

Tallinn University of Technology

School of Information Technology

Department of Software Science

ITC70LT

Kristjan Kaunis 204803IVCM

HYPERVISOR AGNOSTIC SCENARIO

DEFINITION LANGUAGE FOR CYBER

RANGES

Master’s thesis

Supervisors: Dr.comp.sc. Bernhards Blumbergs

Toomas Lepik, MSc

Tallinn 2022

Tallinna Tehnikaülikool
Infotehnoloogia teaduskond

Tarkvarateaduste instituut

ITC70LT

Kristjan Kaunis 204803IVCM

HÜPERVIISORIST SÕLTUMATU

STSENAARIUMI KIRJELDUSKEEL

KÜBERHARJUTUSVÄLJADELE

Magistritöö

Juhendajad: Dr.comp.sc. Bernhards Blumbergs

Toomas Lepik, MSc

Tallinn 2022

3

Declaration of originality

I declare that this thesis is the result of my own research except as cited in the references.

This thesis has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Author: Kristjan Kaunis

Date: 16 May 2022

4

Abstract

Creating complex cyber defense exercises take a lot of research and development effort. As

such, it would be beneficial, if the developed exercises or some of its’ parts could be easily

shared between different cyber ranges. This can be a complex matter as cyber ranges that

host those exercises often vary in terms of hardware, automation software and virtualization

platform used. This research presents a novel framework, which can be used to define cyber

defense exercises in a hypervisor agnostic manner. Cyber defense exercises developed in

accordance with this framework would be deployable to any hypervisor platform, which has

been integrated into the framework, thus greatly enhancing exercise portability between

different cyber ranges.

First part of this thesis focuses on developing a hypervisor agnostic scenario definition

language concept and structure. In that part, the author also describes, how to define exercise

scenarios with the given framework. The second part of this thesis describes, how different

hypervisors can be integrated into the framework and how exercises, which are developed

following this framework, can be deployed into different hypervisors. In the final part of the

thesis, the author evaluates the framework by implementing a proof of concept and deploying

a small exercise environment onto KVM and VMware hypervisors. The successful

deployment of the exercise proved, that by using the given framework, it is possible to

develop cyber defense exercises in a hypervisor agnostic manner.

This thesis is written in English and contains 67 pages of text, eight chapters and 18 figures.

5

Annotatsioon

Küberkaitseõppuste tehniline arendamine on aja- ja ressursimahukas töö. Sellest tulenevalt

oleks kasulik, kui kord juba välja arendatud õppuseid või nende osiseid saaks erinevate

küberharjutusväljade vahel jagada. See võib aga problemaatiliseks osutuda, kuna erinevad

küberharjutusväljad kasutavad tihti eri riistvara, virtualiseerimis- ja

automatiseerimistarkvara. Kui õppuse jaoks loodav sisu - virtuaalmasinad ning nende

juututus- ja konfiguratsioonikoodid on spetsiifiliselt mõnda kindlat hüperviisorit ja

automatiseerimistarkvara silmas pidades arendatud, on nende kasutuselevõtt teises

küberharjutusväljas raskendatud. Vastav küberharjutusväli peaks uue õppuse osiste

kasutuselevõtuks oma enda automatiseerimistarkvara muutma ja/või hakkama esialgset

konfiguratsioonikoodi muutma.

Selle probleemi vältimiseks on antud töö autor loonud uue raamistiku küberkaitseõppuste

arendamiseks ja juurutamiseks kus küberkaitseõppuseid kirjeldatakse hüperviisorist

sõltumatul kujul.

Lõputöö esimene pool keskendub hüperviisorist sõltumatu stsenaariumi kirjelduskeele

kontseptsioonide ning struktuuri defineerimisele ja arendamisele. Teine pool tööst kirjeldab,

kuidas antud raamistiku alusel kirjeldatud õppuseid erinevatesse hüperviisoritesse juurutada

ning kuidas uusi hüperviisoreid antud raamistikku kasutusele võtta. Käesolevat

kontseptsiooni tõestust hinnati VMware ja KVMi hüperviisoreid kasutades, juurutades

mõlemasse väikese õppuse keskkonna, mis oli defineeritud antud raamistiku alusel

hüperviisorist sõltumatus stsenaariumi kirjelduskeeles. Õppuse edukas juurutus mõlemasse

hüperviisorisse tõestades, et küberkaitseõppuseid saab antud raamistiku alusel hüperviisorist

sõltumatul kujul kirjeldada.

6

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 67 leheküljel, kaheksat peatükki ja

18 joonist.

7

List of abbreviations and terms

ADLES Automated Deployment of Lab Environment System

AIT Austrian Institute of Technology

API Application Programming Interface

CDX Cyber Defense Exercise

CPU Central Processing Unit

CRACK Cyber Range Automated Construction Kit

CRATE Cyber Range and Training Environment

CTF Capture the Flag

CyRIS Cyber Range Instantiation System

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DRS Distributed Resource Scheduler

DSL Domain Specific Language

DSRM Design Science Research Methodology

ECSO European Cyber Security Organization

FQDN Fully Qualified Domain Name

HCI Hyperconverged Infrastructure

HCL HashiCorp Language

ICS Industrial Control Systems

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

JSON JavaScript Object Notation

8

KVM Kernel Virtual Machine

LDAP Lightweight Directory Access Protocol

MAC Media Access Control

MIT Massachusetts Institute of Technology

MS Microsoft

NATO North Atlantic Treaty Organization

NIST National Institute of Standards and Technology

OASIS the Organization for the Advancement of Structured Information Standards

OS Operating System

RAM Random Access Memory

RDP Remote Desktop Protocol

SCADA Supervisory Control and Data Acquisition

SDL Scenario Definition Language

SDN Software Defined Networking

SID Security Identifier

SSH Secure Shell protocol

TOSCA Topology and Orchestration Specification for Cloud Applications

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VM Virtual Machine

WinRM Windows Remote Management

WSL Windows Subsystem for Linux

XML Extensible Markup Language

YAML YAML ain’t Markup Language

9

Table of contents

1 Introduction ... 12

1.1 Motivation and problem statement ... 12

1.2 Research questions .. 13

1.3 Scope of the thesis .. 13

1.4 Ethics .. 14

1.5 Research methods ... 15

2 Current situation and related research ... 17

2.1 Literature review ... 17

2.2 Novelty and personal contributions .. 23

3 Scenario Definition Language concepts .. 24

3.1 Hypervisor agnostic approach... 24

3.2 SDL language selection .. 24

4 Scenario Definition Language structure .. 27

4.1 SDL hypervisor communication method selection ... 27

4.2 Scenario definition .. 28

4.2.1 SDL environment definition... 31

4.2.2 SDL exercise definition .. 34

4.3 Roles ... 36

4.3.1 Core roles ... 37

4.3.2 Reusable configuration ... 38

4.3.3 Virtual machine specifications ... 38

4.4 Virtual machine development lifecycle .. 41

4.5 Introducing new operating systems .. 42

5 Hypervisor communication ... 43

5.1 Environment requirements .. 43

5.1.1 Networking ... 43

10

5.1.2 Storage .. 44

5.1.3 Compute resources ... 44

5.2 Templates .. 46

5.2.1 VMware virtual machine templates ... 47

5.2.2 OpenNebula virtual machine templates ... 49

5.3 Targeting hypervisors ... 50

5.3.1 VMware vSphere.. 50

5.3.2 OpenNebula .. 51

5.4 Integrating new hypervisors .. 52

5.5 Deployment ... 53

6 Proof of concept implementation .. 56

6.1 VMware vSphere .. 59

6.2 OpenNebula .. 61

7 Discussion .. 64

8 Conclusion ... 66

References .. 68

Appendix 1: Ansible playbook for vSphere deployment ... 74

Appendix 2: SDL_engine.py .. 75

Appendix 3: vSphere deployment example .. 77

Appendix 4: OpenNebula deployment example ... 84

Appendix 5: vSphere dual deployment example .. 91

11

List of figures

Figure 1: DSRM – Design and Development Centered approach [14] 15

Figure 2: Taxonomy of cyber ranges [20] .. 19

Figure 3: YAML vs JSON syntax [45] ... 26

Figure 4 : SDL_environment.yml, populated with example values 33

Figure 5: An example VM definition in SDL_exercise.yml ... 35

Figure 6: Ansible Roles .. 36

Figure 7: Ansible get_url module example .. 39

Figure 8: Ansible mysql_db module example .. 40

Figure 9: Ansible apt module example .. 40

Figure 10: Ansible command example ... 40

Figure 11: VM development lifecycle .. 41

Figure 12: OS templates in SDL_environment.yml .. 42

Figure 13: Compute resources in vSphere appliance ... 45

Figure 14: Compute resources in OpenNebula appliance .. 46

Figure 15: Hypervisor role in vsphere.yml playbook ... 53

Figure 16: Network map ... 57

Figure 17: Deployed exercise in VMware vSphere .. 60

Figure 18: Deployed exercise in OpenNebula .. 63

12

1 Introduction

1.1 Motivation and problem statement

Cyber ranges are becoming increasingly popular in digitalized societies [1]. Both public and

private sectors are utilizing the service to train and advance their specialists in detecting and

reacting to a wide array of different situations and threats through different courses and

complex cyber defense exercises (CDX). Exercise scenarios have to be tailored not only for

technical experts to defend their systems, but also other involved experts, such as forensic

investigators, communication specialists, managers and decision makers. All of this means

that a modern CDX, once built and deployed, is a massive combination of information, that

could be beneficial to share and exchange.

If a cyber range in Country A has virtualized, for example, a Microsoft Active Directory

Domain Environment and a cyber range in Country B has virtualized a power plant

Supervisory Control and Data Acquisition (SCADA) system, then they could exchange their

deployment and configuration code. That would save Country B development time needed

to figure out, how to install and configure directory service for central login management in

the form of Active Directory, leaving them just the work needed to integrate it with their

SCADA system. From Country As perspective, they could integrate an already tested virtual

SCADA system into their own exercise environment, thus saving the time needed to research

and develop the respected system.

The problem in this example often boils down to cyber range hardware differences. Key

assumption of this thesis is that cyber ranges differ from each other in terms of hardware

selection, virtualization layer and automation software in use. For example, the SCADA

system could have been deployed and configured on Kernel-based Virtual Machine (KVM)

[2] and Microsoft Active Directory Domain environment on VMware ESXi [3].

13

Another aspect of cyber ranges is that exercises can be and often are defined using a different

approach. There is a variety of automation and provisioning software available, like Ansible

[4], Terraform [5], Vagrant [6], and Chef [7] to name a few. The problem is that they all are

designed for a different task. For example, Ansible can be categorized as a tool for

configuration management that follows a procedural approach, while Terraform can be

viewed as a provisioning tool that follows a declarative approach [8]. Country A may have

built up their deployment scripts using mainly Ansible, while Country B could be using

Vagrant and Terraform. If Country A’s exercise development and deployment code is now

imported to Country B, the latter has to modify either their own deployment methods or start

changing the code. This is time consuming and error prone.

To overcome aforementioned problems, the author proposes a novel framework which would

enable easier exercise content portability between different Cyber Ranges. In this framework,

CDXs would be defined in a generic hypervisor agnostic language, meaning that exercise

development and configuration code would not contain any hypervisor specific information.

1.2 Research questions

The following thesis aims to answer to the following research questions:

1. What are the concepts for designing a Scenario Definition Language which would

enable the provisioning and configuration of the same cyber defense exercise on

different hypervisors?

2. What are the necessary components and syntax definitions of the hypervisor agnostic

Scenario Definition Language?

3. How different hypervisors can be implemented into the Scenario Definition

Language?

1.3 Scope of the thesis

In this thesis a Scenario Definition Language (SDL) proof of concept will be developed. In

order to validate the deployments against different hypervisors, a Microsoft Active Directory

14

based exercise environment will be developed. The exercise environment will be described

in more detailed in section 6.

This SDL proof of concept will be evaluated against VMware vSphere [9] (using VMware

ESXi type 1 hypervisor) and OpenNebula [10] (using KVM type 1 hypervisor). A type 1

hypervisor, also called as bare-metal hypervisor, “[…] is virtualization software that has been

installed directly onto the computing hardware” [11]. The goal is to prove that the exercise

development and configuration information can be defined without any hypervisor specific

specifications. The SDL has to contain the virtual machine (VM) configuration information,

manage the communication with the hypervisors in order to deploy the VMs and manage the

communication with deployed VMs for configuration.

As mentioned above, this thesis will be limited to two on-site datacenter solutions, meaning

that public cloud service providers, such as, Amazon Web Services [12] and Microsoft Azure

[13] will remain out of scope. The reason for this is that the additional value of validating the

SDL against more than two hypervisors would be minimal with the current setup since it

would only display how different SDL hypervisor connections would be built. As every new

hypervisor integration takes its’ time, it would shift the main research focus from the actual

SDL research and development to hypervisor connector building. Research questions may

be answered with two aforementioned on-site datacenter solutions. The developed SDL will

be evaluated through a proof of concept which targets two previously mentioned hypervisors

and guidance will be provided, how additional hypervisors can be integrated.

1.4 Ethics

The given thesis focuses on creating an SDL proof of concept, which could be used later by

other interested parties to develop it further. This given thesis will not contain any sensitive

personal data nor any sensitive information about the production environments. All the

detailed hostnames and logon information will be generalized.

15

1.5 Research methods

The given thesis will follow the Design Science Research Methodology (DSRM) framework

with a Design- and Development-Centered Approach, which was chosen since it provides a

structured approach on producing and evaluating a novel artifact [14].

The DSRM consists of six steps:

1. Problem identification and motivation (section 1).

2. Define the objectives of a solution (sections 1 and 3).

3. Design and development (sections 4 and 5).

4. Demonstration (section 6).

5. Evaluation (sections 6 and 7).

6. Communication (section 8).

Define
objectives

of a
Solution

Communic
ation

Demonstra
tion

Evaluation
Design and
Developm

ent

Design and
development

centered approach

Identify
Problem

and
Motivation

Possible Research Entry Points

Process Iteration

Figure 1: DSRM – Design and Development Centered approach [14]

16

The produced artifact’s usefulness will be evaluated by creating a CDX scenario with

parameters described in section 6, and validating that deployment produces equal outcomes

in both VMware and OpenNebula environments without modifying the CDX content. After

evaluation, key takeaways of the proof of concept will be addressed for future development.

17

2 Current situation and related research

In this section, the author will perform a literature review on existing scenario definition

languages and cyber ranges. After that, the author will highlight the novelty of this thesis by

pointing out established research gaps and describing the personal contributions.

2.1 Literature review

Literature review for this thesis was conducted in two phases. The first phase focused on

gathering information about layouts of different existing cyber ranges. In that phase the

author tried to gain an understanding, how current state-of-the-art cyber ranges are built and

how they differ from each other in terms of virtualization layer and hardware/software

choices. In the second phase, the author performed a literature review on cyber range

automation, scenario definition and development techniques in use.

The main digital library for the literature review was Scopus. [15] Searches included keyword

combinations of:

Cyber + range, cyber + range + scenario, cyber + range + language, SDL + scenario +

language, windows + domain + scenario, design + validation + scenario + cyber, windows +

domain + automation, hypervisor + cyber + range, hypervisor + agnostic, hypervisor +

language.

Those keywords were chosen to find possible results regarding scenario definition languages

and cyber ranges All of the search results were limited to last five years.

For the second phase, aside from the results found during the previously mentioned keyword

searches, the author used backwards snowballing research method, with the initial seed of

the studies being “Building next generation Cyber Ranges with CRACK”. [16]

18

To begin with, the author identified, that the term cyber range is loosely defined and may

have a very broad meaning. For example, regarding National Institute of Standards and

Technology (NIST), cyber ranges are defined as “[…] interactive, simulated representations

of an organizations local network, system, tools and applications that are connected to a

simulated internet level environment” [17]. European Cyber Security Organization (ECSO)

defines cyber ranges as a platform, which “[…] can be intended to be a group of technologies

that are used to create and use a simulation environment” [18]. The latter definition is broader

than of the NIST, pointing out that cyber ranges are not just for simulating office

environments, but rather function as testbeds for any kind of virtualized technologies.

Diateam describes cyber range as a “[…] virtual environment that enables organizations to

simulate cyber combat training, system/network development, testing and benchmarking.”

[19] As can be concluded, ECSO definition focuses more on the hardware side of the Cyber

Ranges, while Diateam focuses more on the provided services. Since many cyber ranges are

built with a different goal in mind, it is difficult to come up with a definition, that would

cover the use cases of every existing cyber range. Because the scope of this thesis focuses on

the virtualization layer and automation software selections, the author will follow the ECSO

definition of the cyber range.

An academic research paper [20] about cyber ranges was conducted by the Norwegian

University of Science and Technology. Based on their systematic literature review, they have

developed a taxonomy to classify cyber ranges.

19

Figure 2: Taxonomy of cyber ranges [20]

Figure 2: Taxonomy of cyber ranges shows the amount of different information a cyber range

can contain. Each section of the presented taxonomy was analyzed and described by the

authors, thus giving a comprehensive overview. That taxonomy illustrates what concepts in

a cyber range can be considered part of a scenario. This is a comprehensive, high abstraction

overview and by no means do every CDX include every aspect from the given Taxonomy.

A research paper from the Swedish Defense Research Agency presented a case study of

Cyber Range and Training Environment (CRATE) [21] from the Cyber Range automation

perspective. What sets this paper apart from the rest is the use of a custom operating system

(OS), called CrateOS, which is used by the virtualization servers. CRATE makes use of a list

of custom-built automation features, which include but are not limited to Range Provisioning,

System and Service Configuration and Exercise Management to name a few.

There was also a notable amount of gray literature and white papers about cyber ranges. A

white paper on KYPO cyber range [22] gives an overview of the Czech Republic largest

20

academic cyber range, built on OpenNebula. Also, a gray paper from University of Tartu

explains how to federate the KYPO cyber range with the Estonian National cyber range,

which is powered by VMware technologies [23]. Both of these papers give insight how

different cyber ranges work and what kind of solutions are possible to implement.

Another white paper on Austrian Institute of Technology (AIT) cyber range [24] gives an

overview of a cyber range, “[…] which was designed based on several principles, such as

scalability, flexibility and the utilization of Open Source technologies” and covers different

aspects of its architecture and provisioning techniques.

Lastly, a different approach on cyber ranges was presented by the University of Coimbra via

a SCADA Industrial Control Systems (ICS) cyber range [25]. Besides giving an in-depth

overview of their cyber range physical layout, the paper also focuses on different security

training aspects from the SCADA ICS perspective.

The aforementioned papers focus mostly on the physical and technical side of operating

different cyber ranges.

The second phase consists of gathering information on automation, scenario definition and

development. Due to the previously mentioned vague definition, the literature about cyber

ranges varies a lot in approach, complexness and outcomes.

To begin with, there are three studies [16], [26], [27] which try to achieve similar objectives

as this thesis. They all have their limitations and drawbacks though, because of their scope

and approach to the problem.

The first paper presented a Cyber Range Automated Construction Kit (CRACK) [16] which

focuses on the design, model verification, generation, and automated testing of cyber

scenarios. In their work, one of the questions addressed by the authors was: “[c]an designers

reuse (parts of) previously developed scenarios without compromising the overall quality of

the training activity?” [16].

The drawback of that paper was that CRACK framework is based on Topology and

Orchestration Specification for Cloud Applications (TOSCA), or – to be more exact, it was

an extension of TOSCA. “TOSCA is an Organization for the Advancement of Structured

Information Standards (OASIS) open standard that defines the interoperable description of

21

services and applications hosted on the cloud and elsewhere; including their components,

relationships, dependencies, requirements, and capabilities […]”. [28]

This means that the underlying infrastructure must be TOSCA compatible, thus setting a

limitation the author wishes to avoid in this thesis. There are many different TOSCA

orchestrators and they all have different features. For example, Cloudify Private Cloud

Orchestration seems to only cover OpenStack and VMware Suite [29]. The idea with a

hypervisor agnostic SDL is that all the necessary toolset required comes from the SDL

development and no specific software is required from the target cyber range, guaranteeing

that all the defined specifications in the SDL are properly applied.

A strong side of the CRACK paper is that it “supports the (i) design, (ii) automated

verification and (iii) deployment and (iv) automated testing of complex Cyber Range

Scenarios.” [16] Although CRACK is based on TOSCA, their SDL covers desired steps of

design, verification and deployment. Some of those approaches can be tested in this thesis,

when the TOSCA attributes are modified.

The second paper presented an Automated Deployment of Lab Environment System

(ADLES) [26]. In this paper the authors aim to create a “[…] formal specification language

that enables the complete and self-contained formal description of virtual educational

environments.” [26] In terms of SDL, the paper gives valid examples, how exercise metadata

and environment information can be defined. The paper also focused on creating an open

source tool-set “[…] that is capable of semi-automatically creating and deploying hands-on

exercise environments described by the ADLES specification.” [26] The downside of that

paper was that hypervisor specific information was still written into the ADLES

specifications. Also, as the whole tool is designed for VMware vSphere, it can take a lot of

time and effort to get all the functions working on different hypervisors. In the ADLES paper,

adding support for additional hypervisors is mentioned as one of the future works. That is

something the author of this thesis tries to address from the beginning – by designing a tool

to be hypervisor agnostic in its core and clearly stating, how to connect the tool to different

hypervisors. However, the paper provides very good examples how to define and design the

user-facing part of the SDL.

22

The third paper “[…] developed a multi-layer system (toolset) to support the planning and

execution of cybersecurity exercises” [27]. The developed toolset consists of three different

parts, namely a cyber security strategy game, domain specific language (DSL) and

infrastructure orchestration module. In first part, an exercise scenario and topology are

modelled by exercise designers, using a drag and drop interface [27]. DSL is then used to

generate a YAML file based on the input received from the previous part [27]. Finally, the

orchestration module performs syntax validation and upon receiving no errors, translates

YAML into Heat templates [30] and Puppet [31] stack, which are then used to deploy the

exercise into an OpenStack cloud environment [27].

In theory, that’s a very similar functionality to what this thesis is aiming to achieve. The main

downside of the mentioned paper is that it is not hypervisor agnostic, meaning that it is only

developed to work in conjunction with OpenStack. This does not allow defined exercise

portability between other cyber ranges which do not use OpenStack as the chosen method

for hypervisor communication via Heat templates is not implementable on a range of

hypervisors. In this thesis the author prioritizes exercise portability between cyber ranges

with different hypervisors.

Besides those previously mentioned papers, there was a list of additional relevant literature.

Cyber Range Instantiation System (CyRIS) [32], [33] introduces an open source tool for

Cybersecurity Education and Training Support. Although CyRIS is not hypervisor agnostic,

it does provide yet another overview of a possible approach on automating cyber range

deployments.

A more model-based approach was proposed in a paper which focuses on Security Assurance

Modelling. [34] While not being overly technical, “[t]his comprehensive approach allows us

to identify and describe the assets of the system, their relations and their corresponding

threats; the sequence of events that leads to the manifestation of these threats, alongside the

responsible threat actor/s […]” [34], which can be useful when designing the SDL from

security or inject and vulnerability perspective.

Other identified work in the area of cyber ranges and Scenario Development/Definition

Languages focused on Capture-the-Flag (CTF) and Hack-the-Box exercise developments

23

and deployments. Three papers [35], [36], [37] focused on cyber ranges from a CTF

perspective, and while not providing any direct value to SDL development, they give an

overview about challenges that lie in CTF exercise design. For example, one of those papers

[37] focused on reducing the resources needed and simplifying the CTF infrastructure setup

for the organizers through the use of application containers instead of virtual machines.

Another paper [35] provided a list of lessons learned from hosting a 317 team, 24-hour Attack

and Defense style CTF in Amazon Web Services.

These papers give an overview of the current status of different cyber range related problems,

obstacles and solutions. As cyber security training in different forms, such as CTFs and

CDXs gain popularity, new development and automation approaches are being integrated

into cyber ranges. Although there is a variety of literature on different cyber ranges and CDXs

with their respective use-cases, the author did not find any literature, where exercise

portability between different cyber ranges was prioritized.

2.2 Novelty and personal contributions

At the time of the review and based on the identified criteria, the author did not find any

studies about development of a hypervisor agnostic scenario definition language. This proof

of concept builds towards a new approach, where exercise content can be defined without

any hypervisor specific information, thus bringing exercise portability to a new level. This

would be a big leap forward in terms of sharing technical information in a field where a lot

of content is constantly being created.

The personal contributions delivered through this thesis are the following:

• thorough existing SDL implementation analysis within the performed literature

review (section 2);

• SDL prototyping and hypervisor agnostic design considerations (sections 3 and 4);

• SDL implementation requirements on different hypervisors: (section 5);

• evaluation of the SDL on KVM and VMware hypervisors (section 6).

24

3 Scenario Definition Language concepts

In this chapter, the author first describes the requirements for the hypervisor agnostic SDL.

The author will then perform a review on data serialization languages in order to choose a

data format for the SDL. Different data serialization languages will be compared to see,

which one meets the defined criteria.

3.1 Hypervisor agnostic approach

For the SDL to be hypervisor agnostic, hypervisor specific information must be avoided in

the exercise environment and VM definitions. The SDL must provide a method for adding

dedicated hypervisor communication methods to deploy the VMs into different hypervisor

environments, while the rest of the exercise configuration would be defined with the

assumption that the underlying VMs are already deployed and running on a hypervisor

platform. This approach would enable to define exercise content on one hypervisor which

would then be applicable on other additional hypervisors, once the communication methods

are established. During scenario definition, developed VMs must contain information about

the underlying OS requirements, which will be interpreted by the SDL during exercise

deployment.

3.2 SDL language selection

The criteria for the SDL language selection are to be human and machine readable, logical

and succinct. Based on the literature review, the most common languages for existing

scenario definition languages have been JavaScript Object Notation (JSON) [38] and YAML

[39]. Since the goal is to use SDL to define values for specific attributes, which can be then

parsed by the SDL engine (described in more detail in section 4.2), the list of potential

languages is not very long, when bearing in mind the requirement of human readability.

25

Besides the previously mentioned two languages, there are also Extensible Markup Language

(XML) [40], MessagePack [41] and protobuf [42].

MessagePack will not be considered a viable option since it can be classified as a lightweight

version of JSON, which makes it fast, but in expense of human readability. The same is the

case with Protobuf, an open source serialization method created by Google. These two data

serializers specialize in bringing down the message size and response times, which are good

qualities, but regarding current thesis, cutting down microseconds per actions is not as

relevant as creating a user-friendly, easy-to-understand framework for the SDL.

XML is a markup language, compared to JSON and YAML, which are data serialization

languages. “A markup language is a computer language that uses tags to define elements

within a document.” [43] Data serialization, on the other hand is “[…] the process of

converting data objects present in complex data structures into a byte stream for storage,

transfer, and distribution purposes on physical devices.” [44]

XML, JSON and YAML are all:

• self-describing (human readable);

• hierarchical, meaning they can contain values within values;

• parsed and used by many programming languages.

But on the other side, when for example comparing XML to JSON, the latter syntax is shorter,

due to not using end tags, thus being quicker to write and easier on the eye. Also, JSON can

use arrays, which is not the case for XML. Another thing to bear in mind is that XML has to

be parsed with an XML parser, while JSON can be parsed by a standard JavaScript function.

When comparing XML to YAML, similar differences can be observed. YAML syntax is

much less verbose, thus being easier to read and edit. As can be concluded from those two

comparisons, XMLs main disadvantage is its syntax, which is too verbose compared to its

competitors.

In order to choose between JSON and YAML, both languages were studied to assess their

suitability. They are both data serialization languages that use key – value pairs. YAML is a

superset of JSON, meaning that every JSON file is also a valid YAML file. As displayed in

figure 3: YAML vs JSON syntax, the syntax is slightly different. In terms of human

26

readability, YAML has an advantage, not just because of the fact that its syntax requires

fewer special characters, but also because the language allows commenting, a feature that is

missing in JSON. The latter is a desired feature for open-source frameworks, as it provides

developers a convenient way to explain and reason the code.

Figure 3: YAML vs JSON syntax [45]

It is difficult to assess the community size of both, since neither of them are programming –

but rather data serialization languages. But in general, JSON seems to have a bigger

community support of the two [45] [46].

YAML has been criticized for being hard to edit, when file sizes grow [47]. The author of

the said article points out that as files and functions grow in depth, the indentation, which is

two spaces, instead of one tab, can grow difficult to follow. While this is subjective to how

and what kind of code is written, the article later points out that the YAML statement

regarding easy human readability is true if “[…] one stick[s] to a small subset” [47]. As the

goal of the SDL is to keep the user input at minimum, this criticism, in the authors opinion,

does not stand.

The author concluded that the only noticeable difference between those languages is the

verbosity, as both of the languages are logical, machine and human readable. As the YAML

syntax is more succinct and enables commenting, the author choses it to be the descriptive

language for the SDL.

27

4 Scenario Definition Language structure

In this section the author first lays the groundwork for the SDL by specifying the

communication method used for sending commands to the targeted hypervisors and VMs.

After that, the author details the overall logic and functionality of the SDL while also

describing the required actions taken by the exercise developers to use it.

4.1 SDL hypervisor communication method selection

When designing a hypervisor agnostic SDL, the author discovered two possible options, how

to provision the SDL content onto the targeted hypervisors. The first option would be to write

application programming interface (API) calls against desired hypervisors. The second

option would be to communicate with the hypervisors through some configuration and

automation tool that creates the API calls itself. The author chose the second option for a

number of reasons.

To begin with, writing direct API calls to cover all the tasks required against different

hypervisors is a lengthy process. This would mean that every new hypervisor integration

needs a dedicated development cycle to cover all use cases that the SDL might require. Also,

some bigger updates on the hypervisors may introduce changes to the API call syntax. In

those situations, those already configured integrations must be revised and corrected to

maintain their functionality.

This is where open-source configuration management tools step in. There is a variety of open-

source tools available, as briefly described in the section 1.1. In this thesis, the author

proposes to select one configuration management software and use that as a backbone for the

SDL. In order to choose this said software, the author analyzed the most widely used

provisioning and configuration management tools. In conclusion of the analysis, Red Hat

Ansible [4] was the authors choice due to the following reasons.

28

First reason is that, Ansible uses YAML syntax by default. [48] This is desirable, as this

means that the SDL can be defined in one markup language, bringing systemwide unity and

clarity. Another helpful feature is that Ansible is agentless, meaning that all VM target

configurations are done over Secure Shell Protocol (SSH) or Windows Remote Management

(WinRM) and do not need any software preinstalled.

However, the two best features of Ansible are that it provides both provisioning and

configuration functionality and that it supports a very wide range of hypervisors and cloud

computing services, including, but not limited to VMware, OpenStack, Amazon Web

Services, Google Cloud Platform, Microsoft Azure and Hyper-V. The full list of supported

integrations can be found in their product description. [49] A survey by TechRepublic in

2019 [50] showed that Ansible is the most popular configuration tool used by respondents.

Increasing use of the tool is a good indicator that assures the continued support of existing

hypervisor modules. When a new release of a hypervisor platform changes some of its API

calls, changes can be expected in the respective Ansible modules as well, thus eliminating

the need to debug and rewrite ones’ API calls. This guarantees that the SDL integrations with

different hypervisors, once built, should be resistant to hypervisor updates and thus ensuring

acceptable level of adapting to future changes.

4.2 Scenario definition

As discovered during literature review, there are many ways how CDX development can be

approached. One approach method would be to design the SDL using high abstraction level

artefacts. This would create a considerable amount of dependencies in respect to the number

of artefacts, which must be handled. Another approach method would be to use low

abstraction level artefacts, which can be used to interact directly with the target hypervisor

or VM. In this thesis, the developed SDL will use a low abstraction level, VM centric

approach when designing exercise scenarios. The author chose this approach in order to keep

the VM definitions and hypervisor communication methods as short and straightforward as

possible. With this approach, the author aims to achieve utmost clarity, which would

encourage third parties to adapt the framework and ensure that scenario developments and

new hypervisor integration processes (detailed in section 5.4) would be seamless and

29

successful. By using SDL, assuming that the correct hypervisor communication method has

been developed, exercise developers would need only to define actual VM specific

configuration from the state when the VM is already deployed and running on the target

hypervisor. This will ensure that the development code will not contain any hypervisor

specific information and can later be used to target other hypervisor platforms as well. At the

time of writing, similar VM specific approaches are being used by the North Atlantic Treaty

Organization (NATO) Cyber Range and NATO Cooperative Cyber Defence Centre of

Excellence to develop and deploy their exercises. While the previously mentioned

organizations also rely on augmented Ansible playbooks to deliver exercise-as-code, their

exercises are developed against a single hypervisor platform and use custom-built toolset in

conjunction with Ansible. The knowledge that low abstraction, VM specific approach is

actively used to deploy some of the largest CDX-s to date [51], gives the author confidence

that the chosen approach is applicable. The given SDL is designed using only open-source,

community backed software which does not require any dedicated software from the

underlying hypervisor.

The SDL is comprised of the following objects:

• Ansible files.

CDX provisioning and configuration is handled by Ansible, as it is the underlying tool for

the SDL. The SDL Ansible files are grouped in three categories: core, conf and vm roles

(section 4.3). These low abstraction level roles are required to define the actual commands

which modify the target, whether it is a hypervisor or a VM, in a desired way.

• SDL files.

The SDL files are used to define the exercise scenario on a higher abstraction level. They

rely on the existence of the previously mentioned Ansible files. One of those files, called

SDL_environment.yml hosts a number of key-value pairs which are used to define exercise

general parameters, such as hypervisor communication specifications, exercise domain

name, default Domain Name System (DNS) servers, default hardware parameters, template

information and more. SDL_environment.yml is covered in depth in section 4.2.1. The other

file, called SDL_exercise.yml is used to define the deployable exercise information from the

30

VM perspective. In that file, VM specific information, such as hostnames, credentials, OS

information can be defined. SDL_exercise.yml is covered in section 4.2.2.

• Template files.

In order to translate the contents of the SDL files for Ansible, dedicated template files will

be used. In this thesis mako templating language [52] was chosen due to its ability to template

nested variables and pass on regular Ansible variables without generating errors. Mako

template usages are detailed in sections 4.5, 5.2 and 5.4.

From a technical standpoint, the SDL files provide an interface for the exercise developers

to describe their exercise environment and setup by requiring them to insert values to the

predefined keys. After that, a Python script, called SDL_engine.py (see Appendix 2:

SDL_engine.py) must be executed. That script will populate those entered values to the

specified destinations for Ansible to understand and operate with. In regular Ansible use-

case, the users would be required to manually fill out multiple files, like the inventory file

and a collection of different host and group variables. Additional complexity would be added

to the previously mentioned actions when multiple hypervisor variables need to be defined.

These SDL files, in conjunction with SDL_engine.py will make sure that the user has CDX

oriented interface to work with and only defined target hypervisor variables will be used.

To use the SDL for exercise deployment, at least four conditions must be met:

1) the SDL files must be populated with environment and exercise information (section

4.2.1 and 4.2.2);

2) the Ansible VM role files must be defined (section 4.3.3);

3) OS templates must be defined (section 5.2);

4) the target hypervisor role must be present (section 5.3).

Once these conditions are met, the SDL can be used to deploy CDX into any defined

hypervisor. All the code developed in this thesis is available at Github [53].

31

4.2.1 SDL environment definition

In the SDL_environment.yml file the user has to specify environment-based variables. Figure

4: SDL_environment.yml, populated with example values provides a visual overview of the

first SDL file. To begin with, the first key, environment is required by the SDL_engine.py, to

know, which hypervisor platform parameters it must process. Section 5.4 covers the details

of integrating new hypervisors more in depth.

Then there are hypervisor access parameters, like the hypervisors Fully Qualified Domain

Name (FQDN), username and password, which have enough permissions in the said

environment. Defining specific minimal permission levels required in the target hypervisors

will remain out of scope of this thesis. The account must have enough permissions to deploy

the VM in the desired destination and modify its parameters. In this thesis system

administrator level access is used. The keys for environment access parameters begin with

prefix env_.

Then there are parameters with prefix vs_ which define, where the VM will be placed within

that environment. In the given thesis, there are only parameters for vSphere, since

OpenNebula does not require such parameters to be defined. When targeting OpenNebula,

or any other hypervisor besides vSphere, these vs_ keys will be ignored and can thus be left

empty. When integrating new hypervisors which require environment parameters, new keys

must be created and a template file called all.yml.tmpl must be modified, to recognize the

new keys. The template file has specific comments which guide the process.

Next off, there are global exercise parameters, like exercise name, which will be used as a

prefix when generating a name for the VM and exercise domain. The latter will be used as a

domain name for domain controllers and domain join operations, while also serving as DNS

suffix for network connections. Also, primary exercise DNS servers must be specified, that

act as default values for VM network configurations, unless some other DNS servers are

specified in SDL_exercise.yml.

Following DNS, users must specify ansible deployer account. This is the account what

Ansible uses to connect into the VM in order to perform post-deployment configurations.

Ansible deployer account details are covered in section 5.2.

32

After ansible deployer specification, OS hardware defaults should be defined. These are the

default virtual central processing unit (CPU) and random-access memory (RAM) allocations,

when no exact VM level parameters are defined in the SDL_exercise.yml.

The final entries in the SDL_environment.yml are OS templates. They are laid out in a

directory structure, which follow the OS family approach. For example, a template key for

Microsoft (MS) Windows 10 template must reside under os_windows. An example of that be

observed in Figure 4: SDL_environment.yml, populated with example values. The course of

action for adding new OS templates is described in section 4.5.

If more OS-es are introduced to the environment, they just have to be referenced in the SDL

in the same manner as current examples have been. Every new OS requires a unique key in

the SDL and an accompanying name or ID from the environment.

environment: vsphere

env_hostname: 10.0.0.19

env_username: administrator@vsphere.local

env_password: Password

vs_datacenter: Datacenter

vs_exercise_name: SDL

vs_root_folder: VM_folder

vs_folder: VM_folder

vs_cluster: Cluster01

vs_datastore: Datastore

vs_resource_pool: RP_C01

exercise_name: sdl

ex_domain: sdl.local

ex_dns1: 10.0.1.11

ex_dns2: 10.0.1.12

33

ans_username: sdl

ans_password: Password.123

win_cpus: 2

win_ram: "16 GB"

lin_cpu: 2

lin_ram: “4 GB”

os_templates:

 os_linux:

 os_ubuntu: ubuntu_template

 os_windows:

 os_winserver: template_win_server_1809

 os_win10_21h1: template_win_10_21h1

Figure 4 : SDL_environment.yml, populated with example values

As displayed on Figure 4: SDL_environment.yml, populated with example values, the

environment credentials are currently displayed in plaintext. This can be mitigated, by setting

up Ansible vault [54]. In the ansible vault, two keys must be created, which will have the

hypervisor account username and password as values. Those keys can then be used as

variables instead of plaintext information.

For example, ansible-vault content can look like this:

• environment_user: Administrator@vsphere.local;

• environment_pass: Password.

In that case, the env_username key in SDL_environment.yml can have a value of

“{{ environment_user }}” and the env_password can have a value of “{{ environment_pass

}}”.

34

If the use of ansible-vault is desired, section 5.5 will give an example how to use the Ansible

vault during deployment.

4.2.2 SDL exercise definition

The second SDL file the user has to modify is called SDL_exercise.yml. This file holds to-

be-deployed VM specific information, which is mainly required by the hypervisor to assign

correct physical parameters to the deployable VM, such as virtual CPU count. VM

information is distinguished from each other by classifying them as separate dictionaries,

called vm1, vm2 etc. When adding new VMs, the same naming convention must be followed.

For example, when 10 different VMs are to be deployed, VM entries must be specified from

vm1 to vm10. The order of the VMs does not matter.

Every to-be-deployed VM must have a corresponding VM section defined. In every section,

there is a number of keys that need to populated with values. The keys are illustrated in figure

5: An example VM definition in SDL_exercise.yml.

vm1:

 hostname: dc1

 parent: windows

 os: os_winserver

 network:

 name: virtualnet68

 ipv4: 10.0.68.68

 ipv4_gateway: 10.0.68.1

 dns_servers:

 dns1: 127.0.0.1

 dns2: 8.8.8.8

 cpu: 2

 ram: “16 GB”

 windows_user_accounts:

 username: Administrator

 password: Password.123

35

 opennebula:

 new_network:

 name: virtualnet68

 ipv4: 10.0.68.11

 ipv4_gateway: 10.0.68.1

Figure 5: An example VM definition in SDL_exercise.yml

The first value that needs to be defined is the hostname of the VM. It must be noted that the

name expected is in the form of hostname, not FQDN. The next two values are representing

the OS family. In the key parent, the user must specify the general OS system type, like

Windows or Linux. That key is used to by the SDL_engine.py to configure OS family wide

parameters for the deployment. Next, the user must specify the exact OS type. The OS type

value must correspond to the key that was defined in the SDL_environment.yml. For example,

let’s consider a VMware environment, where the user wishes to deploy an Ubuntu 20.04

machine, from a VM template called ubuntu_template. If in SDL_environment.yml, the user

specified os_ubuntu key to have a value of ubuntu_template, then in the SDL_exercise.yml,

the user must specify os_ubuntu as the value for the key os.

After specifying the OS, the user needs specify network parameters, such as network name,

Internet Protocol version 4 (IPv4) address with its corresponding netmask, gateway and DNS.

While IPv4 parameters are mandatory to be defined, DNS can be left unmodified. In that

situation, default exercise DNS servers, specified in SDL_environment.yml will be used.

Following the network parameters, there are two optional parameters, called cpu and ram.

Specifying those values will configure those values just for the given VM. If left unspecified,

then the hardware default values form SDL_environment.yml will be used.

Next off, there is a selection that’s mandatory only for MS Windows VMs, called

windows_user_accounts. That value is required to fill if any domain specific operations will

be performed, as those operations require a dedicated MS Windows account.

Finally, there are OpenNebula network specific parameters. Why OpenNebula requires and

additional set of parameters, is detailed in section 5.2.2.

36

4.3 Roles

In Ansible, roles allow a user to develop standalone components that perform a series of

defined tasks. In the SDL, the author has created three main role categories, called core, conf

and vm.

Core roles (detailed in section 4.3.1) are a defined set of tasks which are required to deploy

and prepare the VM for the upcoming VM specific configurations. Conf (detailed in section

4.3.2) is a collection of roles, which perform a specific list of configurations and are meant

to be reusable. VM roles (detailed in section 4.3.3) contain VM specific commands, which

can be unique, or previously mentioned reusable tasks.

Figure 6: Ansible Roles

37

4.3.1 Core roles

Core roles are a set of tasks which perform the main operations required to provision and

deploy a VM in the desired environment. These roles are always invoked in every ansible

playbook execution, as illustrated in Appendix 1: Ansible playbook for vSphere deployment.

The first role that’s invoked during a playbook execution, is populate_inventory. That

purpose of that role is to make sure that correct host from the inventory with the right groups

are targeted in the play. The inventory file is managed completely by the SDL_engine.py.

The second role that’s invoked is the role of the respective target hypervisor. If the user

wishes to deploy the VM into VMware vSphere, then the role will be vsphere, if the target

hypervisor is OpenNebula, then the role will be opennebula etc. Creating new hypervisor

roles is described in more detail in section 5.4. That role includes the tasks required to

establish the connection with the hypervisor, cloning and deletion of the VM, configuration

of networks and setting correct parameters for SSH connection. These hypervisor specific

roles in principle setup a blank instance of the users to be configured VM. Hypervisor roles

are more in depth detailed in section 5.3.

The third role that will be invoked is base_image. This role contains some basic configuration

tasks for the targeted VM. For example, in MS Windows system, this role configures the

time zone, makes sure that Remote Desktop Protocol (RDP) is enabled and changes the

hostname into what’s described in the SDL.

The fourth role invoked is users. In short, this role makes sure that the correct user accounts

and profiles exist in the VM. In this proof of concept, only MS Windows OS makes use of

this role.

The last role that’s invoked is called customization. So far, all the core roles have been

generic, only differentiating in terms of the target hypervisor and VMs underlying OS. The

only purpose of the customization role is to call out host specific role from the vm directory,

that will continue to configure the VM. For example, when deploying a domain controller

VM called dc1, the customization role calls out the next set of tasks from vm / dc1. The vm

category will be described in section 4.3.3.

38

4.3.2 Reusable configuration

When developing tasks for the target VM, some more generic actions can be filled out with

variables, instead of specific host-based parameters and thus created into reusable tasks. For

example, instead of writing a set of near identical tasks for the domain join operation for ws1

and ws2 VM, a predefined role from the tasks group can be invoked instead. This will take

variables from the SDL_environment.yml and SDL_exercise.yml where needed, and modify

the commands to suite the target VM.

Currently, the conf directory contains three primary task categories:

• Install_ tasks, which install certain roles, like primary - and secondary domain

controllers;

• vuln_ tasks, which configure some sort of vulnerabilities;

• other uncategorized tasks, like domain join operations.

4.3.3 Virtual machine specifications

The vm category groups together VM specific configuration, based on the VMs desired

outcome. For example, when deploying a MS Exchange server, then the tasks required to

actually install and configure the service will be defined here. As installation of the MS

Exchange server is a well-defined process, it can be written into a reusable function, as

described in 4.3.2 and called out as a role. The user must then only specify actual MS

Exchange server configuration.

When developing new VMs, basic Ansible directory structure applies [55]. In each directory,

named after the desired VMs hostname, users may define the following standard Ansible

directories:

• tasks – the only mandatory directory. In tasks / main.yml lays the main VM

configuration;

• defaults – used to define the default variables within that role;

• templates – location for the templates;

• files – location for other files;

• meta – metadata for the role, including dependencies;

39

• handlers – dedicated tasks which are run only when notified;

• variables – other variables with higher precedence than defaults.

In this thesis, the author will not provide an in-depth analysis of the Ansible syntax

possibilities. At the time of writing, Ansible contains over 750 modules [56], which target a

wide array of different OS-es and resources. For a brief overview, a few commands from

Observium VM configuration shall be examined. What is Observium and why it is used in

this thesis is described in section 6 and the complete base configuration of Observium can be

found in the respective GitHub repository1, where the author has compiled the whole SDL

configuration.

As the VM is running Ubuntu 20.04 OS, commands from the general Linux module will be

used. The full path of file, in which the following configuration is located, is roles / vm /

observium / tasks / main.yml.

 - name: Download installer

 get_url:

 url: http://www.observium.org/observium-community-

latest.tar.gz

 dest: /opt/observium-community-latest.tar.gz

 mode: 755

Figure 7: Ansible get_url module example

The task portrayed on figure 7: Ansible get_url module example downloads an installer from

the specified Uniform Resource Locator (URL), places into /opt/ directory and changes its

permissions.

The following task, portrayed on figure 8: Ansible mysql_db module example uses a

dedicated MySQL module to create a database for the observium.

1 https://github.com/xjan76/SDL/tree/main/roles/vm/observium

40

 - name: Create MariaDB database for observium

 mysql_db:

 name: observium

 login_user: root

 login_unix_socket: /var/run/mysqld/mysqld.sock

 login_password: Password.123

 state: present

Figure 8: Ansible mysql_db module example

As per Ansibles desired state configuration [57] the state present will make sure that the

defined database exists; if not, it will be created. If the state would be absent, the command

would make sure the database is deleted. These are just a couple of examples, how to

comprise VM configuration out of Ansible modules. Alternately, if the use of Ansible

modules is not desired, the whole VM configuration can be written into scripts, which can be

copied to the target VM and executed there. Also, plain shell commands can be executed

without the need to use ansible dedicated modules. For example, instead of installing

packages on Ubuntu with a via dedicated apt module (Figure 9: Ansible apt module

example), simple command can be entered (Figure 10: Ansible command example). This

ensures a degree of liberty for the exercise developers. Those who wish, can make use of the

ansible modules to configure the target VM. Those who do not wish to learn Ansible syntax,

can just write direct commands or call out configuration scripts.

 - name: Install packages

 apt:

 pkg:

 - libapache2-mod-php7.4

 - php7.4-cli

 state: present

Figure 9: Ansible apt module example

 - name: Install packages

 command: "apt install libapache2-mod-php7.4 php7.4-cli"

Figure 10: Ansible command example

41

4.4 Virtual machine development lifecycle

VM development consists of two phases. In the first phase, the SDL_exercise.yml file must

be populated with the new VM information, as detailed in section 4.2.2. In the second phase,

a VM specific Ansible role must be developed. The VM specific ansible role creation is

visualized in Figure 11: VM development lifecycle. Once the SDL_exercise.yml and vm roles

are populated, the SDL_engine.py script must be executed. That script translates the

SDL_environment.yml and SDL_exercise.yml content for the Ansible, consequently making

sure that correct variables will be used. After that, ansible playbook can be executed to deploy

the VM. Deployment procedure is described in detail in section 5.5.

1) Create a new
directory under vm

Name it with the
desired VM hostname

2) In that newly
created directory,

create a subdirectory
called tasks

3) In the tasks
directory, create a file

called main.yml

4) Populate the
main.yml file with

desired VM
configuration

5) Create and populate
additional directories, if

required:
defaults, handlers, files,
templates, vars, meta

6) Run the
SDL_engine.py

7) Run the ansible-
playbook to deploy or

undeploy the VM

Figure 11: VM development lifecycle

42

4.5 Introducing new operating systems

When introducing new OS-es in the SDL_environment.yml, corresponding OS template files

must be created. In order for Ansible to recognize the new OS information, the

SDL_engine.py searches for OS template files and creates appropriate Ansible recognizable

group_vars files out of it.

OS VM templates are defined in the end of the SDL_environment.yml file, and follow a

hierarchical structure. First, it must be determined, whether the new template belongs to an

existing OS family, or a new one must be created. As shown in Figure 12: OS templates in

SDL_environment.yml, if for example a CentOS template needs to be added, it can be added

under os_linux, on the same indentation as os_ubuntu. If, however a new type of OS is

introduced, it must be specified right under os_templates.

 os_templates:

 os_linux:

 os_ubuntu: ubuntu_template

 os_windows:

 os_winserver: template_win_server_1809

 os_win10_21h1: template_win_10_21h1

Figure 12: OS templates in SDL_environment.yml

The reasoning behind this approach is that on the OS family level, variables are defined for

the all OS-es in that family. Under specific OS-es, unique variables, like template names will

be defined.

Currently all OS templates must contain either direct or inherited values to the following

keys: ansible_user, ansible_password, customization_method, vm_template. The list might

grow, when introducing new functionalities to the SDL, which require dedicated host or

group-based variables.

43

5 Hypervisor communication

In this section, the author will describe how the SDL will actually modify the target

hypervisors. First of all, the author will describe the environment requirements for the SDL

to work. Secondly, the author will give an overview, how to create functioning OS template

images in both hypervisors. Thirdly, the author will explain the logic of the hypervisor

targeting and give an overview, how to add new hypervisors to the SDL. Finally, the author

will explain the deployment process.

5.1 Environment requirements

Before any hypervisor can be targeted, the environment must meet a number of basic

requirements. Those requirements can be grouped to three main categories: networking,

storage and compute resources.

5.1.1 Networking

Network configuration and deployment relies on assumption that the underlying

infrastructure has basic networking pre-configured. This means that the hypervisor and its

compute nodes have connectivity between each other. Due to the scope of this thesis, only

two networks will be used. In order to verify the SDL being hypervisor agnostic, one network

will be used in the vSphere environment and the other one in OpenNebula. Although both

networks are present in both environments, this approach is taken in order to verify that the

exercise can be deployed with different network parameters.

Unless a Software Defined Networking (SDN) solution, like VMware NSX-T [58] is used,

then the creation of different Virtual Local Area Network (VLAN) backed networks require

actions taken beyond the hypervisor infrastructure. This makes it difficult to handle within

44

the SDL, especially bearing in mind that different hypervisors are using different practices

regarding network object definitions.

Network creation can partially be handled by the SDL. The requirement is that required

VLANs are preconfigured and available to the hypervisor, thus only leaving the network

object creation and desired VLAN association to the SDL.

When designing a scenario, VLAN IDs should not be hardcoded anywhere. This will allow

the scenario to be hosted in a different environment where a different set of VLANs are

possibly available. The SDL must also provide a choice, whether to create new network

objects either with or without desired VLAN associations or use existing objects.

5.1.2 Storage

The storage configuration also relies on assumption that underlying infrastructure has some

form of storage attached and configured. The storage can be implemented either as local

storage on physical hosts, local storage of virtualization platform like OpenNebula Sunstone,

dedicated storage platform like Dell XtremIO [59] or Hyperconverged Infrastructure (HCI)

solution, like VMware vSAN [60].

Due to storages being considered a more static part of a virtual environment, the SDL, at least

in its proof of concept state, will not focus on creating new datastores for exercises. The

reason for this is that datastores are often managed outside of hypervisor layer. If datastore

creation would be seen necessary, then additional toolset should be configured which handles

datastore management. When designing an exercise, the targeted storage solution for exercise

deployment must be defined in the SDL_environment.yml.

5.1.3 Compute resources

Compute resources provide computational power and memory to the VMs which reside on

physical hosts. In different hypervisors, compute resource management is handled

differently. In VMware vSphere environment, resource management is hierarchical. Clusters

are used to group physical hosts. When a host is added to a Cluster, the hosts resources

become a part of the Clusters resources. The Cluster manages the resources of all the hosts

within it.

45

Resource pools in conjunction with VMware vSphere Distributed Resource Scheduler (DRS)

distribute the VMs between different hosts to ensure that no host is overburdened either via

CPU or RAM usage. It can be thought of as an active load balancer within the cluster. In

addition, resource pools can function as an additional layer of access control. The SDL will

require either a single host do be defined as the target for the VM, or a resource pool, which

will choose the best suiting host itself. The compute resource hierarchy is visually displayed

in Figure 13: vSphere appliance. Although in this proof of concept, only a single ESXi host

is in the cluster, resource pool is still created to test the functionality.

Figure 13: Compute resources in vSphere appliance

In OpenNebula environment, there is no similar concept of resource pooling, as displayed in

Figure 14: Compute resources in OpenNebula appliance. Besides that, the concept of hosts

and clusters in OpenNebula remain similar to VMware vSphere. When targeting

OpenNebula, the deployed VM will by default be instantiated on the same host where the

template is located. If that is not desired, a specific host must be specified during the

deployment.

46

Figure 14: Compute resources in OpenNebula appliance

5.2 Templates

The deployment of virtual machines will be based on pre-built templates since installing fresh

OS from disk image file for every VM is very time consuming, especially considering

Microsoft products. In this thesis, the author created a template image for each OS:

• A MS Windows Server 1809 template

• A MS Windows 10 version 21h1 template

• A GNU/Linux Ubuntu 20.04 server template

Depending on the environment, templates can be created using some automation software,

like HashiCorp Packer [61], or installed manually. In this proof of concept, the author used

both methods, to describe the workflows. Both of these methods will be detailed in the

following sections.

In the following two chapters, overviews will be given on how the templates should prepared.

As the MS Windows OS requires much more pre-configuration than GNU/Linux, the author

has also created a PowerShell script for preparing MS Windows VM. The script, called

prepare_windows_templates.ps1 can be found in GitHub2. In that script, desired username

2 https://github.com/xjan76/SDL/blob/main/prepare_windows_templates.ps1

47

and password must be inserted. The following points in the upcoming sections just describe

the actions taken within the script.

5.2.1 VMware virtual machine templates

From the SDL perspective, it does not matter, how much CPU, RAM, and disk space is

allocated to the VM template. CPU and RAM allocations will be modified during the VM

deployment, as specified in the SDL. When choosing disk size, exercise size and datastore

capacity must be considered. In the current proof of concept, exercise defined in

SDL_exercise.yml can only be deployed on one specific datastore, which is defined in

SDL_environment.yml. This means that available space in target datastore must be evaluated,

before initiating deployment to ensure that defined VMs will. If deployment on multiple

datastores is required, then the datastore key in SDL_environment.yml must be changed

between deployments and SDL_engine.py must run. This will ensure that the next

deployment will target a different datastore.

In VMware vSphere environment, Thin Provisioning is the recommended VM storage policy

type, as it will only use as much disk space as the OS actually requires, not the whole fixed

amount, which is defined during VM template creation. Regarding networking, a vSphere

portgroup with DHCP service enabled should be used for template, as the vSphere Ansible

module can detect DHCP addresses thanks to VMware Tools [62] module. This will allow

multiple cloning tasks to be run in parallel, as each powered-on template clone, which has

not yet entered IPv4 configuration phase, can receive a unique IPv4 address. This is not the

case with OpenNebula, which will be discussed in the next section.

In this example, when creating MS Windows templates by hand, the following points should

be addressed:

1. User accounts

All MS Windows templates should have two local administrator accounts. The first one

is the account, which is referenced in the SDL_exercise.yml, and the second one, which

is referenced in the SDL_environment.yml. The first account, called Administrator in this

example, is the account which shall be used for tasks, like domain join operations etc.

From the exercise perspective, that account can be considered as an in-game account. The

48

second account, called sdl is the account, which is used by the Ansible connection to

perform configuration steps. That account can be considered as an external account.

Meaning that for example, if in any logs the sdl account is detected, it is clearly visible,

that those operations are performed by the exercise developers and not by any in-game

party.

2. Software

First of all, MS Windows package manger Chocolatey [63] should be installed, as this

simplifies software management on MS Windows OS-es. Secondly, since all MS

Windows Administration is done over SSH, OpenSSH [64] must be installed and

configured.

Also, previously mentioned VMware Tools installation is a must, as the Ansible vSphere

module depends on it during DHCP address detection.

3. Additional services

If desired, incoming Echo Requests can be opened from the firewall and RDP can be

enabled. Those features might prove useful but are not required.

Another thing to note is that in the SDL, templates in vSphere environment are referred to by

their name. This means that when the templates are created, the names assigned must be the

same names as the values to the keys in the SDL_environment.yml file.

As mentioned in chapter 5.2, VM template creation can also be automated. In this thesis the

author used HashiCorp Packer to automate MS Windows templates creation in vSphere

environment. As using Packer is an optional feature, its’ installation and configuration are

not handled by the install_requirements.sh script, detailed in section 5.5.

Once Packer is installed and setup as detailed the guidelines in its official documentation

[65], dedicated directories should be created for every template. With MS Windows OS use-

case, those directories must be populated with two files: Autounnatend.xml and a

configuration file, written either in JSON or HashiCorp Language (HCL). The authors’

49

provided examples3 can be used once the variables in the JSON configuration files are

changed to match the target environment.

Regarding Ubuntu Server 20.04, if the correct account – the one described in

SDL_environment.yml, is created and SSH is enabled during the installation, then the only

thing left to check is that VMware Tools would be installed.

5.2.2 OpenNebula virtual machine templates

In OpenNebula, the process of VM template creation is similar to vSphere, but with some

caveats. To the authors knowledge, OpenNebula does not have management module similar

to VMware Tools. Because of this, templates must be created with static IPv4 addresses. That

static address has to be defined in the network parameters in SDL_exercise.yml. This ensures

that Ansible OpenNebula role can locate the target VM, connect with it, and change its IPv4

address to the one specified under new_network parameter. This applies to both MS Windows

and GNU/Linux OS. Otherwise, the template installations follow the same procedure as in

vSphere.

Another difference is that in OpenNebula, VM templates and virtual networks can be referred

to by their template ID and network ID, respectively. This is because OpenNebula allows to

create multiple templates and networks with the same name. In this thesis, the author still

uses template and network names in the files for the sake clarity, but when addressing future,

full scale exercises, then the use of IDs instead of names could be considered. In that case, in

the SDL_environment.yml, template keys must have template IDs, instead of names as their

values and in the SDL_exercise.yml, OpenNebula network ID must also be specified.

Regarding MS Windows OS templates, as there is no way to change the VM Security

Identifier SID during the cloning process, the VMs must be generalized [66] before they can

be considered finished. In order for the VM to boot up automatically, the author prepared an

unattend.xml file4, which is placed on the templates C: drive. When the template

configuration has finished, the machine will be generalized with the following command:

sysprep /oobe /generalize /shutdown /unattend:c:\unattend.xml. The command should be run

3 https://github.com/xjan76/SDL/tree/main/packer_vmware
4 https://github.com/xjan76/SDL/blob/main/packer_vmware/unattend.xml

50

in the c:\windows\system32\sysprep folder. This will make sure that once the vm will be

booted up after the cloning, it will have correct parameters automatically set.

5.3 Targeting hypervisors

For each desired hypervisor, a dedicated hypervisor role is required to be developed. In this

proof of concept, VMware vSphere and OpenNebula roles have been created (refer to

sections 5.3.1 and 5.3.2 respectively).

5.3.1 VMware vSphere

The vSphere role consists of six main tasks, which are invoked in the order that’s specified

in vsphere/ tasks/ main.yml. The first tasks, called vmware_guest.yml sets correct IPv4

parameters for vmware_guest module, which will be used later in the VM cloning process.

The second task, named undeploy.yml will be invoked only when deploy_mode parameter is

set to undeploy or redeploy in the ansible-playbook command. This role powers off the VM

and deletes it from the datastore.

The third task, called portgroups.yml checks, whether the correct portgroup exists for the

deployment and if not, creates it. In this proof of concept, the basic functionality for the task

is included. For more complex use-cases, additional development might be required in order

to meet the expected functionality. This is an optional task, which can be commented out in

the vsphere/tasks/main.yaml task, if portgroup creation is not expected from the SDL.

The fourth task is called deploy.yml, which deals with the VM deployment. It first checks the

environment for the VM and if it doesn’t exist, deploys and powers it on. Because MS

Windows OS network will already be configured during the deployment process, then a MS

Windows IPv4 validation block is added to the end of the task. The reason why customization

is done for MS Windows during the cloning process is to change the VM Security Identifier

(SID), in order to prevent conflicts in the domain join operations.

The fifth task, called network.yml, configures – and in MS Windows OS case, validates – the

correct IPv4 address for the VM, as defined in SDL_exercise.yml.

51

The final task is called connection.yml, which makes sure that Ansible can establish SSH

connection the newly assigned IPv4 address. Once the SSH connection is established, the

vSphere role finishes and the playbook execution continues with the next core configurations,

yet those are already hypervisor agnostic.

5.3.2 OpenNebula

What differentiates OpenNebula from vSphere in regards of VM deployment, is the concept

of instantiation. In vSphere, VMs are cloned from a template and after cloning, the VMs are

no longer associated with the template. In OpenNebula, the VMs are different instances of

the base template. For example, after instantiating two domain controllers from the MS

Windows server template, those two machines are just a different instance of the said

template.

Instantiation also means, that disk image file mounting must be done on the template level.

This also sets OpenNebula logic apart from vSphere, as the reusable functions in roles/ tasks

directory, which need to mount a dedicated disk image file, for example like MS Exchange

server installation, require a dedicated template. This is something that need to be considered

when integrating new hypervisors into the SDL.

The OpenNebula role consists of five main tasks, which are invoked in the order specified in

roles/ core/opennebula/ tasks/ main.yml. The first task invoked, is undeploy.yml, which

works the same way as described in the previous section.

The second task invoked is named deploy.yml. This task will instantiate the template with the

parameters described in the SDL_exercise.yml. At the time of writing, Ansible OpenNebula

one_vm module does not seem to have a method of querying existing instance information.

The author resolved that issue with a ping check. This means that before any new

instantiation, the VMs IPv4 address, as defined in SDL_exercise.yml will be pinged and if an

answer is received, the instantiation task is skipped and the playbook execution continues

with the configuration tasks.

The third task, named connection.yml creates an initial connection to the freshly initiated

VM. As mentioned in section 5.2.2, since OpenNebula does not have its own management

52

tools, a static IPv4 has to be set on the templates, which can be used as an initial entry point

to the VM. The task finishes once an SSH connection has been established with the VM.

The fourth task, called network.yml sets the correct network parameters to the VM, as

described in the SDL_exercise.yml. As this is done over SSH, and not over management tools,

the connection between Ansible and VM will momentarily break, resulting in an unreachable

error. In this proof of concept, the error is handled with ignore_unreachable key for that

specific task. This ensures that even though connection breaks, the playbook execution will

continue and the next task will establish a connection with new network parameters.

The last task called is named new_connection.yml. As the previous task changed the network

parameters of the machine, this task establishes a new SSH connection. With that task, the

OpenNebula role finishes and the playbook execution moves on with the rest of the

configurations.

5.4 Integrating new hypervisors

Integrating new hypervisors consists of two main steps. First, a hypervisor specific

subdirectory must be created into the core directory. The name of the subdirectory must be

noted for the second step. Within that directory, there are a number of tasks which must be

implemented in order to maintain the functionality of the SDL. The easiest way to proceed

is to take either the existing vSphere or OpenNebula subdirectory as a template and modify

the tasks with the correct hypervisor modules and commands. There must be tasks, which

deal with VM deployments and undeployments, depending on the value of the key

deploy_mode, which is set during playbook execution. There must also be a task, which

configures the correct network parameters for the VM, and a task, which establishes an SSH

connection. Once those primary functions are operational, the new environment can be

considered integrated.

Secondly, a new playbook must be created, which calls out the correct hypervisor role. Again,

this can easily be done by copying the content of either vsphere.yml or opennebula.yml to a

new file and then just changing the hypervisor role. The hypervisor role is also highlighted

on the Figure 15: hypervisor role in vsphere.yml playbook. If the said VMware vSphere

53

playbook is taken as a template, then the name of the subdirectory, chosen in the first step,

must be inserted in place of vsphere.

Figure 15: Hypervisor role in vsphere.yml playbook

Finally, a mako template, residing at group_vars / all.yml.tmpl must be edited. If the new

hypervisor has any module defaults or any other unique variables, they must be added to the

template in a similar manner as currently vSphere and OpenNebula have. The template file

has specific comments which help guiding the process. Also, if the new hypervisor requires

any new packages, they should be added to the install-requirements.sh script, which is

detailed in the next section.

5.5 Deployment

Once the SDL_environment.yml and SDL_exercise.yml files have been populated, VM

configurations developed and the SDL_engine.py executed, the VMs are ready to be

deployed. The deployment will be executed from the exercise developer’s personal

computer.

Before the actual deployment can commence, a couple of requirements must be met. First of

all, the deployment requires a terminal with GNU bash shell [67]. In most GNU/Linux OS-

es, bash is the default shell. In Apples’ macOS, if bash is not a default shell, it can be changed

into via chsh -s /bin/bash command. Regarding MS Windows OS, a Windows Subsystem for

Linux (WSL) is required. By default, Ubuntu distribution will be installed, but this can be

changed if desired. Official Microsoft documentation [68] can be referred to for installation

guides and best practices, if required.

54

Secondly, the deployer must verify that Python 3.9 is the chosen python interpreter. Once

that is verified, the install-requirements.sh script, found in GitHub5, should be run. It will

install all the required packages and collections which are required for the SDL. Currently,

in this proof of concept, only Debian based OS-es are handled by the script.

The ansible-playbook command is built up as follows:

Ansible-playbook [hypervisor specific playbook name] -e=deploy_mode=[deploy_mode] -

e=machine=[VM name]

As introduced in section 5.3.1 the deploy_mode accepts three different values:

• Deploy – the VM will be deployed. In case of vSphere environment, if the VM

already exists, the deployment part will be skipped and the playbook execution will

continue with the configuration tasks. OpenNebula, as mentioned in section 5.3.2 will

deploy a new instance regardless whether an instance is already present or not.

• Undeploy – the VM will be powered off and deleted.

• Redeploy – this role first executes the task undeploy and then deploy.

For example, to deploy a VM named dc1 in the OpenNebula environment, the command

would be: Ansible-playbook opennebula.yml -e=deploy_mode=deploy -e=machine=dc1

In another example, to redeploy – meaning to undeploy and then to deploy two VMs named

ws1 and ws2 in vSphere, the command would be: Ansible-playbook vsphere.yml -

e=deploy_mode=redeploy -e=machine=ws1,ws2

As can be observed from the vSphere example, multiple VMs can be deployed at the same

time. Those tasks will then run concurrently and that’s something to bear in mind, when VMs

have dependencies. Deploying primary and secondary domain controller concurrently will

most likely end in failure for the secondary domain controller, as the primary domain

controller might not be properly configured on time.

In terms of security, Ansible vault can be used to encrypt plaintext credentials. If the use of

Ansible vault is desired, then it must be invoked during the deployment. For example, if

5 https://github.com/xjan76/SDL/blob/main/install-requirements.sh

55

ansible vault was named environment, then an example playbook command should look like

the following:

Ansible-playbook opennebula.yml -e=@environment –ask-vault-pass -

e=deploy_mode=deploy -e=machine=dc1

56

6 Proof of concept implementation

In this section, the author will describe an example scenario and deploy it to two different

hypervisor platforms. First, the author will introduce the deployable exercise layout and

describe each scenario entity. After that, the author will deploy the scenario into different

hypervisor platforms and evaluate the process.

In this proof of concept, a small Microsoft Active Directory based exercise environment will

be developed and deployed on VMware vSphere and OpenNebula platforms. Figure 16:

Network map gives a visual representation of the deployable VMs on the target hypervisors.

As can be seen from the same figure, routing will be handled by the firewall outside of the

deployable exercise. This is due to the fact that basic network connectivity on the hypervisor

platform is a prerequisite for using the SDL, as described in section 5.1.1.

57

WS1 WS2

EXCH

DC1 DC2

ObserviumVirtual switch

Deployable scenario on target hypervisor

Firewall

Internet

Figure 16: Network map

To begin with, two domain controllers – dc1, a primary domain controller and dc2, a backup

domain controller will be deployed and configured. Besides base configuration, some user

accounts will also be created and vulnerabilities added6. Appendix 3: vSphere deployment

example and Appendix 4: OpenNebula deployment example represent deployment logs for

dc1 into respective environments.

A MS Exchange server, named exch, will be added to the Microsoft domain environment.

Base configuration7 will be applied to the MS Exchange server, meaning that it can be used

to send out emails.

6 https://github.com/xjan76/SDL/blob/main/roles/vm/dc2/tasks/main.yml
7 https://github.com/xjan76/SDL/blob/main/roles/vm/exch/templates/Configure-Exchange.ps1

58

Aside from MS Windows Servers, two MS Windows 10 workstations, called ws1 and ws2

will be deployed, configured and domain joined. These workstations will act as office

workstations for the previously mentioned user accounts.

Alongside MS Windows OS, an Observium [69] service will be deployed on a GNU/Linux

Ubuntu Server 20.04. This is to test and verify a non-Windows VM deployment and

configuration. Observium was chosen due to its popularity and the need to handle a variety

of different steps during installation8. Besides basic server setup, Lightweight Directory

Access Protocol (LDAP) will be configured to allow specific Active Directory users9 to log

into the service as administrators.

This proof of concept implementation can be considered successful, once the defined exercise

is successfully deployed onto two different hypervisor environments. The implementation

process will consist of four main phases.

In the first phase, six aforementioned VMs with their respective roles will be described in the

roles / vm directory.

In the second phase, SDL_environment.yml and SDL_exercise.yml files will first be

populated with VMware vSphere platform information. The SDL_engine.py will be executed

and Ansible playbook deployment commands will be executed in the order described in

section 6.1.

Once the VM deployments are finished in the vSphere environment, the

SDL_environment.yml and SDL_exercise.yml files will be populated with OpenNebula

platform information. While the SDL_environment.yml file will see considerable changes,

only network information shall be modified in the SDL_exercise.yml. The SDL_engine.py

will be once again executed and Ansible playbook deployment commands will be executed

in the order described in section 6.2.

Finally, once the VM deployments are finished in OpenNebula platform, both hypervisor

instances will be examined and the VM functionalities will be verified. The examination

process is visual, meaning that deployment logs will be checked for errors and deployed VMs

8 https://github.com/xjan76/SDL/blob/main/roles/vm/observium/tasks/main.yml
9 https://github.com/xjan76/SDL/blob/main/roles/vm/observium/templates/config.php.j2#L46

59

will be inspected on the hypervisor, to verify that they have correct physical parameters, like

CPU, RAM and network adapter configured. VM functionality will be verified by checking,

whether the VM configurations, which were described under roles / vm and also in

SDL_environment.yml have been implemented. If the instances are working identically, the

proof of concept implementation can be considered successful.

6.1 VMware vSphere

The scenario was deployed into VMware vSphere environment in the following order:

1) dc1 – Primary domain controller;

2) dc2 – Secondary domain controller;

3) exch – MS Exchange server;

4) observium – Observium server;

5) ws1 and ws2 – domain joined MS Windows 10 workstations.

The first two VMs – dc1 and dc2 had to be deployed one at a time. This was because domain

creation within dc1 had to be finished before secondary domain controller could be joined to

the freshly created domain. As both of these domain controllers serve as DNS servers for the

rest of the VMs, dc2 deployment had to be finished before other VMs could be deployed.

Although MS Exchange, Observium and both workstations could have all been deployed

together, the author decided to only deploy the workstations in parallel. The deployment logs

for the parallel deployment can be found in Appendix 5: vSphere dual deployment example.

The reasoning for that choice was that firstly, deployment times varied a lot. An average MS

Exchange Server deployment took approximately 70 minutes, while workstation

deployments were finished in approximately 10 minutes and Observium server deployment

averaged around 20 minutes. While there is nothing wrong with different deployment times,

it does make the deployment log inspection harder. If deployment log clarity is a priority, it

would be possible to open multiple bash shells and execute the deployment commands at the

same time in separate shells. This would enable faster deployment process while keeping the

logs separate.

60

Secondly, since the proof of concept environment only consisted of one VMware ESXi host,

which had 50 GHz of CPU and 64 GB of RAM available, deploying four VMs in parallel,

from which three were MS Windows OS-es, used up nearly all the resources during initial

VM configuration phase. While testing this approach, the author noticed that deployment

times increased approximately two times. When deploying the VMs in the order specified in

the beginning of the section, no anomalies were detected and the deployment of the scenario

vSphere environment went smoothly.

The SDL makes use of VMware vSphere management tools, called VMware Tools [70] in

the first parts of the deployment via Ansibles vmware_guest module. VMware Tools are used

to gather the deployable VMs IPv4 address, assigned by DHCP server, to create an SSH

connection. This enables multiple parallel deployments from one template, as every cloned

VM will receive unique IPv4 address during its initial bootup. The existence and use of such

management tools are highly desired for larger, multi team scenario deployments as it would

enable the same VM to be deployed and configured for multiple teams at the same time.

Figure 17: Deployed exercise in VMware vSphere

As can be seen on Figure 17: Deployed exercise in VMware vSphere, six machines are up

and running in the VMware vSphere environment. All the machines are reachable via the

IPv4 addresses described in the SDL_exercise.yml, MS Windows VMs have been joined to

61

the domain, that was specified in the SDL_environment.yml as thesis.demo and Observium

service can be accessed by the domain account with administrative privileges, that was

specified in dc1 tasks10. The deployment log of sdl_dc1 VM can be found in Appendix 3:

vSphere deployment example. The deployment log also displays timestamps to indicate, how

long each deployment step took time. As can be verified from the deployment logs, dc1 was

deployed and configured in 21 minutes. All the VM configurations for the example

deployment have been left unchanged and are accessible in the GitHub repository11.

6.2 OpenNebula

The scenario was deployed into VMware vSphere environment in the following order:

1) dc1 – Primary domain controller;

2) dc2 – Secondary domain controller;

3) exch – MS Exchange server;

4) observium – Observium server;

5) ws1 - domain joined MS Windows 10 workstation;

6) ws2 – domain joined MS Windows 10 workstation.

Deploying the exercise to OpenNebula platform followed mostly the same order as described

in previous VMware vSphere section but was slightly more challenging. The author noticed

that when redeploying a VM, the deployment task can randomly fail. This would happen

approximately every 10th redeployment process. The hypervisor logs indicated that although

the VM instance was deleted, the instance information would not be completely removed

from the database and during a new instantiation, OpenNebula could not properly create a

new database entry. The problem seemed to be caused by too short timeframe between

instance deletion and a new instantiation. A workaround for that was to undeploy the

instance, wait for approximately 20 seconds and then deploy again. This way the

deployments succeeded every time.

10 https://github.com/xjan76/SDL/tree/main/roles/vm/dc1
11 https://github.com/xjan76/SDL/tree/main/roles/vm

62

Another challenge with deployment to OpenNebula was that since there are no hypervisor

management tools, VM templates must use static IPv4 address. This is due to the fact that

SDL needs to establish SSH connection to the freshly cloned instance, but as there are no

management tools to discover the DHCP address, a static IPv4 address must be configured

in the template and described in the SDL. This resulted in a situation that any single template

could not be used for cloning more than one instance at the time, as it would result in an IP

conflict. For example, it was possible to deploy observium and ws1 at the same time, but it

was not possible to instantiate ws1 and ws2 in parallel, as they both used the same MS

Windows 10 template. The author did not find a feasible workaround for that issue.

Ansible OpenNebula modules are considerably less mature compared to VMware vSphere

modules. At the time of writing, one_vm module, used for VM instantiation does not have a

good way for looking up an existing instance information. The problem which arises from

such a situation is that when existing instance information cannot be queried, every VM

instantiation must be started from the beginning. This limits the possibility of performing

minor changes to already deployed VMs. Although the modules count_attribute key can be

used to delete an instance by its name attribute, the only way the author managed to determine

whether an instance exist was to perform a ping check. While the ping check approach did

resolve the issue in this proof of concept, some alternative method must be developed if ping

cannot be enabled in the exercise network. Another option would be to redeploy the instance

during every playbook execution. This option works fine, but is considerably more time

consuming.

As can be verified from the deployment log timestamps (Appendix 4: OpenNebula

deployment example), dc1 deployment to OpenNebula platform took 24 minutes. The author

noticed similar tendencies with all VM deployments; OpenNebula deployments were always

approximately 15% slower compared to VMware vSphere. This was most likely caused by

the compute resource differences. While the underlaying KVM host in OpenNebula was

equipped with Intel Xeon E5-2630 processor, the VMware ESXi host possessed Intel Xeon

Gold 6230 processor, which was more capable. The author did not have an opportunity to

test the deployment speeds on equal hardware, but a 15% speed difference due to hardware

63

difference seems plausible, especially as the deployment speed difference occurred mostly

during deployment tasks.

Figure 18: Deployed exercise in OpenNebula

As can be seen on Figure 18: Deployed exercise in OpenNebula, the same six machines are

running in the OpenNebula environment. Although OpenNebula dashboard does not display

deployed VMs FQDN, it can be verified from Appendix 4: OpenNebula deployment

example, that OpenNebula role successfully deploys the VM and the playbook moves on to

hypervisor agnostic customization roles. The only difference between VMware vSphere and

OpenNebula exercise environments is that they are using a different VLANs, which were

specified in the SDL_exercise.yml. Other than that, the instances are identical, as the VM

configuration roles are not tied to hypervisor specific roles.

64

7 Discussion

The author has compiled all the code and stored it for public use and validation under

Massachusetts Institute of Technology (MIT) license on GitHub page12. Currently, this proof

of concept covers the primary functionality of a CDX development and deployment. Existing

deployment roles could be improved to handle VM team-based multiplication. With the

current setup, it is possible to deploy VMs for a single team without modifying the

SDL_exercise.yml, but multiplication would allow more convenient team-based

deployments. This could be achieved by developing the SDL_exercise.yml file to handle team

based IPv4 network configurations and SDL_environment.yml to handle team-based

environment-variables, such as, domain. Currently, a team-based CDX would require manual

interaction after every team deployment for changing each team variables.

Also, in this proof of concept, highest hypervisor administrator access levels were used. In

order to accommodate this toolset to work in bigger production environments, minimal

required access levels should be defined when developing hypervisor specific deployment

roles. Another feature that could be improved regarding user accounts, is the security of the

credentials. In this proof of concept, the SDL files are populated with plain-text credentials

for clarity and demonstration. As detailed, Ansible vault can be used to encrypt hypervisor

credentials. However, once the content in conjunction with the described exercises start to

grow, some proper credential management solution should be implemented.

As this proof of concept uses Ansible as a back-end, deployment is initiated by directly

interacting with Ansible. Additional research could be done to find out, whether the

interaction could also be handled by the SDL engine, thus eliminating the need to directly

interact with the Ansible command line.

12 https://github.com/xjan76/SDL

65

In regards to VM connectivity, this proof of concept utilized only IPv4. To further advance

the SDL, IPv6 connection parameters could be implemented. This should remain as an

optional feature, meaning that the exercise developer could decide, whether to use IPv6 or

not. The implementation would require the addition of IPv6 parameter keys to

SDL_environment.yml, SDL_exercise.yml and the respective changes should be made to the

template files and network related tasks in hypervisor roles.

This proof of concept took a VM centric, low abstraction level approach in defining the core

functionalities of the CDX and a higher abstraction level approach in describing the

environment and deploying the exercise scenario. While the author maintains that this is

enough to develop functional CDXs, some additional, higher abstraction level features, for

example, storyline, which would enable a dynamic alteration of scenario components during

the execution, could be implemented. Currently, similar functionality can be achieved, but

on a lower abstraction level, meaning that the desired steps must be defined in VM

configurations. As described in a paper [20] by the Norwegian University of Science and

Technology, and displayed on Figure 2: Taxonomy of cyber ranges, there is a variety of high

abstraction level artefacts, which could be implemented on top of the current solution. The

currently developed SDL files could be expanded or additional SDL files could be developed

to further enhance scenario development.

66

8 Conclusion

In this thesis, the author developed a proof of concept for a hypervisor agnostic Scenario

Definition Language. To the authors knowledge, at the time of writing, there was no

published literature on cyber defense exercise development frameworks, which prioritize

exercise portability between cyber ranges, which differ in terms of hypervisor selection. Due

to this, the author considers the proof of concept of this novel framework a valuable

contribution in the field of developing cyber defense exercises.

Regarding the first research question, the author identified a set of conceptual requirements

for the hypervisor agnostic SDL. In addition, as a result of a review on different data

serialization languages, YAML was chosen as the primary data format for the framework.

Regarding the second research question, the author defined and developed a list of

components, which enable the definition of the exercise environment and deployment

information in a hypervisor agnostic manner. The first set of low abstraction level

components provide the exercise developer means to develop exercise content in a hypervisor

agnostic manner via dedicated Ansible directory. Those components include the ability to

create both VM specific configurations and also universal, reusable functions, which can be

used by different VMs. The second set of components, provide the exercise developer a

higher abstraction level interface to define the general exercise environment variables and

also define the deployable VM parameters. By using the combination of the two previously

mentioned component sets, the author developed a small-scale example scenario. From the

authors perspective, the designed framework provided all the necessary configuration options

for scenario development in a hypervisor agnostic manner.

To answer the third research question, the author described the necessary steps required to

develop and integrate new hypervisor platforms to the SDL. In this thesis, the author first

detailed the hypervisor base requirements required for a successful SDL integration. The

author then demonstrated the integration process of two different hypervisors: VMware

67

vSphere and KVM based OpenNebula; and validated the integrations by deploying the

previously mentioned small-scale exercise to the said hypervisor platforms. This successful

exercise deployment with the novel framework proves that cyber defense exercises can be

developed in a hypervisor agnostic manner.

To reach the full operating functionality of the framework, additional research and

development is definitely needed. While this thesis provides the core functionality for the

framework, additional hypervisor integrations could be implemented and additional higher

abstraction level artefacts could be developed. The author believes that those steps would

further facilitate the introduction of the framework into different cyber ranges.

68

References

[1] H. Taylor, "What is a cyber range?," 4 May 2021. [Online]. Available:

https://cybersecurityguide.org/resources/cyber-ranges/. [Accessed 21 February 2022].

[2] Red Hat, "What is KVM?," 21 March 2021. [Online]. Available:

https://www.redhat.com/en/topics/virtualization/what-is-KVM. [Accessed 8 December

2021].

[3] VMware, "VMware ESXi: The Purpose-Built Bare Metal Hypervisor," 2021. [Online].

Available: https://www.vmware.com/products/esxi-and-esx.html. [Accessed 8 December

2021].

[4] Ansible, "Red Hat Ansible," 2021. [Online]. Available: https://www.ansible.com. [Accessed 8

December 2021].

[5] HashiCorp, "Terraform," 2021. [Online]. Available: https://www.terraform.io/. [Accessed 8

December 2021].

[6] HashiCorp, "Vagrant," 2021. [Online]. Available: https://www.vagrantup.com/. [Accessed 8

December 2021].

[7] Progress, "Chef," [Online]. Available: https://www.chef.io/products/chef-infra. [Accessed 21

February 2022].

[8] K. Sandeeb, "Terraform vs Ansible: Working, Difference, Provisioning," K21Academy, 10 July

2021. [Online]. Available: https://k21academy.com/ansible/terraform-vs-ansible/. [Accessed

8 December 2021].

[9] VMware, "vSphere," [Online]. Available: https://www.vmware.com/products/vsphere.html.

[Accessed 22 February 2022].

[10] OpenNebula Systems, "Why OpenNebula?," [Online]. Available:

https://opennebula.io/discover/. [Accessed 21 February 2022].

[11] B. Posey, "Bare-metal hypervisor," March 2021. [Online]. Available:

https://searchservervirtualization.techtarget.com/definition/bare-metal-hypervisor.

[Accessed 21 February 2022].

69

[12] Amazon, "Cloud computing with AWS," 2021. [Online]. Available:

https://aws.amazon.com/what-is-aws. [Accessed 8 December 2021].

[13] Microsoft, "Microsoft Azure," 2021. [Online]. Available: https://azure.microsoft.com/en-

us/overview. [Accessed 8 December 2021].

[14] K. Puffers, T. Tuunanen, M. A. Rothenberger and S. Chatterjee, "A Design Science Research

Methodology for Information Systems Research," Journal of Management Information

Systems, vol. 24, no. 3, pp. 45-77, 8 December 2007.

[15] Scopus, "Scopus," 2022. [Online]. Available: https://www.scopus.com/home.uri. [Accessed

07 April 2022].

[16] E. Russo, G. Costa and A. Armando, "Building next generation Cyber Ranges with CRACK,"

Computers & Security, vol. 95, p. 101837, April 2020.

[17] NIST, "Cyber Ranges," 13 February 2018. [Online]. Available:

https://www.nist.gov/system/files/documents/2018/02/13/cyber_ranges.pdf. [Accessed 8

December 2021].

[18] ECS, "Understanding Cyber Ranges: From Hype to Reality," March 2020. [Online]. Available:

https://ecs-org.eu/documents/publications/5fdb291cdf5e7.pdf. [Accessed 8 December

2021].

[19] Diateam, "What's a Cyber Range?," 2022. [Online]. Available:

https://www.diateam.net/what-is-a-cyber-range/. [Accessed 07 April 2022].

[20] B. Katt, M. Yamin and V. Gkioulus, "Cyber ranges and security testbeds: Scenarios, functions,

tools and architecture," Computers & Security, vol. 88, p. 101636, January 2020.

[21] T. Gustafsson and J. Almroth, "Cyber Range Automation Overview with a Case Study of

CRATE," in The 25th Nordic Conference on Secure IT Systems, Online, 2020.

[22] J. Vykopal, R. Ošlejšek, P. Celeda and M. Vizvary, "KYPO Cyber Range: Design and Use Cases,"

in 12th International Conference on Software Technologies, Madrid, 2017.

[23] A. Vallaots, "Federation of Cyber Ranges," 2017. [Online]. Available:

https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=58426&year=2017. [Accessed 14

December 2021].

[24] M. Leitner, M. Frank, W. Hotwagner, G. Lagner and O. Maurhart, "AIT Cyber Range: Flexible

Cyber Security Environment for Exercises, Training and Research," in Proceedings of the

European Interdisciplinary Cybersecurity Conference, Renners, 2020.

[25] T. Cruz and P. Simones, "Down the Rabbit Hole: Fostering Active Learning through Guided

Exploration of a SCADA Cyber Range," Applied Sciences, vol. 11, no. 20, p. 9509, 19 August

2021.

70

[26] M. A. Haney, D. Conte de Leon, C. E. Goes and A. W. Krings, "ADLES: Specifying, deploying

and sharing hands-on cyber-exercises," Computers & Security, vol. 74, no. 5, pp. 12-40, 2

January 2018.

[27] B. Katt, M. M. Yamin and M. Nowostawski, "Serious games as a tool to model attack and

defense scenarios for cyber-security exercises," Computers & Security, vol. 110, p. 102450,

November 2021.

[28] OASIS, "OASIS Topology and Orchestration Specification for Cloud Applications," 2020.

[Online]. Available: https://www.oasis-open.org/committees/tosca/faq.php. [Accessed 14

December 2021].

[29] Cloudify, "Connecting DevOps," 2021. [Online]. Available: https://cloudify.co/product/.

[Accessed 14 December 2021].

[30] OpenStack, "Heat Orchestration Template (HOT) Guide," 9 November 2020. [Online].

Available: https://docs.openstack.org/heat/rocky/template_guide/hot_guide.html.

[Accessed 21 February 2022].

[31] Puppet, "Puppet Enterprise," 2022. [Online]. Available:

https://puppet.com/products/puppet-enterprise/. [Accessed 21 February 2022].

[32] R. Beuran, C. Pham and D. Tang, "Cybersecurity Education and Training Support System:

CyRIS," IEICE Transactions on Information and Systems, Vols. E101-D, no. 3, pp. 740-749,

March 2018.

[33] C. Pham, D. Tang, R. Beuran and K. Chinen, "CyRIS: A Cyber Range Instantiation System for

Facilitating Security Training," in The seventh international symposium on information and

communication tehnology, Ho Chi Minh, 2016.

[34] I. Somarakis, M. Smyrlis, G. Spanoudakis and K. Fysarakis, "Model-Driven Cyber Range

Training: A Cyber Security Assurance Perspective," in 1st Model-driven Simulation and

Training Environments for Cybersecurity Workshop , Luxembourg, 2019.

[35] E. Trickel, F. Disperati, E. Gustafson and F. Kalantari, "Shell We Play A Game? CTF-as-a-service

for Security Education," in USENIX Workshop on Advances in Security Education, Canada,

2017.

[36] "Security Scenario Generator (SecGen): A Framework for Generating Randomly Vulnerable

Rich-scenario VMs for Learning Computer Security and Hosting CTF Events," 14 August 2017.

[Online]. Available: https://www.semanticscholar.org/paper/Security-Scenario-Generator-

(SecGen)%3A-A-Framework-Schreuders-

Shaw/b8ac02b9696a3bb560aae963bba0fa6813f44986. [Accessed 14 December 2021].

71

[37] A. S. Raj, B. Alangot, S. Prabhu and K. Achuthan, "Scalable and lightweight CTF infrastructures

using application containers," in USENIX Advances in Security Education Workshop, Austin,

2016.

[38] D. Crockford, "Introducing JSON," [Online]. Available: https://www.json.org/json-en.html.

[Accessed 22 Februar 2022].

[39] GitHub, "YAML: YAML Ain't Markup Language™," [Online]. Available: https://yaml.org/.

[Accessed 22 February 2022].

[40] Mozilla, "XML introduction," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/XML/XML_introduction. [Accessed 21 February 2022].

[41] MessagePack, "MessagePack," [Online]. Available: https://msgpack.org/index.html.

[Accessed 21 February 2022].

[42] Google Developers, "Protocol Buffers," 2 February 2022. [Online]. Available:

https://developers.google.com/protocol-buffers/docs/overview. [Accessed 21 February

2022].

[43] Sharpened Productions, "Markup Language," 1 June 2011. [Online]. Available:

https://techterms.com/definition/markup_language. [Accessed 21 February 2022].

[44] Devopedia, "Data Serialization," 24 July 2020. [Online]. Available:

https://devopedia.org/data-serialization. [Accessed 21 February 2022].

[45] D. S. Nayanajith, "JSON vs YAML," 16 June 2020. [Online]. Available:

https://levelup.gitconnected.com/json-vs-yaml-6aa0243aefc6. [Accessed 21 February 2022].

[46] A. Gamela, "YAML vs. JSON: What is the difference?," 14 October 2021. [Online]. Available:

https://www.imaginarycloud.com/blog/yaml-vs-json-what-is-the-difference/. [Accessed 21

February 2022].

[47] M. Tournoij, "YAML: probably not so great after all," 15 April 2019. [Online]. Available:

https://www.arp242.net/yaml-config.html. [Accessed 21 February 2022].

[48] Ansible, "YAML Syntax," 2021. [Online]. Available:

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html. [Accessed

14 December 2021].

[49] Ansible, "Ansible Integrations," 2022. [Online]. Available:

https://www.ansible.com/integrations?hsLang=en-us. [Accessed 08 April 2022].

[50] A. Rayome, "Ansible overtakes Chef and Puppet as the top cloud configuration management

tool," 27 February 2019. [Online]. Available: https://www.techrepublic.com/article/ansible-

overtakes-chef-and-puppet-as-the-top-cloud-configuration-management-tool/. [Accessed 08

April 2022].

72

[51] CCDCOE, "Locked Shields," 2021. [Online]. Available: https://ccdcoe.org/exercises/locked-

shields/. [Accessed 15 May 2021].

[52] M. Bayer, "Mako Templates for Python," [Online]. Available:

https://www.makotemplates.org/. [Accessed 15 April 2022].

[53] K. Kaunis, "xjan76/SDL," 15 May 2022. [Online]. Available: https://github.com/xjan76/SDL.

[Accessed 16 May 2022].

[54] Ansible, "Encrypting content with Ansible Vault," 21 Decemeber 2021. [Online]. Available:

https://docs.ansible.com/ansible/latest/user_guide/vault.html. [Accessed 17 April 2022].

[55] Ansible, "Role Directory Structure," 30 April 2021. [Online]. Available:

https://docs.ansible.com/ansible/2.8/user_guide/playbooks_reuse_roles.html#role-

directory-structure. [Accessed 12 April 2022].

[56] Ansible, "All modules," 11 October 2021. [Online]. Available:

https://docs.ansible.com/ansible/2.9/modules/list_of_all_modules.html. [Accessed 14 April

2022].

[57] Ansible, "Desired State Configuration," 27 April 2022. [Online]. Available:

https://docs.ansible.com/ansible/latest/user_guide/windows_dsc.html. [Accessed 3 May

2022].

[58] VMware, "VMware NSX-T Data Center Documentation," 2022. [Online]. Available:

https://docs.vmware.com/en/VMware-NSX-T-Data-Center/index.html. [Accessed 17 April

2022].

[59] Dell Inc., "Dell PowerStore Scalable All-Flash Storage," 2022. [Online]. Available:

https://www.dell.com/en-ee/dt/storage/powerstore-storage-appliance.htm#tab0=0.

[Accessed 17 April 2022].

[60] VMware, "vSan," 2022. [Online]. Available: https://www.vmware.com/products/vsan.html.

[Accessed 17 April 2022].

[61] HashiCorp, "Build automated machine images," 2022. [Online]. Available:

https://www.packer.io/. [Accessed 11 April 2022].

[62] VMware, "Introduction to VMware Tools," 14 June 2021. [Online]. Available:

https://docs.vmware.com/en/VMware-

Tools/11.3.0/com.vmware.vsphere.vmwaretools.doc/GUID-28C39A00-743B-4222-B697-

6632E94A8E72.html. [Accessed 11 April 2022].

[63] Chocolatey Software, Inc., "THE PACKAGE MANAGER FOR WINDOWS," 2022. [Online].

Available: https://chocolatey.org/. [Accessed 11 April 2022].

73

[64] Microsoft, "Get started with OpenSSH," 2022. [Online]. Available:

https://docs.microsoft.com/en-us/windows-

server/administration/openssh/openssh_install_firstuse. [Accessed 11 April 2022].

[65] HashiCorp, "Download Packer," 2022. [Online]. Available: https://www.packer.io/downloads.

[Accessed 11 April 2022].

[66] Microsoft, "Sysprep (Generalize) a Windows installation," 2022. [Online]. Available:

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--

generalize--a-windows-installation?view=windows-11. [Accessed 3 May 2022].

[67] GNU, "GNU Bash," 22 September 2020. [Online]. Available:

https://www.gnu.org/software/bash/. [Accessed 24 April 2022].

[68] Microsoft, "Install WSL," 6 April 2022. [Online]. Available: https://docs.microsoft.com/en-

us/windows/wsl/install. [Accessed 24 April 2022].

[69] Observium Limited, "Network monitoring with intuition," [Online]. Available:

https://www.observium.org/. [Accessed 16 April 2022].

[70] VMware, "Introduction to VMware Tools," 14 June 2021. [Online]. Available:

https://docs.vmware.com/en/VMware-

Tools/12.0.0/com.vmware.vsphere.vmwaretools.doc/GUID-28C39A00-743B-4222-B697-

6632E94A8E72.html. [Accessed 12 May 2022].

74

Appendix 1: Ansible playbook for vSphere deployment

- hosts: localhost

 gather_facts: false

 pre_tasks:

 - set_fact:

 to_be_deployed: "{{ to_be_deployed|default([]) + [item] }}"

 with_inventory_hostnames: "{{ machine }}"

- hosts: "{{ hostvars['localhost'].to_be_deployed }}"

 serial: 1

 gather_facts: false

 roles:

 - core/populate_inventory

- hosts: deployable

 serial: 10

 gather_facts: false

 strategy: host_pinned

 module_defaults:

 vmware_guest: "{{ vmware_defaults }}"

 vmware_guest_disk: "{{ vmware_defaults }}"

 vmware_guest_tools_wait: "{{ vmware_defaults }}"

 vmware_guest_vm_shell: "{{ vmware_defaults }}"

 vmware_guest_network: "{{ vmware_defaults }}"

 vmware_guest_info: "{{ vmware_defaults }}"

 vmware_guest_powerstate: "{{ vmware_defaults }}"

 vmware_dvs_portgroup: "{{ vmware_defaults }}"

 roles:

 - core/vsphere

 - core/base_image

 - core/users

 - core/customization

75

Appendix 2: SDL_engine.py

from pathlib import Path

from mako.template import Template

import glob

import yaml

def read_yaml_from_file(file_path):

 with open(file_path, 'r') as stream:

 return yaml.safe_load(stream)

def write_variables(content, path, output_path=None):

 mytemplate = Template(filename=path)

 result = mytemplate.render(config=content)

 if output_path is None:

 output_path = path.removesuffix('.tmpl')

 output_file = open(output_path, "w")

 output_file.write(result)

 output_file.close()

def create_inventory(template_path, enviroment_path, exercise_path):

 files = glob.glob(template_path)

 content = {

 "enviroment": read_yaml_from_file(enviroment_path),

 "exercise": read_yaml_from_file(exercise_path)

 }

 for file in files:

 write_variables(content, file)

def save_group_variables(ansible_path, config_path):

 files = glob.glob(ansible_path)

 configuration = read_yaml_from_file(config_path)

 for file in files:

 write_variables(configuration, file)

def save_host_vars(ansible_path, config_path):

 templates_paths = glob.glob(ansible_path)

 templates = list(map(lambda x: x.split("/").pop().split(".")[0],

templates_paths))

76

 content = read_yaml_from_file(config_path)

 for virtual_machine in content.values():

 if virtual_machine['parent'] in templates:

 index = templates.index(virtual_machine['parent'])

 template_path = templates_paths[index]

 write_variables(virtual_machine, template_path,

Path(template_path).parent.joinpath(virtual_machine['hostname'] +

".yml"))

 else:

 print("VM template unknown: " + virtual_machine['parent'])

save_group_variables("group_vars/*.tmpl", 'sdl_environment.yml')

save_host_vars("host_vars/*.tmpl", 'sdl_exercise.yml')

create_inventory(“inventory.ini.tmpl", 'sdl_environment.yml',

'sdl_exercise.yml')

77

Appendix 3: vSphere deployment example

kristjan@DESKTOP-992ALSL:/mnt/c/GIT/demo$ ansible-playbook vsphere.yml -e=deploy_mode=deploy

-e=machine=dc1

PLAY [localhost]

**

TASK [set_fact]

**

Friday 15 April 2022 14:16:30 +0300 (0:00:00.149) 0:00:00.149 **********

ok: [localhost] => (item=dc1)

PLAY [['dc1']]

**

TASK [core/populate_inventory : Add deployable group for single host]

**

Friday 15 April 2022 14:16:30 +0300 (0:00:00.315) 0:00:00.465 **********

changed: [dc1]

PLAY [deployable]

**

TASK [setup]

**

Friday 15 April 2022 14:16:30 +0300 (0:00:00.082) 0:00:00.547 **********

ok: [dc1 -> localhost]

TASK [core/vsphere : include_tasks]

**

Friday 15 April 2022 14:16:32 +0300 (0:00:01.504) 0:00:02.052 **********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/vmware_guest.yml for dc1

78

TASK [core/vsphere : Define networks vars for vmware_guest]

**

Friday 15 April 2022 14:16:32 +0300 (0:00:00.090) 0:00:02.142 **********

ok: [dc1]

TASK [core/vsphere : Start undeploy]

Friday 15 April 2022 14:16:32 +0300 (0:00:00.072) 0:00:02.214 **********

skipping: [dc1]

TASK [core/vsphere : include_tasks]

**

Friday 15 April 2022 14:16:32 +0300 (0:00:00.051) 0:00:02.266 **********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/portgroups.yml for dc1

TASK [core/vsphere : Making sure vSphere portgroups are present]

Friday 15 April 2022 14:16:32 +0300 (0:00:00.117) 0:00:02.384 **********

ok: [dc1 -> localhost]

TASK [core/vsphere : include_tasks]

**

Friday 15 April 2022 14:16:33 +0300 (0:00:01.206) 0:00:03.590 **********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/deploy.yml for dc1

TASK [core/vsphere : VM lookup]

**

Friday 15 April 2022 14:16:34 +0300 (0:00:00.111) 0:00:03.701 **********

ok: [dc1 -> localhost]

TASK [core/vsphere : set_fact]

Friday 15 April 2022 14:16:35 +0300 (0:00:01.111) 0:00:04.812 **********

ok: [dc1]

TASK [core/vsphere : Clone VM]

Friday 15 April 2022 14:16:35 +0300 (0:00:00.083) 0:00:04.896 **********

changed: [dc1 -> localhost]

TASK [core/vsphere : Start VM]

79

Friday 15 April 2022 14:22:18 +0300 (0:05:43.040) 0:05:47.937 **********

ok: [dc1 -> localhost]

TASK [core/vsphere : Gather deployed machine info]

Friday 15 April 2022 14:22:21 +0300 (0:00:02.922) 0:05:50.860 **********

ok: [dc1 -> localhost]

TASK [core/vsphere : Errors occurred, redeploying]

Friday 15 April 2022 14:22:22 +0300 (0:00:01.018) 0:05:51.879 **********

skipping: [dc1] => (item=undeploy.yml)

skipping: [dc1] => (item=deploy.yml)

TASK [core/vsphere : include_tasks]

**

Friday 15 April 2022 14:22:22 +0300 (0:00:00.112) 0:05:51.991 **********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/network.yml for dc1

TASK [core/vsphere : Set vmware tools connection]

**

Friday 15 April 2022 14:22:22 +0300 (0:00:00.097) 0:05:52.089 **********

ok: [dc1]

TASK [core/vsphere : Waiting for connection]

Friday 15 April 2022 14:22:22 +0300 (0:00:00.067) 0:05:52.156 **********

[WARNING]: Reset is not implemented for this connection

ok: [dc1]

TASK [core/vsphere : Gathering facts]

**

Friday 15 April 2022 14:22:49 +0300 (0:00:27.076) 0:06:19.233 **********

ok: [dc1]

TASK [core/vsphere : include_tasks]

**

Friday 15 April 2022 14:23:29 +0300 (0:00:40.073) 0:06:59.306 **********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/configuration/windows_cli.yml for dc1

TASK [core/vsphere : Configure interfaces]

80

Friday 15 April 2022 14:23:29 +0300 (0:00:00.180) 0:06:59.486 **********

changed: [dc1] => (item={'name': 'vlan68', 'ipv4': '10.80.68.31/24', 'ipv4_gateway':

'10.80.68.1', 'vlan': 68})

TASK [core/vsphere : include_tasks]

**

Friday 15 April 2022 14:23:49 +0300 (0:00:19.277) 0:07:18.763 **********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/connection.yml for dc1

TASK [core/vsphere : Setting connection IP]

**

Friday 15 April 2022 14:23:49 +0300 (0:00:00.115) 0:07:18.879 **********

ok: [dc1]

TASK [core/vsphere : Setting Ansible connection]

Friday 15 April 2022 14:23:49 +0300 (0:00:00.060) 0:07:18.940 **********

ok: [dc1]

TASK [core/vsphere : Waiting for connection]

Friday 15 April 2022 14:23:49 +0300 (0:00:00.057) 0:07:18.998 **********

ok: [dc1]

TASK [core/vsphere : set_fact]

Friday 15 April 2022 14:23:55 +0300 (0:00:06.179) 0:07:25.177 **********

ok: [dc1]

TASK [core/vsphere : Gathering facts...]

Friday 15 April 2022 14:23:55 +0300 (0:00:00.057) 0:07:25.235 **********

ok: [dc1]

TASK [core/base_image : Configure Windows machine]

Friday 15 April 2022 14:24:06 +0300 (0:00:11.258) 0:07:36.493 **********

included: /mnt/c/GIT/demo/roles/core/base_image/tasks/windows.yml for dc1

TASK [core/base_image : Set correct time]

**

Friday 15 April 2022 14:24:06 +0300 (0:00:00.119) 0:07:36.613 **********

81

changed: [dc1]

TASK [core/base_image : Apply windows baseconf]

**

Friday 15 April 2022 14:24:25 +0300 (0:00:18.240) 0:07:54.854 **********

changed: [dc1]

TASK [core/base_image : Enable RDP service]

**

Friday 15 April 2022 14:24:36 +0300 (0:00:11.649) 0:08:06.503 **********

changed: [dc1]

TASK [core/base_image : Enable RDP firewall]

Friday 15 April 2022 14:24:44 +0300 (0:00:07.899) 0:08:14.403 **********

changed: [dc1]

TASK [core/base_image : Changing Windows hostname]

Friday 15 April 2022 14:24:54 +0300 (0:00:10.200) 0:08:24.603 **********

ok: [dc1]

TASK [core/base_image : Rebooting, if required]

**

Friday 15 April 2022 14:25:00 +0300 (0:00:05.723) 0:08:30.327 **********

skipping: [dc1]

TASK [core/base_image : Configure Linux machine]

Friday 15 April 2022 14:25:00 +0300 (0:00:00.078) 0:08:30.405 **********

skipping: [dc1]

TASK [core/users : Change Windows users' passwords]

**

Friday 15 April 2022 14:25:00 +0300 (0:00:00.055) 0:08:30.461 **********

included: /mnt/c/GIT/demo/roles/core/users/tasks/windows.yml for dc1

TASK [core/users : Verifying regular accounts]

Friday 15 April 2022 14:25:00 +0300 (0:00:00.103) 0:08:30.564 **********

changed: [dc1] => (item={'username': 'Administrator', 'password': 'Password.123'})

82

TASK [core/users : Verifying DC accounts]

**

Friday 15 April 2022 14:25:09 +0300 (0:00:08.563) 0:08:39.127 **********

skipping: [dc1] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [core/users : Creating a profile for required accounts]

Friday 15 April 2022 14:25:09 +0300 (0:00:00.071) 0:08:39.199 **********

ok: [dc1] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [Start VM customization]

**

Friday 15 April 2022 14:25:15 +0300 (0:00:06.248) 0:08:45.447 **********

TASK [conf/install_primary_domain_controller : Install AD-Domain-Services role]

**

Friday 15 April 2022 14:25:16 +0300 (0:00:00.248) 0:08:45.696 **********

changed: [dc1]

TASK [conf/install_primary_domain_controller : Creating new Windows domain]

**

Friday 15 April 2022 14:26:17 +0300 (0:01:01.703) 0:09:47.399 **********

changed: [dc1]

TASK [conf/install_primary_domain_controller : Rebooting, if required]

Friday 15 April 2022 14:27:14 +0300 (0:00:57.132) 0:10:44.532 **********

changed: [dc1]

TASK [conf/install_primary_domain_controller : Checking PDC availability]

**

Friday 15 April 2022 14:28:34 +0300 (0:01:19.280) 0:12:03.813 **********

changed: [dc1]

TASK [conf/install_primary_domain_controller : Gathering facts]

**

Friday 15 April 2022 14:36:44 +0300 (0:08:09.953) 0:20:13.767 **********

ok: [dc1]

TASK [Checking DC status]

**

Friday 15 April 2022 14:37:18 +0300 (0:00:34.597) 0:20:48.364 **********

83

TASK [conf/dc_check : Waiting for Active Directory services]

Friday 15 April 2022 14:37:18 +0300 (0:00:00.144) 0:20:48.509 **********

changed: [dc1]

TASK [conf/dc_check : Getting domain info]

Friday 15 April 2022 14:37:26 +0300 (0:00:07.887) 0:20:56.397 **********

changed: [dc1]

TASK [vm/dc1 : Adding required Users, groups and OUs for Observium]

**

Friday 15 April 2022 14:37:36 +0300 (0:00:09.473) 0:21:05.870 **********

changed: [dc1]

PLAY RECAP

**

dc1 : ok=41 changed=15 unreachable=0 failed=0 skipped=5

rescued=0 ignored=0

localhost : ok=1 changed=0 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

Friday 15 April 2022 14:37:44 +0300 (0:00:08.722) 0:21:14.593 **********

84

Appendix 4: OpenNebula deployment example

kristjan@DESKTOP-992ALSL:/mnt/c/GIT/demo$ ansible-playbook opennebula.yml -

e=deploy_mode=deploy -e=machine=dc1

PLAY [localhost]

**

TASK [set_fact]

**

Saturday 16 April 2022 13:47:18 +0300 (0:00:00.141) 0:00:00.141 ********

ok: [localhost] => (item=dc1)

PLAY [['dc1']]

**

TASK [core/populate_inventory : Add deployable group for single host]

**

Saturday 16 April 2022 13:47:18 +0300 (0:00:00.314) 0:00:00.456 ********

changed: [dc1]

PLAY [deployable]

**

TASK [setup]

**

Saturday 16 April 2022 13:47:18 +0300 (0:00:00.084) 0:00:00.540 ********

ok: [dc1 -> localhost]

TASK [core/opennebula : Start undeploy]

**

Saturday 16 April 2022 13:47:20 +0300 (0:00:01.422) 0:00:01.963 ********

skipping: [dc1]

85

TASK [core/opennebula : include_tasks]

Saturday 16 April 2022 13:47:20 +0300 (0:00:00.047) 0:00:02.011 ********

included: /mnt/c/GIT/demo/roles/core/opennebula/tasks/deploy.yml for dc1

TASK [core/opennebula : Deployig VM]

Saturday 16 April 2022 13:47:20 +0300 (0:00:00.136) 0:00:02.147 ********

changed: [dc1 -> localhost]

TASK [core/opennebula : Creating a new template for Exchange server]

Saturday 16 April 2022 13:51:42 +0300 (0:04:22.464) 0:04:24.612 ********

skipping: [dc1]

TASK [core/opennebula : Deployig Exchange VM]

**

Saturday 16 April 2022 13:51:43 +0300 (0:00:00.064) 0:04:24.677 ********

skipping: [dc1]

TASK [core/opennebula : set_fact]

**

Saturday 16 April 2022 13:51:43 +0300 (0:00:00.050) 0:04:24.727 ********

ok: [dc1]

TASK [core/opennebula : Print VM properties]

Saturday 16 April 2022 13:51:43 +0300 (0:00:00.072) 0:04:24.800 ********

ok: [dc1 -> localhost] => changed=false

 msg: result

TASK [core/opennebula : include_tasks]

Saturday 16 April 2022 13:51:43 +0300 (0:00:00.056) 0:04:24.856 ********

included: /mnt/c/GIT/demo/roles/core/opennebula/tasks/connection.yml for dc1

TASK [core/opennebula : Setting initial connection]

**

Saturday 16 April 2022 13:51:43 +0300 (0:00:00.113) 0:04:24.969 ********

ok: [dc1]

86

TASK [core/opennebula : Set networked Ansible connection]

**

Saturday 16 April 2022 13:51:43 +0300 (0:00:00.059) 0:04:25.029 ********

ok: [dc1]

TASK [core/opennebula : Waiting for system to become reachable]

**

Saturday 16 April 2022 13:51:43 +0300 (0:00:00.059) 0:04:25.089 ********

ok: [dc1]

TASK [core/opennebula : Gathering facts...]

**

Saturday 16 April 2022 13:55:52 +0300 (0:04:09.199) 0:08:34.289 ********

ok: [dc1]

TASK [core/opennebula : include_tasks]

Saturday 16 April 2022 13:56:10 +0300 (0:00:17.723) 0:08:52.013 ********

included: /mnt/c/GIT/demo/roles/core/opennebula/tasks/network.yml for dc1

TASK [core/opennebula : Waiting for system to become reachable]

**

Saturday 16 April 2022 13:56:10 +0300 (0:00:00.103) 0:08:52.116 ********

ok: [dc1]

TASK [core/opennebula : include_tasks]

Saturday 16 April 2022 13:56:13 +0300 (0:00:03.056) 0:08:55.173 ********

included: /mnt/c/GIT/demo/roles/core/opennebula/tasks/configuration/windows_cli.yml for dc1

TASK [core/opennebula : Configure NIC-s]

Saturday 16 April 2022 13:56:13 +0300 (0:00:00.214) 0:08:55.388 ********

fatal: [dc1]: UNREACHABLE! => changed=false

 msg: |-

 Data could not be sent to remote host. Make sure this host can be reached over ssh: #<

CLIXML

 skip_reason: Host dc1 is unreachable

 unreachable: true

TASK [core/opennebula : include_tasks]

87

Saturday 16 April 2022 13:56:54 +0300 (0:00:41.066) 0:09:36.455 ********

included: /mnt/c/GIT/demo/roles/core/opennebula/tasks/new_connection.yml for dc1

TASK [core/opennebula : Setting new connection IP]

Saturday 16 April 2022 13:56:54 +0300 (0:00:00.112) 0:09:36.567 ********

ok: [dc1]

TASK [core/opennebula : Set networked Ansible connection]

**

Saturday 16 April 2022 13:56:54 +0300 (0:00:00.055) 0:09:36.622 ********

ok: [dc1]

TASK [core/opennebula : Waiting for system to become reachable]

**

Saturday 16 April 2022 13:56:55 +0300 (0:00:00.046) 0:09:36.669 ********

ok: [dc1]

TASK [core/opennebula : set_fact]

**

Saturday 16 April 2022 13:56:57 +0300 (0:00:02.392) 0:09:39.061 ********

ok: [dc1]

TASK [core/opennebula : Gathering facts...]

**

Saturday 16 April 2022 13:56:57 +0300 (0:00:00.055) 0:09:39.117 ********

ok: [dc1]

TASK [core/base_image : Configure Windows machine]

Saturday 16 April 2022 13:57:02 +0300 (0:00:04.928) 0:09:44.045 ********

included: /mnt/c/GIT/demo/roles/core/base_image/tasks/windows.yml for dc1

TASK [core/base_image : Set correct time]

**

Saturday 16 April 2022 13:57:02 +0300 (0:00:00.123) 0:09:44.169 ********

changed: [dc1]

TASK [core/base_image : Apply windows baseconf]

**

Saturday 16 April 2022 13:57:16 +0300 (0:00:13.650) 0:09:57.819 ********

changed: [dc1]

88

TASK [core/base_image : Enable RDP service]

**

Saturday 16 April 2022 13:57:23 +0300 (0:00:07.489) 0:10:05.309 ********

changed: [dc1]

TASK [core/base_image : Enable RDP firewall]

Saturday 16 April 2022 13:57:26 +0300 (0:00:02.612) 0:10:07.921 ********

changed: [dc1]

TASK [core/base_image : Changing Windows hostname]

Saturday 16 April 2022 13:57:31 +0300 (0:00:04.804) 0:10:12.725 ********

changed: [dc1]

TASK [core/base_image : Rebooting, if required]

**

Saturday 16 April 2022 13:57:33 +0300 (0:00:02.178) 0:10:14.903 ********

changed: [dc1]

TASK [core/base_image : Configure Linux machine]

Saturday 16 April 2022 13:58:22 +0300 (0:00:49.339) 0:11:04.243 ********

skipping: [dc1]

TASK [core/users : Change Windows users' passwords]

**

Saturday 16 April 2022 13:58:22 +0300 (0:00:00.041) 0:11:04.284 ********

included: /mnt/c/GIT/demo/roles/core/users/tasks/windows.yml for dc1

TASK [core/users : Verifying regular accounts]

Saturday 16 April 2022 13:58:22 +0300 (0:00:00.103) 0:11:04.387 ********

changed: [dc1] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [core/users : Verifying DC accounts]

**

Saturday 16 April 2022 13:58:36 +0300 (0:00:13.496) 0:11:17.884 ********

skipping: [dc1] => (item={'username': 'Administrator', 'password': 'Password.123'})

89

TASK [core/users : Creating a profile for required accounts]

Saturday 16 April 2022 13:58:36 +0300 (0:00:00.068) 0:11:17.952 ********

ok: [dc1] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [Start VM customization]

**

Saturday 16 April 2022 13:58:39 +0300 (0:00:02.980) 0:11:20.933 ********

TASK [conf/install_primary_domain_controller : Install AD-Domain-Services role]

**

Saturday 16 April 2022 13:58:39 +0300 (0:00:00.251) 0:11:21.184 ********

changed: [dc1]

TASK [conf/install_primary_domain_controller : Creating new Windows domain]

**

Saturday 16 April 2022 14:00:28 +0300 (0:01:49.262) 0:13:10.447 ********

changed: [dc1]

TASK [conf/install_primary_domain_controller : Rebooting, if required]

Saturday 16 April 2022 14:01:32 +0300 (0:01:03.588) 0:14:14.036 ********

changed: [dc1]

TASK [conf/install_primary_domain_controller : Checking PDC availability]

**

Saturday 16 April 2022 14:07:43 +0300 (0:06:11.536) 0:20:25.572 ********

changed: [dc1]

TASK [conf/install_primary_domain_controller : Gathering facts]

**

Saturday 16 April 2022 14:10:51 +0300 (0:03:07.847) 0:23:33.419 ********

ok: [dc1]

TASK [Checking DC status]

**

**

Saturday 16 April 2022 14:11:25 +0300 (0:00:33.832) 0:24:07.252 ********

TASK [conf/dc_check : Waiting for Active Directory services]

Saturday 16 April 2022 14:11:25 +0300 (0:00:00.149) 0:24:07.401 ********

changed: [dc1]

90

TASK [conf/dc_check : Getting domain info]

Saturday 16 April 2022 14:11:28 +0300 (0:00:02.785) 0:24:10.187 ********

changed: [dc1]

TASK [vm/dc1 : Adding required Users, groups and OUs for Observium]

**

Saturday 16 April 2022 14:11:33 +0300 (0:00:05.404) 0:24:15.591 ********

changed: [dc1]

PLAY RECAP

**

dc1 : ok=38 changed=16 unreachable=1 failed=0 skipped=6

rescued=0 ignored=0

localhost : ok=1 changed=0 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

Saturday 16 April 2022 14:11:37 +0300 (0:00:03.818) 0:24:19.410 ********

91

Appendix 5: vSphere dual deployment example

kristjan@DESKTOP-992ALSL:/mnt/c/GIT/demo$ ansible-playbook vsphere.yml -

e=deploy_mode=redeploy -e=machine=ws1,ws2

PLAY [localhost]

**

TASK [set_fact]

**

Wednesday 11 May 2022 23:44:16 +0300 (0:00:00.154) 0:00:00.154 *********

ok: [localhost] => (item=ws1)

ok: [localhost] => (item=ws2)

PLAY [['ws1', 'ws2']]

**

TASK [core/populate_inventory : Add deployable group for single host]

Wednesday 11 May 2022 23:44:16 +0300 (0:00:00.363) 0:00:00.518 *********

changed: [ws1]

PLAY [['ws1', 'ws2']]

**

TASK [core/populate_inventory : Add deployable group for single host]

Wednesday 11 May 2022 23:44:16 +0300 (0:00:00.070) 0:00:00.588 *********

changed: [ws2]

PLAY [deployable]

**

92

TASK [setup]

**

Wednesday 11 May 2022 23:44:16 +0300 (0:00:00.085) 0:00:00.674 *********

TASK [setup]

**

Wednesday 11 May 2022 23:44:16 +0300 (0:00:00.046) 0:00:00.720 *********

ok: [ws2 -> localhost]

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:44:18 +0300 (0:00:01.298) 0:00:02.019 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/vmware_guest.yml for ws2

TASK [core/vsphere : Define networks vars for vmware_guest]

Wednesday 11 May 2022 23:44:18 +0300 (0:00:00.110) 0:00:02.129 *********

ok: [ws2]

TASK [core/vsphere : Start undeploy]

**

Wednesday 11 May 2022 23:44:18 +0300 (0:00:00.082) 0:00:02.211 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/undeploy.yml for ws2

TASK [core/vsphere : Undeploy VM]

Wednesday 11 May 2022 23:44:18 +0300 (0:00:00.142) 0:00:02.354 *********

TASK [core/vsphere : Undeploy VM]

ok: [ws1 -> localhost]

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:44:19 +0300 (0:00:00.931) 0:00:03.285 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/vmware_guest.yml for ws1

TASK [core/vsphere : Define networks vars for vmware_guest]

Wednesday 11 May 2022 23:44:19 +0300 (0:00:00.112) 0:00:03.398 *********

ok: [ws1]

93

TASK [core/vsphere : Start undeploy]

**

Wednesday 11 May 2022 23:44:19 +0300 (0:00:00.076) 0:00:03.474 *********

TASK [core/vsphere : Start undeploy]

**

ok: [ws2 -> localhost]

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/undeploy.yml for ws1

TASK [core/vsphere : Undeploy VM]

Wednesday 11 May 2022 23:44:19 +0300 (0:00:00.189) 0:00:03.664 *********

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:44:19 +0300 (0:00:00.040) 0:00:03.705 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/portgroups.yml for ws2

TASK [core/vsphere : Making sure vSphere portgroups are present]

**

Wednesday 11 May 2022 23:44:20 +0300 (0:00:00.128) 0:00:03.833 *********

TASK [core/vsphere : Making sure vSphere portgroups are present]

**

ok: [ws1 -> localhost]

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:44:20 +0300 (0:00:00.882) 0:00:04.716 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/portgroups.yml for ws1

TASK [core/vsphere : Making sure vSphere portgroups are present]

**

Wednesday 11 May 2022 23:44:21 +0300 (0:00:00.121) 0:00:04.837 *********

TASK [core/vsphere : Making sure vSphere portgroups are present]

**

ok: [ws2 -> localhost]

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:44:21 +0300 (0:00:00.194) 0:00:05.032 *********

94

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/deploy.yml for ws2

TASK [core/vsphere : VM lookup]

Wednesday 11 May 2022 23:44:21 +0300 (0:00:00.111) 0:00:05.143 *********

TASK [core/vsphere : VM lookup]

ok: [ws1 -> localhost]

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:44:22 +0300 (0:00:00.786) 0:00:05.930 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/deploy.yml for ws1

TASK [core/vsphere : VM lookup]

Wednesday 11 May 2022 23:44:22 +0300 (0:00:00.128) 0:00:06.059 *********

TASK [core/vsphere : VM lookup]

ok: [ws2 -> localhost]

TASK [core/vsphere : set_fact]

**

Wednesday 11 May 2022 23:44:22 +0300 (0:00:00.226) 0:00:06.285 *********

ok: [ws2]

TASK [core/vsphere : Clone VM]

**

Wednesday 11 May 2022 23:44:22 +0300 (0:00:00.075) 0:00:06.361 *********

TASK [core/vsphere : Clone VM]

**

ok: [ws1 -> localhost]

TASK [core/vsphere : set_fact]

**

Wednesday 11 May 2022 23:44:23 +0300 (0:00:00.700) 0:00:07.062 *********

ok: [ws1]

TASK [core/vsphere : Clone VM]

**

95

Wednesday 11 May 2022 23:44:23 +0300 (0:00:00.072) 0:00:07.134 *********

TASK [core/vsphere : Clone VM]

**

changed: [ws2 -> localhost]

TASK [core/vsphere : Start VM]

**

Wednesday 11 May 2022 23:49:54 +0300 (0:05:30.742) 0:05:37.877 *********

ok: [ws2 -> localhost]

TASK [core/vsphere : Gather deployed machine info]

**

Wednesday 11 May 2022 23:49:57 +0300 (0:00:02.973) 0:05:40.851 *********

ok: [ws2 -> localhost]

TASK [core/vsphere : Errors occurred, redeploying]

**

Wednesday 11 May 2022 23:49:57 +0300 (0:00:00.879) 0:05:41.730 *********

skipping: [ws2] => (item=undeploy.yml)

skipping: [ws2] => (item=deploy.yml)

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:49:58 +0300 (0:00:00.112) 0:05:41.843 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/network.yml for ws2

TASK [core/vsphere : Set vmware tools connection]

Wednesday 11 May 2022 23:49:58 +0300 (0:00:00.105) 0:05:41.949 *********

ok: [ws2]

TASK [core/vsphere : Waiting for connection]

**

Wednesday 11 May 2022 23:49:58 +0300 (0:00:00.075) 0:05:42.024 *********

[WARNING]: Reset is not implemented for this connection

ok: [ws2]

TASK [core/vsphere : Gathering facts]

Wednesday 11 May 2022 23:50:21 +0300 (0:00:23.625) 0:06:05.649 *********

ok: [ws2]

96

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:50:55 +0300 (0:00:33.821) 0:06:39.470 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/configuration/windows_cli.yml for ws2

TASK [core/vsphere : Configure interfaces]

**

Wednesday 11 May 2022 23:50:55 +0300 (0:00:00.150) 0:06:39.621 *********

changed: [ws2] => (item={'name': 'vlan68', 'ipv4': '10.80.68.36/24', 'ipv4_gateway':

'10.80.68.1', 'vlan': 68})

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:51:17 +0300 (0:00:21.410) 0:07:01.031 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/connection.yml for ws2

TASK [core/vsphere : Setting connection IP]

Wednesday 11 May 2022 23:51:17 +0300 (0:00:00.094) 0:07:01.126 *********

ok: [ws2]

TASK [core/vsphere : Setting Ansible connection]

**

Wednesday 11 May 2022 23:51:17 +0300 (0:00:00.058) 0:07:01.185 *********

ok: [ws2]

TASK [core/vsphere : Waiting for connection]

**

Wednesday 11 May 2022 23:51:17 +0300 (0:00:00.054) 0:07:01.239 *********

ok: [ws2]

TASK [core/vsphere : set_fact]

**

Wednesday 11 May 2022 23:51:23 +0300 (0:00:06.355) 0:07:07.595 *********

ok: [ws2]

TASK [core/vsphere : Gathering facts...]

**

Wednesday 11 May 2022 23:51:23 +0300 (0:00:00.052) 0:07:07.648 *********

ok: [ws2]

97

TASK [core/base_image : Configure Windows machine]

**

Wednesday 11 May 2022 23:51:38 +0300 (0:00:14.981) 0:07:22.629 *********

included: /mnt/c/GIT/demo/roles/core/base_image/tasks/windows.yml for ws2

TASK [core/base_image : Set correct time]

Wednesday 11 May 2022 23:51:38 +0300 (0:00:00.114) 0:07:22.743 *********

changed: [ws2]

TASK [core/base_image : Apply windows baseconf]

Wednesday 11 May 2022 23:52:11 +0300 (0:00:32.891) 0:07:55.634 *********

TASK [core/base_image : Apply windows baseconf]

changed: [ws1 -> localhost]

TASK [core/vsphere : Start VM]

**

Wednesday 11 May 2022 23:52:36 +0300 (0:00:25.126) 0:08:20.761 *********

ok: [ws1 -> localhost]

TASK [core/vsphere : Gather deployed machine info]

**

Wednesday 11 May 2022 23:52:39 +0300 (0:00:02.805) 0:08:23.567 *********

ok: [ws1 -> localhost]

TASK [core/vsphere : Errors occurred, redeploying]

**

Wednesday 11 May 2022 23:52:40 +0300 (0:00:01.142) 0:08:24.709 *********

skipping: [ws1] => (item=undeploy.yml)

skipping: [ws1] => (item=deploy.yml)

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:52:41 +0300 (0:00:00.111) 0:08:24.820 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/network.yml for ws1

TASK [core/vsphere : Set vmware tools connection]

Wednesday 11 May 2022 23:52:41 +0300 (0:00:00.094) 0:08:24.915 *********

98

ok: [ws1]

TASK [core/vsphere : Waiting for connection]

**

Wednesday 11 May 2022 23:52:41 +0300 (0:00:00.066) 0:08:24.982 *********

[WARNING]: Reset is not implemented for this connection

TASK [core/vsphere : Waiting for connection]

**

changed: [ws2]

TASK [core/base_image : Enable RDP service]

Wednesday 11 May 2022 23:52:57 +0300 (0:00:15.948) 0:08:40.930 *********

TASK [core/base_image : Enable RDP service]

ok: [ws1]

TASK [core/vsphere : Gathering facts]

Wednesday 11 May 2022 23:53:00 +0300 (0:00:03.737) 0:08:44.668 *********

TASK [core/vsphere : Gathering facts]

changed: [ws2]

TASK [core/base_image : Enable RDP firewall]

**

Wednesday 11 May 2022 23:53:04 +0300 (0:00:03.918) 0:08:48.587 *********

changed: [ws2]

TASK [core/base_image : Changing Windows hostname]

**

Wednesday 11 May 2022 23:53:14 +0300 (0:00:10.108) 0:08:58.696 *********

ok: [ws2]

TASK [core/base_image : Rebooting, if required]

Wednesday 11 May 2022 23:53:20 +0300 (0:00:05.466) 0:09:04.163 *********

skipping: [ws2]

99

TASK [core/base_image : Configure Linux machine]

**

Wednesday 11 May 2022 23:53:20 +0300 (0:00:00.061) 0:09:04.224 *********

skipping: [ws2]

TASK [core/users : Change Windows users' passwords]

Wednesday 11 May 2022 23:53:20 +0300 (0:00:00.048) 0:09:04.273 *********

included: /mnt/c/GIT/demo/roles/core/users/tasks/windows.yml for ws2

TASK [core/users : Verifying regular accounts]

**

Wednesday 11 May 2022 23:53:20 +0300 (0:00:00.097) 0:09:04.370 *********

TASK [core/users : Verifying regular accounts]

**

ok: [ws1]

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:53:27 +0300 (0:00:07.282) 0:09:11.652 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/configuration/windows_cli.yml for ws1

TASK [core/vsphere : Configure interfaces]

**

Wednesday 11 May 2022 23:53:28 +0300 (0:00:00.180) 0:09:11.833 *********

TASK [core/vsphere : Configure interfaces]

**

ok: [ws2] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [core/users : Verifying DC accounts]

Wednesday 11 May 2022 23:53:28 +0300 (0:00:00.759) 0:09:12.593 *********

skipping: [ws2] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [core/users : Creating a profile for required accounts]

**

Wednesday 11 May 2022 23:53:28 +0300 (0:00:00.064) 0:09:12.658 *********

ok: [ws2] => (item={'username': 'Administrator', 'password': 'Password.123'})

100

TASK [Start VM customization]

**

*

Wednesday 11 May 2022 23:53:34 +0300 (0:00:06.056) 0:09:18.714 *********

TASK [conf/join_domain : Adding Windows machines to domain]

Wednesday 11 May 2022 23:53:35 +0300 (0:00:00.235) 0:09:18.950 *********

included: /mnt/c/GIT/demo/roles/conf/join_domain/tasks/windows.yml for ws2

TASK [conf/join_domain : Adding machine to domain]

**

Wednesday 11 May 2022 23:53:35 +0300 (0:00:00.109) 0:09:19.060 *********

changed: [ws2]

TASK [conf/join_domain : Rebooting machine]

Wednesday 11 May 2022 23:53:42 +0300 (0:00:07.411) 0:09:26.471 *********

TASK [conf/join_domain : Rebooting machine]

changed: [ws1] => (item={'name': 'vlan68', 'ipv4': '10.80.68.35/24', 'ipv4_gateway':

'10.80.68.1', 'vlan': 68})

TASK [core/vsphere : include_tasks]

Wednesday 11 May 2022 23:53:43 +0300 (0:00:00.459) 0:09:26.931 *********

included: /mnt/c/GIT/demo/roles/core/vsphere/tasks/connection.yml for ws1

TASK [core/vsphere : Setting connection IP]

Wednesday 11 May 2022 23:53:43 +0300 (0:00:00.095) 0:09:27.026 *********

ok: [ws1]

TASK [core/vsphere : Setting Ansible connection]

**

Wednesday 11 May 2022 23:53:43 +0300 (0:00:00.058) 0:09:27.085 *********

ok: [ws1]

TASK [core/vsphere : Waiting for connection]

**

Wednesday 11 May 2022 23:53:43 +0300 (0:00:00.058) 0:09:27.144 *********

ok: [ws1]

101

TASK [core/vsphere : set_fact]

**

Wednesday 11 May 2022 23:53:46 +0300 (0:00:02.921) 0:09:30.065 *********

ok: [ws1]

TASK [core/vsphere : Gathering facts...]

**

Wednesday 11 May 2022 23:53:46 +0300 (0:00:00.065) 0:09:30.131 *********

ok: [ws1]

TASK [core/base_image : Configure Windows machine]

**

Wednesday 11 May 2022 23:53:57 +0300 (0:00:11.202) 0:09:41.333 *********

included: /mnt/c/GIT/demo/roles/core/base_image/tasks/windows.yml for ws1

TASK [core/base_image : Set correct time]

Wednesday 11 May 2022 23:53:57 +0300 (0:00:00.094) 0:09:41.428 *********

changed: [ws1]

TASK [core/base_image : Apply windows baseconf]

Wednesday 11 May 2022 23:54:11 +0300 (0:00:14.307) 0:09:55.735 *********

changed: [ws1]

TASK [core/base_image : Enable RDP service]

Wednesday 11 May 2022 23:54:24 +0300 (0:00:12.312) 0:10:08.048 *********

changed: [ws1]

TASK [core/base_image : Enable RDP firewall]

**

Wednesday 11 May 2022 23:54:26 +0300 (0:00:02.652) 0:10:10.700 *********

changed: [ws1]

TASK [core/base_image : Changing Windows hostname]

**

Wednesday 11 May 2022 23:54:32 +0300 (0:00:05.403) 0:10:16.103 *********

ok: [ws1]

102

TASK [core/base_image : Rebooting, if required]

Wednesday 11 May 2022 23:54:34 +0300 (0:00:01.915) 0:10:18.019 *********

skipping: [ws1]

TASK [core/base_image : Configure Linux machine]

**

Wednesday 11 May 2022 23:54:34 +0300 (0:00:00.050) 0:10:18.069 *********

skipping: [ws1]

TASK [core/users : Change Windows users' passwords]

Wednesday 11 May 2022 23:54:34 +0300 (0:00:00.050) 0:10:18.120 *********

included: /mnt/c/GIT/demo/roles/core/users/tasks/windows.yml for ws1

TASK [core/users : Verifying regular accounts]

**

Wednesday 11 May 2022 23:54:34 +0300 (0:00:00.101) 0:10:18.221 *********

ok: [ws1] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [core/users : Verifying DC accounts]

Wednesday 11 May 2022 23:54:39 +0300 (0:00:04.831) 0:10:23.053 *********

skipping: [ws1] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [core/users : Creating a profile for required accounts]

**

Wednesday 11 May 2022 23:54:39 +0300 (0:00:00.071) 0:10:23.124 *********

TASK [core/users : Creating a profile for required accounts]

**

changed: [ws2]

TASK [core/users : Creating a profile for required accounts]

**

ok: [ws1] => (item={'username': 'Administrator', 'password': 'Password.123'})

TASK [Start VM customization]

**

*

Wednesday 11 May 2022 23:54:41 +0300 (0:00:02.185) 0:10:25.309 *********

103

TASK [conf/join_domain : Adding Windows machines to domain]

Wednesday 11 May 2022 23:54:41 +0300 (0:00:00.172) 0:10:25.482 *********

included: /mnt/c/GIT/demo/roles/conf/join_domain/tasks/windows.yml for ws1

TASK [conf/join_domain : Adding machine to domain]

**

Wednesday 11 May 2022 23:54:41 +0300 (0:00:00.118) 0:10:25.600 *********

changed: [ws1]

TASK [conf/join_domain : Rebooting machine]

Wednesday 11 May 2022 23:54:45 +0300 (0:00:03.986) 0:10:29.586 *********

changed: [ws1]

TASK [vm/ws1 : Add WS_RDP_Users to RDP group]

Wednesday 11 May 2022 23:55:35 +0300 (0:00:50.136) 0:11:19.723 *********

changed: [ws1]

PLAY RECAP

**

localhost : ok=1 changed=0 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

ws1 : ok=39 changed=10 unreachable=0 failed=0 skipped=4

rescued=0 ignored=0

ws2 : ok=38 changed=9 unreachable=0 failed=0 skipped=4

rescued=0 ignored=0

Wednesday 11 May 2022 23:55:43 +0300 (0:00:07.693) 0:11:27.417 *********

