
Tallinn 2025

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mikhail Polomoshnov 185161IADB

Line of Business Front-end Application
Migration on the Example of Playtech PLC

Bachelor's thesis

Supervisor: German Mumma

 Master of Science

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mikhail Polomoshnov 185161IADB

Ärikriitilise eesrakenduse migreerimine
Playtech PLC näitel

Bakalaureusetöö

Juhendaja: German Mumma

 Magister

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mikhail Polomoshnov

01.01.2025

4

Abstract

Organisations across the globe design and implement custom software solutions to fulfil

their unique needs. Over time, technologies used to develop proprietary systems become

obsolete. This challenges organisations with the task of migrating legacy applications to

more modern technologies. The author’s organisation was faced with a similar challenge

when the framework used to develop a front-end application for a project reporting system

reached its end of life. Therefore, the main objective of this work was to formulate an

application-specific migration approach and rewrite the legacy front-end application. To

achieve this goal, the author utilised a variety of methods, including analysis, prototyping,

testing, development and deployment.

In the analysis part, the author examined the old application and compared common

technologies and migration strategies that could be utilised to solve the problem of the

work. As a result, Angular was selected as the main framework for the new solution, and

an incremental rewrite with two separate applications was chosen as the migration

approach. Then, the author developed and validated a prototype for the final solution.

Subsequently, the author analysed functional and non-functional requirements for the

new application. Lastly, in the implementation part of the work, the author covered the

development, testing, and deployment of the new solution.

As a result of this work, the main objective has been achieved. The new application has

been developed and deployed to the production environment. The new solution is

implemented using state-of-the-art front-end technologies and standard programming

approaches, providing a comprehensive solution to the main problem of this work. The

new solution demonstrates major improvements over the legacy application across all key

areas. The new application provides a superior experience to the users and is well-

positioned for continued development and future growth.

This thesis is written in English and is 38 pages long, including 6 chapters, 12 figures and

4 tables.

5

Annotatsioon

Ärikriitilise veebipõhise eesrakenduse migreerimine Playtech

PLC näitel

Ettevõtted üle maailma arendavad kohandatud tarkvaralahendusi, et täita oma unikaalseid

vajadusi. Aja jooksul ettevõte süsteemide arendamiseks kasutatud tehnoloogiad

vananevad. See protsess esitab ettevõtetele väljakutse viia oma rakendused üle

kaasaegsetele tehnoloogiatele. Autori organisatsioon seisis silmitsi sarnase väljakutsega,

kui projektide aruandlussüsteemi veebipõhise eesrakenduse arendamiseks kasutatud

raamistik jõudis oma eluea lõpuni. Käesoleva töö põhieesmärgiks oli defineerida

eesrakenduse migratsiooni lähenemisviisi ning kirjutada eesrakendust ümber. Töö

eesmärgi saavutamiseks kasutas autor erinevaid meetodeid, sealhulgas analüüsi,

prototüüpimist, testimist, arendamist ja juurutamist.

Analüüsiosas oli uuritud vana rakendus ning omavahel võrreldud kaasaegsed

tehnoloogiad ja migratsiooni lähenemisviisid, mida saaks kasutada töö eesmärgi

saavutamiseks. Uue lahenduse põhiraamistikuks oli valitud Angular.

Migratsioonimeetodiks valiti samm-sammuline ümberkirjutamine kahe eraldi

rakendusega. Seejärel, autori poolt oli välja töötatud lahenduse prototüüp. Järgmisena oli

analüüsitud uue rakenduse funktsionaalsed ja mittefunktsionaalsed nõuded. Töö

praktilises osas tegeles autor uue lahenduse arendamise, testimise ja juurutamisega.

Käesoleva töö tulemusena said põhieesmärgid täielikult täidetud. Uus lahendus on

arendatud, paigaldatud toodangusse ja võetud kasutusele. Uus lahendus on loodud

kasutades kaasaegseid tehnoloogiaid ja standardseid programmeerimisvõtteid ning pakub

põhjalikku lahendust käesoleva töö põhiprobleemile. Uus lahendus demonstreerib olulisi

täiustusi võrreldes vana rakendusega kõigis võtmevaldkondades. Uus rakendus pakub

kasutajatele paremat kasutuskogemust ning on hästi valmistatud tulevaseks arenguks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 38 leheküljel, 6 peatükki, 12

joonist, 4 tabelit.

6

List of abbreviations and terms

AI Artificial Intelligence

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CLI Command Line Interface

CSS Cascading Style Sheets

DI Dependency Injection

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IIS Internet Information Services

LTS Long-term Support

MIS Management Information System

NGRX Angular Reactive Extensions

PLC Public Limited Company

RXJS Reactive Extensions for JavaScript

SASS Syntactically Awesome Style Sheets

SPA Single-Page Application

UI User Interface

UX User Experience

URL Uniform Resource Locator

VM Virtual Machine

XML Extensible Markup Language

7

Table of contents

1 Introduction ... 11

2 Background and motivation .. 12

2.1 Front-end application .. 12

2.2 Web client application framework ... 12

2.3 Organisation background .. 13

2.4 System background... 13

2.5 Problem statement .. 14

2.6 Goal statement .. 15

2.7 Methodology ... 15

2.8 Scope and limitations.. 16

2.9 Relevance .. 16

3 Analysis ... 17

3.1 Technical analysis of the current solution .. 17

3.2 Analysis of common technological solutions ... 20

3.2.1 Commercial long-term support .. 20

3.2.2 Modern front-end frameworks for enterprise applications 21

3.3 Analysis of common migration strategies .. 24

3.3.1 Big bang migration .. 24

3.3.2 Hybrid application migration .. 25

3.3.3 Gradual separate application migration ... 26

3.3.4 Migration approach selection .. 27

3.4 Prototype ... 28

3.5 Vision of the final solution ... 29

3.5.1 Functional requirements .. 30

3.5.2 Non-functional requirements ... 31

4 Implementation .. 33

4.1 Development process organisation ... 33

4.2 Development ... 34

4.2.1 Development tooling ... 35

8

4.2.2 Architectural and technological decisions ... 35

4.2.3 Application base development .. 38

4.2.4 Application views development .. 40

4.2.5 New project request view .. 40

4.2.6 Timesheet view .. 41

4.2.7 Estimations view ... 42

4.2.8 Available projects view ... 42

4.2.9 Old application compatibility changes .. 43

4.3 Testing and validation .. 43

4.4 Deployment .. 44

5 Results ... 45

5.1 Efficiency comparison .. 45

5.2 Challenges and complications encountered .. 47

5.3 Future direction... 48

6 Summary .. 49

References .. 50

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 53

Appendix 2 – Timesheet view Figma board ... 54

Appendix 3 – Global stylesheet .. 55

Appendix 4 – Routing configuration .. 56

Appendix 5 – Authentication and authorization route guard ... 58

Appendix 6 – New project request view .. 59

Appendix 7 – Timesheet view, month mode .. 60

Appendix 8 – Timesheet view, week mode .. 61

Appendix 9 – Estimations view .. 62

Appendix 10 – Available projects view ... 63

Appendix 11 – The old application performance testing results 64

Appendix 12 – The new application performance testing results 65

9

List of figures

Figure 1. High-level system scheme... 14

Figure 2. Old project reporting system. Timesheet page. ... 18

Figure 3. Controller-based AngularJS project structure ... 19

Figure 4. Project reporting system prototype. Timesheet view. 29

Figure 5. Project estimation process diagram. .. 34

Figure 6. Application navigation bar. ... 39

10

List of tables

Table 1. Comparison of most common enterprise front-end frameworks. 22

Table 2. New application. Initial and repeated requests. .. 46

11

1 Introduction

Organisations across the globe develop custom software solutions to address their unique

needs. Over time, technologies used to develop proprietary systems become obsolete.

Over the last few years, countless organisations have been faced with the challenge of

migrating their AngularJS applications to more modern technologies to mitigate various

risks. The author’s organisation faced the same problem with a legacy front-end

application for a project reporting system. The main objective of this work is to formulate

an application-specific migration approach and rewrite the legacy front-end application.

In the background and motivation part of the work, the author will introduce the

organisation and the legacy system. The author will also introduce the problem, objective,

methodology, scope, limitations and relevance of the work.

In the analysis part, the author will examine the old application. Then, common

technological solutions and migration strategies will be thoroughly analysed in the

context of the project reporting system. After that, the author will develop and validate a

prototype for a possible solution. Subsequently, functional and non-functional

requirements for the new solution will be covered. As a result of the analysis, the author

will be able to select the main framework and migration approach for the new solution as

well as understand the requirements for it.

In the practical part of the work, the author will describe the process of implementing the

new solution. The implementation part will cover the work process organisation, low-

level technological decisions, and the process of development, testing and deployment.

As a result of this work, a new front-end application will be developed and deployed to

the production environment.

The following work is written in English to comply with the author’s organisation

requirements.

12

2 Background and motivation

In the following chapter, the author will introduce key concepts crucial for the

understanding of the thesis. After that, the author will present the company and the system

background. Subsequently, the author will define the problem and the main goal of the

thesis. Finally, the scope, limitations, methodology and relevance of the work will be

covered.

2.1 Front-end application

A web client application, also known as a front-end application or browser-based

application, is a part of an application system that the user directly interacts with using a

web browser. It is responsible for rendering the user interface, enabling user interactions,

and handling communication with other parts of the system. It is hosted on a remote server

and accessed through a web browser, which means it does not need to be permanently

stored or installed locally [1]. It encompasses all the graphical elements that users interact

with, e.g. forms, buttons, tables, graphs, and input fields [2].

Typically, a front-end application is powered by 3 main web technologies: HTML, CSS

and JavaScript. HTML is a markup language used to create and structure the content of a

front-end application. CSS is a design language that specifies the presentation and styling

of the content defined by the HTML. JavaScript is a multi-purpose programming

language. In the context of front-end development, JavaScript powers the underlying

logic of an application. It is used to dynamically create and update the content, create

animations, and communicate with other parts of the system [3].

2.2 Web client application framework

In software engineering, a front-end framework is a collection of systematically

organized, pre-written, reusable software modules designed to facilitate a more efficient

development of front-end applications. Typically, a front-end framework provides an

13

engineer with pre-written components, design patterns, architectural approaches, tools,

specifications and standards [4].

The main purpose of using a front-end framework is to enhance the application

development and maintenance speed by eliminating the need to define standards and write

base-level code [4]. Essentially, a framework provides a foundation for developing

applications, so the developers can focus on implementing the business logic of an

application.

2.3 Organisation background

The author of the following thesis is employed by Playtech PLC – an international

enterprise which operates in the gambling industry. Playtech was founded in 1999 and is

listed on the London Stock Exchange. Headquartered in the UK, Playtech has offices in

20 countries with around 7800 employees [5].

Playtech specialises in developing platforms, content and services for private and

business customers. With its B2B offerings, Playtech strives to be a technology partner

of choice for betting and gambling operators in regulated markets [5].

The author’s business unit is responsible for the management, development and

maintenance of the internally used applications. The author’s team, in particular, is

focused on engineering and maintaining custom solutions that fulfil the ever-changing

needs of the organisation.

2.4 System background

The author’s organisation utilises an in-house built software system for project

management, budgeting, and reporting purposes. The system is used by a wide range of

employees and managers across the organisation with up to 7500 total users. The number

of daily users normally falls between a few tens and a few hundreds.

The system is a typical example of a MIS or management information system. It

aggregates internal operational data (e.g. project data, employee work log data, project

cost and time estimations, etc) from a number of source systems or directly from the

employees. Using the collected data, it provides the users with scheduled reports, on-

14

demand reports as well as UI for data processing and analysis. The main stakeholders of

this system are the budgeting team employees who use it in their daily work to compose

reports, coordinate the project budgeting, and analyse the project and employee data.

The system is composed of a database, a server-side application, a front-end application,

and a number of scheduled console applications responsible for integrations with other

systems across the organisation (see Figure 1).

The author’s team fully owns the system, and the author is the sole engineer developing

and maintaining it. The application system has been in use since 2017 and has been

developed since 2016 using the state-of-the-art frameworks of that period: AngularJS and

.NET Framework. In the context of this work, the author will predominantly focus on the

front-end part of the system.

2.5 Problem statement

The front-end application for the aforementioned project reporting system has been built

using the AngularJS JavaScript framework (also known as Angular 1) which was released

in 2010 and reached its end-of-support date on the 1st of January 2022 [6].

Persisting with an obsolete framework poses various risks to the organisation. The main

risks include [7]-[9]:

Figure 1. High-level system scheme.

15

 Security vulnerabilities

 Insufficient performance

 Browser incompatibility

 Decreased productivity of users and developers

 Lack of access to new tooling and libraries

 Lack of support for the used tooling and libraries

 Small talent pool and unsatisfactory developer experience

The are several other problems specifically associated with the project reporting front-

end application, which will be discussed in more detail in the following chapters. The

main issues include:

 Bugs

 Dead code (i.e. code that is unnecessary for successful operation of the

application)

 Obsolete features

 Performance issues

 Maintainability issues

 Outdated user interface

 Lack of user input validation

2.6 Goal statement

The main objective of this work is to formulate an application-specific migration

approach and rewrite the legacy front-end application.

As a result of this work, a new front-end application will be developed and deployed to

the production environment.

2.7 Methodology

The author will utilise the following methods to achieve the goal:

 Problem analysis

 Common solutions analysis

 Prototyping

16

 Functional and non-functional requirements analysis

 Development

 Testing

 Deployment

2.8 Scope and limitations

The thesis will cover the analysis and definition of the application-specific migration

approach as well as the process of rewriting and deploying the new application. In the

scope of the work, the author will implement the base logic of the new application (e.g.

state management, user management, base services, routing) and will fully migrate four

views from the old application. Transfer of all thirty to forty views to the new application

would require an extended time and falls outside of the scope of the thesis.

Due to internal security compliance requirements, the topics of hosting infrastructure,

authentication and authorization will be covered in a general manner in the thesis.

While the author is migrating both the front-end application and the server-side

application at the same time, the server-side application will not be covered in this work.

2.9 Relevance

Over the last few years, countless organisations have been faced with the challenge of

migrating their AngularJS applications to more modern technologies to mitigate various

risks. Hence, the problem the author aims to tackle is relevant. To solve the problem, the

author will utilise state-of-the-art front-end technologies for enterprise applications.

Many organisations use project reporting software to plan, organise and monitor the work.

While there are several options available on the market, custom solutions remain relevant,

especially for large organisations that can allocate resources to develop them. Custom

solutions are created to address the specific needs of an organisation that cannot be

satisfied by a generic solution from the market. The stakeholders within an organisation

can fully define the functionality of a custom solution to ensure that it solves their

problems the best. The same cannot be said about the off-the-shelf solutions.

17

3 Analysis

In the following chapter, the author will first analyse the current solution from the

technical point of view. The analysis will cover currently used technologies, architectural

approaches, design patterns, issues and limitations. Then, the author will analyse and

compare different technologies and migration approaches that could be utilised to

implement a new solution. Next, the author will cover the prototyping. Lastly, the author

will analyse the functional and non-functional requirements for the new solution.

3.1 Technical analysis of the current solution

The current solution implements the single-page application design pattern, which means

that the application dynamically rewrites the content on a single web document instead

of loading a new web document on each interaction [4]. The application is built using a

free and open-source front-end framework called AngularJS. AngularJS is based on three

fundamental web technologies: HTML, CSS and JavaScript. AngularJS reached its end-

of-support date and does not receive any official updates or bug fixes anymore. The

framework has several known security vulnerabilities and bugs [7]. The framework is

considered to be less performant than its modern counterparts [10]. Lastly, the framework

community size is decreasing day by day [8].

The application code is also written in JavaScript, which means that it does not support

strong typing. This makes the development and troubleshooting processes more

challenging [9]. In addition, JavaScript is not supported by some of the useful front-end

development tools that require strong typing.

To facilitate the development process and provide a consistent user interface across the

application, a UI library called Kendo UI is employed. The UI library is based on jQuery

– a popular JavaScript library designed to simplify common front-end development tasks

[11]. The UI library also makes use of the AngularJS Directives which will be discussed

in more detail later in this section. While the UI library provides a wide selection of UI

components, it lacks many of the modern features and appears dated (see Figure 2). Any

18

drastic updates to the UI of the project reporting application are complicated by the fact

that the UI library reached its end-of-support date. The library does not contain many

modern features and will not receive any updates or bug fixes in the future.

The application is composed of approximately forty unique views and corresponding

controllers. It has four distinct user groups: regular employees, managers, budgeting team

employees and administrators. The groups can use different views that can be accessed

from the navigation bar. The views shared between different groups expose different

functionality for different users based on the group.

The current solution follows a controller-based architectural approach as opposed to a

more modern component-based approach. At the foundation of controller-based

AngularJS application are five key concepts: modules, controllers, directives, templates

and services (see Figure 3). A module is a container file that encapsulates and wires

together different parts of the application including other modules. The root module

defines the application and acts as an entry point for it. A service is an injectable object

that encapsulates commonly used code and performs one specific task. A template is a

part of the AngularJS application that defines the content rendered in the browser. A

directive is a custom-made or built-in marker on a DOM element that transforms the

element or attaches some specific behaviour to it. Finally, the controller is an object

encapsulating the logic that powers a specific template. The controller and the template

interact with each other using a scope object and different binding options provided by

the framework. The scope is an object that encapsulates the controller’s properties and

methods that can be accessed by the template. [12]

Figure 2. Old project reporting system. Timesheet page.

19

The application routing is implemented in the root application module using the ngRoute

AngularJS module. In the application navigation bar, the users can only see the routes

accessible to their user group.

The application communicates with the server-side application via HTTP requests

utilising AJAX techniques. By convention, HTTP requests in the AngularJS application

should be encapsulated in separate services. In the current solution, the HTTPS requests

are implemented within the controllers which is considered to be an antipattern [13]. This

approach does not follow the separation of concerns principle and promotes code

duplication.

The application does not utilise any libraries or custom solutions for managing its global

state. This means that commonly used and rarely changed data is not shared between

different parts of the application and needs to be fetched from the server-side application

each time the user navigates from one page to another. This negatively affects the user

experience and overall performance of the system [14].

The application is served by an IIS web server installed on a Windows Server virtual

machine. The virtual machine itself is hosted on an on-premises server. The web client

application is hosted on the same VM and IIS site as the server-side application.

The front-end application is secured behind a firewall and can only be accessed from the

Playtech corporate network. The IIS site, and consequently the application, prohibits

anonymous authentication and can only be accessed by internal users with an active

Microsoft Entra account. The application supports single sign-on and uses username and

Figure 3. Controller-based AngularJS project structure

20

password authentication. Authentication is based on a widely adopted computer-network

authentication protocol and is handled by the application’s IIS web server. Authentication

is session-based, meaning that the user session data is stored on the server, and the client

application needs to provide a session identifier on each request to the server for

authentication. The application uses HTTPS, ensuring secure data transmission.

The project reporting application contains several unfixed bugs. On top of that, its

codebase contains many examples of dead code, code repetition, “magic” values and

other common programming antipatterns. Furthermore, the application has insufficient

user input validation in some views. The application load speed and overall performance

are mediocre and could be improved. All these problems result in a deteriorated user

experience as well as more complex development and maintenance processes.

Furthermore, the application contains several obsolete features that are no longer used.

At the same time, the application is missing some features that have been long awaited

by the users. This means that the business logic of the application needs to be reexamined,

and redundant features must be removed from the application.

3.2 Analysis of common technological solutions

Selecting an appropriate technological solution is a crucial step in mitigating the risks

associated with the old application. One possible technological solution to the problem of

this work could be to adopt a modern front-end framework and migrate the old

application. Another technological solution could be not to rewrite the application but to

utilise a commercial long-term support solution for the old framework. In this section, the

author will analyse and compare different technological solutions in the context of the

project reporting application migration.

3.2.1 Commercial long-term support

The simplest way to handle framework end of life is not to migrate and continue using

the old technology. While persisting with the last official AngularJS release is undesirable

as it poses too many risks for the organisation, commercial long-term support offerings

from third-party vendors might seem more appealing.

21

Commercial extended support solutions for AngularJS are offered by two software

development companies: HeroDevs and OpenLogic. Both solutions provide similar

functionality and mitigate two major risks associated with the unsupported front-end

framework: security vulnerabilities and browser incompatibilities. Additionally, the LTS

solutions provide stability updates that might benefit some applications. [7], [15]

Commercial LTS solutions for AngularJS have several strong advantages. They enhance

the longevity, security and stability of the application by eliminating two main risks of

the unsupported framework. Setting up such a solution for an existing application would

require little effort from the developer [7]. However, this approach does not address some

critical issues associated with the old framework. In particular, the AngularJS would

generally have worse performance than a typical modern framework [10]. The old

framework lacks some modularity and code reusability features [8]. The outdated

framework lacks some modern features and tooling [8]. The framework and its tooling

have limited community support and will not receive any updates. Furthermore,

continuing with the old framework would mean that the application design issues will

remain unsolved. The LTS solution will not address the problem of a limited pool of

skilled talent and unsatisfactory developer experience. The organisation will need to

perform a thorough security and compliance check on the third-party vendors, which

would require additional time investment. The LTS solutions are not free and will mean

additional costs to the organisation. Lastly, the long-term support for AngularJS in the

future, so the rewrite remains unavoidable.

In essence, proceeding with an LTS solution for the existing application will only delay

the inevitable migration to a newer technology. At the same time, this approach will not

solve several key issues of the old solution and will introduce additional costs to the

organisation. For these reasons, it was ultimately decided not to proceed with this

approach.

3.2.2 Modern front-end frameworks for enterprise applications

The front-end technology landscape is abundant with different frameworks. Every year a

few promising frameworks emerge, growing the number of options for the developers,

while, at the same time, making the choice more difficult [16]. In the scope of this work,

the author will develop an enterprise application, which implies that the underlying

framework must meet a set of strong requirements. In particular, the target framework

22

must be performant, reliable and scalable. It must have a large talent pool, a big

community, reputable developers and extensive documentation. It must receive regular

updates, and it must have an abundance of features and tooling to satisfy the evolving

needs of the organisation.

By and large, three frameworks meet all of the aforementioned requirements and are

considered to be well-suited for modern enterprise front-end applications: Angular, React

and Vue. These frameworks provide the best balance of reliability, performance,

popularity, tooling and support. Therefore, the author only considered these three

frameworks for the new application. Next, the author will analyse and compare Angular,

React and Vue JavaScript frameworks in more detail (see Table 1) [4], [16]-[19]:

Table 1. Comparison of most common enterprise front-end frameworks.

Criteria Angular React Vue.js

Technology type Comprehensive all-
in-one framework

Library; Mostly
concerned with the
user interface part of
an application

Comprehensive all-
in-one framework

Developers Google Facebook Reputable open-
source developers

Architectural
approach

Component-based
architecture

Component-based
architecture

Component-based
architecture

Scalability Great scalability;
Often regarded as the
standard for large-
scale enterprise
applications

Good scalability;
Considered a good
option for medium
and large enterprise
applications

Generally considered
less scalable than the
other two; Best for
small and medium-
sized applications

Performance High; Generally
considered slightly
less performant

High; Generally
considered slightly
more performant
than others

High; Generally
considered slightly
more performant
than Angular

Rendering Supports both client-
side and server-side
rendering

Supports both client-
side and server-side
rendering

Supports both client-
side and server-side
rendering

DOM type Real DOM Virtual DOM Virtual DOM

Data binding Supports one-way
binding and two-way
binding

Only supports one-
way binding out of
the box

Supports one-way
binding and two-way
binding

23

Criteria Angular React Vue.js

State management Wide range of third-
party state
management options

Wide range of third-
party state
management options

Wide range of
official and third-
party state
management options

Language support TypeScript and
JavaScript

TypeScript and
JavaScript

TypeScript and
JavaScript

Cost and source code
availability

Free and open-source
framework

Free and open-source
framework

Free and open-source
framework

Community size Large community The largest
community

Smaller community

Documentation Extensive official
and community
documentation

Extensive official
and community
documentation

Extensive official
and community
documentation

Tooling Abundant with open-
source and
commercial tooling

Abundant with open-
source and
commercial tooling

Abundant with open-
source and
commercial tooling

Learning complexity The most complex Moderate The least complex

Talent pool Large Large Small

Tooling for
migration from
AngularJS

Official and third-
party tooling for
code conversion and
“hybrid” application
development

Third-party tooling
for code conversion
and “hybrid”
application
development

Third-party tooling
for code conversion
and “hybrid”
application
development

All compared technologies possess the features required for modern enterprise front-end

applications. Each of them would be a great option for developing a medium-sized

application like the one this work is concerned with.

There are two additional aspects to consider when selecting a framework for a new

project: the expertise within the team and common practices within the organisation. It

happened, that the author of this work had previously worked on Angular applications at

his former workplace before coming to Playtech and taking on this project. Therefore,

choosing Angular would mean that the author would not have to spend excessive time

obtaining additional qualifications for this project. Furthermore, Angular has been the

front-end technology of choice within the author’s business unit for many years due to its

vast ecosystem, strong backing and opinionated design (i.e. abundance of official tooling

and default approaches). Therefore, most of the front-end solutions in the author's

24

business unit have been developed using Angular, and most of the author’s colleagues

have expertise in it. These factors ultimately played the biggest role in the decision

process, making the author pick Angular for the new project reporting application.

3.3 Analysis of common migration strategies

Another crucial consideration when rewriting a front-end application is the migration

strategy. With respect to the migration timeline, the strategies can be divided into two

categories: big bang migration (also known as synchronous migration) and gradual

migration (also known as incremental or asynchronous migration) [20]. The latter

category is constituted by two architectural approaches: hybrid application and separate

applications. In this section, the author will analyse and compare the most common

migration approaches in the context of the project reporting application.

3.3.1 Big bang migration

Big bang migration is a migration approach that is performed in one operation, i.e. the

switch from the old application to a new one happens at a single point in time. This implies

that the new solution must be ready to replace an old application before the migration

happens. As a rule, after the migration is finished, the old application is switched off and

not used anymore. The big bang migration is atomic, meaning it avoids having a

continuous transitional state [20].

A big advantage of this approach over the others is that it reduces the complexity and

costs of the migration associated with the simultaneous development, build and

deployment of two separate applications or a hybrid application [21]. It eliminates the

need for interoperability between the old and code. A major drawback of the big bang

approach is that it is very resource-intensive and requires a large time investment since

the entirety of the application must be developed and tested before the first deployment

[20]. This might make it a bad choice for small teams or large projects. Another pitfall of

this approach is that the application or some of its parts may become obsolete during the

long development stage as the business needs tend to change over time. This, in turn,

would mean lost opportunities and a waste of resources for the business.

25

3.3.2 Hybrid application migration

Hybrid application migration is a type of migration that occurs in increments over time

when parts of an old application are rewritten using the new technology. This implies that

parts of the application, written with different frameworks, are intertwined and work

together as one [22].

From the architectural point of view, this migration approach can be split into two

categories: inside-out migration (also known as bottom-up migration) and outside-in

migration (also known as shell migration) [23].

With the bottom-up migration, the developer can start rewriting child components of the

application, connecting them to the old root components. This approach allows

developers to migrate the business logic of the application without the need to update the

root components upfront. This approach, though, does not allow to immediately utilise

some of the new features and benefits of the new framework [24]. Additionally, this

approach implies that the application root components are updated last, meaning that all

previously rewritten child components need to be updated and tested to ensure

compatibility with the new root components [23].

The outside-in migration approach is an adaptation of a strangler pattern where the

application root components are migrated first. After the top-level component is migrated,

the legacy child components are linked to it. Then, the child components are rewritten

one by one. This approach allows to leverage benefits of the new framework upfront and

requires less configuration and testing in the long perspective. [24]

The need for interoperability between the old and the new code in a hybrid application

means that the developers must utilise additional tooling and techniques to achieve it.

When it comes to the AngularJS to Angular hybrid migration, two technologies developed

by the Angular team are most commonly used: Angular elements and ngUpgrade library.

Angular elements allow the developer to package Angular code as Web Components,

which is a web standard for defining HTML elements in a framework-agnostic way. With

Angular elements, the developer can create isolated reusable components that exist

outside of the AngularJS context. This encourages less coupling between the old and the

new code. At the same time, this makes Angular elements a less suitable option for

26

applications with heavily coupled components and complex states, as the standard Web

Component communication options can be limiting. [25]

The ngUpgrade library enables running both Angular and AngularJS in the same

application simultaneously [22]. It allows us to either “upgrade” AngularJS code or

“downgrade” Angular code. This means that a special wrapper around the old or the new

code is added ensuring compatibility with the other framework [23]. It enables close

coupling between the old and the new code, which can be beneficial in some cases (e.g.

migrating long, heavily coupled business processes). A big disadvantage of this library

when it comes to the project reporting system migration, is that a heavy preparation of

the old codebase would be required in order to fully utilise the benefits of the library (e.g.

an update to AngularJS v1.6, migration to the component-based architecture, etc) [26].

The hybrid migration can also be performed in a framework-agnostic way using other

technologies, for example, a different implementation of Web Components or iframe.

Though they are not specialised for our kind of migration, and for that reason, they will

not be analysed in this work.

The disadvantages of the hybrid migration, regardless of the architectural approach or

technologies used, come from the need to use two different frameworks in the same

application. This approach adds additional complexity to the codebase and requires many

updates to the old code. In addition to that, hybrid applications are generally considered

to be less performant due to the need to run two different frameworks at the same time.

Another disadvantage of this approach is that hybrid applications have a larger build size,

which increases the application loading time degrading the user experience. Finally,

hybrid applications have longer build time, which hinders the development speed.

3.3.3 Gradual separate application migration

Gradual separate application migration can be characterised by a continuous transition

when the old application functionality is incrementally migrated to a new application.

This means that the old and the new applications run concurrently in the production

environment during the migration period. An increment in the context of a front-end

application could mean a single view, a process, or a set of views or processes.

27

This migration approach can be split into two categories by the adoption strategy: parallel

and phased. The parallel adoption implies that specific functionality remains available in

the old application after it has been migrated. This approach prioritises the gradual

adoption of a new application and provides a backup option. In this case, the migration

process is finished when the old and new applications reach feature parity. Phased

adoption means that specific functionality is removed from the old application once its

migration phase is finished. The removal can happen either right after migration or after

some time. This approach prioritises more rapid adoption of the new solution. In this case,

the migration process is finished when the new application fully assumes the functionality

of the old application. [27], [28]

This approach, if properly executed, requires minimal effort for the integration between

the old and the new applications. The communication between the two applications

typically happens via URL forwarding and route parameters. This approach requires

minimal updates to the legacy code and ensures a much simpler codebase compared to

the hybrid approach. Each of the two applications has a smaller build size compared to

the hybrid application which decreases the initial load time of an application. One

disadvantage of this approach is that the effort required before the initial deployment of

the new application is larger compared to the hybrid approach, as the new application

base must be implemented from scratch. Another disadvantage of this approach is that it

makes the deployment process more complex, as the two applications are deployed

separately. Lastly, the lack of options for integration with the old application might make

this approach unsuitable for systems with many long or codependent processes that

require shared state or extensive communication between each other.

3.3.4 Migration approach selection

The big bang strategy would not be suitable for this migration, since the author is the sole

developer working on this project. Due to this circumstance, the big bang approach poses

too much risk and is impossible to complete within an adequate timeframe.

The project management application does not have any long processes or tightly coupled

components, that would benefit from the hybrid approach. While the business could

benefit from a fast time to market granted by the hybrid approach, the author believes that

the potential issues associated with complex codebase, old and new code integration,

degraded performance, and larger bundle size make it unsuitable option for this migration.

28

After analysing common migration strategies, the author decided to proceed with the

separate applications migration approach. The lack of heavily coupled components and

long business processes in the project management application makes this approach a

great option for this migration. This strategy allows the author to rewrite the application

in a more simplistic way due to the lack of extensive integration between the old and the

new code. On top of that, a smaller build size compared to the hybrid approach would

benefit the users and the faster build times would make the development process more

seamless.

3.4 Prototype

Prototyping is the process of creating a preliminary version or a draft of an application.

The prototype helps initiate the discussion and facilitate effective collaboration between

different parties in the development process. It helps the parties visualise the final solution

and better understand its requirements. The prototyping allows the business to save costs

and time as it helps validate the ideas and fix the design flaws early on. To summarise,

the prototyping reduces the chances of miscommunication, unnecessary costs and project

failure. [29]

Before committing to the implementation of the new project reporting application, the

author has been requested to develop a prototype by the stakeholders. The stakeholders

had a blurred vision of the user interface for the new application and expressed a desire

to see a visual representation of the possible solution to better understand how it might

look and feel.

Before implementing the prototype, the author collected the requirements for the

prototype and defined its scope. The prototype must be implemented using the default UI

library for internal Angular applications at Playtech – the Ignite UI from Infragistics. The

prototype must use the default styling and design language of the UI library (fluent

design). The prototype must implement three commonly used pages from the old

application: projects data grid, project request form and timesheet. The prototype must

imitate the existing application content and layout. The prototype must use mock data and

does not need to communicate with a server-side application. Finally, the business logic

behind the UI elements does not need to be implemented.

29

The implementation of the prototype went without any complications. The author

followed the requirements and developed a prototype using Angular 17 and the Ignite UI

library. The implementation of the prototype took a few workdays. The prototype was

deployed to a test environment and made accessible to the stakeholders (see Figure 4).

The prototype was well received by the stakeholders and helped them better understand

the requirements for the final solution. In particular, the stakeholders decided not to

proceed with the default material design language. The stakeholders preferred to opt for

the fluent design language instead. They understood what colour scheme should be

implemented in the final solution. Moreover, the prototype made the stakeholders realise

the need to engage a UI/UX professional in the view design process which will in

developing a more consistent and user-friendly application. Lastly, the prototyping

allowed the author to get more acquainted with the UI library and its features, which will

help in the future development of the new application.

3.5 Vision of the final solution

In this section, the author will lay out the functional and non-functional requirements for

the new application as the last step before the development.

The functional requirements for the new solution are dictated by the needs of the business

and defined in collaboration between the stakeholders and the project manager. These

two parties have the most comprehensive understanding of the business processes behind

Figure 4. Project reporting system prototype. Timesheet view.

30

the project reporting system. The functional requirements can also be altered by input

from the other parties in the process, such as the author and the author’s team lead. Using

their technical expertise and experience with the old system they can contribute to

optimising the business logic behind the new application.

The non-functional requirements for the new solution are defined by the author in

collaboration with other parties in the development process. The non-functional

requirements are determined by a number of factors, namely the standards in the industry,

the standards within the organisation, the pitfalls of the old solution, as well as the needs

of users. The non-functional requirements for the final solution are largely based on the

results of the analysis conducted by the author and the lessons learned from the

prototyping.

3.5.1 Functional requirements

The high-level functional requirements for the final solution include:

 All of the regular employee views must be included in the scope of the first

production deployment and must be removed from the old application

 The solution must implement the project request page, where the users can submit

a project creation request to the budgeting team.

 The solution must implement the timesheet page, where the users can examine

and log the time they or their subordinates spent working on a specific project.

 The solution must implement the estimations page where the users can submit

time and outsourcing cost estimations for a specific project.

 The solution must implement the available projects page where the users can

examine their data and the projects available to them.

 The regular employee views must also be accessible to other user groups

 The regular employee views must include a number of features only accessible to

the members of the more privileged user groups.

 The solution must not break or alter the existing business processes unless it is

explicitly defined in the requirements for a specific functionality.

 The functionality of each view must closely follow the low-level requirements

defined by the stakeholders and the project manager.

31

 The managers, the budgeting and the admin employees must be able to seamlessly

navigate from the new solution to the old one and vice-versa.

3.5.2 Non-functional requirements

The non-functional requirements for the final solution include:

 Application type: the application must be developed using Angular and

TypeScript; the application must follow the SPA design pattern.

 Migration approach: the solution must be implemented using the incremental two-

application migration approach

 Performance: the application’s initial load time typically must not exceed 3

seconds in regular conditions; the user interactions must happen instantaneously

or, in case of communication with the server application, must happen within 1

second; the solution must avoid unnecessary repeated requests to the server

application.

 UI: the UI must implement the fluent design language; the UI must closely follow

the mock-ups created by the UI designer; the UI must follow the responsive design

principles; the UI must be implemented using the business unit standard Angular

UI library – Ignite UI; the user interactions with the UI must provide appropriate

feedback.

 Reliability: the solution must be able to provide appropriate feedback to the user

in the event of partial failure of the system.

 Validation: the solution must validate the user input and provide appropriate

feedback in case of incorrect input.

 Browser support: the solution must support Google Chrome; support for other

browsers is optional.

 Security: the solution must prohibit anonymous authentication; the solution must

implement the same authentication approach as the old application; different parts

of the solution must be secured with authorization; the solution must be accessible

only within the corporate network; the solution must be secured with HTTPS; the

solution must pass the internal security review before the initial deployment.

 Maintainability: the solution must be implemented using the standard practices in

the industry and organisation; the solution must be modular and scalable.

32

 Testing: the core functionalities of the new solution must be covered with unit

tests

 Cost: the solution must not introduce any additional costs apart from the UI library

licensing.

 Internationalisation: the final solution must only support the English language; the

timesheet view must support both Monday and Sunday as the first day of the week.

 Deployment: the new solution must have the same hosting infrastructure as the

old application (i.e. IIS web server running on a Windows Server VM hosted on

an on-premises server).

 Compatibility: the solution must work together with the old application; the

navigation from one solution to another must be seamless.

33

4 Implementation

In this chapter of the work, the author will introduce the work process organisation. Then,

the author will provide a detailed description of the tools, technologies and architectural

decisions selected for the development of the new project reporting application. Next, the

author will describe the development, testing and deployment processes for the new

solution.

4.1 Development process organisation

The author’s business unit follows an Agile methodology called Kanban to organise the

software development process. Kanban is characterised by continuous development and

delivery of features, meaning that the software development process is not split into

specific time periods or cycles. To organise work in progress, a Kanban board is utilised,

where ongoing tasks are split into groups by progress status. Kanban limits the amount of

work in progress to maintain a steady flow of deliveries and ensure that the development

team operates with respect to its capacity. Kanban does not have a strict framework to

follow when it comes to meetings. However, progress update meetings, demo meetings

and retrospective meetings are a regular occurrence in Kanban. [30]

Next, the author will provide a step-by-step description of the development process for

the new application. First, the project manager and the stakeholders conduct a series of

meetings to discuss and define the functional requirements for specific functionality. The

project manager documents the requirements in project management software called Jira.

The requirements are grouped into individual tasks called Jira issues, which are then

added to the Kanban board.

The project manager, UI designer and stakeholders participate in a design session, where

the parties communicate appearance and behaviour of a specific part of the application.

The UI designer then compiles a detailed mock-up (or a set of mock-ups) in a specialised

design tool called Figma (see Appendix 2 for an example).

34

The requirements are communicated to the developer by the project manager using Jira

issues, Figma mock-ups, process-flow diagrams (see Figure 5), emails, chat messages and

voice meetings. The author can provide feedback on the requirements and the mock-up

designs to the project manager. The requirements and the mock-up designs are updated if

needed.

The author develops the functionality. During the development process, regular check-up

meetings are conducted to communicate the progress and clarify the requirements. As the

development progresses, the author moves Jira issues to the appropriate group on the

Kanban board to ensure task progress visibility.

After the specific development is finished, the author deploys it to a test environment.

The solution is then extensively tested by the author and the project manager. The issues

discovered during testing are fixed, and the solution is retested. Then, a demo session is

organised, where the project manager presents the solution to the stakeholders. Next, the

stakeholders can conduct independent testing of the solution. After testing, the

stakeholders provide feedback to the project manager. The project manager

communicates the feedback to the author. The author updates the solution if any

adjustments are needed. The solution is tested again by all parties. The last several steps

can be repeated until no more adjustments are needed. Then, the entire process is repeated

for the next functionality.

4.2 Development

In this section, the author will describe the development process for the new application.

In particular, utilised tooling, architectural decisions, new application development, and

old application compatibility changes will be covered.

Figure 5. Project estimation process diagram.

35

4.2.1 Development tooling

The author utilised a good number of tools to facilitate the development of the new

application. The tools selected by the author are considered to be standard in Angular

development. The author tried to minimise custom configuration to the tooling to enhance

the maintainability and consistency of the codebase.

The author used a code editor called Visual Studio code to write the code. The author has

installed several extensions to the code editor. The ESLint extension is a popular code

linting utility which statically analyses the code for common programming and stylistic

errors. The Prettier is a commonly used code formatter that ensures that code is styled

consistently, making it easier to read and maintain. The author used Angular Language

Service extensions for the framework-specific code suggestions and templates. The

author used the Ignite UI Tooltips and Toolbox extensions for the UI library-specific code

suggestions and templates. The author used an AI-powered GitHub Copilot extension for

code suggestions and automation of some routine programming tasks (e.g. regex

generation, debugging).

The author utilised Angular CLI – a command-line interface tool that allows developers

to scaffold, build, test, deploy, and maintain Angular applications from a command shell.

For source code version control and hosting the author used Git in tandem with Gitlab.

4.2.2 Architectural and technological decisions

In this subsection, the author will provide a brief overview of the technologies and

architectural approaches behind the new application. As a rule, the author will try to

adhere to the industry standards to enhance code readability and maintainability. The

cases when the author opts for more complex or non-default approaches will be covered

in more detail in this section. Apart from the standards, the technological and architectural

decisions are dictated by requirements for the application and results of the analysis.

For the new application, the author will use Angular version 18 – the latest Angular

version available at the development start date. The code for the application will be

written in TypeScript – a typed superset of JavaScript. During the development, the author

will often use Angular components – the base building blocks of Angular applications.

Components define what is rendered on a page or a part of a page, as well as how the

rendered content looks and behaves. The component consists of an HTML template that

36

defines component content, a TypeScript class that defines component behaviour, and

optional styling. By convention, all parts of the component are defined in separate files.

The application will use custom UI controls, components and styling options provided by

the Ignite UI library to facilitate the development of the new application. As previously

stated, Ignite UI is the Angular UI library of choice in the author’s business unit. Using

the same library for different projects helps provide consistent UI across different

applications and eases the maintainability of the applications. The library uses SASS by

default – a superset of CSS that provides additional features to help better organise styling

in the application. The application will also adopt SASS for styling purposes.

With the Angular 17 release, the Angular team introduced a new architectural approach

for developing applications – standalone components. With the new approach, the

application no longer depends on the Angular modules – “container” files that encapsulate

and manage dependencies for related components, directives and services. The standalone

components approach provides a simpler and more descriptive way to build Angular

applications. It allows components to manage their dependencies, eliminating the need

for Angular modules. This approach simplifies lazy loading, reduces the amount of

boilerplate code, and decreases the bundle size and build time [31]. Furthermore, this

approach will become the default way to build Angular applications with the Angular 19

release. For all these reasons, the author will use the standalone components approach for

the project reporting application.

The author will utilise the default Angular router to organise routing in the application.

The router allows the developer to define what parts of an application are rendered when

the user navigates to a particular URL. The default router provides the developer with a

rich set of features, including support for authorization, state management and lazy

loading.

The author will utilise the service pattern to encapsulate often used code or code

specialised on one specific task to promote code reusability and separation of concerns.

Angular service is a TypeScript class that includes a special decorator to help the Angular

dependency injection service recognise the class as an injectable service. The Angular DI

service manages the service lifecycle and facilitates the interaction with the dependency

37

consumer. The DI service helps write more loosely coupled code by implementing the

inversion of control principle.

The data services in the new application will use Angular HTTP service, which provides

the base functionality needed for composing and executing HTTP requests. The data

services will be derived from the base service. The base service will implement

functionality shared by the data services. This approach promotes code reusability and

provides a consistent way to handle common data request tasks (e.g. error handling).

To enhance the user experience and optimise the overall performance of the system, the

author will utilise the NgRX library for state management. NgRX follows the Redux

pattern – a well-established approach for global state management in JavaScript

applications. NgRX provides developers with a standardised and performant way to store

the data shared across the application. NgRx offers a wide range of features, including

side-effects handling, global store, router support, custom operators, and entity store

adaptors. While the NgRx library is complex and requires more boilerplate code than

other state management libraries or custom solutions, its rich feature set, well-established

standardised approach and popularity made it the ultimate choice for state management

in the new project reporting application.

For asynchronous programming scenarios, such as HTTP requests, state management and

UI interaction handling, the application will utilise a library called RxJS. The library

offers a broad set of features for asynchronous development and is a de facto standard in

Angular development. Another officially supported library for asynchronous

programming in Angular is called Angular Signals. Angular Signals is a new library that

provides a more simplistic and intuitive way of writing asynchronous code compared to

RxJS. However, it is still not supported by all the core Angular libraries and is not as

feature rich as RxJS. Therefore, the author decided to persist with the RxJS library for

this development.

Angular offers two different approaches for creating forms: template-driven forms and

reactive forms. The template-driven forms are best suited for simple forms and two-way

data binding scenarios. The reactive forms approach is suitable for more sophisticated

forms that include dynamic form control creation, control grouping and complex

38

validation. The author will utilise both approaches in the project reporting application

depending on the requirements for a specific form.

For unit testing in the application, the author will use the default testing tools for Angular:

Jasmine test framework and Karma test runner.

4.2.3 Application base development

The author started the development by using Angular CLI to scaffold the base of the

application and install Angular dependencies. The CLI generated the basic folder

structure, configuration files, entry point files and root component of the application. The

author then installed and set up other relevant dependencies, such as the state management

library and the UI library.

The author added the text and icon font imports to the global stylesheet of the application.

The author added the Playtech logo that will be used in the navigation bar to the static

assets folder. Using the custom SASS mixins and functions provided by the UI library,

the author configured the global styling for the application, including the colour scheme,

typography and design language (see Appendix 3).

Using the Angular CLI, the author scaffolded a component for each regular employee

view that will be implemented. The author also scaffolded components for the navigation

bar and error views (e.g. page not found, unauthorized, forbidden).

The author started configuring the routing for the application. The author added routes

for the regular employee views and the error views. The author set up parametrised routes,

the default route that navigates the user to the timesheet page, and the wildcard route that

navigates the user to the “page not found” view (see Appendix 4). The author added the

router and the routes to the application configuration. Lastly, the author added the router

outlet to the application root component.

The author added content to the error and navigation bar components. The error views

include simple error messages and will be rendered in case the requested page is not found

as well as if the authentication or authorization failed. The navigation bar contains the

Playtech logo, employee views dropdown menu and welcome message (see Figure 6).

For the admin, budgeting and manager users, the navigation bar also displays a button

39

that will navigate them to the old application. The author added the navigation bar to the

application root component to ensure that it is always rendered on the page.

The author started setting up the data services by implementing the base service. Then,

the author added data models and implemented two data services that will be used to

retrieve the global state. The author added the environment files that will store the

environment-specific constants, including the back-end API base URLs. The author

created a file that will store the API endpoint routes so that they can be managed from

one place. The author added an HTTP request interceptor, which includes the session

cookie in cross-site HTTP requests. This step is crucial, as the new front-end and server-

side applications will be hosted on different sites. Lastly, the author added the HTTP

client and interceptor to the application configuration.

The author started setting up the application state. The author created an interface,

reducer, actions, selectors, and side effects for the shared state, which will hold the data

used in most of the components across the application. The shared state includes the basic

user data and the list of employees. The state side effects utilise the data services

developed earlier. The author added the shared state and side effects to the application

configuration file to ensure that the shared state will be initialised on the initial application

load.

As the next step, the author set up authorization and authentication. For this purpose, the

author developed a special route guard (see Appendix 5). The guard uses the user data

from the shared state and the “allowed” role provided in the route configuration to

determine whether the user can access a specific route. If the user is not authenticated or

unauthorized to access a view, the guard navigates the user to an appropriate error page.

After implementing the guard, the author secured the application routes with it (see

Appendix 4).

Figure 6. Application navigation bar.

40

The author updated the project’s Angular configuration. In particular, the author

configured the build settings for different environments and the base URL for the that

will be used in all relative paths of the application. This step is crucial as both the old and

the new applications will be served on the same site. The new application will be available

under the “v2” path.

Lastly, the author implemented unit tests that cover the core functionalities of the

application.

4.2.4 Application views development

On a high level, the development of each view follows a similar pattern. The author

develops a specific part of the view’s component by implementing its template, code and

styling. The author imports the relevant framework and library dependencies to the

component. The author develops the data models and services that are required for the

specific part of the component. The author sets up the state by creating or updating the

interface, reducer, actions, selectors and side effects of the component-specific slice of

the state. The author updates the routing setup if required. The steps are repeated until all

parts of the view are implemented. Lastly, the author implements unit tests for the core

functionalities of the component and the error handling. The error handling for each view

is implemented in the same way. In case of server-side errors or user errors (e.g. invalid

route parameters) the pop-up notification with an appropriate error message is displayed

to the user. Next, the author will describe the functionality and distinctive details of each

implemented view.

4.2.5 New project request view

The new project request view provides the user with a form for submitting a project

request (see Appendix 6). The form consists of different form controls, including the input

fields, text boxes, combo boxes, checkboxes, drop-down lists, hierarchical multi-select

drop-down lists and radio buttons.

From the technical perspective, the main difference between this and the other views is

that the project request form is implemented using the reactive forms approach. For this

view, the author implemented inline field validation as well as field group validation. The

author also implemented dynamic field group rendering based on the selected project

group value. The author implemented dynamic value generation for the Project Name

41

Group and Project Full Name fields based on the values provided in five different fields.

The view has a small amount of custom styling and supports field column wrapping to

better accommodate different screen sizes and resolutions.

From the functional point of view, the new page is similar to the same page in the old

application. The new view implements better validation and a more compact interface for

selecting required Jira accounts. The old server-side validation has been replaced with the

client-side inline validation, enhancing the user experience. Moreover, the validation in

the new view is more thorough and covers all the required validation scenarios.

Some of the budgeting and administrator views developed in the future will share

functionality with the project request view. For this reason, the project request view has

been developed with the code reusability in mind. In particular, the dynamic field value

generation logic and the field group validation logic were implemented as separate

services. Additionally, the project state slice created during this development will be

reused in other project views in the future.

4.2.6 Timesheet view

The timesheet view allows users to examine and log the time they or their subordinates

spent working on a project. The Timesheet view also provides functionality to add work

log comments and examine user data.

The view has two distinct modes – the week mode and the month mode. The month mode

presents the data in calendar format, where the user can get a quick overview of the time

reported in a specific month (see Appendix 7). The user can select a date to see and edit

individual logs for that day. The week mode presents the data in a hierarchical tree grid

format displaying the work log data for a specified week (see Appendix 8). The tree grid

allows the user to edit the work logs and work log comments. The tree grid also displays

different summaries of hours reported for the week.

The view implements different work log display and edit options depending on the work

log date and source. The view supports different week starting days depending on the

user’s country. The view exposes different data read and edit options for different user

groups. The days in both modes are colour-coded. Different colours represent different

day types, such as sick leave, vacation, holiday, weekend and regular days.

42

The main distinguishing feature of this view compared to other implemented views is that

it required a lot of styling and extensive customisations of the default behaviour of the

components provided by the UI library. In particular, the author developed custom

rendering logic for the Ignite UI calendar day view component to implement the timesheet

month mode.

From the functional point of view, the new timesheet is very different from the same page

in the old application. First, the business process behind time reporting has changed,

which resulted in the log request grid being removed from the view. Secondly, the brand-

new month mode has been introduced. Lastly, the week mode has been heavily updated,

reducing the number of pop-up windows required to input the data.

4.2.7 Estimations view

The estimations view provides the user with the functionality to submit time and

outsourcing cost estimations for projects (see Appendix 9). The page is represented by a

simple form that consists of drop-down lists, combo boxes, text boxes, and input fields.

The form supports custom drop-down value filtering and simple validation. The form has

been implemented using the template-driven approach.

From the functional perspective, the new view is slightly different from the old estimation

view. In particular, the business process behind the outsourcing cost estimation has

changed which resulted in a new section being added to the form.

4.2.8 Available projects view

The available project view allows the user to examine the available project details and

personal data of employees (see Appendix 10). The employee data is displayed in a simple

table, while the project data is displayed in a master-detail style grid. The view exposes

different data to the user based on the user's role. The available project grid supports

dynamic column addition, hiding, sorting and filtering.

From the functional perspective, the main difference between the old and new views is

that the new view exposes more information about the projects in the detail section of the

grid. The old solution implemented a simple grid with a minimal amount of project data.

Additionally, the new solution implemented column hiding and more sophisticated

43

options for column filtering and sorting. Lastly, the new solution allows the user to load

an extended project list on demand.

4.2.9 Old application compatibility changes

The author updated the old application to ensure smooth interoperability between the old

and new solutions. The author removed the migrated views from the old application and

added a button to its navigation bar that redirects users to the new application. Since the

old and new applications are hosted on the same site, the author configured the IIS URL

rewriting. The new application will be available under the "v2" route. The author set up

the new timesheet view as the landing page. The author set up redirection to the new

application for the links removed from the old application. This way, the old links will

remain functional, and the users will be redirected to the corresponding pages in the new

application. The URL rewrite configuration created by the author also supports

parametrised routes. The links for the remaining views in the old application will remain

functional.

4.3 Testing and validation

Before deploying the final solution to the production environment, thorough testing must

be conducted. As described in the work process organisation section of this chapter, the

parties of the development process conducted testing after each stage of the development.

When the development of the regular employee views had been finalized, the solution

was deployed to the test environment for the final round of testing.

The final round of testing was conducted by different parties, including the author, project

manager, stakeholders, and a selected group of other application users. The testers

represented all the existing user groups. The testing covered both the default usage

scenarios and edge cases. The testing focused on error handling, validation,

interoperability with the old application, as well as the user role and country-related

customisations. During the testing process, the parties also reviewed the non-functional

aspect of the new application. In particular, the testers examined the application’s

appearance, security, performance, user interaction feedback, and usability with different

screen sizes.

44

During the testing process, a few bugs were discovered, and several enhancements were

proposed by the testers. The author fixed the bugs and implemented the relevant

enhancements. Then, the solution was retested. The testing parties verified that the

solution works according to the specified requirements and that all application features

perform correctly. Consequently, the author received the deployment approval from the

stakeholders.

Apart from the stakeholder approval the application also needed to pass the review from

the internal security team to ensure that the application complies with the company

security standards. The author and his team lead prepared an overview of the upcoming

application migration and submitted it for a security evaluation. The internal security team

reviewed the upcoming transition and granted their approval for the deployment.

4.4 Deployment

The deployment process for the new front-end application was uncomplicated. Before the

deployment of the new application, the author put together a rollback plan.

The author prepared production builds for the new and old applications. The author

deployed the build files of the applications and the new URL rewrite configuration to the

production environment using the IIS Web Deploy tool.

After the deployment, the author performed some tests in production environment and

participated in post-deployment monitoring of the new application. The deployment was

successful, and the author did not encounter any complications.

45

5 Results

As a result of this work, the main objectives described in section 2.6 have been achieved

– the new project reporting front-end application has been developed and deployed to the

production environment. The new application provides a comprehensive solution to the

problems described in section 2.5 and satisfies the requirements outlined in the section

3.5. The solution implements the most used views of the old application and lays the

foundation for future migration efforts.

The new application demonstrates substantial improvements over its predecessor in

several key areas. With regard to performance, the new solution operates more efficiently

and swiftly. The user interface has been thoroughly redesigned offering the users more

modern, intuitive and visually appealing experience. The user experience is further

enhanced by improved responsiveness and feedback provided by the new solution. The

new application is designed to address the current needs of the organisation and

implements refined and enhanced business logic.

The new solution is implemented using state-of-the-art front-end technologies, improving

application security, efficiency and reliability. The application codebase maintainability

and scalability are enhanced by using modern technologies, best development practices

and established industry standards. All these factors ensure that the new solution is well-

positioned for continued development and future growth.

The users who participated in testing or utilised the new application post-deployment

have consistently provided positive feedback, highlighting the improvements listed in the

second paragraph of this chapter. Following the deployment, the author will continue

collecting and analysing feedback from users to further improve the new solution.

5.1 Efficiency comparison

This section of the work will present a performance comparison between the old and new

solutions, focusing on key metrics relevant to front-end applications. First, the application

bundle total transfer size has reduced from 5.25 MB to 0.7 MB. This includes the

application code, markup, styling and static assets. Though the new solution does not yet

implement all of the functionalities from the old application, it will employ lazy loading

46

for all the views that will be developed in the future. This will ensure that most users

continue benefiting from the drastically reduced bundle size.

Another critical area where the new application demonstrates efficiency improvements is

the number of repeated requests to the server-side application. Unlike the old application,

the new solution implements a global store that can act as a cache, holding data that has

been previously fetched. The new solution eliminates the need for redundant queries to

the server for the same information and decreases the view content load time. This, in

turn, enhances the user experience and overall performance of the system. The following

table demonstrates the reduction in the number of reoccurring requests when navigating

to different views in the new application.

Table 2. New application. Initial and repeated requests.

Scenario New project
request

Timesheet Estimations Available
projects

Number of requests
when first navigating
to the view

8 3 2 2

Number of requests
when navigating
back to the view

1 3 0 0

Lastly, the author tested and compared the performance of the new and old solutions using

Google Lighthouse – a front-end application auditing tool. During testing, the author

focused on the following key metrics evaluated by the tool: first contentful path, speed

index, JavaScript execution time and total blocking time. The first contentful path metric

represents the time it takes for the first piece of content to render on the screen. The speed

index shows how quickly all of the page contents are populated. The JavaScript execution

time represents the time the browser spends executing JavaScript to load the page. Lastly,

the total blocking time measures the time the page is blocked from responding to user

input during loading. The second metric is heavily dependent on the server-side

application performance, and best demonstrates the overall efficiency of the system. The

other metrics mostly focus on the front-end application performance.

Google Lighthouse uses simulated browser context for performance evaluation. The

context resource and network configuration are not optimal by design, meaning that the

47

auditing tool tries to simulate page loading on a less performant device with a slower

network speed. Therefore, the test result must not be used to evaluate the performance

experienced by an average user of the applications but rather to compare the efficiency of

two solutions in a controlled environment. [32]

The tests were conducted on the same machine and network in a one-hour session. Both

applications are hosted on the same test server that was not being actively used during the

testing. The tests were carried out in the Google Chrome browser, build 131.0.6778.86.

The author ran the test in incognito mode to ensure that the results were not affected by

the browser plugins.

The test results can be found in appendices 11 and 12 (see Table 3 and Table 4). The

metrics demonstrated in the tables represent the average result from 10 test runs. The new

application demonstrates significantly better performance across all key metrics. The new

solution is more responsive, consumes less resources and loads faster, providing a

superior user experience.

5.2 Challenges and complications encountered

The main challenges encountered during the new project reporting application

development are related to the business processes behind the system.

Some of the old application business logic has not been sufficiently documented and was

lost due to employee turnover. During the development process, the author often had to

analyse the legacy code, and the project manager had to investigate old Jira issues in

search of the business rules that might be relevant to the new application. This, in turn,

slowed down the delivery process.

Another challenge encountered by the author is related to the changing requirements for

the new application. At times, new requirements were introduced during the testing stage.

While the new additions helped enhance the application, they also increased the scope of

the development, pushing the initial deployment date further.

48

5.3 Future direction

The logical progression of the project reporting system development involves continuous

migration of the views from the old front-end application to the new one. The first

probable candidate for migration is the manager user group functionality.

One area the project reporting application could improve on in the future is the automated

test coverage. Due to the business constraints and a tight deadline, only the core

functionalities of the application have been covered with tests. Enhancing this aspect will

be crucial for improving the robustness, maintainability and reliability of the application

in the long-term perspective.

Another logical improvement to the new application could be the implementation of

continuous integration and continuous deployment. This enhancement will automate

testing, build and deployment of the new application enhancing the efficiency and

reliability of the delivery processes.

The author should remain informed on the latest advancements and trends in the Angular

ecosystem and incorporate new developments into the application. Finally, the author

should regularly update the application's Angular version to enhance its longevity,

performance and maintainability.

49

6 Summary

In the scope of this work, the author conducted an in-depth examination of the migration

process for a legacy front-end application from various perspectives. The main objective

of this work was to formulate a migration approach and migrate the legacy application.

In the analysis part, the author examined the old application and compared common

technological solutions and migration strategies from various aspects. As a result,

Angular was selected as the main framework for the new solution, and an incremental

rewrite with two separate applications was chosen as the migration approach. Then, the

author developed and validated a prototype for the final solution. Subsequently, the author

analysed functional and non-functional requirements for the new application. In the

analysis, the author gave thorough consideration to the needs of the organisation and the

specific requirements of the project reporting system.

The implementation part of the thesis predominantly focused on the process of solving

the problem of the work. In this part, work process organisation, utilised tooling, low-

level technological decisions, and the process of development, testing and deployment

were covered.

As a result of this work, the new solution was developed and deployed to the production

environment, fulfilling the main objective of the thesis. The new solution is implemented

using state-of-the-art front-end technologies and standard programming approaches,

providing a comprehensive solution to the main problem of this work. The new solution

demonstrates major improvements over the legacy application across all key areas. The

new application is more performant, secure, and visually appealing, providing a superior

experience to the users. The new application implements refined and enhanced business

logic. The new application is more maintainable and is well-positioned for continued

development and future growth.

50

References

[1] Microsoft, “What is a browser-based application?,” Microsoft, 11 April 2023.
[Online]. Available: https://www.microsoft.com/en-us/edge/learning-center/what-
is-a-browser-based-application?form=MA13I2. [Accessed 28 September 2024].

[2] Amazon Web Services, “What’s the Difference Between Frontend and Backend in
Application Development?,” Amazon Web Services, 2024. [Online]. Available:
https://aws.amazon.com/compare/the-difference-between-frontend-and-backend/.
[Accessed 28 September 2024].

[3] Mozilla Corporation, “What is JavaScript?,” Mozilla Corporation, 3 August 2024.
[Online]. Available: https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/First_steps/What_is_JavaScript. [Accessed 2024
September 28].

[4] R. Vyas, “Comparative Analysis on Front-End Frameworks,” International
Journal for Research in Applied Science & Engineering Technology, vol. 10, no.
7, pp. 298-307, 2022.

[5] Playtech, “About Us - Playtech,” Playtech, 2024. [Online]. Available:
https://www.playtech.com/about-us/. [Accessed 20 September 2024].

[6] Google, “AngularJS: Miscellaneous: Version Support Status,” Google, 2020.
[Online]. Available: https://docs.angularjs.org/misc/version-support-status.
[Accessed 20 September 2024].

[7] XLTS.dev, “Extended Long-term Support for AngularJS,” HeroDevs, 2024.
[Online]. Available: https://xlts.dev/angularjs. [Accessed 28 September 2024].

[8] B. Świątek, Ł. Guzek and A. Rosłoniec, “AngularJS upgrade: Why 2023 is the
time for migrating and how to do it,” Pretius, 16 November 2023. [Online].
Available: https://pretius.com/blog/angularjs-upgrade/. [Accessed 28 September
2024].

[9] G. Lipke, “Angular vs AngularJS — Why you should migrate from AngularJS to
Angular,” House of Angular, April 2024. [Online]. Available:
https://houseofangular.io/angular-vs-angularjs-why-you-should-migrate-from-
angularjs-to-angular/. [Accessed 28 September 2024].

[10] S. S. B. Praneeth, “Survey on migrating Angular JS applications to Angular 2+
versions,” International Journal of Advances in Engineering and Management
(IJAEM), vol. 4, no. 7 July 2022, pp. 1615-1618, 2022.

[11] OpenJS Foundation, “jQuery,” OpenJS Foundation, 2024. [Online]. Available:
https://jquery.com/. [Accessed 28 Septemberr 2024].

[12] Google, “AngularJS: Developer Guide,” Google, 2020. [Online]. Available:
https://docs.angularjs.org/guide. [Accessed 28 September 2024].

[13] N. Meurer, “A Primer for $http in AngularJS,” Natalie Meurer, 14 December
2014. [Online]. Available: https://natmeurer.com/put-logic-in-your-factories-a-
primer-for-http-in-angularjs/. [Accessed 28 September 2024].

51

[14] Angular University, “Angular Service Layers: Redux, RxJs and Ngrx Store -
When to Use a Store And Why?,” Angular University, 17 January 2024. [Online].
Available: https://blog.angular-university.io/angular-2-redux-ngrx-rxjs/.
[Accessed 28 September 2024].

[15] OpenLogic, “AngularJS Long-Term Support,” OpenLogic, 2024. [Online].
Available: https://www.openlogic.com/solutions/angularjs-support-and-services.
[Accessed 28 September 2024].

[16] W. Xu, “Benchmark Comparison of JavaScript Frameworks,” University of
Dublin, Dublin, 2021.

[17] N. Shawn, “Unveiling the Best Frontend Framework for You in 2024: A Deep
Dive,” 2 May 2024. [Online]. Available:
https://www.linkedin.com/pulse/unveiling-best-frontend-framework-you-2024-
deep-dive-naziullah-shawn-agzlc/. [Accessed 28 September 2024].

[18] T. Krotoff, “Front-end frameworks popularity (React, Vue, Angular and Svelte),”
12 Decemberr 2023. [Online]. Available:
https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190#file-
frontendframeworkspopularity-md. [Accessed 2024 September 28].

[19] State of JavaScript, “State of JavaScript: Front-end Frameworks,” State of
JavaScript, 2023. [Online]. Available: https://2023.stateofjs.com/en-
US/libraries/front-end-frameworks/. [Accessed 28 September 2024].

[20] H. Harnisch and K. Womersley, Atomic Migration Strategy for Web Teams, June:
O'Reilly Media, Inc, 2018.

[21] O. Gierszal, “Big Bang Migration vs Trickle Migration Approach in Legacy
Modernization [Key Differences & Considerations],” Brainhub, 27 August 2024.
[Online]. Available: https://brainhub.eu/library/big-bang-migration-vs-trickle-
migration. [Accessed 28 September 2024].

[22] V. Savkin, Upgrading Angular Applications, May: 25, 2017.

[23] M. Jansky, “Migrating AngularJS to Angular with a hybrid application,”
Codurance, 24 May 2023. [Online]. Available:
https://www.codurance.com/publications/migrating-angularjs-to-angular.
[Accessed 28 September 2024].

[24] Frontend Mastery, “A guide to frontend migrations,” Frontend Mastery, 17 July
2022. [Online]. Available: https://frontendmastery.com/posts/frontend-migration-
guide/#migration-strategies-gradual-vs-big-bang. [Accessed 28 September 2024].

[25] Google, “Angular elements overview,” Google , 2024. [Online]. Available:
https://angular.dev/guide/elements. [Accessed 28 September 2024].

[26] Google, “Upgrading from AngularJS to Angular,” Google, 2024. [Online].
Available: https://v17.angular.io/guide/upgrade. [Accessed 28 Septemberr 2024].

[27] C. B. R. P. T. Leadbetter, Cambridge International AS and A Level Computing
Coursebook, Cambridge: Cambridge University Press, 2012.

[28] S. Wainwright and C. Leadbetter, Computer Studies and Information Technology:
IGCSE and O Level.

[29] N. Moses, L. Wojciechowski, S. Daly and K. Sienko, “Front-end design
prototyping,” Design Science, Cambridge University Press, vol. 9, no. 24, pp. 1-
27, 2023.

[30] Atlassian, “Kanban,” Atlassian, 2024. [Online]. Available:
https://www.atlassian.com/agile/kanban. [Accessed 28 October 2024].

52

[31] Google, “Getting started with standalone components,” Google, 2024. [Online].
Available: https://v17.angular.io/guide/standalone-components. [Accessed 28
October 2024].

[32] S. Rios, “How to read a Lighthouse report and use it to optimize your loading
speed,” Oncrawl, 14 May 2021. [Online]. Available:
https://www.oncrawl.com/technical-seo/lighthouse-report-optimize-loading-
speed/. [Accessed 28 October 2024].

53

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Mikhail Polomoshnov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis "Line of Business Front-end Application Migration on the Example of Playtech

PLC", supervised by German Mumma

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

01.01.2025

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

54

Appendix 2 – Timesheet view Figma board

Figure 7. Figma board, timesheet view mock-ups.

55

Appendix 3 – Global stylesheet

@use "@infragistics/igniteui-angular/theming" as *;

$custom-toast-theme: toast-theme(
 $background: color($light-fluent-palette, "error"),
);

$custom-snackbar-theme: snackbar-theme(
 $background: color($light-fluent-palette, "success"),
);

$my-palette: palette(
 $primary: color($light-fluent-palette, "primary", 900),
 $secondary: color($light-fluent-palette, "secondary", 900),
 $surface: #fff,
 $info: color($light-fluent-palette, "info"),
 $success: color($light-fluent-palette, "success"),
 $error: color($light-fluent-palette, "error"),
 $warn: color($light-fluent-palette, "warn"),
);

@include core();
@include typography(
 $font-family: '"Segoe UI", "Open Sans", sans-serif',
 $type-scale: $fluent-type-scale
);
@include fluent-light-theme($my-palette);
@include css-vars($custom-toast-theme);
@include css-vars($custom-snackbar-theme);

@import url("https://fonts.googleapis.com/css?family=Open+Sans");
@import url("https://fonts.googleapis.com/icon?family=Material+Icons");

body {
 margin: 0px;
}

igx-tree-grid .igx-snackbar {
 display: none !important;
}

56

Appendix 4 – Routing configuration

import { Routes } from '@angular/router';
import { NewRequestComponent } from './components/projects/new-request/new-
request.component';
import { provideState } from '@ngrx/store';
import { provideEffects } from '@ngrx/effects';
import { projectReducer } from './state/project/project.reducer';
import { ProjectEffects } from './state/project/project.effects';
import { NotFoundComponent } from './components/error-pages/not-found/not-
found.component';
import { ForbiddenComponent } from './components/error-
pages/forbidden/forbidden.component';
import { InternalServerErrorComponent } from './components/error-
pages/internal-server-error/internal-server-error.component';
import { authGuard } from './shared/guards/auth.guard';
import { Role } from './model/enum/role';
import { TimesheetComponent } from
'./components/timesheet/timesheet.component';
import { timesheetReducer } from './state/timesheet/timesheet.reducer';
import { TimesheetEffects } from './state/timesheet/timesheet.effects';
import { EstimationComponent } from
'./components/estimations/estimation/estimation.component';
import { estimationReducer } from './state/estimation/estimation.reducer';
import { EstimationEffects } from './state/estimation/estimation.effects';
import { AvailableProjectEffects } from './state/available-project/available-
project.effects';
import { availableProjectReducer } from './state/available-project/available-
project.reducer';
import { AvailableProjectsComponent } from './components/projects/available-
projects/available-projects.component';

export const routes: Routes = [
 {
 path: 'timesheet',
 title: 'Timesheet',
 component: TimesheetComponent,
 canActivate: [authGuard],
 data: { role: Role.EMPLOYEE },
 providers: [
 provideState('timesheet', timesheetReducer),
 provideEffects([TimesheetEffects]),
],
 },
 {
 path: 'availableprojects',
 title: 'Available Projects',

57

 component: AvailableProjectsComponent,
 canActivate: [authGuard],
 data: { role: Role.EMPLOYEE },
 providers: [
 provideState('availableproject', availableProjectReducer),
 provideEffects([AvailableProjectEffects]),
],
 },
 {
 path: 'estimations',
 title: 'Estimations',
 component: EstimationComponent,
 canActivate: [authGuard],
 data: { role: Role.EMPLOYEE },
 providers: [
 provideState('estimation', estimationReducer),
 provideEffects([EstimationEffects]),
],
 },
 {
 path: 'projects/requests/new',
 title: 'New Project Request',
 component: NewRequestComponent,
 canActivate: [authGuard],
 data: { role: Role.EMPLOYEE },
 providers: [
 provideState('project', projectReducer),
 provideEffects([ProjectEffects]),
],
 },
 {
 path: 'projects/requests/new/:jiraIssueKey/:name/:jiraKey',
 title: 'New Project Request',
 component: NewRequestComponent,
 canActivate: [authGuard],
 data: { role: Role.EMPLOYEE },
 providers: [
 provideState('project', projectReducer),
 provideEffects([ProjectEffects]),
],
 },
 { path: '404', component: NotFoundComponent },
 { path: '403', component: ForbiddenComponent },
 { path: '500', component: InternalServerErrorComponent },
 { path: '', redirectTo: 'timesheet', pathMatch: 'full' },
 { path: '**', redirectTo: '/404', pathMatch: 'full' },
];

58

Appendix 5 – Authentication and authorization route guard

import { inject } from '@angular/core';
import { CanActivateFn, Router } from '@angular/router';
import { Store } from '@ngrx/store';
import { combineLatest, map } from 'rxjs';
import { selectError, selectUser } from
'../../state/shared/shared.selectors';

export const authGuard: CanActivateFn = (route) => {

 if (!route.data['role']) return false;

 const store = inject(Store);
 const router = inject(Router);
 const userState$ = store.select(selectUser);
 const userError$ = store.select(selectError);

 return combineLatest([userState$, userError$]).pipe(
 map(([user, error]) => {
 if (error || (!user.role)) {
 router.navigate(['/401']);
 return false;
 }
 if (route.data['role'] <= user.role) {
 return true;
 } else {
 router.navigate(['/403']);
 return false;
 }
 })
);
};

59

Appendix 6 – New project request view

Figure 8. New project request view.

60

Appendix 7 – Timesheet view, month mode

Figure 9. Timesheet view, month mode.

61

Appendix 8 – Timesheet view, week mode

Figure 10. Timesheet view, week mode.

62

Appendix 9 – Estimations view

Figure 11. Estimations view.

63

Appendix 10 – Available projects view

Figure 12. Available projects view.

64

Appendix 11 – The old application performance testing results

Table 3. The old application performance testing average results.

View First contentful
paint, (s)

JavaScript
execution time,
(s)

Speed index, (s) Total blocking
time, (s)

New project
request

4.7 1.1 6.1 0.52

Timesheet 4.6 1.1 7 0.61

Estimations 4.7 1 6.7 0.76

Available
projects

4.8 0.8 6.2 0.5

65

Appendix 12 – The new application performance testing

results

Table 4. The new application performance testing average results.

View First contentful
paint, (s)

JavaScript
execution time,
(s)

Speed index, (s) Total blocking
time, (s)

New project
request

0.9 0.3 1.9 0.03

Timesheet 1.1 0.3 1.8 0.04

Estimations 0.9 0.1 1.6 0.01

Available
projects

1.2 0.4 2.8 0.09

