 1990s, the pace of electricity market deregulation and
liberalization became faster. The most common arguments in support were:
unbundling of the competitive functions of electricity industry from the
monopoly functions and to establish a free wholesale and retail electricity
market [10]. On the other hand, a number of key issues arose from the
demonopolization of the electricity sector and open energy markets. For
instance, independent bulk system grid operators in Real-Time coordinating the
supply and demand of electricity can affect the quality of electricity
transmission, since any failure on their grid can propagate to a very huge amount
of end customers. These operators are termed transmission system operators
(TSOs) in Europe; regional transmission organizations (RTOs) or independent
system operators (ISOs) in the United States, and load dispatch centers in India.
Doubtless, operators have all required certifications and resources to provide
real-time dispatching of generation and managing security in power systems.
Also, interconnection to each other on regional or national level reduces the
possibility of any concern; however, natural hazards and generation -
consumption unevenness cannot be avoided completely [11]. Another major
factor of open electricity market is a trading model. There are three essential
models in use for electricity markets today: the Cournot model, the Bertrand
model, and the supply function equilibrium (SFE) model [12], which is well
applied to the market structure of many restructured electricity markets, such as
New Zealand, Australia, Pennsylvania-New Jersey-Maryland Interconnection,
California Power Exchange, and NP. The bid format with the market-clearing
price is precisely a supply function in these markets [10].

Since 2010, Estonian electricity market provides link to the Nordic electricity
market — NP. In 2013, the market became fully open and from that moment, all
consumers are eligible to purchase electricity through a broker or directly in the
Estonia price area of NP. The result of electricity purchasing was its physical
delivery to end customer with the help of TSOs and distribution system
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operators (DSOs). Thus, transmission and distribution that ensure electricity
flow within the region on a par with production capacity are one of the main
factors that influences the price of electricity in the open market. Estonia ensures
connection capacity by physical interconnection to neighbor’s power networks.
The main power lines that connect Estonia with Nordic region are sea cables
EstLink 1 and EstLink 2 with respective capacities of 350 MW and 650 MW
[10]. Such a great electricity liquidity option leads to depth in the market and
reliable index price, but also needs an extra balancing feature. For Estonia, the
same as for other NP members, the intraday Elbas market is performing a role of
balancing power for day-ahead Elspot market.

The Elspot and Elbas markets supplement each other in the balancing of
supply and demand. Elspot can be termed as auction of power for delivery the
following day (next 24 hours), where the price is determined for every hour [3].
Elspot processes the price on the basis of supply (sell), demand (buy) and
transmission capacity (turnover). The bids are gathered together and the market-
clearing price (system price) is calculated at their intersection of aggregated
supply and demand curves [1] [13]. Figure 1.1 illustrates an example of
processing the market-clearing price [6].

€

System price

MW

Turnover at system price

Figure 1.1 System price determination at NP [13]

An outline of the features regarding Elspot is as follows:

e operated contracts are physical-delivery electricity contracts for the
following day;

e according to the type of the bid, contract duration is one hour or one
block; blocks are scoped as several consecutive hours with one price;

e minimum size of the contracts is 0.1 MWh/h;

e 12:00 by Central European Time (CET) is the deadline hour for
receiving all the bids for the following day;
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e price calculation results appear for consumers from 12:45, latest at
14:00 by CET [14].

The last feature is essential for systems in the NP region, which uses day-ahead
energy management models and algorithms.

Elbas market has less electricity turnover between supply and demand, as
distinguished from Elspot, which takes the largest part of energy volume
transmissions. However, as was mentioned above, Elbas is an intraday market,
which is very important in terms of stable and balanced electricity market.
Typical participants in this market are brokers, power producers, suppliers and
distributors. The key features regarding Elbas intraday market are:

e operated contract is one hour before the delivery hour;

e new contracts are available when the Elspot prices for the following day

have been set at 14:00;

e minimum size of the contracts is 0.1 MWh/h;

e minimum bid price is 0.1 EUR (€);

e FElbas market trading is available also in the Baltic region [6].

The latter is important for systems in the NP region, which use real-time price
(RTP), with the time unit at least one hour, in energy management models and
algorithms.

1.2 Demand side management possibilities in households

Traditionally, demand has been considered to be fixed and therefore it was
considered to be preset. Nevertheless, with recent changes in the electricity grids
and systems, more intermittent energy renewable production being applied, there
can be a need of variable demand and it can no longer be treated as fixed and
predetermined [15]. Demand Side Management (DSM) is a set of intersected
and flexible programs which allow consumers a major role in adjusting and
shifting their own demand for electricity during peak periods, and reducing their
energy consumption overall [8]. Depending on the timing and the impact of the
applied measures on the customer process, DSM can be divided into the
following two categories:

e Energy Efficiency (EE), consuming less power to complete the same
tasks. The efficiency includes a decrease of the demand by using more
efficient high load appliances such as water boilers, fridges, or washing
machines [16];

e Demand Response (DR), modifications in electric usage by end-use

customers from their normal consumption patterns in reaction to
changes in the price of electricity over time, or to incentive payments
designed to induce lower electricity use at the time of high wholesale
market prices [17].
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These categories include different approaches and programs. In [18], DSM is
classified into categories shown in Figure 1.2.

A Impact on
process
Temporarily | quality SR
reduced
Physical
DR
Market DR
Optimized
schedule TOU
. Energy
Optimized Efficiency Timing
»
Permanent Days Seconds

Figure 1.2 Types of DSM by [18]

In the figure, TOU is Time of Use program. The consumers react to the
presented different prices for electricity at different times by shifting demand
from high to low cost price periods. An option of this encouraging mechanism is
Dynamic TOU pricing where consumers can adjust their use of electricity with
reasonably short announcement times, i.e. 24 hours in response to notified price
changes [19]. Market DR means consumer’s changes in electric usage by means
of Real-Time pricing (RTP) and other incentives price signals; physical DR
stands for more global approaches like a grid for more efficient management and
emergency signals from TSOs [18]. The Spinning Reserves (SR) implemented
by loads represent the upper end of the DSM time frame spectrum and are
considered as primary (active power output directly depends on the frequency)
and secondary control (restoring frequency and grid state with additional active
power) [20]. According to [17], TOU is a program of DR in the Non-
Dispatchable response category. This category is also termed as Non-Event Base
because it cannot be considered as verifiable during system peak loading
periods. Dispatchable or Event-Base programs are consistent and capable of
reacting within Independent System Operator (ISO) or Regional Transmission
Organization (RTO) time guidelines [17]. This thesis specifies TOU and RTP as
a part of DR based on the market pricing.
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1.3 Energy storage technologies for demand side management

The improvement of the DR approach is the use of energy storage (ES) in
DSM on the consumer side. The simplest definition of a storage device is
specifically designed to store electricity from the grid, convert it into an energy
form suitable for storage, subsequently convert it back into electricity and return
it to the grid [I]. An example is the use of ES units to store energy during off-
peak hours and discharge them during peak hours. ES is essential to balance
supply and demand. Peaks in demand can frequently be anticipated and fulfilled
by increasing or decreasing generation at fairly short notice. Higher levels of
energy storage are required for grid flexibility and grid stability and to cope with
the increasing use of intermittent wind and solar electricity [21]. In addition, the
main energy storage functionalities such as energy time-shift and energy
extraction are expected to make a large contribution to security of power
supplies, power quality and minimization of direct costs and environmental
costs. On the other hand, to ensure influence on the improvement and emergence
of the Smart Grid concept at all voltage levels, ES has to be integrated in
network-based energy systems, in the electrical grid system, heat and cooling
network and gas networks [21].

Another way of looking at ES use in DSM is the problem of ES optimal
dimension. It is an important area in the development of micro- and Smart GRID
technologies to increase system reliability and to reduce the profitability time.
Properly chosen ES technologies will smooth out online balancing of supply and
demand and allow electricity to be dispatched later [22]. In this thesis, a DSM
system is considered as a small-scale energy system for an end-user household
system.

Depending on the location of storage, the systems can be divided into large-
scale (scaled in gigawatts GWs), medium-sized (scaled in megawatts MWs) or
micro, local systems (scaled in kilowatts kWs) [21]:

e Large bulk energy (GW):

o Thermal storage, pumped hydro;
o Compressed Air Energy Storage (CAES);
o Chemical storage;
e (rid storage systems (MW) able to provide:
o Superconducting Magnetic Energy Storage (SMES);
o NaS & Flow batteries;
o Pumped Heat Energy Storage (PHES);
e End-user storage systems (kW):

o Power: supercapacitors, flywheels;
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o Energy: batteries - Lead acid and Li-ion [21].

Pumped hydro, thermal storage, chemical storage (hydrogen) and CAES are
large bulk energy providers; thus they do not suit well for small-scale energy
systems. They have large size and high costs and therefore have a wider use in
utility scale installations. SMES is high-power equipment that has MW scale
range. It is a high efficient device that can withstand several cycles without
significant loss of energy storage capacity, but it has high execution expenses
and the technology is in the stage of improvement [23] [24] [25]. Flow battery
characteristics include high power and low self-discharge as compared to other
forms of storage technologies; however, it is not yet suitable for integration at
households [26] [27]. PHES is also hard to implement at small-scale households.

Small storage systems of high power devices are represented by kinetic ES,
mostly based on flywheel technology and supercapacitors. These ESs are used
mainly for short duration, high-power discharges and are therefore widely used
in the uninterruptable power source market [10]. Nevertheless, flywheels and
supercapacitors are short-time duration energy storages, and not suitable for
energy management in households.

Today, by the scope of parameters and properties, batteries as ES are still the
best solution for DSM in a small-scale customer system. The battery storage
device is described in [I] by:

e energy capacity - the amount of electrical energy the device can store,
usually measured in kilowatt-hour (kWh), megawatt-hour (MWh) or
gigawatt-hour (GWh);

e power capacity - the maximum instantaneous output that an energy
storage device can provide, usually measured in kW, MW or GW;

e cfficiency - indicates the quantity of electricity which can be recovered
as a percentage of the electricity used to charge the device;

e round-trip efficiency - indicates the quantity of electricity that can be
recovered as a percentage of the electricity used to charge and discharge
the device charging power capacity, and discharging power capacity;

e response time - the length of time it takes the storage device to start
releasing power.

The relationship between state of charge (SOC) of the energy storage and the
power flow in/out of the storage Py is as follows [28]:

1
S0C (1 +1)= soc (t)—EPS(t)At, w1

S0C (e)=n P, ()At

P < P ()< P™

soc . < SoC (t)< SOC .~ (1.2)
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where #. and 7, - efficiencies of charging and discharging, respectively; ¢ - index
for time; SOC - state of charge of energy storage; A¢ - time step; Ps - power
output of energy storage. The round-trip efficiency of electricity storage is 7, =
e * Na [10].

One should, nevertheless, consider the problem from another angle. Battery
use as ES, has the following shortcomings: permanent self-discharging,
relatively low energy density and high dependence on environmental
temperature. These are common technical flaws. To avoid any critical mistakes
in planning and developing ES on the customer’s side, the simulation of battery
behavior should be done in accordance with the electrical model of battery.
Specially developed electric-circuit based models can be used for accurate
prediction of charge and discharge of batteries, taking the state of charge into
account [II]. The general calculation (1.3) for the used battery model can be
found in [29]:

Q i_r,-2

V=V,-R
O TP o—it O-it

i—Ri+V" (1.3)

where V' — actual battery voltage (V), Vy — battery constant voltage (V), Rp —
polarization resistance (polarization resistance is the transition resistance
between the electrodes and the electrolyte. An increased resistance to the flow of
current in a voltaic cell is caused by chemical reactions at the electrodes.
Polarization reduces the electric potential across the voltaic cell) [30] (2): O —
battery capacity (Ah); it — actual battery charge (Ah); R — battery internal
resistance (Q); i — actual battery current (A); V'’ — exponential voltage (V) [I1].

The other side of the coin is economic considerations, such as price and lead-
times for mass production, life expectancy and maintenance requirements. This
makes the task of choosing the right battery type of utmost performance, as even
the slightest differences in parameters may cause changes in the long-term use of
ES in DSM control. However, the choice for the latter part can be considerably
cut down by choosing from the most precise battery types for households (small-
scale) [II], with a simplified consideration of technical parameters, and with the
main criteria of battery energy storage system (BESS) - to match the demand for
stored energy to cover household electricity consumption and bring economic
benefit in the household use. This feasibility for households can be estimated by
the system cost and profit calculation [I].

1.4 Demand for stored energy to cover household electricity
consumption

BESS plays a major role in shifting critical (not shiftable) loads in household
consumption patterns. It comes from open electricity market (NP in Estonian
region) price fluctuations as a possibility of cutting electricity costs at
households. Consumption of electricity at households in Estonia is around 35%
of the whole national energy consumption, and in these terms it is one of the
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highest in the European Union [31]. Optimization of BESS capacitance and
control models (including the charging/discharging cycles) is an essential
research task. The key objectives of the customers are:
* to minimize costs of energy [10];
e to upgrade the power quality (maintains nominal voltage levels with
nominal frequency levels) and comfort (provides back-up power for home
appliances in the case of interruption with a grid) [32].

It should be noted here that comfort in household energy management is a
major factor that affects the choice of BESS. According to consumer behavior,
consumption priorities (load) can be divided into three main load groups: non-
shiftable, almost shiftable, and shiftable. To find appurtenance of house
appliances to load groups, an analysis [33] was done with four-week
measurements (02.2012 — 03.2012) in an average Estonian household as a
research object. The result of measurements found confirmation in the European
Union research [34]. Figure 1.3 shows the total energy consumption by load in
that apartment.

TV,PC, VCR, Bathroom light
Modem 2% Cooking stove,

6% ventilation
Washing 21%
machine

1.3%
Refrigrator
6%
Boiling Kettle
1%
Coffee machine
0.3%
Dishwasher
3%
Vacuum Water heater

cleaner 49%,
0.4%

Lightning
7%

Floor heating
3%

Figure 1.3 Load distribution of household appliances [33]

The part of non-shiftable load consumption constitutes approximately 36% of
the total energy consumption by all appliances [33]. Despite the fact that the
other larger part of energy consumption can be shifted with different methods of
DSM, the customer comfort level is considered as a main goal in this research
work. Therefore, in the scope of this thesis, the entire energy consumption of a
household is considered as non-shiftable and BESS has to be dimensioned
accordingly.
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To find the precise amount of energy demanded in BESS, the energy balance
of an electricity system should be taken with the following simplified formula
[1I1]:
+E,+E

res,c

Epp=Ec +Exp +E105:>Epp =Edz'r,c +E los

E,

where E,, — electricity generated by a generation system; E. — electricity
consumption; Es, — surplus of generated electricity; Ejs — total losses; Egi.c —
direct consumption of electricity generated by a generation system; Ejesc —
indirect consumption of electricity generated by a generation system (stored
energy reserve of generated energy) [III]. With the system losses equal to zero
(Ews = 0) and analysis for workday and weekend separate periods (since they
have different consumption patterns), energy balance FEp,; at the hour ¢ can be
calculated using (1.5):

Ebal N3 = Ec,t _Eg,ta (15)

where Eg, — electricity generated (or grid electricity) at the hour # E. —
electricity consumption at the hour ¢ [III]. The demand for stored energy (1.6) to
cover household power consumption from ES in a weekday (WD) or holiday
(HD):

Eg,t S Ec,t = Eres = Z(EL‘,[ _Eg,t) = Z|Eg,t _Ec,t 9 (16)
t=1 t=1

where E,.s — daily demand for stored energy; E.;: — demand for stored energy at
the hour #; n — 24 hours a day [10]. Furthermore, to describe the relative daily
demand for stored electricity compared to the total demand (i.e. consumption),
the coefficient ks (1.7) can be used:

Z (Ec,t - Eg,t)
E y Eg./ <E<'.Vr

k — res

res EC Z EL. )

where ks — relative daily demand for stored electricity compared to the total
demand (i.e. consumption). On the basis of these calculations and analysis [33]
[L] [TV], the minimum energy reserves that an electrical energy storage system
should have in most cases is 5 to 10 kWh, depending on functionality and
consumption patterns. BESS with such parameters can be used in most energy
consumption balancing and shifting cases. The peak power of the storage system
should be approximately between 1.2 and 1.5 kW accordingly [IV]. Figure 1.4
illustrates the average daily electricity consumption is 1 kWh per hour [10].
Consumption curve lays on the tops and the bottoms of the chart columns. For

: (1.7)
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the better overview of over- and under-consumption periods, start value of the
horizontal axis crosses vertical axis at 0.9 kWh/h.
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Figure 1.4 Average workday electricity consumption [10]

The consumption pattern of the hybrid ES system with BESS with DR prices
for an average apartment shows the required maximum limit of energy storage
capacity in the mean at 7 kWh [33] The European Union research co-funded by
the Intelligent Energy Europe Program shows a similar result for Baltic countries
at 6.8 kWh [34]. On the other hand, this amount of energy can be released only
with 100% storage discharge. In real conditions, the depth of discharge (DoD) of
ES should be less than 100% and both system life cycles and the required energy
capacity limit will be increased. The new maximum life cycle number of
different BESS can be found in Figure 1.5.

It is clear from these observations that at constant DoD value, the required
energy capacity may be different from an initial energy capacity. The simple
equation (1.8) establishes the final required energy capacity for shifting
consumption with a particular DoD:

E
E =—I 1.8
I max DoD ( )

where Ejmq: — required maximum energy capacity and E; - initial required energy
capacity [I].

Thus, lead acid (LA) BESS to provide 1000 cycles has to be dimensioned
roughly three times higher (1.9):
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Elmax = 73];Wh ~ 21kWh. . (19)
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Figure 1.5 Life cycles and depth of discharge of different types of batteries [1]

As a result, instead of 7 kWh initial required capacity, with a theoretical 100%
DoD, the BESS should be chosen with a capacity of 21 kWh and 30% DoD.

From the arguments in this chapter it can be concluded that open electricity
market like NP allows even participation of small end customers in the energy
market. Different programs of DSM like EE or DR can be used to achieve
economic benefits from open energy market. In the region of Estonia, consumers
have possibilities to purchase electricity from Elspot with day-ahead prices and
Elbas - intraday real-time prices. With the use of DR programs and ES, the
system can be valuable to an end user in terms of reliability and flexibility [35].
Assuming that a customer comfort level will stay unchanged and the
consumption pattern is constant, the most suitable option for DR in a small-scale
household is battery bank energy storage with energy capacity from 15 —
30 kWh. Typical load consumption pattern for weekdays and holidays is shown
in Figure 1.6.

Basically, typical load consumption patterns can be presented in
mathematical models like two dataset arrays with 24 elements. The first dataset
represents a workday’s and the second a weekend’s consumption. The economic
profit of DSM can be reached through taking advantage of the low price periods
by importing more energy and storing it in BESS, while reducing the imported
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power during high price periods by supporting the load with the stored energy
[V]. The algorithms based on day-ahead (DAA) and real-time prices (RTPA),
provided in next chapter, could be implemented for this purpose in the Energy
Management System (EMS), which includes BESS and other control devices.
Feasibility of this system is analyzed in Chapter 4.
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Figure 1.6 WD and HD load pattern for 24 hours [33]
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2. RESEARCH AND DEVELOPMENT OF CONTROL
ALGORITMS

2.1 Research of recent mathematical models for energy shifting
within constraints of EMS

This chapter describes research work and development of the mathematical
models for BESS in EMS. This is an essential task since existing models of other
works do not fully match the constraints of the developed EMS. Furthermore,
implementation of a mathematical model in a real EMS could confirm or
disprove the hypothesis about the feasibility of EMS usage in the limits of
Estonian energy market activity. This section is a compendium of articles [V],
[VI] and [VII].

Recent developments include a number of new approaches to minimize
electricity bills in households by using electric energy storage. Technical and
economic literature on electric energy storage describes various storage
applications that are partly overlapping [V]. In the scope of this thesis, the
following optimization methods for DAA were analyzed: Model Predictive
Control [36], deterministic approach, particle swarm optimization, linear
optimization methodology, dynamic optimization, and the Taguchi Method [37]
[38] [39] [40]. Due to the complexity in the implementation, only a few of them
are suitable for use in household energy systems. Many approaches are
inflexible for use without photovoltaic (PV) or wind turbines, which also makes
them inoperable in households without solar or wind sources [VI].

It is the same here as with DAA, i.e. several RTP based control model
implementations and descriptions can be found in different studies. One of the
ambitious projects interconnected to the DR area is the EU FP7 project named
EcoGrid EU [41]. It is developing and demonstrating a new market concept with
a 5-minute time resolution, where the residential and commercial customers are
responsive to imbalance pricing close to operation. The place of the EcoGrid
time resolution project in the time scale of electricity markets is shown in Figure
2.1.

An approach with dynamic optimization of control method for BESS,
including informative comparison to linear optimization, can be found in [42];
however, storage devices used there are much larger than ordinary household
storages, and cannot be used by small participators. Multi-period energy with the
reserve pre-dispatch model and the energy re-dispatch model for real-time
operation were studied in [43]. The idea to use Home Energy Management
Scheduler (HEMS) with three subsequent phases: real-time monitoring (RTM),
stochastic scheduling (STC), and real-time control (RTC) can be found in [44].
However, it has been developed mostly to find the optimal way of scheduling
the household appliances to minimize the cost of energy consumption. BESS in
this system has no prior role. In [45], an electric vehicle (EV) is used in the role
of BESS [45] and in [46] it is pointed out that there are multiple energy
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providers in the system and the customers need to determine not only the
optimal energy consumption allocation at each hour, but also the optimal energy
provider for each of them. Moreover, load scheduling optimization pseudo code
of [47] was studied. On the other hand, it has restrictions in a household’s
application due to the photovoltaic energy source, which is not all the time
obtainable.
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A Opelatngn Direct

control

// ) 5@
; A
% 6/7@\( ‘
’ 9,
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: %) Elbg, s‘)day

: —> Time scale
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Figure 2.1 Time resolution EcoGrid project [41]

The main advantage and novelty of the algorithms, in the dissemination of
the thesis, is in their simplicity. Also, they were partly tested with practical
laboratory measurements, in accordance with EMS suitable for households.
Mathematical functions for the DAA of EMS, as well as RTPA, were developed
taking into account the theoretical model of a battery [II] [48]. Each algorithm
has simplified sides, like constant consumption pattern, notwithstanding its
responses to the main constraints of the EMS, which are:

*  maximum DoD per battery charge discharge schedule (BCDS) cycle is
14%;

*  SOC =100% of battery bank equals 21 kWh;

*  maximum load consumption per hour is 3 kWh/h;

* Dbattery charging current is limited at 15 A [VII].

The constraints of the battery have been taken into account in the research
work: the SOC of battery has to be within the range of its minimum and
maximum allowed limits. Similarly, the charging and discharging currents have
to be within their boundaries [V]. For normal operation of the battery bank, the
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DOD of deep cycle absorbent glass mat (AGM) batteries are recommended to be
less than 30%. With EMS power limits, it is sufficient to use 14%; thus, 86% is
considered the minimum value of the state of charge (SOCmin) and 100% - the
maximum value of the state of charge (SOCmax). One of the most striking
features of DAA and RTPA in this thesis is that they have discrete behavior and
only three modes of BESS work. This is done with the help of decision variables
x1, x2.The third mode is an idle mode, then x/ and x2 are equal to zero. Thus,
other constraints of algorithms in EMS are:

0< P.(¢¥) £ P.max
0<P,(t) < Pymax
SOCmin < SOC(t) £ SOCmax 2.1)
charging: xi =Lx.=0
discharging : x; = 0,x. =1

where Pc - the charging power; Pp - the discharging power, and SOC(?) - the
state of charge of energy storage at the end of time slot #; Pcmax - maximum
value of charging power; Ppmax - maximum value of discharging power [VI]; ¢ -
the time slot, which can differ according to DAA or RTPA.

2.2 Development of day-ahead price based control algorithm

DAA has been developed as a first algorithm for EMS and NP Elspot and it
uses forecasted electricity prices for the next day to find the most profitable
BCDS. It is based on the loop optimization routine and takes part in the spot
market 24 h prior to the delivery [49]. The time period consists of 7 timeslots ¢
with = 1...T, where 7=24 hours. The daily sum cost Ci=241 (2.2) without the use
of BESS, considering only forecast prices and conditions (2.3) is [V]

T
Cor = 2 (Pya ) FP(0)), 2.2)
t=1
Pgrid (t) >0
{Pg’[d (I) = P[oad (I) ’ (23)

where Pg.iq - power from the grid; Pias - load consumption; Fp - the forecasted
electricity price in €/kWh [VI].

During the operation, storage level at the end of each period is determined by
the SOC of the previous period and, certainly, the charging or discharging
operation in this period. It is shown in (2.4) [VI]:

SOC(t) = SOC(t = 1)+ x1- 1. - P (1) = x2- P, () , (2.4)

With battery parameters and values, HMI system searches for profit by using
BESS. The algorithm sorts all the hours by price, which will give an array row
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with descending price as a key element. After that it calculates the possible
amount of discharge hours, the total load of which corresponds to maximum
DoD of EMS, allowed by the setpoint. These criteria for selection of the
algorithm are presented in (2.5) [VI]:

Fp(0)>...> Fp(d)>..> Fp(23)

2 Piad () + Py (£(23)) < Peypay (2.5)
d=0

3 Py (€d)) < Py

d=0

where the first row - a sorted price series from max to min value Fpuax == Fpmin,
which means that array’s element with index 0 has the highest price and with
index 23 has the lowest price for the next 24 hours. The second row selects for
discharging only hours, the total sum of power consumption of which does not
exceed DoD allowed power. The count of the discharging hours is determined
by an n variable [VI]. It can be found with an auxiliary index variable m by
(2.6):

mP d))< DoD
‘; luad(t( ))< 0. ) (26)

n=m+1

To achieve correct load distribution in the array, the sort function is called,
which merges the forecast prices with the 24-hour load array [V]. Final function
of DAA calculates energy demand for hours with the highest price, starting from
Fp(0), which matches the allowed DoD limit and calculates possible profit for
that day. Thus, the day cost with the use of DAA Cpu4 from (2.7) is as follows:

Cpus = 2 (Puwa (1(d)) - Fp(d)) +(i Boad () + By (t (23))j Fp(23) (2.7)

d=n

and the day profit DayP is calculated from (2.8) by subtracting DAA day cost
from the day cost without EMS:

DayP=C,,,—Cp,,. (2.8)

All equations (2.2 — 2.8) compose the mathematical model of DAA. To
implement the model to the programming environment, firstly it was designed
with Unified Modeling Language (UML) [50]. Figure (2.2) illustrates the logic
of the DAA in the UML activity diagram.
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Figure 2.2 DAA UML activity diagram

According to UML, the DAA software implementation was created in two
software environments: Visual Basic (VB) and Matlab Simulink. The main
theoretical calculations were made in VB; however, their results found
confirmation in Matlab simulations afterwards [51]. View of the Simulink model
is presented in Figure 2.3.

An example of DAA work with distribution of the prices and the load curve
is shown in Figure 2.4. It shows actual work of EMS with DAA on the date
12.11.14. The hours with load consumption equaling zero mean that energy for
the load was taken from the batteries. Increased load curve values at other hours
mean that additional load went for battery charging [VI].

According to (2.2), the total cost of electricity for a day on 12.11.14 without
use of EMS was 37 EURO cents (¢) and the cost of electricity according to (2.7)
with the use of EMS was 30 ¢, which makes a total saving of the consumer from
(2.8) around 7 ¢.
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2.3 Development of real-time price based control algorithm

Here a RTP energy market NP Elbas is observed with a developed real-time
price based control algorithm for EMS. It has flexible functionality of the BCDS
during unclear stochastic price movement at one hour time periods before the
power is delivered [52]. Only the price forecast data and price history are
considered along with household’s energy consumption. Thus, RTPA forecast
procedure analyzes the past of the energy price for a predefined back-time
period and optimizes the BCDS to bring the highest profit to the end customer.
This revenue could be achieved through energy price arbitrage - taking
advantage of price differentials in the open electricity market with the BESS
[VII]. A major difference between DAA and RTPA is that with RTPA only the
current price for the next beginning hour is available, and the prices for future
periods of time are unknown, it is important to use tuned optimized parameters
and price history to forecast market trend behavior and to find out most
profitable time-slot (hour) for charging or discharging of BESS [VII].

The system analyzes n day history of hourly prices. The developed algorithm
finds minimum and maximum prices (local extremes) for each day in the
described time range. These local extremes are used to calculate minimum level
Lyin price and maximum level L. price for a current hour. To avoid rapid
change of stated levels, the values are smoothed by a simple moving average
(SMA) function. To enhance probability that the price of the beginning hour will
reach and cross either Ly, Or Ly, also minimum level is increased by margin
Hin (2.9) and maximum level is decreased by margin H.x (2.10):

Zn:Fpmin (t-0)

Lmin(l‘):():1 n +H ’ (29)

inmax(t _0)

2.10
Lmax(t) = n -H ’ ( )

where Fpuix - the array of daily minimum price and Fpu.. - the array of daily
maximum price of n days. The flexibility of the algorithm allows to optimize
parameters: n, Hym and Hg., to achieve the maximum profit of the system.
Basically, the algorithm has three states: charging, discharging and idle stage
2.11) [V]:

Fp(t)= L, (&) ASOC(t)>SOCmin - x1=0,x.=1
Fp(t)< L, &) ASOC()<SOCmax - xi=1,x.=0 , (2.11)
Fp()>L .. (OAFpt)<L, .. ()—>x=0,x2=0

min max

where x; and x; are charge/discharge state variables according to (2.1).
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The total cost of energy for a particular time period 7 with the use of RTPA
Crrpa will be calculated as follows (2.12) [V]:

T
Crrpa= D Progd @) FAO = (P (1) Fp(1) - X2)+ (P (1) Fp(t) - X)) , (2.12)

t=1

Similar to DAA, the mathematical model of RTPA was designed with UML and
afterwards implemented to the programming environment. Figure (2.5)
illustrates the logic of the RTPA in the UML activity diagram.

e j
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L |
l 4

YES e YES

YES SOC(t)>S0Cmax

NO

( END )

Figure 2.5 RTPA UML activity diagram

Later, RTPA was transferred from UML into VB and Matlab Simulink
software environments. Theoretical calculations were made in both systems.
View of the Simulink model is presented in Figure 2.6.

The result of the total energy cost can be optimized by tuning system
parameters in a simple loop optimization. The goal of optimization is to find out
values of parameters: Luin, Lmax, Hmin and Hyuee which will provide maximum
profit Pr according to (2.13):

T
Pr=MAX (Z(Cfot - Calg)) ) (2 1 3)

t=1
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where the key factor is the spread between the total cost of energy consumption
(without EMS) and the cost calculated with the use of RTPA and EMS [VII].
Most beneficial parameters for the RTPA found in the scope of this thesis based
on the loop optimization are as follows:

e SMA period n = 2 days for minimum price array,

e SMA period n = 6 days for maximum price array,

e minimum level margin Hy,» = 0.2 ¢,

e maximum level margin Hy.. = 1.6 ¢.
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Figure 2.6 Matlab Simulink model of RTPA [51]

Historical period of the NP prices for optimization was taken from the
beginning of the year 2014 up to the end of the year 2015. An example of RTPA
work with the distribution of the prices and the load curve is shown in Figure
2.7. It shows theoretical work of EMS with RTPA on the date 12.11.14 [VII]. If
the current electricity price (blue column) crosses above the maximum price
level Lmax (orange line), the discharging mode of EMS is activated. Load
consumption curve (dotted black line) is zero at that time. When the electricity
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price crosses below the minimum price level Lmin (green line), EMS starts to
charge the batteries. However, RTPA also controls the current SOC value,
charging and discharging of the BESS is possible only within permitted (2.1)
value limits. If the electricity price is flat between the levels, the EMS system
has idle mode, meaning that load consumption is fed directly from the grid [VII].
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Figure 2.7 Load and prices distribution with the use of RTPA and EMS for 12.11.14

According to (2.2), the total cost of electricity for the day on 12.11.14
without the use of EMS was 37 ¢ and the cost of electricity according to (2.12)
with the use of EMS and optimized parameters was 35 ¢, which makes the total
saving of the consumer from (2.8) around 2 ¢.

2.4 Evaluation of BESS control algorithms

First, based on the above, it should be stressed that DAA completes one
battery charge-discharge cycle per each day in any event. Taking into account
that profit per day by the use of EMS is the main score rate parameter, it is
concluded that RTPA does not provide battery charge or discharge cycle every
day. The conditions for charging or discharging of BESS depend on the current
hour price, the history of price and SOC. This means that on some periods or
days, BESS may only charge, discharge or be in idle state (load is fed directly
from the grid). On the other hand, to simplify comparisons, average day profit is
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calculated from the total profit achieved by all days of the simulation. The most
informative description of the new RTPA is the profit or loss gained by it when
compared to the DAA result and regular (without EMS) energy use in household
[VII]. The profitability of each agorithm is valid if the condition (2.14) is true
and (2.15) [53] shows the profitability of the algorithm,

Ca Ig < Ctot i (2 14)
_ 100'(Ct0t _Ca lg)

C B

tot

a

(2.15)

where Cyu - the total cost of energy by the use of a particular algorithm for a
particular time period (24 hours, week, month etc); Cy - the total cost of energy
for the same particular time period; a - relative reduction of the energy cost.

Theoretical results of DAA and RTPA during the time period of 2014 — 2015
are compared in Table 2.1 and Figure 2.8.

Table 2.1 Energy cost with different algorithms

Results of Algorithms
Date
No EMS, cost (€) DAA, cost (€) RTPA, cost (€)
2014 501 420 445
2015 403 321 327
Total 2014-2015 904 741 772
Day average 1.23 1.01 1.05
Day profit (DayP) 0 0.22 0.18
DAA (%) RTPA (%)

Profit for 2014 16.2 11.7
Profit for 2015 19.1 18.1
Total 2014-2015 17.6 14.9

Differences in the result are varying for different years. In 2014, as compared
to RTPA, the result of DAA was approximately 4.5 percent point better. In 2015,
the profit difference between two algorithms was only 1 percent point. It is
evident that an optimized RTPA is still less profitable than DAA. Average
difference in the result between algorithms for a two-year period is only 3
percent point, which is a relatively good result for RTPA designed for stochastic
price prediction.
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3. RESEARCH AND DEVELOPMENT OF THE NEW
ENERGY MANAGEMENT SYSTEM

3.1 Design of the New Energy Management System

3.1.1 Introduction to the basic concept of the Energy Management
System

This chapter focuses on the research and development of the small-scale
EMS and describes the practical part of the thesis task. This system is essential
to confirm the theoretical part in the limits of Estonian energy market activity.
This section is a compendium of articles [V], [VI] and [VII] and takes into
consideration the issues described in the previous chapter.

As was mentioned above, BESS in the distribution grid system is similar to a
hybrid system, which means that load demand is met by the grid power and/or
power of the BESS. Control and management of that power is done by EMS.
According to [54], EMS is defined as a system of computer-aided devices used
by customers of electric utility grids (smart grids) to monitor, control, and
optimize the performance of the generation, transmission and/or consumption
system. Energy management systems are also often commonly used by
individual commercial entities to monitor, measure, and control their electrical
building loads. EMS can be used to centrally control devices like: Heating,
Ventilation, Air Conditioning (HVAC) units and lighting systems across
multiple locations. EMS is able to provide metering and monitoring functions
that allow facility and building managers to gather data and insight that allows
them to make more informed decisions about energy activities across their sites
[54]. Design of EMS is a major challenge facing the technology. Currently, no
standard platforms are available for the design and implementation of EMS.
Even integration of EMS solutions from different vendors is difficult since every
company provides its own unique systems, configuration and control strategies
[55]. Generally, EMS for households or Home EMS (HEMS) has several
subcategories illustrated in Figure 3.1.

These categories are:

1. Sensing devices: Household sensors relevant for EMS application are
for the detection of current, voltage, temperature and other parameters.
They sense the desired parameters at different locations and send the
signals to a centralized system. Using these parameters, smart appliances
can be monitored, controlled or scheduled to operate at desired periods.

2. Measuring devices: Most often, what can be measured can be controlled.
Gas, water and electricity meters are the main measuring devices for
households.
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3. Smart appliances: Domestic appliances with integrated intelligence and
communication systems which enable the devices to be monitored and
controlled (switched on/off) remotely. Smart appliances provide
residential customers with insight into their energy use, enabling energy-
efficient and eco-friendly behavior.

4. Enabling Information and Communications Technology (ICT): ICT is
the link connecting the sensor, meters and devices to the monitoring or
control unit. Both wireless and wired communication technologies are
developed for the integration of various domestic devices. Wi-Fi, Zigbee
(based on the IEEE 802.15.4 standard, known for its low cost, power
consumption and data rate) [56], HomePlug and Z-wave are some of the
leading technologies facilitating home area networks [55].

5. Main part of EMS — compilation of different solutions for control of
other devices.

Smart meters

' .@ /
,;,»
| l_ /./_‘;;/

Smart sensors

“o @t:: J"D_/

=BRER i

Energy management systems EnablingICT

Figure 3.1 Fundamental subcategories of a home energy management system [55]

In the energy management principles, software platforms and embedded
intelligence adopted in EMS solutions differ with each manufacturer. Currently,
several EMS systems for households are under development by leading vendors,
such as Intel, Siemens, Control4, Hitachi, Google, Microsoft, Cisco [55] [57].
But no fit-for-all solutions are available, as various developers focus on different
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aspects. In general, home energy management can offer the following
functionalities:
e Informative overviews about energy usage data in various graphical
forms (Human Machine Interface, Graphical User Interface) to the users;
o Automated actions which offer customer options to set priorities and
wishes for the operation of household appliances and/or local
generations;
e Advanced functions: this includes information, automation and control;
o Integrated systems with all the features of the advanced functions [55].

Nevertheless, from the consumers’ viewpoint, the essential goal of home
EMS is to reduce their total electricity payment while satisfying their needs as
well. Specifically, the optimal strategy provided by EMS is to modify and adjust
the control settings of each load or appliance at home in accordance with the
variation of price, the preferred comfort level, etc. These functionalities can be
expressed through an abstract design of EMS shown in Figure 3.2, where three
main parts of EMS design are: Data Collecting, Processing and Controlling [58]
[59].

DATA
COLLECTING

RTP data T >

PROCESSING CONTROLLING

Data analyzing

& :> Load
BCDS creation | Controlling

and optimization

DA data

Status of load :fl>
and ES ‘

Figure 3.2 Expected major functions of the designed EMS

Numerous studies have described EMS for homes and households and their
implementation in grids. However, apart from commercial ready systems from
vendors, most of the presented systems are prototype systems. Some of them are
focused entirely on the hardware designed and do not take into account the
machine learning algorithms required to achieve the load management and price
prediction. On the other hand, many simulation studies in the literature rarely
give a HEMS hardware design although they consider an individual issue from
the “software” side, such as machine learning algorithm, dynamic price
responsive mechanism, and other challenges in practical applications [60]. The
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development of a functional EMS system requires a new approach from existing
systems. In regard to the numerous models currently in the market, customers
are usually unaware of their presence and are thus misinformed about the
functionality of EMS. Consumers must be aware of EMS before they become
viable for domestic use. Some of EMS studies were discovered during projecting
and designing of EMS. One approach has an interesting design, however it
changes the comfort level of the end customer by the control of the HVAC
system of the house [61]. The largest part of them is narrowed by the use of PV
and EV in the local grid [62] [63] [64] [65] [66] [67] [68]. Many EMS projects
have ZigBee [56] implementation, which is impossible for EMS designed in this
thesis research. In this study, the main differences resulting from the design of
EMS as compared to other systems are as follows:
e high flexibility of design and usability with different types of load (not
only HVAC);
e no need for factors such as EV and PV source in the algorithm in the
grid, which makes them more universal;
e no need for special measuring devices (Smart Meter) and special
communication standards (ZigBee);
e all electricity prices are taken from the Internet; no special contract with
TSO required,
e 1o need for special smart sensors.

Moreover, as different from some reported simulation studies, an overview of
real hardware is presented here.

3.1.2 Design of the new Energy Management System
Based on the three main parts of EMS described above, the design of EMS
has to provide main functionality for these parts. Thus, the primary functions of
the designed EMS are:
e to collect useful information and other messages, such as electricity
price, status of load and battery;
e to generate the optimal strategy or BCDS by analyzing the collected
data;
e to modify or adjust the load supply on the automatically generated
BCDS by the control algorithms [58] [60].

The main requirement concerning these functions is that they have to
interchange data between the parts of EMS. It can be done by the help of the
network of the EMS with different task layers described in [63] and represented
in Figure 3.3.

The layers can be described as follows:

e Physical layer: The information equipment, such as power devices and
sensors, are deployed in this layer. This equipment is used to collect
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different types of perception information which include, but is not
limited to the battery SOC status of ES, Inverter workflow, and power
consumption of the household. This reception information is transmitted
through the gateways to the subsequent network layer [63].

Network layer: Wired (e.g., power cable, RS-232) and Internet
communication are used to complete the perception information
transmission between the components of EMS. The main concern of this
layer is the data routing and proactive information push mechanisms
[63].

Application service layer: All perception information obtained from the
network layer is stored, processed, and analyzed in this layer. For
instance, ES SOC, electricity price, and retail prices of electricity,
uploaded by the gateway are stored in the database platform. The price-
based energy dispatch strategy is performed at the application platform
to manage the energy flow between the household loads and the ES [63].
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Application layer

Application [ Data ][ Interface ][ Flow J

Data Management [ Data ][ Mapping ][ Flow ]
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Network layer )
y | Routing Wired Network
Ethernet, RS-232,
' Data push Power cable
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Physical layer

Power [ Inverter ][ Battery ][ Load ]

Control [ D-Output ][ D-Inputs ][ Sensors ]

Figure 3.3 Architecture of the layers for the proposed EMS structure [63]

In this thesis, according to general requirements of the EMS concept and

layers’ structure, the new EMS was developed and designed in laboratory.
Furthermore, it was used for testing purposes of the designed control algorithms.
It uses a deterministic approach that ensures an optimal use of BESS and fulfills
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load demand supply at the lowest cost, at the same time considering the limits of
the system [V]. Figure 3.4 illustrates the new EMS structure.

Concerning the actual constraints of the laboratory grid, the connected battery
bank does not feedback the grid and the storage is used only to support the load
demand. EMS constraints make the load inflexible with respect to the energy
cost, but charging and discharging operations of EES are still controllable by the
system algorithm. Operation parameters of an EMS, such as minimum and
maximum energy storage capacity, discharging current limit, charging current
limit, and charging efficiency, were considered during control software
development [VI] [36].

The hardware part of the EMS is a compilation of different subsystems with
various tasks. It consists of four parts:

e Personal Computer (PC),

e Programmable Logic Controller (PLC),
e Power Unit (PU),

e Load[V].

The components of the EMS were selected because of the price/features
relation. In other words, it was the most reasonable selection at the time of
installation.

Electricity
market

Renewable
sources

I
Inverter/ Charger Loads -
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f Batteries H
‘
~d M R
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Figure 3.4 Design and structure of EMS [V]
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3.1.3 Power Unit with Storage

The PU is a battery inverter and a charger combined in one unit. The basic
element of this device is a 3 kW Inverter of Quattro series (manufactured by
Victron Energy) [V]. PU is needed to provide connection between the grid and
batteries of EMS. Also, it integrates power electronics control of batteries on the
physical layer. Off-grid power systems with this unit can operate multiple
electrical loads without overloading the alternating current (AC) power source,
and deliver continuous uninterrupted power at power failure [69]. Each Quattro
is a true sine wave inverter, meaning clean power for sensitive electronics. It is
also a sophisticated battery charger that features an adaptive charge technology
[V]. The EMS storage consists of a battery pack with deep cycle AGM batteries
12 V DC at a total capacity of 440 Ah in pairs, making a total voltage of 24 V, a
capacity of 880 Ah. In these batteries, the electrolyte is absorbed into a glass-
fibre mat between the plates by capillary action. According to [70], AGM
batteries are more suitable for short-time delivery of very high currents (engine
starting) than gel batteries. Total stored energy of BESS amounts to 21 kWh.
This capacity has been selected with a particular DoD to cover simulated
household’s load demands [VII]. The inverter acquires all the required values
from batteries via the precision Battery Monitor (BM). The BM is a device that
monitors PU battery status. It measures battery voltage and battery current
constantly and uses this information to calculate the actual state of the charge of
the battery bank. The last basic element of the PU is the Digital Multi Control
panel (DMC), which allows limiting grid input current and monitoring basic
status of the inverter [V].

3.1.4 Auxiliary Control Unit

The PLC has the role of an auxiliary device in EMS to provide control
between PU and Human Machine Interface (HMI). EMS has PLC with Siemens
central processing unit (CPU) of S7-1200 series. These types of controllers
operate in a variety of industry automation and household applications. The
controller was chosen because of connection features of this controller [V]. It
combines a microprocessor, an integrated power supply, input and output
circuits, built-in PROFINET, high-speed motion control inputs/outputs (1/0),
and on-board analog inputs in a compact housing to create a powerful controller.
The CPU monitors the inputs and changes the outputs according to the logic of
the user program downloaded to CPU [71]. This smart PLC makes on/off
switching of the load groups during working hours. It was made to simulate a
real load of a typical household consumption during 24 h. Therefore, the CPU of
the controller has two databases with 24 records each, corresponding to 24 hours
of the typical average load consumption in households.

The main task of the PLC is to control the BCDS according to the profile
data transferred from the PC [V]. For the testing purposes, the system contains
15 bulbs with a total power of 1.5 kW to imitate household consumption. The
typical household load consumption is around 3 kW, but it was scaled two times
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lower to match EMS power limits. The PLC interpolates load values in
accordance with a 24 h load [VI]. It activates totally 4 load groups with 4 digital
outputs:

e group 1 — 1 bit— 1 bulb digital output DQO.4

e group 2 — 2 bit — 2 bulbs digital output DQO0.5

e group 3 — 4 bit — 4 bulbs digital output DQO0.6

e group 4 — 8 bit — 8 bulbs digital output DQO.7

Each bit activates 1 bulb with 100 W power. Therefore, the entire load of
1500 W could be simulated by PLC by activating four load groups, which
correspond to 15 bulbs. Since PLC is considered as a low voltage control device,
switching of a load group considered as a power device takes place through
power contactors. Almost all hardware devices could be controlled with the help
of special software developed for EMS.

3.2 Software of EMS and Data Flow between Subsystems

3.2.1 Introduction

Main objectives in the new system design and development were to solve
integration problems, where the main tasks are machine-machine and human-
machine integration problems, which include solution of hardware-software,
software-software compatibility and integration problems. Human-machine
interaction must be taken into consideration, which influences safety, security
and reliability of the systems. For that reason, interface between human-machine
has an essential role in the entire EMS system [72]. Evidently, human-machine
interface application in this thesis work has been designed as the main part of
software development and also a major control part of the EMS. Similar to
general EMS design, there are no typical platforms or standards for the HMI
design of EMS at the moment. However, new design often requires the
development of unique hardware and software solutions or applications.
Furthermore, system integration of good graphical user interfaces (GUI) design
involves determining end user needs, testing for simple and effective usability,
focusing on functionality, concentrating on display consistency, ensuring ease of
use, using color effectively, using colors with ideal contrast ratios, balancing the
visual harmony of the display, making sure the text is readable [72]. Finally, it is
necessary to have a friendly and easy-to-use interface to change settings at the
consumer side. Since ordinary consumers could be unfamiliar with the operation
of electricity markets or power systems, GUI has to incorporate an easy-to-use
interface to increase awareness of the EMS by demonstrating how the system
enables the users save their money and highlighting the benefits of the system as
a whole [60]. The designed HMI has the main role in the data flow of the entire
energy system. According to the general EMS concept, it fulfills two tasks of
two EMS subsystems: data collection and processing. With the help of PLC it is
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responsible for control of all EMS subsystems. Thus, the control of the
workbench is divided into two parts: the calculation/processing in the HMI and
executing/running in the PLC. In an active automatic mode, software provides
particular steps in the control sequences [V]:
e sends a request for the forecasted NP energy prices from TSO Elering
for the next time period at 00:00 EET (Eastern European Time);
e processing function of the electricity market price (PriceGrabber
software) saves fetched data to a special file;
e optimization part in the HMI application processes price and load data
for the next 24 hours from special files and creates a new BCDS;
e the new BCDS is being transferred to PLC;
e control part in PLC logic starts to switch modes of BESS, thus charging
and discharging batteries according to the electricity market price;
e PLC switches load groups according to workday or weekend day
consumption pattern [V].

Figure 3.5 illustrates the concept of EMS and the data workflow inside the
system.
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LOAD
PRICES DAY AHEAD CONSUMPTION
PROCESSING PRICES
.. 1

PLC
LAD/SCL LOGIC

VISUALIZATION
MANAGEMENT
OPTIMIZATION

CONTROL BATTERY BANK
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Figure 3.5 Main system parts and data flow directions [V]
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3.2.2

PLC software

The main software programs have been developed for PLC and PC. The PLC
program was designed in Siemens Totally Integrated Automation (TIA)
Framework and presents the mix of the functions written in Ladder Logic (LAD)
and Structured Control Language (SCL) [V]. The screenshots from LAD logic

are shown in Figure 3.6.
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Figure 3.6 LAD language of EMS PLC logic

SCL was used because of some complicated communication functions that
cannot be implemented in pure Ladder Logic. SCL is a high-level programming
language based on PASCAL. The language is based on DIN EN 61131-3
(international IEC 1131-3) and provides convenient instructions for controlling
the program: creating program branches, loops or jumps [73]. With the help of
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this language, the program implements communication between the CPU and the
Battery Monitor with the help of the BM protocol. Communication part requests
the main parameters of the batteries and converts them to American Standard
Code for Information Interchange (ASCII) data with service characters. CPU
accepts this protocol on the RS232 layer [V]. In telecommunications, RS-232 is
a standard for serial communication transmission of data. It formally defines the
signals that connect a DTE (data terminal equipment) such as a computer
terminal and data circuit-terminating equipment (DCE) or data communication
equipment, such as a modem [74].

The relation of the main data flow and the modules in PLC software is shown
in Figure 3.7.
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Figure 3.7 Relation of data flow and modules in PLC software

PLC reads input signals, routes them through the input process function.
Analog input is the main indication of EMS. It gives feedback of the consumed
energy from the grid by measuring current from the grid. Battery data are
acquired by the ASCII protocol through serial communication. Control routine is
the subprogram in PLC. This routine uses input signals and battery data for load
control. Thus it switches load groups on and off according to the current time of
the day. HMI application transfers BCDS data to PLC. After BCDS, received
PLC starts to control inverter modes by using the BCDS routine function on the
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electrical level through digital outputs. It keeps the system within safety limits.
Temporary and retain data are being stored in data blocks (DB). These data
blocks are the DB load array and DB BCDS array. Furthermore, all main
parameters of the system are saved by a statistic routine procedure. It is designed
to have access to PLC data from HMI at any moment of time.

3.2.3 PC software — “PriceGrabber”

The main software programs developed in EMS consist of two applications.
The first is “PriceGrabber” written in C# language. It uses Internet protocols to
make requests for day-ahead prices from Elering TSO website every day at
midnight. The application writes prices as an array to the text file, which might
be processed later on. The code list of the PriceGrabber program is presented in
Appendix 1.

The C# language was selected for programming because of a wide selection
of functions for the analysis of statistic (prices history) and for its large
processing power. C# is a well-known programming language encompassing
strong typing, imperative, declarative, functional, generic, object-oriented (class-
based), and component-oriented programming disciplines [75]. C# is also
powerful, type-safe, and object-oriented. Developed by Microsoft within its
NET initiative, later it was approved as a standard by European Computer
Manufacturers Association (ECMA-334) and ISO (ISO/IEC 23270:2006). C# is
one of the programming languages intended for the Common Language
Infrastructure [75].

Figure 3.8 illustrates the main data flow and the principle of work of
PriceGrabber software. HMI executes PriceGrabber and it creates connection to
the Internet and fetches unformatted price data by subfunctions on initialization.
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GetValueFrom
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Figure 3.8 PriceGrabber service instance in PC (C# EMS application)

Figure 3.9 shows the procedure of the main function “GetUrlSourceAsync” and
other functions in detail. Unformatted price data consist of values for the entire
week, thus PriceGrabber takes system date and time to find out values valid only
for the current day. With the help of the function “GetValueFromURLSource”
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software parses price values and saves them into the text file. Later on, HMI
processes these data from the file and uses for BCDS creation.
AT
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Figure 3.9 Data flow logic and the principle of work of PriceGrabber software

3.2.4 Design of HMI software (Graphical User Interface control
application with common workflow guideline)

The second and the main software part of EMS PC is the HMI visualization
application. The HMI has been created to provide GUI for end customer. HMI
also contains required options for testing purposes of mathematical models and
algorithms. This software was programmed in the Siemens development
environment TIA WinCC V13 Advanced, which is a powerful system to create
the project of Supervisory Control and Data Acquisition (SCADA) [76] types in
PC systems. This environment includes features for visualization, reporting and
logging; user administration and flexibility with VB scripts; customer-specific
ActiveX Controls. It can be included into automation solutions based on the
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Transmission Control Protocol and the Internet Protocol (TCP/IP) Ethernet
networks [77]. Ethernet connection in EMS is used to transfer data between the
PLC and the HMI. Basically, HMI is the main part of EMS software that has
different tasks [V]:

e to acquire battery data from PLC (V, I, SOC tags) and archive them to
the Structured Query Language (SQL) database; the system updates tag
values every second and saves their mean values to the database every
30 seconds;

e to monitor battery data and all other main data;

e to control load groups in the manual mode; for this purpose, it has
graphical elements, like buttons and switches;

e to acquire price data from the source file prepared by PriceGrabber;

e to process load and price data according to special algorithms and to
create BCDS;

e to transfer BCDS into the PLC;

e to synchronize the date and time between HMI and PLC.

The algorithm used inside HMI attempts to find out the best (which means
more profitable for end customer) BCDS for the BESS [VI]. It has been
developed and upgraded twice during this thesis research and it is described in
more detail in the previous chapter. Currently, EMS works on the basis of DAA.
HMI visualization design has all required GUI for EMS control. Figure 3.10
shows the topology of HMI screens.
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Figure 3.10 Topology of HMI visualization screens
HMI screen structure has a simple scheme; on the other hand, it provides all

necessary parts of EMS control and monitoring. The main screen of the
visualization application is shown in Figure 3.11.
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Figure 3.11 HMI main start screen

Basically, EMS is designed for permanent work, which means it can be used
in a household consumption system like any other appliance for years.
Occasionally, only BESS requires some maintenance, nonetheless the PU
inverter has been built to provide this maintenance automatically when needed.
Thus, a brief checklist from the guidelines to provide complete automatic
independent work of EMS should consist of the following:

o EMS system completely powered up;

e PU unit fed by grid connection;

e Server PC switched on, having Internet access;

e PC and PU interconnected by the Ethernet network;

e work mode of EMS set to automatic, i.e. HMI acquires data from
electricity market and creates BCDS for the entire system,;

e PLC controls load groups and BESS according to BCDS.

Automatic mode should be set in HMI with the special switch either on
screen “Prices” or screen “BCDS”, as shown in Figure 3.12; furthermore, power
switch of Victron Energy inverter has to be in position “ON”.

Taking into account that HMI processes new day-ahead prices at 00:00 EET
[V], the new BCDS is generated almost at the same moment and is valid until
the next day and the next calculation of BCDS.
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Figure 3.12 States of EMS switches for automatic work of the system

Figure 3.13 shows an example of the generated BCDS according to DAA.
BCDS array consists of 24 bytes, each at the value from 0 to 2, standing for
modes of BESS accordingly: Idle — BESS is not involved in energy management
and the load is fed directly from the grid; Discharging — load consumption is
completely fed by battery energy, no power from the grid; Charging — load
consumption is fed by the grid, batteries are charging from the grid. A consumer
is able to check and edit the BCDS array any time during a current day from
screen “BCDS”. In order to change the mode of BESS for any particular hour, a
new value has to be entered into the BCDS field of that hour.
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Figure 3.13 HMI BCDS screen
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For instance, some hours were set to charging and idle states manually in
Figure 3.13. Another option to switch over load groups and BESS modes is with
the help of special control elements in HMI. Figure 3.14 illustrates manual
control buttons for load groups and Figure 3.15 shows the manual selector for
BESS modes.

BATTERIES GROUPS MODE
MANUAL

GROUP 1 .“‘. GROUP 3

ON OFF
00000
GR(())::IFPZ . ‘ ‘ ‘ ‘ GR(())‘I:JFP4

Figure 3.14 Manual switching of load groups

FEED DIRECTLY FROM GRII v~

4+ FEED DIRECTLY FROM GRID
BATTERIES - DISCHARGING
BATTERIES - CHARGING

Figure 3.15 Manual selection of each BESS mode

To conclude this chapter, a new EMS was developed for testing of the
participation in the open electricity market. EMS design in terms of power and
energy capacity is close to the demand of a real household. Hardware and
software subsystems were compiled for EMS. The HMI consists of the control
algorithm DAA described in Chapter 2.
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4. ECONOMICAL EVALUATION AND
VERIFICATION OF EMS

4.1 Economical evaluation and required electricity price
difference

The developed and designed EMS with DAA was practically tested in the
laboratory of Tallinn University of Technology for a one-week period. Since one
day or 24 hours is not very informative to measure the DAA rate, the week time
period was taken to calculate an average day feasibility of the algorithm [78].
Comparative results of DAA and cost of energy without EMS during the time
period of 11.11.14 — 17.11.14 are shown in Table 4.1 and Figure 4.1.

Table 4.1 Energy cost with and without DAA

Result

Date
No EMS, cost (¢) DAA, cost (¢) Profit, %

11.11.14 35.31 23.28 34.06
12.11.14 37.16 30.32 18.41
13.11.14 41.57 31.49 24.24
14.11.14 44.10 32.31 26.73
15.11.14 50.07 49.68 0.79
16.11.14 48.61 46.77 3.79
17.11.14 40.78 29.66 27.29
Total 297.60 243.50
Day’s average 42.51 34.79 18.18
Day’s profit (DayP) 0.00 7.73

One week period may not give exact statistics, but can lead to some
conclusions. Day-ahead prices are changing every day, thus consumption even
with constant load pattern results in different costs for different days. Monday
cost was the smallest - only 35 ¢ and Friday cost was the highest — 50 ¢.
Depending on the dispersion of the prices for day-ahead range, the algorithm
also achieves different results for each particular day. For example, Monday
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gave a profit by using of EMS in 34% and Friday only around 1%. An average
day profit of EMS as compared to household without EMS gave 18%.

The day profit result obtained with DAA is 7.73 ¢, which was very close to
average theoretical result of 7.33 ¢ for the time period 2014-2015. Despite the
fact that RTPA was tested only theoretically, it can be assumed that a practical
result will show the same accurate result like DAA. This means that the
difference between the results of algorithms will be the same in 3 percent points.
The beneficial saving of DAA usage as compared to costs of energy for
household consumption without BESS is 18.1% per day. Thus, price swing
growth during the day increases the profit of both algorithms [79]. This has to be
taken into account since the price of open electricity market will increase if
energy grid taxes and fees (based on the amount of energy consumption) of local
TSO are considered. Figure 4.2 illustrates total electricity cost for end consumer
in Estonia according to 2015 [80]. It is clear from that observation that
electricity cost increases three times for end customer in relation to raw market
price. Consequently, the possible feasibility of the EMS system could grow
three times higher, and can be assumed as follows: 0.23 € for DAA and 0.18 €
for RTPA per one working day of EMS. To find if the participating on the open
electricity market is feasible or not with use of EMS, the total cost and
investment of the system has to be revised.
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Figure 4.1 Everyday electricity cost for a customer with and without the use of EMS
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Figure 4.2 Components of the total cost of electricity in Estonia in 2015 [80]

Based on the considerations in Chapter 1, it may be confirmed that the main
part of EMS is the battery bank. The cost of components in the pilot EMS as
compared to the total cost of EMS = 5200 € (EMSota) [VI] is as follows:

e batteries 50%;
e inverter with power devices 35%;
e PC with control devices 15%.

Thus, it is obvious that battery bank composes the largest part of EMS; and
its limited lifecycle [81], it also influences investment return possibilities.
Taking into account the decreased system DoD of 14% and increased amount of
cycles of the AGM batteries, the required day profit DayP, is calculated from
4.1):

EM.
EMS i 5200 ) 36 304

DayP. =
wir Cycles 4000 (4'1)

Furthermore, required 1 kWh of average electricity market price difference Fr
could be calculated from (4.2):

EMS,q  _ S200€ .. € 42)

Fr= = =0.
Cycles - Ep,, 4000 -3kWh kWh

This price difference 0.433 €/kWh or 433 €/MWh is required between minimum
and maximum price on market in terms of ideal (without losses) charge —
discharge cycle of battery. The day profit equal or greater than 130 ¢ can be
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achieved also with a higher swing of minimum and maximum prices. Required
swing can be calculated for DAA and should respond to the system of inequation
4.3):

DayP >130
DayP =C,,, =Cpyy | (43)
Cpi —Cpyq 2130

Equating of C, and Cpy4 with their members is shown in (4.4) and (4.5):

22

Cot =23 Poaa () POt + (P () FpU(@)) + P (23)- Fple23), (4.4)

i=0 d=m+1

n 22

Cro = 2 (P @) - Fp(t(i)- x5+ 3" (P (1)) - Fp(t(d)))+ (Pe - Fp(t(23))-x, | (4.5)

i=0 d=m+1

3

where z coefficient - a variable used to find out the difference between the
minimum average price and the shifted cost of energy with maximum prices.
Both equations of costs have the same parts for idle hours, after eliminating
these, the inequation is expressed by (4.6):

(Zi (Proaa (1(0))- Fp(t(i)+ Py (6(23))- Fplt (23))] -
=0

! (4.6)
{Z(PW (t())- Fp(t(i)))-x, +(Pe - Fp(t(23)))-x, J >130

According to the two-year price statistics of 2014-2015, the average minimum
price Fp(t(23)) is 2.2 ¢ and the average load at an hour with minimum price
Proaa(t(23)) is 0.4 kWh. The average cost of 3 kWh shifted from most expensive
hours and used from battery latter is 12 ¢. Assuming that this cost has a major
effect on DayP value, it is possible to calculate the difference of the cost
necessary to match the required value in 130 ¢.With mode variables x> = 0 and
x1 =1 and average values, the inequation is expressed in (4.7):

(122+0.4-22)-(0+3-2.2-1)>130 , (4.7)

after linear transformation, z coefficient is found from (4.8):

22130—038+6ﬁ

>11.31 .
2 >11.3 (4.8)

and the required day profit for the investment return can be achieved if the total
cost of energy at maximum price hours will grow by 11.31 times. At the same
time, the minimum average price will stay at 2.2 ¢.

Today’s price swing on the market is not too high and simple calculations
show that currently it is impossible to return the total cost of the EMS in its
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lifetime neither with day profit DAA result 0.23 € nor with day profit RTPA
result 0.18 € [VI] [VII].

4.2 Comparison of 1 kWh price for different battery types

Despite good technical parameters of AGM, today’s Li-ion prices offer much
better opportunities while price trend forecasts are still better. It is possible that
cost of Li-ion batteries in electric vehicles will drop dramatically by 2020,
whereas Tesla’s “Gigafactory” may make great impact and contribution to
achieve that. The electric car market, in turn, is making large-format batteries
cheaper for grid use [81]. For that reason, it is required to discuss the use of the
Li-ion factor for the EMS project.

As compared to lead acid, Li-ion batteries are a relatively new invention as
they have been used commercially since the 1990s. Lithium technology has
become well proven and understood for powering small electronics like laptops
or cordless tools and has become increasingly common in these applications —
edging out the older NiCad (Nickel-Cadmium) rechargeable battery chemistry
due to many advantages of lithium. Along with Li-ion batteries, LiFePO4 type
of batteries holds a good position. In 1996, a new formula for mixing lithium ion
batteries was developed — Lithium Iron Phosphate. Known as LiFePO4 or LFP,
these batteries have a slightly lower energy density but are intrinsically non-
combustible, and thus much safer than Lithium-Cobalt-Oxide (LCO) [82].

Lithium Nickel Manganese Cobalt Oxide (NMC) is one of the most
successful Li-ion systems. Similar to Li-manganese, these systems can be
tailored to serve as Energy Cells or Power Cells. For example, NMC in an 18650
cell for moderate load condition has a capacity of about 2,800 mAh and can
deliver 4 A to 5 A; NMC in the same cell optimized for specific power has a
capacity of only about 2,000 mWh but delivers a continuous discharge current of
20 A. A silicon-based anode will go to 4,000 mAh and higher but at reduced
loading capability and shorter cycle life. Silicon added to graphite has the
drawback that the anode grows and shrinks with charge and discharge, making
the cell mechanically unstable. Once the advantages are considered, Lithium-Ion
batteries become exceedingly tempting [83].

To find a probable advantage of another type of battery as compared to AGM
in EMS, the data from [84] were used. The main values can be found in Table
4.2. All costs of batteries are increased by the costs of EMS components
amounting to 2340 €. Since the number of cycles available only with DoD
equals or is greater than 30% in data sheet, the maximum total capacity of
battery bank is considered as 10 kWh. The most adequate rate parameter could
be the price of 1 kWh in relation to the total cost of EMS.
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Table 4.2 Electricity cost of 1 kWh (valid for November 2016) related to the total EMS
cost with reduced total capacity of battery bank [84]

required total
Max total |investment | . costs €
Depht of . investment
. no. of | capacity costs € for each
Discharge . costs € to
cycles | to use3 | batteries EMS kWh
kWh
LiFePo4 PYLONTECH 48% 9800 6.25 4000 6340 0.22
OPzV tubular (GEL) 30% 5600 10 2400 4740 0.28
OPzS tubular (floodes) 30% 5000 10 2200 4540 0.30
Lithium Ion (NMC) 48% 11000 | 6.25 4375 6715 0.20
AGM Heavy Duty 30% 2000 10 1400 3740 0.62
GEL Heavy Duty 30% 2300 10 2000 4340 0.63
Typ. Lead Acid 30% 1100 10 1200 3540 1.07

At today’s prices, the Li-lon batteries show a better result as compared to
Lead Acid and AGM batteries for 1 kWh. However, the required day profit with
the best result of Li-lon NMC is unable to return the investment back. The
required day profit in the case of NMC is 0.61 € (4.9):

EMS

NMC _ DayP, = ——total = 6715€ _ 6e
Cycles 11000

(4.9)

Thus, required 1 kWh of average electricity market price difference could be
calculated from (4.10):

EMSyu _ 6715€ . €
Cycles-Ep,, 11000-3kWh — kWh*

NMC_Fr= (4.10)

This calculation illustrates that to reach the payback value of cycle cost per
day with DoD 3 kWh, the minimum required 1 kWh electricity price has to be
0.203 €/kWh (203 €/MWh). It is higher than average market price, thus it is still
almost impossible to build EMS with the current market kWh price. However, if
the battery cost continues to decrease, it will lead to the fall of the total cost of
EMS. With the certain level of EMSial, the system will become profitable. In
this case, EMS; w1 with AGM batteries and DoD of 14% should not be higher
than 920 € to match DAA limits in an average day profit of 0.23 € and 4000
cycles of battery life. The EMS;oa1 with RTPA should be less than 720 € [VII].

UBS, in a report based around a discussion with Navigant Research, says the
230 $/kWh mark for the BESS will be reached by the broader market within two
to three years, and will likely fall to 100 $/kWh. Navigant estimates the cost of
materials going into a battery at the Tesla Gigafactory on a processed chemical
basis (not the raw ore) is 69 $/kWh. The cost of the battery is only ~10-20%
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higher than the bill of materials — suggesting a potential long-term competitive
price for lithium-ion batteries could approach ~100 $/kWh. A typical ‘load
shifting’ 4-hour battery (designed to address the afternoon/evening peak) costs
anywhere from ~720-2,800 $/kWh, depending entirely on the scale of the
lithium-ion battery employed and the size of order. The average 500-700 $/kWh
for a typical battery is probably closer to the 2,000-3,000 $/kW when including
the balance of the system costs (around 400-500 $/kW), with a trend towards
around 1,500 $/kW within the next 3 years [85] [86].

According to optimistic system price 100 $ (94 €) per 1 kWh the total cost of
current (21 kWh) EMS is 1974 €, cost of scaled (10.5 kWh) EMS is 987 € and
cost of EMS with Lithium Ion NMC (6.25 kWh) battery bank is 588 €. Different
day profit values for previously mentioned EMS systems are shown in Table 4.3.

Table 4.3 Time periods for investments return depending on the day profit value and the
total cost of the EMS

Different total cost values for EMS in €
R;‘i‘;gffndeay 5200 3000 1974 987 588
Investment return time in years
1.7 8.5 4.9 32 1.6 1.0
1.5 9.6 5.6 3.7 1.8 1.1
1.4 10.3 6.0 3.9 2.0 1.2
1.3 11.1 6.4 4.2 2.1 1.3
1.2 12.0 6.9 4.6 23 1.4
1.1 13.1 7.6 5.0 2.5 1.5
1.0 14.4 83 5.5 2.7 1.6
0.9 16.0 9.3 6.1 3.0 1.8
0.8 18.1 10.4 6.9 34 2.0
0.7 20.6 11.9 7.8 3.9 23
0.6 24.1 13.9 9.1 4.6 2.7
0.5 28.9 16.7 11.0 5.5 33
0.4 36.1 20.8 13.7 6.9 4.1
0.3 48.1 27.8 18.3 9.1 54
0.2 72.2 41.7 27.4 13.7 8.2
0.1 144.4 83.3 54.8 274 16.3

It should be take into account that commonly the investment return time is
limited with maximum lifetime of EMS in 15 years [VI]. According to table 4.3
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it follows that current investment (5200 €) into EMS with DAA day profit
(0.23 €) or RTPA day profit (0.18 €) cannot be returned during the lifetime of
the battery bank. However, it is possible if EMS cost will be reduced to 100 $
per kWh and total cost of system will be less than 1000 €.

It should be also taken into account that the use of EMS provides other
benefits such as increased supply reliability, ability to combine an electric
system with other renewable energy sources and simpler implementation of the
household network into a smart grid, if needed. As was mentioned above, price
swing growth during the day on the electricity market or increasing the power of
the EMS could be the boost factor for payback during lifetime [87] or
penetrating to the EMS renewable energy sources as distributed power
generators [88] [89].
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5. CONCLUSIONS AND FUTURE WORK

This thesis focuses on the research and development of a storage based
energy management system for households on open electricity market, day-
ahead electricity prices and real-time prices. The main scientific result of the
work is the development of an energy management system for grid connected
households and analysis of its feasibility, which includes analysis of most
suitable demand side management options for household as follows:

1. load patterns with non-shiftable loads
2. day-ahead and real-time price markets in the Estonian region (NP data)

3. Dbattery type and size of capacity

as well as development of new mathematical models and control algorithms for
BESS [V] [VI] [VI]:
1. day-ahead prices based control model for day-ahead electricity market
2. real-time prices based model for intraday electricity market, with a
trading time frame in one hour before distribution.

For further research and development of the algorithms described in the
thesis, in terms of a practical value, the author proposes a new EMS design with
a focus on the following tasks:

1. to design a real electrical cabin with devices required for hardware of the
new energy storage integrated energy management system

2. to develop a server PC with new HMI software for the control of the
energy management system and fetching data from an energy operator
(including server PC with data management and fetching data from an
energy operator)

3. to prepare guidelines for energy management system control with an
overview of development possibilities

With support of the practical part, the author conducted research and testing
of EMS in the laboratory during a one-week period to evaluate the real EMS
behavior and obtain main system indicators on the real market data. The main
outcomes of the theoretical and practical research are as follows:

e According to all specific constraints and limits of EMS, including
economical part, the most reasonable battery type for EMS at
developing stage was Lead-Acid, specifically VRLA/AGM type.

e In an average household, the capacity of battery bank to cover household
energy demand with non-shiftable load has to be 7 kWh with DoD 100%
or 21 kWh with DoD of 30%, which is approximately equal to daily
electricity consumption.
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e Developed and designed new universal EMS, which can use day-ahead
price or stochastic RTP based control.

e DAA and RTPA use price arbitrage algorithms with three modes of
BESS work, which is a simpler and advance implementation as
compared to complicated industrial systems.

e Practical and theoretical result of DAA use in EMS is around 7% more
profitable than the use of electricity without EMS. Theoretical profit of
RTPA is around 6%.

e Even reduced DoD of batteries to 14% and increased amount of life
cycles up to 4000 still requires a day profit equal to 1.3 € to return
investment to EMS. According to algorithms, day profit result, the cost
of EMS, should not exceed 920 € in the case of DAA and should not be
more than 720 € in the case of RTPA, to return investment to the system
during its lifetime.

e Today, the Li-ion battery of type NMC may be more feasible than AMG
with a required day profit around 0.6 €.

e Use of EMS with DAA will return investment into the system or bring a
profit if the electricity price of hours covered by batteries is 11 times
higher than average minimum electricity price (according to years 2014-
2015).

The key conclusion is that with today’s electricity prices and the total cost of
particular EMS, no return investment to EMS is possible; thus, it is not feasible
for households and small customers. According to required demand of energy
for small systems like an apartment, the components of EMS will run out of
service life, before they achieve required profit to cover an investment. On the
other hand, it still may be feasible in the near future. Since battery cost in EMS
produces 40%-50% from the total price, due to technology development, the
continual drop of battery prices is essential for a decrease of EMS total price
[VII]. Furthermore, price swing growth during the day on the electricity market
or increasing the power of the EMS could be a boost factor for payback during
lifetime [VI]. This means either reduction of batteries and EMS component price
by 300-400% or an increasing swing of electricity prices by 11-12 times will
make EMS feasible for households. Further research into the issues discussed
should continue.

Future research areas

The next challenge for the author will be to improve RTPA for more effective
price prediction methodologies and an interconnection system to smart grid with
renewable sources and an economical use of real-time tariff in the demand-side
using available renewable energy sources. Furthermore, the experimental study
of power losses and efficiency enhancement methods of the proposed EMS will
take place. Energy management systems and smart house systems are
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developing very fast. New solutions and algorithms are emerging, which can be
considered for upgrading the work, even the general operating principle of the
EMS, will remain the same.

Another area of interest could be integration of EV and EMS. Today
investments in EVs are already significant and create huge opportunities for
integration with smart grids. It is a strong argument in support of a feasible use
of electric car batteries as an energy reserve in households. EV connected to the
grid could help cut electricity demand during peak periods and prove especially
helpful in smoothing variations in power generation introduced to the grid by
variable renewable resources such as wind and solar power [90].

The battery bank type for EMS has to be revised in the future. Already today,
NMC Li-ion battery may be more feasible than AMG and rapidly declining cost
of Li-ion battery packs will bring more opportunities to the electric car market,
and also for household solutions. Battery banks with larger amounts of used
energy are already more competitive to reach this goal due to deeper depth of
discharge. It is the case especially if the start price for battery bank is low, due to
mass production benefits and damping system like in the case of Tesla’s
“Gigafactory” and “Powerwall line” banks [91]. This product is able to be cost
effective with upgraded EMS algorithms.
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ABSTRACT

Current thesis explores the feasibility of Energy Management System use in
households. Open electricity market gives an opportunity to participate in energy
trading with different tariffs and time resolutions for even small consumers.
Since January 1st, 2013, all participants in Estonia became eligible consumers in
the fully open electricity market. Topicality of the study lies in the fact that in a
short term, entire households must transfer to the new tariff systems across
Europe to purchase electricity from the free market. The main goal is to reduce
the cost for consumed electricity by using energy storages and price arbitrage.
Use of a battery charge-discharge-schedule and taking advantage of the low
price periods by importing more energy and storing it, while reducing the
imported power during high price periods by supporting the load with the stored
energy. However, consumption characteristics and patterns remain unchanged,
providing unchanged comfort limit for end customer. The new real EMS was
designed and created within the scope of this thesis. Also, new mathematic
models were developed to interact at EMS with different price tariffs like day-
ahead and real-time. DAA was tested in the laboratory during one week of EMS
work.

Chapter 1 describes the open electricity Nord Pool market and gives an overview
of energy storage technologies for demand side management.

Chapter 2 addresses mathematical models for energy shifting with battery
energy storage and provides the development of mathematical models for day-

ahead price and real-time price control algorithm.

Chapter 3 covers the designed and developed new Energy Management System
with guidelines of its usage.

Chapter 4 presents an evaluation of the economical part of the system. Also, the
calculation of the needed price swing of electricity is analyzed.
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KOKKUVOTE

Kéesolev doktoritod uurib véimalusi, kuidas kasutada Energy Management
Systemi (energia haldamise siisteemi) koduses majapidamises. Alates 1.
jaanuarist 2013 on Eestis koigil tarbijatel vdoimalus osta elektrienergiat avatud
elektrituru tingimustes. Ténu avatud elektrituru tingimustele on ka viikestel
elektrienergia tarbijatel vOimalik saavutada kokkuhoidu. EMS-i peamine
eesmidrk on vidhendada rahalisi kulutusi tarvitavale elektrienergiale. EMS-i
efektiivsus tuleneb madala hinnaga elektrienergia salvestamise arvelt, mida
tarbitakse korge elektrienergia hinna perioodil. EMS-i juures on kasutatud
uusimaid matemaatilisi mudeleid, mis analiiisivad elektrienergia tarbimist ja
elektrienergia hindade muutumist eelneval perioodil ning sellele toetudes
optimeerib EMS elektrienergia tarbimist reaalajas ning prognoosib optimaalset
elektrienergia tarbimist kuni iiks 6dpdev ette. DAA ,,Odpdeva ette hinna
algoritmi® on testitud EMS-i t66s lihenddalase perioodi jooksul.

Esimene peatiikk annab iilevaate avatud elektriturust Nord Pool ja tarbijate
vajadusest EMS-i jérele.

Teine peatiikk kirjeldab matemaatilisi mudeleid, mille abil optimeeritakse
madala hinnaga elektrienergia salvestamist ja salvestatud elektrienergia tarbimist
reaalajas, ning prognoosib optimaalset elektrienergia tarbimist kuni iiks 66péaev
ette.

Kolmas peatiikk annab {ilevaate uuest EMS-ist ja arutleb selle
kasutamisvdimaluste iile tulevikus.

Neljas peatiikk analiiiisib silisteemi majanduslikku efektiivsust ja vajalikku
hinnavahet siisteemi tasuvuseks.
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APPENDIX 1. PROGRAM LISTING ,,PriceGrabber*

using
using
using
using
using
using

System
System
System
System
System

System.

B
.Collections.Generic;
.Ling;

.Text;
.Threading.Tasks;
Net;

namespace PriceGrabber

{

class Program

{

//°S
stat

{

tart of console appplication service

ic void Main(string[] args)

string source = "";

List<double> Prices24H = new List<double>();

// Function call to get HTML data scope
source = GetUrlSourceAsync();

// Fetching system date time
DateTime dt = DateTime.Now.Date;

string dts = dt.ToShortDateString().Replace('.", '-');
string target = dts;
// Loop process of current date price data
for (int i = 0; i < 24; i++)
{
string tar = target + " " + i.ToString().PadLeft(2,
'0');
double prc = 0;

// Parsing price data from HTML data

string res = GetValueFromURLSource(source, tar);

try
{

}
catch
{

}
if (prc != 0.9)

prc = Convert.ToDouble(res) / 100;

// Creation of price array and output it to the

screen

{
Prices24H.Add(prc);
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Console.WriteLine(prc.ToString());

}
}
// End of service instance

}

// Asynchronous fetching HTML data from internet
static async Task<string> GetUrlSourceAsync()
{

string source = string.Empty;

source = await new
HttpClient().GetStringAsync("http://elering.ee/nps-
hinnad/?=table");
return source;

}

// Parsing algorithm to filter HTML tags and remove required

price data
static string GetValueFromURLSource(string source, string

target)
{
int StartPos = source.IndexOf(target);
if (StartPos >= 0)
{
int RealPos = source.IndexOf("left;", StartPos);
string Cutted = source.Substring(RealPos + 7, 7);
Cutted = Cutted.Trim(new Char[] { '/', "\\' });
Cutted = Cutted.Replace('’', ',");
return Cutted;
}
else return "";
}
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Introduction

According to a report by the U.S. Department of
Energy in 2008 [1], 74% of the nation’s electricity
consumption occurs in buildings. This represents 39% of
the total energy consumption among all sectors. There are
two general approaches for energy consumption
management in buildings: reducing consumption and
shifting consumption [2]. The former can be done through
raising awareness among subscribers for more careful
consumption patterns as well as constructing more energy
efficient buildings [3].

In the household without energy generation units, the
main cost reducing possibilities are shifting of loads and/or
replacing the less efficient loads with more efficient ones.
Profitability of load replacing depends on energy costs,
consumption amount, investments (replacement costs),
exploitation costs and lifetime of the device. The shifting
profitability depends on load priorities and storage
possibilities. The household consumption is not a
homogenous group, different appliances have different
regimes, priorities and roles [4]. P. Kadar has divided
household electrical appliances to three groups: critical
load, flexible load, and autonomous flexible intelligent
load.

Energy storage systems play a key role in shifting
critical (not shiftable) loads. Storages can be classified into
heating and electrical ones. Heating energy storages are
water or space heaters in residential buildings with
electrical heating loads. Compared to total consumption,
these loads have mainly high energy consumption, which
is about 30%...50%. Energy consumption shifting and
balancing with existing heating energy storage systems
needs small investments, and their profitability is mostly
less than one year.

Optimization of electrical energy storage capacitance,
control models (including the charging/discharging cycles)
are important research questions. The main objectives of
customers are:

e  To minimize their energy costs;

e To increse the power quality and comfort.

The main objectives of the following analysis are the
analysis of operation times and electrical storage
dimensioning for energy consumption:

e  Shifting, depending on the two-tariff system

price and on the Nord Pool Spot price;

e Balancing with and without water heater

shifting.

Operation times of home appliances

The following analysis is based on four-week
measurements (in February/March 2010). The object of the
analysis was a 3-room (67.4 m2) apartment with four
habitants (2 adults, 2 children). The object built in 2005
has a two-tariff energy measurement system. The high
tariff period in the winter time is from 7 to 11 o’clock (in
the summer time from 8 to 24 o’clock) on workdays. The
rest is a low-tariff period, including the weekend. For
energy consumption measurements 12 Voltcraft Energy
Logger 4000 devices were used. The total measurement
error was less than 5% compared with the main energy
meter. The total energy consumption by load is shown in
Fig. 1.
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Fig. 1. Energy consumption of loads



By shift-ability, loads can be divided into three
priority groups:

I (not shiftable) — cooking stoves, kitchen ventilation,
coffee machines (without thermos), bathroom lighting and
ventilation, TV sets, PCs with modem, home cinema and
audio systems, and local lighting;

II (almost shiftable) — lighting, refrigerators, boiling
kettles, coffee machines (with thermos), vacuum cleaners,
electric irons, and floor heating for drying purposes;

III (shiftable) — water heaters, washing machines,
dishwashers, and floor heating for heating purposes.

Based on the analysis of electricity consumption, the
average workday consumption per hour is 0.9 kWh, and
the average holiday consumption per hour is 1.4 kWh.
Before the consumption shifting and reducing in the
workday the average high-tariff consumption is 1.05
kWh/h and average low-tariff is 0.55 kWh/h. There are
three peak hours for energy consumption [5]:

e The morning on the workday (from 7 to 8);

e  The midday on the holiday (from 12 to 14);

e The evening on the workday or holiday (from 19

to 21).

Main loads which affect the local extremums are: in
the morning — water heater; in the midday — water heater
and cooking stove; in the evening — water heater, cooking
stove and lighting.

Table 1. Operation times and energy consumption of home appliances

Before the consumption shifting and reducing the
average ON time period is 4 hours and 36 minutes. The
average ON time in the high-tariff period is 2 hours and 10
minutes.

The operation times of home appliances can be
divided into three groups:

e Long operation period (3 hours and more):
refrigerator, TV, modem, PC, video, lighting,
water heater, floor heating;

e Average operation period (between 1 to 3
hours): bathroom lighting, cooking stove &
ventilation, iron, vacuum cleaner, dishwasher;

e Short operation period (up to 1 hour): washing
machine, coffee machine, boiling kettle, toaster.

Appliances with a long operation period like water
heaters, floor heating and refrigerators have an energy
storage capability (Table 1). Energy consumption
scheduling of about 200-liter water heater and floor
heating energy up to six hours does not affect the
customers comfort. Control for scheduling of a small water
heater (up to 50 liters) and a refrigerator must be
reasonable and take into consideration vacancy of the
apartment. Water heaters and refrigerators are rarely used
on workdays between 9 and 15 o’clock, which makes it
possible to shift small water heaters and refrigerators
electricity consumption for one to three hours.

Load ON-time ) ON- O.N time in | ON time in Max Total ) High tar.iff
name(s) per time/day, hlgh-fariff low-t.ariff contin'uous . ption ption,
day % period period ON time by loads, % %
Refrigerator 15 h 36 min 65 7h24min | 8h 1l min 17 h 30 min 5.5 47.50
TV, modem, PC, Video 12 h 42 min 53 7 h 5 min 5h37 min 16 h 5.6 55.76
Lighting 7 h 58 min 33 4 h 40 min 3h 17 min 8h 7.4 58.68
Water heater 5h 46 min 24 2 h 52 min 2 h 54 min 5h 30 min 48.7 49.66
Floor heating 4h 5 min 17 1h10min | 2h 54 min 15 h 30 min 3.3 28.79
Bathroom lighting 2 h 57 min 12 1h3lmin | 1h26min 5h 2.1 51.35
Cooking stove, ventilation 2 h 12 min 9 1 h 8 min 1 h 4 min 3h 21.3 51.35
Iron, vacuum cleaner 2h2min 8 0Oh 1l min 1 h 50 min 50 min 0.4 9.41
Dishwasher 1h 7 min 5 0h 2 min 1 h4 min 1 h 45 min 3.1 4.36
Washing machine 32 min 2 0h 0 min 0h 32 min 1h 1.3 0.28
Coffee machine 10 min 0,7 0h 1 min 0 h 8 min 1h 0.3 12.49
Boiling kettle 7 min 0,55 0h 4 min 0h 3 min 7 min 1 61.96

Energy storage dimensioning for consumption shifting
in a two-tariff system

If the consumption of all freely shiftable loads (water
heater, dishwasher, washing machine) is shifted to the low-
tariff period and lighting bulbs are replaced with economy
bulbs, the 6.5...7 kWh of almost- and not-shiftable energy
consumption stays in the high-tariff period. After
consumption scheduling and wusing of saving bulbs
(compact fluorescent lamp) the average high-tariff energy
consumption is 0.43 kWh/h.

Fig. 2 shows that at the high-tariff period two high
and low consumption periods with a difference of about
7.4 times can be identified. The low energy consumption
period is between 7..17 and 21..23 o’clock - with the

average energy consumption of 0.165 kWh/h. The high
energy consumption period is between 17..21 with the
average energy consumption of 1.22 kWh/h.

Two different choices are available for electrical
energy storage calculation. First, storage should store
energy for the whole high-tariff period. Using a simplified
formula (1), storage capacitance of about 6.9 kWh can be
calculated

Ey =Epp —Esp = Epg» (O]
where E;, — minimum electrical storage capacitance, Ej;, —
high-tariff consumption before shifting of shiftable loads,
Eg, - shifted energy (energy consumption of shiftables
loads), Ej, high-tariff consumption after energy
consumption shifting of shiftable loads.
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Fig. 2. Electricity consumption before and after load scheduling
and power reducing on workdays

Naturally it is important to take into consideration
also all energy losses in the scheduling process and system
self-consumption.

Second, the storage should store only energy of the
high energy consumption period, which means a storage
capacitance of about 4.9kWh (about 29% less than
described before). In both cases the peak power of the
storage system should be approximately between 1.2 and
1.5 kW.

Storage dimensioning for consumption scheduling
based on the Nord Pool Spot (NPS) average daily price

Energy consumption in households in the UK is
reported in [6] and in Estonia in [7]. Peak hours for UK
households are from 06-08 and 13-18. Main peak hours for
Estonian average households are at 7-8 and 19-21 on
workdays and 12-14 and 19-21 at weekends. It is quite
easy to see the possible use of energy storage to smoothen
the loads at morning or midday use and even the evening
use at weekends. However, some exact calculations are
needed in terms of the possibilities to conserve energy at
low price before evening peak hours on workdays.

Average NPS price during the measured period in the
Estonia (EE) area is calculated as 44.506/MWh. The NPS
price curve is not similar on workdays and at weekends.
The maximum price on workdays is 65.93¢/MWh and the
minimum is 33.35€/MWh. At weekends the maximum and
minimum prices are 43.05¢/MWh and 29.76€/MWh,
respectively. Average price below the EE area average
(44.50€/MWh) is 38.02€/MWh (-14.55%) on workdays
and 38.26€/MWh (-14.03%) at weekends. Average price
above the EE area average is 53.50 € MWh (20.22%) on
workdays and does not exceed the average at weekends.

EUR/MWh

00-01
01-02
02-03
03-04
04-05
05-06
06-07
07-08
08-09
09-10
10-11

25

1,5 kWh

14-15
15-16
16-17
17-18
18-19
19-20
22-23

‘—WD price

WD average price. —x— D average price

———WD consumption before === =WD consumption after —e— WD average consumpt\on‘
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If all shiftable loads on workday (WD) are “switched
on“ under average price, then at least 1.1 kWh storage
system is needed for shifting of energy consumption
(Fig. 3).

If all shiftable loads on holiday (HD) are “switched
on“ under average price, then at least 11.8 kWh of energy
consumption should be supplied from the storage system
(Fig. 4). If an average price deviation is allowed (43.05 -
29.76)*10% = 1.33€ (10 % from maximum and minimum
price difference), then 4.83 kWh should be supplied from
the electrical energy storage.

Storage dimensioning for consumption balancing

In the following analysis the consumption of a water
heater, dishwasher and washing machine will be shifted
with the electrical energy storage system.

To balance electricity consumption it is important to
define average electricity consumption and deviation of
electricity consumption. The simplified formulas (2) and
(3) for the calculation of maximum over- and under-
consumption amounts are described as follows:

E,s =0,

Epy = Y.(E - B), @

i=1

E >E=
Eo,max < En,Z = En,max =Loys

E,s =0,

E, 5= i(Ez —E), (3)

i=1

Eui,max > Eu,Z = Elumax = Eu,E’

where E, » — energy of the under-consumption period; £, s
— energy the over-consumption period; E,,., — energy
consumption at the highest over-consumption period;
E, e — energy consumption at the highest under-
consumption period; E; — energy amount at the moment i;

E — average energy consumption.

The average daily electricity consumption is 1 kWh
per hour. In Fig. 5 two important periods: over and under
consumption period are shown for storage system
dimensioning. The largest over consumption period is from
17 to 1 o’clock and the under-consumption period is from
1 to 7 o’clock with energy amounts of 4.5 kWh and 4
kWh, respectively.

2259 [
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0:59 [0

Time

OBefore shifting & reducing

Fig. 5. Average daily electricity consumption before shiftable
loads scheduling

To obtain a more precise overview holiday and
workday consumption should be analyzed separately. Fig.
6 shows that at holiday one large over- and under-
consumption period occurs. The largest over-consumption
period is from 11 to 21 o’clock with an energy amount of
10 kWh. The largest under-consumption period is from 23
to 11 o’clock with an energy amount of 9.7 kWh. By an
average consumption deviation of 25%, over- and under-
consumption energy amounts are about 7 kWh and 5.7
kWh, respectively.

It is shown in Fig. 7 that at workdays two over- and
two under-consumption periods occur. Over-consumption
periods are from 7 to 10 o’clock and from 17 to 1 o’clock
with an energy amount of 2 kWh and 5.4 kWh,
respectively. Under-consumption periods are from 1 to 7
o’clock and from 10 to 17 o’clock with an energy amount
of 3.5 kWh and 3.9 kWh, respectively.
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Fig. 6. Average holiday electricity consumption before shiftable loads scheduling
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Electrical energy storage capacitance should be
greater than or equal to the highest energy consumption
period. Comparing the energy consumption of a workday,
holiday and average day, the maximum energy demand for
balancing is about 7 kWh.

Consumption balancing with water heater consumption
shifting

This section analyzes the use of a water heater for
electricity consumption balancing in a two-tariff system.
Using a simplified formula (4) the consumption pattern of
a new water heater for balancing is calculated:

iEi,awh 4 (4)

i=

Ei,awh = Ei,bwh 7(Ei,b —E); Ei,awh <0= ESE =

where E;,., — water heater energy consumption after
shifting at time i; £ ,,, — water heater energy consumption
before shifting at time i; E;,— total energy consumption
before shifting at time i; E— average energy consumption;
Egi - shortage of energy, which should be balanced by the
electrical energy storage.

Fig. 8 shows that consumption scheduling with water
heater can balance electricity consumption on holiday.
Also, no problems are encountered in consumption

balancing with water heater scheduling at workday from 0
to 17 and 21 to 24 o’clock.

As shown in Fig. 8, it is not possible to balance
consumption between 17 and 21 o’clock with a water
heater. At the same time another high consumption unit,
the cooking stove, is used. During that period the shortage
of energy is about 1.6 kWh (0.4kWh per hour), which
should be supplied by an additional electrical energy
storage system or energy source. An alternative is to
reduce comfort level by shifting or reducing of other non-
shiftable loads consumption.

Conclusions

The minimum energy reserves that an electrical
energy storage system should have for described household
energy consumption:

Shifting, based on the two-tariff system,
4.9...6.9 kWh;

Shifting, based on the Nord Pool Spot (NPS)
average daily price, 4.83....11.8 kWh;
Balancing, if shiftable loads consumption is not
separately shifted, 5.4...10 kWh;

Balancing, if shiftable loads consumption is
separately shifted, 1.6 kWh.
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Energy storage dimensioning and feasibility analysis for
household consumption scheduling based on fluctuations of

Nord Pool Spot price

Abstract. This paper describes the analysis of price fluctuations in the Nord Pool Spot (NPS) Estonia (EE) area. Also the electrical energy storage
dimensioning and feasibility analysis for consumption scheduling on the basis of the NPS EE area price is discussed.

Streszczenie. W artykule przedstawiono analize fluktuacji cen na obszarze objetym przez Nord Pool Spot (NPS) Estonia. Dodatkowo
zaprezentowano metody wymiarowania oraz analize wykonalno$ci uktadéw magazynowania energii na podstawie danych dotyczgcych zuzycia
energii w systemie NPS EE. (Wymiarowanie i analiza wykonalnosci magazynéw energii dla obiektow mieszkalnych na podstawie fluktuacji

cen w Nord Pool Spot).

Keywords: consumption scheduling; household; Nord Pool Spot; energy storage dimensioning; feasibility.
Stowa kluczowe: in the case of foreign Authors in this line the Editor inserts Polish translation of keywords.

Introduction

The deregulation of electricity industry is giving way to
global trends toward the commodization of electric energy.
[1][2]. This trend has intensified in Europe and North
America, where market forces have pushed legislators to
begin removing artificial barriers that have shielded electric
utilities from competition. The price of electricity is far more
volatile than that of other commaodities normally noted for
extreme volatility. Relatively small changes in load or
generation can cause large changes in price and all in a
matter of hours (with real-time dynamic prices in seconds or
minutes). Unlike in the financial markets, electricity is traded
every hour of the year - including nights, weekends and
holidays. Unlike other commodities, electricity cannot be
stored efficiently. Therefore, delicate balance must be
maintained between the generation and consumption for
8760 hours a year.

There is, however, a great difference between electricity
and the other energy (and commodity) markets in that the
variable costs of production vary so greatly between
different types of installation — Wind and Hydropower with a
virtual nil cost at one extreme and Gas Turbines at the other
end of the scale. In order to satisfy fluctuating consumer
demand at the lowest cost, a broad variety of generating
techniques are required. Some installations are capital
intensive but can be run year round and are relatively fuel
efficient (hydro, nuclear, coal-fired). Other units such as co-
production of heat and power are used less frequently to
cover winter heating demand at times of higher prices.
Whilst energy intensive units such as Gas Fired Turbines
are used for brief periods of very high price and demand.

Although the principle of generation electricity is simple,
generating electricity for an area as large as Europe means
a complex balancing process. One of the biggest problems
faced by the system operator is congestion. When
congestion occurs, zonal prices supersede power
exchange’s market clearing price, which is based on the
aggregated energy supply and demand curve intersection
point for each hour [3]. In such a case, electricity prices can
increase or decrease dramatically. The primary role of a
market price is to establish equilibrium between supply and
demand. This task is especially important in the power
markets because of the inability to store electricity efficiently
and the high costs associated with any supply failure. NPS
runs the largest market for electrical energy in the world,
offering both day-ahead and intraday markets to its
participants. 330 companies from 20 countries trade on the

Exchange. In 2009 the NPS group had a turnover of
288TWh [4]. The spot market at NPS is an auction based
exchange for the trading of prompt physically delivered
electricity. The spot market carries out the key task of
balancing supply and demand in the power market with a
certain scope for forward planning. In addition to this, there
is a final balancing process for fine adjustments in the real
time balancing market. The spot market receives bids and
offers from producers and consumers alike and calculates
an hourly price which balances these opposing sides. NPS
publishes a spot price for each hour of the coming day in
order to synthetically balance supply and demand. Every
morning Nord Pool participants post their orders to the
auction for the coming day. Each order specifies the volume
in MWh/h that a participant is willing to buy or sell at specific
price levels (€/MWh) for each individual hour in the
following day. The SESAM (Elspot trading system)
calculation equation (1) is based on an application of the
social welfare criteria in combination with market rules.
SESAM is maximizing the value of the objective function
subject to physical constraints; like volume constraints, area
balances, transmission and ramping constraints.

de st
) Mary ) [ D% @y = [ 5 (nay
n |o 0

where a — represents an area, d° — demand in the area a,
and D? — demand function in the area a, s° — supply in the
area a, S? — supply function in the area a, and n — number
of areas.

The system price (SP1) for each hour is determined by
the intersection of the aggregate supply and demand curves
which are representing all bids and offers for the entire
Nordic region [4]. In addition to area price there is also an
annual fixed fee and a variable trading fee for all market
participants. In the political debate surrounding energy, this
type of price formation is labeled a marginal price setting.
This gives a false impression that the establishment of
prices in the electricity market is different from the price
formation process in other commodity markets. The only
difference lies in the significantly higher requirements for
the secure delivery of electricity because it must be
delivered at the precise moment it is needed by the
consumer. The inelasticity caused by the inability to store
electricity is the reason of this difference.
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Storage dimensioning for consumption scheduling
based on the Nord Pool Spot (NPS) average daily price

To find the possibilities for consumption scheduling it
was constructed an average day from actual data from the
NPS trading system. It was studied a period of seven
months starting in April 2010. Average price was calculated
with the well-known formula of a generalized mean.
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Fig. 1. Average daily price at the EE area and SP1 area

One hour is the smallest time interval when prices can
change, because on spot electricity trading prices are set
constant for delivery of power during a certain hour.
Analysis shows that fluctuations in the system area are
smaller (around 11.006/MWh) than in the EE area (the
amplitude of the price during the day is much higher at
26.35€/MWh) (Fig. 1). The high price amplitude in the local
market provides opportunities to use consumption
scheduling models in residential areas to gain economy.

Energy consumption in households in the UK is reported
in [5] and in Estonia in [6]. Peak hours for UK households
are from 06-08 and 13-18. Main peak hours for Estonian
average households are at 7-8 and 19-21 on workdays
(WD) and 12-14 and 19-21 at weekends (HD). It is quite
easy to see the possible use of energy storage to smoothen
the loads at morning or midday use and even the evening
use at weekends. However, some exact calculations are
needed in terms of the possibilities to conserve energy at
low price before evening peak hours on workdays [7].

According to equation 2 the average NPS price during
the measured period (April 2010 to October 2010) in the
Estonia (EE) area is calculated as 44.50€/MWh. The NPS
price curve is not similar on workdays and at weekends.
The maximum price on workdays is 65.93€/MWh and the
minimum is 33.35€/MWh. At weekends the maximum and
minimum prices are 43.05€/MWh and 29.76€/MWh,
respectively. Average price below the EE area average
(44.50€/MWh) is 38.02€/MWh (-14.55%) on workdays and
38.26€/MWh (-14.03%) at weekends. Average price above
the EE area average is 53.50 €/MWh (20.22%) on
workdays and does not exceed the average at weekends.

If all shiftable loads on workday (WD) are “switched on*
under average price, then at least 1.1 kWh storage system
is needed for shifting of energy consumption (Fig. 2).

If all shiftable loads on holiday (HD) are “switched on*
under average price, then at least 11.8 kWh of energy

consumption should be supplied from the storage system
(Fig. 3). If an average price deviation is allowed (43.05 -
29.76)*10% = 1.33€ (10 % from maximum and minimum
price difference), then 4.83 kWh should be supplied from
the electrical energy storage.
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Average price deviation and distribution of price range

As shown on figure 4, the deviation calculated by the
simple formula (3) from the average price to analyze
possibilities to use off-peak hours to store energy or shift
the load to off-peak hours. We needed an assurance of off-
peak hours available to recharge the batteries or other
storage equipment. We found that the average duration of
peaks that are higher than the average area price is 9.59
hours and the average duration of off-peaks is 13.48 hours.
That means there is plenty of time to recharge storage
equipment during the off-peak time.
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Fig. 4. Average EE area price deviation
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Deviation from an average price is higher at peak hours,
but peak hours last less than off-peak hours. It is most
profitable to save energy between the 23...06 o’clock, then
the price is lower than 10% compared to average. There is
also a possibility to save energy between 16...19 o’clock
when the price is about 2-3% lower than average.

k

S,
n
(3) S=nzl
XF

where X; — price of electrical energy in the instance i (from
0-24 hours), and Xr — average area price.

As seen in fig. 5 the distribution of prices is symmetric
and leptokurtic. With the leptokurtic distribution, the price
will have a relatively low amount of variance, because
return values are close to the mean. This could mean that
energy producers will not try to invest to storage facilities as
there could be quite small return on investment. This gives
us an opportunity to continue our research on the
profitability of using energy storing and shifting on the
demand side.
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Fig. 5. Distribution of price range in the EE area

Feasibility analysis

Today batteries could be the best solution for
consumption shifting in an average apartment [6]. Their
feasibility for households can be estimated by the system
cost and profit calculation. To find a profitable ES, it is
necessary to take into account parameters and costs
described in papers [8] and [9]. In current analysis are
described Lead-Acid (LA), Nickel Cadmium (NiCd), Lithium
lon (Lilon), Sodium Sulphur( NaS), Vanadium Redox
Flow(VR), Polysulfide Bromide Flow (PSB) and Zinc
Bromide (ZnBr) batteries.

10 year usage of energy storage (1 charge/discharge
cycle per day) will give approximately 3650 cycles then
charging takes place in the low price period at night and
discharge takes place in the high price period during
daytime. In case of constant Depth of Discharge (DoD)
value, the required energy capacity is different from initial
energy capacity. The simple equation 4 establishes the final
required energy capacity for consumption scheduling with
particular DoD.

E,

(4) E\max = DoD

Where Ejmax — required maximum energy capacity, and
E; - initial required energy capacity.

Table 1 shows the result of DoD and energy capacity
calculation with 3650 cycles for different batteries with 7
and 12 kWh of Initial Required Energy Capacity (IREC). It
shows that highest discharge depth can be applied in case
of NaS battery, which reduces the final required energy
capacity until 7.68 kWh. Thus, daily maximum load shifting
to low price involves one charging/discharging cycle of ES
with 7 kWh of energy capacity. Daily cost savings Ccyc for
one charge/discharge cycle with estimated price deviation
are shown in (5).

(5) Ccye = EZ,max -Ax

where Ezmax — ES maximum energy capacity for financial

saving, Ax — amplitude of price during the day
(26.35€/MWh).
Table 1. DoD and energy capacity calculation with 3650 cycles
Li-lon LA NiCd ZnBr VR NasS
DoD, % | 72,76 14,58 | 43,63 | 4562 | 76,66 | 91,10
IREC 7
(kWh) 9,62 48,02 16,04 15,34 9,13 7,68
IREC 7
(kWh) 16,49 | 82,32 | 27,50 | 26,31 15,65 | 13,17

The result of equation 5 is 0.186 € (7 kWh x 0.0264
€/kWh). It means that one charging/discharging cycle of ES
for investigated apartment will save 0.19€

Table 2 demonstrates ES total cost calculated for initial
required energy capacity of 7 kWh and peak power 7 kW.
There are columns with calculated number of cycles for
investment return and costs per 1 cycle. The last column of
table 2 is price difference multiplying factor. It shows by how
many times current price difference must be increased for
ES recoupment. As we can see none of batteries storages
is able to return the investment and make profit within
current life-time (cycles). It means, with current price
differences, there are only two opportunities to achieve
profitability. The first one is reducing the total cost of energy
storage  system  (cheaper  components, cheaper
maintenance), which should give possibility to return
investment in limited period of time i.e. 7 — 10 years. The
second method is increasing lifetime of ES (more cycles,
higher efficiency), which should give possibility to return
investment in period of time about 20 — 30 years, before it
fails or breaks down.

According to table 2 the most prospective ES is Sodium
Sulphur (NaS) Battery. It has medium energy capacity cost
and slightly expensive power capacity cost (up to 380€ /
kW). While it is quite new product on the market, the cost
could be reduced. Today, the main difficulty is that
developing companies generally target this technology for
utility-scale (>1000 kW) stationary applications. Developing
of NaS system solutions for small consumers can bring this
type of storages to households market.

The increasing usage of renewable energy sources
(and/or increasing production of renewable sources) on the
market could increase price differences and profitability of
ES systems. Also, introduction of full real-time dynamic
pricing system (e.g. price changing period is 5 minutes or
less), with increased amplitude of price, could reduce
profitability time of electrical ES systems for households.
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Table 2. Investments return calculation for battery energy storages

Amount of . )
required ES actual Pr!ce Fﬂfference
B Energy storage | Cost per cycle e multiplying factor to
attery type cost € cycles to lifetime cycles return investments
return the with DoD 50% PN
. with lifetime cycles
investment
NaS 4109 0,41 21625 10000 2,2
LA 3399 8,94 17889 380 47,1
NiCd 7948 2,65 41833 3000 13,9
Li-lon 6772 0,97 35642 7000 5,1
ZnBr 3161 0,93 16635 3400 4,9
PSB 3979 0,99 20944 4000 52
VR 3394 0,64 17862 5300 34
Conclusion REFERENCES

We observed the EE area price during 4802 hours
starting from 1 April 2010 when Estonia entered the NPS
market. During that time an average hourly price for the EE
price area was 44.5€/MWh and it is slightly lower than the
price in the system area. The price curve is similar on
weekdays and at weekends. At weekends the average
hourly price remains under an average area price. An
average off-peak time lasts for 13.48 hours, which is long
enough to store energy with cheaper storage equipment or
shift the power usage to a less expensive time period
without losing customer’s comfort requirement. The
minimum energy reserves that an electrical energy storage
system should have for described household energy
consumption shifting, based on the Nord Pool Spot (NPS)
average daily price should be between 4.83...11.8 kWh
(average about 7 kWh).

Described analysis shows that there is no ES solution
for a household which would return total initial investments
and make a profit in a lifetime period. With current battery
lifetimes and current DoDs, battery storages will bring profit
only with the difference growing between energy prices by
2.2 for NaS as a minimum and by 47.1 for LA as a
maximum one. Nevertheless, the similarity of the calculated
parameters of household energy storage with the
parameters of existing hybrid electric vehicle batteries
makes the technology used in vehicles attractive for
residential areas. Today, the most feasible solution is load
shifting with simple scheduling systems (without electrical
energy storage). Profitability time of investments for simple
scheduling systems is up to 2 years. For example,
investment for the shifting equipment of water heater is less
than 1 year.
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Modelling of Electricity Spot Price and Load
Forecast Based New Energy Management System for
Households
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Abstract — The aim was to determine probable profit by using
an electric energy storage (EES) device in a typical household.
Focus is on theoretical and practical studies of an energy
management system (EMS) based on VRLA battery storage. Use
of a battery charge-discharge-schedule (BCDS) enables an
optimal operation of EES taking advantage of the low price
periods by importing more energy and storing it, while reducing
the imported power during high price periods by supporting the
load with the stored energy. Forecasted price and load are used
to optimize the BCDS of EES, at the same time ensuring load
demand supply. In the day-ahead market, the management
system uses the mathematical functions to calculate the price of
imported energy in each period of time with the day-ahead
forecasted price and typical load in the household. The recursion
loops in the optimization algorithm search for the best BCDS to
reach the highest profit for the end consumer. All the calculations
will be tested on the EMS to confirm the theoretical part.

Keywords — Battery storage, EES, energy management system,
power system economics, smart grids, Time Of Use energy price.

I. INTRODUCTION

The present ecological, economical and political situation
leads to a significant growth of renewable energy sources in
electricity production. Fluctuation of the energy cost, as well
as recent liberalization of electricity market and incentive
policies to support renewable sources and hybrid systems
(EES in smart grids), offer exciting opportunities to the
owners of these systems to reduce their electricity bills. Our
aim here is to ensure load demand supply at the lowest cost, at
the same time considering the limits of the system. To fulfill
this task, an optimized hybrid EMS was developed. Term
“hybrid” means that load demand is met by the grid power
and/or power of the EES. This gives flexibility and reliability
to the system. We propose a simple deterministic approach
that ensures an optimal use of EES. A scheme of the system is
shown in Fig. 1. This notation serves as a reference in the
paper. Regarding to actual constraints of the grid, the
connected battery bank is not allowed to feed the grid.
Subsequently, the storage is used only to support load demand.
In our system, the load is assumed to be inelastic with respect
to the energy cost. On the other hand, the charging and
discharging operations of EES are controllable and flexible.
As imported power is comprised of the load and the EES
charging or discharging operation, imported power is elastic to
some level because of the flexibility of the EES operation. The
EES software control is designed by its operation parameters,

including minimum and maximum energy storage capacity,
discharging current limit, charging current limit, and charging
efficiency [1].

II. RELATED WORK

Recent developments include a number of new approaches
to minimize electricity bills in households by using electric
energy storage. Under household, here, we mean apartments
and small individual houses. Technical and economic
literature on electric energy storage describes various storage
applications that are partly overlapping. The optimization
methods analyzed were: Model Predictive Control [1],
deterministic approach [2], particle swarm optimization [3],
linear optimization methodology [4], dynamic optimization,
and Taguchi Method [5]. Some of the methods use
optimization structures that are very complicated for
household  implementation.  Several  approaches are
insufficiently flexible for use without PV or wind turbines,
which also makes them useless in households without solar or
wind sources. Mathematical functions for the EMS were
developed taking into account the theoretical model of a
battery [6]. The main benefit of this work is in the simplicity
of the optimization algorithm.

III. SYSTEM DESCRIPTION

Energy management system (EMS) is a mix of hardware
devices and software solutions. Thus, the main subcategories
of the system are hardware and software of the stand

A. Hardware

The hardware of the EMS is a compilation of different
subsystems with various tasks. It consists of four parts:
Personal Computer (PC), Programmable Logic Controller
(PLC), Load and Power Unit (PU). Power Unit is a complex
device from the Victron Energy Company. The basic element
of this device is a 3 kW Inverter of Quattro series. The Quattro
unit is a battery inverter and a charger combined in one unit.
Selection of the inverter based on the price, it is cheaper
comparing to competitors and time of delivery. Off-grid power
systems with this inverter can operate multiple electrical loads
without overloading the AC power source, and deliver
continuous uninterrupted power at power failure. Each Quattro
is a true sine wave inverter, meaning clean power for sensitive
electronics. It is also a sophisticated battery charger
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Fig. 1. System configuration.

that features an adaptive charge technology. The batteries used
in the PU are Deep cycle AGM batteries 12VDC with a total
capacity of 880 Ah. The inverter acquires all the required
values from batteries via the Precision Battery Monitor
(BMV). The BMV is a device that monitors PU battery status.
It measures battery voltage and battery current constantly and
uses this information to calculate the actual state of the charge
of the battery bank. The last basic element of the PU is the
Digital Multi Control panel (DMC), which allows limiting
grid input current and monitoring basic status of the inverter.

The PLC of the system is Siemens CPU of S7-1200 series.
It is a line of PLCs that can control a variety of automation in
industry and household applications. Siemens was chosen
because of connection features of this CPU. This smart
controller makes On/Off switching of the load groups during
working hours. It was made to simulate real load of a typical
household consumption during 24h. Therefore, the Central
Processing Unit (CPU) of the controller has two databases
with 24 records each, corresponding to 24 hours of the typical
average load consumption in households [7]. A representative
household load for a workday is shown in Table 1. The first
database represents a workday’s and the second a weekend’s
consumption. Another main task of the PLC is to control the
battery charge-discharge-schedule according to the profile
data transferred from the PC.

The PC subsystem of the project hardware fulfills an
important function by optimizing the BCDS to receive the
highest profit with the use of EES and fluctuating spot prices.
Optimization takes place at 12.00 UTC and creates a battery
schedule for the next 24 hours. To achieve this, a special
application

TABLE

AVERAGE LOAD ENERGY CONSUMPTION AND FORECASTED PRICE
DISTRIBUTION DURING WORKDAY [7]

Hour kWh €/kWh Hour kWh €/kWh
0:00 1.482031 0.0330 12:00 0.463861 0.0419
1:00 1.101665 0.0328 13:00 0.299279 0.0427
2:00 0.729638 0.0329 14:00 0.135066 0.0461
3:00 0.465483 0.0337 15:00 0.143417 0.0478
4:00 0.155727 | 0.0357 16:00 0.149556 0.0477
5:00 0.108135 0.0451 17:00 0.279366 0.0425
6:00 0.106064 | 0.0443 18:00 1.188915 0.0392
7:00 0.290092 0.0439 19:00 1.620046 0.0385
8:00 1.900813 0.0395 20:00 2.261207 0.0380
9:00 1.496892 0.0390 21:00 2.194288 0.0429
10:00 1.274349 | 0.0390 22:00 1.318521 0.0687
11:00 0.770185 0.0395 23:00 1.327011 0.0348

loads the forecasted prices from the internet for each hour of
the next day. The PC also has Human Machine Interface
runtime application and saves the main system variables to the
SQL database on the hard drive inverter.

The system includes 15 bulbs for a typical household load
simulation, i.e. a general power of 3 kW. The PLC interpolates
load values in accordance with 24h load array. This means that
the CPU takes the maximal value from the load array and
divides it to 4 bit; it gives a value to each bit and a bit
combination allows simulating the load ranging from zero to
maximum power.

B. Software

The main software programs are written for PLC and PC.
The PLC program was developed in Siemens Totally
Integrated Automation (TIA) Framework and presents the mix
of the functions written in Ladder Logic (LAD) and Structured
Control Language (SCL). The reason why SCL is used is
because of some complicated communication functions, which
are impossible to implement in pure Ladder Logic. PLC
program implements communication between the CPU and the
Battery Monitor with the help of the BMV protocol. It
requests the main parameters of the batteries and converts
them to ASCII data with service characters. CPU accepts this
protocol on the RS232 layer. General input data for
optimization algorithms like Nord Pool Spot forecasted prices
and output data like batteries charge-discharge-schedule are
read by PLC over Ethernet connection. Communication is
based on the classic Master-Slave/Send-Receive relations. The
PLC has the Slave role in this network topology and reads the
data from the PC, which acts like Master. These assignments
result from the fact that the CPU processes runtime program in
cyclical rather than in eventual mode. This means that data are
being requested over the network cyclically, which causes
overloads of the communication channel. Also, Ethernet
connection is used to transfer Battery Monitor data from the
PLC to the Human Machine Interface (HMI) visualization
program. The HMI is projected in the Siemens development
environment WinCC Flexible 2008. The main task of the HMI



is to acquire BMV data (V, I, SOC tags) and archive them to
the SQL database. The system updates tag values every
second and saves their mean values to the database every 30
seconds. Another job of the HMI is to control load groups in
the manual mode. For this purpose it has graphical elements,
like buttons and switches. The second runtime system in the
PC is the application, which is responsible for the battery
charge-discharge-schedule optimization. It is the core of the
whole EMS system. This application is written in high level
object oriented language C#. It can communicate with internet
protocols and make requests from Nord Pool Spot for new
forecasted prices every day. Afterwards it uses this data in the
optimization algorithm to find out the best (which means more
profitable) charge discharge schedule for the battery bank.
When the schedule is ready, the core application sends the
schedule data to the CPU. This action is an event and takes
place only once during 24h, which is more resource-saving for
network traffic than cyclical acquisitions of the CPU. Thus,
the control of the workbench stand is divided into two parts:
the calculation/processing in the PC and executing/running in
the PLC.
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Fig. 2. Main system parts and data flow directions.

IV. ALGORITHM

The algorithm for searching for the most profitable battery
charge-discharge-schedule is based on a loop optimization
routine. In the beginning, the core application sends a request
for the forecasted Nord Pool Spot energy prices for the next
time period at 12:00 UTC. The time period consists of T
timeslots ¢ with # = 1...7, where 7=24 hours. The daily sum
cost Cr=an(l) without use of the EES, considering only
forecast prices and conditions (2),

C. = 2 (Poua () Fp(0), M

Pgnd (t) > 0
Emd ) =P (t)’

where Pgiq is power from the grid; P is load consumption;
Fp is forecasted electricity price €kWh. The real time

2

stochastic fluctuation of the price during the time period is not
considered in this work. The EES suits only with the
constraints of the battery: the state of charge (SOC) has to be
within the range of its minimum and maximum allowed
values. The charging and discharging currents have to be
within their boundaries. Power loss of the charging operations
is considered in the charging efficiency. During the operation,
storage level at the end of each period is determined by the
storage level of the previous period and the charging or
discharging operation in this period [8]; it is expressed in(3)

S0C (1) = SOC (t =)+ x1-5 - P.(t) — x:- P, (1), (3)

where Pc is the charging power, Pp is the discharging power,
SOC(1) is the energy storage level at the end of period ¢, # is
the charging efficiency, x/ and x2 are charge/discharge
decision variables. All the variables must be within their
operation limits, expressed as

0< P.(t) < P.max; O]
0<P,(t)< P, max; 5)

SOC min < SOC(t) < SOC max ; (6)
charging :x:=1,x.=0; @)
discharging : x=0,x.=1. 8)

Depth of Discharge (DOD) of Deep cycle AGM batteries is
recommended to be less than 40%, thus we consider SOCmin
as 60% and SOCmax as 100%. The 40% of discharge is equal
to 3 kWh in our case. It means that the Quattro inverter can
support a load consumption of 3 kW during one hour only
with battery energy. Charging power is calculated by the
current measurement and integrating it by time

60

P.(t)= J.Lli(x)dx = uIi(x)dx = Z i(ts)-u, 9

1s=1
where i is the charging current from the grid, u is the grid
voltage and s is the time period which equals t/60. If battery
parameters and values are known, then the core system
searches for profit by using EES and criteria for selection are
presented in (10)

{f;m (1) Fp(t) = (B (1,) + Pouy (1)) Fp(1,) 2 0

, (10
T>t, >t (10)

where 7, is the next time period with regard to current time
period ¢, which is less than maximum time slot 24,
corresponding to 14:00 PM. To achieve correct load
distribution in the array, the sort function is called, which
merges the forecast prices with 24 hours load array from Table
1. When the table is ready, the Profit Matrix (PF) function is
called. It has main control loop with one sub loop, which
operates on the basis of (10). This combination allows all
hours # to be found from the 24 h array, when discharging the
battery is more profitable than using grid electricity, and
charging battery back in different hours will lead to electricity
cost saving, which means profit for consumers. When the PM
is filled, the recursive function starts to search all correct hour
(correct means discharging hour takes place before charging
back hours) combinations p (1..max) and makes a sortable list
from them. The final function sorts this list by maximum



profit value and selects the highest one. Thus, considering that
one possible profit from the charging/discharging combination
is as described by (11) and the maximum day profit DayP is as
follows from (12).

D = Pous (1) Fp(0) = (Pous (1) + P (0) - (1) (12)
DayP = MAX (3. P = (P, (1) Fp(1) -
= (13)

= (Bipua (1,) + Fipod (0) - (2, ).
When the maximum profit is found, the application
assembles a telegram for PLC, which consists of discharge
hours and charge hours, and sends it by Ethernet to the CPU

program. It creates a schedule for the load and battery control
on the PLC side.

V.RESULTS

To show our calculation example, the workday of Thursday
19.11.13 was chosen. Forecasted prices were loaded from the
Nord Pool Spot web server. Load array was the load pattern
for a typical household on a workday. After processing the PM
routine, the main core obtains cells with data values for
searching the most profitable battery charge/discharge hour
combinations with (12). Evaluation of the charge/discharge
hours begins from 14 PM of East European Time. Recursion
function lists total profit from the combinations from Matrix
and searches for the maximum value combination array. This
particular day schedule with the highest profit is: discharging
batteries during 16-19, 22-23 PM and charging back during 2-
3 AM (13)

DayP = pyu) + Paazy + Paas) + Paay = 000713 +
13)
+0.01187 + 0.0466 + 0.09058 = 0.1561 €

The distribution of prices and load curve with the use of

EES is presented in Fig. 4. The hours with load consumption

equals to zero indicated on the chart mean that energy for the

load was taken from the batteries. Increased load curve values

at other hours mean that additional load went for battery

charging. Also, calculations for the weekend day — Saturday,
23.11.13 gave profit in 0.1734 €.
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Fig. 3. Load and prices distribution with and without use of EES for Thursday
19.11.13

VI. CONCLUSION

Theoretical calculations show that profit from the use of
EES for one day is not high; however it can increase with a
boost of load consumption or at price swing growth during the
day. On the other hand, we need to take into account
investments in the system and battery ageing; we will do it in
future work. One of the main improvements in this energy
management system is a more flexible use of SOC of the
batteries. It can be adjusted with a special variable anytime
according to battery requirements. Major improvements can
be achieved by fine-tuning current limiting values during the
charge/discharge process in the inverter. It was impossible on
this stage of work because of the limited features in BMV
ASCII Text protocol. Another advantage can be taken from
real-time prices monitoring and quick system response to that.
Also, possibilities for integration into the smart-grid systems
can be explored, as both systems share some of the hardware
components. This can increase functionality of both systems at
reduced initial investment cost, allowing for improved project
feasibility. After system improvement and upgrade, the
management algorithm will be compared with other known
algorithms for energy management.
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Abstract—Our goal was to define a possible profit resulting
from the use of batteries as an electric energy storage (EES)
device in apartment buildings or small houses as typical
households. Focus was on the theoretical and practical studies of
an energy management system (EMS) and financial analysis of
investments return. Use of a battery bank charge-discharge-
schedule (BCDS) allows an optimal operation of EES. The
benefits lie in importing and storing more energy at low price
periods while decreasing the imported power from the grid at
high price periods and dispatching the stored energy for load
demands. The BCDS is optimized by help of the price and load
forecast, at the same time guaranteeing load demand supply.
Nord Pool Spot day-ahead market provides all required data for
the EMS to evaluate the cost of imported energy in each period of
time. The optimization algorithm creates the best BCDS to bring
the highest profit to the end customer. The calculations were
tested in a laboratory on the EMS to confirm the theoretical part.

Keywords—battery storage; EES; energy management system;
power system economics; smart grids; Time Of Use energy price

1.  INTRODUCTION

In the current economic and ecological conditions and
policies, the share of renewable energy sources has increased
remarkably in the production of electricity. A major advantage
of today’s owners of the hybrid systems, such as electric
energy storage (EES) in smart grids, is in the reduction of
electricity bills due to the recent liberalization of electricity
market, incentive policies to support renewable sources and
wavering of the energy cost. One of the aims of this research
work was to ensure load demand supply at the lowest price
taking into account the limits of the system. For the optimized
hybrid, which means that load demand is met by the grid
power and/or power of the EES, an Energy Management
System (EMS) was designed and assembled. The hybrid
device in the smart grid provides flexibility and reliability to
the system. Two versions of the optimization algorithm have
been created. They use a simple deterministic approach to
complete an optimal use of electric energy storage.
Concerning the actual constraints of the laboratory grid, the
connected battery bank does not feedback the grid and the
storage is used only to support the load demand. EMS
constraints make the load inflexible with respect to the energy
cost, but charging and discharging operations of EES are still
controllable by the system algorithm. Operation parameters of
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an EMS, such as minimum and maximum energy storage
capacity, discharging current limit, charging current limit, and
charging efficiency, were considered during control software
development [9].

II. RELATED WORK

Many studies cover electric energy storage and provide
different approaches to reduce electricity bills in households.
Technical and economic literature on electric energy storage
describes various storage applications that are partly
overlapping. Before composing the first version of the EMS
core algorithm [1], we analyzed the following optimization
methods: Model Predictive Control [1], deterministic approach
[2], particle swarm optimization [3], linear optimization
methodology [4], dynamic optimization, and the Taguchi
Method [5]. Due to the complexity in implementation, only
few of them are suitable for use in houschold energy systems.
Many approaches are inflexible for use without PV or wind
turbines, which also makes them inoperable in households
without solar or wind sources. Mathematical functions for the
first version of the optimization algorithm in EMS [1], as well
as for the second, were developed taking into account the
theoretical model of a battery [6]. The main advantage of our
research system is in the simplicity of the optimization
algorithm. We have already two versions of that algorithm. As
compared to the first version, the second one has improved
every-day profits from the electricity cost. In addition, all the
calculations were tested by practical laboratory measurements.

III. SYSTEM OVERVIEW

An energy management system (EMS) is a mix of
hardware devices and software solutions. It is divided to two
main subcategories: hardware and software. Hardware consists
of different devices, such as Personal Computer (PC),
Programmable Logic Controller (PLC), Load, Inverter,
Precision Battery Monitor (BMV), and batteries. The main
functionality of the system is described by deep cycle AGM
batteries 12VDC with a total capacity of 440 Ah. For the
testing purposes, the system contains 15 bulbs to imitate
household consumption, with a total power of 1.5 kW. The
typical household load consumption is around 3 kW, but we
scaled it two times lower to match our EMS power limits. The
PLC interpolates load values in accordance with a 24 h load



TABLE L. AVERAGE LOAD ENERGY CONSUMPTION AND FORECASTED

PRICE DISTRIBUTION DURING WORKDAY pC Elering (TSO) Load
'WEB SERVER BULBS
Hour kWh €kWh Hour kWh €kWh CHERRUICATION iE
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0:00 0741 | 002998 | 12:00 0232 | 003322 \— EOLSSHETION
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12D PROGRAM | ‘
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! [
3:00 0233 | 0.02542 | 15:00 0.072 | 0.03664 : \
[
4:00 0.078 | 0.02528 | 16:00 0.075 | 0.05255 : [
|
5:00 0.054 | 0.02544 | 17:00 0.14 0.07437 et CONROL CORE : }
|
6:00 0.053 | 0.02798 | 18:00 0.594 | 0.06342 | }
| v
. . VISUALIZATION |
7:00 0.145 | 0.03129 | 19:00 0.81 0.05409 — : [earrens |
8:00 0.95 0.03522 | 20:00 1.131 0.03252 ‘%, ey }
| STORAGE |
9:00 0.748 | 0.03497 | 21:00 1.097 | 0.03163 e I |
! [
n .
10:00 0.637 | 0.03903 | 22:00 0.659 | 0.03087 L e
11:00 0.385 0.03326 23:00 0.664 0,02778 Fig. 1. Main system parts and data flow directions.

array. The key control element in the system is the Siemens
PLC of S7-1200 series. This logic controller has its own
software inside switches ON and OFF of the load groups of
the EMS during working hours. It was designed to simulate
the real load of a typical household consumption during 24 h.
For that reason, the Central Processing Unit (CPU) of the
controller has two databases with 24 records each,
corresponding to 24 hours of the typical average load
consumption in households [7]. An average load in a small
household and price distribution (according to Nord Pool Spot
11.11.14) for a workday is shown in Table 1. According to a
previous analysis [7] in a real household, the hourly
consumption could be at least 2 times higher).

PC software written in C# language optimizes the BCDS
to receive the highest profit with the use of EES and
fluctuating spot prices. Optimization takes place at 22.00 UTC
when software requests day-ahead prices from Elering
(Transmissioon System Operator — TSO) web site and creates
a battery charge-discharge schedule for the next 24 hours.
Human Machine Interface (HMI) visualization program
acquires BMV data (V, I, SOC tags) and archives them to the
PC SQL database. The system updates tag values every
second and saves their mean values to the database every 30
seconds. Afterwards software implements these data in the
optimization function to find out the best (which means more
cost-effective) charge-discharge-schedule for the battery bank.
When the schedule is ready, the core application sends it to the
CPU. It creates a schedule for the load and battery control on
the PLC side also. This action takes place only once during 24
h. Communication between PC and PLC software is shown in
Fig. 1. Thus, the control of the workbench stand is divided
into two parts: calculation/processing in the PC and
executing/running in the PLC [1].

IV. ALGORITHMS

Both of the versions of the algorithms for searching for the
most profitable battery charge-discharge-schedule are based
on a loop optimization routine. Generally they use the same
approach. In the beginning, the core application sends a
request for the forecasted Nord Pool Spot energy prices for the
next time period at 22:00 UTC.

These prices are located on the Elering TSO web site and
are read from there by PC core software. The time period
consists of T timeslots ¢ with ¢ = 1...7, where 7=24 hours. The
daily sum cost Cr=4n(1) without the use of EES, considering
only forecast prices and conditions (2) is

C,,, =2 (Pyi (1) Fp(1)), (1)

{ Pu()>0

Py (6) = Py (1) @

where Pg,iq is power from the grid; Pjuq is load consumption;
Fp is forecasted electricity price, € kWh. These conditions are
valid for both algorithms. The constraints of the battery have
been taken into account in this research work: the state of
charge (SOC) has to be within the range of its minimum and
maximum allowed limits. Similarly, the charging and
discharging currents have to be within their boundaries [1].
Power loss of the charging operations is considered in the
charging efficiency. During the operation, storage level at the
end of each period is determined by the storage level of the
previous period and, of course, the charging or discharging
operation in this period [8]. It is shown in (3):

SOC (t) = SOC (t = 1)+ xi-n - P.(1) = x:- P, (1), (3)



where Pc is the charging power; Pp is the discharging power;
SOC(?) is the energy storage level at the end of period #; 5 is
the charging efficiency; x/ and x2 are charge/discharge
decision variables. All the variables must be within their
operation limits, expressed as

0<P.(t)< P.max; @)
0<P,(t)< P, max; 5)

SOC min < SOC(t) < SOC max ; 6)
charging :x1=1,x.=0; @)
discharging : x,=0,x.=1, ®)

For normal operation of the battery bank, the Depth of
Discharge (DOD) of Deep cycle AGM batteries are
recommended to be less than 40%. With our EMS power
limits, it is sufficient to use 30%, thus we consider SOCmin as
70% and SOCmax as 100%. The discharge of 30% is
approximately 3 kWh in our research work. It means that the
Power Unit can support a load demand in 3 kW during one
hour with pure battery energy. Charging power is calculated
by the current measurement, integrating it by time

60

P.(f)= j ’4 i()dx = ui(x)dx =Y i(es) - u, ©9)

ts=1
where i is the charging current from the grid; u is the grid
voltage and ts is the time period which equals t/60. With
battery parameters and values, PC core system searches for
profit by using EES. The criterion for selection in the first
version of the algorithm is presented in (10)

{f?m(t) Fp(0) = (B () + By (1) - Fp(2.) 2 0

, (10
T>t >t (10)

where 7. is the next time period with regard to the current time
period ¢, which is less than the maximum time slot 24
corresponding to 00:00 PM. That is one of the greatest
differences between the first and the second version of the
optimization algorithms. The second more improved algorithm
has 1 440 time slots, instead of 24, which makes it possible to
consider every minute of EES work during the day-night
period. The criterion for selection of the second algorithm is
presented in (11):

Fp(t)(0) > ...> Ep(t)(d) > ...> Fp(1)(23)

S P Od)+ P ()2 <Py o (1)

d=0

S P (O(d) < Py

d=0

where the first row is a sorted price series from max to min
value Fpuax -> Fpmin and the second row selects for
discharging only hours, the total sum of power consumption of
which does not exceed DoD allowed power. The count of the

discharging hours is determined by an n variable. To achieve
correct load distribution in the array, the sort function is
called, which merges the forecast prices with the 24-hour load
array. The first version of the algorithm is more complicated
than the second; it is required to process data in two steps. The
first step takes place when the Profit Matrix (PF) function is
executed. It has the main control loop with sub loops, which
operates on the basis of (10). This combination allows all
hours ¢ to be found from the 24 h array, when discharging the
battery is more profitable than using grid electricity, and
charging the battery back at different hours will lead to
electricity cost saving, which means a profit for consumers.
When the PM is filled, the recursive function starts to search
all correct hour (correct means discharging hour takes place
before charging back hours) combinations p (1..max) and
makes a sortable list from them. The final function sorts the
list by the maximum profit value and selects the highest one.
Thus, considering that one possible profit from the
charging/discharging combination is as described by (11) and
the maximum day profit DayP is as follows from (12) [1], we
obtain

P = Poua @) - Fp(6) = (Byy (1,) + Py () - Fp(2,)  (12)

DayP = MAX (), P, = (P, (1) Fp(t) -
i (13)

= (Pl () + Bog (1)) - Fp(2,))-

As we can see, another large difference between the first
and the second version of the algorithm is the criterion of
discharging hour selection. The first version is limited in the
time slots frequency — it has only 24 slots, therefore, it
considers only the entire work hour. The main key for
selection of the discharging hour is a multiplication relation
between the price and the load consumption P.a(t) Fp(t) at
that hour. The second algorithm is more flexible in terms of
time slots, 1440 in number and the major key for discharging
hour selection is the price Fp(t). The highest price contains the
hour of the highest priority it will have in the discharging
queue.

V. RESULTS

Since we had no practical results for the first version of the
algorithm, we can only form an estimate of the theoretical
results. To exemplify our calculation for the first algorithm,
the workday of Thursday 19.11.13 was chosen. Forecasted
prices were loaded from the Elering TSO web server. After
processing the PM routine, the main core obtains cells with
data values for searching the most profitable battery
charge/discharge hour combinations with (13). Evaluation of
the charge/discharge hours begins from 00 AM of East
European Time. Recursion function lists the total profit from
the combinations from Matrix and searches for the maximum
value combination array [1]. This particular day schedule with
the highest profit is: discharging batteries during 16-19, 22-23
PM and charging during 2-3 AM (14).

DayP = pye) + Pary + Prasy + Pay =0.04427 € (14)
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Fig. 2. Load and prices distribution with and without the use of EES and the
first/second optimization algorithm for Thursday 19.11.13.

The distribution of the prices and the load curve with the
use of EES and the first algorithm are presented in Fig. 2. The
hours with load consumption equaling zero mean that energy
for the load was taken from the batteries. Increased load curve
values at other hours mean that additional load went for
battery charging. The second algorithm improves the result by
almost 30% (14) and the distribution of prices and the load
curve with the use of EES is presented in Fig. 2.

Since the second algorithm provided better results and
easier implementation, we used it for practical tests in our
laboratory for a three-week period in November 2014. Some
of the results obtained are shown in Fig. 3. Despite season’s
energy price fluctuations on the Nord Pool Spot market, we
can calculate some average values and estimate forecasted
results. According to the test logs, the average week’s profit at
EES use is WeekP = 0.54 €, which makes the average day
profit DayP = 0.08 € only from the market prices. However,
we should also consider energy grid taxes and fees (based on
the amount of energy consumption), which will increase the
price differences including DayP approximately three times

Energy cost €

-----1
£4
-----'

MW day energy cost with EES

@ day energy cost without EES

Fig. 3. Everyday energy consumption cost for a customer (in Estonia) with
the use of EES and without the use of EES.

(DayP=0.08-3=0.24 €). The total price of the pilot system with
DoD =30% is EMSiar = 3 750 € (2kW, 10.6 kVAh). With
reduced DoD = 14%, the total price of the pilot system is
EMSioi = 5 200 € (2kW, 21 kVAh). Taking into account that
EMS was a pilot project, its total investment price is higher
than it could be in serial manufacturing. Simple calculations
show that currently it is impossible to return the total cost of
the EMS in its lifetime. At a certain level of energy prices and
the same average day profit DayP, it can take 28 years to
return the expenses of the EMS. In that case, we can estimate
what the profit of the day use of EES should be to return an
investment in the EMS in 4 years (1500 cycles), which is the
usual cycle life of the Victron AGM battery with DoD in 30%
[10]. If we divide the total sum of the EMS by the total
days/cycles count (15), the required day profit to return the
investment of the EMS is as follows:

DayP = EMS,,,, /1500 =3750/1500 = 2.5 € (15)

total

If the battery DoD is 14%, the cycle life for AGM batteries
[11] is approximately 4000 cycles. The EMS system cost is
increased, but the demand for a day profit could be reduced at
1€.

Otherwise, the total cost of the EMS with DoD of 30%
should not be higher than 360 € to match our limits in an
average day profit of 0.24 € and 1500 cycles of battery life.
The total cost of the EMS with the DoD of 14% should be less
than 960 €. The last number could be achieved in future more
easily than 360 €. The different time periods depending on the
different day profit values are shown in Fig. 4. Also, we can
see from the chart how the investment return time is changing
with different total costs of the EMS.

VI. CONCLUSION

Theoretical computations illustrate that profits from the use of
EES for one day are not high, even with the improved second
version of the optimization algorithm; however, they can
increase with a boost of load consumption or at price swing
growth during the day.
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Fig. 4. Time periods for investments return depending on the day profit value
and the total cost of the EMS.



Nevertheless, our everyday profit is around 0.24 € by the
use of EES in the EMS. On the other hand, we take into
account investments in the system and battery lifetime period,
which will decrease the rationality of the system purchase.
The time for investment return of the total cost (5200 €) is
longer than the real lifetime of batteries. Current financial
boundaries of the system require an increment of the day
profit up to 1 € or a decrement of the total EMS cost under
960 €. One of the main technological improvements in the
energy management system is a more flexible use of SOC of
the batteries. It can be adjusted with a special variable anytime
according to battery requirements. Furthermore, large amounts
of time slots are used for the second algorithm, which makes
the creation of the system BCDS more elastic. Major progress
in research work can be achieved by fine-tuning of the current
limiting values during the charge/discharge process in the
Power Unit. It is still impossible on this stage of work because
of the limited features in the BMV ASCII Text protocol. Also,
possibilities for integration into the smart-grid systems can be
explored, as both systems share some of the hardware
components. This can increase the functionality of both
systems at reduced initial investment costs, allowing for
improved project feasibility. After system improvement and
upgrade, the management algorithm will be compared with
other known algorithms for energy management.
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Abstract—The aim of the case study was to determine
profitability of Energy Management System (EMS) in the
intraday market like Elbas (Nord Pool Spot). To optimize the
operation of EMS, a Demand Response (DR) algorithm was used
for the calculation of a battery bank charge-discharge schedule
(BCDS) taking into account the volatility in the Real-Time price
(RTP). The profits are gained from importing and storing more
energy at low price periods while decreasing the imported power
from the grid at high price periods and dispatching the stored
energy for load demands. The forecast procedure analyzes the
history of the energy price for a predefined back-time period and
optimizes the BCDS to bring the highest profit to the end
customer. The results are composed from typical parameters of a
household’s energy demand applied in EMS. The results
obtained were compared with those from laboratory obtained by
the Day-Ahead price based control algorithm. In the tests, an
one-hour price is taken as real-time price.

Keywords—Electric energy storage; energy management
system; Time Of Use energy price; Depth of Discharge; Day-Ahead
prices; Real-Time prices; smart grids; price arbitrage

1. INTRODUCTION

Wholesale energy prices in the electricity market depend
on the balance between energy production and energy
demand. With electricity markets becoming more and more
flexible, many energy providers have started to substitute the
fixed retail prices schemes with dynamic prices changing
during the day. Dynamic pricing, known as Real-Time Pricing
(RTP), mirrors the trend movement of the wholesale market
and allows reducing the volatility of the wholesale prices, also
helping to reduce consumption peaks.

Electricity customers take advantage of dynamic pricing
by shifting their consumption according to the Real-Time
prices or by using Battery Energy Storage Systems (BESS) or
Energy Management System (EMS). Storing electricity in off-
peak periods allows customers to decrease electricity rates
during on-peak periods [1]. It should be noted that in the
energy regulation in EMS, a battery takes the main function,
however, a battery’s State of Charge (SOC) imposes a
limitation in the algorithm since a battery cannot be freely
used in extreme cases when the SOC is very high or very low
[2]. Several RTP based control model implementations and
descriptions can be found in different studies. An ambitious

This research was supported by Estonian Ministry of Education and
Research (Project SF0140016s11) and the Estonian Centre of Excellence in
Zero Energy and Resource Efficient Smart Buildings and Districts, ZEBE,
grant TK 146 funded by the European Regional Development Fund.

project interconnected to Demand Response (DR) area is the
EU FP7 project named EcoGrid EU [6]. The aim is to develop
and demonstrate a new market concept with five- minute
resolution, where residential and commercial customers are
responsive to imbalance pricing close to operation.

A good approach with dynamic optimization is proposed
in [7]; however, storage devices much bigger than ordinary
household’s storages are used. Another multi-period energy
with reserve pre-dispatch model and energy re-dispatch model
for real time operation were studied in [8]. The idea to use
Home Energy Management Scheduler (HEMS) with three
subsequent phases: real-time monitoring (RTM), stochastic
scheduling (STC), and real-time control (RTC) is addressed in
[9]. However, the target there is to find an optimal way of
scheduling household appliances to minimize the cost of
energy consumption. In this system, no prior function is
attributed to battery storage. Other studies [10] and [11] also
focus on algorithm development. In [10], the function of an
electrical vehicle in the BESS is discussed. According to [11],
in case of multiple energy providers in the system, the
customers need to determine both the optimal energy
consumption allocation at each hour and the optimal energy
provider for each customer. In addition, load scheduling
optimization pseudo code in [12] imposes restrictions in
household’s application due to the photovoltaic energy source,
which is not obtainable at any time.

The work presented here was motivated by the results of
previous research where an algorithm intended for Day-Ahead
prices in the Nord Pool Spot market was improved for use in
EMS [4]. Practical results from the use of EMS and BESS
obtained failed to show satisfactory savings, however
provided motivation for further improvement.

Here a RTP energy market is addressed to develop a new
Real-Time price based control algorithm for EMS. As
compared to the algorithm in [4], which uses known electricity
prices for the next 24 hours, our new algorithm has an
advantage of flexible functionality of the BCDS during
unclear stochastic price movement at only one-hour time
period. It is an important feature for providing regulating
service in the electricity market. In the algorithm, only the
price forecast data and price history are considered along with
a household’s energy consumption. This work contributes to
testing the proposed RTP algorithm in real conditions of EMS,



since growing usage of renewable energy sources leads
electricity markets to transit to one-hour time resolution. It is
based on a simulation system of household energy demand
with a battery bank on board. The results of comparison
between the previously studied Day-Ahead algorithm (DAA)
and the proposed RTP algorithm are presented. The aim is to
show a possible profit or loss for customers whenever they
decide to participate in Day-Ahead or Real-Time price
electricity market by using the same EMS.

II. CONSTRAINTS FOR RTP BASED CONTROL ALGORITHM

In this paper initial parameters similar to those in the DAA
approach in [4] are used. Thus, it is easy to compare the
results in the study of profits earned by the DAA or the new
RTP algorithm:

e Maximum Depth of Discharge (DoD) per BCDS cycle
is 35%;

e SOC=100% of battery bank equals 21 kWh;
e Maximum load consumption per hour is 1.5 kWh;
e Battery charging current is limited at 15 A.

The RTP algorithm of EMS considers the revenue that
could be achieved only through energy price arbitrage, i.c.
taking advantage of price differentials in the wholesale
electricity market with the BESS. That kind of trading is
suitable for the Nord Pool Spot intraday market Elbas. It is a
continuous market where power trading takes place until one
hour before the power is delivered. Trading members can
adjust their power production or consumption plans close to
delivery [5]. Time frames of the Nord Pool Spot market are
shown in Fig.1. The intraday energy market means higher
participation of customers and loads in the power system. It is
more complicated to forecast the price and to control or shift
load consumption in these systems.

The main features of the previous DAA [4] are: use of next
24 h prices of the EMS system and ability to achieve the
maximum welfare from prices arbitrage and BESS usage. It
means one battery charge-discharge cycle per each day.

Time

6 Years 24 Hours

o

Reference price

Financial market
Elspot market -
Elbas market .

Balancing market

Cash settled ‘I delivery

Fig. 1. Nord Pool Spot markets: Elspot and Elbas.

From the practical trial of the DAA, an average day profit
of 0.11 € during ten days of November 2014 was derived [4].
Although the day profit figure differs essentially from the
investment return value at 2.5 €, it enables comparison of the
algorithms. In the EMS, profit per day is the main score rate
parameter, but the RTP algorithm may to provide a battery
charge discharge cycle every day. The conditions for charging
or discharging of BESS depend on the current hour price,
price history and SOC (1):

SOC ()= SOC (t =)+ x.-n- Po(t) = x2- P, (1), (1)

where Pc(f) is the charging power; Pp(f) is the discharging
power; SOC(?) is the state of charge at the end of period ¢
SOC (t— 1) is the state of charge at the end of period 7 — 1; 7 is
the charging efficiency; x; and x are charge/discharge state
variables. All the variables must be within their operation
limits, expressed as in (2):

0<P.(¢) < P. max
0< P (¢) < P, max

SOC min < SOC() < SOC max. @
charging: x =1,x.=0
discharging : x1 = 0,x. =1

where SOCmin is the minimum value of the state of charge;
SOCmax is the maximum value of the state of charge; Pcmax
is the maximum value of charging power; Ppmax is the
maximum value of discharging power.

The scheduling process for the RTP algorithm runs
continuously for every new hour, undivided into 24 h periods
like with the DAA. This means that in some periods or days,
BESS may only charge, discharge or be in idle state (load is
fed directly from the grid). On the other hand, to simplify the
comparison, average day profit is calculated from the total
profit achieved by all days of the simulation. The most
informative description of the new RTP algorithm is its profit
or loss, as compared to regular (without EMS) household
energy use. Regular energy consumption cost for a time period
T can be described by (3). The time period consists of
timeslots ¢ with ¢ = 1...7, where a minimum time unit is 1
hour:

Coi =D (P ()-F(1)), 3

where Cy is the total cost of energy for a particular time
period; Pg.q is power from the grid to cover load consumption;
F(¢) is electricity price, ¢/kWh of the current hour. To simplify
calculations, load power Pjq is assumed equal to grid power.
The idea of the new RTP algorithm is to minimize the cost of
energy by using EMS. It is valid if the condition (4) is true and
(5) shows profitability of the algorithm in EMS:

Calg < Ctot H (4)



100-(C,,, =€)
o=—,
C

tot

&)

where C is the total cost of energy by using the algorithm
for a particular time period; a is relative reduction of the
energy cost.

III. DESIGN OF RTP BASED CONTROL ALGORITHM

The core of the RTP algorithm is the prediction logic of
optimized price levels. Since only the current price for the
next hour is available, and the prices for future periods of time
are unknown, it is important to use tuned parameters and price
history to forecast market’s trend behavior and find out the
most profitable time-slot (hour) for charging or discharging of
BESS. The system analyzes n day history of hourly prices.
The developed algorithm finds minimum and maximum prices
(local extremes) for each day in a described time range. These
local extremes are used to calculate minimum level Ln(?)
price and maximum level L,...(?) price for the current hour. To
avoid rapid change of stated levels, the values are smoothed
by simply moving the average (SMA) function. To enhance
the probability that the price of the beginning hour will reach
and cross either L, or Ly, also minimum level is increased
by margin H,i» (6) and maximum level is decreased by margin
Hyax (7):

ZFmin (Z - l)
Ly () =F— s (6)

ZF ‘max (t —i )
Lmax(t) =4 n - Hmax’ (7)

where F, is the array of daily minimum price and F.. is the
array of daily maximum price of n days. The flexibility of the
algorithm allows optimization of the parameters n, H,, and
Hax to achieve maximum profit of the system. In this study,
parameters are based on the loop optimization as follows:

e SMA period n =2 days for minimum price array;
e SMA period n = 6 days for maximum price array;
e minimum level margin H,;, = 0.2 ¢;
e maximum level margin Hye = 1.6 ¢.

The diagram of the core logic of the algorithm is shown in
Fig. 2 and the behavior of the real system is shown in Fig. 3.
When the current hour electricity price F(2) crosses below the
minimum price level Lyin(?), the charging mode of EMS is
activated, and when F(#) crosses above the maximum price
level Lya(?), the discharging mode is activated. Also, the
algorithm controls the SOC limits and has idle state (8):

F(t)> L, (t) ASOC(t) > SOCmin — x: = 0,x: = 1
F(t) < L, (t) ASOC(t) < SOCmax — xi = 1,x. = 0, (8)
F(t)> L, (OAF() <L, () > x1=0,x:=0
’ Update MA price levels
Lminand Lmax

for next hour ¢
based on look back period n

Get next hour electricity
price F{(t) from TSO

F(t)2Lmax(t)
AND
S0C(4)>S0Cmin

F(Y)sLmin(t)
AND

SOC(t)<SOCmax,

DISCHARGE
x1=0;x2=1

Fig. 2. Diagram of the RTP algorithm core.

The total cost of energy for a particular time period will be
calculated as follows (9):

T
Calg = Z(Buad(t)F(t)_(Pluad(t)F(t)xz)+ (9)
r=1
+(F () F(1)-x1))
The result of the total energy cost can be used with (7) — (9)
in a simple loop or Monte-Carlo optimization. The aim of the

optimization is to find out parameters Liin, Linax, Hmin and Hipax,
which will provide the maximum profit Pr according to (10):

T
Pr=MAX (3 (C,,~C,,)), (10)
=1
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Fig. 3. Load, prices and battery mode distribution in EMS for the period from 11.11.14 to 17.11.14.

IV. RESULTS OF SIMULATION

The algorithm performance was tested with a simplified
constant load array during a 24 h period, with difference in
load values set for a weekday or for a weekend. It means that
the load is not shifted in the EMS system and comfort level for
customer remains unchanged.

The EMS storage consists of a battery pack with deep
cycle AGM batteries 12VDC having a total capacity of
440 Ah in pairs, making a total voltage of 24V, capacity of
880Ah, amounting to a total stored energy of 21 kWh. This
capacity was selected with a particular Depth of Discharge
(DoD) to cover simulated household’s load demands. EMS
components are described in [3].

The algorithm analyzed was tested theoretically during the
same historical period as the DAA in [4]. Different algorithms
are compared in Table 1.

According to (4), total costs of the DAA and the RTP
algorithm for a week period are less than the cost of energy
without EMS, thus they are potentially feasible. The day profit
(DayP) result obtained with the new RTP algorithm is 6.6 ¢ (€

cents). Considering the prices with distribution grid taxes and
fees (based on the amount of energy consumption) will
increase the RTP profit per day approximately three times
DayP = 6.6 x 3 =19.8 ¢. Still this result is lower than required
DayP = 1 €, found in [4]. Thus, the day profit of the RTP
makes the return of investment for EMS impossible.

TABLE L. ENERGY COST WITH DIFFERENT ALGORITHMS
Date Results of Algorithms
No EMS, cost (¢) DAA, cost (¢) RTP, cost (¢)

11.11.14 353 233 30.2
12.11.14 37.1 30.3 28.4
13.11.14 41.5 31.5 35.7
14.11.14 44.1 323 30.6
15.11.14 50.0 49.7 35.5
16.11.14 48.6 46.8 46.1
17.11.14 40.7 29.7 44.8
Total 297.3 243.5 251.3
Day’s average | 42.5 34.8 359
Day’s profit 0.0 7.73 6.6




With regard to the results of RTP and previous DAA [4],
according to (5), DAA profit per day is equal to 25.1% and
RTP algorithm profit per day is equal to 15.5% in case costs of
energy for household consumption are compared without
BESS. It is evident that the optimized RTP algorithm is of 10
percent point lower profitability than DAA.

V. CONCLUSION

Our calculations have illustrated that using the RTP
algorithm, the profit is 10 percent point lower than with the
DAA algorithm considered in [4]. It gives an average day
profit of 19.8 ¢, which is less than the required 1 € day profit.
It means that investments into EMS with the RTP algorithm
cannot be returned during the life time of a battery bank.
However, the use of EMS provides other benefits, such as
increased supply reliability, ability to combine electric system
with other renewable energy sources and simpler
implementation of household’s network into a smart grid, if
needed. These factors drive further research and development
of EMS.
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Abstract - This paper describes the analysis of price fluctuations in
the Nord Pool Spot (NPS) and the possibilities to introduce
consumption scheduling and energy storage equipment to reduce
price fluctuations in households using the real-time open market
electrical energy tariffs.

L INTRODUCTION

The deregulation of electricity industry is giving way to
global trends toward the commodization of electric energy.
[1,2]. This trend has intensified in Europe and North
America, where market forces have pushed legislators to
begin removing artificial barriers that have shielded electric
utilities from competition. The price of electricity is far more
volatile than that of other commodities normally noted for
extreme volatility. Relatively small changes in load or
generation can cause large changes in price and all in a matter
of hours. Unlike in the financial markets, electricity is traded
every hour of the year - including nights, weekends and
holidays. Unlike other commodities, electricity cannot be
stored efficiently.  Therefore, delicate balance must be
maintained between generation and consumption 8760 hours
a year.

There is, however, a great difference between electricity
and the other energy (and commodity) markets in that the
variable costs of production vary so greatly between different
types of installation — Wind and Hydropower with a virtual
nil cost at one extreme and Gas Turbines at the other end of
the scale. In order to satisfy fluctuating consumer demand at
the lowest cost, a broad variety of generating techniques are
required. Some installations are capital intensive but can be
run year round and are relatively fuel efficient (hydro,
nuclear, coal-fired). Other units such as co-production of
heat and power are used less frequently to cover winter
heating demand at times of higher prices. Whilst energy
intensive units such as Gas Fired Turbines are used for brief
periods of very high price and demand.

Although the principle of generation electricity is simple,
generating electricity for an area as large as Europe, means a
complex balancing process. One of the biggest problems
faced by the system operator is congestion. When congestion
occurs, zonal prices supersede power exchange’s market
clearing price, which is based on the aggregated energy
supply and demand curve intersection point for each hour [5].

In such a case, electricity prices can increase or decrease
dramatically. The primary role of a market price is to
establish equilibrium between supply and demand. This task
is especially important in the power markets because of the
inability to store electricity efficiently and the high costs
associated with any supply failure. NPS runs the largest
market for electrical energy in the world, offering both day-
ahead and intraday markets to its participants. 330
companies from 20 countries trade on the Exchange. In 2009
the NPS group had a turnover of 288TWh [7]. The spot
market at NPS is an auction based exchange for the trading of
prompt physically delivered electricity. The spot market
carries out the key task of balancing supply and demand in
the power market with a certain scope for forward planning.
In addition to this, there is a final balancing process for fine
adjustments in the real time balancing market. The spot
market receives bids and offers from producers and
consumers alike and calculates an hourly price which
balances these opposing sides. NPS publishes a spot price for
each hour of the coming day in order to synthetically balance
supply and demand. Every morning Nord Pool participants
post their orders to the auction for the coming day. Each
order specifies the volume in MWh/h that a participant is
willing to buy or sell at specific price levels (€/MWh) for
each individual hour in the following day. The SESAM
(Elspot trading system) calculation equation (1) is based on
an application of the social welfare criteria in combination
with market rules. SESAM is maximizing the value of the
objective function subject to physical constraints; like volume

constraints, area balances, transmission and ramping
constraints.
4 o
Maxy. jD“(x)dx—jS“(y)dy ; M
nolo 0

where a represents an area, d is the demand in the area
a and D" is the demand function in the area a, s* is supply in
the area a, S° is the supply function in the area a, and n is the
number of areas. The system price (SP1) for each hour is
determined by the intersection of the aggregate supply and
demand curves which are representing all bids and offers for
the entire Nordic region [7]. In addition to area price there is
also an annual fixed fee and a variable trading fee for all
market participants.
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In the political debate surrounding energy, this type of
price formation is labeled a marginal price setting. This gives
a false impression that the establishment of prices in the
electricity market is different from the price formation
process in other commodity markets. The only difference lies
in the significantly higher requirements for the secure
delivery of electricity because it must be delivered at the
precise moment it is needed by the consumer. The
inelasticity caused by the inability to store electricity is the
reason of this difference.

11 AVERAGE DAILY PRICE
To find the possibilities to use the possible fluctuations we
constructed an average day from actual data from the NPS
trading system. We studied a period of seven months starting
in April 2010. An average was calculated with the well-
known formula of a generalized mean
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Fig. 1 Average daily price at the EE area and SP1 area

Equation (2) is used to calculate the average price during
the period in the EE area. It is calculated as 44.5006/MWh.
One hour is the smallest time interval when prices can
change, because on spot electricity trading prices are set
constant for delivery of power during a certain hour. The
chart in Fig. 1 compares an arithmetic average price during
the day in the NPS SP1 area and EE area. It shows very
clearly that fluctuations in the system area are small - around
11.006/MWh, but in the EE area the amplitude of the price
during the day is much higher at 26.35€/MWh. The high
price amplitude in the local market provides opportunities to
use consumption scheduling models in residential areas to
gain economy.

We can also observe differences on workdays and at
weekends in figures 2 and 3
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Fig. 3 Average daily price at weekends in the EE area

The price curve is not similar on workdays and at
weekends. The maximum price on workdays is 65.93€/ MWh
and the minimum is 33.35€/MWh. At weekends the
maximum and minimum prices are 43.05€/MWh and
29.76€/MWh,

Average price below the EE area average (44.5006/MWh)
is 38.02€/MWh (-14.55%) on workdays and 38.256€/MWh (-
14.03%) at weekends. Average price above the EE area
average is 53.496 €/MWh (20.22%) on workdays and does
not exceed the average at weekends.

III. AVERAGE PRICE DEVIATION

Fig. 4 shows the deviation calculated by the simple formula
(3) from the average price to analyze possibilities to use off-
peak hours to store energy or shift the load to off-peak hours.
We needed an assurance of off-peak hours available to
recharge the batteries or other storage equipment. We found
that the average duration of peaks that are higher than the
average area price is 9.59 hours and the average duration of
off-peaks is 13.48 hours. That means there is plenty of time to
recharge storage equipment during the off-peak time.

Deviation from an average price is higher at peak hours,
but peak hours last less than off-peak hours. It is most
profitable to save energy between the 23...06 o’clock, then
the price is lower than 10% compared to average. There is
also a possibility to save energy between 16...19 o’clock
when the price is about 2-3% lower than average.
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Another feature of volatility of electricity price is its
seasonal character. The daily and weekly seasonality can be
illustrated by intra weekly plot of mean absolute hourly price
changes (Fig. 5). The patterns of volatility are clearly
correlated to the on-peak/off-peak specification of the market.
The lowest volatility is observed at the weekends and during
night. The huge increase of price within hours 33-39 is a
result of emergency shutdown of the thermal power plant
section in the EE area. For electricity spot price returns there
is strong 7-day dependence. It is surprising that this
dependence lasts almost forever [4].

Another seasonal phenomenon is observed on yearly basis
as we compare NPS SP1 prices in 2009 the price is much
higher on the winter season but remains nearly the same in
other seasons as plotted in Fig. 6. The price curve in
summertime for the EE area in 2010 is quite similar to trends
observed in the SP1 area on summertime.
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1v. DISTRIBUTION OF PRICE RANGE

As seen in Fig. 7 the distribution of prices is symmetric and
leptokurtic. With the leptokurtic distribution, the price will
have a relatively low amount of variance, because return
values are close to the mean. This could mean that energy
producers will not try to invest to storage facilities as there
could be quite small return on investment. This gives us an
opportunity to continue our research on the profitability of
using energy storing and shifting on the demand side.
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Fig. 7 Distribution of price range in the EE area

V. HOUSEHOLD ENERGY CONSUMPTION COMPARED TO
AVERAGE PRICE DEVIATION

Energy consumption in households in the UK is reported in
[8] and in Estonia in [3]. Peak hours for UK households form
06-08 and 13-18. Main peak hours for Estonian average
households are at 7-8 and 19-21 on workdays and 12-14 and
19-21 at weekends. It is quite easy to see the possible use of
energy storage to smoothen the loads at morning or midday
use and even the evening use at weekends. However, some
exact calculations are needed in terms of the possibilities to
conserve energy at low price before evening peak hours on
working days.
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VI POTENTIAL OF ENERGY STORAGES IN HOUSEHOLDS

NPS prices have been already implemented for large
industrial customers in Finland. Spot market prices open
opportunities also for demand response, i.e. load control for
small customers. Moreover, price demand response has been
already tested in Finland on residential customers and has
revealed the benefits for energy costs optimization [9].

In future, energy storages will help reduce price
fluctuations in spot market if used smartly. Storages can be
classified into heating and electrical ones. In heating storage
energy is charged and discharged in form of heating, while in
electrical energy storage — in form of electricity. Electrical
energy storage can be stationary (batteries) or mobile (electric
vehicles). Heating energy storage represents water and/or
space heater in residential houses with electrical heating
loads. Although this kind of energy storage is already
available in many households, as well as it has rather high
energy density compared to other household appliances and
therefore could have a significant impact on market prices if
adjusted to them, it is less flexible in time because its usage is
limited by customer’s comfort requirements.

The usage of electrical energy storage is, on the contrary,
less dependent on customer’s requirements, but on market
prices. It is in customer’s interests to use (discharge) energy
storage in high price hours and charge it in low price hours.
The recent research shows that technical profitability of peak
power reduction using energy storages is limited to 30% of
network penetration [10]. Optimization of electrical energy
storage charging/discharging cycles according to market
prices is an important further research question. The main
objective of customers is to minimize their energy costs. At
the same time, they contribute to leveling peak powers in the
network and to reducing the volatility of spot prices in the
market. That way, residential customers can contribute to
their own welfare and welfare of other market players, since
the price risk of energy supplier will be minimized due to
stable market prices as well as both distribution company and
customer will benefit from good quality of electricity supply.

VIL CONCLUSION

This paper analyzes the fluctuations of electrical energy
price in the NPS EE price area and to some extent in the SP1
area. The NPS area is currently the largest free electricity
market today with a turnover of 277TWh/year. Our analysis
shows that energy price in the open market is far more
volatile than other commodities, but it does not behave like
most financial instruments as it has a strong seasonal
character.

There is a possibility to use renewable energy for local
production of electricity during peak times. Solar and wind
power generation would be most suitable for households.

The most perspective type could be solar power as it is
usable at high peak times during the day, but the main
problem in the NPS area is winter period when the
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effectiveness of photovoltaic panels decreases. Another
possibility is to use wind power but this source is far less
reliable than the sun and could not be generated without
opposition from inhabitants in densely populated areas.

We observed the EE area price during 4802 hours starting
from 1 April 2010 when Estonia entered the NPS market.
During that time an average hourly price for the EE price area
was 44.5€/MWh and it is slightly lower than the price in the
system area. The price curve is similar on weekdays and at
weekends. At weekends the average hourly price remains
under an average area price during the observation time.

The price will always be lower than average at off-peak
times. An average off-peak time lasts for 13.48 hours, which
is long enough to store energy with cheaper storage
equipment or shift the power usage to a less expensive time
period without losing customer’s comfort requirement.

Some economic impact on consumers who will buy their
electricity from the open market could occur. As the prices
for next day are known at least 12 hours in advance, the
complex prediction models for scheduling or storing energy
are not necessary. It is quite clear that until the electrical
energy producers will not use energy saving technologies, the
price will fluctuate almost in the same way as described in
this paper.  Additionally, some questions remain about
changes in the behavior of prices when the households or
other micro grids join the NPS market.
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