
DOCTORAL THESIS

A Legally Relevant
Socio-Technical Language
Development for Smart
Contracts

Vimal Kumar Dwivedi

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2022

TALLINN UNIVERSITY OF TECHNOLOGY DOCTORAL THESIS
14/2022

A Legally Relevant Socio-Technical
Language Development for Smart

Contracts

VIMAL KUMAR DWIVEDI

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Software Science
This dissertation was accepted for the defence of the degree of Doctor of Philosophy
(Informatics) on 18 April 2022

Supervisor: Assoc. Professor Alex Norta (PhD),
Department of Software Science, School of Information Technologies,
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Professor Dirk Draheim (PhD),Department of Software Science, School of Information Technologies,
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Ingo Weber (PhD),
Technische Universitaet Berlin,
Berlin, Germany
Professor Ulf Bodin (PhD),
Luleå University of Technology,
Luleå, Sweden

Defence of the thesis: 25 May 2022, Tallinn
Declaration:
I hereby declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Vimal Kumar Dwivedi signature

Copyright: Vimal Kumar Dwivedi, 2022 ISSN 2585-6898 (publication)ISBN 978-9949-83-815-8 (publication) ISSN 2585-6901 (PDF)ISBN 978-9949-83-816-5 (PDF)
Printed by Koopia Niini & Rauam

TALLINNA TEHNIKAÜLIKOOL DOKTORITÖÖ
14/2022

Arukate lepingute jaoks õiguslikult
asjakohane sotsiaal-tehniline

keelearendus

VIMAL KUMAR DWIVEDI

Contents

List of Publications . 8
Author’s Contributions to the Publications . 9
Abbreviations . 10
1 INTRODUCTION. 121.1 Thesis Motivation . 121.2 Research Questions . 151.3 Contributions . 171.4 Research Methodology and Methods . 181.5 Structure of the Thesis . 22
2 BACKGROUND AND RELATED WORK . 232.1 Blockchain and Smart Contracts . 232.1.1 Technologies supporting the blockchain . 232.1.2 Legal implications of smart contracts . 242.2 State of Art of Smart Contract Development . 252.2.1 Agent-based approach . 252.2.2 Business process-based approach . 252.2.3 State machine approach . 262.2.4 UML approach . 262.3 Running Cases . 262.3.1 Case 1: Decentralized system of automobile collaborative supplychain.. 272.3.2 Case 2: Collaborative dairy supply chain for business processes,process views . 30
3 LEGALLY BINDING SMART-CONTRACT LANGUAGE DEVELOPMENT FRAMEWORK 333.1 Introduction . 333.2 Existing SCLs . 333.2.1 Domain-specific SCLs . 363.2.2 Formally verifiable SCLs . 373.2.3 Easy-to-use SCLs . 393.2.4 Legally-enforceable SCLs . 393.2.5 Business process SCLs . 403.3 Suitability and Expressiveness Properties . 403.3.1 Semantic suitability . 423.3.2 Workflow suitability . 423.3.3 Expressiveness . 433.4 Evaluation of SCL Suitability and Expressiveness . 433.5 Novel Framework for Designing Legally-Binding SCL. 483.6 Chapter Conclusion . 49
4 FORMAL SPECIFICATION LANGUAGE . 504.1 Introduction . 504.2 Multi-Tiered Contract Ontology . 514.2.1 Upper core layer of smart contracts . 514.2.2 Specific domain layer. 53

5

4.3 Rights and Obligations Monitoring . 554.3.1 Repository accessing . 564.3.2 Manage service type . 564.3.3 Conformance validation. 574.4 SLCML: A Contract Specification Language . 584.4.1 Upper-level smart-contract definition . 594.4.2 Obligation-type definition. 614.5 Chapter Conclusion . 62
5 APPROACH FOR TRANSLATING SLCML-BASED SCs TO SOLIDITY 635.1 Introduction . 635.2 SLCML Instantiation . 635.3 Patterns and Transformation Rules . 665.4 SLCML to Solidity Translation . 675.5 Chapter Conclusion . 69
6 EVALUATION OF THE SMART-LEGAL CONTRACT MARKUP LANGUAGE 706.1 Introduction . 706.2 Assessment of EvaluationMethods forModeling Languages and Their Sup-port Tools . 706.2.1 Evaluation approaches: . 706.2.2 Modeling-language evaluation aspects . 736.2.3 Usability evaluation aspects of modeling language: 746.3 SLCML Schema Evaluation . 756.4 SLCML Usability Evaluation . 766.5 Chapter Conclusion . 77
7 CONCLUSION . 787.1 Discussions . 787.1.1 Discussions from the development of a legally binding SCL 787.1.2 Discussions from the SCL ontology description . 797.1.3 Discussions from the development of the patterns and transfor-mation rules . 807.1.4 Discussions from the SLCML evaluations results . 807.2 Answer to Research Questions and Chapter Summaries . 817.2.1 Answers to RQ1 . 817.2.2 Answers to RQ2. 827.2.3 Answers to RQ3. 827.3 Summary of Evaluation Results . 837.4 Thesis Limitations and Future Work . 83
List of Figures . 85
List of Tables . 86
References . 87
Acknowledgements . 101
Abstract . 102

6

Kokkuvõte . 104
Appendix 1 . 107
Appendix 2 . 143
Appendix 3 . 159
Appendix 4 . 179
Appendix 5 . 195
Appendix 6 . 201
Curriculum Vitae . 213
Elulookirjeldus . 215

7

List of Publications
This Ph.D. thesis is based on the following publications that are referred to in the text byRoman numbers.
I V. Dwivedi, V. Pattanaik, V. Deval, A. Dixit, A. Norta, and D. Draheim. Legally enforce-able smart-contract languages: A systematic literature review. ACM Comput. Surv.,54(5), June 2021II V. Dwivedi, A. Norta, A. Wulf, B. Leiding, S. Saxena, and C. Udokwu. A formal specifi-cation smart-contract language for legally binding decentralized autonomous organi-zations. IEEE Access, 9:76069–76082, 2021III V. Dwivedi and A. Norta. A legal-relationship establishment in smart contracts: Onto-logical semantics for programming-language development. In M. Singh, V. Tyagi, P. K.Gupta, J. Flusser, T. Ören, and V. R. Sonawane, editors, Advances in Computing and
Data Sciences, pages 660–676, Cham, 2021. Springer International PublishingIV V. Dwivedi and A. Norta. Auto-generation of smart contracts from a domain-specificxml-based language. In S. C. Satapathy, P. Peer, J. Tang, V. Bhateja, and A. Ghosh,editors, Intelligent Data Engineering and Analytics, pages 549–564, Singapore, 2022.Springer SingaporeV V. K. Dwivedi and A. Norta. A legally relevant socio-technical language developmentfor smart contracts. In Proceedings - 2018 IEEE 3rd International Workshops on Foun-
dations and Applications of Self* Systems, FAS*W 2018, pages 11–13. Institute of Elec-trical and Electronics Engineers Inc., 2018VI V. Dwivedi, V. Deval, A. Dixit, and A. Norta. Formal-Verification of Smart-ContractLanguages: A Survey. In Advances in Computing and Data Sciences, pages 738–747.Springer Singapore, 2019

8

Author’s Contributions to the Publications
I In I, I was the primary author, and was in charge of interpreting the findings, prepar-ing the figures, and writing the article.
II In II, I was the primary author, and was involved in data collection and analysis aswell as writing the article.
III In III, I was the primary author, and created the proposed platform’s ontology andworkflow model, as well as the figures and the article.
IV In IV, I was the primary author and reviewed relevant articles before developingthe model verification method, analyzing and interpreting the results, preparing thefigures, and writing the article.
V In V, I was the primary author, and created the new XML-based smart-contract lan-guage, as well as preparing the figures and writing the article.
VI In VI, I was the primary author, and I proposed the transformation rules for convert-ing an XML-based smart contract to a choreography model, as well as preparing thefigures and writing the article.

9

Abbreviations
ADICO Attributes, Deontics, Aims, Conditions, Or-elseABM Agent-based ModelsAOM Agent Oriented ModelingBCRL Business-Level Rules LanguageBitML Bitcoin Modeling LanguageBNM Business Network ModelBPaaS Business Processes as a ServiceBPMN Business Process Modeling NotationCarMan Car ManufacturerCC Conventional ContractCML Contract Modeling LanguageCPN Colored Petri NetsDAML Digital Asset Modeling LanguageDAO Decentralized Autonomous OrganizationDeFi Decentralized FinanceDLT Distributed Ledger TechnologyDSL Domain-Specific LanguageDSR Design Science ResearchEOS Electro-Optical SystemeSML eSourcing Markup languageEVM Ethereum Virtual MachineFSM Finite State MachineFSIS Food Safety Information SystemFSQAS Food Safety and Quality Assurance SystemIOC Inter-Organizational CollaborationIOT Internet of ThingsIR Intermediate RepresentationIS Information SystemIT Information TechnologyLLL Lisp-Like LanguageMAS Multi Agent SystemOCL Object-Constraint LanguageOEM Original Equipment ManufacturerOOP Object-Oriented ProgrammingP2P Peer-to-PeerPK Public KeyPKC Public Ket CryptographyPN Petri-NetPoS Proof of StakePoW Proof of WorkQSCL Qtum Smart-contract LanguageRQ Research QuestionS/W Strength and WeaknessSC Smart ContractSCL Smart-contract LanguageSCM Supply Chain ManagementSLCML Smart Legal Contract Markup Language

10

SLR Systematic Literature ReviewSmaCoNat Smart Contracts in Natural LanguageSPESC A Specification Language for Smart ContractsSOC Service Oriented ComputingSTS Socio-Technical SystemTON The Open NetworkUML Universal Modeling LanguageUT Unit TestVE Virtual EnterpriseVM Virtual MachineVTP Value Transfer ProtocolWES Workflow Enactment ServiceXML Extensible Markup Language

11

1 INTRODUCTION
1.1 Thesis Motivation
Many organizations consider collaboration with other companies and organizations in their supply chains to be critical for survival in modern hyper-competitive environments. For the purpose of this thesis, this collaboration is referred to as inter-organizational col-laboration (IOC). Organizations may collaborate with others to develop innovative prod-ucts or services [139], resolve impressive challenges [149], standardize their supply chains [57], set and manage standards [88], work on research and development projects [173], or re-spond to emergencies [13]. By collaborating with other companies, businesses can pool resources and achieve goals [71] in ways they could not do so independently.

Many businesses use workflow enactment services (WES) to automate and streamline their business processes to improve efficiencies, reduce costs, and increase their prof-itability [138]. Although each organization is unique, many of the work processes are common across all organizations within a specific industry, and as a result, workflow en-actment services are designed in such a way they can be configured to meet the needs of a particular organization. In this way WESs are equipped to handle common business processes in many different types of organizations, and across industries. When selecting a WES, an organization typically looks for a workflow vendor who understands their business, and who is able to meet their specific needs.
Any form of collaboration, whether between people or organizations, requires com-munication and cooperation. When two or more organizations collaborate, multiple busi-ness processes are involved. Each organization is a system in its own right; with their own processes and workflows. Effective collaboration requires that the WES of each of the collaborating organizations are able to communicate and cooperate with one another. In-formation Technology (IT) professionals have long struggled to preserve consistency and mutual trust in inter-organizational business processes [1, 86]. Information on business operations can be shared and validated within an organization’s centralized business pro-cesses where the process participants trust one another. When control over a process is delegated outside of an organization, as in an inter-organizational collaboration process, it is not possible for either organization to validate accuracy of data, enforce contractual obligations, or ensure that specific conditions are met. As a consequence, transferring control between fragile processes across organizations can lead to inconsistency and a lack of trust in process management [105].
Blockchain technology has the potential to significantly alter the business ecosystem, allowing for the execution, monitoring, and improvement of business processes within or across computer networks [110]. Blockchain is a distributed database technology based on a timestamped list of transaction records that cannot be tampered with [54]. Blockchains provide a secure way to execute processes in a trusted environment even in networks where nodes do not trust each other. This is aided by peer-to-peer networks, consensus mechanisms, cryptography techniques, and distributed ledger technology (DLT).
The secure nature of blockchain technology has also played an important role in the development and implementation of smart contracts (SC). As envisaged by its creator [90], a smart contract is a self-executing computer program designed to automate the sales process. The SC, which is stored in a distributed, decentralized blockchain system, has the terms and conditions of the agreement between buyer and seller written directly into the lines of code. The SC is activated automatically when predetermined conditions are met. Szabo’s vision of an SC, which he defines as “a set of promises, specified in digital form, including protocols within which the parties perform on these promises” [159], has come

12

to fruition as a result of the inherent characteristics of blockchain technology that havedriven its implementation.Business processes are governed by sets of rules that define how they respond to spe-cific conditions. For example, assume a sales transaction in which a customer orders 200goods from a seller. The terms and conditions of this simple contract specify a maximumdelivery period of two weeks. If the seller fails to deliver within that period, the cus-tomer may be entitled to a penalty payment. Business rules like these can be expressedusing SCs, and executed automatically by distributed and decentralized blockchain tech-nology. It is this combination of blockchain technology and SCs that govern the executionof inter-organizational business processes, and enable the functioning of decentralizedautonomous organizations (DAO) [124]. Solidity 1, Michelson 2, and Rholang 3 are amongthe new smart-contract languages (SCLs) that have emerged to implement executable SCs.A DAO is a virtual enterprise (VE); a digital entity that exists only as code stored onmultiple distributed and decentralized computers, networks and nodes. Unlike a tradi-tional business, a DAO has no central leadership, rather it is organized around a specificset pf rules enforced on a blockchain [59, 54]. The rules that govern the operation of theDAO are encoded in computer programs that are transparent and open. The first DAO,created by developers as a new, decentralized business model for both commercial andnon-profit enterprises, was written in open-source code, and was based on the Ethereumblockchain. It was designed as an investor-directed venture capital fund, in which peoplefromanywhere in theworld could investmoney anonymously and receive cryptocurrency;ethereum tokens, to the value of their investment, in exchange. ‘The DAO’ was launchedin April 2016 after a very successful worldwide crowdfunding campaign, in which morethan US$ 150 million was generated from selling digital tokens [7]. Unfortunately, lessthan two months later, in June 2016, hackers were able to exploit vulnerabilities in thesource code, and stole US$ 50 million [49]. These hackers exploited ‘call to the unknown’and ‘re-entrancy’ vulnerabilities; programming errors which were introduced because ofthe open-source software, and the collaborative nature of the programmers.Although this was a tragic failure, it proved to be an important model for modernDAOs. ‘The DAO’ demonstrated how blockchain technology can be used to improve effi-ciency, effectiveness and quality of business processes in an automated, distributed anddecentralized collaborative environment in which each organization contributes to a net-work of peers, governed by SCs that regulate and limit individual business behavior [54].In the context of a DAO, each business is a self-contained, decentralized, and self-organizing network that allows for a more rapid and cost-effective response to marketshifts. Business enterprises act as peers or agents that execute particular operations in acollaboration lifecycle involving both humans and software agents. The DAO uses peer-to-peer (P2P) computing without the use of clouds or servers in a loosely-coupled collab-oration lifecycle in which software agents participate in the setup [121], enactment [123],potential rollback, and finally, orderly termination of smart contracts.The collaboration lifecycle simplifies the selection and use of DAO-provided services,the negotiation of SCs, the monitoring of behavior during the enactment of the SC, andthe management of any breach of contract by either party [129]. Unfortunately, despitethe fact that blockchains are designed to provide a technological framework for draftinglegally-binding SCs, the underlying contractual concepts and properties required to makeSCs legally binding, referred to as ‘suitability’ [128]) are still understudied [31], [66], [68].
1Solidity| Docs Page2Tezos| Home Page3Rholang| GitHub Page

13

https://docs.soliditylang.org/en/v0.6.2/
https://tezos.com/
https://github.com/rchain/Rholang

According to Norta et al., the ontological suitability of smart-contract languages (SCL) forthe drafting of legally-binding SCs can be realized through (i) the choreography, or work-flow, of processes [54] (referred to as ‘concepts’), and (ii) the semantics that define theindividual DAO processes (referred to as ‘properties’) [128].
Established SCLs (such as Solidity [39], Vyper [19], and others) are programming lan-guages specifically designed for writing smart contracts. Unfortunately, due to their highlytechnical and and specialized nature, the SCs developed using these languages are noteasily understood by non-IT practitioners. And even for IT specialists, assessing the legalrequirements of SCs is challenging and time-consuming due to their lack of legal knowl-edge. While SCLs like Solidity and Vyper, have been developed specifically for the creationof smart contracts, and are designed to minimize coding mistakes, lack of alignment be-tween SCL semantics and software developers can lead to errors being inadvertently intro-duced into the SC code, with serious financial implications and the potential for significantlosses.
For the purpose of this thesis, lack of semantic alignment between SCL and humancoders is referred to as ‘expressiveness’ [see Publication (I)], and the example cited previ-ously when hackers exploited ‘call to the unknown’ and ‘re-entrancy’ vulnerabilities, andstole US$ 50 million from ‘The DAO’ in June 2016 [48], is possibly the most well-knownillustration of lack of expressiveness, or formal verification, in existing SCLs.
The legal properties of SCs, including the rights and obligations of the contracting par-ties, are analogous to software specifications the developer or programmer must addresswhen coding. It is therefore essential for software developers and programmers to havesufficient legal knowledge to write contract content. Programmers also have to be able tocommunicate with business people in order to elicit and clearly define what the softwareis required to do and how it is expected to perform under practical business conditions.
As a result of the interdisciplinary nature of SCs, it is essential that computer scientists,software developers and programmers work collaboratively with lawyers, business andfinancial experts, and other specialists from the various domains within an organisationwhen proposing, designing and implementing legally-binding SCs.
Given that suitability and expressiveness SCL properties are required for drafting andenforcing formally-verifiable, legally-binding SCs in DAO collaborations, the overall goal ofthis thesis is to identify these properties and develop a novel SCL to support them.
It should be noted that although SCLs supporting legally binding concepts and prop-erties of SCs have been discussed in the scientific literature, for example: SpecificationLanguage for Smart Contracts (SPESC) [75], Symboleo [152], and Smart Contracts in Nat-ural Language (SmaCoNat) [140]. Each of these SCLs have their disadvantages; For in-stance, SPESC only focuses on modeling legal positions, or legal relationships , and noton other critical aspects of contracts such as: obligation states, or rights and obligationscategories. Whereas Symboleo is flexible enough to capture a wide range of real-worldcontracts, it lacks the concepts and properties to address collaborative contracts. TheSmaCoNat contract modeling language (CML) does not address transaction rules and is,therefore, inadequate for the formulation any type of business contracts, because it doesnot meet the requirements of domain completeness. Other SCLs and their drawbacks arediscussed in detail in Publication (I). Despite the fact that SPESC, Symboleo and SmaCoNatpresent intriguing approaches for development of legally binding SCs, most, if not all, ofthese contract modeling languages either lack domain-completeness, or are intended fornon-collaborative business processes.
This thesis addresses the shortcomings of existing SCmodeling languageswhich are of-ten inadequate for legal recognition, particularly in smart-contract-enabled funding rounds.

14

They are also not able to reflect the dynamics of collaborative business-processes.Legally-binding and collaborative properties include indecomposable elements such as ‘semantic suitability’ (domain-completeness) and ‘workflow suitability’ (collaborative properties) [Publication (I)]. Semantic suitability provides insights into the context of a smart contract, for example: who the participants to the transaction are, what they are exchanging, and under what terms and conditions this exchange takes place [70]. Work-flow suitability [146] embodies properties that provide insights into the processes and workflow patterns to be followed when conducting a smart contract from the perspective of contractual collaboration, for example: how the transactions are to be carried out, and the workflow model that will be applied. The aim of this thesis is the development of an ontology which addresses the semantic suitability properties of SCs [Publication (II)].Many of the existing SCLs are unaware of their own processing state, and as a result, should not be classified as ‘smart’. When a conflict arises, tracing how the SC is executed is challenging, and because of this SCs are difficult to enforce legally. To address these issues, this thesis aims to develop a smart contract workflow model [see Publication (III)] in Colored Petri Nets (CPNs) which can be used to design, develop, and analyze the processing state of SCs in order to track the fulfillment of contractual properties [93].This thesis also address the problem of alignment between SCL semantics and the intuition of human programmers and software developers, by developing a blockchain-independent formal specification language [Publication (II)]. This language will allow blockchain developers to focus on the contractual workflow rather than the specific syntax of each blockchain platform. Because formal-specification SCLs are typically not blockchain executable, an additional objective of this thesis is to propose a novel approach that would allow legally-binding SCs to be executed automatically on any blockchain platform [see Publication (IV)].
1.2 Research Questions
This thesis addresses three primary topics, and for each topic, a short description is pro-vided, together with a number of research questions aimed at specific nuances of the topic. Table 1 outlines the relevant connections between research questions, thesis chap-ters, publications, and contributions (described in subsection 1.3 below).
Assessment of existing SCLs and identification of SCL properties that can render SCs
legally binding It is unclear how to create an SCL capable of allowing for the creation of legally-binding SCs. Although existing SCLs such as Solidity, Michelson, and Rholang have been developed for implementing executable smart contracts, they lack the critical legal and contractual properties required for drafting and enforcing formally-verifiable and legally-binding smart contracts. Without these properties, it is not possible to define contracting concepts such as: who the parties to the transaction are, what the transaction is, what they are exchanging, and what specific provisions are included in the smart contract.The first research question (RQ1) helps provide a better understanding of the current approaches for developing an SCL and proposes the suitability and expressiveness proper-ties that are critical for developing legally binding SCLs. This RQ also aims to asses whether the existing SCLs have the required suitability and expressiveness properties necessary for developing DAO smart contracts. Based on the findings of this assessment, a novel frame-work is devised for designing SCLs that address the weaknesses of the current approaches.
RQ1 How can a novel framework be devised for designing smart contract languages that are semantically rich and which support the drafting of formally-verifiable smart

15

contracts, for use in DAO collaboration?
In order to answer RQ1, three sub-questions are derived.

SRQ1.1 What blockchain-based SCLs already exist in scientific and non-scientific liter-ature?
SRQ1.2 What properties of business-oriented SCLs contribute to suitability and ex-pressiveness?
SRQ1.3 What obstacles are there in existing SCLs that restrict the attainment of busi-ness contractual objectives?

Implementation of formal specification language The use of blockchain and smart con-tracts technology improves the efficiency and automation of business processes. Thegrowing interest in developing decentralized autonomous organizations (DAOs) demon-strates that blockchain technology has the potential to transform business and society.However, due to a lack of ontologically legally-binding SCL concepts and properties, SCsare currently not able to capture the full range of business-related contracts.The second research question (RQ2) describes the necessary set of concepts and prop-erties, which are conceptualized in amulti-tiered SCL ontology that captures the full rangeof business-related contractswithin a unifiedmodel. Furthermore, SCL ontology is formal-ized in Colored Petri Nets (CPNs) which can be used to design, develop, and analyze theprocessing state of SCs in order to track the fulfillment of contractual properties. Fur-thermore, the concepts and properties captured in the SCL ontology is translated into theextensible markup language (XML) i.e., smart-legal-contract markup language (SLCML).
RQ2 How can a formal-specification language be developed for the purpose of legally-binding DAO collaboration?

Hence, three sub-questions are derived to support RQ2.
SRQ2.1 What formal semantics are required to define the legal aspects of a businessprocess?
SRQ2.2 What enactment mechanisms ensure the legal enforceability of contracts?
SRQ2.3 What is the machine-readable language conversion based on the ontology?

Translation approach from specification language to blockchain-executable languageSmart contracts written in existing languages, such as Solidity, Vyper, and others, are diffi-cult for domain stakeholders and programmers to understand due to technical limitationsinherent in the SCL. As a result of the conceptual gap between the contractual provisionsrequired for legally-binding SCs and the limitations of the coding language, it is difficultfor programmers to develop efficient, error-free code. Although formal specification lan-guages such as SLCML, Symboleo, and others are introduced to address these issues, notranslation approach has been implemented, or as yet proposed, to transform SCs writtenin a formal specification language into blockchain machine-readable code.The third research question (RQ3) proposes a pattern, as well as transformation rules,for translating contracts written in SLCML to blockchain executable machine code in or-der to reduce the effort and risk associated with smart contract development. This isaccomplished by implementing an SLCML code instantiation of examples of real-worldcontracts, after which, the proposed patterns and transformation rules are used to build abusiness process modeling notation (BPMN) choreography model from the SLCML-codedcontracts.
16

RQ3 How can a BPMN choreography model be built to translate an XML-based contractto blockchain-executable language?
The following sub-questions are derived for RQ3.

SRQ3.1 What is the structure of the SLCML instantiation that is crucial for the chore-ography transformation?
SRQ3.2 What are the patterns and rules for converting SLCML code to a BPMN chore-ography model?
SRQ3.3 What is the feasibility-evaluation approach of the proposed solution for a usecase?

Table 1: Mapping of research questions to corresponding thesis chapters, publications, and contri-
butions.

Research Questions Chapters Publications Contributions
SRQ1.1, SRQ1.2, SRQ1.3 3 I, VI 1, 2
SRQ2.1, SRQ2.2, SRQ2.3 4 II, III 3, 4, 5
SRQ3.1, SRQ3.2, SRQ3.3 5 VI 6

1.3 Contributions
This thesis is based on a collection of articles published in journals, and from internationalconferences. The thesis identifies and proposes suitability and expressiveness propertiesthat are critical for developing legally-binding SCLs. Furthermore, existing SCLs are eval-uated to verify if they have the necessary suitability and expressiveness properties. Inaddition, a multi-tiered ontology comprising concepts and properties for the design oflegally-relevant collaborative SCs is proposed. Moreover, a smart legal contract markuplanguage (SLCML) is developed to define the configuration (not the development) of alegally-binding SC. Finally, a pattern and associated transformation rules, are proposedfor translating SLCML coded SCs to blockchain executable code.The main contributions of this thesis are:

1. Recommendations for suitability and expressiveness properties. The thesis identi-fies critical properties such as semantic suitability, workflow suitability and expres-siveness, which can render smart contracts legally enforceable.
2. Recommendations for the development of legally binding SCLs. The contract en-abling properties and obstacles that restrict the achievement of business contrac-tual objectives of 45 existing SCLs are evaluated and discussed. Based on this anal-ysis, a novel framework for designing SCLs that are semantically rich and supportthe drafting of formally-verifiable smart contracts is proposed.
3. Development of multi-tiered SCL ontology. Business contracts can be of differenttypes, and because the realm and range of each type differ greatly, it is difficult to

17

express the entire spectrum of contracts in a single ontology. This thesis proposesa multi-tiered SCL ontology that is semantically rich enough to configure the fullrange of business-related contracts.
4. Modeling of SCworkflow. Since SCs are unaware of their own processing state, trac-ing the past performance of SC execution is difficult. More specifically, this thesisdemonstrates how procedural knowledge about the expected flow of business ac-tions within the business process workflow of the individual contracting parties isobtained.
5. Development of formal-specification smart-legal contractmarkup language (SLCML).The proposed novel smart-legal contract markup language contains the necessaryvocabulary required to define legally-binding collaborative business contracts.
6. Translation approach from formal specification language to blockchain code. Thisthesis proposes a pattern, and associated transformation rules, for creating a BPMNchoreographymodel fromXML-based smart-legal contractmarkup language. It alsoshows how the BPMN choreography model is translated into blockchain machine-readable code.

1.4 Research Methodology and Methods
The methodology used in this thesis is Design Science Research (DSR). This model pro-vides a rigorous framework for the creation and evaluation of an information systems (IS)artefact for the express purpose of improving the functional performance of the designedartefact [166]. Design science is a structured, systematic, creative, and iterative processfor the collaborative development of new solutions to existing business problems. The tra-ditional DSRmodel is based on three pillars: the environment, the IS research cycle, and aknowledge base. The first pillar, the environment pillar, consisting of three interrelated el-ements; people, organization and technology, provides input into the second pillar; the ISresearch cycle. The focus of this pillar is the developing, creating, building, assessing, eval-uating, justifying, reviewing, and improving, of an IT artefact that addresses the specificuser, or business need. The third pillar; the knowledge base, represents the foundationmethodology, theories, frameworks, models and methods that are necessary inputs fordeveloping the new artefact. For the DSR methodology to be successful, it needs inputsfrom both the environment and the knowledge base pillars. For the purpose of this thesis,the DSR model has been adapted from [166] and is depicted in Figure 1.In the adapted DSR model, the environment pillar represents the interaction betweenprogrammers, end users, business professionals and legal experts within decentralised,distributed and autonomous organizations engaged in inter-organizational collaborationusing blockchain-based smart contracts. To identify relevant problems relating to the topicof this thesis, a large number of interactions between programmers, end users, and busi-ness professionals from industry and government are observed. In addition, dozens ofsupply chain, construction, and energy-related contracts are analyzed. The relevance ofthis research is, therefore, to address problems that exist as a result of this interaction.The IS research cycle process relevant to this research is the developing of legally-binding smart contracts in decentralized, distributed autonomous businesses, engaged ininter-organizational collaboration. Furthermore, this thesis addresses the research prob-lem related to the implementing of legally-binding SCs in DAOs using blockchain technol-ogy.

18

Process

People
- Programmers
- End users
- Business professionals
- Legal experts

Organizations
- DeFi ecosystems, Decentralized

exchange
- Decentralized, Distributed,

Trustless and Autonomous
Organization

Technology
- Blockchain
- Smart contracts
- Oracles
- DeFi

Evaluate
- Case study
- Simulation
- State space analysis

Develop
- Development of

smart contract
language that
supports legal and
business contractual
properties

Foundations
- Liquid studio
- Protege
- Design science research
- Coloured Perti Nets Tools
- HermiT tool reasoner
- eSML contracting

Methodologies
- Modeling and simulation
- Formalism
- Kitchenham

Relevance RigorEnvironment IS Research Knowledge Base

Application in the Appropriate
Environment Additions to the Knowledge Base

RefineAssesss

Buniness
Needs

Application
Knowledge

Figure 1: Design-science research method, adapted from [77].

The knowledge base provides useful models, methods, frameworks, and validation criteria for the artefacts created in this study; thus serving as the scientific foundation on which this study is based. In this thesis, a SLCML is developed as an artefact to support legal and business-contractual properties. A literature review is conducted (quantitative analysis), to identify existing SCLs in Publication (VI). The contribution of Publication (VI) is expanded in (I), in which a comprehensive meta-study of existing SCLs is conducted (quantitative analysis), to assess their contractual properties (see Figure 2). A framework is proposed through qualitative analysis, for developing legally-binding SCLs based on the findings of the meta-study. The Kitchenham methodology [85] is used for quantitative and qualitative analysis, because it is a transparent method for aggregating knowledge from available literature, and is based on an unbiased, auditable, and repeatable methodology. The framework proposed in Publication (I) is implemented as published in (II), (III), and (IV). The formal SLCML ontology is developed to conceptualize legal and business contractual properties. To analyze the processing state of contractual properties in SC execution, an SCL ontology is formalized in a colored petri net (CPN) tool, which is essentially a graphical SC workflow model. The concepts and properties of the SCL ontology are translated into machine-readable XML-based language. Patterns and transformation rules for translating SLCML contracts into Solidity are proposed (see Figure 2). The initial PhD project outline for this thesis is published in Publication (V). The subject of this thesis is the development and evaluation of an SLCML that supports legally-relevant business contractual properties.The DSR method focuses on the creation and evaluation of information technology artefacts, as illustrated in Figure 1. For the purpose of this thesis, two evaluation method-ologies: Use-case scenarios (running cases) and laboratory experiments, are used to demon-strate the generality and applicability of the artefacts in blockchain-based DAO collabo-ration. Using use-case scenarios, in the form of running cases, to demonstrate the gen-erality of artefacts such as models, frameworks, ontologies and computer programs, is a well-accepted practice in blockchain research. As argued by Mendling et al., [111], arte-
19

Publication I, VI

Identification of
Contractual

Properties and
assessment of

SCLs

Quantitative
Analysis

Famework for
Designing

Legally binding
SCL

Qualitative
Anaysis

Publication II and III

Ontology
Development

Use Case Scenario
Evaluation

SC Workflow
Model Development

State Space
Analysis

XML-based SLCML Development
(Smart-legal-contract markup language)

Use Case Scenario Evaluation

Lab Experiment

Translation of Proposed
SLCML into Solidity

Use Case Scenario
Evaluation

Publication IV

Publication V

Figure 2: Illustration of contribution, research methodology and publication.

facts such as these “describe application scenarios involving blockchain technology in lo-gistics and supply chain processes”. Examples from literature, where running cases have been used to demonstrate blockchain-related technologies, include: agricultural supply chains [180], automotive supply chains [122], and food supply chains [15], among oth-ers. Keeping in line with this approach of utilizing use-case scenarios to demonstrate the generality of the created artefact, this work makes use of two running cases namely: an automotive supply chain case, and an agricultural supply chain case to evaluate the arte-fact.These running cases provide reasonable coverage of the various kinds of contractual requirements and legal concerns, against which the artefact presented in this thesis is evaluated. Furthermore, the generality and applicability of the artefact are demonstrated through laboratory experiments conducted with participants who have blockchain exper-tise. During laboratory experiments the semantic qualities, and pragmatic usefulness of the SLCML is examined to determine its applicability within a collaborative inter-organizational DAO environment.It is necessary to outline and explain how the research conducted in this thesis applies the principles of the DSR method. Table 2 presents the main guidelines of DSR and how they are applied in this thesis. The table shows the seven guidelines for conducting DSR and the description outlining how they are applied in this thesis.

20

Table 2: Guidelines of Design Science Research [166].

Guideline Description
Design as anArtefact It is essential that a DSR produces artefact(s). These artefacts can takethe form of models, methods, or frameworks. An XML-based smart-legal contract markup language SLCML is the artefact developed for theresearch conducted in this thesis.
Problem Rele-vance The DSR methodology focuses on addressing critical issues in the busi-ness environment. The relevant organizational problem addressed inthis thesis is the absence of legal, and business-contractual conceptsand properties in existing SCLs. Thus addressing the research question(RQ2) of how to develop a smart-contract language that has conceptsand properties for guiding business collaboration in a legally relevantway.
Design Evalu-ation The DSR methodology mandates that the artefact(s) created in any re-search that employs DSRmethods be thoroughly evaluated. The SLCMLdeveloped in this thesis is evaluated through use-case scenarios (run-ning cases) in order to demonstrate and understand the syntax and se-mantic properties of the SLCML schema. Furthermore, the usability ofthe SLCML is assessed through laboratory experiments to ensure its ef-ficacy in developing legally binding SCs.
ResearchContributions The contributions of well-conducted DSR research must be clear. Themain contribution of this thesis in the field of artefact design is thedevelopment of formal-specification smart-legal contract markup lan-guage (SLCML) that contains essential vocabularies to configure legally-binding and collaborative business contracts.
ResearchRigor This entails employing rigorous methods in the development and eval-uation of DSR artefacts. Rigorosity is demonstrated in this thesis by de-veloping the SLCML by extending the concepts and properties of theeSourcing markup language. The rigor in development of SLCML isdemonstrated by analyzing various evaluation methods and adoptingthe most appropriate method to evaluate the developed artefacts.
Design as asearch pro-cess

This guideline demonstrates that an effective artefact developed to ad-dress a specific organizational, or business, problem must also adhereto the rules of the problem environment. Thus, this thesis demon-strates that the developed SLCML artefact abides by the laws of theapplicable domain, and the legal properties of the SLCML are evaluatedby blockchain experts.
Communicationof Research This entails presenting the results of the research to audiences in thetechnology and management fields. The main findings of this thesishave been published in journals, and presented at several conferences,with audiences drawn from experts in technology and management-related fields.

21

The mapping of research methods to the corresponding research question and publi-cations, is summarised in Table 3.
Table 3: Research methods used in this research.

RQ Publications Topic Methods used
SRQ1.1,SRQ1.2,SRQ1.3.

I SCL framework Kitchenham methodology; litera-ture review, data collection fromscientific databases, data analysisVI SCL properties literature review, data analysis.
SRQ2.1,SRQ2.2,SRQ2.3.

II Ontology andSLCML design Design science research; casestudy, data collection from legalpractitioners.III Workflow model Design science research; casestudy, simulation data collectionfrom legal practitioners.
SRQ3.1,SRQ3.2,SRQ3.3.

IV Translation ap-proach Design science research; case study(data collected frombusiness case).

1.5 Structure of the Thesis
This thesis is divided into seven chapters. The introductory chapter provides a brief overview of the SCL in drafting legally binding SCs, as well as the research questions, and contribu-tion of the thesis.Chapter 2 provides a detailed background to this thesis by presenting literature re-views that serve as the foundation for the research. The running case(s) used to demon-strate the applicability and evaluation of the SCL developed in this thesis, are also included in the chapter.Chapter 3 describes the critical properties that can aid in the creation of legally-binding SCs. This chapter also proposes a future research direction for developing legally enforce-able SCLs.Chapter 4 presents the novel semantically rich ontology for describing legally-binding concepts and properties for defining SCs, a workflow model (CPN model) for analyzing the processing state of SCs, and SLCML vocabularies for drafting legally binding collaborative SCs.Chapter 5 discusses examples of SC code using the SLCML schema, proposes a trans-lation approach from SLCML to blockchain-executable language, and discusses the feasi-bility of the SLCML-based SC translation approach to Solidity.Chapter 6 discusses the existing evaluation approaches of modeling languages, identi-fies the best approach for evaluating SLCML, and discusses the evaluation results of SLCML language.Chapter 7 provides the conclusion of the thesis by summarizing the main results of the study. Furthermore, the limitations and future work resulting from this thesis are presented.

22

2 BACKGROUND AND RELATED WORK
This chapter begins by introducing the fundamental concepts of blockchain technology be-fore demonstrating the legal implications of blockchain smart-contracts. Section 2.1 pro-vides a technical overview of SCLs after which the legal implications of SCs are explainedin more detail. Section 2.2 discusses and compares related work, and expresses the moti-vation for this thesis. Section 2.3 outlines the smart-contract inter-organizational use-casescenarios that are used to demonstrate and evaluate the applicability of the SLCML de-veloped in this thesis.
2.1 Blockchain and Smart Contracts
Blockchain technology was first introduced in 2009 with the Bitcoin cryptocurrency [119].In this first use-case, a blockchain’s decentralized nature enabled the transfer of cryptocur-rency without the involvement of a central banking or financial authority, and therebyeliminated the cost of bank fees, taxes, and other intermediary expenses during trans-actions. A blockchain is an immutable distributed ledger that can be used to store datain a variety of domains such as business, healthcare, passport verification, and so on [2].It used SHA-256 hashing cryptography algorithms for security and can be used to storecryptocurrency transaction logs. Blockchain has significant potential in internet-of-things(IoT) applications because it strengthens device security, and data obscurity, while alsoimproving maintainability.
2.1.1 Technologies supporting the blockchain
Themain technologies that support the blockchains include, decentralized consensus andstorage, public-key cryptography and asymmetric encryption, smart-contracts, and smartcontracting languages.

Decentralized consensus: The process of updating records in a blockchain network toensure that new information is accurate and consistent, is known as blockchain consen-sus [157]. A blockchain consensus system ensures that only correct data, validated by col-laborating parties, is added to the network for an IOC using decentralized collaboration.As a result of blockchain consensus, transparency in IOC processes is improved. Proof-of-work (PoW) is the primary consensus mechanism used by the Bitcoin and Ethereumcryptocurrancies. Bitcoin is the fastest growing blockchain network, and Ethereum isthe largest blockchain network for executing smart-contracts [11]. In the PoW consen-sus mechanism, a complex mathematical puzzle is presented, and the first member of thenetwork to solve it is chosen to add the next record to a blockchain ledger. Because ofthe scalability and resource consumption issues with PoW, Jain et al. investigated a proof-of-stake (PoS) consensus method as a better solution. Participants in a PoS network areselected to add the next record to the ledger based on the amount of stake they havedeposited [82].
Public-key cryptography (PKC): The PKC is a system that uses a public-and-private keypair to uniquely identify participants in a decentralized network. The public key is usedto identify IOC participants, while the private key is used to sign transactions. As a re-sult, PKC provides a tamper-proof source verification system for any activity in an IOC.The asymmetric encryption provided by the PKC can be used to implement access con-trol on IOC processes, thus ensuring that specific IOC functions can only be performed bycertain network parties. As a result, PKC significantly addresses the security issues cur-rently encountered in traditional blockchain systems for executing SCs within IOCs thatuse decentralized collaboration.

23

Decentralized storage: A blockchain network’s records are replicated in all partici-pating nodes [136]. Decentralized databases can be used to extend existing blockchain storage by providing additional repositories for blockchain systems [37], thus preserving digital assets exchanged in IOC-executed blockchain networks. As a result, for an IOC that employs decentralized collaboration concepts, decentralized storage ensures that data re-sulting from the execution of IOC functions are accessible in real-time to all participants. As a result, interoperability issues in current IOC systems are eliminated by real-time data access.
Smart contracts: Smart contracts are blockchain-based applications that allow busi-nesses to be more efficient by automating business processes [98]. A smart contract is a computerized transaction that enforces agreement rules automatically without the use of intermediaries [160]. Collaboration processes between organizations can be re-constructed into smart-contract workflows and executed on blockchain networks. Smart contracts can be coded with business logic and rules, thereby ensuring that SCs in IOCs are executed securely without requiring centralized authority. Smart contracts that are blockchain enabled do not interact with external data; they rely solely on data provided by the blockchain system to carry out business logic. Decentralized oracles are external data gathering components in a blockchain that allow SCs to receive real-world data in-puts without relying on centralized parties [65]. This ensures that SCs use trusted data inputs when executing business logic in IOCs.
Smart contract language: Smart contracts are written in a blockchain programming language, such as Solidity, with intermediate languages like Simplicity [165] and Scilla [151] being used for program analysis and verification. The latter provide significant assurances by relying on type-soundness. These languages allow smart contract code to run on low-level virtual machines (VM) (Ethereum VM, for example). Rootstock 4, Telegram Open Network (TON) 5, and Bitcoin [84] are just a few of the blockchains that, like Ethereum, have designed and implemented, their own virtual machines. Rootstock, for example, added the Rootstock Virtual Machine (RVM) to Bitcoin [84], whereas TON introduced the TON VM, or TVM, for developing, maintaining, and configuring SCs [50].

2.1.2 Legal implications of smart contractsFor contracts to be legally binding, the parties to the contract must reach an agreement. According to Governatori et al., [70], the conceptual links between legal commercial con-tracts, and smart contracts, are that SCs must meet specific requirements in order to be legal contracts. These requirements include: offer and acceptance, consideration, compe-tence, capacity to contract, and so on. According to Savelyev [147], SCs are in accordance with Roman contract law, which he explained by comparing smart contracts to the mech-anism of a vending machine. When using a vending machine, an individual places a coin in the slot, which leads to a secure lockbox. The individual then selects a specific product from a predefined list, and if the money deposited in the machine is of the same value as the product selected, the vending machine automatically dispenses the product.Savelyev also proposed blockchain decentralization as a solution for aligning with gov-ernment power. The proposed solutions are based on granting state authorities the ability to modify blockchain databases as superusers, while also emphasizing traditional reme-dies and enforcement practices. Furthermore, Goldenfein et al., [68] argued that the legal status of SCs are dependent on the incorporation of computational transactions into nat-ural contracts, because “natural contracts do not construct an agreement on their own”.
4Rootstock (RSK) | Home Page5TON | GitHub Page

24

https://www.rsk.co/
https://github.com/ton-blockchain/ton

De Filippi et al., [63] defined a smart contract as “law is code” and proposed abandoningthe concept of “code is law.” It is worth noting that when contract law is translated intosmart-contract code [62], the semantics of contract law are lost, thereby leaving the legalstatus of SCs in doubt.
2.2 State of Art of Smart Contract Development
Smart contracts using distributed ledger technology are a new field of study. As a result,little research has been done on SCLs that support the development of legally-bindingSCs that are based on the requirements and properties of actual business processes. Tosupport these contractual properties, attempts have been made to raise the level of ab-straction from code-centric to model-centric smart contract development. Four of theseattempts are described in detail in this chapter; these are: the agent-based approach, thebusiness process-based approach, the state machine approach and the UML approach.One or more modeling languages have been used in these model-driven approaches inorder to support the concerns and viewpoints associated with SCs.
2.2.1 Agent-based approach
Frantz et al., [64] developed a modeling approach that used a domain-specific language(DSL) to help transform institutional concepts into machine-readable contractual rules.This approach was based on the concepts discussed in [36]. Crawford & Ostrom proposeda ‘grammar of institutions’ syntax that can be used to identify essential components ofany institution and group them into three types of institutional statements: rules, norms,and shared strategies. These institutional statements are useful in agent-based modelingbecause they serve to guide the actions of agents within organizations [154]. Agent-basedmodels (ABMs) are computational models for simulating the actions and interactions ofindividual agents, or groups of agents, within a system, for the purpose of understandingagent behavior, and behaviour of the system as a whole. This includes the interactions ofthe system’s entities as well as specific representations of those entities [153]. The syn-tax of the grammar of institutions contains five components represented by the acronymADICO, which stands for: Attributes, Deontic, aIm, Conditions, and Or Else.Frantz et al., [64] developed a DSL in Scala to convert the ADICO statements into Solid-ity code. In this way, a business contract written in ADICO syntax could easily be convertedinto a smart contract using Solidity code. The smart contract, thus generated, would beunderstood by both IT, and business professionals. However, the code generated throughthis process would only be a skeleton, and would have to be enhanced by a developerbefore it could be run in Solidity. Furthermore, no mention is made in this paper of theimplementation of such an approach for the creation of complex collaborative businesscontracts.
2.2.2 Business process-based approach
This approach focuses on organizational business processes, and there have been severalinitiatives based on this approach published in the literature. To address the lack of trustin collaborative process execution in the blockchain, Weber et al., [169] proposed an auto-mated way to generate smart contracts using a translator. This is achieved by generatingSCs from process specifications using Business Process Model and Notation (BPMN). Be-cause the translator is called at design time and the roles of the participants are unknown,the output of this process results in what is known as a factory, or generic, contract. Asa result of the transformation’s adherence to workflow patterns, not all BPMN elementsare capable of translation.

25

Taking a similar approach, Tran et al., created Lorikeet; a model-driven engineering tool that generates SCs from BPMN specifications [163]. The modeler user interface is linked to three back-end components: a BPMN translator, a registry generator, and a blockchain trigger. A business process model is fed into the BPMN translator, which gener-ates a smart contract written in Solidity code. The trigger communicates with an Ethereum blockchain node to compile, deploy, and interact with SCs. Unfortunately, Lorikeet does not support all BPMN notation for translation, similar to the translator proposed in a pre-vious study [169].Caterpillar [132] is a tool available in the market that is an alternative to Lorikeet. It is a free, open-source, tool that supports advanced BPMN control flow elements like sub-processes, multiple instances, and event handling. However, Caterpillar does not support the modeling of business process views, which is essential for any collaborative business contracts.
2.2.3 State machine approachSeveral studies, have used the state machine approach to extend model-driven engineer-ing concepts to smart contract development. This researcher considers SCs to be state machines; the contract has an initial state, which changes as transactions are completed. This method is listed as a common pattern in Solidity documentation [40]. Mavridou et al., [106] presented a formal model for modeling SCs and created the FSolidM tool; a code generator for creating Ethereum smart contracts, thus enabling smart contract de-velopment with minimal manual coding. In addition, Mavridou et al., demonstrated the FSolidM tool in [107]. Although the transformation from finite state machine (FSM) to So-lidity is semi-automated to ensure good code quality, several other properties cannot be modeled without the use of additional plugins. Mavridou et al., [107] did not go into de-tail about FSM; they expanded on previous work by developing the ‘VeriSolid’ framework, which focused on the security aspect of smart contract design [109]. The VeriSolid frame-work enabled developers to perform high-level verification of smart contracts, thus al-lowing for correct-by-design contract development. There is a tool, known as the ‘Yakindu Statechart Tool’ that has been designed to generate SC code from a finite state model. The tool allows for graphical editing of statecharts, and the generation of code in blockchain languages including Solidity, Vyper and Yul [118]. This tool is, however, in its initial devel-opment phases, and no details are avalable on how it can be implemented.
2.2.4 UML approachSyahputra et al. [158] generated SCs for two different blockchains using UML and OCL. The smart contract code was generated with the help of an existing code generator called ‘Acceleo’ (Model to Text) [78]. To accomplish their goal, Kruijff et al., employed the commitment-based ontology perspective [41], which segregated ontology into three levels: essential, infological, and datalogical. However, this study [41] lacked detail because it only demonstrated the models and did not discuss platform-specific models or generated code. It is also not clear whether the author’s framework integrated the two tools into a single system or whether developers would need to use other tools to achieve their goal.
2.3 Running Cases
Two running cases have been used in this thesis to introduce and discuss the concepts of business contractual collaboration. The first running case is from the automotive sector presented in Publication (II), in which it is assumed that a CarMan manufactures automo-biles and outsources a significant portion of the supply chain to collaborating parties who

26

act as service providers or sellers.
The second running case is from the food supply chain, and addresses the issue of process views and their matching relationships, as presented in Publication (IV). Process views are an important consideration when establishing inter-organizational smart con-tract collaboration. Companies are in full control of the development of process views, which are abstractions of actual business process. In this way, sensitive or insignificant aspects of the supplier business process can be hidden behind a process view.
Both running cases are used to demonstrate the generality and applicability of pro-posed or developed artefacts. In this thesis, the first running case, the automotive man-ufacturer, is used to evaluate the proposed the SLCML ontology for configuring essential contractual properties that address conflicts in rights and obligations between contrac-tual parties in an automotive supply chain. The second running case is used to assess the SLCML’s syntactical correctness, semantic usefulness, and effectiveness. Using laboratory experiments, It can be assumed that ontology is tested in both running cases because ontology is the input for developing SLCML language.

2.3.1 Case 1: Decentralized system of automobile collaborative supply chain.Blockchain has many different applications in the automotive industry [176], and the monitoring and control of components or parts in the automotive supply chain is a significant use-case for blockchain [28]. The first running case, which was established in [120] and published in [54], discusses the P2P DAO-collaboration model depicted in Figure 3. Figure 3 illustrates a service consumer’s in-house business processes in the form of a business network model (BNM) [143]. The BNM is essentially a blueprint for inter-organizational collaboration that includes a legally binding template contract that matches service types to organizational roles.
‘Business network model selection’ is a platform for developing service types that can be used in tandem with cloud-based collaborative business-processes-as-a-service (BPaaS-HUB) [127] to support in-house processes. Service offerings from multiple supplier organizations are stored on a BPaaS-HUB, allowing customers to locate potential collabo-rating partners and learn more about their offerings. The role of a BPaaS-HUB is to match customers with service suppliers, and vice versa. An eSourcing Markup Language (eSML) developed by Norta et al., [128] has been used to specify BNM requirements.
As service offers are received, they are validated against the service types defined in the BNM. For those offers that match requirements, a prototype contract is created for the purpose of negotiation [122]. The negotiation phase may result either in a consensual agreement (acceptance of offer), a counter offer, or a disagreement (Rejection of offer). A prototype smart contract is sent to the all parties who respond to a service offer re-quest, and who meet the criteria. Parties who receive the prototype contract can vote on one of three negotiation options (agreement, counter offer, or disagreement). Successful negotiations result in the creation of a smart contract that satisfies all parties.
As discussed in [122], the service type, service offer, and service role are negotiated in two stages. Stage 1 involves the extraction of proto-contracts, while Stage 2 involves the establishment of SCs. According to [92], agent-based negotiation is rapidly gaining acceptance because it allows for semi-automated and fully automated negotiation.
Figure 3 approximates a BNM representation of a DAO. The model is divided into six zones; the top zone is the legacy technology layer, the next zone represents the concep-tual layer for the service consumer (the buyer of services). The conceptual layer repre-sents the workflow instances that the service consumer is prepared to make visible to the external world. It should be noted that these are not the actual workflow processes, but

27

Tyres sup. X
out

i oLocal Service A

Steering sup. Y

in

oLocal Service B

Shipper Z

in

oLocal Service Ci i

out

Se
rv

ic
e

Pr
ov

id
er

s
C

onceptual Layer
External Layer: Service-H

U
B in C

loudi

Service Offer A

Service Offer B
i

o

o
in

out
Service Offer C

SupTr
SupSt

Shipping
i

in
out

C
ar

M
an

: S
er

vi
ce

 C
on

su
m

er

Service Type A
out

o

Service Type B
out

i

in
o

Service Type C

i

in

o

Tyres sup.

Steering sup.

Shipping

Cardano EOS

Orchestrate Orchestrate Orchestrate

C
onceptual Layer

Legacy-technology Layer

Orchestrate

Project Project
Project

Project

Ethereum

Legacy-
technology Layer

Business Network Model

Tezos

match

match

match

Project Project

Service Type A
out

i o

Service Type B
out

i
in

o
Service Type Ci

in

i
Tyres sup.

Steering sup.

Shipping
o

o

i

o

Figure 3: DAO-collaborative automotive supply-chain adopted from Publication (II).

are representations of those processes that the service consumer needs to make visible to potential service providers. In the context of Figure 3, these workflow representations are projected by the service consumer into the business-process-as-a-service hub in the cloud; as represented by the external layer.
28

By the same token, the second-to-bottom layer of the model represents the serviceproviders, and they too, only make visible those parts of their internal workflows that arenecessary to satisfy the needs of potential customers. These representations of internalworkflows are projected into the external environment by way of the BPaas-Hub; this iswhat the service providers (suppliers) are offering in terms of products or services. Amatching process takes place in the middle (the external cloud-based service hub layer),where service requests of the service consumer (manufacturer or buyer) are matchedwith the service offerings of the service providers (suppliers). A successful match resultsin a negotiation, and a successful negotiation results in consensus and the creation of asmart contract.
In Figure 3, the CarMan is a car manufacturer (classified for the purpose of this the-sis as a service consumer), who manufactures and assembles cars from components andparts provided by a network of suppliers. There are three service providers: Supplier A(SupTr) is a manufacturer of car tyres, supplier B (SupSt) manufactures steering wheels,and Supplier C (Shipping) delivers components and parts to CarMan, and delivers assem-bled cars from CarMan. All four entities are involved in inter-organizational collaborationin a DAO for the purpose of manufacturing automobiles. The CarMan, is a focal manufac-turing operation which controls a variety of internal processes, such as process control,information exchange, and resource planning for the manufacture and sale of automo-biles. However, because CarMan is unable to manufacture all of the components andparts internally, it sources those components and parts it needs from external suppliersand service providers.
Two technology layers are illustrated in Figure 3; at the top there is the legacy technol-ogy layer, where the service providers’ internal processes interface with their legacy infor-mation technology systems. The second technology layer; the smart-contract blockchaintechnology layer, is shown at the bottom of the diagram. This illustrates how varioussmart-contract blockchan solutions such as Ethereum, Cardano, the Electro-Optical Sys-tem (EOS) and Tezos among others, may be mapped to the respective internal legacy-technology layers of the parties collaborating in the DAO. The dashed monitorability- andconjoinment arcs [126] show how the proposed conceptual business processes are linkedto the external layers and how they can be realized technically with the lightning net-work [91]. Lightning is a decentralized blockchain-based network using SC functionalityto enable instant payments for high-volume transactions to participants within a DAO,without entrusting funds to a third party.
For the purpose of this thesis, only cross-entity market exchanges have been consid-ered. CarMan generates demand for car parts by using blockchain SCs to specify quanti-ties, prices, delivery dates, and other criteria. CarMan‘s demand for products and servicesis conveyed to service providers through public blockchain platforms, and they respondwith bids that include the terms and conditions relating to the provision of the car parts.A smart contract has rules that can not be changed or opened before the deadline [30] toprotect the integrity of bid prices and private information provided by service providers.For additional security, the bids submitted by public blockchain participants can be en-crypted before they are submitted. These bids can then be decrypted on receipt by usinga decryption key held by the software agent receiving the bids. Because the details ofthe bids are stored on secure blockchains, CarMan is able to select suppliers either man-ually or automatically if specified criteria have been met. In addition specific provisionsrelated to supply chain collaboration can be coded in the respective legacy-technologylayers. These provisions would automatically trigger specific pre-defined actions if certainevents occur. For example, if the tyre manufacturer failed to deliver car tyres to CarMan

29

on time, the SC could be set to penalize the supplier prior to delivery. In a traditional sup-ply chain, cooperating entities have little or no say over who is to blame for bottlenecks.To achieve this oversight, SCs and blockchain technology are used, allowing collaborativeparties to monitor and track the status of products and transactions.
Although SCs and blockchain technology can be used to improve and automate theprocess, thus allowing parties to monitor and track the status of their products and trans-actions, there are valid business concerns that can arise from using evolving technology.For example, a SCmay be programmed to automatically release cryptocurrency on the de-livery of car tyres based on receipt of tyres into a warehouse, even though the deliveredproduct does not meet CarMan’s specification. The legal implications are that paymenthas automatically been made for defective goods.
SupTr has delivered defective tyres to CarMan, who has automatically paid for themon receipt. CarMan would have a claim on SupTr, who would then have two options:1) replace the defective tyres at their cost, or 2) refund the money. The obligation tofulfill that compensation must be imposed on the SupTr. Another possibility is that thesteering wheel supplier sells steering wheels to CarMan, but the product is not deliveredby CarMan‘s deadline due to a conflict with the Shipper. Both of these scenarios havepractical implications that SC-based blockchains must be able to cater for.
Traditionally, international trade issues such as these, have been resolved through theuse of letters of credit, in which the buyer receives assurance that the cargo price will notbe paid unless the seller has proved that he hasmet all the the obligations assigned to himunder the underlying contract of sale. When the terms of the contract have beenmet, theseller receives his money, and the bank is compensated for acting as an intermediary inthis transaction by charging the buyer a fee [89]. Nonetheless, as a sluggish and outmodedpaper-based payment method requiring both parties to exchange and verify official-and-legal documents, this payment method faces numerous challenges. Furthermore, ratherthan relying on the underlying condition of the goods, this payment method is entirelydependent on documents to initiate payment [3]. Because of the need for “physical doc-umentation exchanges,” as well as the transfer bill-of-lading and complex communica-tions between many different parties; paper-based letters of credit are time-consuming,and prone to errors. These disadvantages can be overcome by implementing blockchain-based SCs to reduce the time required for credit transactions through enabling electronicpayment of bills-of-lading. In addition, the need for paper-based documents could beeliminated, and the interaction between all parties would be facilitated through a single,private network. However, contractual semantics in existing SCL are insufficient to imple-ment blockchain-enabled letters of credit.

2.3.2 Case 2: Collaborative dairy supply chain for business processes, process views
The second running case of this thesis as elaborated in [15], and published in [53], de-scribes numerous problems that can arisewhen a service provider (supplier) hides processdetails from the service consumer (customer) in the dairy supply chain. Blockchain tech-nologymay benefit the food supply chain, such as the pork supply chain [29], the fish sup-ply chain [79], and the dairy supply chain. The tracking and monitoring of product safetyand regulatory compliance throughout the food supply chain is a significant use-case forblockchain [26]. Many stakeholders, including farmers, bulk milk distributors, manufac-turers,wholesalers and retailers, as shown in Figure 4, are responsible for managing thesupply-chain operation from the start, when a cow on a farm produces raw milk, to thefinished product, when a consumer buys baby-milk powder. Internal traceability refers tothe traceability of one of the actors internal processes, whereas chain traceability refers

30

to the traceability of the entire supply chain [115]. To retrieve and provide informationto the Food Safety Information System, actors in the dairy supply chain can employ IoTdevices and location-based food safety information systems (FSIS) technology. The lattercontains a wide range of data that food supply-chain actors require in order to achievetransparency and quality assurance. According to [10], FSIS is run by unspecified central-ized or decentralized information. Each actor is expected be responsible for food safety intheir own operations. The Food Safety and Quality Assurance System (FSQAS) establishesthe quality and safety standards towhich all stakeholders in the supply chainmust adhere.The FSIS monitors traceability data to ensure that rules are followed.

Food Safety Information System

Food Safety & Quality Assurance System

Farm Distributor Factory Retailer Consumer

Supply-chain Traceability

Text

Internet & Web
Technology

Wireless Identification
& Sensor Technology

Location-based
Technology

Information &
Communications

Technology

Internal
Traceability

Internal
Traceability

Internal
Traceability

Internal
Traceability

Internal
TraceabilityEx

te
rn

al
Tr

ac
ea

bi
lit

y

Ex
te

rn
al

Tr
ac

ea
bi

lit
y

Ex
te

rn
al

Tr
ac

ea
bi

lit
y

Ex
te

rn
al

Tr
ac

ea
bi

lit
y

Good Practices (GMP, GHP,...) HACCP ISO Standards TQM

Figure 4: Use case of dairy food supply chain adopted from Publication (IV).

This thesis focuses on cross-organizational collaboration within the dairy supply chain.Farmers keep detailed records of their farm’s location, breed of cow, vaccinations, treat-ments, and any special regimens that might be required. RFID devices or any other sen-sor network incorporating blockchain technology can be used to monitor the health andmovement of animals. Using advanced machines, data on animal movement can alsobe recorded and stored on blockchains. The bulk milk distribution company is informedthrough blockchain platforms when the milk is ready for collection. Temperature controlduring transit is critical for preventing milk spoilage, and sensors are used to achieve this.GPS technology is often used tomonitor vehicles in real time. When themilk is dispatchedto the factory, key information is updated on the blockchain network. These data includeinformation such as the location of the unit, the number of deliveries at a specific lot, andso forth. The factory processes the milk and manufactures baby-milk powder; in additionis also provides consumerswith factual data about food items such as: nutritional informa-tion, ingredients, expiry date, instructions for use, and other helpful or legally-mandated
31

information.According to [27], SCs are required for food supply-chain operations to improve col-laboration among parties. The supply-chain operation procedures in the food-safety andquality-assurance system are designed to trigger important events. If, for example, thebulk milk distributor fails to deliver milk to the factory within a specified time, or at aspecified quality, they may end up paying a penalty. If this scenario is considered to beimportant it should be coded into the SC. In a traditional supply chain, the parties whowork collaboratively, often have little control over any organization that could cause abottleneck in the system. However, in a SC-driven blockchain, each business could mon-itor and track the status of products and transactions, thus providing critical oversightof the whole process. Any bottleneck would immediately become visible, and the erringparty would be identified. Despite these advantages, there are significant business andlegal concerns relating to the fact that blockchain technology is still in early stages of de-velopment, and SCLs are not mature enough to deal with practical realities. Assume, forexample, a farmer is managing a workflow process on behalf of the milk processing fac-tory. Even though the farmer is supplying bulk milk to the factory under a supply contract,he may not wish to reveal the details of all the workflow processes he employs on hisfarm, because they are of no concern to the factory. The factory, on the other hand, maybelieve that because they are the farmer’s customer, they have a right to have insightinto what happens on the farm. The farmer only discloses those aspects of the processhe is willing to make public, and that are of interest to potential customer organizations.Most customer organizations, on the other hand, would like to incorporate a white-boxview of the outsourced processes into their own processes. This would provide themwithmore information about the structure and progress of the process that another companyis carrying out. However, in reality, the customer organization, does not need to know thespecifics of the upstream workflow process and only requires a broad understanding. Toaccommodate issues like these, SCs must include clauses that clearly define the rules forwhen confidential workflow information should be withheld or disclosed to third parties.

32

3 LEGALLY BINDING SMART-CONTRACT LANGUAGE DEVELOP-
MENT FRAMEWORK

This Chapter focuses on RQ1: How can a novel framework be devised for designing smart contract languages that are semantically rich and which support the drafting of formally verifiable smart contracts, for use in DAO collaboration? In Publication (I), a legally bind-ing SCL development framework was proposed, and the contractual business concepts and properties that enable SCLs to facilitate the drafting of SCs supported by law, was discussed. The analyses, and the results produced as a result of that analysis, have been used as the contents for this chapter.
3.1 Introduction
In this chapter, a comprehensive meta-study of existing smart contract languages is con-ducted by way of a systematic literature review (SLR). The focus of this meta-study is on the coding of smart contracts for distributed autonomous organizations.This researcher follows Kitchenham’s guidelines for conducting a software engineer-ing SLR [85] and conducted the study using a structured five-step process. The study be-gins by identifying relevant keywords (and their synonyms) commonly used in scientific literature that are relevant to the specific research questions. The 616 articles published as white, and grey, literature are identified by conducting a thorough search of various academic databases (including Web of Science, Scopus, arXiv, and Google Scholar), and technology-related online publishing platforms including GitHub [Publication (I)]. Using a predefined set of inclusion criteria (IC1-IC6) [Publication (I)], and exclusion criteria (EC1-EC6) [Publication (I)], the titles, keywords, and abstracts of these articles are examined to extract relevant articles that propose (or discuss) novel SCLs. The selected 130 primary
studies [Publication (I)-supplementary6] are then thoroughly studied and scored using a two-stage quality-assessment process (QC1.1-QC1.6 and QC2.1-QC2.4) [Publication (I)]. The 73 articles that explicitly answer the research questions SRQ1.1 and SRQ1.2, are iden-tified and labeled as selected studies, and supporting studies. Following that, the 45 SCLs proposed in the identified selected studies, are examined and categorized based on their attributes and applications. Available properties are identified and new ones that are crit-ical when developing legally binding SCLs are proposed by examining the remaining 28
supporting studies [see Publication (I)- Table 9 and 11]. Finally, to determine whether the identified SCLs have the required suitability and expressiveness properties for developing DAO SCs, the selected-supporting studies and their references are thoroughly examined. Based on the findings of the SLR, this researcher concludes that most cutting-edge SCLs only partially support business’ contractual processes. A novel framework is developed for designing semantically rich SCLs that support the drafting of formally verifiable SCs aimed at DAO collaboration.
3.2 Existing SCLs
This researcher examined and summarized the characteristics of the aforementioned SCLs, including the name SCL, the blockchain platform for which it was designed, its type-system,
paradigm, focus, and purpose. These properties were chosen because they are critical for understanding the differences between current SCLs, and for identifying critical properties that can aid in the creation of legally binding SCs.The attributes: focus and purposedescribe themotivation for SCL development; for ex-

6Publication 1 | Supplementary material
33

ample, the specific domain/activity for which the SCL was created, as well as whether theproposed SCLs were detailed enough to be checked for semantic correctness, formal ver-ification, or both. The paradigm attribute, determines the programming paradigm or ex-ecution model of SCLs (process-flow or data-flow). Finally, the SCL type-system, specifiesthe rules that apply to the data types of the programming language. These characteristicsare especially significant because they reveal critical information about the suitability andexpressiveness of SCLs. In particular, focus and purpose provide insights about semanticsuitability; focus and paradigm provide insights about workflow suitability; and purposeand type-system provide insights into expressiveness.
• SRQ1.1: What blockchain-based SCLs already exist in scientific and non-scientific lit-erature?
Because the number of selected SCLs are too large to be described individually, they have been grouped into five categories based on their foci: domain-specific SCLs, formally verifiable SCLs, easy-to-use SCLs, legally enforceable SCLs, and business process SCLs.
Domain-specific SCLs are those SCLs that have been designed with a specific domain.

Formal verifiable SCLs include languages that are designed with priority to runtime safety of smart-contract code. Easy-to-use SCLs are simply languages that are human under-standable, or lay-person friendly. Legally-enforceable SCLs are intended to, or actually do, result in legally-binding contracts. Finally, business-process SCLs are languages that are specifically designed to automate business processes.

Table 4: Details of SCLs presented in selected studies [Publication (I)].

SCL Ref. Blockchain Type-System Paradigm Purpose∗ Focus+
ADICO [64] Ethereum Dynamic Declarative SPEC Legal-ContractsBabbage [32] Ethereum Type-Safety Symbolic SPEC HumanUndr.BALZaC [9] Bitcoin Dynamic Imperative SPEC VerificationBamboo [179] Ethereum Type-Safety Imperative IMPL FormalVerf.BCRL [6] Hyperledger Dynamic Declarative IMPL BusinessProcessBitML [12] Bitcoin Dynamic Declarative IMPL SecurityCommit-Rule ML [44] - Static Declarative SPEC Legal-ContractsDAML [46] Hyperledger Dynamic Declarative IMPL BusinessProcessDSL4SC [161] Hyperledger Dynamic Declarative SPEC NaturalLanguageErgoScript [45] Independent Type-Safety Declarative SPEC Legal-ContractseSML [128] - Dynamic Declarative SPEC BusinessProcessFi [4] Tezos Type-Safety Imperative IMPL Verification

34

Fift [50] TON Dynamic Imperative IMPL DomainSpecificFindel [17] Independent Dynamic Declarative SPEC FinancialContractsFlint [148] Ethereum Static Imperative IMPL SecurityFormality [103] Ethereum Static Declarative IMPL EfficiencyFSolidM [108] Independent Dynamic Declarative SPEC SecurityF-Sol [141] Ethereum Static Functional IMPL VerificationIdris [133] Ethereum Dependent Declarative IMPL SecurityIELE [83] IELE Static Imperative IMPL VerificationIvy [142] Bitcoin Static Declarative IMPL DomainSpecificLiquidity [130] Tezos Dynamic Functional IMPL FormalVerf.LLL [58] Ethereum Dynamic Declarative IMPL User Frnd.Lolisa [177] Ethereum Static Imperative SPEC FormalVerf.Marlowe [150] Cardano Dynamic Declarative SPEC FinancialContractsMichelson [162] Tezos Monomorphic Low-Level IMPL DomainSpecificMove [18] Libra Static Imperative IMPL VerificationMutan [172] Ethereum Dynamic Imperative IMPL FormalVerf.Obsidian [34] Hyperledger Static Imperative IMPL SecurityPact [137] Kadena Dynamic Declarative IMPL SecurityPlutus [25] Cardano Dynamic Declarative IMPL FinancialContractsPyramid [23] Ethereum StronglyTyped Imperative IMPL Safety
QSCL [38] Qtum Static Imperative IMPL BusinessProcessReaction-Rule ML [43] - Static Declarative SPEC Legal Con-tractsRholang [112] Rchain Dynamic Declarative IMPL DomainSpecificRIDE [14] Waves Static Declarative IMPL User Frnd.Scilla [151] Zilliqa Static Functional IMPL SecurityScript [117] Bitcoin Static Imperative IMPL Crypto.Simplicity [164] Bitcoin Dynamic Functional IMPL SecuritySmaCoNat [140] - Dynamic Imperative SPEC NaturalLanguageSolidity [61] Ethereum Static Imperative IMPL DomainSpecific

35

Sophia [174] Aeternity StronglyTyped Imperative IMPL DomainSpecificSPESC [76] - Dynamic Declarative SPEC Legal-ContractsTypecoin [35] Bitcoin Type-Safety Symbolic IMPL Crypto.Vyper [24] Ethereum Dynamic Imperative IMPL Security

∗ SPEC: Specification. IMPL: Implementation
+ Verf. [Verifiable] | Frnd. [Friendliness] | Undr. [Understandable] | Crypto. [Cryptocurrency]
3.2.1 Domain-specific SCLs
Solidity is a DSLfor creating complex SCs for digital assets such as voting, crowdfunding,and so on [151]. It is a statically-typed language with multiple inheritance and complexuser-defined data types. Solidity contracts are finite state machines that prevent anytransaction calls to other contracts from being made while in a state transition. A trans-action that modifies the state of a contract is either successful or unsuccessful. Accordingto [113], because Solidity has a number of bugs and vulnerabilities, such as re-entrancy,and delegatecall, several tools and frameworks, such as Oyente, Mythril, Securify, andothers, have been developed to verify, and analyze, Solidity code. In order to overcomeSolidity bugs, Ethereum introduced the Vyper language [113], which focuses on security,audibility, and simplicity. Vyper’s goal is to make it more difficult for developers to in-tentionally write malicious code. Vyper also makes use of the built-in libraries of integer(overflow/underflow) to prevent unintentional security flaws in the code. Solidity doesnot perform any checks on transaction return values due to caller contract exceptions. Tohandle such exceptions, Vyper implements the send(), and raw-call() functions; if thesefail, the entire transaction is reverted. Furthermore, when a contract calls an externalcontract, Vyper provides functions to prevent re-entry vulnerability. If necessary statechanges are not performed prior to calling an external contract, the contract is especiallyvulnerable to re-entrance attacks. Vyper implements the nonreentrant decorator 7 thatplaces a lock on the current function, and all functions with the same key value. Idris, an-other SCL, was created to secure smart contract code by using dependent types [72]. Idrispermits types that are dependent on values, implying that types are first-class languageconstructs that can be manipulated in the same way as any other value.Flint is a contractually-specific and statically-typed SCL that compiles into EVM byte-code using the intermediate language YUL [133] 8. YUL was designed by the Solidity teamto work with a variety of EVM backends, including EVM 1.0, and EVM 1.5, as well as avariety of front-end languages. Flint’s goal is to write smart-contract code that is inher-ently safe and predictable, as a result it does not have to be analyzed it after it is written,unlike Solidity. To prevent unauthorized calls to contract-sensitive functions, Flint em-ploys a caller capability block, which declares the right to call Ethereum user accounts.Flint ensures contract state consistency and provides safer atomic transactions. Formal-ity SCL is more time-efficient in contract execution than Solidity because its core is builtas an affine lambda calculus, which allows it to be garbage-collection free [103]. It isstatically-typed and has the appearance of a Python-style programming language withformal proofs. Pyramid Scheme is a functional and mandatory SCL that encourages theseparation of state-changing and static functions. The Pyramid Scheme also has an eye on

7Vyper | Documentation on Structure of a Contract8Yul | GitHub Page
36

https://vyper.readthedocs.io/en/latest/structure-of-a-contract.html?highlight=reentrance#non-reentrant-functions
https://solidity.readthedocs.io/en/v0.5.3/yul.html

the EVM [23]. The functions are designed to be atomic, and executed completely, to en-sure consistency in smart-contract state changes. In Pyramid Scheme, pure functions are also used to indicate that no effect on the global or local state exists. Findel is a declarative and domain-specific SLC designed for securely handling financial agreements in the EVM. Findel is a formal language that distinguishes between contract description and contract execution, limiting the formalization of unambiguous contractual clauses [17].
Michelson is a low-level stack-based language created by Tezos developers [162]. Michelson’s instructions are executed with an unrestricted stack-length, thus ensuring that the code is executed securely. When it comes to SCs, Michelson differs from Solidity in that it aims to write a piece of business logic. Ethereum contracts are written to implement concepts such as multisig wallets, vesting, distribution rules, and so on, and Michelson is not for writing arbitrary programs, it is targeted to specific applications. Plutus core is a blockchain transaction-validation system, that is implied to be a compilation target, as expressed in the language’s design. While writing large Plutus Core programs by hand is difficult, formalizing the language with a proof assistant is relatively simple [25]. Plutus-core is used to validate on-chain transactions. The validation process is beyond the scope of this thesis, and the reader is referred to [80] for more information. Rchain implements Rholang [112], a contractual, and concurrent-oriented programming language that focuses on concurrent data, and process, flow to support contractual behavior. Rholang is a process-oriented language, which means that all communication is done through message passing. It has a behavioral type system that allows participants to explore contractual obligations and guarantees in an automated manner, prior to entering into a contractual agreement.
Marlowe is a DSL used to carry out financial transactions [150]. It is implemented as an algebraic type in Haskell programming on UTxO, or account-based blockchains. Pact is a declarative programming language that helps programmers write less problematic code by using a lisp syntax and Haskell-like types [137]. Pact’s goal is to enforce business rules that prevent system records on the Kadena blockchain from being updated. Sophia is a blockchain-specific, strictly-typed programming language with a constrained muta-ble state, and ML-comparable programming capabilities. Sophia is designed specifically for the private Aeternity blockchain, and aims to provide blockchain-specific primitives, constructs, and types [174]. Fift is a stack-based programming language used on the TON blockchain to create, manage, and debug SCs. It is a dynamic-type language for interac-tive experimentation, debugging, and building basic scripts that uses the stack to store the value of multiple types other than integers [50]. Ivy is a predicate language for cre-ating ChainVM SCs that are intended to be educational [142]. Bitcoin makes use of the Script language, which is a list of instructions recorded with each transaction that de-scribe how they can be accessed by the next person who wants to spend the Bitcoins being transferred [117]. To carry rational propositions, the Typecoin language supports a rational commitment process built on top of Bitcoin. The underlying idea behind Typecoin is that transactions carry logical proposals rather than coins [35]. Each Bitcoin transaction can be converted into a Typecoin transaction, with inputs and outputs transformed into propositions, and logic allowing inputs to be split or merged.

3.2.2 Formally verifiable SCLsA smart contract, like a traditional contract, can explicitly include rights and obligations semantics. Unfortunately, due to a lack of common understanding between programmers and legal experts, SCs currently contain numerous legal loopholes, which unlike common programming bugs, are not easily discovered. Several static, and dynamic instruments,
37

such as Mythril, Oyente [16], and others, have been developed, but have yet to be provento secure SCs. As a result, a language’s formal verifiability is critical for ensuring the cor-rectness, and run-time safety of smart-contract code. Lolisa [177] is the first mechanizedand validated formal syntax and semantics developed for Solidity. Lolisa not only supportsSolidity syntax such asmapping, modifiers, and so on, but also supports conventional pro-gramming characteristics such as multiple return types and structures. In addition, Lolisauses a more robust static-type system than Solidity to improve type safety. Bamboo [179]is a formally verified SCL that makes transactions explicit in order to overcome Ethereumcontract’s reentrancy behavior. Bamboo’s programming language supports reasoning asstate machines on SCs. Developers define which functions can be called in each state, andthe language provides constructs for explicitly specifying state changes.Furthermore, Ethereum uses Mutan to support the dynamic feature of higher-levellanguages like C or C++ [172]. The goal of Move SCL is to encode the owners of digitalassets, and the business logic that goes with them [18]. As a result, Move provides flex-ible, safe, and verifiable governance rules for the Libra blockchain 9. The ability to de-scribe custom resource types with semantic-inspired linear logic [67], is the main featureof Move; a resource can never be replicated or tacitly discarded, only relocated betweenprogram-storage locations. Furthermore, Move adds code flexibility by including trans-
action scripts. A transaction script is a one-time function that invokes multiple modulespublished in blockchain procedures, thus allowing for customizable transactions. Moveimplements bytecode verifier, which checks the Move bytecode on-chain, to fulfill criticalsecurity features such as memory safety, type safety, and resource safety. FsolidM [108]is a visual programming framework that is used to define contracts as finite state ma-chines (FSMs). FsolidM includes a code generator for specifying FSMs, which is especiallyuseful when creating Ethereum contracts. Furthermore, FsolidM provides a set of plug-ins that can be used to improve the security and functionality of FSMs. Plugins are in-tended to address common design patterns of security vulnerabilities identified in previ-ous work [8, 97]. Obsidian is a state-oriented, static-type SCL that allows the developer todeclare and transition states explicitly. Furthermore, Obsidian is based on core calculus,which employs an typestate to detect incorrect state manipulation, and an lineartypesto ensure that the program manages resources correctly. Obsidian also supports Hyper-ledger Fabric, a permisisoned blockchain platform.Fi is a statically-typed language that is designed to be syntactically similar to Javascript,and Solidity, and directly compiles to Tezos blockchain Michelson code. The latter offersa more familiar coding environment that is more akin to an object-oriented programminglanguage. Scilla is an intermediate language developed by Zilliqa blockchain 10, which isused as a translation target for high-level languages for program analysis, and verification.Scilla strives for expressivity, and tractability, so that contract behavior can be formallyreasoned. Scilla’s design principle is based on the separation of computation, and com-munication, whichmeans that computing the value of a function is implemented indepen-dently. Scilla is able to alter a balance without involving any other parties. If involvementis required- for example, transferring control to other parties- a transition would be com-pleted by sending and receiving messages. Existing languages have a distinct specificationand implementation, and if the performance differs, it is impossible to execute test casesagainst the specification. Using the K-framework, IELE aims to bridge the gap betweenspecification and implementation.BitML is an abbreviation for Bitcoin modeling language, which defines the contract

9Libra | Home Page10Zilliqa | Home Page
38

https://libra.org/en-US/
https:/zilliqa.com/

for regulating Bitcoin transfers using process calculi. Proving the correctness of a smart contract in Bitcoin necessitates proving the computational security of the cryptographic protocol, which increases the programmers’ workload. BitML is a symbolic, and compu-tational model for reasoning about Bitcoin security. Participants’ will behave in accor-dance with the semantics of BitML as defined in the symbolic model. A computational model is used to reason about the behavior of the participants’ and impose additional restrictions on attackers. Simplicity [164] is a formal semantics-based Haskell functional programming language-based SCL. Its type system supports multiple inheritance, which enables developers to express complex contracts. The primary design goal of Simplicityis to provide statically-computed runtime resource estimations. Liquidity is a high-level, fully-typed language based on the OCaml syntax [130]. The Tezos blockchain created the latter to replace the Michelson language, which is more difficult to read and write due toa lack of stack-based instructions. A compiler generates Michelson code, and a decom-piler converts Michelson to Liquidity. Furthermore, Liquidity fully supports the Michelson language by utilizing additional local variables rather than stack manipulations. The func-tional Solidity [141] language was created to write Ethereum SCs with additional formal methods.
3.2.3 Easy-to-use SCLsLisp-Like-Language (LLL) is an Ethereum SCL that translates high-level Solidity code into low-level bytecode and simplifies EVM stack-management. In addition, unlike Solidity, LLL provides a different perspective that does not hide resource perspectives, and al-lows limited resources to be used effectively, as well as facilitating the creation of clean EVM code by directly removing the worst of the coding pain, namely EVM stack-and-jump management. Babbage is a visual programming language that was created to assist non-programmers in understanding complex smart-contract code [32]. By using a vending ma-chine analogy, Babbage hoped to make data-flow transparency a reality.

According to [14], Ride aims to address the shortcomings of existing languages by providing a simple, statically-typed, functional language for dApp development that cal-culates the amount of gas required for smart-contract execution in advance. DSL4SC isa state machine language for expressing structural, temporal, and constraint properties of state sequences. DSL4SC is a specification language that works with the Hyperledger blockchain. SmaCoNat is a straightforward, human-readable SCL that defines a smart con-tract in natural-language syntax [140]. SmaCoNat’s natural language prepositions are used to define data structure properties. However, SmaCoNat is not a full-featured language; rather, it focuses on creating SCs in natural language with small types and operations.
3.2.4 Legally-enforceable SCLsThis researcher has identfied the SCLs capable of converting legal semantic rules into smart-contract code. The foundations for designing legal SCs are choreography languages such as ADICO [64], ErgoScript [45], CommitRuleML [44], ReactionRuleML [43], and SPESC [76].

To codify laws, the ADICO framework proposed a modeling approach for the semi-automated translation of human-readable contracts into SCs. ADICO programs are built using five rule-based components: attributes, denotic, aim, conditions, and or-else. The
attributes component represents an actor’s characteristics, whereas the denotic compo-nent represents contract clauses such as rights, obligations, and prohibitions. The goal,
or aim, of the ADICO program determines the program’s outcome. In addition, the con-dition statement specifies the context in which this statement should be applied. Finally, the or-else components describe the prominences associated with a non-conformance.

39

CommitRuleML, an extension of the ‘KR ReactionRuleML’, considers a contract to be acommitment-based smart contract. The communication between parties is viewed as amulti-agent system (MAS), with ‘MAS commitment’ serving as a necessary foundation forthe interactions of the organizing parties. CommitRuleML defines the contract using eventcalculus, and statements like events (on), conditions (if), and actions (do), are defined inexecutable language. ErgoScript is a real-time scripting language designed to support fi-nancial contracts and zero-knowledge proofs. The latter enables the developer to specifythe conditions under which currency is spent; for example: who can pay, to whom, andunderwhat conditions, and so on. ErgoScript outperforms Bitcoin Script in terms of powerbecause it lacks a recursive construct that makes estimating run-time difficult. SPESC isa natural language-based specification language for specifying SCs with rights and obli-gations similar to real-world arrangements, as well as transaction rules. SPESC containsthe specification for when specific terms hold, such a description of the parties, a set ofterms, and a description of the transaction record. Furthermore, SPESC was intended tofacilitate the collaborative development of smart blockchain contracts. However, thesefoundations are not mapped to high-level programming languages such as Solidity for im-plementing the semantics of legal SCs into code.
3.2.5 Business process SCLs
Smart contracts on a blockchain enable the completion of business processes. DAML [46],BCRL [6], QSCL [38], and eSML [128] are examples of SCLs that incorporate the seman-tics of business processes while generating SCs. The DAML is a blockchain functional-programming languagewith permissions that prioritize business processes over blockchaintechnology and encryption. The DAML manages rights and obligations by ensuring thatcontract details are only visible to those who are directly affected by the contract. Fur-thermore, DAML restricts the number of instructions that can be used to prevent undesir-able behavior. The Qtum blockchain develops QSCL that incorporates the semantic-webdomain concept and properties. One of the goals of QSCL is the value transfer protocol(VTP)management system, which organizes cross-organizational information logistics andvalue transfers in accordance with the value proposition. The QSCL specification includesa structure for identifying contracting parties, as well as definitions of resources and data.The eSourcing Markup Language (eSML) is also being developed to facilitate business col-laboration by including contractual properties such as party identification, business andlegal context, and exchange values. As a result, eSML serves as a choreography languagefor IOC. A fully functional framework business-level rules language (BCRL) is developed toimplement business-core logic in ‘Controlled English Language’, assisting in the develop-ment of a shared understanding between a domain expert and a smart contract developer.A BCRL smart contract can also run on the Hyperfabric ledger as well as an off-chain rulesengine, resulting in a more seamless experience for managing general business collabo-ration solutions.As discussed above, this researcher has found a total of 45 SCLs: 17 from scientific lit-erature, and 28 from non-scientific literature. Of these, 28 SCLs have been implemented,and the rest have been proposed in academic articles. Figure 5 presents the year in whichthe SCLs have been implemented or proposed, together with their associated study IDs.
3.3 Suitability and Expressiveness Properties
In this chapter, this researcher identifies the indecomposable properties of SCLs that areimportant in drafting legally-binding contracts, and classifies them into three categories:‘semantic suitability’, ‘workflow suitability’, and ‘expressiveness’.

40

Years 2008 2014 2015 2016 2017 2018 2019 2020

Vyper
(GL12)

Lolisa
(SS35)

FSolidM
(SS56)

F-Solidity
(GL19)

M
ic
he

ls
on

(G
L0
9)

BALZaC
(SS60)

Simplicity
(SS51)

Ivy
(GL05)

BitML
(SS3)

Liquidity
(GL08)

Fi
(GL07)

LLL
(GL18)

QSCL
(GL01)

Bamboo
(GL06)

Babbage
(GL20)

CommitRuleML
(SS8)

Typecoin
(SS61)

Flint
(SS13)

eSML
(SS4)

Idris
(SS55)

ADICO
(SS32)

Obsidian
(GL28)

Findel
(SS5)

Fift
(GL25)

DAML
(GL04)

Sophia
(GL24)

Ergo
(GL18)

Pact
(GL02)

Rholang
(GL11)

RIDE
(GL22)

SmaCoNat
(SS10)

SPESCS
(SS11)

BCRL
(SS6)

Plutus
(GL10)

Formality
(GL14)

Pyramid
(GL15)

DSL4SC
(SS2)

Scilla
(SS9)

Move
(GL21)

B
itS

cr
ip
t

(G
L2
6)

S
ol
id
ity

(G
L1
3)

Re
ac
tio

n
R
ul
eM

L
(S
S
1)

Figure 5: SCLs implementation per year adopted from Publication (I).

Mario et al., [22] provided a unifying theory that aided in the verification of contract compliance in services choreography in their work. Despite the fact that the concept is primarily aimed at the service-oriented computing (SOC) research community, it has sig-nificant implications for DAO research as well [121]. Smart contracts in DAOs aim to be ontologically-rich, formally-variable, pieces of code designed to support collaborations between decentralized entities; just as services in SOC aim to be ‘self-describing com-putational elements that support composition of distributed applications’ [134]. Drawing parallels between the two: the ontological concepts and properties of SCs, can be equated to the choreography conformance requirements in service design [135, 69]. To put it an-other way, the choreography conformance requirements could be viewed as semantic, and workflow properties (suitability, for example).‘Semantic suitability’ properties can be defined as fundamental components, from the perspective of the eContract paradigm [128] and thus, include properties that provide in-sights into the context; for example, who is participating the in transaction, what they are exchanging, and under what provisions, terms or conditions [70] of a smart contract. ‘Workflow suitability’ encompasses properties [146] that provide insights into the pro-cesses (how the transactions are being carried out), or workflow patterns, from the per-spective of the contractual collaboration paradigm [128]. In this thesis, this researcher builds on Norta et al.,’s view of workflow patterns, and introduces business-process mod-eling (BPM) patterns proposed by Russell et al., [146] as critical properties that can help understand how the state of a contract would change after any given set of interactions.
• SRQ1.2: What properties of business-oriented SCLs contribute to suitability and ex-pressiveness?
The goal of this SRQ is to categorize and identify the suitability and expressivenessproperties of SCLs. During the analysis of SCLs, it was discovered that they are typicallydesigned around a broad spectrum of foci, which often influence the formal verifiability

41

and semantic correctness of the SCL, as discussed earlier in Section 3.2. As a result, iden-tifying all of the properties that make them legally binding from individual SCL supporting studies is difficult. To address this problem, this researcher identified all relevant prop-erties from existing studies first, and then thoroughly examined the said properties and proposed the new ones. Finally, the identified and proposed properties were divided into three groups based on the previously defined criteria: ‘semantic suitability’, ‘workflow suitability’, and ‘expressiveness’.
3.3.1 Semantic suitabilityThe contracting concepts “Who”, “Where”, and “What”, can be used to define the prop-erties of smart contracts. The parties involved in the contracting process are described by the Who concept. In order for an e-contract to be legally binding, it must have at least two parties. A mediator is also frequently included in the contracting process. In a contract, the parties specify their rights and obligations so that if one party exercises their rights, the other party must comply. Contract context is defined by the content of the contract, which influences the roles of the actors, exchange values, and contracting processes. The
Where-concept, on the other hand, describes the contract’s legal and business context. The contract’s legal provisions are intended to resolve disputes, while the business con-text is critical in determining the contracting processes’ requirements, according to [5]. Finally, the What-concept describes the exchange value, as well as its provision for each contractual party, which includes services, products, and financial rewards. Also specified as exchange values in a contract are service descriptions, such as service type, role, and so on. The process flow in a successful value exchange requires an exchange-value provision, according to [128].

Table 5: Contractual aspects required for legally enforceable SCLs, and associated supporting studies
[Publication (I)].

Aspects Paradigm Properties Associated Studies
Suitability Semantic The Who-concept SS23, SS28, SS36The Where-concept SS35, SS42, SS46The What-concept SS20, SS31Workflow Control-flow SS39, SS41Data-flow SS34, SS45Resource-flow SS29, SS30, SS44Exception-handling SS32, SS43Event-Log Imperfection SS33, SS34, SS37
Expressiveness Temporal constraints SS19, SS21, SS25, SS38(viz. formal-
verification) Structural constraints SS22, SS24, SS26, SS27

3.3.2 Workflow suitabilityThese patterns describe the fundamental requirements that arise on a regular basis dur-ing business-process modeling. Because SCs follow contracting processes, the patternsrequired for SCL design have been identified in Table 5. Among the patterns mentioned
42

are control flow, data flow, resource flow, exception handling, and event logs. Control-flow
patterns such as XOR, and AND, are used in the design of imperative models to depict therelationship between activity and flow [144]. The data-flow patterns, on the other hand,describe howdata are represented andused in business processes to ensure transparency,as well as how data elements interact with one another [60]. Most existing languagescurrently focus on control and data flow, and the resource perspective is unfortunatelyignored. Resources such as humans, and machines, and the roles they play, must be ac-curate because they affect the simulation of the in-house process of service consumerand service provider in business collaboration [145]. Exceptions are deviations from stan-dard execution that occur during the course of a business process. ‘Integer overflow’, ‘callstack’, ‘re-entrancy’, and other unexpected events are difficult to define. As a result, an ex-ception handler resolves the impact of such events as soon as they are detected. An event
log, which is a collection of multiple records, represents a sequence of events carried outin a single execution process. The goal of an event log is to uncover useful informationabout business processes by employing a variety of techniques such as data and processmining [156].
3.3.3 Expressiveness
The expressiveness properties of smart-contract code determine its formal mathematicalcorrectness[128]. Several verification tools, including Oyente, Securify, SmartCheck, andothers, are used to detect unintended behavior in SCs [114]. This enables the parties totest the functionality of SCs before publishing them on blockchain platforms. Contractsemantics must be verified using formal methods such as static analysis, model checking,and formal semantics, among others. The ‘Securify Tool,’ for example, is an Ethereumcontract security analyzer that symbolically analyzes contract behavior by extracting pre-cise semantic information from code [114]. These tools facilitate learning about the SCs’formal representation, which includes their temporal and structural properties [161]. Con-tractual events, obligations, and rights, have temporal properties because their executionstate varies over time [151]. Each event, such as payment or delivery period, has a specificdate and time for action. Contracts, like obligations, have a start date, a due date, and adischarge date. Rights have a beginning and ending date or time, and are activated whenspecific events or dates occur. The structural properties of SCs govern their functional be-havior. To validate the functional correctness of a smart contract, Liu et al., [94] proposeda formal verification method based on Colored Petri Nets (CPN). CPN 11 is a programminglanguage used for system specification, simulation, and design. Statechart is an alterna-tive for defining the structural properties, and constraints, on the sequence of states of astate machine [161].The critical properties that make a smart-contract legally binding, such as ‘suitability’and ‘expressiveness’, have been identified and listed in Table 5 together with the researchthat has been done on them.
3.4 Evaluation of SCL Suitability and Expressiveness
As described in Section 3.3, existing SLCs have been evaluated using the contractual-enabling properties identified for SQR 1.2. The SLCs have been scored for each of the tenproperties using ‘+’ or ‘-’ operators. The ‘+’ symbol indicates that the SCL has the specifiedproperty, whereas the ‘-’ symbol indicates that the property is not present in the corre-sponding SCL. If it was not possible to identify the properties of a SCL, n/a is used as the

11CPN | Home Page
43

http://cpntools.org/

indicator. The final results of the evaluation are shown in Table 6.
• SRQ1.3: What obstacles are there in existing SCLs that restrict the attainment ofbusiness-contractual objectives?
The purpose of this SRQ is to evaluate the suitability and expressiveness qualities ofthe SCLs identified in Section 3.2. As has been mentioned earlier, not all SCLs are createdequal, and as a result, it has been discovered that many SCLs do not have all of the suit-ability, and expressiveness, properties that have been identified and proposed as beingnecessary for the creation of legally-enforceable SCs (see Table 5). As a result, the SCLsselected for SRQ 1.3 have been re- examined, together with the suitability and expressive-ness properties from the existing studies. The results of this analysis are shown in Table 6.The reasons for assigning each of the SCL properties a score are also explained. In thismanner this researcher discovered that SCLs can be used to draft legally binding SCs inDAO collaborations.According to the findings in Publication (I), Solidity expressed theWho-concept by in-corporating the contracting party’s address into the address owner. Furthermore, control-and data-flow properties are defined due to the imperative paradigm of Solidity. Becausedata are presented in states encoded with a highly secure cryptography technique andstored at a specific blockchain address, non-domain users have a difficult timeunderstand-ing the data-flow of SCs. Because Solidity focuses on manipulating low-level blockchainin java-script style, variables and data types are not thought to support the Where- andWhat-concept. OnlyBy()modifiers enable resource ownership, and Solidity handles excep-tions in the form of try/catch statements only for external function and contract creationcalls. Solidity implements events using logs, and once created, a contract can access thelog data. Recent attacks, on the other hand, revealed a lack of formal verification in Solid-ity, despite the fact that the temporal constraint is satisfied by variables such as uint start-

data, and uint end-data, as well as modifiers such as checkTime(), and onlyOnce(). Asidefrom resource-flow, other domain-specific languages, including Idris, and Vyper, supportSolidity-like properties. Vyper creates a global variable beneficiary by calling the publicfunction on the public (address) datatype, and the modifier raise(reason: str) returns thereason for the exception. Idris, on the other hand, expresses the Who-concept throughmodifier mapping (address=>uint), with Raise handlers to return the exception. Regret-tably, Idris does not specify the enforcement of requirements among the processes dueto the program’s lack of data awareness.Attacks exploit unsafe patterns such as ‘call-to-the-unknown’, ‘gasless send’, ‘excep-tion disorder’, and others, resulting in financial or other losses. A ‘call to an unknown’function is a primitive that invokes and transfers the digital asset. There are exceptionswhen an execution runs out of gas. This type of exception cannot be handled in imperativelanguages.Flint utilizes the address variable to express the Who concept, and the type state, tosatisfy control and data-flow properties. The Who-concept also addresses resource flowby implementing asset type, which prevent a class of security flaws in which a smart-statecontract represents resources incorrectly. Functionmodifiers, such as require, are used tocheck the precondition before entering the function body. Flint, on the other hand, doesnot express properties such as the ‘where, and what, concept’.The Flint language determines resource consumption using the Wei asset function.
Wei can be defined in Solidity as an integer value, rather than a ‘dedicated type’. Thisallows the conversion between number and currency, thus, resulting in an inconsistentstate in which the actual balance of a smart contract is incorrect. Formality and ‘Pyramid

44

scheme’ SCLs, with the exception of structural constraints, satisfy all of Flint’s properties.Formality includes inductive data-types for expressing structural properties. The Pyramidscheme, on the other hand, expresses structural properties by combining formal ‘inter-mediate representation’ (IR) semantics and dependently typed language.
A Findel contract is made up of a tuple (D, I, O); consisting of a description, an is-suer, and an owner. Findel expresses the Who-concept by specifying the address of theowner and issuer. The Who-concept is described by specifying the contract context inthe description field. Formal semantics of Findel are introduced using a rigorously de-fined ‘put-call parity algebra theorem’, and ‘time-bound primitives’, to express ‘temporalconditions’. Yet, ‘exception handling’, and ‘event-log primitives’, are missing properties toachieve the objectives of SCLs. TheWho-concept properties are expressed byMichelson’s

address data-type.Mutez types allow for resourcemanipulation that reveal resource-flowproperties to be restricted. The use of the timestamp Michelson code also satisfies the
temporal-constraint requirements. To retrieve the current timestamp for an event, theNow(), and Add(), functions are used. Other Tezos blockchain-based languages, such asLiquidity and Fi, meet Michelson’s underlying properties while also qualifying the struc-tural properties.

Rholang’s syntax, and semantics, are similar to rho calculus, a reflective higher-ordervariant of pi-calculus. Resource flow is expressed in Rholang by implementing the phlo-
giston metric, which is identical to Ethereum gas. Rholang considers how information isstored and retrieved by way of channels. Marlowe, unlike other SCLs, implements the
Where-concept as a Haskell datatype. Several of the contracts also include timeouts thatspecify how they will act. Marlowe implements the step function that operates on eachconstructor of contract type and thus, satisfies the temporal constraints. Pact SCL, storesparty addresses in the keyset variable, and prefers a declarative approach to complexcontrol-flow, thus making bugs more difficult to write and detect. Sophia articulates con-cepts such asWho-concepts, Control-Flow, Data-Flow, Eventlog, and Exception Handling.Sophia employs address literals to specify the location of a contract or a party. A contractdeclares a datatype event to use events that are logged using the chain.event function.Contracts can fail with an (uncatchable) exception using the built-in function: abort (rea-son : string). Fift uses the abort inbuilt function to throw an exception with an error mes-sage. Rather than supporting smart contract semantics, Ivy and Typecoin were createdwith the goal of writing scripting code for cryptocurrency.

Lolisa supports solidity features such as mapping, modifiers, contracts, and addresstypes. Lolisa was designed to formalize Solidity programming languages. The primaryfunctions of Bamboo, Move, and Obsidian are to facilitate resource flow. Bamboo im-plements the reentrancy-guard when calling recursive functions, and expresses theWho-
concept by using variable (address=> uint256) to identify addresses of the parties. Move’stype-system prevents resources from being duplicated, lost, or copied. When a resourceis not moved, for example, by deleting the move line, a bytecode verification error occurs(coin). Obsidian uses a type system to ensure that assets are handled correctly, as wellas linear types for safe object manipulation. To express control- and data-flow proper-ties, Obsidian also implements the polymorphic linked list, which is a container for storingtransactions. In the current practice of representing Bitcoin contracts as cryptographicprotocols, the Who-concept and control-flow are expressed using opcodes, which are alist of scripts.

BitML expresses temporal constraints by choosing a secret and revealing it using thetime constraint ‘t’, as well as introducing the symbolic and computationmodel to describestructural properties. Simplicity seeks to express resource flow using a formal seman-
45

tics that allows for “fast” (linear time) static analysis of resource consumption. Scilla de-fines the address variable to express the Who-concept properties, and the resource-flow is expressed using variable mapping (address => uint) assets. Integrating the Scilla into the proof assistant of Coq enables it to reason about the properties of the security and temporal-constraints. IELE expresses the control-flow in which the body of the function contains code organized into labeled blocks. When a branch instruction is encountered, the execution falls through from the last instruction of a block to the first of the next one, or jumps to the beginning of a specific block.

Table 6: Evaluation of SCLs pertaining to business-contractual aspects [Publication (I)].

SCL SCLs Suitability∗ Express-Types iveness∗
Semantic Workflow (viz. Formal

Verification)
WO WR WT CF DF RF ExH ElI TC SC

Domain Solidity (GL13) + - - + - - + + - +Specific Vyper (GL12) + - - + + - + + + -Idris (SS14) + - - + + - - - - +Flint (SS13) + - - + + + + - - -Formality(GL14) + - - + + + - - + -

Pyramid(GL15) + - - + + - - - - -

Findel (SS5) + + + - + + - - + +Michelson(GL9) + - - + + + - - - +

Plutus-Core(GL10) + - - - - + - - - +

Rholang(GL11) + - - + + + + + + +

Marlowe(SS16) + + - - + - - - - +

Pact (GL2) + - - - + - - - + -Sophia (GL24) + - - + + - + + - -Fift (GL25) + - - + + - + + - -Ivy (GL5) + - - - + + - - - -Typecoin(SS17) + - - - + + - - - -

Formal Lolisa (GL26) + - - + + - + - + +Verifi- Bamboo(GL6) + - - - + - - - + +

cation Mutan (GL19) + - - + + - - - + +Script (SS18) + - - - - - - - - +Move (GL21) + + + - + + - - + +

46

Obsidian(GL27) + - - + + + - - - -

IELE (GL23) + - - + + + - - - +Fi (GL7) + - - + + - - + - +Scilla (SS9) + - - - + - - - - +BitML (SS3) + - - - - - + - - +Simplicity(SS1) + - - - + + - - + -

Liquidity(GL8) + - - + + - - - + +

F-Sol (GL17) + - - - + - - - - +FSolidM(SS15) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
BALZaC (GL3) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

User LLL (GL16) + - - + + - - - + +Friend- Babbage(GL18) + - - - + - - - - +

liness RIDE (GL22) + - - - - + + - - -DSL4SC (SS2) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/aSmaCoNat(SS10) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Legally ADICO (SS7) + + + - + - + - - +Enforce- ErgoScript(GL20) + + + - - + - - - +

able SPESC (SS49) + + + - - + - - - -Reaction- n/a n/a n/a n/a n/a n/a n/a n/a n/a n/aRule ML (SS1)Commit- n/a n/a n/a n/a n/a n/a n/a n/a n/a n/aRule ML (SS8)
Business DAML (GL4) + + + - + + - + - -Process eSML (SS4) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/aBCRL (SS6) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/aQSCL (GL1) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

∗ WO [Who-concept] |WR [Where-concept] |WT [What-concept]
∗ CF [Control-flow] | DF [Data-flow] | RF [Resource-flow] | ExH [Exception-handling] | ElI [Event log
imperfection]
∗ TC [Temporal-constraint] |SC [Structural-constraint]
It is important to point out here that several foundations, such as ADICO, ErgoScript, Com-mitRuleML, ReactionRuleML, SPECS, BCRL, and eSML are proposed in academic papersthat have unfortunately not spawned any further implementation or research efforts. Asa result, the Supporting studies for the above mentioned SCLs have not yet been pub-lished in the literature. Consequently the properties of these SCLs have been representedwith the ‘n/a’ (not-applicable) symbol in Table 6.

47

3.5 Novel Framework for Designing Legally-Binding SCL
It is clear, based on a systematic and detailed analysis of the existing literature, that noneof the SCLs are capable of supporting the creation of legally binding SCs in their currentform, without external support such as smart-contract templates or frameworks. Despitethe fact that there are alternative solutions for designing semantically correct [33], andformally verifiable [94] contracts, this researcher believes that future SCLs should be de-signed systematically from the bottom up to ensure the robustness of SCs. As part of thisstudy, this researcher provides suggestions on how to accomplish this.

Figure 6: Proposed framework for the development of legally binding smart-contract language [Pub-
lication (I)].

The challenges mentioned in this chapter have to be overcome before the full potential of SCs can be realized in DAOs, and other types of business collaborations. According to the current literature, the gaps in the state-of-the-art SCLs can be addressed in two ways: First, by developing graphical SCLs for writing semantically correct smart-contract codes (as shown in Reference [171]). Code that is known to be correct, error-free, and based on predefined procedures, and best practices, can be divided into modules and reused in new solutions. The second approach is to design new SCLs from the ground up while drawing on insights from published literature.This researcher proposes a novel framework methodology for the development of a legally-binding smart-contract language.The proposed framework, illustrated in Figure 6, builds on Norta et al.,’s eSML 1.0 [128] by mapping eSourcing ontology 1.0 with legally relevant vocabulary, to create a novel on-tology that is semantically rich enough to describe all business collaboration processes (Legal smart-ontology 2.0).The legally relevant vocabulary is developed using the Protégé tool 12 and the HermiT
12Protege | Home Page

48

https://protege.stanford.edu/

reasoner13. The newly-developed legal smart-contract ontology 2.0 is then mapped toNorta et al.,’s eSML 1.0 to create eSML 2.0, which will be rich enough in in legal semanticvocabulary, and robust enough to handle any potential temporal and structural vulnera-bilities, and thus be deployable across real-world blockchains.
3.6 Chapter Conclusion
This chapter aims to develop a model-driven framework for creating a smart contractlanguage that supports legally relevant and business-collaboration properties. To do so,45 cutting-edge smart-contract languages designed for business collaboration are investi-gated. Based on existing research, ten critical properties thatmake SCs legally enforceableare identified and categorized into three groups: “semantic suitability,” “workflow suitabil-ity,” and “expressiveness.” Through systematic analysis it is discovered that none of thecurrent cutting-edge SCLs satisfy all of the suitability and expressiveness requirements.Based on these findings a methodology, and framework, for developing legally enforce-able SCLs is proposed. In addition, it is also proposed that the creation of a ontology forcontractual business semantics could result in legally binding SCLs. Mapping the proposedsemantic ontology onto the contractual choreography language in eSML 1.0 could resultin the development of a new functional language for smart-contracting DAO collabora-tions. This researcher believes that legally enforceable SCLs, when implemented, couldmake businesses more flexible, participatory, and competitive.

13HermiT | Data and Knowledge Group
49

http://www.hermit-reasoner.com/

4 FORMAL SPECIFICATION LANGUAGE
This chapter discusses the work done, and the findings related to, research question RQ2: “How can a formal-specification language be developed for the purpose of legally-binding DAO collaboration?”, and suggests a methodology that can be followed to develop three key artefacts: 1) Legal-smart-contract ontology, 2) a workflow model, and 3) Smart Legal Contract Markup Language.

This chapter investigates the semantic suitability required to define the legal aspects of business contracts [Publication (II)], and workflow suitability required to define the work-flow process and patterns [Publication (III)]. This chapter also proposes the vocabularies of semantic and workflow suitability in an XML schema, which enables the specification of legally binding SCs (expressiveness) [Publication (II)].
4.1 Introduction
As discussed in running case 2.3.1: Decentralized system of the automobile supply chain, specifying legally-binding and collaborative smart-contracts is challenging. However, as proposed in the novel framework for designing legally binding SCLs in Chapter 3, this can be accomplished by developing a conceptual model, with the necessary contractual concepts and properties (suitability) to render smart contracts legally binding. In this re-search, the methodology for developing ontology, workflow model, and SLCML artefacts, as proposed in the framework is followed. It should be noted, however, that the work-flow model artefact, is a minor deviation that is used to design workflow properties. An ontology-driven conceptual model is chosen to formalize the contractual, and business-collaboration concepts and properties, because it is an appropriate means to conceptu-alize the knowledge of a specific domain [99]. Furthermore, research [42] shows that ontology-driven conceptual modeling can be used to overcome inconsistencies and short-comings in blockchains.

The first contribution of this chapter is the development of the SCL ontology, as pre-sented in Publication (II). The SCL ontology was developed with the protégé tool [95] and verified with HermiT reasoner. Protégé [95] is an open-source ontology editor with a graphical interface for visualizing concept relationships. The classes and properties of the proposed SCL ontology were identified and developed through exhaustive interviews with domain experts, as described in Publication (II).
As the second contribution of this chapter, the SCL ontology was formalized in the workflow model to test the formal verifiability of the ontology in contractual workflow, us-ing the Colored Petri-Net (CPN) simulation tool, this artefact (workflow model) has been presented in Publication (III). The CPN tool can be used to design, develop, and analyze the processing state of SCs in order to track the fulfillment of contractual concepts and properties [93]. Like SCs, the CPN tool consists of states, transitions, code, and tokens and is a graphical representation of a SC. The final contribution of this chapter is the translation of the concepts, and properties, of the ontology, and workflow model, into an XML-based language, referred to as Smart Legal Contract Markup Language (SLCML)[Publication (II)]. The proposed SLCML is a semantically rich, process-driven, and formally verifiable language which allows programmers to configure SCs based on their knowledge and understanding. The SCL ontology has been evaluated using the automotive supply chain running case, (Section 2.3.1) in which it demonstrated the ability to resolve rights-and-obligations conflicts between collaborating parties. It should be noted that the SCL ontology is also evaluated during workflow execution of SCs where the formal verifiability of the ontology is tested. The SLCML is evaluated in Chapters 5 and 6.

50

4.2 Multi-Tiered Contract Ontology
This researcher has extended the set of concepts and properties of the SLC ontology, bytaking into account previous work on the collaboration model. This research extendsthe set of concepts and properties for the SCL ontology, taking previous work on thecollaboration-model into account [128]. This researcher’s previous work on specifyingand verifying harmonized B2B process collaborations [125] defined the eSourcing frame-work. Based on the concept of eSourcing, the eSourcing ontology [128] was designed toconfigure collaborating parties and their services in a decentralized, contractual collabo-ration model. Unfortunately, the eSourcing ontology lacked legally relevant contractualproperties when compared to the SCL ontology. In the SCL ontology and the SLCML, acontract includes the legal elements of contractual collaboration such as rights, obliga-tions, and performances. Individual rights are fundamental normative regulations thatgovern what is permissible, or owed, under a legal system, social convention, or ethicaltheory [87]. Contract obligations are the legal responsibilities of each party to a contractagreement. The fulfillment of the parties’ contractual obligations are referred to as “per-formance of the contract.” In this section, the legal aspects of the proposed SCL ontologyare briefly discussed. The collaborative aspects of the proposed ontology are describedin the section that follows.

Because contracts can be of various types, the realm and range of each type variesgreatly. As a result, it is difficult to express the entire spectrum of contracts in a singleontology because the latter is too large and diverse to be useful. To capture the full rangeof business-related contracts within a unified model, a multi-tiered contract ontology isproposed. This multi-level ontology progresses from abstract, to specific meta data defi-nition, and then to stratification.
Two layers of the multi-tier SCL ontology are depicted below; other extensions andlayers are possible. The upper core layer depicts the broad configuration of SCs that areapplicable to the majority of the common types of contracts. As shown in Figures 7 and 8,fundamental concepts such as rights, obligations, and roles, are considered to be buildingblocks for defining all types of business contracts. The specific domain layer is made upof various contract-type ontologies, such as employment contracts, sale of goods, sale ofservices, and so on. Each contract-type inherits all of the fundamental characteristics ofthe upper-layer, and then specializes in the knowledge specific to the contract domain, asshown in Figure 9.

4.2.1 Upper core layer of smart contracts
The upper core layer of legally-relevant smart-contract DAOs is depicted in Figures 7 and 8,and is explained using a business-case scenario. Using the running case scenario of Car-Man described in Section 2.3.1, the classes belonging to the upper-level smart-contractontology (illustrated in Figures 7 and 8) can be explained as follows. Assume a running-case scenario from Section 2.3.1, in which SupTr and SupSt promise to supply CarManwith tyres and steering wheels, and CarMan promises to pay money in return. A promiseis a statement of intent to do something, or to do certain things, such as provide tyresand steering wheels in exchange for payment. When promises are made with the inten-tion of proving them in court, they become legal obligations. The legal testimonials ofthe promises (obligations) come from the contracting parties (actors), and are specifiedin the contracts. These testimonials include details about how the obligations are com-posed, accepted limits, and performance measures. The actors who carry out the rolesspecified in SCs are the offeror (the party that makes an offer to purchase something),offeree (the party that receives an offer), and mediators. In the automotive supply chain

51

Role

- acceptedActivity.string
- authority.string

Contract

+ ID.int
+ contractType.string

Actor

+ identification.int
- capacity.varchar
- authentication.string

+ update(ID):
- delete(ID)
- insert(ID)

counterRole

0..* 0..*

Consideration

+ description.varchar
+ value.varchar
+ unit.int
+certifiedCode.int
+considerationType.string

hasRole
0..*

0..*

has

0..*

0..*

contractingParty

0..*

1..*

mustHave1..*

0..*

TermsandCondition

mustSpecify

0..*

1..*

TimeFrame

+ validFrom.Date
+ validTime.Date
+NoticePeriod.Date
+Performanceperiod.Date

validity

0..*

0..*

Right

+Rightholder.string
+Benificiary.string
+RightType.varchar

defines0..* 0..*

Prohibitions

defines0..*

0..*

Obligation

+ObligationState.varchar
+FullfilledState.string
+Owner.string
+Obligor.string

defines

0..*

0..*

NonPerformance

+PerformanceEventType.string
+PerformanceState.string
+Acceptedeventfailure.string

RemedialRightinvoked()

0..*0..*

OccurOutside

Figure 7: Outline for the upper-level smart-contract ontology.

running case, CarMan is a buyer who offers a purchase contract to a supplier, and in legalterms is known as an offeror. SupTr, and SupSt are service providers (suppliers) who arethe recipients of an offer, and are therefore known as offerees. CarMan makes an offer toSupTr and SupSt to buy the tyres and steering wheels, and in return, agrees to paymoney.According to [70], a smart contract is legally enforceable if the contracting parties havethe necessary capacity or competence to enter into it. If a party is unable to understandthe contract, or is presumed to be unable to understand the contract, that party lacks thecompetence or capacity to enter into a contract. A person who lacks legal capacity, suchas someone who is insane, or under a certain age, may be deemed legally incompetentto enter into a contract. Companies such as CarMan, SupTr, and SupSt, who collaboratein DAOs must be legal entities. The legal status of DAOs in Wyoming was recently estab-lished 14.
A consideration is a negotiated benefit that motivates a party to enter into a contract.In exchange for performance, a valuable consideration (at least in the eyes of the par-ties) must be exchanged. For example, tyres and steering wheels, are considerations forwhich CarMan, SupTr, and SupSt have signed contracts. The delivery of tyres and steeringwheels, as well as the transfer of ownership, through the payment of money, constitutethe performance of the sales contract. Considerations can also be as simple as a promiseto repair a leaking roof or a promise not to do something 15. A similar consideration occursif CarMan signs a contract with SupTr under which CarMan agrees not to order tyres otherthan Goodyear and SupTr pays CarMan $500 per year for adhering to this agreement. Thesellers’ promise; the sale of tyres and steeringwheels, is a contractualobligation that is ful-filled when the actual business activities of supplying tires and steering wheels for moneyare carried out. CarMan is a beneficiary, or claimant who receives the consideration, oris the individual to whom the business operations are performed. Finally, SCs specify the

14DAO | Legal status15Consideration | Legal Definition
52

https://www.coindesk.com/wyoming-dao-llc-law-passed
http://www.duhaime.org/LegalDictionary/C-Page4.aspx

terms and conditions for the delivery of agreed-upon services. Contractual performance istypically carried out in accordance with the contract’s terms and conditions. If the perfor-mance is not completed within the expected timeframe, or is completed in an insufficientmanner, the obligation state becomes unfulfilled. The occurrence of a non-performanceevent gives the promised party certain pre-agreed-upon rights. Assume the SupTr fails todeliver the tyres to CarMan according to the agreed-upon terms. CarMan may seek resti-tution in the form of a penalty or interest, or he may prefer to terminate the contract asspecified in the contract. However, CarMan, could avoid retaliation and punishment, andinstead resolve the conflict peacefully with mutual agreement on how to proceed. Theservice provider must fulfill any type of remedy (reconciliatory promise) requested by theCarMan. Once the reconciliatory promise is made, the initial commitment is consideredcomplete.

Obligation

+ObligationId.int
+ObligationState.varchar
+FullfilledState.string
+Owner.string
+Obligor.string

Right

+Rightholder.string
+Benificiary.string
+RightType.varchar

1..*

1..*

includes

Performance

+ PerformanceID.int
+ PerformanceType.string
+DelegationAllowed.Boolean

+ PerformanceState(ID)

fullfilled1..*

0..*

0..*

0..*unfullfilled NonPerformance

+PerformanceEventType.string
+PerformanceState.string
+Acceptedeventfailure.string

RemedialRightinvoked()

ObligationType

ObligationState

InherentRight ConditionalRight PerformanceState PerformanceEventType

Figure 8: Rights and obligations [Publication (II)].

The preceding scenario is a simple case study that demonstrates how obligations can result in additional obligations and rights. Similarly, rights can create new obligations. The following section deals with obligation types extracted from the upper-layer ontology.
4.2.2 Specific domain layerContract statements can be, according to [87, 178], informative, declarative, or performa-tive. Informative statements recognize a variety of details, such as the identities of the par-ties, the applicable law, the subject matter of the contract, and so on. A declarative state-ment expresses an intention or a condition that cause the state to change when the spec-ified conditions are met. Declarative statements are usually classified into three types:
rights, obligations, and prohibitions. Obligations are contractual statements in which the obligation owner, the party who receives the obligation, and the obligor, or debtor, the party who performs the obligation, are both mentioned. The obligor, or debtor, is only re-quired to execute the obligation condition once in each execution of the contract. Rights, like obligations, have holders and beneficiaries, with the holders carrying out the duties. The exercise of a right is optional, and it may be carried out under certain conditions based

53

on the fulfillment of obligations. Prohibitions are statements that specify which actionsshould not be taken or are unacceptable to either one or both parties.

LegalAct

PerformanceEventType

maybe

0..*

0..* BusinessEventLegal EconomicAct

ProcessEvent

Management

performs

0..*

0..*

Reconciliatary

PerformanceEventType isA MoralAct

0..*

0..*

isA

0..*

0..*
isA

0..*

0..*

maybe

performs
0..*

0..*

Moral

0..*

0..*

isA

ObligationType

0..*

0..*

isA

0..*

0..* isAMonetary

executiontypes

Primary
executiontype

Reciprocal

0..*

0..*
isA

NonMonetry

Conditional

0..*0..* maybe

Secondary

0..* 0..*

fulfilledby

isA

0..*

0..*

0..*

1..*

performs

executiontype

executiontype

Figure 9: Specific domain layer.

Oligations must be tied to both performative and non-performative events in orderto fulfill the former. Obligations are classified as primary, reciprocal, conditional, or sec-
ondary, based on the nature of their execution, as illustrated in Figure 9. If the primarygoals of the contract are met, the primary obligations of the contract are also met. Forexample, When SupTr delivers the tyres in accordance with the contract, or when Car-Man accepts, and pays for the tyres as ordered, SupTr’s and CarMan’s primary obligationsare met. Although the reciprocal obligation is the primary obligation, the counterpartymust also perform the reciprocal obligation in response to the execution of the primary.The CarMan’s obligation to pay, and the SupTr’s obligation to deliver, are mutually exclu-sive. One of CarMan’s primary responsibilities is to pay SupTr. A conditional obligation,however, does not have to be triggered in the normal course of events. This category in-cludes the vast majority of redress rights and obligations. For example, if CarMan doesnot receive the tyres and steering wheels within a certain period, CarMan may seek latedelivery compensation. As a result, the service provider is required to deliver the goods,in addition to paying an additional penalty fee. Finally, a secondary obligation is a part ofa primary obligation that can be activated for additional commitment. SupSt and SupTr,for example, are committed to offering packaging services (for example; shipping optionsfor packages), despite the fact that they are not legally required to do so.Obligations can be segregated into legal, business, and ethical obligations based on thecontext of the obligation that requires a specific type of performance. Every statement ina business contract is legally binding, and carries legal consequences. Nonetheless, the le-gal obligation category is proposed in order to differentiate those obligations that requiresome specific legal actions to be carried out to fulfill them. The legal acts may or may not

54

be part of the business management process. Likewise, business obligations are legally binding. However, this researcher proposes that this term categorizes all those obliga-tions that are specifically related to business performance. ‘Business obligations can be classified into two types: monetary and non-monetary. Monetary obligations are those with economic or financial consequences, such as late-payment penalties. Non-monetary
obligations are those commitments that have reputational consequences. While not ev-ery business obligation is monetary in nature, business obligations do have legal conse-quences.

Execution of business processes are required for commitments such as CarMan send-ing orders to buy steering wheels following acceptance of the contract, or SupSt arranging for the carrier (shipping and transport), and notifying CarMan, and so on. Tyre replace-ment, logistics carrier arrangements, and other obligations between CarMan and SupSt have no economic implications, and may be considered to be non-monetary obligations. Moral or ethical obligations may not be severely binding but are more practically or so-cially expected obligations 16. For example, though it maybe CarMan’s obligation to pick up the goods from the seller’s premises, he may request the seller (SupTr or SupSt) to help in arranging the transportation or may require some other help, such as, arranging for payment of customs duty. The seller (SupTr or SupSt), though he may not be legally bound to assist the buyer, is morally bound to aid the buyer should the buyer request such help.
4.3 Rights and Obligations Monitoring
As described in Section 3, the absence of formally verifiable SCs has the potential to resultin significant financial loss. This can happen because SCs are unaware of their own pro-cessing state. And, in cases of contractual disputes, tracing how an SC as been executedis difficult, time consuming, and expensive.

Several formal verification methods have been proposed to ensure contract security [168, 104, 100]. Formal methods use mathematics to find unknown vulnerabilities in a contract. In this chapter, the CPN tool is used to validate ontological properties in a contractual workflow process.
The SCL ontology is formalized in Colored Petri Nets (CPNs), which can be used to design, develop, and analyze the processing state of SCs [93]. The CPN simulation tool can also track the fulfillment of contractual properties. The workflow model represents the definition of business processes and workflow patterns based on an ontology. Coloured Petri Nets, like smart contracts, consist of states or transitions, code, and tokens and is a purely formal system representation of a SC.
This thesis extends the existing formalized smart-contracting lifecycle [121], [129], and [123], which comprise the business collaboration model but does not have legally binding properties. Smart contracting language ontology concepts and properties are mapped to existing smart-contracting lifecycles in order to monitor the related contractual fulfillment process throughout the entire collaboration model. The updated CPN lifecycle model is known as the SLC lifecycle model. The SLC lifecycle begins with the configuration of a business network model (BNM), which is essentially a blueprint for inter-organizational collaboration that includes a legally binding template contract that matches service types to organizational roles. The template allows for the identity and reputation of the contracting parties, and the services they are contracting for, to be determined quickly, and in a semi-automated manner.

16International chamber of commerce | Home
55

https://iccwbo.org/resources-for-business/incoterms-rules/incoterms-2020/

repository
service types

NOLIST

1`(1,[],[])++1`(2,[],[])++1`(3,[],[])
++1`(4,[],[])++1`(5,[],[])++1`(6,[],[])

repository
service offers

NOLIST

1`(1,[],[])++1`(2,[],[])++1`(3,[],[])
++1`(4,[],[])++1`(5,[],[])++1`(6,[],[])

conformance
validated

service offers
Out

NOLISTxNOLIST

Out

role
counter

In/Out
NOxINT

In/Out

selected
BNM
draft

In/Out

NOxNO

In/Out

BNM

Out

NOxNOLISTxNOxBOOL

Out

selected
SO

NOLIST

Right

NO

Right

Obligation

NO

Obg

Match
of Rights

BOOL
Extracted
SO-Obg

NOLIST

Extracted
ST-Obg

NOLIST

Matched of RG
and Obg

BOOL

Confrmed SO

NOLIST

Confirmed ST

NOLIST

steps

repository accessingrepository accessing

Service offer
Manage Service OfferManage Service Offer

Steps
Conformance validationConformance validation

validation of
 SO & ST

[success=true]

sT

(bNM,n)

(bNM,n + 1)

(bNM,k)

1`(bNM,0)

(bNM,ch)

(bNM,sT,rO)

(sO,sT)

(SO,rTLs,oBLs) (ST,sTLT,sToB)

sO

sT

success

Figure 10: Rights and obligations selection in BNM.

The SLC lifecycle shown in Figure 10 illustrates a nested module, labelled Repository
Accessing, in which a user enters the service type with rights and obligations over time in the BNM selection. The same assumptions apply to the service offer repository in the
Manage Service Offer module. Finally, the Conformance Validation module of SLC lifecy-cle model is developed to meet the BNM draft specification’s validation of service offers against the selected service type. The details of each module are provided in the following sections.
4.3.1 Repository accessingIn Figure 11, it is assumed that a contracting party inserts the rights, roles, and obliga-tions for service types. The contracting party first chooses a BNM from a pool of previ-ously stored BNM drafts. The contracting party then adds the rights and obligations to the
Manage Service Type module, which is then stored in the repository service types state. Additionally, selecting a ´BNM draft’ for validating service offers and roles to be filled with rights and obligations is part of the actual BNM-selection process. The rights and obligations that must be filled out in the Manage Service Type module are listed below.
4.3.2 Manage service typeThe Manage Service Type module, shown in Figure 12, is the starting point for the actual repository of service types. The list of ‘service type’ rights and obligations in the repository is initially empty. The contracting party begins by choosing the ´service type Id’ from the
Choose ST transition. This triggers the Insert right and Insert obligation transitions, which insert the rights and obligations into Selected ST at the same time.

To delete the inserted rights and obligations, user can select the Delete right and Delete
obligation transitions. The same assumption is made when selecting the rights and obli-gations for a service offer in the Manage Service Offer module.

56

repository
service types

In/Out
NOLIST

1`(1,[],[])++1`(2,[],[])++1`(3,[],[])
++1`(4,[],[])++1`(5,[],[])++1`(6,[],[])

In/Out

roles

NO

Roles

role
counter

In/Out

NOxINT

In/Out

BNM
drafts

NOxNO

BNM

selected
BNM
draft

In/Out

NOxNO

In/Out

BNM

Out

NOxNOLISTxNOxBOOL

Out

Right

NO

Right

Obligat-
ion

NO

Obg

Selected
ST

NOLIST

add&specify
role

choose
BNM

Service Type

Manage ServiceType
rO

sT

1`(bNM,n + 1)

(bNM,n)

(bNM,ch)

1`(bNM,0)

(bNM,ch)

(bNM,ch)

1`(bNM,sT,rO,false)

Manage ServiceType

Figure 11: Repository of service type with rights, roles, and obligations.

repository
service types

In/Out
NOLIST

1`(1,[],[])++1`(2,[],[])++1`(3,[],[])
++1`(4,[],[])++1`(5,[],[])++1`(6,[],[])

In/Out

Obligat-
ion

In
NO

Obg

In

Selected
ST

In/Out
NOLIST

In/Out

Right
In

NO

Right

In

Choose
ST

Insert
right

Insert
obligation

Delete
Rights

Delete
Obligation

(ST,rTLs,oBLs)

ob

(ST,rTLs,oBLs)

rT

(ST,rTLs,SoB(oBLs,ob))

(ST,SrT(rTLs,rT),oBLs)

(ST,rTLs,oBLs)

(ST,rTLs,oBLs)
(ST,rTLs,oBLs)

(ST,[],oBLs)

(ST,rTLs,[])

(ST,rTLs,oBLs)

Figure 12: Insertion, deletion of rights and obligations in service types.

4.3.3 Conformance validationAs illustrated in Figure 13, a ´conformance validation is required before being considered as a service offer for finalizing the prototype SC. Validation is performed on the selected ‘service offer’ and ‘service type’ from the BNM-repository. The properties of the service type are inherited by the selected right and obligation properties. As a result, rights and obligations are extracted from the states Repository Service Type and
Repository Service Offer. A service offer that is matched with a service type is also saved in the confirmed SO and confirmed ST.

Further, the concepts and properties of ontology and workflow model is translated
57

into XML language.

repository
service types

In NOLIST

1`(1,[],[])++1`(2,[],[])++1`(3,[],[])
++1`(4,[],[])++1`(5,[],[])++1`(6,[],[])

In

ST-Obg

In/Out

NOLIST

In/Out

Match
of Rights

In/Out
BOOL

In/Out

Matched of RG andObg

Out
BOOL

Out

repository
service offers

In
NOLIST

1`(1,[],[])++1`(2,[],[])++1`(3,[],[])
++1`(4,[],[])++1`(5,[],[])++1`(6,[],[])

In

SO-Obg
extract

In/Out
NOLIST

In/Out

Confirmed ST

Out
NOLIST

Out

Confirmed
SO

Out
NOLIST

Out

Validity of
Obg against

 ST & SO

[success=true]

Validition of ST
and SO

(ST,sTLT,sToB)

(ST,sTLT,sToB)

contains rTLs sTLT

contains oBLs sToB

(SO,rTLs,oBLs)

(SO,rTLs,oBLs)

success

(ST,sTLT,sToB)

(ST,sTLT,sToB)

(SO,rTLs,oBLs)

(SO,rTLs,oBLs)

Figure 13: Conformance validation of service offers and service types.

4.4 SLCML: A Contract Specification Language
This section describes elements of the Smart Legal Contract Markup Language, based onlegally-smart contract ontology 2.0.The extended proposed SCL ontology (legally-smart contract ontology 2.0) incorpo-rates the legal concepts and properties for contractual collaboration in business DAOs.The SCL ontology has been formalized into a workflow model using the CPN tool. Thisworkflow model (SLC lifecycle model) contains both semantic and workflow propertiesand is used to check for the fulfillment of ontology properties throughout the workflowprocesses. The workflowmodel is translated into machine-readable language, referred toin this thesis, as Smart Legal Contract Markup Language (SLCML).For a smart-contract to be legally binding, it must be created using a programminglanguage that contains all of the necessary legal elements. To address this issue, thisresearcher collaborated with a lawyer 17 to improve the existing eSourcing ontology byadding legally-relevant concepts to eSourcing Ontology 1.0.Legal-smart-contract Ontology 2.0 was developed by mapping legally relevant ontol-ogy against eSourcing ontology 1.0. This ontology was used to develop eSML 1.0, an eS-ouring Markup Language designed to provide answers to three critical contractual ques-tions: Who? Where? andWhat? The “Who-concept” describes the parties engaged in the

17Alexander Wulf contributed to this thesis by supporting the creation of the smart contract lawontology with his legal expertise. He did not contribute towards the written text of the thesis
58

contracting process. The “Where-concepts” distinguish the fundamental aspects of thecontext of an electronic-contract, and “What-concepts” define the exchanged values andtheir associated conditions. The primary goal of eSML 1.0 was to enable smart-contractcollaboration within the eSourcing domain.This researcher used Liquid Studio 18 to translate the extended concepts and prop-erties of the SCL ontology into the eSML language, which is an XML schema editor forcreating XML documents. This translation resulted in the creation of eSML 2.0. The con-tract specification language (SLCML) is an expanded version of eSML 2.0. As this study isonly concerned with the expanded version of SLCML, a link is provided to the completeSLCML schema 19.The SLCML schema of the upper-level smart contract is presented in Section 4.4.1,and the the schema for defining domain-specific contractual properties in discussed inSection 4.4.2.
4.4.1 Upper-level smart-contract definitionThe legal elements described in the upper layer of legally relevant smart-contract DAOsare defined in the code extract shown in Listing 1. As discussed in Section 4.2, the elementrole in Line 4 defines the role of the parties to the contract; the buyer and seller. Line 5 ofListing 1 defines the contractual considerations as well as the variable types. The value of
minOccurs andmaxOccurs in Line 5, represents the amount of consideration requiredfor a legally binding smart contract. Line 6 defines the terms_and_conditions ele-ment, which specifies the smart contract’s terms and conditions. The contracting party’sdescription is defined on line 7 of Listing 1, followed by the custom typecompany_info,which includes the contracting party’s name, type of legal organization, and company con-tact information.

1 <xs:element name="contract">
2 <xs:complexType >
3 <xs:sequence >
4 <xs:element name="role" type="variables_def_section

" minOccurs="0" maxOccurs="unbounded"/>
5 <xs:element name="consideration" type="

variables_def_section" minOccurs="1" maxOccurs="unbounded"
/>

6 <xs:element name="terms_and_conditions" type="
terms_and_condition_definition" minOccurs="0" maxOccurs="
unbounded"/>

7 <xs:element name="party" type="company_info"
maxOccurs="unbounded" />

8 <xs:element name="mediator" type="company_info"
minOccurs="0" maxOccurs="unbounded" />

9 </xs:sequence >
10 <xs:attribute name="contract_id" type="xs:ID" />
11 <xs:attribute name="global_language" type="xs:

string" />
12 <xs:attribute name="web_service_uri" type="xs:

string" />
13 </xs:complexType >
14 </xs:element >

Listing 1: Upper layer of the smart-contract schema.

18Liquid Studio | Home19shorturl.at/uBHR6
59

https://www.liquid-technologies.com/xml-studio

Listing 2 displays the rights, prohibitions, obligations, and time-frames defined by thecustom-variable: terms_and conditions_definition_type. The code extract in Listing 2 ispart of the terms and conditions that define the rules and regulations governing the par-ties’ performance, as discussed in Section 4.2. Line 3 defines the rights of the elements, aswell as the custom type, (the right_type), which allows the parties to customize thetype of rights. minOccurs and maxOccurs indicate that parties must choose at leastone right. Prohibitions and definitions of the prohibitions that may apply to the termsand conditions, are described in Line 4. Line 5 of Listing 2 specifies the obligations as wellas the obligation_category, which allows the parties to configure multiple obliga-tions. Finally, the time_frame is defined in Line 6, which indicates when the terms andconditions will expire.
1 <xs:complexType name="terms_and_conditions_definition">
2 <xs:sequence >
3 <xs:element name="right" type="right_type" minOccurs="1

" maxOccurs="unbounded" />
4 <xs:element name="prohibitions" type="xs:string"

minOccurs="0" />
5 <xs:element name="obligation" type="obligation_category

" minOccurs="1" maxOccurs="unbounded" />
6 <xs:element name="time_frame" type="

variables_def_section" minOccurs="0" />
7 </xs:sequence >
8 </xs:complexType >

Listing 2: Schema definition of terms and conditions.

Thevariables_def_section, is a common variable attribute defined in Listing 3that contains properties for all SLCML variables, both simple and complex. The string dataitems necessitate the definition of the string_type. The role of the contracting party,for example, could be specified as a string_type. The boolean data type isrequired for the definition of boolean contract data items. For example, the boolean
data type determines whether or not the contract is legally binding. The integer
data type is used to store contract-id and consideration values. Special data types,such as money_type and event_type, define specific contractual activities. For ex-ample, the money_type specifies the amount of money in a specific currency, whereasthe event_type specifies the type of event that may occur during the contract.

1 <xs:complexType name="variables_def_section">
2 <xs:sequence maxOccurs="unbounded">
3 <xs:choice >
4 <xs:element name="string_var" type="string_type

" />
5 <xs:element name="real_var" type="real_type" />
6 <xs:element name="integer_var" type="

integer_type" />
7 <xs:element name="boolean_var" type="

boolean_type" />
8 <xs:element name="date_var" type="date_type" />
9 <xs:element name="time_var" type="time_type" />
10 <xs:element name="event_var" type="event_type"

/>
11 <xs:element name="money_var" type="money_type"

/>

60

12 <xs:element name="
external_resource_reference_var" type="
external_resource_reference_type" />

13 <xs:element name="list_of_events_var" type="
list_of_events_type" />

14 <xs:element name="list_of_strings_var" type="
list_of_strings_type" />

15 <xs:any namespace="targetNamespace" />
16 </xs:sequence >
17 </xs:complexType >

Listing 3: Common variable attributes.

4.4.2 Obligation-type definitionThe obligation_category consists of the obligation_type, obligation_
state, performance and non-performance specified in Listing 4. The element
obligation_type, alongwith customvariableobligation_type_definition,is specified in Line 3; bywhich several obligations are configured. Theobligation_stateis defined in Line 4, to monitor the contract fulfillment process through which an obliga-tion canpass. In the code example of Listing 4 thedefinition ofobligation_type_def-
inition is omitted. Theobligation state depends on theperformance andnon-performanceconditions defined in Line 5.

1 <xs:complexType name="obligation_category">
2 <xs:sequence >
3 <xs:element name="obligation_type" type="

obligation_type_definition" minOccurs="1"/>
4 <xs:element name="obligation_state" type="

obligation_state_definition" minOccurs="1"/>
5 <xs:element name="performance" type="

variables_def_section" minOccurs="1" maxOccurs="unbounded"
/>

6 <xs:element name="non -performance" type="
variables_def_section" minOccurs="0" maxOccurs="unbounded"
/>

7 </xs:sequence >
8 </xs:complexType >

Listing 4: Schema of obligations category.

Listing 5 is an example of an obligation type from which the parties can create at leastone, and possibly more, obligations. The legal obligation is defined on line 3, along withthe string variable type. Business obligations have both monetary and non-monetary im-plications for which monetary and non-monetary elements are defined in Lines 4and 5. Line 6, on the other hand, specifies both the string type and the moral obligation.The remaining obligations are defined in a similar manner, as shown in Listing 5.
1 <xs:complexType name="obligation_type_definition">
2 <xs:sequence >
3 <xs:element name="legal" type="xs:string" minOccurs

="0" />
4 <xs:element name="monetary" type="xs:string"

minOccurs="0" />
5 <xs:element name="non -monetary" type="xs:string"

minOccurs="0" />

61

6 <xs:element name="moral" type="xs:string" minOccurs
="0" />

7 <xs:element name="Primary" type="xs:string"
minOccurs="0" />

8 <xs:element name="Secondary" type="xs:string"
minOccurs="0" />

9 <xs:element name="Conditional" type="xs:string"
minOccurs="0" />

10 <xs:element name="reciprocal" type="xs:string"
minOccurs="0" />

11 <xs:element name="reconciliatory" type="
business_event_types" minOccurs="0" />

12 </xs:sequence >
13 </xs:complexType >

Listing 5: Schema of the type of obligation.

4.5 Chapter Conclusion
The ontological concepts and properties required to create legally binding DAOs are ex-plained in this chapter. Previous work is expanded by adding the legal aspect of DAOcollaboration to previously developed eSourcing ontology, which is critical for specifyinglegal DAOs. The HermiT reasoner was used to to check the correctness of the proposedSCL ontology. The SCL ontology is formalized in the workflowmodel using the CPN tool inorder to track fulfillment of contractual properties of ontology throughout workflow pro-cesses. The workflow model represents the definition of business processes and work-flow patterns, as knowledge based on ontology. For the feasibility study, the conceptsand properties of the SCL ontology together with workflow model were translated intoSLCML; a machine-readable language. SLCML is a more complex version of eSML, andonly the extended parts of SLCML that are not part of the eSML foundation, were coveredin the discussion. A business case from the dairy supply chain will be used to evaluate theSLCML, as discussed in the next chapter.

62

5 APPROACH FOR TRANSLATING SLCML-BASED SCs TO
SOLIDITY

5.1 Introduction
This chapter addresses research question RQ3 (Section 1.2) and describes thesis contribu-tion 6 (Section 1.3). Initially this researcher aimed to develop a translator based on the proposed framework for translating contracts written in SLCML (eSML 2.0) into functional language (blockchain executable language). However, further research revealed the exis-tence of a translator known as Caterpillar. It should be noted, however, that Caterpillar translates only business processes modeled in BPMN into Solidity, and does not accept SLCML schema. Therefore, in this chapter, patterns and transformation rules that deviate from the original framework, are proposed for translating SLCML code to a choreography model, and then implementing Solidity smart contract code.Section 5.2 demonstrates SLCML evaluation by providing SLCML code examples that stem from a dairy supply chain running case introduced in Section 2.3.2. The complex coordination effort between collaborating parties is facilitated by specifying the inter-organizational contract collaboration with SLCML. The SLCML can be used to configure semantically correct legally binding SCs rather than drafting blockchain executable code. As a result, the patterns and transformation rules are provided in Section 5.3 to translate SCs from SLCML to Solidity (thus satisfying SRQ 3.2). Section 5.4 discusses the feasibility of the SLCML-based SC translation approach to Solidity. This research is described in detail in the Publication (IV).A number of specification languages including SPESC and Symboleo, have been pro-posed to configure legally binding SCs as described in Section 3.1. However, a translation approach from a specification language to blockchain-executable code has not been re-searched. As a result, the research presented in this Chapter fills a gap in the existing literature by answering the research question “How can a BPMN choreography model be built to translate an XML-based contract to blockchain-executable language?”The proposed translation approach is based on research in [20] and [64], from which this researcher borrows concepts and proposes new patterns and transformation rules that support SLCML vocabularies. The concepts from research [20] are used first to con-vert the XML choreography model to BPMN, and then the concepts from research [64] are used to translate the choreography model to Solidity. After which, the proposed transla-tion approach is evaluated by generating the Solidity code from the contract written in the proposed language.
5.2 SLCML Instantiation
This section discusses SLCML instantiation while configuring the rights and obligations for the dairy supply chain running case using the SLCML schema from the previous chapter. Listing 6 defines the fundamental contractual elements required for any legally binding business-oriented smart contract. To resolve any conflict, the producer (factory) and dis-tributor create a smart contract with a unique ID that cannot be changed during contract enforcement. Lines 2 and 6 contain the public keys for the producer and the milk dis-tributor respectively. The names of the parties to the contract are specified on lines 3 and 7. Lines 4 and 8 define the contracting parties’ roles, namely: producer as a service consumer and distributor as a milk supplier. On line 10, the contract consideration (milk) for which the parties have agreed to a contractual relationship is listed. The terms and conditions include the obligations and rights are outlined in Listing 7 and Listing 8.

63

1 <contract contract_id="Id1">
2 <party address="03 m6">
3 <name > Producer </name >
4 <role > Service consumer </role >
5 </party >
6 <party address="31 x7">
7 <name > Distributor </name >
8 <role > Milk supplier </role >
9 </party >
10 <consideration > Milk </consideration >
11 <terms_and_conditions/>
12 <obligation/>
13 <right/>
14 <prohibitions/>
15 <terms_and_conditions >
16 </contract >

Listing 6: Contract instantiation for the dairy supply chain.

Listing 7 depicts a producer’s commitment to compensate a distributor for milk. Theobligation has a name and a unique ID that is used to track performance, and it is classi-fied as a monetary obligation because it deals with economic or financial consequences.Line 3 begins the obligation state, indicating that the producer collects milk in accordancewith the orders and is required to pay the distributor money. The producer is the obligor,and he or she is responsible for carrying out the obligation stated in Line 6. Line 5’s obli-gations benefit the distributor, and it is assumed that no intermediaries or arbitrators areinvolved, as indicated by line 7. The producer is expected to act by paying money, and theto-do obligation (line 10) has legal consequences. Line 12 implies the obligations for whichthe producer and distributor sign contracts (Act 1); the producer receives milk from thedistributor. The performance type (line 13) refers to the amount of money that must betransferred from the producer’s wallet address to the distributor’s wallet address. In ad-dition, the performance object (line 14) is defined as a qualified purchase for which a spe-cific amount is compensated within a specific time frame. Line 15 specifies the purchase-payment plan, while the rule conditions specify the payment time limit. Finally, the obli-gation is amended to include a mention of the existence of a late payment remedy (line17). If the producer fails to pay the money within the specified time frame, the produceris required to transfer a certain monetary amount (interest for late payment) to the dis-tributor.
1 <obligation_rule tag_name ="paying_invoices" rule_id ="0001"
2 changeable ="false" monetary ="true">
3 <state > enabled </state >
4 <parties >
5 <beneficiary > Distributor (31 x7) </beneficiary >
6 <obligor > Producer (03 m6) </obligor >
7 <third_party > nil </third_party >
8 </parties >
9 <obligation_type >
10 <legal_obligation > to-do </legal_obligation >
11 </obligation_type >
12 <precondition > act1 (signed)& Milk (transferred) </precondition

>
13 <performance_type > payment (03 m6 ,31 x7, buy) </

performance_type >

64

14 <performance_object > invoice (buy , amount)<performance_object >
15 <rule_conditions > date (before delivery of milk) </

rule_conditions >
16 <remedy >late_payment_interest (amount ,03 m6 ,31 x7)</remedy >
17 </obligation_rule >

Listing 7: Paying milk obligation illustration.

The obligation intersects with provisions in the Listing 8 code extract. Because theparties’ rights and obligations are intertwined, if one party asserts its rights, the othermust comply. The rights have a beneficiary who can benefit from them, and an obligorwho can enable them, as in Listing 7. If the producer receives poor-quality milk, they havethe right to demand that it be replaced. As a result, the distributor will have to replacethe milk.
1 <right_rule tag_name ="milk_replacement" rule_id ="0002"
2 changeable ="true" monetary ="false">
3 <state > enabled </state >
4 <parties >
5 <beneficiary > Producer (03 m6) </beneficiary >
6 <obligor > Distributor (31 x7) </obligor >
7 <third_party > nil </third_party >
8 </parties >
9 <right_type >
10 <conditional_right > claim </conditional_right >
11 </right_type >
12 <precondition > act1 (signed)& Milk (transferred)</precondition >
13 <performance_type > replace (poor -quality milk) </

performance_type >
14 <action_object > milk (cans of milk , type , and batch unit)</

action_object >
15 <rule_conditions > deadline (date) </rule_conditions >
16 <remedy > late_replacement_interest (amount , 31 x7) </remedy >
17 </right_rule >
18

Listing 8: Replacing low-quality milk with this example.

It is assumed the rights defined in Line 1 have a name and an ID. Because the distribu-tor has the right to revoke the right, he or she can persuade the producer that the qualityof the milk was ruined during logistics due to a faulty sensor machine that was not hisfault. If the distributor agrees to replace the milk, the contract’s rights can be changedwhile it is being carried out, and the compensation can be set to false. The parties aresimilarly stated to be in Listing 7, and the right state is ready to be implemented immedi-ately. Because the producer demands that themilk be replaced, the right-type is assignedconditional-right. Before the right can be exercised, the contract must be signed and themilk delivered to the producer. To replace the milk mentioned in the performance object,the performance type has been changed to cans of milk, type, and batch unit. The corre-sponding obligation of the distributor must be met within the ‘timeframe’ specified afterthis right is activated; otherwise, the producer is entitled to monetary compensation.
The rules for converting SLCML code to a choreography model and implementing so-lidity smart contract code are discussed in the following section.

65

5.3 Patterns and Transformation Rules
This researcher has borrowed concepts from the ADICO statements for solidity [64] andthe XML for choreography model [20] translations. According to Frantz et al., [64], con-tract statements are broken down into various components (abbreviated as ADICO) whichinclude; “Attributes”, “Denotic”, “AIm”, “Conditions”, and “Or-else”, where Attributes de-note actor characteristics and Denotic describes obligations, permissions, or prohibitions.Conditions describe the contextual conditions of the contract, whereas Or-else describesthe consequences of the action taken to regulate the contract. In addition, Frantz et al.,suggests mapping rules for developers to use when creating solidity code from ADICOcomponents. This researcher’s main contribution is to convert the SLCML rights and obli-gations into a choreography model based on research [20], and then into solidity codebased on research [64]. The proposed SLCML-Solidity mapping is summarized in Table 7 .This core construct mapping serves as the foundation for converting SLCML specifica-tions into Solidity contracts. The Supply chain process choreography model is convertedinto a smart contract known as ‘Supply chain smart contract’(rule (a)). Other SCs can onlycall external functions, or be called, if the former includes interactionwith other contracts.In this particular case, interactions exist between the primary smart contract, the supplychain contract, and the supply chain oracle contract, as discussed below.

Table 7: Rules for transitioning SLCML to Solidity.

Rule‘ID XML component Choreography component Solidity Code
(a) Root element: sup-ply chain Supply chain: choreographymodel Supply chain: smartcontract
(b) Step containing asupply chain Choreography task External function
(c) Attributes Data perspectives Struct
(d) Obligation Choreography task Function modifier,Events
(e) Precondition Choreography task Function modifier
(f) Performance type Choreography task Functions, Events
(g) Right Choreography task Function modifier
(h) Remedy Embedded in model docu-mentation Throw state-ments/alternativecontrol flow
(i) Step containing pay-ment choreography task External function

Attributes components, which are contract global variables that translate to Soliditystruct members (rule (c)), are used to attach constraints such as product quantity, quality,and so on. Performance types effectively represent functions and events to reflect themix of rights, obligations, and corresponding preconditions (rule (f)), whereas function
66

modifiers introduce descriptive checks that invalidate function execution (rules (d, e, andg)). The performance type (rule (f)), is refined further by allowing the configuration ofan item, such as an invoice, as shown in Listing 7, line 14, and a target associated witha specific operation, such as replacement, as shown in Listing 8, line 13. Events that areprompted as a result of the fulfillment of encapsulated circumstances are a subset of thistype (e.g. reaching a deadline for pay). The consequences of breaking clauses in functionmodifiers, which are usually translated using the throw primitive (rule (h)), are referredto as remedies. A single modifier construct defines conditions linked by quantifiers, thusleaving semantic integration to the developer. For example, when a payment is made, thepayment is represented as a choreography task that interacts with the merchant account.This task is implemented as an external function in Solidity (rule (i)).Tasks in the process choreography model can also represent steps in the supply chainthat interact with external resources (rule (b)). Three examples can be cited to supportthis: 1) data received from an external actor and passed to the smart contract; a serviceprovider may share data regarding their service costs. 2) data about a payment task, orabout configuration of transportmay be sent to the smart contract by existing technology,or 3) data may be extracted from blockchain-based SCs. This external data would be han-dled by special contracts known as oracles. In the following section, these transformationrules for SLCML code will be used to generate the choreography model, followed by thesolidity code.
5.4 SLCML to Solidity Translation
The examples of SLCML code generated in listings 1, 7, and 8, serve as the starting pointfor translating SLCML to Solidity. The workflow models in Figures 14 and 15 have beencreated using XML to choreograph transformation rules in Table 7, in which two orga-nizations, a service consumer and a service provider, are involved in the execution of across-organizational milk supply chain process. A service provider organization (a milkdistributor), performs a workflow process on behalf of a service consumer (a factory).However, the service provider prefers to disclose only those aspects of the workflow pro-cess that are relevant to potential customer organizations, rather than all of the details.This researcher uses BPMN notation [167] to visualize the supply chain processes speci-fied in SLCML. Activity occurrences are differentiated using labels, with a ‘c:’ (for a serviceconsumer) or a ‘p:’ (for a service provider) namespace marker for both the consumer’sprocess-view request and the service provider’s process-view offer.

co
ns

um
er

 p
ro

ce
ss

 v
ie

w

c:take a order
c: sign

contract

c: milk
packaging

c: assign
batch number

SEQ2

c:schedule
route

c:deliver
regular

c:determine
right &

obligation

[delivery. original
returnDate<date

rule-
condition

precondition

c:test
parcel

c:claim parcel

c:pay money

remedy
replacement(amount,

address)

c:fulfilled

SEQ1
consumer proess view

Figure 14: BPMN process view of consumer of dairy milk supply chain.

Figure 14 depicts the process flow of a factory, which begins with customer orders andends with the sale of milk powder. Following confirmation of the agreement betweenthe factory and the buyer (the retailer), a signed contract with an estimated delivery dateis sent to the the retailer. The factory would then use its own internal process to placean order for milk packaging with a supplier, and assign a batch unit. The supplier then
67

outsources a distribution mechanism and specifies the service provider’s rights and re-sponsibilities. To deliver the milk package, a subprocess (compound node) is executed,which includes the following tasks; the first step is to plan a route. Following that, aprecondition (the quality and quantity of milk) and a rule condition are applied to themilk package before it is shipped (delivery date). The customer is eventually handed themilk package and asked to sign the receipt. If the precondition and rule condition do notmatch the smart contract’s definitions, the customer may file a claim and request a re-placement product. In contrast to the customer view in Figure 14, the private mechanismof the service provider in Figure 15, includes an event-based gateway through which theservice consumer selects which component to follow throughout execution. This decisionis depicted by the two message-flows in Figure 15 from the service consumer’s internaldomain. In contrast to the customer viewpoint, the provider process includes the activ-ities p:determine transportation and p:determine route. During implementation, theseoperations must be made invisible to the service user (the customer).

pr
ov

id
er

 p
ro

ce
ss

 v
ie

w

p:take a order
p: sign

contract

p: milk
packaging

p: assign
batch number

SEQ2

p:determine
transportation

p:deliver
regular

p:determine
right &

obligation

[delivery. original
returnDate<date

rule-
condition

precondition

p:test
parcel

p:claim parcel

p:pay money

remedy
replacement(amount,

address)

p:fulfilled

SEQ1

p:determine
route

SEQ3

provider process view

in
-h

ou
se

 p
ro

ce
ss

 in-house process

enabling signal A enabling signal B

Figure 15: BPMN process for service provider.

After the process choreography model has been created, the next step is to translateit into Solidity code, as per the transformation rules shown in Table 7.To demonstrate this process, the ‘milk powder contract’ as discussed above, is exe-cuted and enacted using Caterpillar [132], an open-source blockchain-based BPM systemthat converts business processes modeled in BPMN into SCs written in Solidity language.Listing 9 is an excerpt from the generated smart contract. To begin the task executionwithrights and obligations, the smart contract, milk powder SupplyChain,’ contains two eventsand four solidity functions based on the transformation rules. Lines 3 to 8 of Listing 9 rep-resent global variables, and data pertaining to the process state is stored on-chain. Asdefined in lines 10 to 15, the list of producer and distributor variables is declared in struct,which can be accessed with a single pointer name throughout the contract. In Line 16, afurther event for performance type (MilkSupply), is implemented, containing parameterssuch as milk quantity, producer address, and distributor address, which track the deliveryof supply. Lines 17 to 20 implement the ´notifyObligationBreach event’ and associatedfunction for tracing the obligations. Similarly, an event for rights is introduced in lines 23-25 in the event that a party seeks compensation. Following that, a ´modifier precondition’is used to release the product if payment is received before the deadline.
1 pragma solidity ^0.4.16;
2 contract milk powder_SupplyChain{
3 uint public role;
4 address producer;
5 uint funds;

68

6 uint milk_quantity;
7 uint milk_quality;
8 uint public consideration;
9
10 struct Producer{
11 address producer;
12 uint role; }
13 struct Distributor{
14 address distributor;
15 uint role; }
16 event MilkSupply (uint milk_quanity , address distributor ,

address producer);
17 event notifyObligationBreach (* Define Type* obligaton , address

contract);
18 function notify (* Define Type* obligaton , address producer){
19 //TODO: Implement code to notify obligation breach for

target contract address
20 notifyObligationBreach(obligation type , contract);}
21 function release(uint milk_quanity , address producer){
22 // TOD: Implement code to relase milk to the producer. }
23 event claimParcel (* Define type* right , address contract);
24 function replace_parcel (* Define type* right , address contract)

{
25 //TODO: Implement code to activate right for target

contract address }
26 modifier precondition (){
27 //Check the condition
28 uint benificiary;
29 uint obligor;
30 if(! paybeforedeadline){
31 release(milk_quantity , producer);
32 producer.send(funds); }
33 else
34 { _; } } }

Listing 9: Milk supply chain.

5.5 Chapter Conclusion
The goal of this chapter is to propose a pattern and transformation rules for convertingSLCML code to a choreography model and then converting that model to solidity smartcontract code. This researcher extends existingwork that does not include transformationrules for business process views and legally binding properties to propose transformationrules that do contain legally binding properties. The SLCML contract is instantiated onthe basis of the XML-based SLCML schema, implying that the language includes criticalcollaboration constructs as well as a framework for conceptual accuracy. A pattern andtransformation rules are proposed to reduce the effort and risk associated with the de-velopment of SCs for blockchains, as well as for converting SLCML code to a choreographymodel, and implementing solidity smart-contract code. In addition, this researcher pro-poses developing a tool-assisted workflow for converting SLCML contract specificationsinto Solidity code. Finally, the generated solidity code of SLCML contract of the dairy sup-ply chain running case is discussed to demonstrate the feasibility of proposed patternsand transformation rules.

69

6 EVALUATION OF THE SMART-LEGAL CONTRACT MARKUP
LANGUAGE

6.1 Introduction
In this Chapter, the current literature is examined to identify evaluation methods for arte-facts similar to those produced in this thesis. The most appropriate methods for evalu-ating a modeling language are chosen and tailored for the current study. An evaluationis performed to test the generality and applicability of the SLCML schema in developinglegally-binding SCs.This chapter provides a systematic evaluation of the artefacts created in this researchto demonstrate their applicability in developing legally binding smart contracts. Theseartefacts include a legal-smart-contract ontology, amodifiedworkflowmodel, and a smart-legal contract markup language (SLCML). Both ontology and workflow models are inputsfor SLCML development. As a result, if the generality and applicability of the proposedlanguage is tested, it can be assumed that the ontology, and the workflow model, can betested as well. The generality and applicability of proposed language is tested in Chapter 5by drafting the dairy supply chain contract (explained in Chapter 2.3.2) using proposedSLCML language. In addition, this researcher tested the generality and applicability of thelanguage proposed in this chapter, by conducting laboratory experiments with blockchainparticipants in which they physically wrote contracts for the CarMan automobile runningcase in SLCML.Section 6.2 describes the assessment of relevant evaluationmethods. Section 6.3 eval-uates the pragmatics and semantics of SLCML schema, and Section 6.4 evaluates the us-ability of the SLCML schema. This researcher refers the reader 20 to the complete evalu-ation results.
6.2 Assessment of EvaluationMethods forModeling Languages andTheir

Support Tools
This section discusses existing research on evaluating modeling languages, frameworks,methodologies, and support tools for model implementation. Their benefits and draw-backs are identified and weighed in order to determine the best method for evaluatingthe SLCML language, furthermore, the evaluationmethods selected for use in this currentstudy are discussed, together with suggested modifications for use in this thesis.
6.2.1 Evaluation approaches:
Table 8 lists recent research relating to the evaluation and assessment of modeling lan-guages and support tools. The Study column shows the article being reviewed, the Arte-
fact column shows the study’s research result, and the Domain column shows the domainto which themodeling concept is applied. The elements used to implement themodellinglanguage are described in the Notation column. Finally, the Evaluated column tracks theassessed modelling-language aspects.The first article, study [21], described a systematic technique for evaluating the syntax,semantic and usefulness of a modelling language. The developed evaluation techniquewas applied in assessing the qualitative aspects of a modelling language in innovationmanagement in organizations. The second article, research [102], described a quantita-tive method for evaluating a support tool for an agent-modelling language used in soft-ware engineering. The third article, research [73], developed a modeling language for

20SLCML | Evaluation
70

customer-journey mappings in order to evaluate the support tool by measuring the cor-rectness and utility of themodels generated. The fourth article, [81], compared the resultsobtained using the support tool to the results obtained using the standard tool in order toevaluate a newmodeling technique for software engineering. The fifth article, study [116],evaluated the significance of the methods proposed by assessing the semantic character-istics of a modeling language that extended typical agent-oriented software-engineeringmethodologies. The sixth article, research [131], provided a systematic method for ana-lyzing UML semantic features. Finally, the study [47] developed a UML support tool andevaluated the consistency of models created with it, as well as the tool’s utility in compar-ison to traditional modeling techniques.

71

Ta
bl
e
8:

Ev
al
ua

tio
n-
m
et
ho

d
as
se
ss
m
en
ts
fo
rm

od
el
in
g
la
ng

ua
ge
sa

nd
su
pp

or
tt
oo

l.

Ref.
Stu

dyT
itle

Arti
fact

Dom
ain

Not
atio

n
Eva

luat
ed

(ML
/ST

)
Syn

tax
Sem

ant
icU

sef.
∗

Cor
r.∗

Cor
r.∗

[21]
Mu

lti-m
edia

and
web

-ba
sed

Eva
luat

ion
of

Des
ign

arte
fact

s-Sy
nta

ctic
,Se

man
tic

and
Pra

gma
tic

Qua
lity

of
Pro

ces
sM

ode
ls

ML
Inno

vati
on

man
age

men
t

BPM
N

++
++

++

[102
]An

emp
irica

lev
alua

tion
oft

her
equ

irem
ent

sen
gine

erin
g

too
lfor

soc
io-t

ech
nica

lsys
tem

s
ST

Soft
war

eD
e-

velo
pm

ent
AOM

+
-

+
[73]

Eva
luat

ion
ofm

ode
ling

lang
uag

efo
rcu

stom
erj

our
ney

sS
T

Cus
tom

er
jour

ney
CJM

L
+

-
+

[81]
Eva

luat
ion

oft
heE

3Pr
oce

ssM
ode

ling
Lan

gua
geT

ool
for

the
Pur

pos
eof

Mo
del

crea
tion

ST
Soft

war
e

dev
elop

men
t

E3P
ro-

ces
s

-
-

+
[116

]
Emp

irica
lEv

alua
tion

ofT
rop

os4
AS

ML
Soft

war
e

Trop
os-

-
+

-
Mo

deli
ng

dev
elop

men
t

4AS
[131

]O
nto

logi
cal

eva
luat

ion
of

the
UM

Lu
sing

the
Bun

ge-
Wa

nd-
We

ber
mo

del
ML

Info
rma

tion
syst

ems
UM

L
-

++
-

[47]
Eva

luat
ion

ofS
tud

ent
UM

L:a
nEd

uca
tion

alT
ool

for
Con

-
sist

ent
Mo

deli
ngw

ith
UM

L
ST

Obj
ect

ori-
ent

eda
naly

sis
UM

L
+

-
+

∗
Co

rr.
[Co

rrec
tne

ss]
∗
U
se
f.
[Us

efu
lnes

s]

72

The key finding from the data presented in Table 8, was that most studies comparedthe utility of amodeling language’s support tool to that of a traditionalmodeling language.Only one study [21], provided a comprehensive explanation of the evaluation approach.Furthermore, the research took into account all aspects of evaluation, such as syntacticand semantic correctness, as well as the modeling language’s general applicability to thedomain. Although the objective of the usability evaluation of the artefacts conducted instudy [102], was similar to that of other studies, Mahunnah et al.,’s study is more relevantbecause the notations evaluated are similar to those evaluated in this thesis. The SLCMLis amodeling language used to create SCs for deployment on a blockchain, and as a result,both studies, [21] and [102], are preferred as this thesis’s evaluation method.

Table 9: Semantic qualities for assessing SLCML language, adapted from Brandtner & Helfert (2018)

Title Description Adaptation
Correctness All statements in the repre-sentation The SLCML schema correctly repre-sents the process and elements ofcreating legally binding SCs.Relevance All statements in the repre-sentation are relevant to theproblem

All of the SLCML schema elementsare relevant for creating legallybinding SCs.Completeness The representation containsall statements about the do-main that are correct andrelevant

The SLCML schema represents allof the elements and processes in-volved in creating legally bindingSCs.Authenticity The representation gives atrue account of the domain The SLCML schema represents theelements and process of creatinglegally binding SCs in a realisticmanner.

6.2.2 Modeling-language evaluation aspects
Brandtner et al. described a method for evaluating the syntactic, semantic and pragmaticaspects of a business-modeling framework for implementing business innovations [21].The method has been modified and applied to blockchains as well as for the creation ofSCs domains. The syntactic parts of the SLCML schema have already been specified andevaluated in [54]. This thesis only considers semantic and pragmatic aspects, with seman-tic quality determining how well the new SLCML schema captures contractual businessfeatures that domain experts believe are important in describing the domain. Table 9shows the properties for measuring the semantic aspects of a new modeling languageand their application to this thesis. Among these properties are the modeling language’svalidity, relevance to the problem domain, completeness in describing the domain, andlanguage authenticity.The pragmatic aspect evaluates the modeling language’s perceived utility in assistingwith the design, and implementation, of blockchain-enabled SCs for inter-organizationalcollaborations. Table 10 shows the properties for measuring the pragmatic aspects of anew modeling language and its adaptation to this thesis. Some of these characteristics

73

are: subjective norm, image, job relevance, output quality, result demonstrability, perfor-mance, productivity, and perceived usefulness. Experts in the field of blockchain systemdesign have taken part in evaluating both the semantic aspects and pragmatic aspects ofthe new modeling language.

Table 10: Pragmatic qualities for assessing SLCML language, adapted from Brandtner & Helfert
(2018) [21].

Title Explanation
Subjective Norm People who are important would support using SLCML in creat-ing legally binding SCs.Image People in my organization who use SLCML to instantiate SCswould have a high profile.Job relevance SLCML usage or application would be relevant in my job.Output quality The quality of output I get from using SLCML will be high.Results demonstra-bility I believe I could explain the benefits of using SLCML to others.
Performance My job’s performance would be improved if I used the SLCMLschema.Productivity I would be more productive if I used the SLCML in my job.Perceived usefulness I find the creating of SCs through SLCML to be useful in my job.

6.2.3 Usability evaluation aspects of modeling language:The paper [102], investigated the usability of a support tool for agent-oriented modelinglanguage. The method of evaluation was based on a comparison of the results obtainedwhile using the assistance language tool support with a free-hand sketch. The goal wasto assess the validity of the models developed, as well as the time spent developing themodels, in order to determine the benefits of the support tool.

Table 11: Properties for assessing usability of SLCML, adapted from Mahunnah et al., (2018) [102].

Item Description
Q1 The description of the case study was clear to me.Q2 Difficulties in modeling the legal and business requirements inSLCML.Q3 Difficulties in choosing the business processes in SLCML.Q4 Difficulties in modeling the use case instantiation of SLCML.Q5 Short time is required for accomplishing the modeling SCs.Q6 SLCML schemawas very useful in themodeling of legally bindingSCs.Q7 The concepts of the SLCML schema were detailed enough to in-stantiate the requirements of blockchain system.

74

Q8 The effort of modeling SCs seems too high for the efficient useof the methodology in practice.

The properties for analyzing the performance of a modeling SLCML SCs are shown in Table 11, which was adapted from [102] for this thesis. The items assessed the difficulties, time spent, and effort expended in generating SLCML contracts. Other aspects examined include grasp of the case modeled, comprehension of the SLCML notions, and the appli-cation of SLCML in practice. The participants involved in this evaluation were newcomers to blockchain.
6.3 SLCML Schema Evaluation
A webinar event with blockchain domain experts was held to review the concepts and showcase the SLCML schema. The specialists worked in industries such as supply chain, healthcare, finance, education, and research. A total of 20 people registered for the we-binar; 40% were researchers, 20% were software engineers, and 20% were data and busi-ness analysts. The balance was made up of project managers and quality assurance ana-lysts.All of the important SLCML schema concepts, such as business and legal aspects and relationships, were discussed during the workshop. In addition, the attendees were in-troduced to the concept of decentralized inter-organizational business collaboration; the main theme of this thesis. Participants provided feedback on the SLCML schema’s seman-tic and pragmatic features at the end of the webinar.The semantic-and-pragmatic properties of the SLCML were investigated using the mod-eling language evaluation approach described in Tables 9 and 10, in Section 6.2. The re-sults of the SLCML evaluation are presented in Figure 16. The semantic characteristics are shown on the left side of the figure, and the pragmatic characteristics are depicted as perceived utility, on the right side.On a scale of 1 to 5, blockchain domain experts agreed that the SLCML schema depicted the design process of legally binding SCs for semantic quality evaluation in an appropriate and realistic manner. They also believed that the SLCML schema accurately and comprehensively represented all of the elements required to create legally enforceable SCs. The average scores for the properties were 4.3 for realisticness, 4.3 for completeness, 4.1 for relevance, and 4.5 for accuracy. The usefulness of the SLCML schema in blockchain-related jobs, the creation of legally binding SCs output, and improved performance in SCs implementation, were all rated highly (above 4.3). The SLCML schema’s increased productivity and communication, both with scores of 4.1, were two more pragmatic aspects of the SLCML schema that received high marks. The subjective norm property, which measures how important, people in the blockchain community, regard the SLCML, was also given a high score of 4.0. According to this assessment, it can be concluded that blockchain domain experts agree that the SLCML schema is semantically valid, and pragmatically beneficial, in the construction and development of legally binding SCs.Similar scores were recorded by academic, and industry experts, in providing extra details of the semantic evaluation based on the domain experts’ backgrounds. Academic, and industry experts, rated the semantic quality of the SLCML at 4.28 and 4.27, respec-tively. For its pragmatic aspects, domain specialists in academia and industry gave the

75

Figure 16: SLCML pragmatic- and semantic evaluation result.

SLCML similar ratings. The average pragmatic quality of the SLCML was rated 4.06 by aca-demic experts, and 4.07 by industry professionals. These results show that academics, and industry professionals, have similar perceptions of the semantic and pragmatic features of SLCML.
6.4 SLCML Usability Evaluation
To evaluate the usability of the SLCML, a workshop was held with seven users who were not blockchain experts, but who could easily grasp the concepts of blockchain-SCs design. All seven users were master’s degree students, currently working on thesis topics related to blockchain.During the workshop session, the participants received instruction on the fundamen-tal concepts of the SLCML schema. The participants were then divided into two groups to model a set of legally binding SCs using the SLCML schema. They were tasked with creating an example of an SC for a specific use-case in the automobile supply chain. The first group, made up of four students, worked with the proposed SLCML schema, while the second group of three students, worked with an existing smart contract modeling lan-guage (DAML). A feedback form was used to record the accuracy of the models produced, the amount of time spent, and the ease with which the assignment was completed. The participants were asked to evaluate the SLCML on a scale of 1 to 5.The usability of developing legally binding SCs using the SLCML schema was inves-tigated in this thesis using the modeling-language support-tool evaluation approach, as described in Table 11; Section 6.2. Usability was determined by comparing feedback data from students who developed SCs using SLCML, to students who developed SCs using the existing SC modeling language (DAML). Figure 17 depicts the results of the usability eval-uation of the SLCML. The red bars show the average scores of students who used the existing modeling language, while the blue bars show the average scores of students who used the SLCML schema.The results in Figure 17 show that all students who attended the workshop had a similar understanding of SLCML concepts, and the running scenario. However, the amount of work required to recreate the modeling SCs, and the ease with which the SLCML could be used, varied from student to student. When compared to students who used an ex-isting SC modeling language that required a significant amount of effort to complete the modeling task, students who used the SLCML, believed the effort required to create the legally binding SCs was quite low. Students who used the SLCML enjoyed creating legally-

76

Figure 17: SLCML usability evaluation result.

binding SCs, while students who used the existing language found it difficult to modellegally binding SCs. The findings show that the proposed SLCML can be used to easilydesign and develop legally enforceable documents.
6.5 Chapter Conclusion
The primary artefacts created during the research study are evaluated in this chapter ofthe thesis. One of the artefacts is the SLCML schema, which contains legal and businesssemantics for designing and developing legally-binding SCs. To this end, this thesis exam-ines the literature for appropriate methodologies for evaluating the SLCML. The evalua-tion methodologies are compared to see how different methods evaluate the syntacticaccuracy, semantic correctness, and utility of a modeling language. Based on the analysisresults, appropriate SLCML evaluation techniques tailored to the current thesis are cho-sen. The SLCML evaluation seeks to determine the semantic quality and practical utility ofthe SLCML in the creation of legally binding SCs. The evaluation goal also includes deter-mining the SLCML’s effectiveness in producing SCs. The semantic andpragamtic evaluationresults, as well as the usability evaluation results, are presented separately.

77

7 CONCLUSION
This chapter summarizes all of the research conducted in this thesis. The works relatedto the main chapters of the thesis are presented, and chapter summaries show how thethesis addresses each chapter’s research issues. Finally, the limitations of the researchpresented in this thesis are discussed, together with future work that may result.

Chapter 7.1 discusses the results of Chapters 3, 4, 5 and 6, including the developmentof SLCML schema, semantics and syntax descriptions, solidity transformation rules, andSLCML evaluations. Section 7.2 summarizes the answers to the research questions. Sec-tion 7.4 describes the limitations and possible future work.
7.1 Discussions
The discussions emerging from this thesis are presented as follows.
7.1.1 Discussions from the development of a legally binding SCL
Chapter 3 describes the systematic development of a SCL that supports legal and businesssemantics, with the main contribution of the chapter being a graphical representation offuture SCL development that describes legal and business semantics, and how it addressesgaps in existing approaches for building legally binding SCs. Current state-of-the-art SCLsare examined to determine whether they contain the ten properties that are requiredfor the creation of legally-enforceable SCs. These properties, as described in Section 3.3,contribute to ‘semantic suitability’, ‘workflow suitability’ and ‘expressiveness’.

Each of these categorizations are defined froma legal perspective to better understandwhy they are so important in making SCs legally binding. As explained in Section 3.3, se-mantic suitability includes the ’Who-Where-What properties’ that define the parties toa contract. According to [70], a contract cannot even be entertained without having asemantically rich SCL, with the necessary vocabulary to express the ‘who-where-what’of the contract. As a result, these properties become extremely important. Accordingto [170], ‘workflow suitability’ properties are critical for determining whether the partiesare performing their specific tasks correctly. These properties, as the name implies, out-line how the contract’s flow of control, data, and resources should occur, and in the eventof a dispute, how a court of law can intervene to address potential problems. Finally, ‘for-mal verifiability’, or ‘expressiveness’, is critical for making contracts legally binding. Theseproperties ensure that smart contracts, which are essentially computer programs, are en-coded correctly based on the parties’ legal intention, as defined in a natural-languagecontract [101, 70].
In summarizing the findings of the research questions (RQs) it was found that whilemost SCLs support some suitability and expressiveness properties, none of the currentstate-of-the-art SCLs have all ten properties listed in Table 5. While most SCLs have somesemantic (‘Who-concept’), and workflow properties (’control-flow’ and ‘data-flow’), onlyone SCL (Rholang), has adopted all of the ‘workflow suitability‘ properties.
Whereas in the case of ‘legally enforceable’ and ‘business process’ SCLs, while all se-lected SCLs contain the three (who-where-what) ‘semantic suitability’ properties, theylack the syntax for interpreting the business rules, and policies that are essential factorsin the formulation of rights and obligations of traditional contracts in smart contracts. Inaddition, current user-friendly SCLs are unable to uniquely identify who the collaboratingparties are in a smart contract. Consequently, the required competencies and authoriza-tion status of the contracting parties are also not supported in the existing syntax defini-tions.

78

With respect to the ‘expressiveness’ properties, most SCLs either have ‘temporal con-straints’ or ‘structural constraints’; only three SCLs, (Rholang, Lolisa, and LLL) have bothproperties. This is critical, because having these properties makes SCLs less prone to se-curity vulnerabilities [161].
7.1.2 Discussions from the SCL ontology description
Chapter 4 presents the ontological concepts and properties required for the creation oflegally binding SCs. This chapter builds on previous work and formalizes the legal ele-ments of ontology in a workflow model that are critical for designing legal DAOs. HermiTreasoner software was used to to check the correctness of the proposed SCL ontologywritten in the web ontology language (OWL) programming language. The proposed SCLontology and workflow model are inputs to the SLCML’s development. The properties ofSCL ontology and workflow model are mapped into the previously developed eSML lan-guage (eSML 1.0). While eSML 1.0 was originally developed to incorporate the semanticsof business processes in smart contracts, it lacks the legal elements which are critical todefine legally-binding SCs in the context of business collaborations.

Existing SCLs, such as Solidity, Serpent, and others, are developed from an IT stand-point, inwhich a programmer producesmachine-readable codewithout having any knowl-edge of the contract domain. Nonetheless, it should be pointed out that current researchfocuses on the development of SCLs in order to establish legally enforceable SCs. Re-searchers propose a specification language (SPESC) for collaborative design that definesthe configuration of a smart contract, rather than its implementation, as cited in [75].SPESC defines SCs code as a collaborative effort between IT specialists and domain prac-titioners, incorporating business or financial transactions. SPESC can be used to describereal-world contract requirements such as the party’s role, the set of terms and conditions,and so on. However, SPESC focuses on modeling legal relations between contracting par-ties, rather than legal positions and characteristics of contracts, such as obligation states,rights and obligations categories. In [152], researchers propose a formal specification lan-guage (Symboleo) that reflects responsibilities and powers by utilizing domain ideas andaxioms. Symboleo’s standards include rights and obligations that can be tracked in realtime. Formal semantics are also provided for in the form of of state charts to define thelife-cycle of contracts, obligations, and authorities. While Symboleo is expressive enoughto represent a wide range of real-world contracts, it lacks collaborative contract conceptsand properties.
In [175], the researcher addresses the issues of formalizing natural language contractsin machine-readable languages. A contract modeling language (CML) is also proposed formodeling and expressing unstructured legal contracts that cover a wide range of commoncontract situations. The CML defines a natural-language comparable-clause grammar thatis analogous to real-world contracts, but it does not handle transaction rules, and is unableto formalize any type of contract because it lacks domain completeness.
According to the researchers in [140], human contract intents are typically defined innatural language that is simple to understand, but is imprecise and open to interpreta-tion. A process for developing a high-level specification that achieves common under-standing through natural-language terms and is directly translated into machine instruc-tions is also proposed. Nonetheless, this study focuses primarily on the readability andsecurity of SCs, and does not address the domain’s collaborative contractual appropriate-ness, or completeness. According to [74], researchers are finding it difficult to develop SCsdue to the complexity and variety of the underlying systems. Furthermore, a blockchain-independent smart-contract modeling language, called iContractML, is proposed to re-

79

lieve developers of the burden of dealing with blockchains’ unique complexity. The CML allows blockchain developers to focus on the business process rather than the platform’s syntactic details. The CML has a very different focus and breadth than this researcher’s studies. ADICO, an abbreviation for Attributes, Deontic, AIm, and Conditions, is a scala DSL that converts smart contract domain-specific components into simpler ideas [64]. A contracT tool has been developed to annotate legal-contract text using a legal-contract ontology [155], however, the proposed ontology is not yet ready to be used to create col-laborative SCs. This thesis proposes a framework for the dynamic binding of parties to collaborative process roles, as well as an acceptable language for binding policy descrip-tions [96]. The proposed language incorporates Petri-net semantics, thus allowing policy consistency to be verified.
7.1.3 Discussions from the development of the patterns and transformation rulesThe pattern and transformation rules for converting SLCML contracts to Solidity SCs are discussed in Chapter 5. Although Regnath& Steinhor [140], have proposed a method for converting conventional natural language terms into easily compiled computer language, this researcher believes that the readability and security of SCs are more important to this study than the domain’s participatory contracting compatibility and completeness. As a result, study [96], proposes a methodology for interactively ratifying stakeholders for cooperative workflow functions, together with a vocabulary for enforcing policy config-urations. The transformation rules from XML to a process-choreography model are pro-posed first, followed by the generation of Solidity code from the choreography model [20]. Nonetheless, the recommended strategy is tailored to tourist itineraries. The approach applied in this thesis is to extend the transformation rules for generating any type of domain-specific smart contract written in SLCML to Solidity code.

A number of studies related to the configuration of smart contracts have been con-ducted. However, an analysis of these studies show that their application to real-world agreements is limited. As a result, there is insufficient research to define collaborative and legally-enforceable SCs. This thesis bridges the gap by implementing a real-world contractual agreement concept that requires agreement from cooperating parties. This agreement written in SLCML, matches the process views from the perspective of both a service consumer and a service provider. As a result, it is clearly distinguishable from ex-isting research that only has a purely scientific, and theoretical, focus. In addition, this researcher provides the rules for converting any SLCML smart contract in to Solidity code.
7.1.4 Discussions from the SLCML evaluations resultsThe evaluations conducted to assess the main artefacts produced in this thesis are de-tailed in Chapter 6. The SLCML schema is evaluated for its suitability for generating legally binding SCs. The semantic qualities of the SLCML schema are evaluated to determine its practicality and usefulness using the method described in [21]. The SLCML’s effectiveness is determined by its usability, and ease of generating error free SCs. This is accomplished by employing the method outlined in [102].

According to the result of the SLCML schema evaluation, the modeling language is highly realistic for describing the legal, and business, elements necessary for creating legally binding SCs. According to the results of the practical (pragmatic or perceived) use-fulness evaluation, the SLCML schema is quite suitable for producing high-quality legally-binding SCs. Thus, significantly improving the performance and productivity of analysts and developers in building SCs. Furthermore, the SLCML demonstrates broad applicability and utility in tasks involving the design and development of blockchain-based SCs. Some
80

similarities and differences emerge when these findings are compared to those of a sim-ilar study [75], which demonstrates a process-based approach for modeling innovationsin organizations. The results of [75] show that the modeling approach is highly relevantfor tasks related to innovation management, and that the approach has a high practicalusefulness. However, when compared to the other results, the average semantic qualitiesscore is low, falling just above the second quartile (above 50%).In comparison, the average score for both the semantic and practical usefulness of themodeling approach for the proposed SLCML schema is in the third quartile (above 75%).This demonstrates that the SLCML is not only useful for creating blockchain-based SCs,but it also accurately represents legal- and business-related elements and processes inthe blockchain domain. In addition, the results of the SLCML usability evaluation showthat the SLCML is highly effective and usable in producing correct SLCML contracts whencompared to a freehand smart-contract modeling language. The results show that themodeling effort required to create SCs with SLCML is relatively low, whereas the effortrequired to create SCs with the existing modeling language is extremely high. The SLCMLis simple tomodel and ranks in the third quartile (above 50%), while the existingmodelinglanguage (SPESC) ranks in the second quartile (below 50%). This is similar to the resultsof this thesis, demonstrating that SLCML is more user-friendly than an existing modelinglanguage.
7.2 Answer to Research Questions and Chapter Summaries
The aim of this thesis is to create a SCL that can be used to generate legally-binding SCs forIOCs. The concepts of legal and business semantics, aswell as blockchain decentralization,are introduced into the modeling language developed in this thesis, which is based on theeSourcingmarkup language (eSML 1.0). This study focuses on developing a SCL comprisingthe concepts and properties for drafting legally-binding collaborative business contracts.This thesis develops 3 main research questions in order to answer this objective. Theresearch questions are as follows: RQ1: How can a novel framework be devised for design-ing smart contract languages that are semantically rich, and which support the drafting offormally verifiable smart contracts for use in DAO collaboration? RQ2: How can a formal-specification language be developed for the purpose of legally-bindingDAO collaboration?RQ3: How can a BPMN choreography model be built to translate an XML-based contractto blockchain-executable language? These questions are answered in the Chapters 3, 4and 5.The main artefacts produced in this thesis by answering the 3 research questions are:1) The proposed framework for developing a novel legally-binding SCL, 2) The proposedSLCML; an XML-based language, and 3) The pattern and transformation rules for translat-ing SLCML contracts to solidity. The SLCML schema is a model-driven approach for creat-ing legally-binding SCs to address complex IOC problems. These artefacts are evaluated inChapter 6.This section summarizes how themain research questions are addressed in Chapters 3,4 and 5, in that order. A summary of the evaluation of the major artefacts produced inthis thesis is provided in Chapter 6.
7.2.1 Answers to RQ1
The main contribution of the first research question is to identify the suitability and ex-pressiveness properties that are critical for developing legally-binding SCLs, and to devisea novel model for developing SCLs that include those properties. The main advantagesof the proposed properties are that they are technology-independent, conceptual, and

81

can be projected into targeted smart-contracts and blockchain technology for SCL devel-opment. The proposed suitability and expressiveness properties are based on developing legally-binding collaborative SCs. The properties of the identified SCLs were evaluated to determine whether they have the required suitability and expressiveness properties. It was deduced that most of the current state-of-the-art SCLs only partially support (not all ten properties) the suitability and expressiveness properties. By integrating those prop-erties with state-of-the-art SCLs it will be possible to make them legally binding. The pro-posed framework demonstrates how a novel SCL comprising those properties can be de-veloped, and to the best of this researcher’s knowledge, this is the first framework for developing legally binding SCLs. The proposed framework can be used to improve current state-of-the-art SCLs to make them legally binding, as well as for developing novel SCLs.
7.2.2 Answers to RQ2The main contributions of the second research question are the development of an SCL ontology, a workflow model, and a novel XML-based language SLCML. The proposed SCL ontology provides insights into the context of a smart contract, for example: who the par-ticipants to the transaction are, what they are exchanging, and under what terms and con-ditions this exchange takes place. The SCL ontology is evaluated using running cases drawn from existing studies, in which it outperformed standard approaches to resolving rights and obligations conflicts between parties. The proposed SCL ontology is general in nature, and can be used to configure contractual properties for a variety of other blockchain and SC applications, such as Defi ecosystems.

The workflow model provides insights into the processes and workflow patterns to be followed when conducting a smart contract from the perspective of contractual collabo-ration. For example: how the transactions are to be carried out, and the workflow model that will be applied. The proposed workflow model can be extended to be projected into targeted smart contracts and blockchain technology for validating a smart contract’s func-tional correctness; thus ensuring contract security, and enabling discovery of unknown SC vulnerabilities. Also, the SCL ontology is formalized in the workflow model, to test the for-mal verifiability of the ontology in contractual workflow using the CPN simulation tool. Together, the proposed ontology, and workflow model, provide procedural knowledge about the expected flow of business actions within the process workflow of the individual contracting parties.
The concepts and properties of the ontology and workflow model are translated into the XML-based language SLCML; demonstrating that the SLCML contains the necessary vocabulary to define legally binding and collaborative business contracts. The generality and applicability of the SLCML is demonstrated through running cases and laboratory ex-periments for which SLCML code examples are provided. The evaluation results show that the SCs generated by the SLCML described, and developed, in this thesis are correct, and in accordance with legally binding contracts. Although the thesis develops the SLCML for a specific business-to-business use-case, the approach used in SLCML development could be applied to SCL development for other blockchain applications.

7.2.3 Answers to RQ3To answer the third research question, patterns and transformation rules are proposed for translating the contract written SLCML to blockchain executable language. The pat-terns and transformation rules are based on ideas from existing research, and make use of the translation approach from XML to a choreography model, and from the choreog-raphy model to Solidity. The proposed patterns and transformation approach are tested
82

by translating contracts from the dairy supply chain (introduced in Chapter 2) written inSLCML into Solidity code. As an additional test, this researcher deployed a choreographymodel in BPMN notation into the Caterpillar system (BPMN to Solidity translator), whichgenerated the same Solidity code as the proposed approach. The result obtained fromthese tests indicate that the proposed patterns and transformation rules are a viable al-ternative for translating contracts written in XML-based SCLs to Solidity.
7.3 Summary of Evaluation Results
This section summarizes the results of the assessment of the main artefacts produced inthis thesis. The purpose of this thesis is to conduct a systematic evaluation of the SLCMLschema’s utility in the creation of legally binding SCs. To accomplish this, this thesis firstinvestigates appropriate evaluationmethods formodeling approaches. Based on the find-ings, two appropriate evaluation methods are chosen and adapted for the artefacts pro-duced. The first is used to evaluate the semantic, and pragmatic, qualities of the SLCMLschema, while the second is used to evaluate its usability.

The semantic qualities of the SLCML are determined by how experts in the blockchaindomain perceive the correctness, completeness, and relevance of the SLCML in develop-ing legally binding SCs. Whereas, the pragmatic qualities of the SLCML are evaluated byindividuals involved in blockchain-related programming tasks designed to test the useful-ness, productivity, and quality of the generated SCs.
The semantic evaluation results show that the SLCML provides a realistic and correctrepresentation of the steps involved in creating legally-binding SCs. The pragmatic evalua-tion results show that the SLCML is regarded as extremely useful in producing high-qualitySC designs. The effectiveness of the SLCML is determined by comparing results obtainedwhen modeling legally binding SCs with an existing SC modeling language. The resultsshow that the SLCML requires less modeling effort, and provides greater usability in pro-ducing legally binding SCs.

7.4 Thesis Limitations and Future Work
The lack of domain completeness is the main limitation of the research presented in thisthesis. the SLCML’s development assistance in generating legally-binding SCs is limited tobusiness-to-business (B2B) contracts. The use of B2B case studies in the thesis demon-strates this. Furthermore, transformation rules are proposed that are only applicable tothe Solidity language. Other study limitations include the researcher’s subjectivity in an-alyzing, and interpreting data, as well as the risk of generalization. Subjectivity relatedto the researcher’s values and viewpoints could have an impact on the interpretation ofresults when analyzing the strengths and weaknesses of current approaches for build-ing a SCL. Subjectivity may also have an impact on how the SLCML evaluation results areinterpreted. The results of this thesis may be generalizable due to the large number ofexperts interviewed in this study. Nonetheless, blockchain technology is a relatively newinnovation space, and the number of experts with the necessary knowledge to partici-pate was limited in the interviews, webinars, and workshops held as part of this research.As a result, assembling a large number of experts to participate in several of the thesis’evaluations is a significant constraint.

This researcher intends to collaborate with business domain experts in the future toimprove the SCL ontology in order to create a domain-complete ontology for smart con-tracting advancement. In addition, this researcher plans to use SLCML in further case stud-ies for research projects involving the design of cyber-physical systems with smart-object
83

orchestration. Those studies will look at expressiveness extensions in more Internet ofThings (IoT) contexts. The adoption of concepts and properties that cater for advancedsecurity assurance measures relevant for open cyber-physical system collaborations, isan important extension for the SCL ontology, and SLCML. Another unanswered researchquestion is how to protect business collaborations using transactionality concepts otherthan traditional database andworkflow transactions; such as side chains, tree chains, minichains, and other blockchain-related variants. As a result, future research will look intosuch electronic business transactions to explore the extent SLCML ensures the securityof cyber-physical system collaborations, preferably using blockchain technology. A formalanalysis approach to the specification of SLCML could be developed, and this researcherplans to build a translator for the automatic conversion of SLCML instantiations into alarger set of blockchain-based languages.

84

List of Figures

1 Design-science research method, adapted from [77]. 192 Illustration of contribution, research methodology and publication. 203 DAO-collaborative automotive supply-chain adopted from Publication (II).. 284 Use case of dairy food supply chain adopted from Publication (IV).315 SCLs implementation per year. 416 Proposed framework for the development of legally binding smart-contractlanguage [Publication (I)]. 487 Outline for the upper-level smart-contract ontology. 528 Rights and obligations [Publication (II)]. 539 Specific domain layer. 5410 Rights and obligations selection in BNM. 5611 Repository of service type with rights, roles, and obligations. 5712 Insertion, deletion of rights and obligations in service types. 5713 Conformance validation of service offers and service types. 5814 BPMN process view of consumer of dairy milk supply chain. 6715 BPMN process for service provider. 6816 SLCML pragmatic- and semantic evaluation result.. 7617 SLCML usability evaluation result. 77

85

List of Tables

1 Mapping of research questions to corresponding thesis chapters, publica-tions, and contributions. 172 Guidelines of Design Science Research [166]. 213 Research methods used in this research. 224 Details of SCLs presented in selected studies [Publication (I)]. 345 Contractual aspects required for legally enforceable SCLs, and associatedsupporting studies [Publication (I)]. 426 Evaluation of SCLs pertaining to business-contractual aspects [Publication(I)].. 467 Rules for transitioning SLCML to Solidity. 668 Evaluation-method assessments for modeling languages and support tool.. 729 Semantic qualities for assessing SLCML language, adapted fromBrandtner& Helfert (2018) . 7310 Pragmatic qualities for assessing SLCML language, adapted from Brandt-ner & Helfert (2018) [21]. 7411 Properties for assessing usability of SLCML, adapted from Mahunnah etal., (2018) [102]. 74

86

References
[1] E. Abodei, A. Norta, I. Azogu, C. Udokwu, and D. Draheim. Blockchain technologyfor enabling transparent and traceable government collaboration in public projectprocesses of developing economies. In Lecture Notes in Computer Science, pages464–475. Springer International Publishing, 2019.
[2] E. Abodei, A. Norta, I. Azogu, C. Udokwu, and D. Draheim. Blockchain technologyfor enabling transparent and traceable government collaboration in public projectprocesses of developing economies. In Lecture Notes in Computer Science, pages464–475. Springer International Publishing, 2019.
[3] E. M. Al-Amaren, C. Ismail, andM. Nor. The blockchain revolution: A gamechangingin letter of credit (l/c). International Journal of Advanced Science and Technology,29(3):6052–6058, 2020.
[4] S. Andrews. Introduction - learn fi, 2019. Last accessed on 30/10/2020.
[5] S. Angelov. Foundations of B2B electronic contracting. PhD thesis, Industrial Engi-neering & Innovation Sciences, 2006.
[6] T. Astigarraga, X. Chen, Y. Chen, J. Gu, R. Hull, L. Jiao, Y. Li, and P. Novotny. Empow-ering business-level blockchain users with a rules framework for smart contracts.In Service-Oriented Computing, pages 111–128, Cham, 2018. Springer InternationalPublishing.
[7] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum smart con-tracts (sok). In M. Maffei and M. Ryan, editors, Principles of Security and Trust,pages 164–186, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.
[8] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum smart con-tracts (SoK). In Lecture Notes in Computer Science, pages 164–186. Springer BerlinHeidelberg, 2017.
[9] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino. A formal model of bitcoin trans-actions. In S. Meiklejohn and K. Sako, editors, Financial Cryptography and Data

Security, pages 541–560, Berlin, Heidelberg, 2018. Springer Berlin Heidelberg.
[10] M. M. Aung and Y. S. Chang. Traceability in a food supply chain: Safety and qualityperspectives. Food Control, 39:172–184, 2014.
[11] M. Bartoletti and L. Pompianu. An empirical analysis of smart contracts: platforms,applications, and design patterns. In International conference on financial cryptog-

raphy and data security, pages 494–509. Springer, 2017.
[12] M. Bartoletti and R. Zunino. BitML: A calculus for bitcoin smart contracts. In Pro-

ceedings of the ACM Conference on Computer and Communications Security, pages83–100. Association for Computing Machinery, 2018.
[13] T. E. Beck and D. A. Plowman. Temporary, emergent interorganizational collabora-tion in unexpected circumstances: A study of the columbia space shuttle responseeffort. Organization Science, 25(4):1234–1252, 2014.
[14] A. Begicheva and I. Smagin. Ride: a smart contract language for waves. Technicalreport, 2019.

87

[15] K. Behnke and M. Janssen. Boundary conditions for traceability in food supplychains using blockchain technology. International Journal of Information Manage-
ment, 52:101969, 2020.

[16] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi,N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Zanella-Béguelin. Formalverification of smart contracts: Short paper. In Proceedings of the 2016 ACMWork-
shop on Programming Languages and Analysis for Security, PLAS ’16, page 91–96,New York, NY, USA, 2016. Association for Computing Machinery.

[17] A. Biryukov, D. Khovratovich, and S. Tikhomirov. Findel: Secure derivative contractsfor ethereum. In Financial Cryptography andData Security, pages 453–467. SpringerInternational Publishing, 2017.
[18] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki, A. Pott, S. Qadeer,D. Russi, S. Sezer, T. Zakian, and R. Zhou. Move : A language with programmableresources. Technical report, 2019.
[19] E. H. Boudjema, S. Verlan, L. Mokdad, and C. Faure. VYPER: Vulnerability detectionin binary code. Security and Privacy, 3(2), Dec. 2019.
[20] A. Brahem, N. Messai, Y. Sam, S. Bhiri, T. Devogele, and W. Gaaloul. Blockchain’sfame reaches the execution of personalized touristic itineraries. In 2019 IEEE 28th

International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), pages 186–191, 2019.

[21] P. Brandtner and M. Helfert. Multi-media and web-based evaluation of designartifacts-syntactic, semantic and pragmatic quality of process models. Systems,
Signs and Actions: An International Journal on Information Technology, Action,
Communication and Workpractices, 11(1):54–78, 2018.

[22] M. Bravetti and G. Zavattaro. Towards a unifying theory for choreography con-formance and contract compliance. In M. Lumpe and W. Vanderperren, editors,
Software Composition, pages 34–50, Berlin, Heidelberg, 2007. Springer Berlin Hei-delberg.

[23] M. Burg. Write your next Ethereum Contract in Pyramid Scheme, 2017. Last ac-cessed on 30/10/2020.
[24] V. Buterin. Vyper Documentation, 2018. Last accessed on 30/10/2020.
[25] Cardano. Introduction - Cardano, 2019. Last accessed on 30/10/2020.
[26] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda. Blockchain-based traceabilityin agri-food supply chain management: A practical implementation. In 2018 IoT

Vertical and Topical Summit on Agriculture - Tuscany (IOT Tuscany), pages 1–4, 2018.
[27] F. Casino, V. Kanakaris, T. K. Dasaklis, S. Moschuris, and N. P. Rachaniotis. Modelingfood supply chain traceability based on blockchain technology. IFAC-PapersOnLine,52(13):2728–2733, 2019. 9th IFAC Conference on Manufacturing Modelling, Man-agement and Control MIM 2019.
[28] S. E. Chang, Y.-C. Chen, and M.-F. Lu. Supply chain re-engineering using blockchaintechnology: A case of smart contract based tracking process. Technological Fore-

casting and Social Change, 144:1 – 11, 2019.
88

[29] T. Chen, K. Ding, S. Hao, G. Li, and J. Qu. Batch-based traceability for pork: A mobilesolution with 2d barcode technology. Food Control, 107:106770, 2020.
[30] Y.-H. Chen, S.-H. Chen, and I.-C. Lin. Blockchain based smart contract for biddingsystem. In 2018 IEEE International Conference on Applied System Invention (ICASI),pages 208–211, 2018.
[31] U. W. Chohan. The decentralized autonomous organization and governance issues.

SSRN Electronic Journal, 2017.
[32] Christian. Babbage — a mechanical smart contract language, 2017. Last accessedon 30/10/2020.
[33] C. D. Clack. Smart contract templates: Legal semantics and code validation. Journal

of Digital Banking, 2(4):338–352, 2018.
[34] M. Coblenz, R. Oei, T. Etzel, P. Koronkevich, M. Baker, Y. Bloem, B. A. Myers, J. Sun-shine, and J. Aldrich. Obsidian: Typestate and Assets for Safer Blockchain Program-ming. 2019.
[35] K. Crary and M. J. Sullivan. Peer-to-peer affine commitment using bitcoin. In Pro-

ceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, June 2015.

[36] S. E. S. Crawford and E. Ostrom. A grammar of institutions. American Political
Science Review, 89(3):582–600, 1995.

[37] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Sax-ena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer. On scaling decentralizedblockchains. In J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, andK. Rohloff, editors, Financial Cryptography andData Security, pages 106–125, Berlin,Heidelberg, 2016. Springer Berlin Heidelberg.
[38] P. Dai. Smart-contract value-transfer protocols on a distributed mobile applicationplatform. Technical report, Singapore, 2017.
[39] C. Dannen. Introducing Ethereum and Solidity. Apress, 2017.
[40] C. Dannen. Introducing Ethereum and solidity, volume 318. Springer, 2017.
[41] J. de Kruijff and H. Weigand. Ontologies for commitment-based smart contracts.In H. Panetto, C. Debruyne, W. Gaaloul, M. Papazoglou, A. Paschke, C. A. Ardagna,and R. Meersman, editors, On theMove toMeaningful Internet Systems. OTM 2017

Conferences, pages 383–398, Cham, 2017. Springer International Publishing.
[42] J. de Kruijff and H. Weigand. Understanding the blockchain using enterprise ontol-ogy. In E. Dubois and K. Pohl, editors, Advanced Information Systems Engineering,pages 29–43, Cham, 2017. Springer International Publishing.
[43] J. De Kruijff and H.Weigand. An introduction to commitment based smart contractsusing ReactionRuleML. In P. E. Gordijn J., editor, CEUR Workshop Proceedings, vol-ume 2239, pages 149–157. CEUR-WS, 2018.
[44] J. De Kruijff and H. Weigand. Introducing commitRuleML for smart contracts. InW. H. Johannesson P. Andersson B., editor, CEUR Workshop Proceedings, volume2383, pages 1–7. CEUR-WS, 2019.

89

[45] E. Developers. ErgoScript, a Cryptocurrency Scripting Language Supporting Nonin-teractive Zero-Knowledge Proofs. Technical report, 2019.
[46] DigitalAsset. DAMLScript SDKDocumentation. Technical report, 2019. Last accessedon 02/12/2020.
[47] D. Dranidis. Evaluation of studentuml: an educational tool for consistent modellingwith uml. In Proceedings of the Informatics Education Europe II Conference, 2007.
[48] Q. DuPont. Experiments in algorithmic governance. In Bitcoin and Beyond, pages157–177. Routledge, Nov. 2017.
[49] Q. DuPont. Experiments in algorithmic governance: A history and ethnography of“The DAO," a failed decentralized autonomous organization. In Bitcoin and Beyond:

Cryptocurrencies, Blockchains and Global Governance, pages 157–177. Routledge,Nov. 2017.
[50] N. Durov. Fift : A brief introduction. Technical report, 2019.
[51] V. Dwivedi, V. Deval, A. Dixit, and A. Norta. Formal-Verification of Smart-ContractLanguages: A Survey. In Advances in Computing and Data Sciences, pages 738–747.Springer Singapore, 2019.
[52] V. Dwivedi and A. Norta. A legal-relationship establishment in smart contracts: On-tological semantics for programming-language development. In M. Singh, V. Tyagi,P. K. Gupta, J. Flusser, T. Ören, and V. R. Sonawane, editors, Advances in Computing

and Data Sciences, pages 660–676, Cham, 2021. Springer International Publishing.
[53] V. Dwivedi and A. Norta. Auto-generation of smart contracts froma domain-specificxml-based language. In S. C. Satapathy, P. Peer, J. Tang, V. Bhateja, and A. Ghosh, ed-itors, Intelligent Data Engineering and Analytics, pages 549–564, Singapore, 2022.Springer Singapore.
[54] V. Dwivedi, A. Norta, A. Wulf, B. Leiding, S. Saxena, and C. Udokwu. A formal spec-ification smart-contract language for legally binding decentralized autonomous or-ganizations. IEEE Access, 9:76069–76082, 2021.
[55] V. Dwivedi, V. Pattanaik, V. Deval, A. Dixit, A. Norta, and D. Draheim. Legally en-forceable smart-contract languages: A systematic literature review. ACM Comput.

Surv., 54(5), June 2021.
[56] V. K. Dwivedi and A. Norta. A legally relevant socio-technical language developmentfor smart contracts. In Proceedings - 2018 IEEE 3rd International Workshops on

Foundations and Applications of Self* Systems, FAS*W 2018, pages 11–13. Instituteof Electrical and Electronics Engineers Inc., 2018.
[57] J. H. Dyer and K. Nobeoka. Creating and managing a high-performance knowledge-sharing network: the toyota case. Strategic Management Journal, 21(3):345–367,2000.
[58] B. Edgington. Lll compiler documentation documentation release 0.1. Technicalreport, 2017.
[59] R. Eshuis, A. Norta, O. Kopp, and E. Pitkänen. Service outsourcing with processviews. IEEE Transactions on Services Computing, 8(1):136–154, 2015.

90

[60] N. R. et al. Workflow resource patterns: Identification, representation and toolsupport. InNotes onNumerical FluidMechanics andMultidisciplinaryDesign, pages216–232. Springer International Publishing, 2005.
[61] Ethereum. Solidity documentation. Technical report, 2014.
[62] S. Farrell, H. Machin, and R. Hinchliffe. Lost and found in smart contract transla-tion—considerations in transitioning to automation in legal architecture. In UNCI-

TRAL, Modernizing international trade law to support innovation and sustainable
development. Proceedings of the congress of the United Nations commission on in-
ternational trade law, volume 4, pages 95–104, 2017.

[63] P. D. Filippi and S. Hassan. Blockchain technology as a regulatory technology: Fromcode is law to law is code. First Monday, Nov. 2016.
[64] C. K. Frantz and M. Nowostawski. From institutions to code: Towards automatedgeneration of smart contracts. In 2016 IEEE 1st International Workshops on Foun-

dations and Applications of Self* Systems (FAS*W), pages 210–215, 2016.
[65] W. George and C. Lesaege. A Smart Contract Oracle for Approximating Real-World,Real Number Values. In V. Danos, M. Herlihy, M. Potop-Butucaru, J. Prat, andS. Tucci-Piergiovanni, editors, International Conference on Blockchain Economics,

Security and Protocols (Tokenomics 2019), volume 71 of OpenAccess Series in In-
formatics (OASIcs), pages 6:1–6:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[66] M. Giancaspro. Is a ‘smart contract’ really a smart idea? insights from a legal per-spective. Computer Law & Security Review, 33(6):825–835, 2017.
[67] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1 – 101, 1987.
[68] J. Goldenfein and A. Leiter. Legal engineering on the blockchain: ‘smart contracts’as legal conduct. Law and Critique, 29(2):141–149, May 2018.
[69] D. Golumbia. The politics of Bitcoin: software as right-wing extremism. U of Min-nesota Press, 2016.
[70] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and X. Xu. On le-gal contracts, imperative and declarative smart contracts, and blockchain systems.

Artificial Intelligence and Law, 26(4):377–409, Dec 2018.
[71] B. Gray. Conditions facilitating interorganizational collaboration. Human Relations,38(10):911–936, 1985.
[72] I. Grishchenko,M.Maffei, and C. Schneidewind. Foundations and tools for the staticanalysis of ethereum smart contracts. In H. Chockler and G. Weissenbacher, edi-tors, Computer Aided Verification, pages 51–78, Cham, 2018. Springer InternationalPublishing.
[73] R. Halvorsrud, I. M. Haugstveit, and A. Pultier. Evaluation of a modelling languagefor customer journeys. In 2016 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), pages 40–48. IEEE, 2016.
91

[74] M. Hamdaqa, L. A. P. Metz, and I. Qasse. Icontractml: A domain-specific languagefor modeling and deploying smart contracts onto multiple blockchain platforms. In
Proceedings of the 12th System Analysis and Modelling Conference, SAM ’20, page34–43, New York, NY, USA, 2020. Association for Computing Machinery.

[75] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu. Spesc: A specification language for smartcontracts. In 2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), volume 01, pages 132–137, 2018.

[76] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu. Spesc: A specification language for smartcontracts. In 2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), volume 01, pages 132–137, 2018.

[77] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information systemsresearch. MIS Quarterly, 28(1):75–105, 2004.
[78] A. home. Generate anything from any emf model, 2005.
[79] P. Howson. Building trust and equity in marine conservation and fisheries supplychain management with blockchain. Marine Policy, 115:103873, 2020.
[80] IOHK. plutus/extended-utxo-spec atmaster · input-output-hk/plutus · github, 2019.Last accessed on 30/10/2020.
[81] M. L. Jaccheri and T. Stålhane. Evaluation of the e3 process modelling languageand tool for the purpose of model creation. In International Conference on Product

Focused Software Process Improvement, pages 271–281. Springer, 2001.
[82] A. Jain, S. Arora, Y. Shukla, T. Patil, and S. Sawant-Patil. Proof of stake with casperthe friendly finality gadget protocol for fair validation consensus in ethereum. In-

ternational Journal of Scientific Research in Computer Science, Engineering and In-
formation Technology, 3(3):291–298, 2018.

[83] T. Kasampalis. IELE: An Intermediate-Level Blockchain Language Designed and Im-plemented Using Formal Semantics. Technical report, 2018.
[84] F. A. Khalil, T. Butler, L. O’Brien, and M. Ceci. Trust in smart contracts is a process,as well. In Financial Cryptography and Data Security, pages 510–519. Springer In-ternational Publishing, 2017.
[85] B. Kitchenham and S. Charters. Guidelines for performing systematic literature re-views in software engineering. Technical report, Technical Report, Ver. 2.3 EBSETechnical Report. EBSE, 2007.
[86] A. Kormiltsyn, C. Udokwu, K. Karu, K. Thangalimodzi, and A. Norta. Improvinghealthcare processes with smart contracts. In W. Abramowicz and R. Corchuelo,editors, Business Information Systems, pages 500–513, Cham, 2019. Springer Inter-national Publishing.
[87] R. M. Lee and S. D. Dewitz. Facilitating international contracting: Al extensions toedi. International Information Systems, 1(1):94–123, 1992.
[88] A. E. Leiponen. Competing through cooperation: The organization of standardsetting in wireless telecommunications. Management Science, 54(11):1904–1919,2008.

92

[89] X. H. Li. Blockchain-based cross-border e-business payment model. In 2021 2nd
International Conference on E-Commerce and Internet Technology (ECIT), pages 67–73, 2021.

[90] J. Lin, Z. Shen, A. Zhang, and Y. Chai. Blockchain and iot based food traceabilityfor smart agriculture. In Proceedings of the 3rd International Conference on Crowd
Science and Engineering, ICCSE’18, New York, NY, USA, 2018. Association for Com-puting Machinery.

[91] J.-H. Lin, K. Primicerio, T. Squartini, C. Decker, and C. J. Tessone. Lightning network: asecond path towards centralisation of the bitcoin economy. New Journal of Physics,22(8):083022, aug 2020.
[92] R. Lin and S. Kraus. Can automated agents proficiently negotiate with humans?

Communications of the ACM, 53(1):78–88, 2010.
[93] Z. Liu and J. Liu. Formal verification of blockchain smart contract based on coloredpetri net models. In 2019 IEEE 43rd Annual Computer Software and Applications

Conference (COMPSAC), volume 2, pages 555–560, 2019.
[94] Z. Liu and J. Liu. Formal Verification of Blockchain Smart Contract Based on ColoredPetri Net Models. pages 555–560. Institute of Electrical and Electronics Engineers(IEEE), jul 2019.
[95] S. Lohmann, S. Negru, and D. Bold. The protégévowl plugin: Ontology visualiza-tion for everyone. In V. Presutti, E. Blomqvist, R. Troncy, H. Sack, I. Papadakis, andA. Tordai, editors, The Semantic Web: ESWC 2014 Satellite Events, pages 395–400,Cham, 2014. Springer International Publishing.
[96] O. López-Pintado, M. Dumas, L. García-Bañuelos, and I. Weber. Dynamic role bind-ing in blockchain-based collaborative business processes. In Advanced Information

Systems Engineering, pages 399–414. Springer International Publishing, 2019.
[97] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contractssmarter. In Proceedings of the 2016 ACMSIGSAC Conference on Computer and Com-

munications Security, CCS ’16, page 254–269, New York, NY, USA, 2016. Associationfor Computing Machinery.
[98] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, and A. Ponomarev.Caterpillar: A business process execution engine on the ethereum blockchain. Soft-

ware: Practice and Experience, 49(7):1162–1193, 2019.
[99] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent

systems, 16(2):72–79, 2001.
[100] D. Magazzeni, P. McBurney, and W. Nash. Validation and verification of smart con-tracts: A research agenda. Computer, 50(9):50–57, 2017.
[101] D. Magazzeni, P. McBurney, and W. Nash. Validation and verification of smart con-tracts: A research agenda. Computer, 50(9):50–57, 2017.
[102] M. Mahunnah, K. Taveter, and R. Matulevičius. An empirical evaluation of the re-quirements engineering tool for socio-technical systems. In 2018 IEEE 7th Inter-

national Workshop on Empirical Requirements Engineering (EmpiRE), pages 8–15.IEEE, 2018.
93

[103] MaiaVictor. Formality documentation release 0.3.157, Nov 2019.
[104] S. Matsuo. How formal analysis and verification add security to blockchain-basedsystems. In 2017 Formal Methods in Computer Aided Design (FMCAD), pages 1–4,2017.
[105] R. Matulevičius, A. Norta, C. Udokwu, and R. Nõukas. Assessment of aviation secu-rity risk management for airline turnaround processes. In A. Hameurlain, J. Küng,R. Wagner, T. K. Dang, and N. Thoai, editors, Transactions on Large-Scale Data- and

Knowledge-Centered Systems XXXVI: Special Issue on Data and Security Engineer-
ing, pages 109–141, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

[106] A. Mavridou and A. Laszka. Designing secure ethereum smart contracts: A finitestate machine based approach, 2017.
[107] A. Mavridou and A. Laszka. Tool demonstration: Fsolidm for designing secureethereum smart contracts. In L. Bauer and R. Küsters, editors, Principles of Security

and Trust, pages 270–277, Cham, 2018. Springer International Publishing.
[108] A. Mavridou and A. Laszka. Tool demonstration: FSolidM for designing secureethereum smart contracts. In Lecture Notes in Computer Science, pages 270–277.Springer International Publishing, 2018.
[109] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey. Verisolid: Correct-by-designsmart contracts for ethereum, 2019.
[110] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas, F. Daniel, S. De-bois, C. D. Ciccio, M. Dumas, S. Dustdar, A. Gal, L. García-Bañuelos, G. Governatori,R. Hull, M. L. Rosa, H. Leopold, F. Leymann, J. Recker, M. Reichert, H. A. Reijers,S. Rinderle-Ma, A. Solti, M. Rosemann, S. Schulte, M. P. Singh, T. Slaats, M. Staples,B. Weber, M. Weidlich, M. Weske, X. Xu, and L. Zhu. Blockchains for business pro-cess management - challenges and opportunities. ACM Trans. Manage. Inf. Syst.,9(1), Feb. 2018.
[111] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas, F. Daniel, S. De-bois, C. D. Ciccio, M. Dumas, S. Dustdar, A. Gal, L. García-Bañuelos, G. Governatori,R. Hull, M. L. Rosa, H. Leopold, F. Leymann, J. Recker, M. Reichert, H. A. Reijers,S. Rinderle-Ma, A. Solti, M. Rosemann, S. Schulte, M. P. Singh, T. Slaats, M. Staples,B. Weber, M. Weidlich, M. Weske, X. Xu, and L. Zhu. Blockchains for business pro-cess management - challenges and opportunities. ACM Trans. Manage. Inf. Syst.,9(1), feb 2018.
[112] L. G. Meredith, J. Pettersson, G. Stephenson, M. Stay, K. Shikama, and J. Denman.Contracts, composition, and scaling the rholang specification.
[113] A. Miller, Z. Cai, and S. Jha. Smart contracts and opportunities for formal methods.In LNCS (including subseries LNAI and LNBI), volume 11247, pages 280–299. SpringerVerlag, 2018.
[114] A. Miller, Z. Cai, and S. Jha. Smart contracts and opportunities for formal methods.In International Symposium on Leveraging Applications of Formal Methods, pages280–299. Springer, 2018.

94

[115] T. Moe. Perspectives on traceability in food manufacture. Trends in Food Science &
Technology, 9(5):211–214, 1998.

[116] M. Morandini, A. Perini, and A. Marchetto. Empirical evaluation of tropos4as mod-elling. iStar, 766:14–19, 2011.
[117] M. Möser, I. Eyal, and E. Gün Sirer. Bitcoin covenants. In J. Clark, S. Meiklejohn, P. Y.Ryan, D. Wallach, M. Brenner, and K. Rohloff, editors, Financial Cryptography and

Data Security, pages 126–141, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.
[118] A. Mülder. Model-driven smart contract development for everyone, Sep 2019.
[119] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,2008.
[120] N. C. Narendra, A. Norta, M. Mahunnah, L. Ma, and F. M. Maggi. Sound conflictmanagement and resolution for virtual-enterprise collaborations. Service Oriented

Computing and Applications, 10(3):233–251, Oct. 2015.
[121] A. Norta. Creation of smart-contracting collaborations for decentralized au-tonomous organizations. In R. Matulevičius and M. Dumas, editors, Perspectives

in Business Informatics Research, pages 3–17, Cham, 2015. Springer InternationalPublishing.
[122] A. Norta. Creation of smart-contracting collaborations for decentralized au-tonomous organizations. In R. Matulevičius and M. Dumas, editors, Perspectives

in Business Informatics Research, pages 3–17, Cham, 2015. Springer InternationalPublishing.
[123] A. Norta. Establishing distributed governance infrastructures for enacting cross-organization collaborations. In A. Norta, W. Gaaloul, G. R. Gangadharan, and H. K.Dam, editors, Service-Oriented Computing – ICSOC 2015 Workshops, pages 24–35,Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.
[124] A. Norta. Designing a smart-contract application layer for transacting decentralizedautonomous organizations. In M. Singh, P. Gupta, V. Tyagi, A. Sharma, T. Ören,andW. Grosky, editors, Advances in Computing and Data Sciences, pages 595–604,Singapore, 2017. Springer Singapore.
[125] A. Norta and R. Eshuis. Specification and verification of harmonized business-process collaborations. Information Systems Frontiers, 12(4):457–479, Apr. 2009.
[126] A. Norta and P. Grefen. Discovering patterns for inter-organizational businessprocess collaboration. International Journal of Cooperative Information Systems,16(03n04):507–544, 2007.
[127] A. Norta and L. Kutvonen. A cloud hub for brokering business processes as a ser-vice: A "rendezvous" platform that supports semi-automated background checkedpartner discovery for cross-enterprise collaboration. In 2012 Annual SRII Global

Conference, pages 293–302, 2012.
[128] A. Norta, L. Ma, Y. Duan, A. Rull, M. Kõlvart, and K. Taveter. eContractualchoreography-language properties towards cross-organizational business collabo-ration. Journal of Internet Services and Applications, 6(1):1–23, Apr. 2015.

95

[129] A. Norta, A. B. Othman, and K. Taveter. Conflict-resolution lifecycles for governeddecentralized autonomous organization collaboration. In Proceedings of the 2015
2nd International Conference on Electronic Governance and Open Society: Chal-
lenges in Eurasia, EGOSE ’15, page 244–257, New York, NY, USA, 2015. Associationfor Computing Machinery.

[130] OCamlPro. Welcome to Liquidity’s documentation! — Liquidity 1.05, 2018. Lastaccessed on 30/10/2020.
[131] A. L. Opdahl and B. Henderson-Sellers. Ontological evaluation of the uml using thebunge–wand–weber model. Software and systems modeling, 1(1):43–67, 2002.
[132] Orlenyslp. orlenyslp/caterpillar, 2019.
[133] Q. Pan and X. Koutsoukos. Building a blockchain simulation using the Idris program-ming language. In ACMSE 2019 - Proceedings of the 2019 ACM Southeast Confer-

ence, pages 190–193. Association for Computing Machinery, Inc, 2019.
[134] M. P. Papazoglou. Service-oriented computing: concepts, characteristics and direc-tions. In Proceedings of the Fourth International Conference on Web Information

Systems Engineering, 2003. WISE 2003., pages 3–12, 2003.
[135] T. Patron. The Bitcoin Revolution: An Internet of Money. Travis Patron, 2015.
[136] M. Pilkington. Blockchain technology: principles and applications.
[137] S. Popejoy. The pact smart contract language. June-2017.[Online]. Available:

http://kadena. io/docs/Kadena-PactWhitepaper. pdf, 2016.
[138] S. Pourmirza, S. Peters, R. Dijkman, and P. Grefen. Bpms-ra: A novel reference archi-tecture for business process management systems. ACM Trans. Internet Technol.,19(1), feb 2019.
[139] W. W. Powell, K. W. Koput, and L. Smith-Doerr. Inter organizational collaborationand the locus of innovation: Networks of learning in biotechnology. Administrative

Science Quarterly, 41(1):116–145, 2021/06/21/ 1996.
[140] E. Regnath and S. Steinhorst. Smaconat: Smart contracts in natural language. In

2018 Forum on Specification Design Languages (FDL), pages 5–16, 2018.
[141] R. Revere. functional-solidity-language, 2017. Last accessed on 30/10/2020.
[142] D. Robinson. Ivy : A declarative predicate language for smart contracts introduction: Two blockchain models, nov 2017.
[143] T. Ruokolainen, S. Ruohomaa, and L. Kutvonen. Solving service ecosystem gov-ernance. In 2011 IEEE 15th International Enterprise Distributed Object Computing

Conference Workshops, pages 18–25, 2011.
[144] N. Russell, A. H. Ter Hofstede,W.M. VanDer Aalst, andN.Mulyar. Workflow control-flow patterns: A revised view. BPM Center Report BPM-06-22, BPMcenter. org,pages 06–22, 2006.
[145] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst. Work-flow data patterns: Identification, representation and tool support. pages 353–368,2005.

96

[146] N. Russell, W. M. Van Der Aalst, and A. H. Ter Hofstede. Workflow patterns: the
definitive guide. MIT Press, 2016.

[147] A. Savelyev. Contract law2.0: ‘smart’ contracts as the beginning of the endof classiccontract law. Information & Communications Technology Law, 26(2):116–134, Apr.2017.
[148] F. Schrans, S. Eisenbach, and S. Drossopoulou. Writing safe smart contracts in Flint.In Conference Companion of the 2nd International Conference on Art, Science, and

Engineering of Programming - Programming’18 Companion, pages 218–219, NewYork, New York, USA, 2018. ACM Press.
[149] D. Seidl and F.Werle. Inter-organizational sensemaking in the face of strategicmeta-problems: Requisite variety and dynamics of participation. Strategic Management

Journal, 39(3):830–858, 2018.
[150] P. L. Seijas and S. Thompson. Marlowe: Financial contracts on blockchain. In Lecture

Notes in Computer Science, pages 356–375. Springer International Publishing, 2018.
[151] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and K. C. G. Hao. Safersmart contract programming with scilla. Proc. ACM Program. Lang., 3(OOPSLA),Oct. 2019.
[152] S. Sharifi, A. Parvizimosaed, D. Amyot, L. Logrippo, and J. Mylopoulos. Symboleo:Towards a specification language for legal contracts. In 2020 IEEE 28th International

Requirements Engineering Conference (RE), pages 364–369, 2020.
[153] S. Shekhar and H. Xiong. Agent-based models. In Encyclopedia of GIS, pages 11–11.Springer US, 2008.
[154] A. Smajgl, L. R. Izquierdo, and M. Huigen. Rules, knowledge and complexity: Howagents shape their institutional environment. Journal of Modelling & Simulation of

Systems, 1(2), 2010.
[155] M. Soavi, N. Zeni, J. Mylopoulos, and L. Mich. ContracT – from legal contracts toformal specifications: Preliminary results. In Lecture Notes in Business Information

Processing, pages 124–137. Springer International Publishing, 2020.
[156] S. Suriadi, R. Andrews, A. H. M. Ter Hofstede, and M. T. Wynn. Event log imperfec-tion patterns for process mining: Towards a systematic approach to cleaning eventlogs. Information Systems, 64:132 – 150, 2017.
[157] M. Swan. Blockchain: Blueprint for a new economy. " O’Reilly Media, Inc.", 2015.
[158] H. Syahputra and H. Weigand. The development of smart contracts for heteroge-neous blockchains. In K. Popplewell, K.-D. Thoben, T. Knothe, and R. Poler, editors,

Enterprise Interoperability VIII, pages 229–238, Cham, 2019. Springer InternationalPublishing.
[159] N. Szabo. Formalizing and securing relationships on public networks. First Monday,2(9), Sep. 1997.
[160] N. Szabo. Formalizing and securing relationships on public networks. First Monday,2(9), Sept. 1997.

97

[161] T. Tateishi, S. Yoshihama, N. Sato, and S. Saito. Automatic smart contract genera-tion using controlled natural language and template. IBM Journal of Research and
Development, 63(2/3):6:1–6:12, mar 2019.

[162] Tezos. Michelson : the language of Smart Contracts in I - Semantics. 2018. Lastaccessed on 30/10/2020.
[163] A. B. Tran, Q. Lu, and I. Weber. Lorikeet: A model-driven engineering tool forblockchain-based business process execution and asset management. In BPM,2018.
[164] N. Valliappan, S. Mirliaz, E. Lobo Vesga, and A. Russo. Towards adding variety tosimplicity. In T. Margaria and B. Steffen, editors, Leveraging Applications of For-

malMethods, Verification and Validation. Industrial Practice, pages 414–431, Cham,2018. Springer International Publishing.
[165] N. Valliappan, S. Mirliaz, E. L. Vesga, and A. Russo. Towards adding variety to sim-plicity. In Lecture Notes in Computer Science, pages 414–431. Springer InternationalPublishing, 2018.
[166] R. H. Von Alan, S. T. March, J. Park, and S. Ram. Design science in informationsystems research. MIS quarterly, 28(1):75–105, 2004.
[167] M. von Rosing, S. White, F. Cummins, and H. de Man. Business process model andnotation-bpmn., 2015.
[168] H. Watanabe, S. Fujimura, A. Nakadaira, Y. Miyazaki, A. Akutsu, and J. Kishigami.Blockchain contract: Securing a blockchain applied to smart contracts. In 2016 IEEE

International Conference on Consumer Electronics (ICCE), pages 467–468, 2016.
[169] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling. Un-trusted business process monitoring and execution using blockchain. In Lecture

Notes in Computer Science, pages 329–347. Springer International Publishing, 2016.
[170] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling. Un-trusted business process monitoring and execution using blockchain. InM. La Rosa,P. Loos, and O. Pastor, editors, Business Process Management, pages 329–347,Cham, 2016. Springer International Publishing.
[171] T. Weingaertner, R. Rao, J. Ettlin, P. Suter, and P. Dublanc. Smart contracts usingblockly: Representing a purchase agreement using a graphical programming lan-guage. In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pages55–64, 2018.
[172] J. Wilcke. Mutan Language, 2015. Last accessed on 30/10/2020.
[173] A. Windeler and J. Sydow. Project networks and changing industry practices collab-orative content production in the german television industry. Organization Studies,22(6):1035–1060, 2001.
[174] A. Workgroups. Sophia introduction, Nov 2017.
[175] M. Wöhrer and U. Zdun. Domain specific language for smart contract develop-ment. In 2020 IEEE International Conference on Blockchain and Cryptocurrency

(ICBC), pages 1–9, 2020.
98

[176] B. Xiao, X. Fan, S. Gao, and W. Cai. Edgetoll: A blockchain-based toll collectionsystem for public sharing of heterogeneous edges. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages1–6, 2019.

[177] Z. Yang and H. Lei. Lolisa: Formal syntax and semantics for a subset of the solidityprogramming language, 2018.
[178] Yao-Hua Tan andW. Thoen. Modeling directed obligations and permissions in tradecontracts. In Proceedings of the Thirty-First Hawaii International Conference on

System Sciences, volume 5, pages 166–175 vol.5, 1998.
[179] H. Yoichi. Morphing smart contracts with bamboo, Nov 2017.
[180] J. Zhu, S. Xu, I. Weber, A. B. Tran, P. Rimba, A. Ponomarev, S. Falamaki, S. Chen,and M. Staples. Risks and opportunities for systems using blockchain and smartcontracts. 2017.

99

Acknowledgements
I would like to thank my thesis supervisor, Alex Norta, for his patience and guidancethroughout the process of writing this thesis and conducting the research studies thatresulted in this thesis.I’d also like to thank Dirk Draheim, who started this journey withme as a co-supervisorand helped to lay the groundwork for SLR work.I acknowledge AlexanderWulf’s contribution to the creation of the smart contract lawontology through his legal expertise.I would like to thank the faculty and departmental staff, particularly Katri Kadakas andSiiri Taveter, for their assistance during my PhD research.I’d also like to thank the QTUM foundation for helping to fund some of my PhD re-search.I’d like to thank my friend Vishwajeet Patanaik for his inspiration and advice.Thank you, Doug Robinson, for being very thorough and taking time to fixmy Englisharticles and commas. I learned a lot in the process and this knowledge will help my futurescientific publications to comply with US or UK grammar rules.I thank my wife Sweksha shukla, for endless encouragement and keeping me on track,when I was loosing hope that I will ever finish this thesis.And last but not least—thanks goes to my parents, who has throughout my life en-couraged me to study, study, study..

101

Abstract
A Legally-Relevant Socio-Technical Language Development for
Smart Contracts
Inter-organizational collaborations (IOCs) are critical for any organization that relies onother organizations to perform functions that are outside of its core competencies. Trustissues such as security, interoperability, and transparency exist in systems and processesthat support organizational collaborations. Due to security concerns, the party in chargeof centrally controlled collaboration system canmodify and tamper the exchange of infor-mation among participating stakeholders. Furthermore, access control cannot be appliedto information assets that have been exchanged. With lacking interoperability, data avail-ability between collaborating parties cannot be guaranteed in real time. Thus, there is alack of transparency and it is difficult to detect unauthorizedmanipulations by the central-ized entity in charge of the collaboration. Decentralized governanceof inter-organizationalcollaborations has been proposed as a solution for mitigating issues in trust-managementresearch. Integrating these governance systems with traditional information systems isdifficult, if not, impossible.

By enabling the execution,monitoring, and improvement of business processeswithin,or across business networks, emerging blockchain technology has the potential to trans-form the business ecosystem. Blockchain is a peer-to-peer network that allows for decen-tralized data storage by replicating data across the network’s participants’ nodes. Evenin networks where nodes do not trust one another, blockchains enable processes to becarried out in a secure environment. Peer-to-peer networks, consensus mechanisms,cryptography techniques, and a distributed ledger are all used to aid in this process. Forbusiness processes, smart contracts (SCs) are a critical concept in the blockchain ecosys-tem. Inter-organizational business processes and governance systems, can be coded intocomputer-executable programs using SCs to ensure automated accountability of those in-volved in organizational collaborations. Blockchain technology governs inter-organizationalbusiness processes and, through SCs, allows for decentralized autonomous organizations(DAO) with governance capabilities.
A DAO demonstrates how blockchain technology can be used to improve efficiency, ef-fectiveness, and quality while automating business collaboration. Unfortunately, despitethe fact that blockchains are designed to provide a technological framework for draft-ing DAO SCs that are legally binding, the underlying contractual concepts and propertiesrequired are still less researched to make said SCs legally binding. Furthermore, the well-known Ethereum crowdfunding DAO attack is an illustration of how a misalignment be-tween the semantics of SCLs and the intuition of programmers result in massive financiallosses.
Established SCLs, such as Solidity, Serpent, and others, are developed from an IT stand-point. Due to the programmer’s lack of prior knowledge of the contract domain, SCswritten in these languages are ambiguous and full of bugs. Still, several workaroundsincluding SPESC, Symboleo, and SmaCoNat for developing SCLs currently exist that sup-port the legally binding concepts and properties of SCs. Despite the fact that the afore-mentioned SCLs present intriguing approaches for the development of legally binding SCs,most (if not all) of these solutions either lack domain-completeness, or are intended fornon-collaborative business processes.
This thesis addresses the existing shortcomings by developing an ontology that incor-porates legally binding- and collaborative contractual- concepts and properties. The SCLontology is mapped into Colored Petri Nets (CPNs) that can be used to design, develop,

102

and analyze the processing state of SCs in order to track the fulfillment of contractual prop-erties. The concepts and properties captured in the SCL ontology is translated into theXML-based language SLCML (smart-legal-contract markup language), in which blockchaindevelopers focus on the contractual workflow rather than the syntax specifics of eachblockchain platform. To reduce the effort and risk associated with smart-contract devel-opment, this study proposes a set of transformation rules for caterpillar to automaticallygenerate SLCML contracts in Solidity. This thesis provides solutions for stakeholders to un-derstand SCs and incorporate contractual business-process semantics. Furthermore, theproposed approach reduces errors caused by conceptual differences between the con-tractual clause and the applicable code.The development of artefacts in this thesis adheres to the design-science researchmethod, which entails the rigorous creation, and evaluation of artefacts. Two evaluationmethodologies, running cases (use cases), and lab experiments, are used to demonstratethe generality and applicability of artefacts in this thesis. Two running cases namely, theautomotive, and the dairy supply chains, are developed to evaluate this work. During labexperiments, SLCML is examined to determine its generality and applicability, such as se-mantic qualities, and pragmatic usefulness. The semantic qualities validate the SLCML’sability to generate realistic, complete, relevant, and correct SCs for IOCs. The pragmaticproperties assess the SLCML’s practical usefulness in blockchain-related development tasks,such as increasing the productivity and output quality for business-to-business SC devel-opment. This study compares the designing effort and ease of creating SCs with SLCML,and existingmodeling languages such as SPESC, DAML, and others to determine the effec-tiveness of SLCML in specifying correct and complete legally binding DAOs. The evaluationresults show that the SLCML’s outputs have a high degree of utility and correct representa-tions of legally binding SCs. The evaluation of the SLCML reveals that creating SCs requiresvery little effort and is intuitive to perform.

103

Kokkuvõte
Arukate lepingute jaoks õiguslikult asjakohane sotsiaal-tehniline
keelearendus
Organisatsioonidevaheline koostöö (IOC) on kriitilise tähtsusega igale organisatsioonile, mis tugineb muudele organisatsioonidele funktsioonide täitmisel, mis jäävad väljapoole tema põhipädevusi. Usaldusprobleemid, nagu turvalisus, koostalitlusvõime ja läbipaist-vus, eksisteerivad süsteemides ja protsessides, mis toetavad organisatsioonilist koostööd. Turvaprobleemide tõttu võib koostöösüsteemi eest vastutav osapool teabevahetust kok-kumängu teinud sidusrühmade vahel muuta ja rikkuda. Lisaks ei saa vahetatud teabeva-radele juurdepääsu kontrolli rakendada. Koostalitlusvõime puudumise tõttu ei saa tagada andmete kättesaadavust vandenõu osapoolte vahel reaalajas. Läbipaistvuse puudumise tõttu on koostöö eest vastutava tsentraliseeritud üksuse volitamata manipuleerimist raske tuvastada. Usaldusjuhtimise uuringute probleemide leevendamise lahendusena on paku-tud välja organisatsioonidevahelise koostöö detsentraliseeritud valitsemine. Nende juhti-missüsteemide integreerimine traditsiooniliste infosüsteemidega on keeruline, kui mitte, siis võimatu.

Võimaldades äriprotsesside elluviimist, jälgimist ja täiustamist ärivõrkudes või nende vahel, võib arenev plokiahela tehnoloogia muuta äri ökosüsteemi. Blockchain on peer-to-peer võrk, mis võimaldab detsentraliseeritud andmete salvestamist, kopeerides andmeid võrgus osalejate sõlmedes. Isegi võrkudes, kus sõlmed üksteist ei usalda, võimaldavad plo-kiahelad protsesse läbi viia turvalises keskkonnas. Selle protsessi abistamiseks kasutatak-se peer-to-peer võrke, konsensusmehhanisme, krüptograafiatehnikaid ja hajutatud pea-raamatut. Äriprotsesside jaoks on nutikad lepingud (SC) plokiahela ökosüsteemis kriitilise tähtsusega. Organisatsioonidevahelised äriprotsessid ja juhtimissüsteemid saab kodeeri-da arvutiga käivitatavateks programmideks, kasutades SC-sid, et tagada organisatsioonili-ses koostöös osalejate automatiseeritud vastutus. Plokiahela tehnoloogia juhib organisat-sioonidevahelisi äriprotsesse ja võimaldab SC-de kaudu detsentraliseeritud autonoomseid organisatsioone (DAO).
DAO näitab, kuidas plokiahela tehnoloogiat saab kasutada tõhususe, tulemuslikkuse ja kvaliteedi parandamiseks, automatiseerides samal ajal ärikoostööd. Vaatamata asjaolule, et plokiahelad on loodud pakkuma tehnoloogilist raamistikku DAO SC-de koostamiseks, mis on õiguslikult siduvad, on paraku nõutavad lepingulised kontseptsioonid ja omadu-sed siiski vähem uuritud, et muuta need SC-d õiguslikult siduvaks. Samuti on DAO rünnak näide sellest, kuidas SCL-ide semantika ja programmeerija intuitsiooni vaheline lahknevus võib põhjustada suuri rahalisi kaotusi. Konfliktide (rünnakute) korral on SC-käitamise vara-semate toimingute jälgimine keeruline ja kulukas, kuna SC-d ei tea oma töötlemisolekust.
Väljakujunenud SCL-id, nagu Solidity, Serpent ja teised, on välja töötatud IT seisuko-hast. Kuna programmeerijal puuduvad lepingudomeeni eelteadmised, on neis keeltes kir-jutatud SC-d mitmetähenduslikud ja täis vigu. Siiski on praegu olemas mitmeid lahendusi, sealhulgas SPESC, Symboleo ja SmaCoNat SCL-ide arendamiseks, mis toetavad SC-de õi-guslikult siduvaid kontseptsioone ja omadusi. Hoolimata asjaolust, et ülalnimetatud SCL-id pakuvad intrigeerivaid lähenemisviise õiguslikult siduvate SC-de arendamiseks, puudub enamikul (kui mitte kõigil) neist lahendustest domeeni täielikkus või need on mõeldud mittekoostöölistele äriprotsessidele.
See lõputöö käsitleb olemasolevaid puudusi, töötades välja ontoloogia, mis hõlmab õiguslikult siduvaid ja koostöölepingulisi mõisteid ja omadusi. SCL ontoloogia on vormis-tatud värvilistes Petri võrkudes (CPN), mida saab kasutada SC-de töötlusoleku kavanda-miseks, arendamiseks ja analüüsimiseks, et jälgida lepinguliste omaduste täitmist. SCL-i

104

ontoloogiasse jäädvustatudmõisted ja omadused tõlgitakse XML-põhisesse keelde SLCML(smart-legal-contract markup language), milles plokiahela arendajad keskenduvad pigemlepingulisele töövoole kui iga plokiahela platvormi süntaksi spetsiifikale. Nutika lepingutearendamisega seotud pingutuste ja riskide vähendamiseks pakub see uuring välja Caterpil-lari jaoks ümberkujundamise reeglid, mis loovad Solidity’is automaatselt SLCML-lepingud.See lõputöö pakub sidusrühmadele lahendusi SC-de mõistmiseks ja lepinguliste äriprot-sesside semantika kaasamiseks. Lisaks vähendab pakutud lähenemisviis lepinguklausli jakohaldatava koodi kontseptuaalsetest erinevustest põhjustatud vigu.Artefaktide väljatöötamisel käesolevas lõputöös järgitakse disain-teaduslikku uurimis-meetodit, mis eeldab esemete ranget loomist ja hindamist. Artefaktide üldistuse ja ra-kendatavuse demonstreerimiseks selles lõputöös kasutatakse kahte hindamismetoodikat:jooksvaid juhtumeid (kasutusjuhtumeid) ja laborikatseid. Selle töö hindamiseks töötatak-se välja kaks jooksvat juhtumit, nimelt autotööstus ja piimatoodete tarneahelad. Labo-ratoorsete katsete käigus uuritakse SLCML-i, et teha kindlaks selle üldistus ja rakendata-vus, näiteks semantilised omadused ja pragmaatiline kasulikkus. Semantilised omadusedkinnitavad SLCML-i võimet luua IOC-de jaoks realistlikke, täielikke, asjakohaseid ja õigeidnutikaid lepinguid (SC). Pragmaatilised omadused hindavad SLCML-i praktilist kasulikkustplokiahelaga seotud arendusülesannetes, nagu tootlikkuse ja toodangu kvaliteedi tõstmi-ne, ettevõtetevaheliste SC-de arendamisel. Selles uuringus võrreldakse SLCML-i ja olemas-olevate modelleerimiskeelte (nt SPESC, DAML ja teiste) projekteerimistööd ja SC-de loo-mise lihtsust, et teha kindlaks SLCML-i tõhusus õigete ja täielike juriidiliselt siduvate DAO-de määramisel. Hindamistulemused näitavad, et SLCML-i väljundid on väga realistlikud jakorrektsed õiguslikult siduvate SC-de esitused. SLCML on äärmiselt kasulik DAO projek-teerimisülesannete täitmisel toodetud plokiahela DAO-de jõudluse ja kvaliteedi suuren-damiseks. SLCML-i hindamine näitab, et SC-de loomine nõuab väga vähe pingutusi ja sedaon äärmiselt lihtne kasutada.

105

Appendix 1

I

V. Dwivedi, V. Pattanaik, V. Deval, A. Dixit, A. Norta, and D. Draheim. Legallyenforceable smart-contract languages: A systematic literature review. ACM
Comput. Surv., 54(5), June 2021

107

110

Legally Enforceable Smart-Contract Languages:
A Systematic Literature Review

VIMAL DWIVEDI, Blockchain Technology Group, Tallinn University of Technology, Estonia
VISHWAJEET PATTANAIK, Information Systems Group, Tallinn University of Technology, Estonia
VIPIN DEVAL, ABHISHEK DIXIT, and ALEX NORTA, Blockchain Technology Group, Tallinn
University of Technology, Estonia
DIRK DRAHEIM, Information Systems Group, Tallinn University of Technology, Estonia

Smart contracts are a key component of today’s blockchains. They are critical in controlling decentralized
autonomous organizations (DAO). However, smart contracts are not yet legally binding nor enforceable; this
makes it difficult for businesses to adopt the DAO paradigm. Therefore, this study reviews existing Smart
Contract Languages (SCL) and identifies properties that are critical to any future SCL for drafting legally
binding contracts. This is achieved by conducting a Systematic Literature Review (SLR) of white- and grey
literature published between 2015 and 2019. Using the SLR methodology, 45 Selected and 28 Supporting
Studies detailing 45 state-of-the-art SCLs are selected. Finally, 10 SCL properties that enable legally compliant
DAOs are discovered, and specifications for developing SCLs are explored.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering →
Context specific languages; • Networks → Network protocols; • Computer systems organization →
Peer-to-peer architectures;

Additional Key Words and Phrases: Blockchain, decentralized autonomous organization, expressiveness,
smart contract language, suitability, systematic literature review

ACM Reference format:
Vimal Dwivedi, Vishwajeet Pattanaik, Vipin Deval, Abhishek Dixit, Alex Norta, and Dirk Draheim. 2020.
Legally Enforceable Smart-Contract Languages: A Systematic Literature Review. ACM Comput. Surv. 54, 5,
Article 110 (May 2021), 34 pages.
https://doi.org/10.1145/3453475

1 INTRODUCTION
Introduced nearly a decade ago, blockchains have been the underlying data structure and enabling
technology for supporting distributed data applications across a plethora of sociotechnical sys-

This research work is partially funded by the Qtum Foundation, Singapore.
Authors’ addresses: V. Dwivedi (corresponding author), V. Deval, A. Dixit, and A. Norta, Blockchain Technology Group,
Tallinn University of Technology, Akadeemia tee 15/2, Tallinn, Harju County, Estonia, 12618; emails: {vimal.dwivedi,
vipin.deval, abhishke.dixit}@taltech.ee, alex.norta.phd@ieee.org; V. Pattanaik and D. Draheim, Information Systems Group,
Tallinn University of Technology, Akadeemia tee 15a, Tallinn, Harju County, Estonia, 12616; emails: {vishwajeet.pattanaik,
dirk.draheim}@taltech.ee.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0360-0300/2020/05-ART110 $15.00
https://doi.org/10.1145/3453475

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:2 V. Dwivedi et al.

tems from both academia and industry. Blockchain technologies realize immutable, trusted, and
decentralized data-storage systems by combining a series of innovations from the areas of dis-
tributed computing and cybersecurity [75]. Thus, blockchain technologies are applied in a wide
variety of domains such as e-commerce [32], e-health [10, 111], e-governance [1, 2, 35, 62], and
finance [17], among others. The inherent features of blockchains that have enabled its application
in so many domains, has also made it possible to achieve Nick Szabo’s vision of smart contracts
that he defines as “a set of promises, specified in a digital form, including protocols within which
the parties perform on these promises” [97]. Enabling the capture, verification, validation and en-
forcement of terms agreed upon by multiple parties, blockchain technologies allow for the imple-
mentation of trustless- and transparent smart contracts. This is possible because blockchain-based
smart-contract transactions are stored on encrypted, distributed ledgers, and parties can carry out
transactions and agreements anonymously, without the need for central entities, or external legal-
enforcement systems.

Based on recent literature, there has been a rising interest in the development of Decentralized
Autonomous Organizations (DAO). A DAO is an organization (or a consortium) “that is run
through rules encoded as computer programs called smart contracts” [23]. DAO smart contracts are
computer programs that run on peer-to-peer networks, incorporating governance and decision-
making rules [95]. Unfortunately, although blockchains comprise the technological framework by
design that potentially facilitates drafting DAO smart contracts supported by the law. Still, the
underlying contractual concepts and properties necessary to render said smart contracts legally
binding (which we refer to as “suitability” [77]), are still less researched [23, 45, 47]. As Norta et al.
explain, ontological suitability of DAO smart-contract languages (SCL)s can be realized as (i)
the choreography or workflow of processes [18] in DAOs (viz. concepts) and (ii) the semantics that
define the individual DAO processes (viz. properties) [77].

Additionally, although several novel SCLs such as Solidity,1 Michelson,2 and Rholang3 have
been developed for implementing executable smart contracts, unfortunately, many of said SCLs
are often error-prone [65] and hard to debug due to the blockchains’ immutability [60]. An infa-
mous example of how the lack of formally verifiable smart contracts could potentially lead to
massive financial losses is the 2016 attack on “The DAO” (the first implementation of crowd-
funding focused DAO) [57] where hackers were able to steal 50 million dollars from the DAO
due to “call to the unknown” and “re-entrancy” vulnerabilities [36]. Such incidents have led to
the development of several formal verification techniques (e.g., Reference [52]) that are used
to validate the correctness of intended behavior of smart contracts [14]. Drawing influence
from previous work [39], in this article, we refer to these formal verification techniques as
expressiveness.

Given that suitability- and expressiveness SCL-properties are sine qua non for drafting and en-
forcing formally verifiable, legally binding smart contracts in DAO collaborations; through this
Systematic Literature Review (SLR), we aim to conduct a comprehensive meta-study of exist-
ing SCLs developed with a focus on the coding of smart contracts for DAOs. To achieve this, we
follow the Kitchenham’s guidelines for conducting SLR in software engineering [59] and therefore,
conduct the study using a five-step process. Based on our specific research questions (RQ)s, we
first identify relevant keywords (and their synonyms) typically used in the scientific literature.
By conducting a thorough search of various academic databases and technology-related online
publishing platforms, we identify 616 articles published as white- and grey literature. We then

1Solidity, docs page.
2Tezos home page.
3Rholang GitHub page.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:3

examine the titles, keywords, and abstracts of these articles to extract relevant articles that pro-
pose (or discuss) novel SCLs, using a predefined set of inclusion- and exclusion criteria. The se-
lected 130 primary studies are then comprehensively studied and scored on the basis of a two-stage
quality-assessment phase. The 73 articles that explicitly answer the research questions RQ1 and
RQ2 below, are identified and indicated as selected studies and supporting studies. Thereafter, we
examine the 45 SCLs proposed in the identified selected studies and segregate them based on their
attributes and applications. By examining the remaining 28 supporting studies, we identify the
available properties and propose new ones that are critical when developing legally binding SCLs.
Finally, to assess if the identified SCLs have the required suitability and expressiveness proper-
ties necessary for developing DAO smart contracts, we also exhaustively scrutinize the selected
supporting studies and their references. Next, we deduce that most of the state-of-the-art SCLs
only partially support the business’ contractual processes. Additionally, based on the findings of
the SLR, we devise a novel model for designing SCLs that are semantically rich and support the
drafting of formally verifiable smart contracts, aimed towards DAO collaborations.

In particular, we attempt to answer the following research questions:

• RQ1: What blockchain-based SCLs already exist in scientific- and non-scientific literature?
• RQ2: What properties of business-oriented SCLs constitute to suitability and expressive-

ness?
• RQ3: What are the obstacles in existing SCLs that restrict the achievement of business-

contractual objectives?

The remaining article is structured as follows. Section 2 provides additional information relevant
to understanding the functionality of blockchain technology and smart contracts. This section
also provides insights about previously published studies and surveys that discuss state-of-the-art
SCLs. Section 3 details the methodology used for conducting this SLR. In Section 4, we elucidate
45 state-of-the-art SCLs identified after the quality-assessment phase of the SLR. Section 5 and
Section 6 answer the research questions RQ2 and RQ3 and enumerate the properties that enable
suitability and expressiveness in SCLs. In Section 7, we discuss the pitfalls of the available SCLs
and thereby introduce a novel model for designing legally enforceable SCLs. Finally, Section 8
reviews the threats to the validity of this SLR, and Section 9 concludes this article by summarizing
our findings and briefly discussing the open issues of our future work.

2 BACKGROUND AND RELATED WORK
To illustrate the legal implications of blockchain smart-contracts, we first present the basics
of blockchains and then discuss the benefits of smart contracts. We then present the technical
overview of SCLs in Section 2.1 and further briefly discuss the legal implication of smart contracts
in Section 2.2.

2.1 Blockchains and Smart Contracts
Blockchain technology has been introduced in 2009 with the cryptocurrency Bitcoin [74]. Due to
its decentralized nature, a blockchain provides in this first use-case a means to transfer cryptocur-
rency without the control of a central body and thus, overcomes the cost of intermediaries (such
as bank fees, taxes, etc.) during transactions. A blockchain is an immutable, distributed ledger that
is not only used to store cryptocurrency transaction logs but can also be applied to numerous
domains, including business, healthcare, passport-verification, and others [1, 32], for storing data,
secured with SHA-256 hashing cryptography algorithms. Consensus algorithms such as proof-of-
work (PoW) and proof-of-stake (PoS) play an essential role in preventing unauthorized modifi-
cations of highly secure transactions between untrusting peers through verification and validation.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:4 V. Dwivedi et al.

Transaction verifications in PoW are computationally expensive and the probability of receiving
rewards (viz. cryptocurrency) is based on a first-come-first-served principle. That is, the node that
solves a necessary cryptographic puzzle first is declared as a winner, whereas in PoS the probability
of receiving rewards is higher for nodes that have more cryptocurrency to stake.

A smart contract utilizes a blockchain to empower organizations by automating business pro-
cesses [64]. Thus, a smart contract is a computer-program that enforces agreement rules auto-
matically without relying on intermediaries. In his work from 1996, Nick Szabo [97] explains the
concept of smart contract as a vending machine, in which parties participate in an exchange with
the vendor via a coin for which the security is assured by a lock-box, or security mechanism. Hence,
according to Szabo, smart contracts can also enable the exchange of valuable property controlled
by digital means. Although the concept of smart contracts was proposed well before the 2000s, it is
the inherent decentralization of blockchain technology that renders the implementation of smart
contracts possible, as contract owners participating in an exchange via blockchain technology can
do so without the need of trust.

Smart contracts are written in high-level languages (e.g., Solidity), and then intermediate lan-
guages such as Simplicity [102] and Scilla [93] are used for program analysis and verification. The
latter offers strong security guarantees by utilizing type-soundness. Smart-contract code written
in these languages can be executed on virtual machines (e.g., Ethereum Virtual Machine (EVM))
that require low-level instructions. Just as in the case of Ethereum, several blockchains also im-
plement their own virtual machines, such as Rootstock,4 Telegram Open Network (TON),5 and
Bitcoin.6 For instance, Rootstock introduces the Rootstock Virtual Machine to complement Bit-
coin [41], whereas TON implements the TON Virtual Machine (TON VM) or Telegram Virtual
Machine (TVM) for creating, managing, and debugging smart contracts [37].

2.2 Legal Implications of Smart Contracts
Consensus between parties is a required precondition to establish legally enforceable contracts. As
Governatori et al. investigate in their work [49], the conceptual connection between legal contracts
and smart contracts is that smart contracts must fulfill the necessary conditions such as offer
and acceptance, consideration, competence, and capacity, and so on, to be legal contracts. Still,
legal recognition in the interpretation of smart contracts depends on the paradigm of SCL [49].
Savelyev argues [90] that smart contracts comply with the Roman contract law. He explains this by
comparing contracts to the mechanism of a vending machine and proposes solutions for alignment
to the power of government with blockchain decentralization. The proposed solutions are based on
providing the state authorities as a superuser the right to modify the blockchain databases while
also relying on traditional remedies and enforcement practices. Additionally, Goldenfein et al.
explain [47] that the legality of smart contracts depends on linking computational transactions
to natural contracts, because the latter do not form an agreement themselves, while De Filippi
et al. [29] define a smart contract as “law is code” and suggest shifting from the notion of “code is
law.” It is important to note that the semantics of contract law is lost while translating into smart-
contract code [13], and thereby the status of legal recognition in smart contracts is not clear.

2.3 Recent Surveys
We list secondary research (see Table 1) that discuss the state-of-the-art in SCL and identify critical
issues/challenges hindering the adoption of smart contracts. By investigating said research that

4Rootstock (RSK) home page.
5TON GitHub page.
6Bitcoin home page.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:5

Table 1. Recently Published Studies and Surveys, Related to SCLs

Study
Type Author Study Title Year

SMS M. Alharby et al. A systematic mapping study on current
research topics in smart contracts [4]

2017

M. Alharby et al. Blockchain-based smart contracts: A
systematic mapping study [3]

2017

D. Macrinici et al. Smart contract applications within blockchain
technology: A systematic mapping study [66]

2018

F. Tariq, and P. R.
Colomo

Use of blockchain smart contracts in software
engineering: A systematic mapping [98]

2019

SLR F. Casino et al. A systematic literature review of
blockchain-based applications: current status,
classification and open issues [22]

2019

Surveys P. L. Seijas Scripting smart contracts for distributed ledger
technology [92]

2016

A. Nicola et al. A survey of attacks on Ethereum smart
contracts SoK [8]

2017

G. Governatori et al. On legal contracts, imperative and declarative
smart contracts, and blockchain systems [49]

2018

S. Wang et al. An overview of smart contract: Architecture,
applications, and future trends [103]

2018

A. Miller et al. Smart contracts and opportunities for formal
methods [71]

2018

V. Dwivedi et al. Formal verification of smart-contract
languages: A survey [38]

2019

D. Harz and W.
Knottenbelt

Towards safer smart contracts: A survey of
languages and verification methods [52]

2018

is published as systematic mapping studies (SMS)s, SLRs and surveys, we are able to narrow
down the research gaps and are therefore able to improve the quality of our research questions.
Furthermore, through this analysis, we are also able to identify keywords and other related words
used in the context of smart contracts and SCLs that are critical for the first phase of this SLR.

2.3.1 Systematic Mapping Studies. The focus of Alharby et al.’s SMS [4] is to identify exist-
ing gaps between blockchain technology and smart contracts, especially from different aspects of
contract source codes and applications. The authors identify the research gaps of scalability and
performance in smart contracts by investigating 24 studies and then categorize the open issues of
codifying, privacy, security, and performance.

In their work, Macrini et al. [66] focus on smart-contract challenges and identify 64 papers to
answer research questions that range from finding the research direction to questions related to ap-
proaches and identify problems and their solutions. Furthermore, they discuss the programmability
of smart contracts without considering SCLs. In another SMS [98], the authors identify problems
and solutions for usability and security of smart contracts and blockchains. The research questions
are based on the general question of how software engineering can be applied in smart contracts.
Eight primary studies are identified from scientific databases, and, based on these, the authors

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:6 V. Dwivedi et al.

find that there is a lack of professional skills required for the development of smart-contracts and
blockchains in software engineering.

2.3.2 Systematic Literature Reviews. Research questions of SLRs are more concrete than those
of SMSs. Although several SLRs (e.g., References [51, 53, 56, 100]) have been published, we find that
none of these SLRs focus on smart contracts; rather, their research questions pertain to blockchain-
based applications. While Casino et al.’s SLR [22] describes open issues of blockchain and smart-
contract applications, the SLR does not focus on SCLs and therefore, the research questions are
not aligned with smart contracts.

2.3.3 Surveys. Table 1 presents existing surveys on smart contracts and based on analysis of
said surveys, we find that none of the articles focus on smart contracts. Seijas et al. [92] provide
an overview of scripting languages for several blockchain systems, such as NXT,7 Bitcoin, and
Ethereum, and critique languages with respect to security issues such as stack overflows in the
context of distributed ledgers and cryptocurrencies. Atzei et al. [8] discuss a range of attacks that
exploit the security vulnerabilities of the Ethereum smart contract. In Governatori et al.’s [49]
work, the suitability of imperative- and declarative languages are examined by focusing on the
lifecycle of legal contracts, and the authors discover that declarative SCLs are more suitable for
developing legal smart-contract code. Still, the survey only focuses on a theoretical point of view.
Wang et al. [103] discuss the recent advances and future trends in smart contracts but explicitly
consider Ethereum and Hyperledger.8 Miller et al. [71] present various security analysis tools to
prevent attacks on smart-contracts and identify potential challenges. Harz et al. [52] provide an
overview of existing SCLs focusing on security features. Finally, in our previous work [39], we
analyze the suitability of existing SCLs for business collaboration and present the results through
informed arguments.

As we mentioned earlier, looking at secondary research discussed above, it is clear that although
there is a rising interest in investigating smart contracts and SCLs, unfortunately, current research
is more focused toward security, scalability, and performance issues. This provides us with the
opportunity to contribute to the current body of research by exploring smart contracts and SCLs
from a legal standpoint.

3 REVIEW METHODOLOGY
Drawing from the above-mentioned gaps in the literature, we conduct this SLR and attempt to
answer the research questions presented in Section 1. We choose this methodology, as SLRs are a
transparent means of aggregating knowledge from available literature, based on an unbiased, au-
ditable, and repeatable methodology. In our work, we follow the recommendations and guidelines
provided by Kitchenham et al. [59] and therefore conduct this research in five stages,

• Study Identification
• Study Selection
• Quality Assessment
• Data Extraction
• Study Synthesis

7https://www.jelurida.com/nxt.
8Hyperledger home page.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:7

Table 2. Search Terms Identified Based on Research Questions

Primary Search Keywords blockchain, “smart-contract language,” “smart contract
languages,” “smartcontract language”

Secondary Search Keywords
verification, “business process,” legal, expressiveness,
enforceable, rights, obligation, semantics, “decentralized
autonomous organization,” collaboration

Search Query

(“smart contract” AND language*) AND (verification OR
“business process” OR legal OR expressiveness OR
enforceable OR rights OR obligation OR semantics OR
blockchain OR “decentralized autonomous organization”
OR collaboration)

Table 3. Study Sources and Identified Paper Count

Search Engine Databases Article Count
Scopus∗ including ACM DL, IEEE Xplore, Elsevier, Springer 160
Web of Science∗ including ACM DL, IEEE Xplore, Elsevier, Springer 50
Google Scholar∗+ including grey literature 330
GitHub++ 76

Total 616
Total (after duplicate removal) 406

∗ Journals, proceedings, and book chapters.
+ Technical reports, white papers, and working papers.
++ Only SCL documentation.

3.1 Study Identification
With the initial understanding of SCLs (from SMSs, SLRs, and surveys discussed in Section 2.3)
and based on our research questions, we first identify the keywords typically used when describing
SCLs. We divide the study-identification phase into three steps, namely, creation of search string,
selection of study sources, and the search process. The search keywords we identify are based on
the research questions and are then used to generate the search string (see Table 2). The academic
databases and websites that we use to identify relevant work are detailed in Table 3.

3.1.1 Search Keywords. Since the focus of our research questions are blockchain smart-contract
languages, we use “blockchain” and “smart contract language” as primary search keywords. Based
on our experience looking at previous literature, we also include other variants of these keywords
in the primary search keywords.

The secondary search keywords are more specific to individual research questions, and thus they
include keywords such as verification, legal, decentralized autonomous organization, and their
synonyms. Next, we generate the search string by applying boolean ‘AND’ and ‘OR’ operators on
the primary- and secondary search keywords and run the queries in the next step.

3.1.2 Study Sources. Since the primary goal of this SLR is to identify and analyze SCLs and
related work published in both academic and non-academic venues, we decide to search through
a wide variety of sources, including well-renowned scholarly databases such as Web of Science,
Scopus, arXiv, and Google Scholar, and industry focused online publishing platforms including
GitHub. Through the former, we identify the necessary white literature, whereas the latter is
useful for identifying the grey literature published as white papers, technical-reports, and SCL
documentation.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:8 V. Dwivedi et al.

Table 4. List of inclusion criteria

Criteria ID Inclusion Criteria
IC1 The article discusses legal challenges in smart-contract languages.
IC2 The article addresses formal verification of languages.
IC3 The article proposes new insights for business-contractual supportive

languages.
IC4 The article describes methods, or tools that enhance semantics of

smart-contract languages.
IC5 The article answers the suitability of business-collaborative languages.
IC6 The article provides a comparative study of smart-contract languages.

Table 5. List of exclusion criteria

Criteria ID Exclusion Criteria
EC1 The article describes smart-contract applications.
EC2 The article presents a survey of smart contracts.
EC3 The article discusses mechanisms based on cryptocurrencies.
EC4 The article describes technical details (including challenges) of

smart-contract infrastructures.
EC5 The article presents a review of security aspects for smart contracts.
EC6 The article discusses the use of SCLs in particular use cases.

3.1.3 Search Process. To identify relevant literature and prevent redundancies in the search
process, we categorically ascertain related articles from different study sources, one at a time. We
begin by running the search query on Web of Science and Scopus and then import the list of
articles into the Mendeley reference management software. Using Mendeley, we remove duplicate
and redundant articles to then run the search query again in Google Scholar. We discover that
several previously identified articles are also available in Google Scholar. Thus, we remove said
articles manually, and in total, we are able to identify 540 scholarly articles published between
2015 and 2019.

At this stage, we run our search string on GitHub and identify 76 repositories in which codes
and documentations for various SCLs are available. Through this process, we are able to identify
a total of 28 studies (see Table 3 for details).

3.2 Study Selection
To further remove less relevant articles identified in the previous steps, in this phase of the SLR,
we use a two-phase screening process, namely, the inclusion- and exclusion phase.

To identify relevant primary studies, we use a two-pronged approach. Using a predefined set of
inclusion- and exclusion criteria, we aim to reduce the number of identified articles. To achieve
this, we first examine the titles and abstracts for the identified articles and then verify if each of the
articles fulfills the inclusion- and exclusion criteria stated in Table 4 and Table 5, respectively. By
doing so, we are able to identify 130 primary studies (see Table 1 in Appendix A.2) that explicitly
discuss SCLs from a suitability-, verifiability- and legality perspective and do not discuss security
vulnerabilities and smart-contract applications. Furthermore, to verify the completeness of the
SLR, and to assure that no relevant literature is omitted, we examine the references and footnotes
of all identified studies. With this step, we are also able to cross-reference the previously identified

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:9

Table 6. List of quality assessment criteria for selected studies (QC1) and supporting studies (QC2)

Criteria ID Quality Criteria
QC1.1 Is the proposed language named in the article?
QC1.2 Is the discussed SCL associated to a specific blockchain?
QC1.3 Is the purpose of the proposed language presented in the article?
QC1.4 Does the article discuss the paradigm of the language?
QC1.5 Is the source code of the SCL freely available?
QC1.6 Is the type system of the SCL described in the article?
QC2.1 Does the article discuss the specification of an SCL?
QC2.2 Does the article discuss the semantics of a business-collaboration language?
QC2.3 Are approaches for smart-contract verification discussed in the article?
QC2.4 Does the article detail legal semantics of the proposed SCL?

Table 7. Number of articles selected from each selection phase

Search Stages Identified Articles
Study identification phase 616

406 (after screening duplicates)
Study selection phase (I and II) 130 primary studies
Quality assessment phase 45 selected studies & 28 supporting studies

grey literature (including GitHub pages) with related scientific articles and are therefore able to
validate if the selected grey articles are truly related to our research questions.

3.3 Quality Assessment
In this phase of the study-selection process, all authors meticulously read through the 130 primary
studies selected in the previous stage. We then independently score each of the studied articles,
according to a predefined set of quality measures referred to as quality-assessment criteria (see
Table 6). The quality-assessment phase is a critical part of the SLR methodology and assists in
removing the primary studies that, at first glance, appear important for the research questions but
are actually not. At the end of the quality-assessment phase, we identify 73 primary studies (see
Table 7), which we refer to as selected studies and supporting studies in Section 3.4. The selected
scientific articles and grey literature are indicated with IDs SS1–SS46 and GL1–GL27, respectively
(see Tables 9 and 11 for details).

3.4 Data Extraction
In this phase of the SLR, we extract necessary data from the selected- and supporting studies as per
the quality-assessment phase, using the extraction form, presented in Table 8. The extraction form
is used to acquire two different sets of knowledge from the studies: (i) data related to publication
quality and (ii) data required to answer the research questions (RQ1, RQ2, and RQ3). The extracted
details of the selected- and supporting studies are enumerated in Tables 9, 10 and 11, while the
data specific to RQs are detailed in Sections 4 and 5.

The publication-quality details extracted from this step are presented in Appendix A.2, together
with the details of all identified primary studies. Also, Figure 1 (in Appendix A.1) illustrates the
number of primary studies (both white- and grey literature) published between 2015 and 2019.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:10 V. Dwivedi et al.

Fig. 1. SCL Implementations per Year.

Fig. 2. Proposed Model for the Development of Legally Binding SCL.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:11

Table 8. Data Extracted from Selected and Supporting Studies

Source Type Extracted Data Details
Publication Article’s Title, Author’s Name, Publication Type, Year,

Publisher, and Citation Count
Tables 9, 11
and
Appendix A.2

Smart
Contract
Language

Name, Blockchain, Type System, Paradigm, Focus, and
Purpose

RQ1

Legal Semantics, Business Semantics, Business Objectives,
and Expressiveness

RQ2

Challenges RQ3

4 SUMMARY OF SELECTED STUDIES
This section synthesizes the knowledge presented in the selected studies and describes the identi-
fied SCLs. We examine the said SCLs and summarize their attributes, namely, the name of the SCL,
the blockchain platform it is designed for, and its type-system, paradigm, focus, and purpose. We
choose these attributes as they are critical for understanding the differences between the state-of-
the-art SCLs and for identifying critical properties that can enable the drafting of legally binding
smart-contracts.

The attributes focus and purpose indicate the motivation behind the development of SCL, i.e.,
the particular domain/activity the SCL was designed for, and whether the proposed SCLs are de-
tailed enough to be checked for semantic correctness, or formal verification, or both. The paradigm
attribute of SCLs refers to its programming paradigm, or execution model (viz. process-flow and
data-flow). Finally, the type-system of SCLs defines the rules that apply to the data types in the
programming language. These attributes are specially important, as they provide critical insights
into the suitability and expressiveness of SCLs. In particular, focus and purpose provide insights
about semantic suitability, focus and paradigm provide insights about workflow suitability, and
purpose and type-system provide insights into expressiveness.

• RQ1: What blockchain-based SCLs already exist in scientific and non-scientific literature?

As mentioned in Section 3.3, after applying the quality-assessment criterion to the primary
studies, we are able to identify 45 selected studies (each proposing a novel SCL). Since the number
of selected SCLs is too large to be described individually, we segregate them into five categories
based on the foci of the SCL; namely, we categorize them as domain-specific SCLs, formally verifi-
able SCLs, easy-to-use SCLs, legally enforceable SCLs, and business process SCLs.

SCLs that are designed with an emphasis on specific domains are categorized as domain-specific
SCLs. Formal verifiable SCLs include languages that are designed with priority to runtime safety
of smart-contract code. Easy-to-use SCLs are simply languages that are human understandable, or
lay-person friendly. Legally enforceable SCLs are the ones that are designed to (or aim to) create
legally binding contracts. Last, business-process SCLs are the languages that are designed with an
emphasis on business-process automation.

4.1 Domain-Specific SCLs
Solidity (GL13) is regarded as a domain-specific language designed to compose complex smart con-
tracts for digital assets such as voting, crowdfunding, and so on [94]. Solidity is a statically typed
language that supports multiple inheritance and complex user-defined data types. Contracts are
represented as finite state machines (FSM)s in Solidity, preventing any transaction call to other

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:12 V. Dwivedi et al.

Table 9. List of Selected Studies

PS ID+ SS ID+ Study Title Year P.Type∗
PS1 SS1 An introduction to commitment based smart contracts

using ReactionRuleML
2018 WP

PS2 SS2 Automatic smart contract generation using controlled
natural language and template

2019 JA

PS3 SS3 BitML: A calculus for bitcoin smart contracts 2018 CP
PS4 SS4 eContractual choreography-language properties toward

cross-organizational business collaboration
2015 JA

PS5 SS5 Findel: Secure derivative contracts for ethereum 2017 JA
PS6 SS6 Empowering Business-Level Blockchain Users with a

Rules Framework for Smart Contracts
2018 JA

PS7 SS7 Towards Automated Generation of Smart Contracts 2016 CP
PS8 SS8 Introducing commitRuleML for smart contracts 2019 WP
PS9 SS9 Safer Smart Contract Programming with Scilla 2019 JA
PS10 SS10 SmaCoNat: Smart Contracts in Natural Language 2018 CP
PS11 SS11 SPESC: A Specification Language for Smart Contracts 2018 CP
PS12 SS12 Towards Adding Variety to Simplicity 2018 CP
PS13 SS13 Writing safe smart contracts in Flint 2018 CP
PS14 SS14 Building a blockchain simulation using the Idris

programming language
2019 CP.

PS15 SS15 Tool Demonstration: FSolidM for designing secure
ethereum smart contracts

2018 CP

PS16 SS16 Marlowe: Financial contracts on blockchain 2018 CP
PS17 SS17 Peer-to-peer affine commitment using Bitcoin 2015 CP
PS41 SS18 Bitcoin Covenants. 2016 CP
PS18 GL1 Smart-Contract Value-Transfer Protocols on a Distributed

Mobile Application Platform
2017 TR

PS19 GL2 The Pact smart contract language 2017 TR
PS20 GL3 Bitcoin Abstract Language, analyZer and Compiler 2018 TR
PS21 GL4 DAML SDK Documentation 2019 TR
PS22 GL5 Ivy : A Declarative Predicate Language for Smart

Contracts Introduction : Two Blockchain Models
GitHub

PS23 GL6 Bamboo: a language for morphing smart contracts 2017 GitHub
PS24 GL7 fi - Smart Contract language for Tezos 2019 GitHub
PS25 GL8 Welcome to Liquidity’s documentation! — Liquidity 1.0 2018 GitHub
PS26 GL9 Michelson : the language of Smart Contracts in I -

Semantics
2018 GitHub

PS27 GL10 Formal Specification of the Plutus Core Language. 2019 GitHub
PS28 GL11 Contracts, Composition, and Scaling: The Rholang

specification 0.2.
2018 GitHub

PS29 GL12 Vyper Documentation. 2018 GitHub
PS30 GL13 Solidity Documentation Ethereum 2016 GitHub
PS31 GL14 Formality Documentation Release 0.3.157 2019 GitHub
PS129 GL15 Pyramid Scheme Introduction 2017 GitHub
PS130 GL16 LLL Compiler Documentation Documentation Release 0.1. 2017 GitHub

(Continued)

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:13

Table 9. Continued

PS ID+ SS ID+ Study Title Year P.Type∗
PS32 GL17 Functional-solidity-language 2017 GitHub
PS33 GL18 Babbage — a mechanical smart contract language 2017 GitHub
PS34 GL19 Mutan smart contract Language 2015 GitHub
PS35 GL20 ErgoScript, a Cryptocurrency Scripting Language

Supporting Non interactive Zero-Knowledge Proofs
2019 GitHub

PS36 GL21 Move : A Language With Programmable Resources. 2019 GitHub
PS37 GL22 Ride: a Smart Contract Language for Waves 2019 GitHub
PS38 GL23 IELE: An Intermediate-Level Blockchain Language

Designed and Implemented Using FormalSemantics.
2018 GitHub

PS39 GL24 Sophia Introduction 2017 GitHub
PS40 GL25 Fift : A Brief Introduction 2017 GitHub
PS42 GL26 Lolisa: Formal Syntax and Semantics for a Subset of the

Solidity Programming Language
2018 ePrint

PS43 GL27 Obsidian: Typestate and Assets for Safer Blockchain
Programming

2019 ePrint

+ PS ID: Primary Study ID. SS ID: Supporting Study ID.
∗ P.Type: Publication Type. WP: Workshop Proceedings. CP: Conference Proceedings. JA: Journal Article. TR: Technical
Report.

contracts within a state transition. A transaction sent to a contract that changes the state is either
successful, or raises an exception. Solidity has several bugs and vulnerabilities, such as re-entrancy
and delegatecall; several tools or frameworks, such as Oyente, Mythril, Securify, and others, have
been developed to verify and analyze Solidity code [72]. Ethereum introduces the Vyper language
(GL12) [72] that is developed to overcome the Solidity bugs by focusing on security, audibility, and
simplicity. Vyper aims to make it harder for the developer to write malicious code intentionally.
Furthermore, Vyper prevents unintended security vulnerabilities in the code by using the inbuilt
libraries of integer (overflow/underflow). Solidity does not use any checks on return values of trans-
actions due to exceptions occurring in the caller contract. In contrast, Vyper provides two ways
to handle such exceptions: by implementing send() and raw-call() functions; using these the entire
transaction is reverted, in case of failures. Moreover, Vyper supports functions for preventing the
re-entrance vulnerability, when a contract calls to an external contract. A contract is particularly
vulnerable to a re-entrance attack if necessary state changes do not occur before calling an external
contract. Vyper implements the nonreentrant decorator9 that places a lock on the current function
and all functions with the same key value. The SCL Idris (SS14) has been developed to secure the
smart-contract code by implementing dependent types [50]. Idris allows types that depend on val-
ues, i.e., types are first-class language constructs and can be manipulated comparable to any other
values.

Flint (SS13) is a contractual-specific and statically typed SCL that compiles into EVM bytecode
through the intermediate language [79] YUL.10 The Solidity team designs YUL to support several
EVM backends such as EVM 1.0 and EVM 1.5 and multiple languages as a front-end. Flint aims to
write inherently safer and predictable smart-contract code, rather than analyzing the code after
being written, as in Solidity. To prevent unauthorized calls to contract-sensitive functions, Flint
uses a caller capability block in which the right to call Ethereum user accounts is declared. Flint pro-

9Vyper | Documentation on Structure of a Contract.
10Yul | GitHub Page.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:14 V. Dwivedi et al.

Table 10. Details of SLCs Presented in Selected Studies

SCL Study ID Blockchain Type-System Paradigm Purpose∗ Focus+
Reaction-
Rule ML

SS1 [30] — Static Declarative SPEC Legal
Contracts

DSL4SC SS2 [99] Hyperledger Dynamic Declarative SPEC Natural
Language

BitML SS3 [11] Bitcoin Dynamic Declarative IMPL Security
eSML SS4 [77] — Dynamic Declarative SPEC Business

Process
Findel SS5 [15] Independent Dynamic Declarative SPEC Financial

Contracts
BCRL SS6 [7] Hyperledger Dynamic Declarative IMPL Business

Process
ADICO SS7 [44] Ethereum Dynamic Declarative SPEC Legal-

Contracts
Commit-
Rule ML

SS8 [31] — Static Declarative SPEC Legal-
Contracts

Scilla SS9 [94] Zilliqa Static Functional IMPL Security
SmaCoNat SS10 [84] — Dynamic Imperative SPEC Natural

Language
SPESCS SS11 [54] — Dynamic Declarative SPEC Legal-

Contracts
Simplicity SS12 [102] Bitcoin Dynamic Functional IMPL Security
Flint SS13 [91] Ethereum Static Imperative IMPL Security
Idris SS14 [79] Ethereum Dependent Declarative IMPL Security
FSolidM SS15 [69] Independent Dynamic Declarative SPEC Security
Marlowe SS16 [61] Cardano Dynamic Declarative SPEC Financial

Contracts
Typecoin SS17 [27] Bitcoin Type-Safety Symbolic IMPL Crypto.
QSCL GL1 [28] Qtum Static Imperative IMPL Business

Process
Pact GL2 [83] Kadena Dynamic Declarative IMPL Security
BALZaC GL3 [9] Bitcoin Dynamic Imperative SPEC Verification
DAML GL4 [34] Hyperledger Dynamic Declarative IMPL Business

Process
Ivy GL5 [86] Bitcoin Static Declarative IMPL Domain

Specific
Bamboo GL6 [110] Ethereum Type-Safety Imperative IMPL Formal Verf.
Fi GL7 [5] Tezos Type-Safety Imperative IMPL Verification
Liquidity GL8 [78] Tezos Dynamic Functional IMPL Formal Verf.
Michelson GL9 [101] Tezos Monomorphic Low-Level IMPL Domain

Specific
Plutus GL10 [21] Cardano Dynamic Declarative IMPL Financial

Contracts
Rholang GL11 [70] Rchain Dynamic Declarative IMPL Domain

Specific

(Continued)

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:15

Table 10. Continued

SCL Study ID Blockchain Type-System Paradigm Purpose∗ Focus+
Vyper GL12 [20] Ethereum Dynamic Imperative IMPL Security
Solidity GL13 [43] Ethereum Static Imperative IMPL Domain

Specific
Formality GL14 [68] Ethereum Static Declarative IMPL Efficiency
Pyramid GL15 [19] Ethereum Strongly

Typed
Imperative IMPL Safety

LLL GL16 [40] Ethereum Dynamic Declarative IMPL User Frnd.
F-Sol GL17 [85] Ethereum Static Functional IMPL Verification
Babbage GL18 [24] Ethereum Type-Safety Symbolic SPEC Human

Undr.
Mutan

GL19 [106]
Ethereum Dynamic Imperative IMPL Formal Verf.

ErgoScript GL20 [33] Independent Type-Safety Declarative SPEC Legal-
Contracts

Move GL21 [16] Libra Static Imperative IMPL Verification
RIDE GL22 [12] Waves Static Declarative IMPL User Frnd.
IELE GL23 [58] IELE Static Imperative IMPL Verification
Sophia

GL24 [107]
Aeternity Strongly

Typed
Imperative IMPL Domain

Specific
Fift GL25 [37] TON Dynamic Imperative IMPL Domain

Specific
Script SS18 [73] Bitcoin Static Imperative IMPL Crypto.
Lolisa

GL26 [109]
Ethereum Static Imperative SPEC Formal Verf.

Obsidian GL27 [26] Hyperledger Static Imperative IMPL Security
∗ SPEC: Specification. IMPL: Implementation.
+ Verf. [Verifiable] | Frnd. [Friendliness] | Undr. [Understandable] | Crypto. [Cryptocurrency].

vides safer atomic transactions and ensures that the contract state is consistent. Formality (GL14)
is more time-efficient than the Solidity in contract execution, because its core is built as an affine
lambda calculus that allows it to be garbage-collection free [68]. Formaility is statically typed and
resembles a Python-like programming language featuring formal proofs. Pyramid Scheme (GL15)
is a functional and imperative SCL, promoting separation of state-changing and static functions.
Also, Pyramid scheme targets the EVM [19]. The functions are designed to be atomic and executed
completely to ensure consistency in smart-contract state changes. In addition, pure functions are
used in Pyramid Scheme to indicate that there is no effect on the global and local states. Findel
(SS5) is a declarative- and domain-specific SCL that is developed for handling financial agreements
securely and designed for targeting the EVM. Findel is a formal language that restricts the formal-
ization of unambiguous contractual clauses [15] by separating the description of the contract from
its execution.

Michelson (GL9) is a low-level stack-based language developed by Tezos [101]. Michelson’s in-
structions are executed with unrestricted stack-length that ensures the secure execution of the
Michelson code. Michelson is different from Solidity relating to smart contracts that aim to write
a piece of business logic. Ethereum contracts are written to implement concepts such as multi-
sig wallets, vesting, distribution rules, and so on, and Michelson is not only for writing arbitrary

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:16 V. Dwivedi et al.

Table 11. List of Supporting Studies

PS ID+ SS ID+ Study Title Year P.Type∗
PS45 SS19 A Method of Logic-Based Smart Contracts for

Blockchain System.
2018 CP

PS46 SS20 A Solution for the Problems of Translation and
Transparency in Smart Contracts.

2017 TR

PS47 SS21 Auto-Generation of Smart Contracts from
Domain-Specifc Ontologies and Semantic Rules.

2018 CP

PS49 SS22 Conflict-Resolution Lifecycles for Governed
Decentralized Autonomous Organization
Collaboration.

2015 CP

PS50 SS23 Contract law 2.0: ‘Smart’ contracts as the
beginning of the end of classic contract law

2017 JA

PS51 SS24 Creation of Smart-Contracting Collaborations
for Decentralized Autonomous Organizations

2015 CP

PS52 SS25 Debugging Smart Contract’s Business Logic
Using Symbolic Model Checking

2018 ePrint

PS53 SS26 Designing a Smart-Contract Application Layer
for Transacting Decentralized Autonomous
Organizations

2017 CP

PS54 SS27 Developing secure bitcoin contracts with BitML 2019 JA
PS55 SS28 Evaluation of Logic-Based Smart Contracts

for Blockchain Systems
2016 CP

PS56 SS29 FEther: An Extensible Defnitional Interpreter
for Smart-Contract Verification in Coq

2019 JA

PS57 SS30 Formal modeling and verification of smart
contracts

2018 CP

PS58 SS31 Formal Requirement Enforcement on Smart
Contracts Based on Linear Dynamic Logic

CP

PS59 SS32 Formal Specification Technique in Smart
Contract Verification

2019 CP

PS60 SS33 Formal Verification of Blockchain Smart
Contract Based on Colored Petri Net Models

2019 CP

PS61 SS34 Formal verification of smart contracts: Short
paper

2016 CP

PS63 SS35 Legally speaking Smart contracts, archival
bonds, and linked data in the blockchain

2017 CP

PS64 SS36 Making Smart Contracts Smarter 2016 CP
PS65 SS37 On legal contracts, imperative and declarative

smart contracts, and blockchain systems
2018 JA

PS66 SS38 Smart Contract Programming Languages on
Blockchains: An Empirical Evaluation of
User-friendly and Security

2018 Book

(Continued)

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:17

Table 11. Continued

PS ID+ SS ID+ Study Title Year P.Type∗
PS67 SS39 Smart Contracts and Opportunities for

Formal Methods.
2018 CP

PS69 SS40 SmartCheck: Static analysis of ethereum
smart contracts.

2018 CP

PS120 SS41 SMT-based verification of Solidity smart
contracts

2018 JA

PS72 SS42 Towards a Shared Ledger Business
Collaboration Language Based on
Data-Aware Processes.

2016 CP

PS73 SS43 Towards Safer Smart Contracts: A Survey
of Languages and Verification Methods.

2018 ePrint

PS74 SS44 A Formal Model of Bitcoin Transactions. 2018 CP
PS122 SS45 A Survey of Attacks on Ethereum Smart

Contracts (SoK)
2017 CP

PS44 SS46 Safer smart contracts through type-driven
development Using dependent and
polymorphic types.

2016 MT

+ PS ID: Primary Study ID. SS ID: Supporting Study ID.
∗ P.Type: Publication Type. WP: Workshop Proceedings. CP: Conference Proceedings. JA: Journal Article. TR: Technical
Report.

programs rather targeted to said applications. Plutus core (GL10) is invented for the use of trans-
action validation on a blockchain. Plutus Core is implied to be a compilation target expressed in
the design of the language: even as writing large Plutus Core programs by hand is challenging, the
language is relatively straightforward to formalize with a proof assistant [21]. Plutus-core is used
for on-chain transaction validation. The validation process is out of the scope of this article as we
refer the reader for further details to Reference [55]. Rchain implements Rholang (GL11) [70], a
contractual- and concurrent-oriented programming language that supports contractual behavior
by focusing on the concurrent data and process flow. Rholang is process-oriented, i.e., all com-
munication is done through message passing. Rholang is equipped with a behavioral type-system
and enables participants seeking to engage in a contractual agreement with a way of exploring
contractual obligations and guarantees in an automated manner.

Marlowe (SS16) [61] is a domain-specific language targeting the execution of financial contracts.
Marlowe is implemented as an algebraic type in Haskell programming on Unspent transaction
output (UTxO), or account-based blockchains. Pact [83] (GL2) is a declarative programming
language with a lisp syntax and Haskell-comparable types that support programmers to im-
plement less buggy code. Pact aims to enforce business rules guarding the update of system
records stored on the Kadena blockchain. Sophia (GL24) [107] is blockchain-specific and strongly
typed to support ML-comparable programming that has a restricted mutable state. Sophia aims
to support blockchain-specific primitives, constructions, types, and specially designed for the
private Aeternity blockchain. Fift (GL25) [37] is a stack-based programming language specially
designed to create, manage, and debug smart contracts for the TON blockchain. Fift is a dynamic
type language that keeps the value of different types other than an integer in the stack, is used for
interactive experimentation, debugging, and writing simple scripts. Ivy [86] (GL5) is a predicate
language designed for writing smart contracts for Chain VM and is intended for educational

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:18 V. Dwivedi et al.

purposes. Bitcoin uses a Script (SS18) language [73], is a list of instructions recorded with each
transaction that describes how they can be accessed by the next individual who wants to spend
the Bitcoins being transferred. Typecoin (SS17) [27] language is a rational process of commitment
designed to carry rational propositions on top of Bitcoin. The underlying concept of Typecoin
is that a transaction is carrying logical proposals instead of coins. There is a possibility to
translate each Bitcoin transaction into a Typecoin transaction where inputs and outputs become
propositions, and the logic would allow inputs to be split, or merged.

4.2 Formally Verifiable SCLs
A smart contract can explicitly comprise rights and obligations semantics, similarly to conven-
tional contracts. Many law loopholes exist in smart contracts due to the lack of common under-
standing among programmers and legal experts. These loopholes are different from common bugs
that are easily discovered. Several static- and dynamic instruments have been developed and have
not yet been proven to secure smart contracts such as Mythril, Oyente [14], and so on. Thus, the
formal verifiability of a language is essential to ensure the correctness and runtime safety of the
smart-contract code. The first mechanized and validated formal syntax and semantics developed
for Solidity is Lolisa (GL26) [109], which supports not only solidity syntax such as mapping, mod-
ifiers, but also includes conventional programming characteristics such as multiple return types,
structures, and so on. Besides that, Lolisa adopts a more robust static-type system than Solidity
for enhancing type safety. Bamboo (GL6) [110] is a formally verified SCL to render transactions
explicit that overcome the reentrancy behavior in the Ethereum contract. The programming lan-
guage of the Bamboo enables reasoning as to state machines on smart contracts. In each state,
developers define which functions can be called, and the language provides constructs to specify
state changes explicitly.

Further, Ethereum implements Mutan (GL19) to support the dynamic feature of higher-level
languages such as C, or C++ [106]. Move SCL [16] aims to encode the owners of digital assets
and corresponding their business logic. Thereby, Move (GL21) provides governance rules for Libra
blockchain11 in a flexible, safe, and verifiable manner. The main aspect of Move is the ability to
describe custom resource types with a semantics-inspired linear logic [46]: A resource can never
be replicated, or tacitly discarded, only relocated between program storage locations. Furthermore,
Move provides the flexibility of code by adding transaction scripts, which are single functions im-
plemented once to invoke multiple modules published in blockchain procedures, allowing cus-
tomizable transactions. Move fulfills vital security features such as memory safety, type safety,
and resource safety by implementing bytecode verifier that checks the Move bytecode on-chain.
FsolidM (SS15) [69] is a framework for visual programming and is used to define contracts as a
FSMs. FsolidM implements a code generator for specifying FSMs, especially for creating Ethereum
contracts. In addition, FsolidM offers a set of plugins used to enhance the security and functionality
in FSMs. Plugins are designed to address the common design patterns of security vulnerabilities
identified in prior work [8, 65]. Obsidian (GL27) is a state-oriented and static-type SCL that enables
the developer to explicitly declare and transition states. Furthermore, Obsidian is based on core cal-
culus that uses a typestate to detect incorrect state manipulation and lineartypes is used to ensure
the resources are managed correctly by the program. Moreover, Obsidian supports Hyperledger
Fabric, a permisisoned blockchain platform.

Fi (GL7) is a statically typed language, designed to be syntactically similar to Javascript, Solidity
and directly compiles to Michelson code of the Tezos blockchain. The latter provides a familiar
coding environment that is closer to an object-oriented programming language. Scilla (SS9) is an

11Libra home page.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:19

intermediate language developed by Zilliqa blockchain12 that is used as a translation target of
high-level languages for performing program analysis and -verification. Scilla aims to achieve ex-
pressivity and tractability that allows contract behavior to be formally reasoned about. The design
principle of Scilla is based on the separation between computation and communication, meaning
computing a value of the function is implemented as a stand-alone. The design principle of Scilla
is based on the separation between computation and communication, meaning computing a value
of the function is implemented as a stand-alone. That means Scilla does change a balance without
involving any other parties if involvement is required (e.g., transferring control to other parties),
a transition would end by employing sending- and receiving messages. The existing languages
have a separate specification and implementation, and if the performance is distinct, it is impos-
sible to execute test cases against the specification. IELE (GL23) aims to bridge the gap between
specification and implementation using K-framework.

BitML (SS3) is a Bitcoin modeling language where process calculi is used to stipulate the contract
for regulating transfers of coins, establishing a smart contracts’ correctness required for proving
the computational security in the cryptographic protocol, which is an additional burden for the
programmers. Therefore, BitML defines a symbolic- and computational model for reasoning about
Bitcoin security. The semantic of BitML are defined in the symbolic model, and participants act
accordingly. To reason about the participant’s behavior, a computational model is used to intro-
duce additional restriction for attackers. Simplicity (SS12) [102] is an SCL with formal seman-
tics implemented in Haskell’s functional programming language. Its type system supports mul-
tiple inheritance that enables the developer to express non-trivial contracts. The primary design
goal of Simplicity is to offer the computation of runtime resource estimations statically. Liquid-
ity (GL8) is a fully typed functional, high-level language implemented on an OCaml syntax [78].
Tezos blockchain invented the latter to replace the Michelson language, which is harder to read
and write due to a lack of stack-based instructions. Liquidity uses a compiler to come up with
Michelson and a decompiler for translating Michelson to Liquidity. Besides, Liquidity offers full
coverage of Michelson language with additional local variables instead of stack manipulations.
The functional Solidity (GL17) [85] language is developed to write Ethereum smart contracts with
additional formal methods.

4.3 Easy-to-use SCLs
Lisp-Like-Language (LLL) is an intermediate-, simple- and minimalistic Ethereum SCL that
translates the Solidity code (high-level) into bytecode (low-level) and makes it easy to use language
by reducing the complexity of EVM stack-management. Besides, LLL (GL16) offers a different per-
spective than Solidity that does not hide the resource perspectives and allows limited resources to
be used effectively. Moreover, LLL facilitates the creation of clean EVM code while directly remov-
ing the worst of the pain of coding, namely stack-and jump management for the EVM. Babbage
(GL18) is a visual programming language developed [24] to understand complex smart-contract
code without programming knowledge. Babbage aims to implement dataflow transparency by
building a grasping an analogy of a vending machine. The language Ride (GL22) aims to overcome
the shortcomings of existing languages by offering a straightforward, statically-typed functional
language for distributed-application (DApp) development that pre-calculates the amount of gas
required in a smart-contract execution [12]. DSL4SC (SS2) is developed to express structural- and
temporal properties and constraints on states’ sequences in a state machine. DSL4SC supports the
Hyperledger blockchain and is used for specification purposes. SmaCoNat (SS10) [84] is a human-
understandable and easy-to-use SCL in which a smart contract is stipulated in natural-language

12Zilliqa | Home Page.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:20 V. Dwivedi et al.

syntax. The prepositions of SmaCoNat is used in natural language to define the properties of data
structures. SmaCoNat is not a full-fledged featured language but focuses on smart-contract devel-
opment in a natural language with small types and operations.

4.4 Legally Enforceable SCLs
We identify the SCL that can transform legal semantic rules into smart-contract code. The choreog-
raphy languages such as ADICO (SS7) [44], ErgoScript (GL20) [33], CommitRuleML (SS8) [31], Re-
actionRuleML (SS1) [30], and SPESC (SS49) [54] are the foundation to design legal smart contracts.
The ADICO framework proposes a modeling approach that allows the semi-automated transla-
tion of human-readable contracts to codify the laws into smart-contract. The ADICO programs
are generated from several rule-based components, such as attributes, denotic, aim, conditions,
and Or-else. The attributes component represents an actor’s properties, and the denotic repre-
sents contract clauses such as rights, obligations, prohibitions. The aim defines the outcome of
the ADICO program. On the contrary, the condition statement describes under which context this
statement follows. Next, the Or-else components describe the prominences associated with a non-
conformance. CommitRuleML regards a contract as commitment-based smart contracts that is an
extension of the KR ReactionRuleML. The communication among parties is seen as a multi-agent
system (MAS), and the commitment between MAS an essential foundation for the interactions
of the organizing parties. CommitRuleML defines the contract utilizing event calculus, and state-
ments are defined, such as the events (On), condition (if), and actions (do) in executable language.
ErgoScript is a scripting language that is specially implemented to support financial contracts
and on-interactive zero-knowledge proofs. The latter enables the developer to encode the con-
ditions under which currency is spent, e.g., who can pay and to whom, under what condition,
and so on. ErgoScript is more potent than Bitcoin Script, because it does not contain a recursive
construct that is an obstacle in estimating running time. SPESC is a specification language for
specifying smart contracts similar to real-world arrangements using natural language in which
the rights and obligations and the transaction rules are clearly defined. SPESC contains the speci-
fication, such as descriptions of parties, set of terms, and describing the transaction record when
specific terms hold. Besides, SPESC (SS11) is intended to support the collaborative development
of smart blockchain contracts. Still, these foundations are not mapped to high-level programming
languages, e.g., Solidity, to implement legal smart contracts’ semantics into code.

4.5 Business Process SCLs
Smart contracts enable the fulfillment of business processes on a blockchain. We identify the SCL
such as DAML (GL4) [34], business-level rules language (BCRL) (SS6) [7], QSCL (GL1) [28], and
eSourcing Markup Language (eSML) (SS4) [77] that incorporate the semantics of business pro-
cesses while generating smart contracts. DAML is a functional programming language designed for
permissioned blockchain, and its focus is to deal with the business processes rather than blockchain
technology and encryption. The latter manages the rights and obligations by ensuring that affected
parties can only view contract details through the contract. Besides, DAML restricts the instruction
set, which is used to prevent unwanted behavior. Qtum blockchain develops QSCL that incorpo-
rates the semantic-web domain concept and properties. QSCL aims to promote the greater use of
the value-transfer protocol management that organizes cross-organizational information logistics
and value transfers in line with the value proposition. The specification of QSCL includes a struc-
ture for uniquely defining the contracting parties with the definition of resources and data. Further,
the eSML is developed to support business collaboration by incorporating the contractual prop-
erties, such as party identification, business- and legal context, and exchange values. Thus, eSML
is a choreography language for cross-organizational collaboration. A fully functional framework

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:21

BCRL is developed to implement business core logic in Controlled English language that helps in
establishing a shared understanding among a domain expert and smart-contract developer. Be-
sides, a BCRL smart contract is executed both as a smart contract on Hyperfabric ledger and in an
off-chain rules engine, allowing a more seamless experience for managing general solutions for
business collaboration.

As discussed above, we have found 17 SCLs from scientific literature and 28 SCLs from non-
scientific literature. Of these, 28 SCLs are implemented, and the rest are proposed in academic
articles. Figure 1 presents the year in which the SCLs are implemented/proposed with their asso-
ciated study IDs.

5 SUITABILITY- AND EXPRESSIVENESS PROPERTIES
Using the supporting studies identified in the second phase of the study quality assessment (see
Section 3.3), we next identify the indecomposable properties of SCLs that are critical in drafting
legally-binding contracts. We do so by first conducting a thematic analysis of the 28 supporting
studies (see Table 11) (using the NVIVO13 qualitative data-analysis software) and then categorize
said properties into three headings, “semantic suitability,” “Workflow Suitability,” and “expressive-
ness.”

In their work, Mario et al. [18] provide a unifying theory that assists in verifying contracts’ com-
pliance in services choreography. Although the concept is primarily aimed toward the service-
oriented computing (SOC) research community, it has significant implications in DAO research
as well [76]. Just as services designed in SOC are “self-describing computational elements that
support composition of distributed applications” [80], smart contracts in DAO too aim to be onto-
logically rich, formally verifiable pieces of code designed to support collaborations between decen-
tralized entities. Drawing parallels between the two, it is not unfathomable to view the ontological
concepts and properties of smart contracts [48, 82] as choreography-conformance requirements in
service design [18]. In other words, said choreography-conformance requirements could be viewed
as semantic and workflow properties (viz. suitability).

We define “semantic suitability” properties as fundamental components from the perspective
of the eContract paradigm [77] and thus, includes properties that provide insights into the con-
text, i.e., who is participating the in transaction, what are they exchanging, and under what provi-
sions [49] of a smart contract. While “workflow suitability” encompass properties [89] that provide
insights into the processes, i.e., how the transaction are being carried out, or workflow patterns
from the perspective of contractual collaboration paradigm [77]. In our current work, we build
on Norta et al.’s view of workflow patterns, and introduce Business Process Modeling patterns
proposed by Russell et al. [89] as critical properties that can help understand how the state of the
contract would change after any given set of interactions.

• RQ2: What properties of business-oriented SCLs constitute to suitability and expressive-
ness?

This RQ aims to identify and categorize the suitability- and expressiveness properties of SCLs
based on the qualitative analysis of the supporting studies (see Table 11). As discussed earlier in
Section 4, during our analysis of SCLs, we discover that SCLs are typically designed based on
a broad spectrum of foci that influence the SCLs’ formal verifiability and semantic correctness.
Given this, it is difficult to identify all properties that render them legally binding from individual
SCL supporting studies. Hence, we first accumulate all relevant properties from the supporting
studies and then comprehensively examine said properties. Finally, we segregate them based on

13NVIVO | Home Page.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:22 V. Dwivedi et al.

Table 12. Contractual Aspects Required for Legally Enforceable SCLs and
Associated Supporting Studies

Aspects Paradigm Properties Associated Studies
Suitability Semantic The Who-concept SS23, SS28, SS36

The Where-concept SS35, SS42, SS46
The What-concept SS20, SS31

Workflow Control-flow SS39, SS41
Data-flow SS34, SS45
Resource-flow SS29, SS30, SS44
Exception-handling SS32, SS43
Event-Log Imperfection SS33, SS34, SS37

Expressiveness Temporal constraints SS19, SS21, SS25, SS38
(viz. formal-verification) Structural constraints SS22, SS24, SS26, SS27

the previously defined categories, namely namely “semantic suitabilty,” “workflow suitability” and
“expressiveness”.

5.1 Semantic Suitability
Smart contracts can be defined by the properties of contracting concepts: “Who,” “Where,” and
“What.” The Who-concept describes the parties engaged in the contracting process. The “Who” of
an e-contract must consist of at least two parties involved in a legally valid contract. In addition,
a mediator is often included in the contract establishment. Parties specify the rights and obliga-
tions in a contract so that if one party uses their rights, there is a corresponding obligation on
the other party. The context of contracts is defined in the content that affects the actors’ roles,
exchange values, and contracting processes. The Where-concept describes the legal and business
context for the contract establishment. The legal provisions are specified in the contract to re-
solve disputes, while the business context has an essential role in setting the requirements for the
contracting processes [6]. Finally, the What-concept describes the exchange value, and its provi-
sion is described for every contractual party being services, products, and financial rewards. Also,
service descriptions, e.g., service type, role, and so on, are specified in a contract as exchange val-
ues. An exchange-value provision is required to describe the process flow in a successful value
exchange [77].

5.2 Workflow Suitability
These patterns describe the fundamental requirements that arise on a recurring basis during
business-process modeling. Smart contracts follow the contracting processes and thus, we identify
the patterns required for the designing of SCL in Table 12. The said patterns include control-flow,
data-flow, resource-flow, exception-handling, and event logs. The control-flow patterns [87], such
as XOR and AND, are used to depict the relation of activity-flow in the designing of imperative
models. Whereas the data-flow patterns describe how data are represented and utilized to ensure
transparency in business-processes [42] and also characterize the interaction of data elements
among processes. Currently, most existing languages focus on the control- and data-flow, and,
unfortunately, resource perspectives are not considered. Resources such as humans, machines,
and their roles must be correct, which affects the simulation of the in-house process of service
consumer and provider of business collaboration [88]. The deviation from the normal execution
arising during a business process is called exceptions since the unanticipated events such as inte-

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:23

ger overflow, call stack, re-entrancy, and so on, are difficult to characterize. Therefore, an exception
handler resolves the effect of such events as they are detected. An event log is a collection of mul-
tiple records and is represented as a sequence of events carried out in a single execution process.
The aim of an event log is to uncover useful information relevant to the business processes by
applying several techniques, such as data- and process mining [96].

5.3 Expressiveness
Expressiveness properties pertain to formal mathematical correctness of smart-contract code [77].
Several verification tools such as Oyente, Securify, SmartCheck, and others are implemented to
detect the unintended behavior of smart contracts [71]. With this, the parties can verify the func-
tionality of smart contracts before posting to blockchain platforms. Several formal methods are
required to verify contracts’ semantics, including static analysis, model checking, and formal se-
mantics, and so on. For instance, Securify Tool [71] is a security analyzer for Ethereum contracts
that symbolically analyzes the contract behavior by extracting exact semantic information from
the code. Further, we discover the formal representation of smart contracts that comprise the
temporal- and structural properties [99]. Events, obligations, and rights of contracts are the tem-
poral properties, because their state of execution depends on time [94]. Each event has a specified
date and time for taking action, e.g., pay, or time to deliver. Similarly, obligations have a start date,
due date, and discharge date. Rights also have a specified date/time and become activated when
events, or dates occur. Structural properties pertain to the functional behavior of smart contracts.
To validate the functional correctness of the smart contract, Liu et al. [63] propose a formal verifica-
tion method based on Color Petri Nets (CPN). CPN14 is a language for specification, simulation,
and design of systems. As an alternative, statechart is used to define the structural properties and
constraints on the sequence of states in a state machine [99].

We identify the critical SCL properties to make smart contracts legally binding, i.e., “suitability”
and “expressiveness.” Furthermore, we enumerate the said properties and their associated studies
in Table 12. In the next section, we discover these properties in existing SCLs.

6 EVALUATION OF SCLS’ SUITABILITY AND EXPRESSIVENESS
We evaluate the existing SCLs based on the contractual enabling properties identified from RQ2
as per Section 5. To evaluate the SCLs, we score them with “+” or “-” operators for each of the
10 properties. The former indicates that the SCL has the particular property, whereas the latter
indicates that the property does not exist in the corresponding SCL. In case we are not able to
identify said properties of an SCL, we indicate the same using n/a. The final results of the evaluation
are presented in Table 13.

• RQ3: What are the obstacles in existing SCLs that restrict the achievement of business-
contractual objectives?

In this RQ, we aim to evaluate the suitability and expressiveness of the SCLs identified from
RQ1 as per Section 4. We allude to earlier that not all SCLs are designed the same; and thus, while
examining the supporting studies in Section 5, we discover that many SCLs are not described as
having all the identified suitability- and expressiveness properties (see Table 12). Thus, for this RQ,
we reexamine the 45 selected studies again, together with the 28 supporting studies, and finally
score the 45 SCLs as shown in Table 13. Additionally, we detail our reasoning behind the scores
allocated to each of the properties of the SCLs. By doing so, we aim to identify SCLs that can
potentially be used for drafting legally-binding smart contracts in DAO collaborations.

14CPN | Home Page.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:24 V. Dwivedi et al.

Table 13. Evaluation of SCLs Pertaining to Business-contractual Aspects

SCL SCLs Suitability∗ Express-
Types iveness∗

Semantic Workflow
(viz. Formal
Verification)

WO WR WT CF DF RF ExH ElI TC SC
Domain Solidity (GL13) + - - + - - + + - +
Specific Vyper (GL12) + - - + + - + + + -

Idris (SS14) + - - + + - - - - +
Flint (SS13) + - - + + + + - - -
Formality (GL14) + - - + + + - - + -
Pyramid (GL15) + - - + + - - - - -
Findel (SS5) + + + - + + - - + +
Michelson (GL9) + - - + + + - - - +
Plutus-Core (GL10) + - - - - + - - - +
Rholang (GL11) + - - + + + + + + +
Marlowe (SS16) + + - - + - - - - +
Pact (GL2) + - - - + - - - + -
Sophia (GL24) + - - + + - + + - -
Fift (GL25) + - - + + - + + - -
Ivy (GL5) + - - - + + - - - -
Typecoin (SS17) + - - - + + - - - -

Formal Lolisa (GL26) + - - + + - + - + +
Verifi- Bamboo (GL6) + - - - + - - - + +
cation Mutan (GL19) + - - + + - - - + +

Script (SS18) + - - - - - - - - +
Move (GL21) + + + - + + - - + +
Obsidian (GL27) + - - + + + - - - -
IELE (GL23) + - - + + + - - - +
Fi (GL7) + - - + + - - + - +
Scilla (SS9) + - - - + - - - - +
BitML (SS3) + - - - - - + - - +
Simplicity (SS1) + - - - + + - - + -
Liquidity (GL8) + - - + + - - - + +
F-Sol (GL17) + - - - + - - - - +
FSolidM (SS15) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
BALZaC (GL3) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

User LLL (GL16) + - - + + - - - + +
Friend- Babbage (GL18) + - - - + - - - - +
liness RIDE (GL22) + - - - - + + - - -

DSL4SC (SS2) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
SmaCoNat (SS10) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

(Continued)

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:25

Table 13. Continued

SCL SCLs Suitability∗ Express-
Types iveness∗

Semantic Workflow (viz. Formal
Verification)

WO WR WT CF DF RF ExH ElI TC SC
Legally ADICO (SS7) + + + - + - + - - +
Enforce- ErgoScript (GL20) + + + - - + - - - +
able SPESC (SS49) + + + - - + - - - -

Reaction- n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Rule ML (SS1)
Commit- n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Rule ML (SS8)

Business DAML (GL4) + + + - + + - + - -
Process eSML (SS4) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

BCRL (SS6) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
QSCL (GL1) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

∗WO [Who-concept] | WR [Where-concept] | WT [What-concept].
∗CF [Control-flow] | DF [Data-flow] | RF [Resource-flow] | ExH [Exception-handling] | ElI [Event log imperfection].
∗TC [Temporal-constraint] |SC [Structural-constraint].

Our investigation shows that Solidity expresses the Who-concept by including the contracting
party’s address using the address-owner variable. Furthermore, control- and data-flow properties
are defined due to the imperative paradigm of Solidity. Since data are presented in states encoded
with a highly secured cryptography technique stored at a specific blockchain address, it is not easy
for non-domain users to understand the smart contracts’ dataflow. The variable- and data types are
not considered to support Where- and What-concept, because Solidity focuses on manipulating
low-level blockchain in java-script style. The use of modifiers onlyBy() enables the ownership
of resources, and Solidity expresses exception handling only for external function- and contract-
creation calls in the form of try/catch statements. Solidity employs logs to implement events and
a contract accesses the log-data after being created. Still, recent attacks show a lack of formal
verification in Solidity; while the uint start-data, uint end-data variables and modifiers such as
checkTime() and onlyOnce(), satisfy the temporal constraint. The other domain-specific languages,
namely Idris and Vyper support properties similar to Solidity, except for resource-flow. Vyper
initializes a global variable a beneficiary by calling the public on the public (address) datatype and
modifier raise(reason: str) returns the reason of exception. While, Idris expresses the Who-concept
using modifier mapping (address=>uint) and latter includes Raise handlers to returns the exception.
Unfortunately, Idris does not specify the enforcement of requirements among the processes due
to the program’s lack of data awareness.

Attacks exploit several unsafe patterns, such as call-to-the-unknown, gasless send, exception
disorder, and others; resulting in loss of money, or other damages. A call to the unknown function
is a primitive that invokes the function and transfer the digital asset. Exceptions arise in a situation
when an execution runs out of gas. There is not a solution in imperative languages to handle such
an exception.

Flint expresses the Who-concept by including the address variable, and the type state is used
to satisfy control- and data-flow properties. Flint additionally supports resource flow by imple-
menting Asset type that prevents a class of security flaws wherein the state of smart-contract

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:26 V. Dwivedi et al.

inaccurately represents resources. Function modifiers such as require are used to check the pre-
condition before entering the function body. Still, properties such as the Where- and What-concept
are not expressed in Flint.

At the same time, the Flint language determines the resource consumption by implementing the
Wei asset function. While in Solidity, Wei is defined as an integer value rather than a dedicated type,
which allows the conversion between number and currency and thus, results in an inconsistent
state in which the actual balance of a smart contract is incorrect. Formality and Pyramid scheme
SCLs satisfy each property similar to Flint, except for structural constraints. Formality includes in-
ductive data-types for expressing structural properties. In contrast, the Pyramid scheme expresses
structural properties by combining formal IR semantics and dependently typed language.

Findel contract is defined as a tuple (D, I, O) where D is a description, I is an issuer, and O is the
owner. Findel expresses the Who-concept by defining the owner and issuer’s address, and describes
the What-concept by defining the contract context in the description field. Formal semantics of
Findel are introduced using a rigorously defined put-call parity algebra theorem and time-bound
primitives to express temporal conditions. Yet, exception handling and event-log primitives are
missing properties to achieve the objectives of SCLs. Michelson contains the address data-type that
expresses the Who-concept properties. Mutez types allow restricting the manipulation of resources
that reveal the resource-flow properties. Furthermore, using the timestamp Michelson code satisfies
the temporal-constraint properties. The Now() and Add() functions allow the retrieval of current
timestamps of events. Other Tezos blockchain-based languages such as Liquidity and Fi satisfy the
underlying properties of Michelson, also with qualifying the structural properties.

The Rholang syntax and semantics are similar to rho calculus, a reflective higher-order variant of
pi-calculus. Resource flow is expressed in Rholang by implementing the phlogiston metric, which is
identical to Ethereum gas. Rholang considers patterns for the storage and retrieval of information
via channels. Unlike other SCLs, Marlowe expresses the Where-concept by implementing the type
of contract in a Haskell datatype. In addition, several of the contracts have timeouts that establish
their behavior as well. Marlowe implements the step function that operates on each constructor
of contract type and thus, satisfies the temporal constraints. Pact SCL (GL2) employs the keyset
variable to hold the parties’ addresses and favors a declarative approach over complex control-flow,
making bugs more challenging to write and easier to detect. Sophia expresses properties such as
the Who-concept, control-flow, data-flow, eventlog, and Exception handling. Sophia employs the
address literals to define a contract, or the parties’ address. A contract declares a datatype event to
use events that are logged using the chain.event function. Contracts can fail with an (uncatchable)
exception using the built-in function: abort (reason : string). Fift uses the abort inbuilt function
to throw an exception with an error message. The reason for the development of Ivy (GL5) and
Typecoin language is to write scripting code for cryptocurrency and is less focused on supporting
smart-contract semantics.

Lolisa includes Solidity features such as mapping, modifier, contract, and address types. The
intention behind the development of Lolisa is to formalize the Solidity programming languages.
Bamboo, Move, and Obsidian is mainly intended to support resource-flow. Bamboo expresses the
Who-concept using variable (address=> uint256) to identify the parties address and also expel struc-
tural properties by implementing the reentrancy-guard for calling recursive functions. Move’s
type-system ensures that resources never be copied, duplicated, and lost. Failing to move a re-
source triggers a bytecode verification error, e.g., by deleting the line that contains movecoin.
Obsidian uses a type-system to ensure that assets are manipulated correctly and employs linear
types to allow a safe manipulation of objects. Additionally, Obsidian expresses the control- and
data-flow properties by implementing the polymorphic linked list that is a container to store the

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:27

transactions. The current practice of representing Bitcoin contracts as cryptographic protocols
expresses the Who-concept and control-flow using the opcodes that are a list of scripts.

BitML expresses the temporal constraints by choosing a secret and revealing it using time con-
straint ‘t’, and introduces the symbolic and computation model to describe structural properties.
Simplicity seeks to express resource flow using a formal semantics that allows for “fast” (linear
time) static analysis of resource consumption. Scilla expresses the resource-flow using variable
mapping (address => uint) assets and defines the address variable to express the Who-concept prop-
erties. Integrating the Scilla into the proof assistant of Coq enables it to reason about the properties
of the security and temporal-constraints. IELE expresses the control-flow in which the body of the
function contains code organized into labeled blocks. When a branch instruction is encountered,
the execution falls through from the last instruction of a block to the first of the next one, or jumps
to the beginning of a specific block.

It is important to point out here that several foundations such as ADICO, ErgoScript, Com-
mitRuleML, ReactionRuleML, SPECS, BCRL, and eSML are proposed in academic papers that have
unfortunately not spawned any further implementation or research efforts. And thus, the Support-
ing Studies for said SCLs have not been published in the literature yet. Hence, we have presented
the properties of said SCLs with the “n/a” (i.e., not-applicable) symbol in Table 13.

7 DISCUSSION
Drawing from the results of the RQs, it becomes clear that none of the state-of-the-art SCLs iden-
tified and analyzed in this SLR in their current forms without external support such as smart-
contract templates, or frameworks, are capable of supporting a creation of legally binding smart
contracts for collaborations in DAOs. Although there exist alternative solutions for designing se-
mantically correct [25] and formally verifiable [63] contracts, we discover that to assure the ro-
bustness of smart contracts, future SCLs should be designed systematically from the top-down
based on sound principles. As per our work, we provide insights into how this could be achieved.

To identify potential SCLs that allow for drafting legally-binding smart contracts, we check if the
state-of-the-art SCLs comprise 10 properties described in Section 5 that are categorized as semantic
suitability, workflow suitability, and expressiveness. Note, we describe the meaning of each of these
categorizations from a legal perspective to explore why these categories and their properties are
critical in making smart contracts acceptable in the court of law. As explained in Section 5, semantic
suitability encompasses the Who-Where-What properties that describe the parties involved in a
contract. Without a semantically rich SCL that has the necessary vocabulary required to describe
the who-where-what of the contract, the contract cannot even be entertained by the law [49],
thereby making said properties all-important. Workflow suitability properties, however, are crucial
for understanding which partner/partners are not fulfilling their specific obligations [104]. As their
names suggest, these properties describe how the flow of control, data and resources should occur
under the contract and in-case an anomaly occurs, the court of law can then intervene to resolve
potential conflicts accordingly. Finally, formal verifiability, or expressiveness is critical for making
contracts legally binding, as these properties ensure that contracts being computer programs, are
encoded correctly based on the legal intention of the parties as is, commonly defined in a natural-
language contract [49, 67].

To summarize the findings from RQs, we find that while most SCLs supports some suitability-
and expressiveness properties; however, none of the current state-of-the-art SCLs have all 10
of said properties (see Table 5). While most SCLs do have some semantic- (e.g., Who-concept)
and workflow properties (e.g., control-flow and ddata-flow); nearly none of the studied SCLs
have adopted all workflow suitability properties (except Rholang (GL11)), whereas in the partic-
ular case of legally enforceable and business process SCLs, the studied languages do fulfill all

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:28 V. Dwivedi et al.

three (who-where-what) semantic suitability properties. Still, business rules and policies are an
essential factor for a smart contract and this is equivalent to the formulation of obligations and
rights in traditional contracts. Furthermore, a smart contract must uniquely identify who the col-
laborating parties are and currently, user-friendly SCLs do not have the syntax for supporting this
property. Besides that, the unique identification of parties specifies the required competencies, au-
thorization, and so on, that are a part of the resource perspective of a process for which SCLs also
lack concepts and properties in the existing syntax definitions. With respect to the expressiveness
properties, we find that most SCLs either have temporal constraints, or structural constraints, but
only a subset of SCLs (such as Rholang (GL11), Lolisa (GL26), LLL (GL16), and others) have both
said properties. This is critical as having these properties makes these SCLs less prone to security
vulnerabilities [99]. Thereby, the question arises of how to develop an SCL that incorporates the
contractual semantics to achieve legally-enforceable smart contracts. At the same time, SCL is ca-
pable of defending against hacks and attacks (such as the DAO attack and the Parity Wallet hack)
that occur due to security vulnerabilities caused by a lack of time constraints, predictable states,
exception handling, and other factors.

The challenges mentioned above need to be overcome to achieve the full potential of smart
contracts for DAOs (and other kinds of business collaborations). To this end, based on current
literature, we find that these gaps in the state of the art can be addressed in two ways, first, by
utilizing modularization- and simplification techniques to develop graphical SCLs for writing se-
mantically correct smart-contract codes (as shown in Reference [105]). Codes that are known to
be correct, less susceptible to errors, and are based on predefined procedures/best practices can be
broken down into modules and reused in novel solutions. The second approach for addressing the
previously mentioned gaps is to develop novel SCLs from the top-down based on sound principles
and with scientific menthods while learning from the insights provided in published literature. In
our future work, we aim to focus on the latter in that we would like to propose a semantically rich
SCL that is process-driven and formally verifiable, as shown in the Figure 2. Building on Norta
et al.’s eSML 1.0 [77], we would like to develop eSML 2.0, which will be rich in legal semantic
vocabulary, will be robust enough to tackle potential temporal and structural vulnerabilities, and
will be deployable over real-world blockchains [39]. To achieve this, we have already conducted
qualitative interviews with legal professionals (i.e., experts in business law) and created a novel
ontology that is semantically rich enough to describe all business collaboration processes (using
the Protégé tool15 and HermiT reasoner.16 Next, we mapped the created legal ontology with eSML
1.0 and thus, created eSML 2.0. As part of our ongoing research, we are currently looking into
building a compiler for eSML 2.0 grammar using lexer and parser generators (such as ANTLR [81]
or Xtext [108]). Once we have developed a functional languag from eSML 2.0, programmers could
choose either to draft smart contracts in the said functional languag (i.e., high-level language) di-
rectly, or use Extensible Markup Language (XML) templates, which could then be translated into
the blockchain’s high-level language.

8 THREATS TO VALIDITY
The study selection in the SLR was based on the search strategy, and includes the selection of
search terms, literature resources, and the search process. As described in Section 3, we identify
the search terms by examining both the research questions and initial literature search (presented
in Section 3.1.1). By considering previous literature, we are able to identify the keywords and
their commonly used synonyms (and variants). Followed by this, we generate the search query

15Protege | Home Page.
16HermiT | Data and Knowledge Group.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:29

(presented in Table 2) and run the search queries on well-renowned scholarly databases (includ-
ing Scopus and Web of Science). Using this methodology, we are able to identify relevant white
literature (books, journal articles, proceedings, and workshop papers). To identify additional white
literature and relevant grey literature (white papers, technical reports, and working drafts; and SCL
documentation), we run the search query on Google Scholar and GitHub (respectively); in total,
we are able to identify 616 pieces of literature (see Table 3).

To avoid biases in the selection process, we first study the titles and abstracts of all identified
articles, and then shortlist the studies that fulfill the inclusion- and exclusion criteria. To validate
the accuracy of the study-selection phase, three of the co-authors independently re-examine the
initially identify 130 articles against the study selection criteria; and thus assure that only the
articles relevant to the research questions are selected as primary studies. Finally, we evaluate the
primary studies based on the quality assessment criteria, and thereby, we were able to identify
only those studies that are most relevant for answering our research questions. Throughout the
process of the SLR, all conflicts including the formulation of the inclusion-, exclusion- and quality-
assessment criteria, and the establishment of the selected- and supporting studies are resolved
through discussions and deliberations; and are therefore finalized based on the consensus of all
the authors.

After the quality-assessment phase, we discover that the same authors publish the selected stud-
ies SS22, SS24, and SS26. Still, after independently studying the said articles, we agree that each
of the articles present different contributions and are therefore appropriate as selected studies.
Similarly, studies SS33 and SS34 are also found to be quite similar. Still, after a detailed reading
of the articles, we discover that both articles describe formal-verification techniques but present
different contexts; hence, we decide to include both articles as supporting studies.

To assure reproducibility of the SLR’s search- and study-selection process, especially given
that we include articles published as grey literature; we archive the GitHub pages and other
web resources using the Internet Archive’s Wayback Machine.17 This step is critical to our re-
search methodology, as web resources (especially GitHub pages and SCL documentation) can of-
ten change over time, since developers/researchers keep adding new features to their artifacts (viz.
SCLs). Archiving the web resources in their states (as they are when the SLR is conducted) assures
that readers of the SLR would have access to a copy of the resources even after the web pages
change, or deleted.

9 CONCLUSION
Blockchains and smart contracts are emerging technologies that enable a plethora of novel ap-
plications in diverse domains. In our work, we focus on one such field of research; namely, the
development of e-contracts for DAO collaborations. Although smart contracts have gained a lot
of attention from both academia and industry in recent years, available literature has not yet led
to the development of legally enforceable smart contracts and SCLs. To address this research gap,
we investigate 45 state-of-the-art smart-contract languages designed with a focus on business-
collaboration processes. We identify said SCLs by conducting an exhaustive SLR of 616 articles pub-
lished as white- and grey-literature between 2015 and 2019. Based on a carefully framed inclusion-,
exclusion- and quality-assessment criteria, we are able to identify 45 selected studies and 28 sup-
porting studies. Drawing from said studies, we identify 10 critical properties categorized as se-
mantic suitability, workflow suitability and expressive, which can render smart contracts legally
enforceable. We discover that none of the identified state-of-the-art SCLs have all of the suitability-
and expressiveness properties. Finally, based on these findings, we propose our future research

17Wayback Machine | Homepage.

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:30 V. Dwivedi et al.

direction for developing legally enforceable SCLs. We propose that legally enforceable SCLs could
be achieved through the development of an ontology for contractual business semantics. Mapping
said semantic ontology onto the eSML 1.0’s contractual choreography language, could lead to the
development of a novel functional language for smart contracting DAO collaborations. As future
work we aim to render business collaborations more flexible, effective and efficient with legally
enforceable and practically usable SCLs.

REFERENCES
[1] Ebizimoh Abodei, Alex Norta, Irene Azogu, Chibuzor Udokwu, and Dirk Draheim. 2019. Blockchain technology for

enabling transparent and traceable government collaboration in public project processes of developing economies.
In Lecture Notes in Computer Science. Springer International Publishing, 464–475. DOI:https://doi.org/10.1007/978-
3-030-29374-1_38

[2] Temofe Isaac Akaba, Alex Norta, Chibuzor Udokwu, and Dirk Draheim. 2020. A framework for the adoption of
blockchain-based e-procurement systems in the public sector. In Lecture Notes in Computer Science. Springer Inter-
national Publishing, 3–14. DOI:https://doi.org/10.1007/978-3-030-44999-5_1

[3] Maher Alharby and Aad van Moorsel. 2017. Blockchain based smart contracts: A systematic mapping study. In
Computer Science & Information Technology (CS & IT). Academy & Industry Research Collaboration Center (AIRCC).
125–140. DOI:https://doi.org/10.5121/csit.2017.71011

[4] Maher Alharby and Aad van Moorsel. 2017. A systematic mapping study on current research topics in smart con-
tracts. Int. J. Comput. Sci. Inf. Technol. 9, 5 (Oct. 2017), 151–164. DOI:https://doi.org/10.5121/ijcsit.2017.9511

[5] Stephen Andrews. 2019. Introduction—Learn Fi. Retrieved from https://learn.fi-code.com/.
[6] S. Angelov. 2006. Foundations of B2B Electronic Contracting. Ph.D. Dissertation. Industrial Engineering & Innovation

Sciences. DOI:https://doi.org/10.6100/IR600020
[7] Tara Astigarraga, Xiaoyan Chen, Yaoliang Chen, Jingxiao Gu, Richard Hull, Limei Jiao, Yuliang Li, and Petr Novotny.

2018. Empowering business-level blockchain users with a rules framework for smart contracts. In Service-Oriented
Computing. Springer International Publishing, Cham, 111–128. DOI:https://doi.org/10.1007/978-3-030-03596-9_8

[8] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks on Ethereum smart contracts (SoK).
In Lecture Notes in Computer Science. Springer, Berlin, 164–186. DOI:https://doi.org/10.1007/978-3-662-54455-6_8

[9] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. 2018. A formal model of bitcoin transactions.
In Financial Cryptography and Data Security, Sarah Meiklejohn and Kazue Sako (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 541–560. DOI:https://doi.org/10.1007/978-3-662-58387-6_29

[10] Irene Azogu, Alex Norta, Ingrid Papper, Justin Longo, and Dirk Draheim. 2019. A framework for the adoption
of blockchain technology in healthcare information management systems. In Proceedings of the 12th International
Conference on Theory and Practice of Electronic Governance - ICEGOV2019. ACM Press, 310–316. DOI:https://doi.org/
10.1145/3326365.3326405

[11] Massimo Bartoletti and Roberto Zunino. 2018. BitML: A calculus for bitcoin smart contracts. In Proceedings of
the ACM Conference on Computer and Communications Security. Association for Computing Machinery, 83–100.
DOI:https://doi.org/10.1145/3243734.3243795

[12] A. Begicheva and I. Smagin. 2019. Ride: A Smart Contract Language for Waves. Technical Report.
[13] S. Farrell, H. Machin, and R. Hinchliffe. 2017. Lost and found in smart contract translation – considerations in

transitioning to automation in legal architecture. In Proceedings of the Congress of the United Nations Commission on
International Trade Law (Wien, Uncitral, Ebook 2017). 95–104.

[14] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges Gonthier, Nadim
Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin.
2016. Formal verification of smart contracts: Short paper. In Proceedings of the 2016 ACM Workshop on Program-
ming Languages and Analysis for Security (PLAS’16). Association for Computing Machinery, New York, NY, 91–96.
DOI:https://doi.org/10.1145/2993600.2993611

[15] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. 2017. Findel: secure derivative contracts for ethereum.
In Financial Cryptography and Data Security. Springer International Publishing, 453–467. https://doi.org/10.1007/
978-3-319-70278-0_28

[16] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer,
Dario Russi, Stephane Sezer, Tim Zakian, and Runtian Zhou. 2019. Move: A Language with Programmable Resources.
Technical Report.

[17] Willi Brammertz and Allan I. Mendelowitz. 2018. From digital currencies to digital finance: The case for a smart
financial contract standard. J. Risk Financ. 19, 1 (Jan. 2018), 76–92. DOI:https://doi.org/10.1108/jrf-02-2017-0025

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:31

[18] Mario Bravetti and Gianluigi Zavattaro. 2007. Towards a unifying theory for choreography conformance and con-
tract compliance. In Software Composition, Markus Lumpe and Wim Vanderperren (Eds.). Springer, Berlin, 34–50.
DOI:https://doi.org/10.1007/978-3-540-77351-1_4

[19] Michael Burg. 2017. Write Your Next Ethereum Contract in Pyramid Scheme. Retrieved October 30, 2018 from http:
//www.michaelburge.us/2017/11/28/write-your-next-ethereum-contract-in-pyramid-scheme.html.

[20] Vitalik Buterin. 2018. Vyper Documentation. Retrieved October 30, 2018 from https://media.readthedocs.org/pdf/
viper/latest/viper.pdf.

[21] Cardano. 2019. Introduction—Cardano. Retrieved October 30, 2018 from https://cardanodocs.com/technical/plutus/
introduction/.

[22] Fran Casino, Thomas K Dasaklis, and Constantinos Patsakis. 2019. A systematic literature review of blockchain-
based applications: Current status, classification and open issues. Telemat. Informat. 36 (2019), 55–81. DOI:https:
//doi.org/10.1016/j.tele.2018.11.006

[23] Usman W. Chohan. 2017. The decentralized autonomous organization and governance issues. SSRN Electr. J. (2017),
1–7. DOI:https://doi.org/10.2139/ssrn.3082055

[24] Christian. 2017. Babbage—A Mechanical Smart Contract Language. Retrieved October 30, 2018 from https://medium.
com/@chriseth/babbage-a-mechanical-smart-contract-language-5c8329ec5a0e.

[25] Christopher D. Clack. 2018. Smart contract templates: Legal semantics and code validation. J. Digit. Bank. 2, 4 (2018),
338–352.

[26] Michael Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem, Brad A. Myers, Joshua
Sunshine, and Jonathan Aldrich. 2020. Obsidian: Typestate and assets for safer blockchain programming. ACM Trans.
Program. Lang. Syst. 42, 3, Article 14 (December 2020), 82 pages. DOI:https://doi.org/10.1145/3417516

[27] Karl Crary and Michael J. Sullivan. 2015. Peer-to-peer affine commitment using Bitcoin. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’15), Vol. 2015. Association for
Computing Machinery, 479–488. DOI:https://doi.org/10.1145/2737924.2737997

[28] Patrick Dai. 2017. Smart-Contract Value-Transfer Protocols on a Distributed Mobile Application Platform. Technical
Report. Singapore.

[29] Primavera De Filippi and Samer Hassan. 2016. Blockchain technology as a regulatory technology: From code is law
to law is code. First Monday 21, 12 (2016). DOI:https://doi.org/10.5210/fm.v21i12.7113

[30] Joost De Kruijff and Hans Weigand. 2018. An introduction to commitment based smart contracts using Reaction-
RuleML. In Proceedings of the CEUR Workshop, Proper E. Gordijn J. (Ed.), Vol. 2239. CEUR-WS, 149–157.

[31] Joost De Kruijff and Hans Weigand. 2019. Introducing commitRuleML for smart contracts. In Proceedings of the CEUR
Workshop, H. Weigand, P. Johannesson, and B. Andersson (Eds.), Vol. 2383. CEUR-WS.

[32] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-Joancomartí. 2020. A fair protocol for data
trading based on Bitcoin transactions. Fut. Gener. Comput. Syst. 107 (2020), 832–840. DOI:https://doi.org/10.1016/j.
future.2017.08.021

[33] Ergo Developers. 2019. ErgoScript, a Cryptocurrency Scripting Language Supporting Noninteractive Zero-Knowledge
Proofs. Technical Report. 1–22 pages.

[34] DigitalAsset. 2019. DAMLScript SDK Documentation. Technical Report. Retrieved December 2, 2020 from https://
docs.daml.com/.

[35] Dirk Draheim. 2021. Blockchains from an e-governance perspective: Potential and challenges. In Proceed-
ings of the 7th International Conference on Electronic Governance and Open Society—Challenges in Eurasia
(EGOSE’20),Communications in Computer and Information Science. Springer, 11–13. https://doi.org/10.1007/978-
3-030-67238-6

[36] Quinn DuPont. 2017. Experiments in algorithmic governance: A history and ethnography of “The DAO,” a failed
decentralized autonomous organization. In Bitcoin and Beyond: Cryptocurrencies, Blockchains and Global Governance.
Routledge, 157–177. DOI:https://doi.org/10.4324/9781315211909-8

[37] Nikolai Durov. 2019. Fift: A Brief Introduction. Technical Report.
[38] Vimal Dwivedi, Vipin Deval, Abhishek Dixit, and Alex Norta. 2019. Formal-verification of smart-contract languages:

A survey. In Advances in Computing and Data Sciences. Springer Singapore, 738–747. DOI:https://doi.org/10.1007/
978-981-13-9942-8_68

[39] Vimal Kumar Dwivedi and Alex Norta. 2018. A legally relevant socio-technical language development for smart
contracts. In Proceedings of the 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems
(FAS*W’18). Institute of Electrical and Electronics Engineers Inc., 11–13. DOI:https://doi.org/10.1109/FAS-W.2018.
00016

[40] Ben Edgington. 2017. LLL Compiler Documentation Documentation Release 0.1. Technical Report.
[41] Al K. Firas et al.2017. Trust in smart contracts is a process, as well. In Financial Cryptography and Data Security.

Springer International, 510–519. DOI:https://doi.org/10.1007/978-3-319-70278-0_32

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:32 V. Dwivedi et al.

[42] R. Nick et al.2005. Workflow resource patterns: Identification, representation and tool support. In Notes on Numerical
Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 216–232. DOI:https://doi.org/10.
1007/11431855_16

[43] Ethereum. 2014. Solidity Documentation. Technical Report.
[44] C. K. Frantz and M. Nowostawski. 2016. From institutions to code: Towards automated generation of smart con-

tracts. In Proceedings of the 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems
(FAS*W’16). 210–215. DOI:https://doi.org/10.1109/FAS-W.2016.53

[45] Mark Giancaspro. 2017. Is a “smart contract’ really a smart idea? Insights from a legal perspective. Comput. Law
Secur. Rev. 33, 6 (2017), 825–835. DOI:https://doi.org/10.1016/j.clsr.2017.05.007

[46] Jean-Yves Girard. 1987. Linear logic. Theor. Comput. Sci. 50, 1 (1987), 1–101. DOI:https://doi.org/10.1016/0304-
3975(87)90045-4

[47] Jake Goldenfein and Andrea Leiter. 2018. Legal engineering on the blockchain: ‘Smart contracts’ as legal conduct.
Law Crit. 29, 2 (May 2018), 141–149. DOI:https://doi.org/10.1007/s10978-018-9224-0

[48] David Golumbia. 2016. The Politics of Bitcoin: Software as Right-wing Extremism. University of Minnesota Press.
[49] Guido Governatori, Florian Idelberger, Zoran Milosevic, Regis Riveret, Giovanni Sartor, and Xiwei Xu. 2018. On

legal contracts, imperative and declarative smart contracts, and blockchain systems. Artif. Intell. Law 26, 4 (2018),
377–409. DOI:https://doi.org/10.1007/s10506-018-9223-3

[50] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. Foundations and tools for the static analysis of
Ethereum smart contracts. In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer
International, Cham, 51–78. DOI:https://doi.org/10.1007/978-3-319-96145-3_4

[51] Purva Grover, Arpan Kumar Kar, and P. Vigneswara Ilavarasan. 2018. Blockchain for businesses: A systematic lit-
erature review. In Conference on e-Business, e-Services and e-Society. Springer, 325–336. DOI:https://doi.org/10.1007/
978-3-030-02131-3_29

[52] Dominik Harz and William Knottenbelt. 2018. Towards safer smart contracts: A survey of languages and verification
methods. arXiv:1809.09805. Retrieved from https://arxiv.org/abs/1809.09805.

[53] Florian Hawlitschek, Benedikt Notheisen, and Timm Teubner. 2018. The limits of trust-free systems: A literature
review on blockchain technology and trust in the sharing economy. Electr. Commerce Res. Appl. 29 (2018), 50–63.
DOI:https://doi.org/10.1016/j.elerap.2018.03.005

[54] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu. 2018. SPESC: A specification language for smart contracts. In Proceed-
ings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC’18), Vol. 01. 132–137.
DOI:https://doi.org/10.1109/COMPSAC.2018.00025

[55] IOHK. 2019. plutus/extended-utxo-spec at master · input-output-hk/plutus · GitHub. Retrieved October 30, 2020
from https://github.com/input-output-hk/plutus/tree/master/extended-utxo-spec.

[56] Mubashar Iqbal and Raimundas Matulevičius. 2019. Blockchain-based application security risks: A systematic liter-
ature review. In Proceedings of the International Conference on Advanced Information Systems Engineering. Springer,
176–188. DOI:https://doi.org/10.1007/978-3-030-20948-3_16

[57] Christoph Jentzsch. 2016. Decentralized autonomous organization to automate governance. White Paper, November
(2016).

[58] Theodoros Kasampalis. 2018. IELE: An Intermediate-Level Blockchain Language Designed and Implemented Using
Formal Semantics. Technical Report.

[59] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for Performing Systematic Literature Reviews in Software
Engineering. Technical Report. Technical Report, Ver. 2.3 EBSE Technical Report. EBSE.

[60] Markus Knecht. 2018. Mandala: A smart contract programming language. arXiv:1911.11376. Retrieved from https:
//arxiv.org/abs/1911.11376.

[61] Pablo Lamela Seijas and Simon Thompson. 2018. Marlowe: Financial contracts on blockchain. In Proceedings of
the International Symposium on Leveraging Applications of Formal Methods, Vol. 11247 LNCS. 356–375. DOI:https:
//doi.org/10.1007/978-3-030-03427-6_27

[62] Nino Lazuashvili, Alex Norta, and Dirk Draheim. 2019. Integration of blockchain technology into a land registra-
tion system for immutable traceability: A casestudy of Georgia. Springer International Publishing, Cham, 219–233.
DOI:https://doi.org/10.1007/978-3-030-30429-4_15

[63] Zhentian Liu and Jing Liu. 2019. Formal verification of blockchain smart contract based on colored Petri net models.
IEEE, 555–560. DOI:https://doi.org/10.1109/compsac.2019.10265

[64] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo Weber, and Alexander Ponomarev. 2019.
Caterpillar: A business process execution engine on the Ethereum blockchain. Softw.: Pract. Exp. 49, 7 (2019), 1162–
1193. DOI:https://doi.org/10.1002/spe.2702

[65] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making smart contracts smarter.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS’16). Association
for Computing Machinery, New York, NY, 254–269. DOI:https://doi.org/10.1145/2976749.2978309

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Legally Enforceable Smart-Contract Languages: A Systematic Literature Review 110:33

[66] Daniel Macrinici, Cristian Cartofeanu, and Shang Gao. 2018. Smart contract applications within blockchain tech-
nology: A systematic mapping study. Telemat. Informat. 35, 8 (2018), 2337–2354. DOI:https://doi.org/10.1016/j.tele.
2018.10.004

[67] D. Magazzeni, P. McBurney, and W. Nash. 2017. Validation and verification of smart contracts: A research agenda.
Computer 50, 9 (2017), 50–57. DOI:https://doi.org/10.1109/MC.2017.3571045

[68] MaiaVictor. 2019. Formality Documentation Release 0.3.157. Retrieved November 5, 2020 from https://github.com/
MaiaVictor/Formality.

[69] Anastasia Mavridou and Aron Laszka. 2018. Tool demonstration: FSolidM for designing secure ethereum smart
contracts. In Proceedings of the International Conference on Principles of Security and Trust, Lecture Notes in Computer
Science, Vol. 10804. Springer, 270–277. DOI:https://doi.org/10.1007/978-3-319-89722-6_11 arxiv:1802.09949

[70] Lucius Gregory Meredith, Jack Pettersson, Gary Stephenson, Michael Stay, Kent Shikama, and Joseph Denman. 2018.
Contracts, Composition, and Scaling: The Rholang specification 0.2. Retrieved May 1, 2021 from https://developer.
rchain.coop/assets/rholang-spec-0.2.pdf.

[71] Andrew Miller, Zhicheng Cai, and Somesh Jha. 2018. Smart contracts and opportunities for formal methods.
In Proceedings of the International Symposium on Leveraging Applications of Formal Methods. Springer, 280–299.
DOI:https://doi.org/10.1007/978-3-030-03427-6_22

[72] Andrew Miller, Zhicheng Cai, and Somesh Jha. 2018. Smart contracts and opportunities for formal methods.
In Lecture Notes in Computer Science (Including Subseries LNAI and LNBI), Vol. 11247. Springer Verlag, 280–299.
DOI:https://doi.org/10.1007/978-3-030-03427-6_22

[73] Malte Möser, Ittay Eyal, and Emin Gün Sirer. 2016. Bitcoin covenants. In Financial Cryptography and Data Security,
Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan Wallach, Michael Brenner, and Kurt Rohloff (Eds.). Springer,
Berlin, 126–141. DOI:https://doi.org/10.1007/978-3-662-53357-4_9

[74] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Technical Report.
[75] Arvind Narayanan and Jeremy Clark. 2017. Bitcoin’s academic pedigree. Commun. ACM 60, 12 (Nov. 2017), 36–45.

DOI:https://doi.org/10.1145/3132259
[76] Alex Norta. 2015. Creation of smart-contracting collaborations for decentralized autonomous organizations. In Lec-

ture Notes in Business Information Processing. Springer International Publishing, 3–17. DOI:https://doi.org/10.1007/
978-3-319-21915-8_1

[77] Alex Norta, Lixin Ma, Yucong Duan, Addi Rull, Merit Kõlvart, and Kuldar Taveter. 2015. eContractual choreography-
language properties towards cross-organizational business collaboration. J. Internet Serv. Appl. 6, 1 (Apr. 2015), 1–23.
DOI:https://doi.org/10.1186/s13174-015-0023-7

[78] OCamlPro. 2018. Welcome to Liquidity’s documentation!—Liquidity 1.05. Retrieved October 30, 2020 from https:
//www.liquidity-lang.org/doc/.

[79] Q. Pan and X. Koutsoukos. 2019. Building a blockchain simulation using the Idris programming language. In
Proceedings of the 2019 ACM Southeast Conference (ACMSE’19). Association for Computing Machinery, 190–193.
DOI:https://doi.org/10.1145/3299815.3314456

[80] M. P. Papazoglou. 2003. Service-oriented computing: Concepts, characteristics and directions. In Proceedings of the
4th International Conference on Web Information Systems Engineering (WISE’03).3–12. DOI:https://doi.org/10.1109/
WISE.2003.1254461

[81] Terence Parr. 1998. Introduction to ANTLR. Retrieved November 25, 2020 from https://www.antlr.org/.
[82] Travis Patron. 2015. The Bitcoin Revolution: An Internet of Money. Travis Patron.
[83] Stuart Popejoy. 2016. The Pact Smart Contract Language. Retrieved from http://kadena. io/docs/Kadena-

PactWhitepaper. pdf.
[84] Emanuel Regnath and Sebastian Steinhorst. 2018. SmaCoNat: Smart contracts in natural language. In Forum on Spec-

ification and Design Languages, Vol. 2018. IEEE Computer Society. DOI:https://doi.org/10.1109/FDL.2018.8524068
[85] Raine Revere. 2017. Functional-Solidity-Language. Retrieved October 30, 2020 from https://github.com/raineorshine/

functional-solidity-language.
[86] Dan Robinson. 2017. Ivy: A Declarative Predicate Language for Smart Contracts Introduction: Two Blockchain Mod-

els. Retrieved November 2, 2020 from https://docs.ivylang.org/bitcoin/.
[87] Nick Russell, Arthur H. M. Ter Hofstede, Wil M. P. Van Der Aalst, and Nataliya Mulyar. 2006. Workflow control-flow

patterns: A revised view. BPM Center Report BPM-06-22, 06–22.
[88] Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der Aalst. 2005. Workflow data patterns:

Identification, representation and tool support. 353–368. DOI:https://doi.org/10.1007/11568322_23
[89] Nick Russell, Wil Mp Van Der Aalst, and Arthur H. M. Ter Hofstede. 2016. Workflow Patterns: The Definitive Guide.

MIT Press.
[90] Alexander Savelyev. 2017. Contract law 2.0: ‘Smart’ contracts as the beginning of the end of classic contract law.

Inf. Commun. Technol. Law 26, 2 (2017), 116–134. DOI:https://doi.org/10.1080/13600834.2017.1301036

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

110:34 V. Dwivedi et al.

[91] Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. 2018. Writing safe smart contracts in Flint. In Proceed-
ings of the Conference Companion of the 2nd International Conference on Art, Science, and Engineering of Programming
(Programming’18 Companion). ACM Press, New York, NY, 218–219. DOI:https://doi.org/10.1145/3191697.3213790

[92] Pablo Lamela Seijas, Simon J. Thompson, and Darryl McAdams. 2016. Scripting smart contracts for distributed ledger
technology.IACR Cryptology ePrint Archive 2016 (2016), 1156.

[93] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Scilla: A Smart Contract Intermediate-Level LAnguage.
arXiv:1801.00687 [cs.PL]

[94] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao. 2019.
Safer smart contract programming with Scilla. Proc. ACM Program. Lang. 3, OOPSLA, Article 185 (Oct. 2019), 30
pages. DOI:https://doi.org/10.1145/3360611

[95] M. Singh and S. Kim. 2019. Blockchain technology for decentralized autonomous organizations. Advances in Com-
puters 115 (2019), 115–140. DOI:https://doi.org/10.1016/bs.adcom.2019.06.001

[96] S. Suriadi, R. Andrews, A. H. M. Ter Hofstede, and M. T. Wynn. 2017. Event log imperfection patterns for process
mining: Towards a systematic approach to cleaning event logs. Inf. Syst. 64 (2017), 132–150. DOI:https://doi.org/10.
1016/j.is.2016.07.011

[97] Nick Szabo. 1997. Formalizing and securing relationships on public networks. First Monday 2, 9 (Sep. 1997).
DOI:https://doi.org/10.5210/fm.v2i9.548

[98] Faizan Tariq and Ricardo Colomo-Palacios. 2019. Use of blockchain smart contracts in software engineering: A sys-
tematic mapping. In Proceedings of the Computational Science and Its Applications (ICCSA’19). Springer International
Publishing, Cham, 327–337. DOI:https://doi.org/10.1007/978-3-030-24308-1_27

[99] T. Tateishi, S. Yoshihama, N. Sato, and S. Saito. 2019. Automatic smart contract generation using controlled natural
language and template. IBM J. Res. Dev. 63, 2/3 (Mar. 2019), 6:1–6:12. DOI:https://doi.org/10.1147/JRD.2019.2900643

[100] Paul J. Taylor, Tooska Dargahi, Ali Dehghantanha, Reza M. Parizi, and Kim-Kwang Raymond Choo. 2020. A
systematic literature review of blockchain cyber security. Dig. Commun. Netw. 6, 2 (2020), 147–156. DOI:https:
//doi.org/10.1016/j.dcan.2019.01.005

[101] Tezos. 2018. Michelson: The language of smart contracts in I - Semantics. Retrieved October 30, 2020 from https:
//tezos.com/.

[102] Nachiappan Valliappan, Solène Mirliaz, Elisabet Lobo Vesga, and Alejandro Russo. 2018. Towards adding variety
to simplicity. In Leveraging Applications of Formal Methods, Verification and Validation. Industrial Practice, Tiziana
Margaria and Bernhard Steffen (Eds.). Springer International Publishing, Cham, 414–431. DOI:https://doi.org/10.
1007/978-3-030-03427-6_31

[103] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F. Wang. 2018. An overview of smart contract: Architecture, applications,
and future trends. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV’18). 108–113. DOI:https://doi.
org/10.1109/IVS.2018.8500488

[104] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander Ponomarev, and Jan Mendling. 2016. Untrusted
business process monitoring and execution using blockchain. In Business Process Management, Marcello La Rosa,
Peter Loos, and Oscar Pastor (Eds.). Springer International, Cham, 329–347. DOI:https://doi.org/10.1007/978-3-319-
45348-4_19

[105] T. Weingaertner, R. Rao, J. Ettlin, P. Suter, and P. Dublanc. 2018. Smart contracts using blockly: Representing a
purchase agreement using a graphical programming language. In Proceedings of the 2018 Crypto Valley Conference
on Blockchain Technology (CVCBT’18). 55–64. DOI:https://doi.org/10.1109/CVCBT.2018.00012

[106] Jeffrey Wilcke. 2015. Mutan Language. Retrieved October 30, 2020 from https://github.com/obscuren/mutan.
[107] Aeternity Workgroups. 2017. Sophia Introduction. Retrieved November 2, 2020 from https://github.com/aeternity/

aesophia/blob/lima/docs/sophia.md.
[108] Xtext.org. 2019. Introduction to Xtext. Retrieved November 25, 2020 from https://www.eclipse.org/Xtext/.
[109] Zheng Yang and Hang Lei. 2018. Lolisa: Formal Syntax and Semantics for a Subset of the Solidity Programming

Language. arxiv:cs.PL/1803.09885. Retrieved from https://arxiv.org/abs/1803.09885.
[110] Hirai Yoichi. 2017. Morphing Smart Contracts with Bamboo. Retrieved Nov 5, 2020 from https://github.com/

jchavarri/bamboo.
[111] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and Wei Jiang. 2016. Healthcare data gateways: Found healthcare

intelligence on blockchain with novel privacy risk control. J. Med. Syst. 40, 10 (2016), 218. DOI:https://doi.org/10.
1007/s10916-016-0574-6

Received April 2020; revised December 2020; accepted March 2021

ACM Computing Surveys, Vol. 54, No. 5, Article 110. Publication date: May 2021.

Appendix 2

II

V. Dwivedi, A. Norta, A. Wulf, B. Leiding, S. Saxena, and C. Udokwu. A for-mal specification smart-contract language for legally binding decentralizedautonomous organizations. IEEE Access, 9:76069–76082, 2021

143

Received May 10, 2021, accepted May 15, 2021, date of publication May 19, 2021, date of current version May 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3081926

A Formal Specification Smart-Contract Language
for Legally Binding Decentralized
Autonomous Organizations
VIMAL DWIVEDI 1, ALEX NORTA1, (Member, IEEE), ALEXANDER WULF 2,
BENJAMIN LEIDING 3, SANDEEP SAXENA 4, (Senior Member, IEEE),
AND CHIBUZOR UDOKWU 1
1Department of Software Science, Tallinn University of Technology, 12616 Tallinn, Estonia
2SRH Berlin University of Applied Sciences, 10587 Berlin, Germany
3Institute for Software and Systems Engineering, Clausthal University of Technology, 38678 Clausthal, Germany
4Galgotias College of Engineering and Technology, Greater Noida 201310, India

Corresponding author: Vimal Dwivedi (vimal.dwivedi@taltech.ee)

This work was supported by the Erasmus+ Strategic Partnerships Project Blockchain for Entrepreneurs - a Non-Traditional Industry
4.0 Curriculum for Higher Education under Grant 2018-1-RO01-KA203-049510.

ABSTRACT Blockchain- and smart-contract technology enhance the effectiveness and automation of
business processes. The rising interest in the development of decentralized autonomous organizations (DAO)
shows that blockchain technology has the potential to reform business and society. A DAO is an organization
wherein business rules are encoded in smart-contract programs that are executed when specified rules are
met. The contractual- and business semantics are sine qua non for drafting a legally-binding smart contract in
DAO collaborations. Several smart-contract languages (SCLs) exist, such as SPESC, or Symboleo to specify
a legally-binding contract. However, their primary focus is on designing and developing smart contracts with
the cooperation of IT- and non-IT users. Therefore, this paper fills a gap in the state of the art by specifying a
smart-legal-contract markup language (SLCML) for legal- and business constructs to draft a legally-binding
DAO. To achieve the paper objective, we first present a formal SCL ontology to describe the legal- and
business semantics of a DAO. Secondly, we translate the SCL ontology into SLCML, for which we present
the XML schema definition. We demonstrate and evaluate our SLCML language through the specification
of a real life-inspired Sale-of-Goods contract. Finally, the SLCML use-case code is translated into Solidity
to demonstrate its feasibility for blockchain platform implementations.

INDEX TERMS Blockchain, smart contract, decentralized autonomous organization, ontology, smart
contract language, business process, B2B.

I. INTRODUCTION
Blockchain technologies have spawned new business oper-
ations and management models since the former overcome
information sharing and resource integration in traditional
business management [1]. The latter have relied on a central-
izationmodel with hierarchical structures, consequently lack-
ing transparency in inter-organizational processes and trust
among participants. Decentralization is an alternative way
of conducting business where transactions are distributed
and duplicate copies of each transaction are shared with the
participants [2]. Blockchain technologies shift the notion of

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

transferring decision-making power and -functions from a
single authority to operational units at multiple levels within
an organization. Blockchain is a peer-to-peer digital- and
distributed ledger where records of business operations are
stored in an encrypted manner. Each duplicate record is dis-
tributed to every participant’s ledger and thus, no trust among
the participants is required in a business transaction. Besides,
blockchain removes centralized institutions to validate trans-
actions that are managed by a peer-to-peer network [3]. The
recent development of blockchain technology empowers and
transforms business activities due to the decentralization and
disintermediation of power structures. Thus, the immutable
traceability of blockchain technology establishes trust among
the collaboration participants and reduces cost and time

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 76069

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

in business transactions by eliminating the need for
intermediaries [4].
Information exchange is critical in collaboration between

multiple organizations. For example, in a supply chain and
X-road [5], numerous collaborative parties are committed
from production to delivery, and the integration of processes
of each involved party requires widespread information inter-
change [6]. The lack of consistent information exchange
poses a collaboration challenge for inter-organizational busi-
ness processes [7]. Blockchain technology controls the exe-
cution of inter-organizational business processes through
smart contracts and enables decentralized autonomous orga-
nizations (DAO) [8]. A DAO is an organization, or corpora-
tion whose business activities are automated as per agreeing
to rules and principles that are specified in programming
code [9]. The recent DAOs (such as The DAO) are con-
trolled by the software community, seeking to re-implement
traditional decision-making rules through blockchain tech-
nology [9]. TheDAOs‘ regulations and transactions are stored
on a blockchain, which increases the transparency among
stakeholders while the execution of the said DAOs‘ rules is
controlled by programming code.
A smart contract is a digital agreement in which the partici-

pant’s rights and obligations are specified in a program-code,
including the agreeing rules within which participants carry
out these rights and obligations [10]. The concept of a smart
contract is first time introduced in seminal work [11] by Nick
Szabo in 1997. According to Szabo, ‘‘smart contracts can
facilitate all steps of contracting processes‘‘. Thus, the search,
negotiation, performance, adjudication, commitment could
be represented in smart contracts. Still, the Szabo vision has
surged in the last few years due to the increased availability of
IoT devices and the latest evolution of blockchain technology,
rendering smart contracts a viable business concept [12].
Blockchain provides an encrypted ledger for smart contracts
that are essential for the integrity- and security assurance of
smart-contract executions. Ethereum blockchain1 invented an
ethereum virtual machine (EVM) to execute Turing-complete
scripts and run decentralized applications. The first imple-
mentation of the DAO crowdfunding project, so-called ‘‘The
DAO,’’ was developed on April 30, 2016, on the Ethereum
blockchain to provide business solutions [13]. The idea of
implementing ‘‘The DAO’’ was to provide a novel busi-
ness model where the investor, or shareholder can run both
commercial and non-profit enterprises without having a tra-
ditional management structure. In the starting phase of its out-
set, The DAO obtained the notice from media on growing the
correspondent of 168million dollars from various investors to
establish the world’s largest crowdfunding project. This DAO
was maliciously misused by an attacker who stole 50 million
dollars due to a flaw in the written DAO smart-contract code.
The other core obstacle in the evolution of The DAO is the
appropriate legal foundation. Consequently, the concept of

1https://ethereum.org/en/

The DAO failed due to the application of traditional contract
law.
In our work, we consider DAOs to be virtual enterprises

(VE), where each enterprise is a collaborating part of a
network with peers and is governed by smart contracts that
limit the behaviour of each enterprise [14]. Each enterprise is
an autonomous, decentralized, and self-organizing network
that enables a faster and more cost-effective response to
market changes. Enterprises, in the context of DAOs, are
peers, or agents that perform the specific functions required in
the collaboration lifecycle. Humans and software agents can
work together via DAOs, or virtual enterprises [15]. DAOs
use peer-to-peer (P2P) computing without any clouds/servers
in a loosely coupled collaboration lifecycle in which software
agents participate in smart contracting- setup [16], enact-
ment [17], potential rollbacks, and, finally, orderly termina-
tion. This lifecycle facilitates the selection of DAO-provided
and used services, smart-contract negotiations and behaviour
monitoring during enactment with the possibility of breach
management [18]. Participants, or parties involved in organi-
zational collaborations are known as human actors who are
assigned different roles based on the tasks (functions) they
perform in a collaboration [19]. Furthermore, smart objects
such as belief-desire-intention (BDI) agents can be combined
with smart contracts to collaborate as self-aware DAOs [20].
We discover that several workarounds, for example,

SPECS [21], Symboleo [22], SmaCoNat [23], have been pub-
lished in the scientific literature to develop legally-binding
SCLs. The existing research is limited to specify smart legal
contracts only for simple business contracts. However, they
are not feasible to formulate complex collaborative business
contracts (such asDAOs) in a legally-relevant way. Therefore,
this paper fills the gap by answering the research question,
i.e., how to develop a formal-specification language for the
purpose of legally-binding DAO collaboration. The contribu-
tions of the paper are first the development of a SCL ontol-
ogy2 that comprises concepts and properties for the design
of legally relevant DAO collaboration. Secondly, we trans-
late the SCL ontology into the smart legal contract markup
language (SLCML) for whichwe give the schema definition.3

SLCML allows to define the configuration of a smart contract
(instead of its development) for DAOcollaboration. To reduce
the complexity of the main research question and establish a
separation of concerns, we deduce the following sub-research
questions. What is the formal semantics to define the legal
aspects for a business process? What is the machine-readable
language conversion based on the ontology? What is the
feasibility-evaluation approach of the language for a use
case?
The structure of the paper is as follows. Section II dis-

cusses the automobile running case for this paper in which
we show the conflict of rights and obligations among the
collaborating parties. Further, we explain the preliminaries,

2shorturl.at/gxFKT
3shorturl.at/uBHR6

76070 VOLUME 9, 2021

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

which prepares the reader to comprehend the subsequent
sections. In Section III, we represent the formally-verified
common SCL ontology with the objective of specifying each
type of legally binding collaborative business smart contracts.
We present the syntax and structure of SLCML in Section IV
describing the translation of contractual concepts and proper-
ties of the SCL ontology into the SLCML schema. Section V
defines the feasibility evaluation of SLCML and then show
the examples of the SLCML, accompanied by a discussion
of proof-of-construction applications. Section VI discuss the
solidity code translation from SLCML code. Section VII
discuss the related work and finally, Section VIII concludes
the paper and discuss the future work.

II. MOTIVATING EXAMPLE AND PRELIMINARIES
We present the running case from the automobile industry
for legally binding smart-contract elaboration. We assume
that a CarMan produces cars and outsource a significant
portion of the supply chain to partnering counterparties that
behave as service providers, i.e., sellers. Thus, we present the
running case in Section II-A and discuss a conflict scenario of
rights and obligations among the collaborating parties. Next,
the related background literature is described in Section II-B
that prepares the reader for subsequent sections.

A. RUNNING CASE
Blockchain can be applied in the automotive industry, such as
electric vehicle charging stations [24], toll systems [25], etc.
The significant use-case of blockchain is tracking and moni-
toring the vehicle parts in the automotive supply-chain [26].
The P2P DAO-collaboration model is shown in Figure 1,
where a service consumer’s in-house process is a so-called
business network model (BNM) [27]. A BNM embodies
orchestration that is significant to a business setting and
comprises legally binding template contracts, which include
service types with clearly defined roles. The setup phase
of the DAO-collaboration lifecycle includes BNM selec-
tion, populate-module, and negotiate-module for setting up
smart-contracting preliminaries [16]. BNM selection is an
ecosystem for developing service types that can be used in
tandem with BNM in a collaborative platform that includes
business processes as a service (BPaaS-HUB) [28] in sub-
sets of the internal in-house process [29]. A BPaaS-HUB
provides a rapid exploration of business partners for match-
ing services that focuses on finding collaboration parties,
determining their identity and learning about their offerings
and reputation. Our previously developed eSourcing Markup
Language (eSML) [30] serves as the basis for specifying
BNM-specifications.
The populate-module affirms the contained service offers

against the BNM’s service types as it emerges from the
breeding ecosystem. A proto-contract emerges at the end
of the populate-phase in the DAO-setup lifecycle [16], for
the DAO-participants to begin negotiations. All DAO par-
ticipants collect a smart-contract replica and can vote on
one of three options. DAO participants reach an agreement

and create the smart contract for subsequent roll out and
enactment; a counter offer from only one DAO-participant
causes a business-semantic reversal to the creation of the
negotiate-module; and finally, a disagreement from only one
DAO-participant results in an absolute termination not only
of the contract negotiation but also of the DAO setup. The
negotiation of service type, service offer, and service role is
divided into two stages, which are depicted in [16]. Phase 1
entails the extraction of proto-contracts, while Phase 2 is used
for the consensual establishment of smart contracts. Accord-
ing to [31], agent-based negotiation is rapidly progressing and
enables semi- to fully automated negotiation.
The populate-module matches the implanted service offers

against the BNM’s service types that emerge from the breed-
ing ecosystem. A proto-contract emerges at the end of the
populate-phase in the DAO setup lifecycle [16], indicating to
the DAO-participants to begin negotiations. All DAO partic-
ipants are assigned a smart-contract replica and can vote on
one of three options. DAO participants reach an agreement
and create the smart contract for subsequent roll out and
enactment; a counter offer from only one DAO-participant
causes a business-semantic reversal to the creation of the
negotiate-module; and finally, a disagreement from only one
DAO-participant results in an absolute termination not only
of the contract negotiation but also of the DAO setup. The
negotiation of service types, -offers, and -roles is divided
into two stages, which are depicted in [16]. Phase 1 entails
the extraction of proto-contracts, while Phase 2 is used for
the consensual establishment of smart contracts. According
to [31], agent-based negotiation is rapidly progressing and
enables semi- to fully automated negotiation.
Service offers are matched with service types from

the BNM on the external layer of Figure 1. The dashed
monitorability- and conjoinment arcs [33] show how the
proposed conceptual business processes are connected to the
external layers, and these can be realised from a technical
point of view with the lightning network [34]. The decentral-
ized lightning network is suitable for micro-payments, allow-
ing instant, high volume transactions without delegating cus-
tody of funds to a third party. In Figure 1, the SupTr, SupST,
Shipping are the service providers, i.e., DAO-participants
where SupTr produces the tires, SupST makes the steering
wheels, and Ship is a shipper that delivers the assembled
cars, while the CarMan is a service consumer who assembles
the shipped car parts to manufacture a car. The collaboration
among these entities creates a DAO for manufacturing and
exporting cars. A CarMan organizes an internal business
process according to various perspectives such as process-
control, information-exchange, workforce management, allo-
cation of means of production, and so on. There is reason
to acquire services from service providers that are manifold,
e.g., the CarMan cannot manufacture the tires with a similar
quality, or at a low price per piece, or the production capacity
is not sufficient, or required special know-how is lacking,
and so on. The very top and bottom of Figure 1 depict
the legacy-technology layers where the processes from the

VOLUME 9, 2021 76071

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

FIGURE 1. DAO-collaborative automotive supply-chain [32].

conceptual layers of the service providers are mapped into
smart-contract blockchain systems on the respective internal
legacy-technology layer. The tech space of each layer is
heterogeneous, although our focus is on the internal legacy
layer with the blockchain systems. Thus, on the collaborating
parties’ respective internal legacy-technology layers, diverse
smart-contract blockchain solutions may be used such as
Ethereum, Cardano, EOS, Tezos, etc.
We focus only on market exchanges that flow among

the entities. CarMan publishes the demand through smart
contracts on a blockchain to purchase car parts specifying
several criteria such as delivery dates, price, etc. Service
providers are notified of CarMan’s demand through public
blockchain platforms and submit bids, including the state of
the car parts. To maintain the confidentiality of bid price and
personal data to service providers, a smart contract contains
the rules that cannot be altered and opened before the dead-
line [35]. Furthermore, bids submitted by participants in a
public blockchain can be encrypted before being submitted.
The key to decrypt the bid is held by a software agent that
receives bids. The CarMan chooses then suppliers either man-
ually, or automatically if their specified requirements are met,
as details of the collaboration are stored on blockchains. The
clauses related to the automotive collaboration are specified
in the respective legacy-technology layers to trigger specific
events. For example, if the SupTr cannot deliver the car tires
to CarMan at a defined time, the SupTr is charged a penalty
by smart contracts prior to delivery. In a conventional supply
chain, collaborating entities often have less, or no oversight of

which entities are accountable for bottlenecks. This oversight
is achieved through smart contracts and blockchain technol-
ogy, where collaborative parties can monitor and track the
status of products and transactions. Still, we raise legal- and
business challenges that may arise due to the immature SCLs
and blockchain technology. For instance, a smart contract
releases the funds (ether, bitcoin, etc.) automatically after
delivering the car tires to the CarMan and the delivered prod-
uct does not match the specified requirements of CarMan.
The car tires are damaged prior to delivery, and in such a case,
CarMan claims compensation, or exchanges the product. The
obligation must be imposed to fulfill that compensation on
the SupTr. Another case assumes the SupSt sells the steering
wheels to CarMan and due to the Shipper’s conflict, the prod-
uct is not delivered within the deadline set by CarMan.
Traditionally, these types of issues can be resolved through

the use of a letter of credit in international trade, in which
the buyer receives a guarantee that the price of the cargo
is not paid unless the seller demonstrates that he fulfills
the obligations assigned to him under their underlying sale
contract. Furthermore, the seller receives his money, and the
bank receives a commission for acting as an intermediary in
this transaction [36]. Still, this payment method faces numer-
ous challenges for being a slow and outdated paper-based
mechanism that requires both parties to exchange and verify
official- and legal documents. Furthermore, this payment
method relies solely on the documents to initiate payment,
rather than the underlying condition of the goods [37]. The
need for ‘physical documentation exchanges,’ along with the
transfer bill of lading and separate correspondence between
many different parties, is what renders paper-based letters of
credit time-consuming. These can be changed by implement-
ing blockchain, which reduces the time required for credit
transactions by allowing an electronic transfer of bills of
lading and other requested documents and connecting all par-
ties in a single- and private network, allowing for immediate
updates, and eliminating the long lead time for back-and-forth
communication among the various parties in letter-of-credit
transactions. Still, the properties of contractual semantics in
existing smart-contract languages do not exist to draft the
blockchain-enabled letter of credit.

B. PRELIMINARIES
In the previous section, we discuss the challenges in writ-
ing collaborative smart contracts for the supply chain where
parties’ rights and obligations must be specified. To formal-
ize the contractual- and business-collaboration concepts and
properties, an ontology is a suitable means to conceptualize
the knowledge of a particular domain [38], and is used to
overcome the conceptual inconsistencies in the blockchain
domain [39]. The ontology is a composition of triple sen-
tences, and the latter incorporates purpose, relationship, and
object, which allows the practitioner to understand the rela-
tionship of concepts in a particular domain. Humans with
informatics skills and machines can understand the expressed
domain knowledge and information in an ontology. Both can

76072 VOLUME 9, 2021

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

interact with the ontology by explicitly defining the type of
concepts, or constraints of its use. We employ the Protégé
tool [40] for developing the SCL ontology, which is an
open-source ontology editor and comprises a VOWL [41]
graphical interface to visualize the relationship among con-
cepts. For checking the inconsistencies of ontologies and
identifying the subsumption relationships between classes,
the HermiT-tool reasoner is employed [42]. Next, we use
the Liquid studio tool for mapping the ontological concepts
and properties into XML schema. Liquid Studio4 includes a
comprehensive set of tools for XML and JSON implementa-
tions, as well as data mapping and transformation tools (such
as XSLT-, XQuery editor, and so on), and a graphical XML
schema editor for visualizing, authoring, and navigating com-
plex XML schema. The former offers an effective logical
view of the XML schema, allowing for intuitive editing while
still allowing you to use all aspects of the W3C XML schema
standard.
Next, we discuss the required set of concepts and prop-

erties for specifying a legally-relevant and contractual-based
collaboration specification language.

III. ONTOLOGICAL CONCEPTS AND PROPERTIES
We develop the SCL ontology comprising the concepts
and properties that allow the formulation of smart con-
tracting DAO collaboration in a legally-relevant perspec-
tive. We expand the set of concepts and properties for
the SCL ontology, considering our prior work about
the collaboration-model in [30]. In our previous work,
the eSourcing framework is defined to specify and verify har-
monized B2B process collaborations [43]. Based on the con-
cept of eSourcing, the eSourcing ontology [30] is designed to
configure collaborating parties and their services in a decen-
tralized, contractual collaboration model. Still, the eSourc-
ing ontology lacks legally relevant contractual properties as
proposed by the SCL ontology. A contract in the SCL ontol-
ogy and SLCML includes the legal elements of contractual
collaboration, i.e., the rights, obligations, and performances.
Rights are fundamental normative regulations for what is per-
mitted, or owed to individuals under the legal system, social
convention or ethical theory [44]. Contract obligations are
those duties for which each partner in a contract agreement
is legally liable. Performance of the Contract means that the
parties have fulfilled their respective obligations under the
contract. In this paper, we only discuss the legal aspects of
the SCL ontology and the rest about the collaboration model,
we refer the reader to [30] for further information about the
collaboration model.
Since contracts can be of different types, the realm and

range of each type differ vastly [45]. It is difficult to express
the entire spectrum of contracts in a single ontology because
the latter is far too large and diverse to be useful. To capture
the full range of business-related contracts within a uni-
fied model, a multi-tiered contract ontology that progresses

4Liquid Studio | Home

FIGURE 2. Outline for the upper-level smart-contract ontology.

FIGURE 3. Rights and obligations.

from abstract to specific meta data definitions to stratifi-
cations is proposed. The two layers of the multi-tier SCL
ontology is identified as presented below; other extensions
and layers might be possible. The upper core layer depicts
the broad configuration of smart contracts applicable over
most of the widespread types of contracts. The fundamental
concepts such as rights, obligations, and roles are consid-
ered building blocks for defining all types of business con-
tracts, as presented in Figures 2 and 3. The specific domain
layer is a collection of various contract-type ontologies such
as employment contracts, sale of goods, etc. As shown in
Figure 4, every contract-type retains every underlying char-
acteristic of the upper-layer and then excels in the particular
information specific to the contract domain.

A. UPPER CORE LAYER OF SMART CONTRACTS
We illustrate the upper core layer of legally-relevant
smart-contract DAOs depicted in Figures 2 and 3 through
the business setting. Assuming a running-case scenario from
Section II-A where SupTr and SupST promise to provide the
tires and steering wheels respectively to CarMan and on the
other hand, the latter promises to return the sum of money.
The promise is a declaration of devotion to perform activities
or set of actions, such as supplying tires and steering wheels.
When the promises are made with legal intent to substantiate
in any judiciary, the former becomes a legal obligation. The

VOLUME 9, 2021 76073

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

legal testimonials of the promises (viz. obligations) originate
from the contracting parties (viz. actors) are specified in the
contracts, comprising details of composing the obligations,
admitted limits, and performance measures such as time,
venue, etc. Actors are the offeror, offeree, and mediators
who perform their roles specified in smart contracts. In our
running example, CarMan is an offeror who has the buyer’s
role, and SupTr, SupST is the offeree who has the service
provider’s role. CarMan creates an offer to buy the tires and
steering wheels to SupTr and SupSt, respectively. A smart
contract is legally binding if the contracting parties have
the necessary capacity, or competence to enter into the con-
tract [46]. If a party is unable to understand the contract,
or is presumed to be unable to do so, the party lacks the
competence, or capacity to enter into a contract. A person
lacks legal capacity who is insane, or under a certain age,
for example, may be considered incompetent to enter into a
contract. Several collaborating DAOs, such as SupTr, SupSt,
and CarMan, must have legal capacity. A DAOs’ legal status
was recently established in Wyoming.5

A consideration is a benefit that must be negotiated
between the parties and is the principal cause for a party to
enter into a contract. Considerations can also be as simple
as pledging to repair a leaking roof or committing not to
do something. Tires and steering wheels, for example, are
contract considerations for which CarMan, SupTr, and SupSt
have entered into a contract. The delivery of tires and steering
wheels, as well as transfer of ownership, constitute a perfor-
mance of the sales contract. Considerations are also just a
commitment to fix a leaky roof, or a pledge not to do some-
thing.6 A consideration equally occurs if CarMan signs a con-
tract with SupTr under which CarMan does not order other
brands of tires except Goodyear, and SupTr pays CarMan
$500 per year for adhering to this agreement. The promise of
the sellers, i.e., the sale of the tires and steering wheels, is an
obligation that is fulfilled when the real business activities
of supplying the tires and steering wheels are carried out in
return for money. CarMan is a beneficiary, or claimant who
receives the consideration, or is the individual to whom the
business operations are performed. Finally, smart contracts
specify the terms and conditions under which the agreed per-
formances are carried out. Typically, contractual performance
takes place as stipulated and agreed in the contracts. If the
performance is not enforced within the expected timeframe,
or executed inadequately, the obligation state becomes unful-
filled. On behalf of the promised party, the occurrence of the
non-performance event stimulates certain pre-agreed rights.
Assume that the SupTr does not deliver the tires to CarMan
under the terms and conditions agreed upon. CarMan seeks a
remedy for a penalty, or interest; or may prefer to terminate
as per the contract. Alternatively, CarMan may refrain from
any punishing actions and resolve the conflict in a calming
manner with mutual consensus on how to proceed. The ser-

5DAO | Legal status
6Consideration | Legal Definition

vice provider is obligated to fulfill any type of remedy (i.e.,
reconciliatory promise) as requested by the CarMan. The
reconciliatory promise is considered to complete the initial
commitment.
We present a simple case study above, where we observe

that obligations may trigger further obligations and rights.
In the same way, rights may activate new obligations, etc.
In the next section, we will discuss the obligation types that
are extracted from the upper-layer ontology.

B. SPECIFIC DOMAIN LAYER
The contract statements are informative, declarative, or per-
formative, as discussed in [47], [48]. Informative statements
recognise several details, such as the identity of the parties,
which law can be enforced, the subject matter of the con-
tract, and so on. Declarative statements express the intention,
or condition that changes the state through the performance
of the specified conditions. The former are usually of several
kinds, such as rights, obligations and prohibitions. Obliga-
tions are mandatory statements in contracts that include the
obligation owner who is the recipient of the obligation and the
obligor, or debtor who performs the obligation. The obligor,
or debtor is obliged to execute the obligation condition once
and only once in each execution of the contract. Similar to the
obligations, rights have right holders and beneficiaries, while
the rights are performed by the rights holders. The execution
of right is optional and may be performed under specific
circumstances depending on the performance of obligations.
Prohibitions are statements describing which action should
not be taken, or which actions are unacceptable to either party,
or both parties.
The obligations are bound to their performative and

non-performative events in order to fulfill the former. Based
on the nature of the obligations’ fulfillment execution, the lat-
ter is categorized as primary, reciprocal, conditional, and
secondary, as shown in Figure 4. Primary obligations are
fulfilled if the primary objectives of the contract are met.
For example, the primary obligation of SupTr and CarMan is
fulfilled when SupTr delivers the tires in accordance with the
contract, or CarMan accepts and pays for tires as ordered. The
reciprocal obligation may in itself be the primary obligation,
but the former is also the obligation that the counterparty is
required to perform in response to the execution of the latter.
TheCarMan obligation to pay, for example, is relational to the
SupTr obligation to deliver, and vice versa. The responsibility
to pay for CarMan is also a primary obligation of the former.
A conditional obligation does not have to bemet in the normal
course of events. Most of the remedial rights and obligations
fall into this category. For example, if CarMan does not
receive the tires and steering wheels within a specified time
frame, CarMan may seek compensation for failed delivery.
Correspondingly, the service provider is obligated to deliver
the good in addition to an extra penalty fee. Finally, a sec-
ondary obligation is a sub-part of a primary obligation and
may be activated for additional commitment. For example,

76074 VOLUME 9, 2021

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

FIGURE 4. Specific domain layer.

SupSt and SupTr are also committed to packaging services
that are not legally bound to provide such services.
We also categorize obligations into legal-, business-, and

ethical obligations based on the contextual nature of the obli-
gation that requires a particular type of performance. Every
declaration in the business contract is legally enforceable and
also has legal consequences. Nevertheless, the category of
legal obligation is proposed in order to differentiate obliga-
tions that require certain specific legal actions to be taken in
order to fulfill the latter. Similarly, business obligations are
legally binding to categorize those obligations that are specif-
ically related to the performance of the business. Business
obligations are classified into monetary and non-monetary
obligations. Monetary obligations, e.g., late-payment charges
are those dealing with economic, or financial consequences.
Furthermore, not all business obligations necessarily have to
be financial commitments. Commitments such as CarMan
sends orders to buy the steering wheels after contracting,
or SupSt is required to arrange for the carrier and notify Car-
Man, etc., require a business execution. Obligations between
CarMan and SupSt, such as tire replacement, logistics carrier
arrangement, etc., have no economic implications and we
consider these types of obligations to be non-monetary obli-
gations. Legal norms often directly refer to moral- and ethical
principles.7 The contracting parties are thus, legally- and
morally obligated to assist their services. For example, ser-
vice providers are legally- and morally obligated to arrange
for the pickup of car components from their premises. Next,
we convert the concepts and properties of the SCL ontology
into a machine-readable language, i.e., SLCML, for which
links are provided in Section I to download the complete
ontology and SLCML schema definition.

IV. SLCML: A CONTRACT SPECIFICATION LANGUAGE
The extended SCL ontology comprises the legal concepts
and properties of contractual business DAO collaboration.
Further, the ontology is verified by the Hermit-reasoner [49],

7International chamber of commerce | Home

and for the proof-of-concept, the former is translated into a
machine-readable language termed SLCML. Our previously
developed eSourcing Markup Language (eSML) is imple-
mented on the basis of eSourcing ontology, inwhich our focus
was incorporating a smart-contract collaboration configura-
tion. The development of the eSourcing ontology and eSML
answers three key contractual questions, i.e., who-, where-,
and what-concepts. Who-concepts identify the contracting
parties and where-concepts distinguish the basic aspects of
the electronic-contract context, and finally what-concepts
define the exchanged values and the related conditions. For
further details, we refer to the reader [30]. Still, the legal
elements of contracts in SCL are critical for forming a
legally binding smart contract. Therefore, we first enhance
eSourcing ontology with a law researcher8 and provide a
mature SCL ontology for the advancement of DAO-based
smart-contract collaboration. The next step is to map the
extended concepts and properties of the SCL ontology into
the eSML language for which we use Liquid Studio Tool9

as an XML schema editor for writing XML documents. The
enlarged version of eSML,we call the SLCML.Next, we only
discuss the extension part of SLCML, which is not part of
the eSML foundation, and provide the link for the reader to
download the complete SLCML schema in Section I.
Next, we present the SLCML schema of the upper-level

smart contract in Section IV-A. The schema for defining
the domain specific contractual properties are presented in
Section IV-B.

A. UPPER-LEVEL SMART-CONTRACT DEFINITION
The code extract in Listing 1 defines the legal elements
described in the upper layer of legally relevant smart-contract
DAOs. The element role in Line 4 defines the role of par-
ties that may be the buyer, the seller, etc., as discussed in
Section III. The contractual considerations, along with the
variable types, are set out in Line 6 of Listing 1. The value of
minOccurs and maxOccurs in Line 6 shows the amount
of consideration required for a legally binding smart con-
tract. In order to specify the terms and conditions in the
smart contract, we define the terms_and_conditions
element in Line 8. The terms and conditions comprise the
rights, obligations, prohibitions, and timeframes for which
the custom-variable terms and conditions-definition type are
defined as shown in Listing 2. Line 8 of the Listing 1 defines
the description of the contracting party, followed by the cus-
tom type company_info which includes the name of the
contracting party, the type of legal organization, the company
contact information, and so on.
The code extract in Listing 2 is part of the terms and

conditions that define the rules and regulations governing
the performance of the parties, as discussed in Section III.
The rights of the elements are defined in Line 3 along

8Alexander Wulf contributed to this paper by supporting the creation of
the smart contract law ontologywith his legal expertise. He did not contribute
towards the written text of the paper.

9Liquid Studio | Home

VOLUME 9, 2021 76075

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

LISTING 1. Upper layer of the smart-contract schema.

LISTING 2. Schema definition of terms and conditions.

with the custom type, i.e., the right_type by which the
parties can configure the types of right. The minOccurs
and maxOccurs show that parties must choose at least
one rights. Terms and conditions may be subject to prohi-
bitions and the definition of prohibitions and are described
in Line 4. Line 5 specifies the obligations, along with the
obligation_category, by which the parties may con-
figure several obligations, as shown in Listing 5. Finally,
time_frame is defined in Line 6 that shows the expiry of
the terms and conditions.
variables_def_section is a common variable

attribute that contains properties used for all simple- and com-
plex variables in SLCML and defined in Listing 3. The string
type is needed to define the string data items. For instance,
the role of the contracting party may be defined in string type.
The boolean data type is required to support the definition
of boolean contract data items. For example, the contract
may be legally binding or not, and this is defined by the
boolean data type. The integer datatype stores numerical val-
ues of contract-id and considerations. Special data types such
as money_type and event_type define specific contractual

LISTING 3. Common variable attributes.

activities. For example, the money_type defines the amount
of money from a specific currency, and event_type defines
the event that may occur during the contract.

B. OBLIGATION-TYPE DEFINITION
The obligation_category consists of the
obligation_type, obligation_state, perfor-
mance and non-performance specified in Listing 4.
The element obligation_type along with custom vari-
able obligation_type-_definition is specified in
Line 3 by which several obligations are configured. The
obligation_state is defined in Line 4 to monitor the
contract fulfillment process via which an obligation can
pass through. In the code example of Listing 4 the defi-
nition of obligation_type_definition is omit-
ted. The obligation state depends on the performance and
non-performance conditions defined in Line 5.
Listing 5 is an example of obligation types from which

the parties can configure at least one-, or more obligations.
The legal obligation is defined in Line 3 along with the
string variable type. Business obligations have monetary
and non-monetary implications for which monetary and
non-monetary elements are defined in Lines 4 and 5.
Similarly, Line 6 defines the moral obligation along with the
string type. We follow a similar approach to define the rest of
the obligations, as shown in Listing 5.

V. FEASIBILITY EVALUATION
For our automotive running case, we briefly discuss the
SLCML code examples based on the presented SLCML

76076 VOLUME 9, 2021

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

LISTING 4. Schema of obligations category.

LISTING 5. Schema of the type of obligation.

schema in the previous section. Listing 6 shows an example
of defining a legally-binding contract that has a unique ID and
cannot be changed throughout the contract enforcement. Line
2 defines the public key of the CarMan wallet and the same
hold for the SupSt and SupTr wallet in Line 6 and Line 10,
respectively. The name of the parties, i.e., CarMan, SupSt,
and SupTr, are defined in Line 3, 7, respectively. CarMan
has the service consumer’s role described in Line 4. The
same applies to SupSt and SupTr, which have the role of
the service provider specified in Lines 8 and 12 respectively.
Considerations of contracts, such as tires and steering wheels,
are presented in Line 14 and 15, for which the parties agree
to enter into a contract. Next, terms and conditions include
the obligations and rights that are defined in Listing 7 and 8
respectively.
Listing 7 shows an example of the CarMan obligation to

renumerate money for tires and steering wheels. The obliga-
tion has a name and unique ID thatmonitors performance, and
we consider that to be a monetary obligation. Line 3 enables
the obligation state, which means that CarMan receives
orders, i.e., tires and steering wheels, and that CarMan has an
active obligation to pay money to service providers. SupTr
and SupSt are the beneficiaries of the obligations as shown
in Line 5 and Line 6 respectively, and CarMan is the obligor

LISTING 6. Contract instantiation for the automotive running case.

who is obliged to perform this obligation as set out in Line 7.
We assume that no third party, or mediators are involved in
this obligation. The to-do obligation has legal implications for
which the CarMan has to act by actually paying the money.
The preconditions for the obligations are set out in Line
13 and Line 14, for which CarMan and service providers sign
contracts (Act1) and (Act2) and CarMan receives tires and
steering wheels. The performance type is the payment that
needs to be transferred fromCarMan to SupSt and SupSt wal-
let addresses. Besides, the performance object is defined as
the buywith the qualifiers, which is paid for a specific amount
within the deadline. The rule_ conditions specify the
time limit for payment and the purchase-payment plan are set
out in Line 18. Finally, a reference is added to the obligation
in which a remedy for late payment exists. If CarMan fails
to pay the money within the time limit then CarMan has to
transfer a defined monetary amount to SupTr.
The code extract of Listing 8 comprises intersecting provi-

sions with the obligation. The rights and obligations are inter-
twined, which means that if one party asserts its rights, the
other party is required to comply. Similar to the obligation in
Listing 7, the rights have a beneficiary who can be benefited
from the right and an obligor who can enable the right. For
example, CarMan receives the defective tires, and in that case,
CarMan is the owner of the right to claim the replacement of
damaged tires. Consequently, the SupTr is obliged to replace
the latter.
Again, we assume that the rights have a name and ID

as defined in Line 1. As the service providers have a right
to waive the right, for example, the SupTr can convince
the CarMan the parts were defective during logistics with-
out his fault. The rights can be changed during the execu-
tion of the contract and the compensation is set to false if
the SupTr agrees to replace the tires. The state of right is
available for direct enactment, and the parties are defined
in the same way as in Listing 7. The right-type is set to

VOLUME 9, 2021 76077

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

LISTING 7. Obligation example for paying car parts.

conditional-right, and the CarMan uses that right as a claim
for the replacement of the tires. The right’s precondition is
to have the contract signed and the parts delivered to the
CarMan. The performance type is set to replace the tires
described as a performance object with a brand, type, and
serial number. After enabling this right, the corresponding
obligation on the SupTr must be fulfilled under the specified
deadline; otherwise, the CarMan claims the remedy payment
of a specific amount.
To date, several online dispute resolutions such as

online arbitration, crowd-sourced dispute resolution, and
Al-powered resolutions have been proposed in the event
that parties do not resolve their disputes themselves [50].
Blockchain communities developed arbitration systems to
resolve disputes quickly and efficiently in line with appro-
priate norms and recognized equitable principles. Sagewise’s
technology,10 for example, is incorporated into a smart con-
tract through a coded provision in which consumers pre-set
specific parameters, including when and how long the smart
contract execution should be delayed, and who resolves any
disputes that may arise. As a result, if a dispute arises, this
clause allows a party to halt contract execution and activate
the Sagewise dispute resolution mode. After that, the party
can select from a variety of dispute resolution processes

10Sagewise|Dispute resolution

LISTING 8. Right example for replacing a broken car’s component.

for resolving smart-contract issues and enforcing online
judgments.
In the following Section, we will demonstrate how to trans-

late SLCML code into Solidity.

VI. SLCML TO SOLIDITY-CODE TRANSLATION
Our starting point is the SLCML code corresponding to our
running case generated in Listing 6, 7, 8. The Solidity use
case code in Section VI was not generated by the tool, but it
is anticipated that it will be generated once the tool is imple-
mented. The transformation rules can be used to translate
SLCML code to a choreography model, which is then trans-
lated to Solidity code using a Caterpillar [51]. Caterpillar is
a fully accessible Blockchain-based BPM system which con-
verts BPMN-modelled business processes into Solidity-based
smart contracts. Still, we do not discuss the transformation
rules because they are beyond the scope of the paper. We only
discuss the Solidity code presented in Listing 9 that contains
an excerpt from the generated smart contract. To begin the
task execution with rights and obligations, our smart contract,
‘‘Automotive_SupplyChain’’ contains four events and four
solidity functions. Lines 3 to 8 of Listing 9 represent global
variables and data pertaining to the process state is stored
on-chain. As defined in lines 9 to 17, the list of SupSt,

76078 VOLUME 9, 2021

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

LISTING 9. Automotive supply chain.

CarMan and SupTr variables is declared in struct, which
can be accessed with a single pointer name throughout the
contract. In Line 18, a further event for performance type,
i.e., tires supply, is implemented, containing parameters such
as tires quantity, CarMan address, and SupTr address to
which track the delivery of tires and steering wheels. Sim-
ilarly, an event for performance type, i.e., steering wheels,
is implemented in Line 19, along with the wheel quality,
CarMan address, and SupSt address, which track the delivery
of wheels. Lines 20 to 23 implement the notifyObligation-
Breach event and associated function for tracing SupTr and
SupSt obligations. Similarly, an event for rights is introduced
in Lines 28-30 in the event that a party seeks compensation.
Following that, a modifier precondition is used to release the
product if the payment is received before the deadline.

VII. RELATED WORK
Existing SCLs such as Solidity, Serpent and so on are devel-
oped from an IT perspective where the programmer writes a
machine-readable code without the knowledge of the contract

TABLE 1. Evaluation our specification language against existing SCLs.

domain. Still, we observe that existing research focuses on
the development of SCLs to specify legally binding smart
contracts. In [21], researchers propose a specification lan-
guage (SPESC) to define the configuration of a smart contract
(rather than its implementation) for the purpose of collabora-
tive design. In SPESC, smart contracts are considered to be a
combination of IT experts, domain practitioners and business,
or financial transactions. Using SPESC, real-world contract
utilities, such as the role of the party, the set of terms and
conditions, etc., can be specified in smart contracts. Never-
theless, SPESC does not address many aspects of contracts,
such as obligation states, categories of rights and obligations,
etc., but instead focuses on modelling legal relations (legal
positions). In [22], researchers propose a formal specifica-
tion language (Symboleo) reflecting obligations and powers,
using domain concepts and axioms. Symboleo specifications
include rights and obligations that can be monitored on a
run-time basis. In addition, formal semantics is introduced to
describe the life-cycle of contracts, obligations and author-
ities on the basis of state charts. Symboleo is sufficiently
expressive to represent many types of real-life contracts, but
Symboleo does not express the concepts and properties of
collaborative contracts.
In [52], the researcher addresses the challenges of

formalizing contracts written in natural languages in
machine-readable languages. In addition, the contract mod-
eling language (CML) is proposed for modelling and
specifying unstructured legal contracts covering a wide
range of common contract situations. CML specifies a
natural-language comparable clause grammar that resembles
real-world contracts, but this research does not address trans-
action rules and is not sufficient to formalise any type of
contracts (viz. domain completeness).
In [23], researchers argue that human contract intentions

are mostly defined in natural-language, which is easy to
understand but highly ambiguous and subject to interpreta-
tion. In addition, a methodology is proposed to develop a
high-level specification that achieves common understanding
through natural-language phrases and is compiled directly
into machine instructions. Still, this research focuses mainly

VOLUME 9, 2021 76079

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

on the readability and safety of smart contracts and does
not express the collaborative contractual suitability and com-
pleteness of the domain. In [53], researchers find it dif-
ficult to implement smart contracts due to the complexity
and heterogeneity of the underlying platforms. In addition,
the blockchain-independent smart-contract modelling lan-
guage (called iContractML) is proposed to relieve devel-
opers’ stress from addressing the particular complexity of
blockchains. CML enables blockchain developers to con-
centrate on the business process instead of the syntactical
specifics of each blockchain platform. The focus and scope
of CML is completely different from our research. Attributes
Deontic AIm Conditions (ADICO) [54] is a DSL developed
in Scala that converts domain-specific constructs of smart
contracts to simpler concepts. In [55], a contracT tool has
been developed that annotates the legal-contract text using
a legal-contract ontology. Still, the proposed ontology is not
mature enough to develop collaborative smart contracts. This
study [56] develops a framework for dynamic binding of par-
ties to collaborative process roles and an appropriate language
for binding policy specifications. The proposed language is
equipped with Petri-net semantics, which enables the verifi-
cation of policy consistency.
The above information is described in Table 1 and the

essential aspect is shown when thinking about developing
SCLML. To evaluate the SCLs, we score them with ’+’ or
’−’ operators for each of the four parameters. The former
indicates that the SCL has a specific property, whereas the
latter indicates that the property does not exist in the cor-
responding SCL. The result of the table shows that a lot of
research is being done in the area of legal smart-contract
specification. Still, we address the gap that the solutions
address in immaturely, revealing that existing methodologies
are limited to the design of all types of real-world contracts.
For example, the prior research is not sufficient to specify
collaborative- and legally binding smart contracts.

VIII. CONCLUSION
This paper presents the ontological concepts and proper-
ties that are critical for developing legally-binding DAOs.
We extend our previous work in which the specification
of DAO collaboration is discussed and only show the legal
element for this paper, which is essential for specifying
legal DAOs. An ontology is developed in the OWL language
and verified through the HermiT reasoner. The ontology is
an input for the development of the SLCML. We map the
extended concepts and properties of the SCL ontology into
the eSML language. The enlarged version of eSML, we call
the SLCML. For this paper, we only discuss the extension
part of SLCML, which is not part of the eSML foundation.
We provide a code example based on an automotive case
study that ensures the language comprises collaborative legal
concepts on the basis of semantic clarity.
We discover that the multi-tiered SCL ontology captures

the full range of legally binding business-related contracts
in a unified model. The upper-core layer depicts the broad

configuration of smart contracts applicable to most
widespread types of contracts. The specific domain layer
is the collection of different types of contracts, such as
employment contracts, sale of goods, etc. Blockchain-based
smart-contract technology could be used to address the core
issues that arise in the context of temporary employment [57],
in order to safeguard employees and prevent competition
from being distorted in favor of corporations that aim to
exploit illegal workers. Each type of contract inherits all
the core functions of the upper layer and then specializes
in the particular knowledge specific to the contract domain.
SLCML adopts a real-life contracting foundation where col-
laborating parties use their legal properties in decentralized
collaborations. SCLML is implemented based on our pre-
viously developed eSourcing Markup Language (eSML) in
which our focus is incorporating a smart-contract collabora-
tion configuration.
As future work, we aim that the contract ontology can be

further developed to achieve domain completeness. In addi-
tion, we plan to develop a tool-supported process to transform
SLCML contract specification into smart-contract code, e.g.,
Solidity, and to carry out more case studies with SLCML in
blockchain research projects. A formal analysis approach to
the specification of SLCML could be developed; we plan to
build a translator for the automatic conversion of SLCML
instantiations into a larger set of blockchain-based language.

REFERENCES
[1] X. Pan, X. Pan, M. Song, B. Ai, and Y. Ming, ‘‘Blockchain technology and

enterprise operational capabilities: An empirical test,’’ Int. J. Inf. Manage.,
vol. 52, Jun. 2020, Art. no. 101946.

[2] P. Vigna and M. J. Casey, The Age of Cryptocurrency: How Bitcoin and
Digital Money are Challenging the Global Economic Order. New York,
NY, USA: St. Martin’s Press, 2015.

[3] C. Catalini and J. S. Gans, ‘‘Some simple economics of the blockchain,’’
Commun. ACM, vol. 63, no. 7, pp. 80–90, Jun. 2020.

[4] Y. Chen and C. Bellavitis, ‘‘Blockchain disruption and decentralized
finance: The rise of decentralized business models,’’ J. Bus. Venturing
Insights, vol. 13, Jun. 2020, Art. no. e00151.

[5] R. Saputro, I. Pappel, H. Vainsalu, S. Lips, and D. Draheim,
‘‘Prerequisites for the adoption of the X—Road interoperability and
data exchange framework: A comparative study,’’ in Proc. 7th Int.
Conf. eDemocracy eGovernment (ICEDEG), 2020, pp. 216–222,
doi: 10.1109/ICEDEG48599.2020.9096704.

[6] C. Di Ciccio, A. Cecconi, M. Dumas, L. García-Bañuelos,
O. López-Pintado, Q. Lu, J. Mendling, A. Ponomarev, A. B. Tran,
and I. Weber, ‘‘Blockchain support for collaborative business processes,’’
Informatik Spektrum, vol. 42, no. 3, pp. 182–190, May 2019.

[7] R. Eshuis, A. Norta, and R. Roulaux, ‘‘Evolving process views,’’ Inf. Softw.
Technol., vol. 80, pp. 20–35, Dec. 2016.

[8] A. Norta, ‘‘Designing a smart-contract application layer for transacting
decentralized autonomous organizations,’’ in Advances in Computing and
Data Sciences, M. Singh, P. Gupta, V. Tyagi, A. Sharma, T. Ören, and
W. Grosky, Eds. Singapore: Springer, 2017, pp. 595–604.

[9] M. Singh and S. Kim, ‘‘Blockchain technology for decentralized
autonomous organizations,’’ in Role of Blockchain Technology in IoT
Applications (Advances in Computers), vol. 115, S. Kim, G. C. Deka,
and P. Zhang, Eds. Amsterdam, The Netherlands: Elsevier, 2019, ch. 4,
pp. 115–140.

[10] N. Diallo, W. Shi, L. Xu, Z. Gao, L. Chen, Y. Lu, N. Shah, L. Carranco,
T.-C. Le, A. B. Surez, and G. Turner, ‘‘EGov-DAO: A better government
using blockchain based decentralized autonomous organization,’’ in Proc.
Int. Conf. eDemocracy eGovernment (ICEDEG), Apr. 2018, pp. 166–171.

[11] N. Szabo, ‘‘Formalizing and securing relationships on public networks,’’
First Monday, vol. 2, no. 9, pp. 1–11, Sep. 1997.

76080 VOLUME 9, 2021

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

[12] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, and
A. Ponomarev, ‘‘Caterpillar: A business process execution engine on the
ethereum blockchain,’’ Softw., Pract. Exp., vol. 49, no. 7, pp. 1162–1193,
May 2019.

[13] C. Jentzsch, ‘‘Decentralized autonomous organization to automate gover-
nance,’’ White Paper 1.0, Berlin, Germany, Nov. 2016.

[14] N. C. Narendra, A. Norta, M. Mahunnah, L. Ma, and F. M. Maggi, ‘‘Sound
conflict management and resolution for virtual-enterprise collaborations,’’
Service Oriented Comput. Appl., vol. 10, no. 3, pp. 233–251, Sep. 2016.

[15] L. Sterling and K. Taveter, The Art of Agent-Oriented Modeling. Cam-
bridge, MA, USA: MIT Press, 2009.

[16] A. Norta, ‘‘Creation of smart-contracting collaborations for decentral-
ized autonomous organizations,’’ in Perspectives in Business Informat-
ics Research, R. Matulevičius and M. Dumas, Eds. Cham, Switzerland:
Springer, 2015, pp. 3–17.

[17] A. Norta, ‘‘Establishing distributed governance infrastructures for enact-
ing cross-organization collaborations,’’ in Service-Oriented Computing—
ICSOC 2015 Workshops, A. Norta, W. Gaaloul, G. R. Gangadharan, and
H. K. Dam, Eds. Berlin, Germany: Springer, 2016, pp. 24–35.

[18] A. Norta, A. B. Othman, and K. Taveter, ‘‘Conflict-resolution lifecycles
for governed decentralized autonomous organization collaboration,’’ in
Proc. 2nd Int. Conf. Electron. Governance Open Soc., Challenges Eurasia
(EGOSE). New York, NY, USA: Association for Computing Machinery,
Nov. 2015, pp. 244–257.

[19] C. Udokwu and A. Norta, ‘‘Deriving and formalizing requirements
of decentralized applications for inter-organizational collaborations on
blockchain,’’ Arabian J. Sci. Eng., vol. 46, pp. 1–18, Mar. 2021.

[20] A. Norta, ‘‘Self-aware smart contracts with legal relevance,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2018, pp. 1–8.

[21] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu, ‘‘SPESC: A specification
language for smart contracts,’’ in Proc. IEEE 42nd Annu. Comput. Softw.
Appl. Conf. (COMPSAC), vol. 1, Jul. 2018, pp. 132–137.

[22] S. Sharifi, A. Parvizimosaed, D. Amyot, L. Logrippo, and J. Mylopoulos,
‘‘Symboleo: Towards a specification language for legal contracts,’’ inProc.
IEEE 28th Int. Requirements Eng. Conf. (RE), Aug. 2020, pp. 364–369.

[23] E. Regnath and S. Steinhorst, ‘‘SmaCoNat: Smart contracts in natural
language,’’ in Proc. Forum Specification Design Lang. (FDL), Sep. 2018,
pp. 5–16.

[24] F. Knirsch, A. Unterweger, and D. Engel, ‘‘Privacy-preserving blockchain-
based electric vehicle charging with dynamic tariff decisions,’’ Comput.
Sci., Res. Develop., vol. 33, nos. 1–2, pp. 71–79, Sep. 2017.

[25] B. Xiao, X. Fan, S. Gao, and W. Cai, ‘‘Edgetoll: A blockchain-based
toll collection system for public sharing of heterogeneous edges,’’ in
Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
Apr./May 2019, pp. 1–6.

[26] S. E. Chang, Y.-C. Chen, andM.-F. Lu, ‘‘Supply chain re-engineering using
blockchain technology: A case of smart contract based tracking process,’’
Technol. Forecasting Social Change, vol. 144, pp. 1–11, Jul. 2019.

[27] T. Ruokolainen, S. Ruohomaa, and L. Kutvonen, ‘‘Solving service ecosys-
tem governance,’’ in Proc. IEEE 15th Int. Enterprise Distrib. Object Com-
put. Conf. Workshops, Aug. 2011, pp. 18–25.

[28] A. Norta and L. Kutvonen, ‘‘A cloud hub for brokering business processes
as a service: A ‘rendezvous’ platform that supports semi-automated back-
ground checked partner discovery for cross-enterprise collaboration,’’ in
Proc. Annu. SRII Global Conf., 2012, pp. 293–302.

[29] R. Eshuis, A. Norta, O. Kopp, and E. Pitkänen, ‘‘Service outsourcing with
process views,’’ IEEE Trans. Services Comput., vol. 8, no. 1, pp. 136–154,
Jan. 2015.

[30] A. Norta, L. Ma, Y. Duan, A. Rull, M. Kõlvart, and K. Taveter, ‘‘eCon-
tractual choreography-language properties towards cross-organizational
business collaboration,’’ J. Internet Services Appl., vol. 6, no. 1, Apr. 2015,
Art. no. 8.

[31] R. Lin and S. Kraus, ‘‘Can automated agents proficiently negotiate with
humans?’’ Commun. ACM, vol. 53, no. 1, pp. 78–88, Jan. 2010.

[32] N. C. Narendra, A. Norta, M. Mahunnah, L. Ma, and F. M. Maggi, ‘‘Sound
conflict management and resolution for virtual-enterprise collaborations,’’
Service Oriented Comput. Appl., vol. 10, no. 3, pp. 233–251, Oct. 2015.

[33] A. Norta and P. Grefen, ‘‘Discovering patterns for inter-organizational
business process collaboration,’’ Int. J. Cooperat. Inf. Syst., vol. 16,
no. 03n04, pp. 507–544, Sep. 2007.

[34] J.-H. Lin, K. Primicerio, T. Squartini, C. Decker, and C. J. Tessone,
‘‘Lightning network: A second path towards centralisation of the bitcoin
economy,’’ New J. Phys., vol. 22, no. 8, Aug. 2020, Art. no. 083022.

[35] Y.-H. Chen, S.-H. Chen, and I.-C. Lin, ‘‘Blockchain based smart contract
for bidding system,’’ inProc. IEEE Int. Conf. Appl. Syst. Invention (ICASI),
Apr. 2018, pp. 208–211.

[36] X. H. Li, ‘‘Blockchain-based cross-border E-business payment model,’’ in
Proc. 2nd Int. Conf. E-Commerce Internet Technol. (ECIT), Mar. 2021,
pp. 67–73.

[37] E. M. Al-Amaren, C. Ismail, and M. Nor, ‘‘The blockchain revolution:
A gamechanging in letter of credit (L/C),’’ Int. J. Adv. Sci. Technol., vol. 29,
no. 3, pp. 6052–6058, 2020.

[38] A. Maedche and S. Staab, ‘‘Ontology learning for the semantic Web,’’
IEEE Intell. Syst., vol. 16, no. 2, pp. 72–79, Mar. 2001.

[39] J. de Kruijff and H. Weigand, ‘‘Understanding the blockchain using
enterprise ontology,’’ in Advanced Information Systems Engineering,
E. Dubois and K. Pohl, Eds. Cham, Switzerland: Springer, 2017,
pp. 29–43.

[40] M. A. Musen, ‘‘The protégé project: A look back and a look forward,’’ AI
Matters, vol. 1, no. 4, pp. 4–12, Jun. 2015.

[41] S. Lohmann, S. Negru, and D. Bold, ‘‘The protégéVOWL plugin:
Ontology visualization for everyone,’’ in The Semantic Web: ESWC
2014 Satellite Events, V. Presutti, E. Blomqvist, R. Troncy, H. Sack,
I. Papadakis, and A. Tordai, Eds. Cham, Switzerland: Springer, 2014,
pp. 395–400.

[42] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, ‘‘HermiT: An
OWL 2 reasoner,’’ J. Automated Reasoning, vol. 53, no. 3, pp. 245–269,
Oct. 2014.

[43] A. Norta and R. Eshuis, ‘‘Specification and verification of harmonized
business-process collaborations,’’ Inf. Syst. Frontiers, vol. 12, no. 4,
pp. 457–479, Apr. 2009.

[44] S. Vogenauer and J. Kleinheisterkamp, Eds., Commentary on the
UNIDROIT Principles of International Commercial Contracts (PICC).
Oxford, U.K.: Oxford Univ. Press, 2009.

[45] A. J. Wulf, ‘‘Institutional competition of optional codes in European
contract law,’’ Eur. J. Law Econ., vol. 38, no. 1, pp. 139–162, 2014.

[46] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and
X. Xu, ‘‘On legal contracts, imperative and declarative smart contracts,
and blockchain systems,’’ Artif. Intell. Law, vol. 26, no. 4, pp. 377–409,
Dec. 2018.

[47] R. M. Lee and S. D. Dewitz, ‘‘Facilitating international contract-
ing: Al extensions to EDI,’’ Int. Inf. Syst., vol. 1, no. 1, pp. 94–123,
1992.

[48] Y.-H. Tan and W. Thoen, ‘‘Modeling directed obligations and permissions
in trade contracts,’’ in Proc. 31st Hawaii Int. Conf. Syst. Sci., vol. 5, 1998,
pp. 166–175.

[49] I. Horrocks, B. Motik, and Z. Wang, ‘‘The hermit owl reasoner,’’ in Proc.
CEUR Workshop, I. Horrocks, M. Yatskevich, and E. Jiménez-Ruiz, Eds,
2012, vol. 858, no. 3, pp. 245–269.

[50] A. Schmitz and C. Rule, ‘‘Online dispute resolution for smart contracts,’’
J. Dispute Resolution, vol. 2019, no. 2, pp. 103–126, 2019.

[51] O. López-Pintado. (2021). Orlenyslp/Caterpillar. GitHub. [Online]. Avail-
able: https://github.com/orlenyslp/Caterpillar

[52] M. Wöhrer and U. Zdun, ‘‘Domain specific language for smart con-
tract development,’’ in Proc. IEEE Int. Conf. Blockchain Cryptocurrency,
May 2020, pp. 1–9.

[53] M. Hamdaqa, L. A. P. Metz, and I. Qasse, ‘‘IContractML: A domain-
specific language for modeling and deploying smart contracts onto multi-
ple blockchain platforms,’’ in Proc. 12th Syst. Anal. Modeling Conf. (SAM)
New York, NY, USA: Association for Computing Machinery, Oct. 2020,
pp. 34–43.

[54] C. K. Frantz and M. Nowostawski, ‘‘From institutions to code: Towards
automated generation of smart contracts,’’ inProc. IEEE 1st Int.Workshops
Found. Appl. Self Syst. (FAS W), Sep. 2016, pp. 210–215.

[55] M. Soavi, N. Zeni, J. Mylopoulos, and L. Mich, ‘‘ContracT–from legal
contracts to formal specifications: Preliminary results,’’ in The Practice
of Enterprise Modeling, J. Grabis and D. Bork, Eds. Cham, Switzerland:
Springer, 2020, pp. 124–137.

[56] O. López-Pintado, M. Dumas, L. García-Bañuelos, and I. Weber,
‘‘Dynamic role binding in blockchain-based collaborative business pro-
cesses,’’ in Advanced Information Systems Engineering, P. Giorgini and
B. Weber, Eds. Cham, Switzerland: Springer, 2019, pp. 399–414.

[57] A. Pinna and S. Ibba, ‘‘A blockchain-based decentralized system for proper
handling of temporary employment contracts,’’ in Intelligent Computing
(Advances in Intelligent Systems and Computing), vol. 857, K. Arai,
S. Kapoor, and R. Bhatia, Eds. Cham, Switzerland: Springer, 2019, doi:
10.1007/978-3-030-01177-2_88.

VOLUME 9, 2021 76081

V. Dwivedi et al.: Formal Specification SCL for Legally Binding Decentralized Autonomous Organizations

VIMAL DWIVEDI received the master’s degree
in information technology from Indraprashta Uni-
versity, Delhi. He is currently pursuing the Ph.D.
degree with the Blockchain Technology Group,
Tallinn University of Technology. He has worked
as an Assistant Professor of information technol-
ogy in India. He is also an Early Stage Researcher
with the Blockchain Technology Group, Tallinn
University of Technology. He has (co)authored
four publications in conference proceedings. His

research interests include semantics and ontology development, and
legally-relevant smart contract languages development for blockchains.

ALEX NORTA (Member, IEEE) received the
M.Sc. degree from the Johannes Kepler University
of Linz, Austria, in 2001, and the Ph.D. degree
from the EindhovenUniversity of Technology, The
Netherlands, in 2007. He was a Researcher with
the Oulu University Secure-Programming Group
(OUSPG). He was a Postdoctoral Researcher with
the University of Helsinki, Finland. He is cur-
rently a Principal Investigator with the Blockchain
Technology Group. He is also a Research Mem-

ber with the Faculty of Software Science, TalTech, Tallinn, Estonia.
For the blockchain-tech startups Qtum.org, their respective whitepapers
and also serves as an advisor for several other blockchain-tech startups
such as Cashaa. His research interests include business-process collab-
oration, smart contracts, blockchain technology, e-business transactions,
service-oriented computing, software architectures, software engineering,
ontologies, security, multi-agent systems, distributed business-intelligence
mining, e-learning, Agile software engineering, production automation,
enterprise architectures, and e-governance. His Ph.D. thesis was partly
financed by the IST project CrossWork, in which he focused on developing
the eSourcing concept for dynamic inter-organizational business process
collaboration.

ALEXANDER WULF is currently a Professor of
business law with the SRH Berlin University of
Applied Sciences. His research interests include
application of empirical methodology to the study
of law, the interdependence of law and economics,
and the relevance of law and legal institutions for
the behaviour of businesses. His research focuses
particularly on the empirical analysis of European
Union commercial law.

BENJAMIN LEIDING was born in Rostock,
Germany. He received the B.Sc. degree in com-
puter science from the University of Rostock,
Germany, in 2015, and the M.Sc. degree in Inter-
net technologies and information systems and
the Ph.D. degree in computer science from the
University of Goettingen, Germany, in 2017 and
2020, respectively. He is currently a Postdoctoral
Research Fellow with the Clausthal University
of Technology. His research interests include the

machine-to-everything economy (M2X Economy), circular economy, dis-
tributed systems, and digital identities.

SANDEEP SAXENA (Senior Member, IEEE)
received the B.Tech. degree in CSE from UPTU
Lucknow, the M.S. degree in information security
from IIIT Allahabad, and the Ph.D. degree from
NIT Durgapur, West Bengal. He is currently work-
ing as an Associate Professor with the Galgotias
College of Engineering and Technology, Greater
Noida. He have more than 12 years of teaching
experience. He had performed the role of a key
member in six international conferences as an

organizing secretary/organizing chair/session chair. He had written three
technical books for UP Technical University, Lucknow. He has published
multiple research articles in reputed international journals and conferences.
He had published eight international conferences and two SCIE, nine patent
published, two Scopus, and six other published in international journals.
He is also participating in multiple professional societies, such as IAASSE
(Senior Member), CSI, and CRSI.

CHIBUZOR UDOKWU received the master’s
degree in software science from TalTech, where
he is currently pursuing the External Ph.D.
degree with the Blockchain Technology Group.
He has consulted and helped in designing sev-
eral blockchain applications for different startups.
He has published and coauthored several scientific
articles in the blockchain space. His research inter-
ests include semantics and ontology development,
design and development of blockchain systems,

blockchain use-cases, and applications in organizations.

76082 VOLUME 9, 2021

Appendix 3

III

V. Dwivedi and A. Norta. A legal-relationship establishment in smart con-tracts: Ontological semantics for programming-language development. InM. Singh, V. Tyagi, P. K. Gupta, J. Flusser, T. Ören, and V. R. Sonawane, ed-itors, Advances in Computing and Data Sciences, pages 660–676, Cham,2021. Springer International Publishing

159

A Legal-Relationship Establishment
in Smart Contracts: Ontological

Semantics for Programming-Language
Development

Vimal Dwivedi(B) and Alex Norta

Tallinn University of Technology, Akadeemia tee 15 a, Tallinn, Estonia
vimal.dwivedi@taltech.ee, alex.norta.phd@ieee.org

Abstract. Machine-readable smart contracts (SC) on blockchains
promise drastic enhancements in collaboration efficiency and effective-
ness in that cost- and time reductions can be achieved while the quality
of services increases. We address existing shortcomings of SCs that are in
tendency incomplete for legal recognition especially to smart-contract-
enabled funding rounds, not collaborative business-process reflective and
are also not aware of their own processing state to justify the claim of
smartness. When conflicts occur, tracing the past performance of con-
ventional contract (CC) execution is very slow and expensive while in
addition, CCs are challenging to enforce. On the one hand, the legal sta-
tus of SCs based funding rounds is currently not clarified and the ques-
tion arises if SCs comprise the necessary legal- concepts and properties.
Current SC solutions do not suffice in those regards. To fill this gap, we
develop the smart-legal-contract (SCL) ontology to define the legal- and
collaborative business concepts and properties in the SCs. Formal meth-
ods, such as Colored Petri Nets (CPNs), are suitable to design, develop
and analyze processing state of SCs in order to trace the performance
of contractual-rights and obligations. In this work, SCL ontology is for-
malized using Colored Petri Nets resulting in a verifiable CPN model.
Furthermore, we conduct a state-space analysis on the resulting CPN
model and derive specific model properties. A running case from the
automotive supply chain domain demonstrates the utility and validity of
our approach.

Keywords: Smart contract · Decentralized autonomous organization ·
Legal recognition · Blockchain · Ontology · Business process · B2B

1 Introduction

Traditionally the concept of the contract covers a spoken or written agreement
governed by court procedures. The first prerequisite to becoming a legally valid
contract is that the contracting parties are engaged voluntarily to reach a consen-
sus. In a traditional contract, a service is offered for some form of compensation
c© Springer Nature Switzerland AG 2021
M. Singh et al. (Eds.): ICACDS 2021, CCIS 1440, pp. 660–676, 2021.
https://doi.org/10.1007/978-3-030-81462-5_58

A Legal-Relationship Establishment in Smart Contracts 661

(usually money) and some other provisions (e.g., contract terms and conditions,
the service delivery dates, liability and compensation for the breach, and so on).
Subsequent transactions are based on trust, and contracting parties generally
see contracts as a symbol of an existing business deal. Another drawback in tra-
ditional way of establishing and managing contracts is that they are often under-
specified. More importantly, traditional contracts do not provide sufficient details
about the actual process of the transaction and, as a result, frictions between
the contracting parties are very likely to occur, e.g., one party assumes a spe-
cific product certificate before delivering a partial compensation, and the other
party assumes the contrary. The resulting deadlocks result in costly conflict res-
olution or even the entire contract transaction collapsing. Traditional contract
enforcement is also proving to be either too complicated, time-consuming, or
impossible, certainly in international circumstances.

Blockchain has established a new type of decentralized autonomous organiza-
tion (DAO) whose activities run on a peer-to-peer network, involving governance
as well as decision-making rules. The latter is an organization whose business
provisions are written in a programming code, and the necessary business oper-
ations are controlled automatically as per the agreeing to the provisions [25].
DAO encourages re-implementing each aspect of traditional organizational gov-
ernance, replacing voluntary compliance with a business’s agreement with actual
compliance using pre-agreed smart-contract code. The latter is machine-readable
software code that is situated on the protocol layer of a blockchain system to gov-
ern transactions between DAOs [2]. Subsequently, Ethereum [1] emerges as the
first smart-contract system where the protocol layer is equipped with a Turing-
complete programming language. This innovation affects a growing number of
application cases, e.g., in logistics [3], e-healthcare [8], cyber-physical systems [28]
such as for smart electrical-grid production [10], and so on. In the meantime,
various smart-contract systems exist such as Neo1, Cardano2, Hyperledger3, etc.
with varying blockchain types, consensus algorithms, and machine-readable lan-
guages [15,29].

By punishing opportunistic behavior, contracts and contract law lead to the
enforcement of the intentions initially specified in the contract by the acting par-
ties. Contracts are usually defined as legally-binding agreements that stipulate
the rights and obligations of the contracting party towards each other [30]. This
study [5] shows when code is law, it refers to the idea that, with the advent of
digital technology, code has progressively established itself as the predominant
way to regulate the behavior of Internet users. Yet, while computer code can
enforce rules more efficiently than legal code, there are also limitations, mostly
because of the difficulty to transpose the ambiguity and flexibility of legal rules
into a formalized language for interpretation by a machine. A number of studies
focus on checking the legality of smart contracts. This article [6] considers the

1 https://neo.org/ Neo blockchain—Home Page.
2 https://cardano.org/ Cardano—Home Page.
3 https://www.hyperledger.org/ Hyperledger—Home Page.

662 V. Dwivedi and A. Norta

potential issues with legal and practical enforceability that arise from the use of
smart contracts within both civil- and common-law jurisdictions.

This paper [13] shows, the technology of smart contracts neglects the fact
that people use contracts as social resources to manage their relations. The
inflexibility that they introduce, by design, short-circuit a number of social uses
to which law is routinely put. Few studies show that smart contracts are a new
form of preemptive self-help that should not be discouraged by the legislatures,
or courts [23]. A smart contract gives rise to a novel means of legally enforcing
obligations and rights. These issues are treated differently from country to coun-
try. Smart contracts that underpin transactions in ICOs (Initial Coin Offerings
– e.g., KodakCoin) may be illegal in some jurisdictions, while a smart contract
that handles intra-institutional banking and other financial transactions is con-
sidered as legal, in the same jurisdiction, or elsewhere [22]. Another study show
the necessary requirements and design options for the legality of smart-contract
forms and proposes future research directions [4]. The future research direction
aims to provide straight-through processing of financial contracts, with highly
automated smart contract code to entire semantics of smart contract. This future
direction opted by the another study [17]. This research shows the significance of
highly automated smart contract so called self-aware smart-contract in the real
world financial contract. In [22], another initiative investigates the legal enforce-
ability of smart contracts. In this research, the findings render smart contracts
legally enforceable by incorporating crypto primitives such as a digital signature.

Thus, the state of the art shows that CCs cause high transaction costs due
to their multiple shortcomings, SCs lack legal relevance and this yields legal
uncertainties for users while furthermore, SCs are inflexible code that are not
smart. This paper fills the gap by answering the main research question of how
to establish legal relevance for smart contracts that have socio-technical utility?
To establish a separation of concerns, we deduce the following sub-questions.
What conditions need to be fulfilled for SCs to have legal relevance? What are
the properties of an ontology that represent these conditions for legal relevance?
What enactment mechanisms ensure the legal enforceability for contracts?

The remainder of this paper is structured as follows. Section 2 presents a
running case and additional preliminaries. Section 3 comprises the legal problem
factors for smart contracts that require legal relevance. Next, Sect. 4 translates
these elements into an ontology for SCs and Sect. 5 presents the SLC lifecycle
model to monitor contractual rights and obligations. Section 6 demonstrates a
feasibility evaluation and discussion that expands the running case of this paper.
Finally, Sect. 7 gives conclusions, limitations, open issues and future work.

2 Motivating Example and Preliminaries

In Sect. 2.1 we present the running contract case that stems from real car produc-
tion supply chain contracts. In Sect. 2.2 we present related background literature
that prepare the reader for subsequent section.

A Legal-Relationship Establishment in Smart Contracts 663

2.1 Running Case

To illustrate the approach of the paper, a generic supply chain running case of
car production is shown in Fig. 1. The original equipment manufacturer (OEM)
actually assembles the delivered car parts. The other parties of the supply chain
involve either the supply side, or demand side. E.g., the Supplier A sources and
supplies the raw materials to Supplier B, who manufactures the individual car
components. The particular car component are then shipped to the OEM, who
assembles the final product.

Supplier B
(Receiver)

Supplier A
(Sender)

OEM
(Sets Criteria)

1

2

3

4a
4b

5

Fig. 1. Supply chain running case.

We deploy the supply chain running case into the blockchain that plays a
significant role for checking provenance and tracking of product, which is possi-
ble with the integration of smart-contract. The blockchain allows supply-chain
partners to access various functions, i.e., partners can access particular function
such as checking provenance. For checking the provenance, Supplier A delivers
the raw materials to Supplier B and the former publish the records into the
blockchain with the integration of sensors. The records include quantity, qual-
ity of product and location, time on which the raw product is shipped. This
information is immutably stored into the blockchain and can be accessed by
supply-chain partners.

664 V. Dwivedi and A. Norta

For tracking of the product, when Supplier B receives the raw materials, we
assume he confirms that the shipment is in order. If the shipment is received on
time and at the correct location as per sensor verification, then the payment in
the form of digital transaction is executed automatically by a smart-contract.

We can improve supply chain processes efficient by integration of smart-
contract into the blockchain. However we introduce various limitation of this
technology by considering supply chain running case. In Fig. 1, Step 1 shows the
OEM sets the acceptable criteria such as correct location and lead time for each
leg of the shipment. The OEM also holds digital currencies while Supplier A is a
sender who delivers the raw material and publishes the details on the blockchain
in Step 2. When the Supplier B receives the raw material, he publishes the
records as well in Step 3. In this step we show some conflict situation that may
arise due to immaturity of novel blockchain technology. From supplier B, the
data goes to smart contract through sensor for further action. This data can not
reliable because it can be altered by external third party. In next phase, when
specific criteria meet that are embedded in the smart-contract per Step 4a, then
a payment is executed automatically in Step 5. There can be another possibility
that the smart contract fails to meet certain conditions. In this situation, an alert
is triggered so that partners can rectify any problems in Step 4b. Furthermore,
we raise another issue for this paper in asking what happens if a particular
obligation is not performed by the partners? For example, assuming the OEM has
a payment obligation in Step 5, then in case of late payment, Supplier A has the
right to claim late-payment charges. After enabling the corresponding function
of rights by Supplier A, the OEM has an obligation to pay. Here, we have seen
rights and obligation of parties are not clear. There can be another possibility
that the smart contract fails to meet certain conditions. In this situation, an
alert is triggered so that partners can rectify any problems in Step 4b. Another
challenge of this paper is, if the partner is a non-programmer, he is not capable
of understanding what rights and obligation are written in the contract.

2.2 Related Background Literature

In this section, we describe the computation toolkit to understand the solution of
the running-case problem. In Sect. 2.1, we propose the situation of the dispute
among the parties. To overcome this situation, we develop an ontology that
comprises the concept and properties of rights and obligations. The ontology is
a formal representation of knowledge by a set of concept and relationship among
those concepts [14]. The ontology organizes the class hierarchies of relationships
and allows the practitioner to understand the relationships of the particular
problem domain. We design the ontology in Protege tool [16] that is open-source
ontology editor and comprises the graphical user interface for visualization of
the relationship among classes. We employ the HermiT-tool reasoner [7] that
checks the correctness of ontology and identify subsumption relationship among
classes.

A Legal-Relationship Establishment in Smart Contracts 665

Later, to automate the concept of rights and obligation in smart-contracts,
the Protege tool also supports web ontology language4 (OWL) that express
the formal semantics of ontology into machine-readable code. We also employ
Coloured Petri Nets (CPN) tools5 for checking the dynamic behaviour of ontol-
ogy processing. CPN tool is an software that is useful for simulation and state
space analysis of the model. An state space is a directed graph with nodes so-
called states and arcs that connect states and transition. The CPN-notation
comprises state represented as a circle, transition represented as a rectangle,
arcs that connect the states to transitions, and token with color, i.e., attributes
with values. Transition fires when all input states hold the tokens and produce
condition-adhering tokens into output places.

3 Legal Recognition Factors

In this section, we discuss the legal recognition of the business-to-business (B2B)
smart contracts presented in Sect. 2.1. A core principal in contract law is freedom
of contract that has two main elements, a) the right of a legal person to freely
decide whether to enter into a contract and b) the right to freely decide together
with the other contracting party, or parties about the content of the contract [24].
The prevailing view in law [26] concerning a) is that in principal nothing prevents
two B2B parties to voluntarily enter into machine-readable sales contracts that
are based on a blockchain6. To assess how the rules apply regarding the formation
of contracts to smart contracts, the analogy of a vending machine has often been
used in the literature [27]. In both cases, a legally binding contract is formed
due to the consenting actions of the contracting parties. Just as for a vending
machine, a smart contract can be independently designed by an offeror and
deployed to a blockchain [6]. The design and deployment thereby indicate the
offeror’s intention to be legally bound according to the terms stipulated in the
smart contract. According to this analogy, the offeree agrees to be bound by
the smart contract through conclusive conduct. Equivalent to entering a coin
into a vending machine he, or she fulfills the triggering requirements of the
smart contract. In regard to our running case, this means that an OEM sends
cryptocurrencies to Supplier B’s smart contract to order intermediate product.
By sending the tokens to the smart-contract wallet address, the OEM consents to
the contract terms of Supplier B’s smart contract and a legally binding agreement
is formed [11]. To conclude, from a legal point of view, the right of a legal person
to freely decide whether to enter into a contract extends to the right to enter
into smart contracts.
4 https://www.w3.org/OWL/.
5 http://cpntools.org/.
6 Note that this freedom may be limited in the case of business-to-consumer contracts

and special kind of contracts with significant consequences for the contracting parties
(e.g., the selling and transfer of real estate) where the law may demand a special
form requirements. Still, as these contracts are not part of our running case, we will
not discuss the legal problems connected to the operationalization of such contracts
as smart contracts any further.

666 V. Dwivedi and A. Norta

Accordingly, also b) the right to freely decide together with the other con-
tracting party, or parties about the content of the contract, should extend to
smart contracts. Still, it is currently unclear how a court, or an arbitrator would
interpret smart contacts that do not use legal terminology but are based on pro-
gramming code [9]. Assuming that for our running case, Supplier B delivers the
intermediate product to the OEM who’s sensors accurately recognize the deliv-
ery of the intermediate product. The cryptocurrency funds are thus released to
Supplier B and the goods are stored in the warehouse. Later, the intermedi-
ate product is used for production by the OEM and it is discovered that the
intermediate products are of inferior quality, most likely due to impurified raw
materials delivered by supplier A to Supplier B. The OEM’s production pro-
cess has to stop causing severe consequential damages. The OEM sues supplier
A for replacement of the inferior intermediate products and compensation for
the lost production. Supplier A claims that the inferior quality of the interme-
diate products was not caused by impurified raw materials but rather because
of inappropriate storage by the OEM. Furthermore, Supplier A argues that the
terms and conditions of the smart contract exclude consequential damages and
stipulate an immediate notification deadline in case of defective goods that the
OEM has missed. The OEM and supplier A also disagree about the responsible
dispute resolution forum and the applicable contract law. The current state of
smart contracts do not allow a judge to solve these problems. This is because
there is currently no complete legal ontology that allows programmers to design
smart contracts in the fashion of traditional contracts.

In the next section, we present a comprehensive contract law ontology that
allows contracting parties to precisely define the content of a smart contract for
machine readability and in case of disputes, also by a human judge, or arbitrator.
We argue that only with the help of our contract-law legally binding smart
contracts can be designed.

4 Smart-Legal-Contract Ontology

A smart legal contract (SLC) ontology7 in Fig. 2, Fig. 5 comprises essential con-
cepts and properties to support SC legally enforceability. We develop the SLC
ontology in protége tool to render the latter machine-readable and explain the
concepts and properties for the running case of the car production business case,
as illustrated in Sect. 2.1.

7 Full ontology: https://bit.ly/3c5eYO5.

A Legal-Relationship Establishment in Smart Contracts 667

Fig. 2. Outline for upper level smart contract ontology.

The SC ontology defines fundamental concepts such as roles, considerations,
rights, and obligations, etc., as presented in Fig. 2. In our running case, Supplier
A promises to deliver the raw materials to Supplier B in return a specific amount
of money. Supplier B manufactures the car component and promises to deliver to
the OEM. To prevent a conflict among the parties the role is defined in the SC.
A promise is a statement of commitment to fulfil some act or perform certain
deeds and when a promise is given with legal intent of enforcement in court,
later becomes legal obligation.

The valid SC must hold two or more contracting parties, such as offeror,
offeree, and acceptor etc., [9]. An offeror sends an offer to an offeree for deliv-
ering services, and the offeree accepts an offer, offeree becomes acceptor. In our
running case, Supplier B acts as an offeror for car components to an OEM that
is an offeree. When an offer is accepted by an OEM, then the later transforms
into an acceptor. Furthermore, contracting parties must have the necessary com-
petence and capability to perform certain deeds. Supplier B must own the car
components as he has promised to deliver the car components, and the OEM
must have the capital to pay for it. Further, a valid SC can be a complete-, or
incomplete contract. For example, the car manufacturer writes the SC of ship-
ment of cars without giving the deadline, and it considers a valid contract while
it is incomplete because there is nothing obligations are specified for the parties
(Fig. 3).

Consideration is defined as exchanged value for the trade of which the con-
tracting parties agree to enter into a SC. Car components and raw materials are
the asset, or consideration of the contract. The selling of raw material, or car
components constitutes the performance that fulfills the promise of the contract.
Selling of the car component to an OEM is an obligation of supplier B that is

668 V. Dwivedi and A. Norta

Fig. 3. Rights and obligations.

realized when an actual business act of given car component is performed in
return of compensation. An obligation must have obligee who is obliged to per-
form a particular action and obliger beneficiary who receives the consideration
for whom a promise is established. In this case, Supplier B is an obligee who is
obliged to deliver car components, and OEM is an obliger who receives the car
component.

Also, the SC contains the deadline, or time frame under which the promised
performances shall occur. If certain promises are not performed under the dead-
line, or in unsatisfactory manner, then the state of obligation will change as to
unfulfilled. In our running case, if supplier B does not execute the promises as
planned and agreed, then the obligation is unfulfilled, resulting in the OEM may
seek the pre-agreed rights as compensation. In this case, the OEM may have the
right to seek a remedy in the form of a penalty, or can terminate the contract.
Also, the OEM can choose not to do anything and settlement occurs by mutual
consent.

We explain the simple running case of ontology, where we see an obligation
may activate another obligation and rights. Similarly, the rights too may enable
new obligations being formed. Therefore, we present the types of rights and
obligations in Fig. 5. Also, we describe the change of obligation state under which
rights may activate.

We refine an obligation type by adding sub-classes such as monetary-, non-
monetary-, moral-, and legal obligation to express a particular remedy. The
monetary obligation may create a remedy such as late-payment-charges, penalty,
etc. For instance, if the OEM receives a car component from Supplier B and does
not pay the money within a deadline, then Supplier B may provide a remedy
as to a late-payment-charge. Similarly, if a supplier delivers defective car parts
then the OEM may have legal rights to cancel the SC. The OEM may have
non-monetary obligations to arrange a carrier to provide the car components

A Legal-Relationship Establishment in Smart Contracts 669

but does not have monetary obligation between supplier and OEM. There may
be another moral obligation type that is not severely binding but is morally, or
ethically an expected obligations. For instance, the OEM has an obligation to
pick up the car components from the supplier premises. Still, the OEM may urge
for help to arrange the transportation. The supplier may not legally bound to
help the OEM, but morally he is bound to assist the OEM (Fig. 4).

Fig. 4. Common obligation types.

We identify several obligation states to track the SC fulfillment process more
systematically, and an individual obligation may exist in more than one category.
The proposed obligation states in Fig. 5 are adopted from similar work proposed
by LEE [12]. Initially, the SC has an inactive state when the supplier and OEM
have signed the SC, but the SC execution does not commence. The SC is said
to be active when the performance event is performed. For instance, the OEM
demands to deliver the car components to Seller B who receives an order; the
supplier obligation to deliver the car components is triggered. The SC obliga-
tion state is pending when the supplier has dispatched the car components from
the warehouse and is waiting for a carrier for transportation. The obligation
state will be pending until the entire essential fulfillment process is completed.
When the OEM receives the car components that satisfy the stipulated perfor-
mance condition, then the obligation state is fulfilled and when the obligation
is terminated by the obligee with mutual intent, the obligation state changes to
termination.

5 Rights- and Obligations Monitoring

We develop an SLC lifecycle model8 to monitor contractual rights and obli-
gations defined with the ontology of Sect. 4. We adopt the existing formalized
8 Full download CPN model: shorturl.at/cxBE9.

670 V. Dwivedi and A. Norta

smart-contracting lifecycle in [18,20,21], where the startup phase commences
with the configuration of a business network model (BNM). The latter is a
cross-enterprise collaboration blueprint and contains the legally valid template
contract that inserts the service type with organization roles. The latter enables
fast and semi-automatic identification of contracting parties for knowing their
identity, services, and reputation. We include the rights and obligations through-
out the existing smart-contracting lifecycle to monitor the related contractual
fulfillment process, and the updated lifecycle is called the SLC lifecycle model.

Fig. 5. Rights and obligations selection in BNM.

The SLC lifecycle is divided into two modules, set up- and perform phase.
In the setup module, the proposal of SC is finalized and negotiated among the
contracting parties. Further, the performances of smart- contracting are accom-
plished in the perform module. The rights and obligations are stipulated through-
out the entire lifecycle. Still, we present the transaction of rights and obligations
in the smart-contracting setup phase and especially in the BNM selection that
is an ecosystem for breeding service types with rights, obligations, and roles to
become a part of BNM. The latter is divided into several sub-modules namely,
repository accessing, manage service offer, and manage service type, as presented
in Fig. 7. A repository accessing exists in BNM selection, where we assume a user
inserts the service type with rights and obligations over the time and the same
assumptions hold for the repository of service offer in the manage service offer
module. Finally, the conformance validation module is developed to conform to
the validation of service offer against the chosen service type in the BNM draft
specification.

A Legal-Relationship Establishment in Smart Contracts 671

Next, we provide the details of each module in the subsections below.

5.1 Repository Accessing

We assume a contracting party inserts the rights, roles, and obligation for service
types in the repository in Fig. 6.

Fig. 6. Repository of service type with rights, roles, and obligations.

As a first step, the contracting party chooses a BNM from stored BNM drafts.
Thereafter, the latter inserts the rights and obligations in the manage service
type module that is stored in the state labeled repository service types. Further,
the actual BNM selection involves choosing a BNM draft for validating service
offers and roles to be filled subsequently with rights and obligations. The rights
and obligations to be filled in the manage service type module are presented
below.

Manage Service Type. The actual repository of service types commences
with choosing the rights and obligations in the Manage service type module, as
presented in Fig. 7. Initially, the list of rights and obligations of service type is
empty in the repository. At a first step, the contracting party chooses the service
type Id from choose ST transition. After that, the latter inserts the rights and
obligations simultaneously in selected ST by firing the insert right and insert
obligation transitions.

672 V. Dwivedi and A. Norta

Fig. 7. Insertion, deletion of rights and obligations in service types.

Additionally, the inserted rights and obligations are deleted by firing the tran-
sitions delete right and delete obligation. The same assumption holds for choosing
the rights and obligations for service offer in manage service offer module.

5.2 Conformance Validation

To be considered as a service offer for finalizing the proto-SC, beforehand, a
conformance validation is necessary, as depicted in Fig. 8. The selected service
offer and service type from the BNM repository are extracted for the validation.
The chosen right and obligation properties inherit the properties of the service
type. Thus, we extract the rights and obligations from the state labeled repository
service type and repository service offer. Further, a service offer matched with
service types is stored in the state labeled confirmed SO and confirmed ST.

6 Evaluation

We use the CPN tool to evaluate the model concerning the correctness and per-
formance checking, especially considering aspects that are required for system
development. Due to page limitations, we do not present the entire steps that
are taken to produce the evaluation results. Several properties, such as reacha-
bility, loops, etc., as depicted in Fig. 9, are essential to evaluate in the model.
Due to the size of models, computation of states verification through automatic

A Legal-Relationship Establishment in Smart Contracts 673

Fig. 8. Conformance validation of service offers and service types.

simulation of token games is challenging. Thus we are focused on the detection
of loops to prevent the desired termination reachability. Furthermore, specific
attention is required to exit loop-conditions effectively, such as elements of the
business-policy control. Performance peaks are calculated during runtime either
in designing for sufficient resources or in restricting the load with the business
policy control. The utilization property is used to ensure the effectiveness of
each model in a specific scenario. Finally, home marking is needed for consistent
termination to ensure simple testing of a real system.

We generate the state space on CPN modules where the computation is
feasible and present the results in Fig. 9. Loops exist in manage service type
module. For the Manage service type, a party inserts the rights and obligations.

Fig. 9. Model checking.

674 V. Dwivedi and A. Norta

Loops exist in manage service type module. Managing the service type loop
is self-restricting as it only processes the rights and obligations of parties, respec-
tively. The results show for the remaining modules in Fig. 9; they do not contain
the loops.

Performance peaks exist in Fig. 9 to represent the places of the SLC lifecycle
that are the performance bottlenecks. Peaks exist in each module but not in BNM
selection. For the repository accessing, the peaks exist for choosing a BNM draft
and party’s roles and also for inserting the rights and obligations.

There is no home marking, as presented in Fig. 9, and the result for dead
marking differ. Multiple dead marking and home marking show test cases are
more demanding for practitioners to validate the implementation. D* means a
dead marking result that shows the intentional disabling of marking path for
the purpose of focusing on a particular module under investigation. Finally, the
utilization test in Fig. 9 shows there is no unused sub-module exist.

Due to page limitations, we refer to the reader [19] for more details of eval-
uation.

7 Conclusion

Smart contracts are machine-readable software code that is situated on the pro-
tocol layer of a blockchain system to govern transactions. The later gives rise
to a novel means of legally enforcing rights and obligations. State of the art
shows that CCs cause high transaction costs due to their multiple shortcom-
ings, SCs lack legal relevance, and this yields legal uncertainties for users while
furthermore, SCs are inflexible code that is not smart.

In this paper, we identify a gap between business process management and
SC execution, and their fulfillment. Thus, we introduces the ontological con-
cepts of rights and obligations for SC’s that are defined in business contracts.
For developing the ontology we opt the protege tool that is open source ontol-
ogy editor and employ the HermiT-tool reasoner that checks the correctness of
ontology. Further, we propose the obligation states through which each obliga-
tion is passed. For ensuring the legal enforceability of SC’s, we present an SLC
lifecycle model to monitor contractual rights and obligations. For exploring the
SLC lifecycle in a dependable way, we choose CPN Tools that has a modeling
notation backed with formal semantics.

The limitation of the paper is that we are only focused on presenting the
transaction of rights and obligations in the smart-contracting setup phase. Future
work in SC’s domain includes analysis and modeling of other types of business
legal SC’s. Further, resetting of human to the machine for the self-aware SC’s
are a possible extension to ongoing work.

Acknowledgments. This article is based on research from the Erasmus+ Strategic
Partnerships Project - 2018-1-RO01-KA203-049510 “Blockchain for Entrepreneurs - a
non-traditional Industry 4.0 curriculum for Higher Education”.

A Legal-Relationship Establishment in Smart Contracts 675

References

1. Buterin, V., et al.: Ethereum white paper. Github Repository, pp. 22–23 (2013)
2. Butterin, V.: A next-generation smart contract and decentralized application plat-

form (2014)
3. Casado-Vara, R., González-Briones, A., Prieto, J., Corchado, J.M.: Smart con-

tract for monitoring and control of logistics activities: pharmaceutical utilities case
study. In: Graña, M., et al. (eds.) SOCO’18-CISIS’18-ICEUTE’18 2018. AISC,
vol. 771, pp. 509–517. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
94120-2 49

4. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations,
design landscape and research directions. arXiv preprint arXiv:1608.00771 (2016)

5. De Filippi, P., Hassan, S.: Blockchain technology as a regulatory technology: from
code is law to law is code. arXiv preprint arXiv:1801.02507 (2018)

6. Giancaspro, M.: Is a ‘smart contract’ really a smart idea? Insights from a legal
perspective. Comput. Law Secur. Rev. 33(6), 825–835 (2017)

7. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

8. Griggs, K., Ossipova, O., Kohlios, C.P., Baccarini, A., Howson, E., Hayajneh, T.:
Healthcare blockchain system using smart contracts for secure automated remote
patient monitoring. J. Med. Syst. 42(7), 130 (2018)

9. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based
smart contracts for blockchain systems. In: Alferes, J.J.J., Bertossi, L., Governa-
tori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42019-6 11

10. Imbault, F., Swiatek, M., De Beaufort, R., Plana, R.: The green blockchain: manag-
ing decentralized energy production and consumption. In: 2017 IEEE International
Conference on Environment and Electrical Engineering and 2017 IEEE Industrial
and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–5. IEEE
(2017)

11. Lauslahti, K., Mattila, J., Seppala, T.: Smart contracts-how will blockchain tech-
nology affect contractual practices? ETLA Reports (68) (2017)

12. Lee, R.M., Dewitz, S.D.: Facilitating international contracting: AL extensions to
EDI. Int. Inf. Syst. 1(1), 94–123 (1992)

13. Levy, K.E.: Book-smart, not street-smart: blockchain-based smart contracts and
the social workings of law. Engag. Sci. Technol. Soc. 3, 1–15 (2017)

14. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst.
16(2), 72–79 (2001)

15. Mohanta, B., Panda, S., Jena, D.: An overview of smart contract and use cases
in blockchain technology. In: 2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pp. 1–4. IEEE (2018)

16. Musen, M.A., et al.: The Protégé project: a look back and a look forward. AI
Matters 1(4), 4 (2015)

17. Norta: Self-aware smart contracts with legal relevance. In: 2018 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

18. Norta, A.: Establishing distributed governance infrastructures for enacting cross-
organization collaborations. In: Norta, A., Gaaloul, W., Gangadharan, G.R., Dam,
H.K. (eds.) ICSOC 2015. LNCS, vol. 9586, pp. 24–35. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-50539-7 3

676 V. Dwivedi and A. Norta

19. Norta, A., CINCO, C., Computing, I.: Safeguarding trusted ebusiness transactions
of lifecycles for cross-enterprise collaboration. Technical report C-2012-1, Depart-
ment of Computer Science, University of Helsinki, Helsinki, Finland (2012)

20. Norta, A., Othman, A.B., Taveter, K.: Conflict-resolution lifecycles for governed
decentralized autonomous organization collaboration (2015). https://doi.org/10.
1145/2846012.2846052

21. Norta, A.: Creation of smart-contracting collaborations for decentralized
autonomous organizations. In: Matulevičius, R., Dumas, M. (eds.) BIR 2015.
LNBIP, vol. 229, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21915-8 1

22. Patel, D., Shah, K., Shanbhag, S., Mistry, V.: Towards legally enforceable smart
contracts. In: Chen, S., Wang, H., Zhang, L.-J. (eds.) ICBC 2018. LNCS, vol.
10974, pp. 153–165. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94478-4 11

23. Raskin, M.: The law and legality of smart contracts (2016)
24. Schafer, I.: Ott, lehrbuch der okonomischen analyse des zi-vilrechts, 4 (2005)
25. Singh, M., Kim, S.: Chapter four - blockchain technology for decentralized

autonomous organizations. In: Kim, S., Deka, G.C., Zhang, P. (eds.) Role of
Blockchain Technology in IoT Applications. Advances in Computers, vol. 115, pp.
115–140. Elsevier (2019). https://doi.org/10.1016/bs.adcom.2019.06.001. https://
www.sciencedirect.com/science/article/pii/S0065245819300257

26. Smits, J.M.: Contract law: a comparative introduction
27. Szabo, N.: Formalizing and securing relationships on public networks. First Monday

2(9) (1997)
28. Teslya, N.: Industrial socio-cyberphysical system’s consumables tokenization for

smart contracts in blockchain. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018.
LNBIP, vol. 339, pp. 344–355. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-04849-5 31

29. Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., Wang, F.: An overview of smart
contract: architecture, applications, and future trends. In: 2018 IEEE Intelligent
Vehicles Symposium (IV), pp. 108–113. IEEE (2018)

30. Wulf, A.J.: Institutional competition of optional codes in European contract law.
Eur. J. Law Econ. 38(1), 139–162 (2014)

Appendix 4

IVV.Dwivedi andA.Norta. Auto-generation of smart contracts fromadomain-specific xml-based language. In S. C. Satapathy, P. Peer, J. Tang, V. Bhateja,and A. Ghosh, editors, Intelligent Data Engineering and Analytics, pages549–564, Singapore, 2022. Springer Singapore

179

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353269962

Auto-Generation of Smart Contracts from a Domain-Specific XML-Based

Language

Preprint · July 2021

DOI: 10.13140/RG.2.2.34511.61609

CITATIONS

0
READS

199

2 authors:

Some of the authors of this publication are also working on these related projects:

2021 Data, Information, Knowledge and Wisdom Conference (DIKW 2021) View project

Master thesis topic: Implementation and Simulation of Blockchain- based Survival game View project

Vimal Dwivedi

Tallinn University of Technology

17 PUBLICATIONS 23 CITATIONS

SEE PROFILE

Alex Norta

Tallinn University of Technology

145 PUBLICATIONS 1,207 CITATIONS

SEE PROFILE

All content following this page was uploaded by Vimal Dwivedi on 15 July 2021.

The user has requested enhancement of the downloaded file.

Auto-Generation of Smart Contracts from a
Domain-Specific XML-Based Language

Vimal Dwivedi[0000−0001−9177−8341] and Alex Norta[0000−0003−0593−8244]

Tallinn University of Technology, Akadeemia tee 15 a, Tallinn, Estonia
vimal.dwivedi@taltech.ee

alex.norta.phd@ieee.org

Abstract. Smart Contracts are a means of facilitating, verifying and enforc-
ing digital agreements. Blockchain technology, which includes an inherent con-
sensus mechanism and programming languages, enables the concept of smart
contracts. However, smart contracts written in an existing language, such as
Solidity, Vyper, and others, are difficult for domain stakeholders and program-
mers to understand in order to develop code efficiently and without error,
owing to a conceptual gap between the contractual provisions and the respec-
tive code. Our study addresses the problem by creating smart legal contract
markup language (SLCML), an XML-based smart-contract language with pat-
tern and transformation rules that automatically convert XML code to the So-
lidity language. In particular, we develop an XML schema (SLCML schema)
that is used to instantiate any type of business contract understandable to
IT and non-IT practitioners and is processed by computers. We advocate a
pattern, as well as its transformation rules, for converting contracts described
in SLCML to smart contracts written in Solidity, a smart contract-specific
programming language, in order to reduce the effort and risk associated with
smart contract development. We demonstrate and evaluate our SLCML and
transformation approach through the specification of a real life-inspired Sale-
of-Goods contract.

Keywords: Blockchain· smart contract· decentralized autonomous organiza-
tion· SLCML· supply chain.

1 Introduction

Blockchain technology has gained traction in a variety of industries, including fi-
nance [24] and healthcare [17], due to its distributed, decentralized, and immutable
ledger, in which individual entities may not be trusted. Blockchains overcome the
intermediary trusted authority by securing and validating a transaction through
cryptographic signature and a consensus mechanism. Several blockchains, including
Ethereum and Hyperledger, use smart contracts to define business rules and auto-
mate business processes that govern transactions. According to Nick Szabo “A smart
contract is a computer program or a transaction protocol which is intended to auto-
matically execute, control or document legally relevant events and actions according
to the terms of a contract or an agreement [31].“ Prior to the advent of blockchain
technology, Szabo pioneered the notion of smart contracts in 1996. The first version
of blockchain (also known as blockchain 1.0) was implemented in 2008 as a byproduct
of bitcoin without the capability of smart contracts [13]. Blockchain 2.0 introduces
smart contract languages (SCLs) like Solidity, Vyper, and others, which have signif-
icantly increased the use of smart contracts and blockchain implementations outside
of digital currencies [22].

A smart contract is frequently confused with a computer programme written by
an IT programmer, but it is an interdisciplinary concept that includes, but is not
restricted to, business, financial services, and legal principles [27]. A smart contract
defines how exchanges and disbursements between various wallets in the business
and finance domains are shared. A contract is a legal agreement between collaborat-
ing stakeholders that consists of consensual commitments in commercial contracts,

2 Dwivedi and Norta

whereas a smart contract is one in which the commitments are encoded in computer
programmes that are automatically executed [27]. Because smart contracts are in-
terdisciplinary in nature, different practitioners such as lawyers, computer engineers,
business and finance experts, and others from various domains can collaborate to
design, propose, and implement smart contracts. Existing SCLs (such as Solidity [9],
Vyper [4], and others) are primarily implemented technologically, and smart contracts
written in these languages are incomprehensible to professionals outside the IT sector.
Legal properties (rights and obligations, for example) of smart contracts are equiv-
alent to software requirements that the program must meet for the programmer. As
a result, legal knowledge is required for IT programmers to write contract content
and communicate with business people in order to elicit and clearly define software
requirements. Due to a lack of legal knowledge among IT professionals, verifying le-
gal requirements in smart contracts is difficult and time-consuming. The other open
problem is existing SCLs are not feasible to formulate complex collaborative business
contracts (such as DAOs) in a legally-relevant way [10].

Several workarounds for developing legally binding SCLs have been published in
the scientific literature, including SmaCoNat [28], ADICO [16], and SPESC [19]. The
above-mentioned publications, in particular, encompass intriguing approaches and
findings. However, there is no model transformation to an executable smart contract
implementation in the proposed domain specific languages [12]. Furthermore, existing
SLCs are not process aware when it comes to writing collaborative business contracts.
Therefore, this paper fills the gap by answering the research question, i.e., How to
build a BPMN choreography model for converting an SLCML contract to Solidity.
The paper’s contributions include the creation of an SLCML 1 (XML-based language)
smart-contract implementation that is process aware and understandable by both IT
and non-IT practitioners. SLCML allows for the specification of a smart contract’s
configuration (rather than its execution) for the purpose of creating collaborative
business contracts. To reduce the effort and risks associated with smart-contract de-
velopment, we propose a pattern and its transformation rules for building a choreog-
raphy model to translate smart contracts written in SLCML into Solidity. We derive
the following sub-research question from the main research question in order to sim-
plify it and develop a separation of concerns. What is the structure of the SLCML
instantiation that is crucial for the choreography transformation? What are the pat-
terns and rules for converting SLCML code to a BPMN choreography model? What
is the feasibility-evaluation approach of the proposed solution for a use case?

The following is the outline of the paper. The traceability of rights and obligations
in the milk supply chain is discussed in Section 2. We also explain the preliminaries,
which help the reader understand the sections that follow. We define the running
case SLCML instantiation and present the syntax and structure of SLCML in Sec-
tion 3. In addition, in Section 4, the pattern and transformation rules are discussed,
and the feasibility is evaluated in Section 5. Section 6 describe related work, and
Section 7 concludes the paper and provide the future work.

2 Motivating Example and Preliminaries

To demonstrate how legally binding smart contracts can be created, we address an
ongoing case study from the dairy food supply chain. We believe that both up-
stream (manufacturers, producers, etc.) and downstream (distributors, wholesalers,
etc.) supply-chain representatives track and process conformance data in order to ex-
plain enforcement criteria to both public workers and more demanding consumers.
As a result, in Section 2.1, we present the running case and discuss a conflict scenario
involving the rights and obligations of upstream and downstream parties. Section 2.2
then describes the related background literature, preparing the reader for the following
sections.

1 shorturl.at/uBHR6

Title Suppressed Due to Excessive Length 3

2.1 Running Case

Blockchain technology has the prospects to benefit the food supply chain, including
the pork supply chain [8], the fish supply chain [20], and others.A significant use-case
for blockchain is the tracking and monitoring of product safety and regulatory com-
pliance throughout the food supply chain [6]. To better understand the traceability
of rights and obligations in the context of the various food supply-chain stakeholders,
we use the dairy supply-chain conceptual model [2] for our research, as shown in
Figure 1. Many stakeholders, including manufacturers, retailers, and others, are in
charge of managing the supply-chain operation from the start, when a cow on a farm
produces raw milk, to the finished product, when a consumer consumes baby-milk
powder. The traceability of one of the actors’ internal processes is referred to as in-
ternal traceability, whereas chain traceability corresponds to the traceability of the
entire supply chain [23]. An external traceability is used to determine the traceabil-
ity between two actors. Each actor uses a different type of technology, such as IoT
devices, location-based technology, to retrieve and provide information to the Food
Safety Information System (FSIS). The latter includes a variety of data that are re-
quired for food supply-chain actors to achieve transparency and quality assurance.
According to [2], FSIS is managed by centerlized-, or decenterlized information that
is not specified. The emphasis is on each actor possessing similar abilities at the same
time. The Food Safety and Quality Assurance System (FSQAS) defines the safety
and quality standards that supply-chain stakeholders must follow. The FSIS stores
traceability data that reflects compliance with these regulations.

Food Safety Information System

Food Safety & Quality Assurance System

Farm Distributor Factory Retailer Consumer

Supply-chain Traceability

Text

Internet & Web
Technology

Wireless Identification
& Sensor Technology

Location-based
Technology

Information &
Communications

Technology

Internal
Traceability

Internal
Traceability

Internal
Traceability

Internal
Traceability

Internal
TraceabilityE

xt
er

na
l

Tr
ac

ea
bi

lit
y

E
xt

er
na

l
Tr

ac
ea

bi
lit

y

E
xt

er
na

l
Tr

ac
ea

bi
lit

y

E
xt

er
na

l
Tr

ac
ea

bi
lit

y

Good Practices (GMP, GHP,...) HACCP ISO Standards TQM

Fig. 1: Dairy food supply chain [3].

We are only interested in market exchanges between entities. Farmers keep detailed
records of their farm’s location, breed, immunisations, treatments, and, if applicable,
special regimens. Animal health and movement are tracked using RFID devices, or
any other sensor network that incorporates blockchain technology. Similarly, data on
animal migration is captured and stored on blockchains using sophisticated machines.
When the milk is milked, the distributor is notified via public blockchain platforms,

4 Dwivedi and Norta

and the milk is ready for collection. Maintaining temperature during transportation
is critical to preventing milk spoilage, and sensors devices are used to accomplish this.
Furthermore, GPS is used for real-time vehicle tracking. As milk is delivered to the
factory, the relevant information is updated on a blockchain network. The location
of the unit, the amount of delivery at a specific lot, and so on are examples of infor-
mation. The factory processes the milk and produces the baby milk powder, as well
as providing consumers with accurate information about food products, management
guidelines, validity periods, usage directions, and other useful information.

According to [7], smart contracts are required for food supply-chain operations to
excel in the form of improved buyer service and quality assurance. The supply-chain
operation clauses are specified in the food-safety- and quality-assurance system to
trigger specific events. For example, if a distributor fails to deliver milk to producers
(i.e., a factory) within a specified time and quality, smart contracts charge a penalty
prior to delivery. In a traditional supply chain, collaborating entities frequently have
little, or no control over which entities are responsible for bottlenecks. This oversight is
made possible by smart contracts and blockchain technology, which allow collaborative
parties to monitor and track the status of products and transactions. Still, we raise
legal- and business concerns resulting from SCLs and the blockchain technology’s
infancy. Assuming a smart contract automatically releases funds (ether, bitcoin, etc.)
after delivering milk to producers; what happens if the quality of the milk delivered
does not meet the producers’ specified requirements? When the milk quality is poor
prior to delivery, the producer seeks compensation, or exchanges the milk. On the
distributor side, the obligation to fulfill that compensation must be imposed. The
distributor can also claim that the poor-quality milk stems from the farmer. Legal
constraints must be specified in smart contracts in these cases according to contract
law. Contracts must include exchange provisions that define the rules for exchanging
the product, canceling the contract, and calculating interest adjustments in payments.

2.2 Preliminaries

We discuss the difficulties in writing collaborative smart contracts for the dairy supply
chain in the previous section, where parties’ rights and obligations must be specified.
We use the Liquid studio tool to create SLCML (i.e., XML schema) as a foundation for
instantiating each type of real-world business contract. Liquid studio2 offers robust set
of tools for XML and JSON creation, as well as data mapping and transformation tools
(such as XSLT-, XQuery editor, and so on), as well as a graphical XML schema editor
for visualising, authoring, and manipulating complex XML schemata. The former
provides an interactive logical view of the XML schema, allowing for intuitive editing
while still retaining access to all aspects of the W3C XML schema standard. Following
that, a Solidity code-generator tool is created to convert XML-based smart contracts
into blockchain-specific programming languages (i.e., Solidity [1]).

Following that, we next present the SLCML schema definition and SLCML in-
stantiation for legally binding dairy-milk supply chain with the XML smart-contract
code.

3 SLCML: A CONTRACT-SPECIFICATION LANGUAGE

SLCML [11] is a machine-readable XML-based choreography language for specify-
ing cross-organizational business smart contracts derived from a smart-contract on-
tology3, which includes the concepts and properties of legally binding contractual
business collaboration. We do not go into detail about the smart-contract ontology
because it is beyond the scope of this paper.

SLCML is an extension of the eSourcing Markup Language (eSML), with the goal
of incorporating a smart-contract collaboration configuration. eSML is based on a

2 https://www.liquid-technologies.com/xml-studioLiquid Studio — Home
3 shorturl.at/gxFKT

Title Suppressed Due to Excessive Length 5

real-world contractual framework, and collaborating stakeholders use process views
that are projected externally for cross-organizational matching. When a match takes
place an agreement is formed, which is the primary criterion for contract formation.
A process view is an abstract concept of an inbuilt process that enables customers to
control the evolution of process instances while concealing sensitive or insignificant
aspects of the supplier process. Legally binding constructs, as well as process views
and their efficient matching relationships, are critical factors in establishing cross-
organizational smart contract collaboration. We do not go into great detail about
process views and their matching relationships in SLCML instantiation because they
are a part of eSML and have already been discussed in [25], [14]. We use a subset of
eSML as the base language for SLCML, which we supplement with additional schemas
for rights and obligations and the complete schema along with process views can be
downloaded from the link provided in Section 1. Following that, we discuss below the
SLCML instantiation in terms of rights and obligations that is not part of eSML for
our running case, which is based on the SLCML schema.

The code excerpt in Listing 1.1 defines the fundamental contractual elements re-
quired for any legally binding business-oriented smart contract. To resolve the conflict,
a smart contract is established between the producer (i.e., factory) and the distrib-
utor, which has a unique ID and cannot be changed during contract enforcement.
Line 2 specifies the producer’s public key, and Line 6 specifies the milk distributor’s
public key. Lines 3 and 7 specify the names of the parties, namely the producer and
distributor. The contracting parties’ roles i.e., producer as a service consumer and
distributor as a milk supplier are defined in Lines 4 and 8, respectively. Line 10 de-
fines consideration of contract (i.e., milk), for which the parties agree to enter into
a contract. Next, terms and conditions include the obligations and rights that are
defined in Listing 1.2 and 1.3 respectively.

1 <contract contract_id="Id1">

2 <party address="03 m6">

3 <name > Producer </name >

4 <role > Service consumer </role >

5 </party >

6 <party address="31 x7">

7 <name > Distributor </name >

8 <role > Milk supplier </role >

9 </party >

10 <consideration > Milk </consideration >

11 <terms_and_conditions/>

12 <obligation/>

13 <right/>

14 <prohibitions/>

15 <terms_and_conditions >

16 </contract >

Listing 1.1: Contract instantiation for the dairy supply chain.

Listing 1.2 is an example of a producer obligation to compensate for milk. The
obligation has a name and a unique ID that is used to track performance that we
consider a monetary obligation because it deals with economic-, or financial conse-
quences. Line 3 activates the obligation state, which means that the producer receives
milk according to the orders and has an active obligation to pay money to the distrib-
utor. The producer is the obligor who is required to perform this obligation as stated
in Line 6. The distributor is the beneficiary of the obligations stated in Line 5, and
we assume no third parties, or mediators are involved in this obligation. The to-do
obligation has legal consequences, and the producer is required to act by paying the
money. Line 12 presuppose the obligations, for which the producer and distributor
sign contracts (Act 1) and the producer receives milk. The payment that must be
transferred from the producer’s wallet address to the distributor’s wallet address is
referred to as the performance type. In addition, the performance object is defined as
a buy with qualifiers that is paid for a specific amount within a specific time frame.

6 Dwivedi and Norta

The payment time limit is specified in the rule conditions, and the purchase-payment
plan is specified in Line 15. Finally, a reference to the existence of a late payment
remedy is added to the obligation. If the producer fails to pay the money within the
specified time frame, the producer must transfer a specified monetary amount to the
distributor.

1 <obligation_rule tag_name ="paying_invoices" rule_id ="0001"

2 changeable ="false" monetary ="true">

3 <state > enabled </state >

4 <parties >

5 <beneficiary > Distributor (31 x7) </beneficiary >

6 <obligor > Producer (03 m6) </obligor >

7 <third_party > nil </third_party >

8 </parties >

9 <obligation_type >

10 <legal_obligation > to-do </legal_obligation >

11 </obligation_type >

12 <precondition > act1 (signed)& Milk (transferred) </precondition >

13 <performance_type > payment (03 m6 ,31 x7, buy) </performance_type >

14 <performance_object > invoice (buy , amount)<performance_object >

15 <rule_conditions > date (before delivery of milk) </

rule_conditions >

16 <remedy >late_payment_interest (amount ,03 m6 ,31 x7) </remedy >

17 </obligation_rule >

Listing 1.2: Obligation example for paying milk.

Listing 1.3 code extract includes provisions that intersect with the obligation. The
rights and obligations are intertwined, which means if one party asserts its rights, the
other party is obligated to comply. The rights, such as the obligation in Listing 1.2,
have a beneficiary who can benefit from them and an obligor who can enable them. For
example, if a producer receives poor-quality milk, he or she has the right to demand
that the milk be replaced. As a result, the distributor is required to replace the milk.

1 <right_rule tag_name ="milk_replacement" rule_id ="0002"

2 changeable ="true" monetary ="false">

3 <state > enabled </state >

4 <parties >

5 <beneficiary > producer (31 x7) </beneficiary >

6 <obligor > distributor (03 m6) </obligor >

7 <third_party > nil </third_party >

8 </parties >

9 <right_type >

10 <conditional_right > claim </conditional_right >

11 </right_type >

12 <precondition > act1 (signed)& Milk (transferred) </precondition >

13 <performance_type > replace (poor -quality milk) </performance_type

>

14 <action_object > milk (cans of milk , type , and batch unit) </

action_object >

15 <rule_conditions > deadline (date) </rule_conditions >

16 <remedy > late_replacement_interest (amount , 31 x7) </remedy >

17 </right_rule >

18

Listing 1.3: Right example for replacing a poor-quality milk.

Again, we assume that the rights have a name and an ID as defined in Line 1.
Because the distributor has the right to revoke the right, the distributor, for example,
can persuade the producer that the quality of the milk was ruined during logistics
due to a faulty sensor machine that was not his fault. If the distributor agrees to
replace the milk, the rights to the contract can be changed while it is being carried
out, and the compensation can be placed to false. The parties are defined in the same

Title Suppressed Due to Excessive Length 7

way as in Listing 1.2, and the state of right is available for immediate enactment.
The right-type is set to conditional-right, and the producer asserts that the milk be
replaced. For the right to be exercised, the contract must be signed and the milk
must be delivered to the producer. To replace the milk described as a performance
object, the performance type has been changed to cans of milk, type, and batch unit.
Following the activation of this right, the distributor’s corresponding obligation must
be met within the timeframe specified; otherwise, the producer is entitled to monetary
compensation.

In the following section, we discuss the rules for converting SLCML code to a
choreography model and then implementing solidity smart contract code.

4 Patterns and transformation rules

We borrow a concept from the translation of ADICO statements to solidity [15] and
XML to choreography model [5]. According to Frantz et al. [15], contract statements
are divided into different components (abbreviated as ADICO), which include ‘At-
tributes‘, ‘Denotic‘, ‘AIm‘, ‘Conditions‘, and ‘Or else, where attributes denotes actor
characteristics and denotic describes obligations, permissions, or prohibitions. AIm
describes the action taken to regulate the contract, conditions describe the contract’s
contextual conditions, and Or-else describe the consequences. Furthermore, the au-
thor proposes mapping rules that enable developers to generate solidity code from
ADICO components. Our main contribution is to first transform the rights and obli-
gations written in SLCML into choreography model based on the publication [5] and
then to solidity code based on the publication [15]. The proposed SLCML-Solidity
mapping is summarized in Table 1.

This core construct mapping serves as the cornerstone for translating SLCML
specifications into Solidity contracts. Supply chain is a process choreography model
referred to as Supply chain choreography model, which is then transformed into a
smart contract referred to as “Supply chain smart contract“ (rule (a)). External func-
tions are only called externally by other smart contracts, or they can be called if the
former includes interaction with other contracts. In our case, interactions occur be-
tween the main smart contract “Supply chain smart contract“and the “Supply chain
oracle contract“, which are discussed further below.

Product quantity, quality, and other constraints are attached to attributes com-
ponents, which are contract global variables that translate to Solidity struct mem-
bers (rule(c)). Similarly, performance types effectively represent functions and events
(rule(f)), whereas function modifiers introduce descriptive checks that invalidate func-
tion execution (rule(d, e, g)) to reflect the mix of rights, obligations, and corresponding
preconditions.The performance type (rule(f)) is refined further by enabling the con-
figuration of an item, such as an invoice, as shown in Listing 1.2, and a target related
with a particular operation, such as replacement, as shown in Listing 1.3. Events that
are prompted as a result of the fulfilment of encapsulated circumstances are a subset
of this type (e.g. reaching a deadline for pay). Remedy are repercussions for breaching
provisions in function modifiers, which are translated by default utilizing the throw
primitive (rule(h)). Conditions joined by quantifiers are defined by a single modifier
construct, with semantic integration delegated to the developer. Assume a payment
is made, and the payment is represented as a choreography task that interacts with
the merchant account, which is implemented in Solidity as an external function.

In the process choreography model, tasks represent steps in the supply chain that
interact with external resources. As a result, we discover: 1) information recorded
from an external actor (eventually the service providers) and passed to the smart
contract, for example, service providers provide data regarding their service costs,
and so on, which is to be processed with the implementation of the process chore-
ography model.2) Data collected from external applications and utilities, such as
information pertaining to a payment task or configurations of transportation will be
similarly passed to the smart contract. 3) data read from smart contracts stored in the

8 Dwivedi and Norta

Table 1: SLCML to Solidity transformation rules.

Rule’s
identifier

XML element Choreography element Solidity Code

(a) Root element: supply
chain

Supply chain: choreography
model

Supply chain: smart
contract

(b) Step containing a
supply chain

Choreography task External function

(c) Attributes Data perspectives Struct

(d) Obligation Choreography task Function modifier,
Events

(e) Precondition Choreography task Function modifier

(f) Performance type Choreography task Functions, Events

(g) Right Choreography task Function modifier

(h) Remedy Embedded in model docu-
mentation

Throw state-
ments/alternative
control flow

(i) Step containing pay-
ment

choreography task External function

blockchain. Special contracts known as oracles will be used to deal with external data.
Oracles are real-world data stores that act as a bridge among smart contracts and the
rest of the world, as smart contracts are unable to directly call external programmes.

In the following section, we will use these transformation rules on SLCML code to
generate the choreography model and then the solidity code.

5 Feasibility evaluation

Our starting point is the SLCML code corresponding to our running case generated
in Listing 1.1, 1.2, 1.3. The transformation rules XML to choreography in Table 1 are
first used to generate the process choreography model in Figure 2 and 3 in which
two organizations, namely, service consumer and service provider, are engaged in the
execution of the cross-organizational milk supply chain process. A service provider
organization (e.g., milk distributor) completes a workflow process on behalf of a service
consumer (e.g., milk producer). Nonetheless, the service provider does not wish to
disclose all of the details of the workflow process that it implements, preferring to
disclose only those aspects of the process that are of interest to potential consumer
organizations. We do not represent the process views in the SLCML code due to page
constraints; however, the complete schema with process views can be downloaded
using the link provided in the Section 1. We employ the BPMN notation [30] to
visualize the supply chain processes specified in SLCML. An activity can appear in
both a consumer’s process-view request and a service provider’s process-view offer;
we distinguish activity occurrences by appending activity labels with either a c: (for
a consumer) or a p: (for a service provider) namespace marker (for providers).

Figure 2 depicts a milk producer process view that begins with taking orders
from customers and ends with the sale of milk powder. Following the confirmation
of the agreement between the producer and the buyer, i.e., the retailer, a signed
contract is sent to the client (i.e., the retailer), along with an estimated delivery date.
The milk producer would then place an order for milk packaging through its own
in-house process and allocate a batch unit. Following that, the supplier outsources
a distribution mechanism and specifies the rights and responsibilities of the service

Title Suppressed Due to Excessive Length 9

co
ns

um
er

 p
ro

ce
ss

 v
ie

w

c:take a order
c: sign

contract

c: milk
packaging

c: assign
batch number

SEQ2

c:schedule
route

c:deliver
regular

c:determine
right &

obligation

[delivery. original
returnDate<date

rule-
condition

precondition

c:test
parcel

c:claim parcel

c:pay money

remedy
replacement(amount,

address)

c:fulfilled

SEQ1
consumer proess view

Fig. 2: BPMN process view of consumer of dairy milk supply chain.

provider. To deliver the milk-package, a subprocess (compound node) is executed,
which includes the following tasks. First, a route is planned. Following that, the milk-
package is shipped with a precondition (i.e., the quality and quantity of milk) and
a rule condition (i.e., delivery date). Eventually, the customer is handed the milk
package and asked to approve the receipt. If the precondition and rule condition do
not fit as defined in the smart contract, the consumer may make a claim for the parcel
and request a replacement product. The private mechanism of the service provider
in Figure 3 differs from the customer view in Figure 2 in that it includes an event-
based gateway through which the service consumer selects which component to follow
throughout execution. This decision is depicted by the two message-flows in Figure 3
from the service consumer’s in-house domain. As opposed to the customer view, the
provider process includes the additional activities p:determine transportation and
p:determine route. During implementation, these operations must become invisible to
the service user.

pr
ov

id
er

 p
ro

ce
ss

 v
ie

w

p:take a order
p: sign

contract

p: milk
packaging

p: assign
batch number

SEQ2

p:determine
transportation

p:deliver
regular

p:determine
right &

obligation

[delivery. original
returnDate<date

rule-
condition

precondition

p:test
parcel

p:claim parcel

p:pay money

remedy
replacement(amount,

address)

p:fulfilled

SEQ1

p:determine
route

SEQ3

provider process view

in
-h

ou
se

 p
ro

ce
ss

 in-house process

enabling signal A enabling signal B

Fig. 3: BPMN process for service provider.

Following that, we will discuss the next component of the transformation rules,
namely, choreography to Solidity smart contract as shown in Table 1, which are re-
quired to transition from the process choreography model to the Solidity code. As a
demonstration, we execute and enact our “milk powder contract” in Caterpillar [26],
an open-source Blockchain-based BPM system that converts business processes mod-
elled in BPMN into smart contracts written in Solidity language. Listing 1.4 contains
an excerpt from the generated smart contract. To begin the task execution with
rights and obligations, our smart contract, “milk powder SupplyChain,” contains two
events and four solidity functions relying on the transformation rules. Lines 3 to 8 of
Listing1.4 represent global variables, and data pertaining to the process state is stored
on-chain. As defined in lines 10 to 15, the list of producer and distributor variables
is declared in struct, which can be accessed with a single pointer name throughout
the contract. In Line 16, a further event for performance type i.e., MilkSupply, is
implemented, containing parameters such as milk quantity, producer address, and
distributor address, which track the delivery of supply. Lines 17 to 20 implement the
notifyObligationBreach event and associated function for tracing the obligations. Sim-
ilarly, an event for rights is introduced in lines 23-25 in the event that a party seeks

10 Dwivedi and Norta

compensation. Following that, a modifier precondition is used to release the product
if payment is received before the deadline.

1 pragma solidity ^0.4.16;

2 contract milk powder_SupplyChain{

3 uint public role;

4 address producer;

5 uint funds;

6 uint milk_quantity;

7 uint milk_quality;

8 uint public consideration;

9

10 struct Producer{

11 address producer;

12 uint role; }

13 struct Distributor{

14 address distributor;

15 uint role; }

16 event MilkSupply (uint milk_quanity , address distributor , address

producer);

17 event notifyObligationBreach (* Define Type* obligaton , address

contract);

18 function notify (* Define Type* obligaton , address producer){

19 //TODO: Implement code to notify obligation breach for target

contract address

20 notifyObligationBreach(obligation type , contract);}

21 function release(uint milk_quanity , address producer){

22 // TOD: Implement code to relase milk to the producer. }

23 event claimParcel (* Define type* right , address contract);

24 function replace_parcel (* Define type* right , address contract){

25 //TODO: Implement code to activate right for target contract

address }

26 modifier precondition (){

27 //Check the condition

28 uint benificiary;

29 uint obligor;

30 if(! paybeforedeadline){

31 release(milk_quantity , producer);

32 producer.send(funds); }

33 else

34 { _; } } }

Listing 1.4: Milk supply chain.

6 Related work

Existing SCLs, such as Solidity and Serpent, are developed from an IT standpoint,
with the programmer writing machine-readable code without knowledge of the con-
tract domain. Existing research continues to focus on the development of SCLs to
specify legally binding smart contracts, but the majority of research is proposed for
specification rather than implementation for blockchains, and no translation mecha-
nism to blockchain specific languages is proposed.

For the purpose of collaborative design, researchers propose a specification lan-
guage (SPESC) for defining the configuration of a smart contract (instead of its
development) in [18]. In SPESC, smart contracts are defined as a combination of IT
experts, domain practitioners, and business or financial transactions. Real-world con-
tract utilities such as the role of the party, the set of terms and conditions, and so
on can be specified in smart contracts using SPESC. Nonetheless, SPESC does not
address many aspects of contracts, such as obligation states, categories of rights and
obligations, and so on, but instead focuses on modeling legal relations (legal positions).

Title Suppressed Due to Excessive Length 11

The researcher addresses the challenges of formalizing natural-language contracts in
machine-readable languages in [32]. Furthermore, the Contract Modelling Language
(CML) is proposed for modeling and specifying unstructured legal contracts that
cover a wide range of common contract situations. CML specifies a natural-language
comparable clause grammar that is similar to real-world contracts; however, this re-
search does not address transaction rules and is insufficient to formalize any type of
business contract (viz. domain completeness).

According to researchers [29], human contract intentions are mostly defined in
natural language, which is simple to understand but highly ambiguous and open
to interpretation. Furthermore, a methodology for creating a high-level specification
that achieves common understanding through natural-language phrases and is com-
piled directly into machine instructions is proposed. Nonetheless, this study focuses
primarily on the readability and safety of smart contracts and does not express the
domain’s collaborative contractual suitability and completeness. This research [21]
creates a framework for dynamically binding parties to collaborative process roles
as well as an appropriate language for binding policy specifications. The proposed
language includes Petri-net semantics, which allows policy consistency to be verified.
In this study [5], the transformation rules from XML to process choreography model
are proposed first, followed by Solidity code. Nonetheless, the proposed approach is
designed specifically for tourist itineraries. This approach is used in our work by ex-
tending the transformation rules for generating any type of domain specific smart
contract written in SLCML to solidity.

According to the related work, there is a lot of research being done in the area of
legal smart-contract specification. Nonetheless, we address the gap that the solutions
address in an immature manner, revealing that existing methodologies are restricted
to the design of all types of real-world contracts. Prior research, for example, is insuf-
ficient to specify collaborative- and legally binding smart contracts. We bridge this
gap by adopting a reality-based concept of a legal contract that requires collaborating
parties to reach an agreement. This agreement in SLCML represents the matching
of process views by a service consumer and service provider, which is fundamentally
different from the related work listed with a purely technical focus. In addition, we
provide the rules for translating any type of smart contract written in SLCML to
Solidity.

7 Conclusion

This paper introduces the XML-based SLCML choreography language for specify-
ing legally binding smart contracts for cross-organizational business collaboration.
SLCML is the result of a case study-based investigation, which implies that the lan-
guage contains vital collaboration constructs as well as a framework for conceptual
accuracy. We extend our eSML (previous work), which is built on a real-world con-
tracting foundation; collaborating parties use process views that they project ex-
ternally for cross-organizational matching. eSML, however, lacks the legally binding
construct that is required for the formalization of business contracts. Furthermore,
transformation rules are proposed to reduce the effort and risk associated with the
development of smart contracts for blockchains. As a result, we propose a pattern
and its transformation rules for converting SLCML code to a choreography model
and then implementing solidity smart contract code. For demonstration purposes, we
deploy and implement our SLCML contract in Caterpillar, an open-source Blockchain-
based BPM system that translates business processes modelled in BPMN into smart
contracts written in Solidity language. As future work, we intend to create a tool-
supported process for converting SLCML contract specifications into smart-contract
code, such as Solidity, and to conduct more case studies with SLCML in blockchain
research projects. We intend to develop a translator based on proposed transforma-
tion rules for the automatic conversion of SLCML instantiations into a larger set of
blockchain-based languages.

12 Dwivedi and Norta

References

1. Solidity — Solidity 0.7.1 documentation, https://docs.soliditylang.org/en/v0.7.1/
2. Aung, M.M., Chang, Y.S.: Traceability in a food supply chain:

Safety and quality perspectives. Food Control 39, 172–184
(2014). https://doi.org/https://doi.org/10.1016/j.foodcont.2013.11.007,
https://www.sciencedirect.com/science/article/pii/S0956713513005811

3. Behnke, K., Janssen, M.: Boundary conditions for traceability in food supply
chains using blockchain technology. International Journal of Information Management
52, 101969 (2020). https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.05.025,
https://www.sciencedirect.com/science/article/pii/S0268401219303536

4. Boudjema, E.H., Verlan, S., Mokdad, L., Faure, C.: Vyper:
Vulnerability detection in binary code. Security and Privacy
3(2), e100 (2020). https://doi.org/https://doi.org/10.1002/spy2.100,
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.100

5. Brahem, A., Messai, N., Sam, Y., Bhiri, S., Devogele, T., Gaaloul, W.: Blockchain’s fame
reaches the execution of personalized touristic itineraries. In: 2019 IEEE 28th Interna-
tional Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE). pp. 186–191 (2019). https://doi.org/10.1109/WETICE.2019.00047

6. Caro, M.P., Ali, M.S., Vecchio, M., Giaffreda, R.: Blockchain-based traceability in
agri-food supply chain management: A practical implementation. In: 2018 IoT Ver-
tical and Topical Summit on Agriculture - Tuscany (IOT Tuscany). pp. 1–4 (2018).
https://doi.org/10.1109/IOT-TUSCANY.2018.8373021

7. Casino, F., Kanakaris, V., Dasaklis, T.K., Moschuris, S., Rachaniotis, N.P.: Model-
ing food supply chain traceability based on blockchain technology. IFAC-PapersOnLine
52(13), 2728–2733 (2019). https://doi.org/https://doi.org/10.1016/j.ifacol.2019.11.620,
https://www.sciencedirect.com/science/article/pii/S2405896319316088, 9th IFAC Con-
ference on Manufacturing Modelling, Management and Control MIM 2019

8. Chen, T., Ding, K., Hao, S., Li, G., Qu, J.: Batch-based traceability for
pork: A mobile solution with 2d barcode technology. Food Control 107,
106770 (2020). https://doi.org/https://doi.org/10.1016/j.foodcont.2019.106770,
https://www.sciencedirect.com/science/article/pii/S0956713519303597

9. Dannen, C.: Introducing Ethereum and solidity, vol. 318. Springer (2017)
10. Dwivedi, V., Deval, V., Dixit, A., Norta, A.: Formal-verification of smart-contract lan-

guages: A survey. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap,
R. (eds.) Advances in Computing and Data Sciences. pp. 738–747. Springer Singapore,
Singapore (2019)

11. Dwivedi, V., Norta, A., Wulf, A., Leiding, B., Saxena, S., Udokwu, C.: A formal specifica-
tion smart-contract language for legally binding decentralized autonomous organizations.
IEEE Access 9, 76069–76082 (2021). https://doi.org/10.1109/ACCESS.2021.3081926

12. Dwivedi, V., Pattanaik, V., Deval, V., Dixit, A., Norta, A., Draheim, D.: Legally en-
forceable smart-contract languages: A systematic literature review. ACM Comput. Surv.
54(5) (Jun 2021). https://doi.org/10.1145/3453475, https://doi.org/10.1145/3453475

13. Efanov, D., Roschin, P.: The all-pervasiveness of the
blockchain technology. Procedia Computer Science 123, 116–
121 (2018). https://doi.org/https://doi.org/10.1016/j.procs.2018.01.019,
https://www.sciencedirect.com/science/article/pii/S1877050918300206, 8th Annual
International Conference on Biologically Inspired Cognitive Architectures, BICA 2017
(Eighth Annual Meeting of the BICA Society), held August 1-6, 2017 in Moscow, Russia

14. Eshuis, R., Norta, A., Kopp, O., Pitkänen, E.: Service outsourcing with pro-
cess views. IEEE Transactions on Services Computing 8(1), 136–154 (2015).
https://doi.org/10.1109/TSC.2013.51

15. Frantz, C.K., Nowostawski, M.: From institutions to code: Towards automated
generation of smart contracts. In: 2016 IEEE 1st International Workshops on
Foundations and Applications of Self* Systems (FAS*W). pp. 210–215 (2016).
https://doi.org/10.1109/FAS-W.2016.53

16. Frantz, C.K., Nowostawski, M.: From institutions to code: Towards automated genera-
tion of smart contracts. In: 2016 IEEE 1st International Workshops on Foundations and
Applications of Self* Systems (FAS* W). pp. 210–215. IEEE (2016)

17. Genestier, P., Zouarhi, S., Limeux, P., Excoffier, D., Prola, A., Sandon, S.,
Temerson, J.M.: Blockchain for consent management in the ehealth environ-
ment: A nugget for privacy and security challenges. Journal of the Interna-

Title Suppressed Due to Excessive Length 13

tional Society for Telemedicine and eHealth 5, (GKR);e24:(1–4) (Apr 2017),
https://journals.ukzn.ac.za/index.php/JISfTeH/article/view/269

18. He, X., Qin, B., Zhu, Y., Chen, X., Liu, Y.: Spesc: A specification lan-
guage for smart contracts. In: 2018 IEEE 42nd Annual Computer Soft-
ware and Applications Conference (COMPSAC). vol. 01, pp. 132–137 (2018).
https://doi.org/10.1109/COMPSAC.2018.00025

19. He, X., Qin, B., Zhu, Y., Chen, X., Liu, Y.: Spesc: A specification language for smart
contracts. In: 2018 IEEE 42nd Annual computer software and applications conference
(COMPSAC). vol. 1, pp. 132–137. IEEE (2018)

20. Howson, P.: Building trust and equity in marine conservation and fish-
eries supply chain management with blockchain. Marine Policy 115,
103873 (2020). https://doi.org/https://doi.org/10.1016/j.marpol.2020.103873,
https://www.sciencedirect.com/science/article/pii/S0308597X19307067

21. López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., Weber, I.: Dynamic role binding
in blockchain-based collaborative business processes. In: Giorgini, P., Weber, B. (eds.)
Advanced Information Systems Engineering. pp. 399–414. Springer International Pub-
lishing, Cham (2019)

22. Miraz, M.H., Ali, M.: Applications of blockchain technology be-
yond cryptocurrency. Annals of Emerging Technologies in Comput-
ing 2(1), 1–6 (Jan 2018). https://doi.org/10.33166/aetic.2018.01.001,
http://dx.doi.org/10.33166/AETiC.2018.01.001

23. Moe, T.: Perspectives on traceability in food manufac-
ture. Trends in Food Science & Technology 9(5), 211–214
(1998). https://doi.org/https://doi.org/10.1016/S0924-2244(98)00037-5,
https://www.sciencedirect.com/science/article/pii/S0924224498000375

24. Nakamoto, S., Bitcoin, A.: A peer-to-peer electronic cash system. Bitcoin.–URL:
https://bitcoin. org/bitcoin. pdf 4 (2008)

25. Norta, A., Ma, L., Duan, Y., Rull, A., Kõlvart, M., Taveter, K.: eContrac-
tual choreography-language properties towards cross-organizational business col-
laboration. Journal of Internet Services and Applications 6(1) (Apr 2015).
https://doi.org/10.1186/s13174-015-0023-7, https://doi.org/10.1186/s13174-015-0023-7

26. Orlenyslp: orlenyslp/caterpillar (2019), https://github.com/orlenyslp/Caterpillar/tree/master/v2.1/prototype
27. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software en-

gineering: Challenges and new directions. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). pp. 169–171 (2017).
https://doi.org/10.1109/ICSE-C.2017.142

28. Regnath, E., Steinhorst, S.: Smaconat: Smart contracts in natural language.
In: 2018 Forum on Specification Design Languages (FDL). pp. 5–16 (2018).
https://doi.org/10.1109/FDL.2018.8524068

29. Regnath, E., Steinhorst, S.: Smaconat: Smart contracts in natural language.
In: 2018 Forum on Specification Design Languages (FDL). pp. 5–16 (2018).
https://doi.org/10.1109/FDL.2018.8524068

30. von Rosing, M., White, S., Cummins, F., de Man, H.: Business process model and
notation-bpmn. (2015)

31. Szabo, N.: Smart contracts. Unpublished manuscript (1994)
32. Wöhrer, M., Zdun, U.: Domain specific language for smart contract develop-

ment. In: IEEE International Conference on Blockchain and Cryptocurrency (2020),
http://eprints.cs.univie.ac.at/6341/

View publication statsView publication stats

Appendix 5

VV. K. Dwivedi and A. Norta. A legally relevant socio-technical language de-velopment for smart contracts. In Proceedings - 2018 IEEE 3rd International
Workshops on Foundations and Applications of Self* Systems, FAS*W2018,pages 11–13. Institute of Electrical and Electronics Engineers Inc., 2018

195

A Legally Relevant Socio-Technical Language
Development for Smart Contracts

Vimal Dwivedi
Department of Software Science

Tallinn University of Technology (of Aff.)
Tallinn, Estonia

vimal.dwivedi@ttu.ee

Supervisor: Prof. Alex Norta
Department of Software Science
Tallinn University of Technology

Tallinn, Estonia
alex.norta@ttu.ee

Abstract—Smart contracts play an advent role in automated
business participation by rendering collaboration processes more
time efficient, cost-effective and establishing more transparency.
Smart contracts facilitate trust-less systems, without the need
for intervention from third-party intermediaries. Existing smart-
contract languages mainly focus on technical utility and do
not take into consideration social and legally relevant issues,
e.g., lack of semantics, ontological completeness, and so on. In
this research, we address the gap by developing with rigorous
means a smart contract’s language that aims to be legally
relevant, and that comprises socio-technical utility for cross-
organizational business collaboration. The proposed language
seeks to retain the strengths of the already existing languages
of different generations while eluding their limitations. We aim
to identify and implement abstract grammar patterns for a
smart- contract language that has the expected application utility
and verifiability. We evaluate the developed language based on
automating industry-collaboration cases with our novel smart-
contract language to test the suitability, utility and expressiveness.

Index Terms—Ontological completeness, Suitability, Expres-
siveness, Socio-technical, ANTLR, Blockchain, Smart contracts

I. MOTIVATION

The blockchain is an incorruptible distributed ledger, a trust-
less system that is duplicated across multiple networks [4].
Therefore, an application that could run previously through
centralized medium only, now it can make possible without
the trusted medium such as smart property, e-healthcare. With
the emergence of blockchain technology, smart contracts have
become popular because it can now operate in a decentralized
fashion without the requirement of the trusted third-party. The
smart contract is self-enforceable, self-executable, written in
a program code, runs on a blockchain network [3]. Smart
contract code executed itself when a set of pre-determined
conditions met during the life-cycle of contract execution.

With respect to existing smart-contract languages, the most
notable version such as Solidity and Rohlang are more recent
adoption by industry. However, not only solidity but another
existing smart-contract language does not have the social and
legal semantics of business collaboration [7]. The social utility
comprises the mechanism to maintain the transparency to
all relevant stakeholders of business collaboration if conflicts

arise [1]. The legal utility comprises the semantics of efficient
breach of smart contracts as per law and economic [6].

Recently an experiment of the smart contract has been
accomplished with the crowd-funding project named decen-
tralized autonomous organization (DAO). It was hacked be-
cause of security flaws in smart-contract language, resulting
in losses of money. This incident shows it is not sufficient
to develop a contract with Turing-complete language such
as solidity. Instead, it is essential to study suitability and
expressiveness of the language [9]. Suitability means that
smart-contract languages comprise the concept and properties
to allow formulation of real-world contracts in the legally
relevant way. Expressiveness implies the libraries of smart-
contract languages have mathematical clarity that ensures the
uniform enactment by several business process engines.

In [12], the proposed methodology uses solidity program-
ming language to demonstrate the feasibility of untrusted
business-process monitoring and execution in smart contract.
However, the solidity does not take into account the ontologi-
cal suitability and expressiveness because of Turing-complete
nature. The core ontological concepts answer the conceptual
questions of Who, Where and What about contracting parties.
Without such an suitability and expressiveness, if a contract is
valid and free from security issues, then verification of parties
is not possible before the enactment. Therefore, the goal of
this work is to develop a smart-contract programming language
that incorporates socio-technical suitability and expressiveness
for guiding business collaboration in a legally relevant way.

II. OBJECTIVES

This paper fills the gap in the current state of the art
by posing the main research question how to develop a
smart-contract language that has concept and properties for
guiding business collaboration in a legally relevant way. From
there we deduce several sub-questions. How to establish legal
relevance in smart contracts that have socio-technical utility in
smart contracts? How to design a language that combines the
strengths of established languages of various generations while
avoiding the weaknesses? How to identify and implement
abstract grammar patterns for a smart-contract language that
has the expected application utility and verifiability? From
the first sub-question, we achieve the concept and properties

11

2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems

978-1-5386-5175-9/18/$31.00 ©2018 IEEE
DOI 10.1109/FAS-W.2018.00016

Authorized licensed use limited to: University of Tartu Estonia. Downloaded on November 24,2021 at 12:02:17 UTC from IEEE Xplore. Restrictions apply.

of business collaboration in legal relevance by developing an
ontological structure of real-world contracts.

In order to aid the automation of contracting in business
collaborations, it is required that working smart contracts
could be produced by using the choreography language eSML
[10] as a foundation. However, at the moment of writing, no
solutions exist for mapping high-level choreography languages
to smart-contract languages, such as the smart contracting
lingua franca Solidity, while maintaining legal recognisability.
Therefore, we need to deduce first sub-questions into several
sub-questions. What are the requirement sets for an option
to intent-fully not execute a contractual obligation, for the
formation of contracts, and for party identification in smart
contracts? What is the ontological structure of an option from
legally enforceable requirements sets? What is the dynamic
processing of ontological attributes?

From the first sub-question, we generate ontological struc-
ture and dynamic processing of business process agreements
that work as input for designing smart-contract language.
Therefore, we focus on second sub-question how to design
a language that combines the strength of establishing various
generation language while eluding their limitations. From the
third sub-question, we achieve mathmatical clarity of the
smart-contract language. Therefore, we focus on the semantics
of context-free grammar to ensures uniform enactment by
different process engines [8].

III. METHODOLOGY

The choice for research methodology for this thesis is the
approach of the design science research methodology [2]. The
authors of [2] described, ”the design-science paradigm seeks to
extend the boundaries of human and organisational capabilities
by creating new and innovative artifacts.” Hevner et al. [2]
propose research principles, to conduct design science research
(DSR), to create new and innovative artifacts, and for under-
standing, executing and evaluating information systems (IS)
research. We focus on the following design-science research
principles to generate results.

• Design as an Artifact: Our contribution is to produce
artifacts in the form of constructs as a smart-contract
language.

• Problem Relevance: The objective of this research is to
develop smart-contract language that has socio-technical
suitability and expressiveness for business collaboration.

• Design Evaluation: The utility, quality, and efficacy of
a smart-contract language rigorously demonstrated via
ANTLR tool.

• Research Contributions: Our first contribution is to
develop an ontological structure of socio-technical and
legal utilities of the business collaboration. Then follows
the designing of language that combines of strengths
of established languages of various generations while
avoiding the weakness. Finally, we focus on the imple-
mentation of abstract grammar pattern for smart-contract
language.

• Research Rigor: Existing tools from Truffle, will be
used to emulate calls to a blockchain where these smart
contracts are deployed, and write automated tests to
ensure they work as expected.

• Design as a Search Process: Comparison of the results
obtained from the artifact as a smart-contract language
with existing languages, to reach desired goals.

• Communication of Research: We will present our con-
tribution effectively both to technology-oriented as well
as management-oriented audiences.
A potential solution to the identified research goal is to
use the eSML schema previously defined by Norta [10],
to develop a context-free grammar. Therefore, We focus
on existing tools such as ANTLR to help reach closer to
the solution of our research goal. ANTLR has a consistent
syntax for specifying lexers, parsers, and tree parsers
[11]. We will evaluate the language based on automating
industry-collaboration cases with our novel smart contract
language to test suitability, utility and expressiveness.

IV. RESEARCH PLAN

We plan the time-line of our research activities as per the
design-science guidelines in the table 1. Till the moment,
we have accomplished the activities of problem relevance,
research questions and finalized the methodology.
Table 1: Time line for Ph.D. Research

Activity 2018 2019 2020 2021
Jan-
Dec

Jan-
Dec

Jan-
Dec

Jan-
Dec

Problem Relevance: Iden-
tifying, analyzing and cat-
egorizing the challenges of
smart contracts languages

�

Research Contribution
1: Design the ontological
structure of suitable
semantics of business
collaboration

� �

Research Contribution 2:
Identify the suitable li-
braries for designing onto-
logical based smart contract
language

� �

Research Contribution 3:
Identify and implement ab-
stract grammar pattern for a
smart contract language

�

Design as an artifact /De-
sign evaluation / Design as
a search process: Compo-
sition of the thesis and pre-
liminary defense

� �

Communication of Re-
search: The defense of the
thesis

�

12

Authorized licensed use limited to: University of Tartu Estonia. Downloaded on November 24,2021 at 12:02:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey
of attacks on ethereum smart contracts (sok). In International
Conference on Principles of Security and Trust, pages 164–186.
Springer, 2017.

[2] Martin Bichler. Design science in information systems research.
Wirtschaftsinformatik, 48(2):133–135, 2006.

[3] Vitalik Buterin et al. A next-generation smart contract and
decentralized application platform. white paper, 2014.

[4] Konstantinos Christidis and Michael Devetsikiotis. Blockchains
and smart contracts for the internet of things. IEEE Access,
4:2292–2303, 2016.

[5] ConsenSys. trufflesuite/truffle, 2015 (accessed March 3, 2018).
https://github.com/trufflesuite/truffle.

[6] Patrick Dahm. The Efficient Breach of Smart Con-
tracts. http://learn.asialawnetwork.com/2018/02/22/efficient-
breach-smart-contracts/.

[7] Mark Giancaspro. Is a smart contractreally a smart idea? insights
from a legal perspective. Computer Law & Security Review,
33(6):825–835, 2017.

[8] Donald E Knuth. Semantics of context-free languages. Mathe-
matical systems theory, 2(2):127–145, 1968.

[9] Alex Norta, Lixin Ma, Yucong Duan, Addi Rull, Merit Kõlvart,
and Kuldar Taveter. econtractual choreography-language proper-
ties towards cross-organizational business collaboration. Journal
of Internet Services and Applications, 6(1):8, 2015.

[10] Alexander Horst Norta. Exploring dynamic inter-organizational
business process collaboration. Dissertation Abstracts Interna-
tional, 68(04), 2007.

[11] Terence Parr. The definitive ANTLR 4 reference. Pragmatic
Bookshelf, 2013.

[12] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori,
Alexander Ponomarev, and Jan Mendling. Untrusted business pro-
cess monitoring and execution using blockchain. In International
Conference on Business Process Management, pages 329–347.
Springer, 2016.

13

Authorized licensed use limited to: University of Tartu Estonia. Downloaded on November 24,2021 at 12:02:17 UTC from IEEE Xplore. Restrictions apply.

Appendix 6

VIV. Dwivedi, V. Deval, A. Dixit, and A. Norta. Formal-Verification of Smart-Contract Languages: A Survey. In Advances in Computing and Data Sci-
ences, pages 738–747. Springer Singapore, 2019

201

Formal-Verification of Smart-Contract
Languages: A Survey

Vimal Dwivedi(B), Vipin Deval, Abhishek Dixit, and Alex Norta

Department of Software Science, Tallinn University of Technology,
Akadeemia tee 15A, 12816 Tallinn, Estonia

vimal.dwivedi@ttu.ee

Abstract. A blockchain is a peer-to-peer electronic ledger of transac-
tions that may be publicly or privately distributed to all users. Apart
from unique consensus mechanisms, their success is also obliged to smart
contracts. Also, These programs let on distrusting parties to enter rec-
onciliation that are executed autonomously. Although a number of stud-
ies focus on security of introducing new programming languages., How-
ever, there is no comprehensive survey on the smart-contract language
in suitability and expressiveness concepts and properties that recognize
the interaction between people in organizations and technology in work-
places. To fill this gap, we conduct a systematic analysis about smart-
contract language properties that focus on e-contractual and pattern-
based exploration. In particular, this paper gives smart-contract language
taxonomy, introducing technical challenges of languages as well as recent
solutions in tackling the challenges. Moreover, this paper also represents
the future research direction in the introducing new smart-contract lan-
guage.

Keywords: Ontological completeness · eSML · Socio-technical ·
Legal relevance · ANTLR · Block-chain · Smart contracts

1 Introduction

With traditional contract system, contract [14] refers to a liability that specifies
legal action or liability that is required at the time of business collaboration as
per the layout of terms and agreements, the obligation is formed. The contract
includes agreements for binding parties together in terms and conditions so that
they can collaborate businesses under a set of rules without any discrepancies. In
traditional contract, every terms and condition which is written in the contract
must be fulfilled in order to protect everyone’s legal rights as communicated by
an expert or lawyers. It overcomes the chances of risk, provides clarity of party
expectation that is specified in contracts, enhances enforcement, limits flexibility.
The conventional contract is a trust-based centralized system which requires
intermediaries that leads to alleviated cost and is usually time-consuming.

With the emergence of blockchain technology, Smart contract [17] has become
a necessity. It refers to a self-executing computer code, supervised by nodes. It

c© Springer Nature Singapore Pte Ltd. 2019
M. Singh et al. (Eds.): ICACDS 2019, CCIS 1046, pp. 738–747, 2019.
https://doi.org/10.1007/978-981-13-9942-8_68

Formal-Verification of Smart-Contract Languages: A Survey 739

runs on a distributed Ledger which thrives to achieve a trustless based system
without the involvement of any intermediaries. It further accelerates the pro-
cessing of the business processes and helps in attaining a higher accuracy rate.
Another way to understand the smart contract is to compare the technology to a
vending machine. Ordinarily, when you need water, you just need to drop a coin
into the vending machine like a Ledger or escrow in another form and get water
from the machine. Traditional contract system [14] works on every obligation in
the exact same way but lacks the ability of self-execution as in the case of smart
contract. The smart contract can applicable in numerous domains such as vehi-
cle self-parking, real estate, healthcare, electronic voting because of its ability of
self-execution and independence from the involvement of intermediaries.

With respect to current smart contract languages such as ethereum solidity
language [6], Bitcoin scripting language and other existing procedural languages
are facing vivid challenges such as adoption of issues relating to social mean-
ing and legal relevance caused by incorrect arrangement between semantics and
programmer intuition. It leads towards development of a new smart contract
language that contains construct to deal with domain-specific aspects having
social control [16] and artifact of law [7].

With smart contract ontology [11], we explore the eSourcing markup lan-
guage (eSML) that specifies various aspects arising among collaborative business
organizations due to the existence of process views for creating an agreement
among the participating parties. In this study, we explore the socio-technical
suitability and expressiveness for guiding business collaborations in a legally
relevant way. Suitability means smart contract language encapsulates concept
and properties and adoption in the construct of semantic which formulate into
guiding business collaboration into the legally relevant way. With reference to
smart contract language, we take into account solidity language of ethereum
which is a key element in irreversibly changing the nature of the smart con-
tracts. On the basis of smart contract ontology, we are focusing on the diversity
of suitability and expressiveness among solidity, Rholang which is based on the
property of syntactic language specification and ANTLR based language devel-
opment. Solidity has played an essential role in the evolution of ontology for
the smart contract. It has resulted in the efficient and effective management of
concepts and properties that eSourcing Markup language embodies. However,
Solidity does not support the pattern-based design, process awareness, and pro-
cess matching. Inversely, these concepts are specified in smart contract ontology.
The next generation language Rholang [13] captures these limitations. The util-
ity required for handling business processes is one of the major aspects relating
to collaborative business processes, but it is not handled properly with solidity as
for Rholang. Unfortunately, the matching of processes, the process verification,
and conclusion is not documented properly. ANTLR based language provides a
powerful mechanism required to read, process, execute or translate the process
according to its legal relevance. So in this study, we explore various suitability
and expressiveness based languages that fulfil the limitations corresponding to
the use of smart contracts i.e. of process awareness and verification requirement
for establishing an automated business collaboration.

740 V. Dwivedi et al.

The hypothesis of the thesis states that the development of smart contract
language must not be domain specific. It should adhere to socio-technical and
legally relevance. This paper addresses the existing challenges in terms of socio-
technical and legal relevance. In our thesis work, we will try to bridge the gap
between the ideal situation and reality environment for the development of smart
contract language.

2 State of the Art

Research in [14], gives an insight into the existence of a business contract. It
provides knowledge regarding the use of contracts for facilitating communica-
tion between the participating entities. It further explains factors that lead to
differences between the two most widely used types of contracts i.e. transactional
and relational contracts and that the latter aids in its implementation without
litigation or conflicts. The study emphasizes that contracts are focused more on
strengthening business relationships rather than enforcing laws of the agreement.

A solution to the most fundamental problem in the implementation of
Blockchain technology is provided in [18]. This naive technique addresses the
issues related to trust in collaborative process enforcement using block-chain
technology and its smart contracts to surpass the need of a centralized party.
The proposed methodology comprises a three-step process with translator, block-
chain infrastructure and triggers being major components.

A detailed introduction on bitcoin and its usage is illustrated in [10]. The
subject deals with the evolution of bitcoin as a virtual currency, or decentralised
digital currency coined by Satoshi Nakamoto in 2008 and its usage in public
domain since early 2009. Bitcoin is used in an electronic payment business sys-
tem which is based on cryptographic proof in lieu of trust and not managed by
any financial authority (institution). Bitcoins are based on the pillars of trans-
actions, proof of work, mining and digital wallet. It further provides a detailed
expression on the working of bitcoin transactions, collection of transactional data
into blocks, its peer to peer status, anonymity of users among others and forma-
tion of block-chain. The work further gives insight into the security issues and
legal considerations in the use of bitcoins.

This paper [11] presents an esourcing ontology which is used as input for
developing eSourcing markup language. Esourcing ontology comprises essentially
concepts for the decentralized autonomous organization. Automating socio-
technical business collaboration promises several benefits, including increases
in efficiency, effectiveness, and quality, for developing a new generation of the
so-called decentralized autonomous organization.

Norta et al. [11] presented the utility such as suitability and expressiveness
as a gap in the cross-organizational business organization. In addition, Norta
[12] presents esourcing markup language (eSML) which worked as choreography
language for the automated cross-organization business process. Norta focuses
on basis contractual elements for making the smart contract as a legal. Fur-
thermore, a reduction of contractual elements that helps for improving difficulty

Formal-Verification of Smart-Contract Languages: A Survey 741

level for legal issues such as obligation, artifacts of law. This is crucial when you
are focusing on the cross-organizational business process in which less trusted
participant involved [18].

Norta developed an esourcing ontology as a framework for building auto-
mated smart contract in a business collaboration [18] which would provide
immutability and auditability. At a moment of writing contract in the collabora-
tive business process, no mechanism exists for mapping high-level choreography
language to smart contract language while maintaining legal recognisability.

Solidity [6] is a more popular language for smart contract development that
runs on ethereum virtual machine. Butrin presents intention behind combining
ethereum and EVM [3] for improving the concept of scripting, altcoins and on
chain protocol that achieves consensus-based application that has scalability, fea-
ture completeness, interoperability and ease of development. The code is written
in a low-level stack-based language and compiled into ethereum virtual machine
in the byte code.

Despite the popularity, There are several reasons which make the implemen-
tation of smart contracts particularly prone to [security] errors in Ethereum [1].
The main reason is misalignment between semantics and intuition of the pro-
grammer. Solidity has various vulnerability such as the execution runs out of
gas, call stack reaches its limit, the command throw is executed.

This paper [16] presents socio-technical utility for an autonomous business
organization that enables flexible governance by providing organized structure
in a way that has social meaning control of participants and high level of trust
between parties. Additionally, highlights the compact contrast vision with exist-
ing approaches.

With the evolution of blockchain technology, computerized transaction pro-
tocol offering high reliable of trust, less transactional cost in which terms and
condition are executed autonomously. This paper [7] expose the gap by consid-
ering potential issues for that smart contract considerable difficulty for adopting
the current legal framework.

3 Problem Statement and Contributions

A study of the existing development scenario of smart contract language revealed
that it has overlooked socio-technical perspectives during development. It means
that it does not specify social control, social meaning, and utility for legal rele-
vance. This paper exploits the address gap by investigating ideal and real world
situation of existing business collaborations. Due to lack of semantics smart con-
tract languages does not support cross-organizational business processes such as
pattern-based design, process awareness, matching of the processes etc. Fur-
ther, we examine transparency control in block-chain system in case of disputes
among stakeholders due to lack of interdependence for the action. It exploits the
address gap in existing smart contract programming language. Another major
limitation is the difficulty to recover the losses that may arise if a faulty con-
tract is embedded in the blockchain which may be due to misalignment between
language library and intuition of the programmer [1].

742 V. Dwivedi et al.

Contract law for automated business collaboration is another research chal-
lenge that specifies assurance of terms and conditions. Therefore, we examine the
address gap for legal relevance such as establishing capacity, contracting under
a mistake, formation via technology and determine the conditions for the offer
and acceptance of the contract. The essential part is establishing legal intent in
‘follow-on contracting’, the certainty of terms imbibed in the smart contract [7].

Generally, the smart contract does not include obligation duty which is a
major issue pertaining to its legal relevance. To every mutually agreed upon
the law in the smart contract, there must be an obligation duty so that we can
overcome this above said issue. Along with that, we must have some screening
procedure so that we can determine the age of the participating individual prior
to his entry in block-chain transaction system so that we can establish legal
intent for establishing capacity.

Our planned contribution includes the development of a language that has
suitability and expressiveness for automated business collaborations in order to
achieve higher efficiency, transparency among participants and automatic verifi-
cation. This will help in fixing the address gap for the socio-technical relevance
of the smart contract. We planned to enable contract for business collaborations
by fixing the certainty of terms and condition and remedial issues which are
revetment in smart contract block-chain.

This paper fills the gap by posing the research question how to develop a
smart contract language that has the utility for guiding business collaboration
in a legally relevant way? By posing this question, We examine the utilities
for socio-technical such as appropriate semantics, participants control, process
awareness, process matching that has legal relevance. After that, we deduce the
main sub question into several sub question by fixing the sequence of order that
specifies the proper layout to handle the address gap. To answer this question,
a number of challenges (sub-question) need to be addressed.

The first sub-question pertains to establish legal relevance for a smart con-
tract that has socio-technical utility. To justify this question, we focus on various
grammar available for development and the requirements for business collabora-
tion in a legally relevant way. Another subtask is the development of the ontol-
ogy for autonomous legal business collaboration. And also, the targeted business
process in autonomous business collaboration.

One of the key elements of legal relevance is an obligation. Obligation means,
rights i.e. lawfully enforced rules that must have correlative duty between two
parties. Therefore, the second sub-question highlights a process to design a lan-
guage that combines the strengths of established languages of various genera-
tions while overcoming their limitations. To provide a solution to this question,
we focus on strength of libraries of various generations of languages that make
the language suitable and expressive.

As the abstract grammar pattern is a key element for the language develop-
ment, the third research questions adhere to identification and implementation of
abstract grammar patterns for a smart contract language that has the expected
application utility and verifiability.

Formal-Verification of Smart-Contract Languages: A Survey 743

4 Research Methodology and Approach

Methodology is a sequence of methods that are used in the particular area of
study that specifies how to do a task in a systematic manner. We study various
methodology such as action design science [15], case study research [15], experi-
mental research method [4]. We examine design science research [9] which is most
suitable for information system design that evaluates sociotechnical artifacts. We
use an ANTLR tool in this research for designing and evaluation smart contract
language. A potential solution to the identified research goal would be to use
the eSML schema previously defined by Norta, in order to develop a context-free
grammar. The next step would be the use of existing tools such as ANTLR to
help reach closer to the solution of our research goal. Use of ANTLR to develop
such grammar comes with certain constraints such as the grammar produced
using the tool has to be in an explicit format, as ANTLR notation.

In subsequent phases, ANTLR can then translate “recursive descent parsers
from grammar rules .. which are exceptionally identical to the hand build rules
by an adept programmer.” By definition “recursive descent parsers are actually
a collection of recursive methods, one method per rule derived. The term descent
relates to the fact the starting point of parsing is the root i.e. the topmost node of
a parse tree and it gradually proceeds towards the lowermost nodes i.e. the leaves
as the rule gets more refined.” as explained by Parr. The data structure used by
ANTLR parsers are parse trees and this data structure is used to record “the
way the parser perceives the complete structure of the input i.e. sentence and
its constituent phrases.” The next step is the implementation of a custom parse
tree walker by applying the parsers generated using ANTLR tool. The parse tree
walker so developed is aimed towards triggering callbacks on the identification
of distinct tokens. The tokens so identified would then be transcribed into the
solidity code parts with the aid of already acknowledged callbacks. The final
phase would eventually be the development of smart contract after the parsing
is exhaustively over.

The results so obtained can be validated from the fact that in our work we are
using context-free grammar to define and explain the schema of the languages
[8], which is the most widely used and accepted method of describing languages.
Further, to verify and validate the working of obtained smart contracts, already-
in-use tools from Truffle, will be referred to imitate calls to the blockchain, i.e.
the smart contracts deployment site. Also, automated tests will be used to assure
that the deviation between the actual and expected working on smart contracts
is void. “Truffle is a development environment, testing framework and asset
pipeline for Ethereum, aiming to make life of an Ethereum developer easier” [5]
The research area, in general, is a prevailing research trend, as the underlying
architecture i.e. blockchain and also, smart contract development technology
is a naive concept and have been attracting smart programmers for evolution.
Quoting Bartoletti et al. [2]: “In particular, the public and append-only ledger
of transaction (the blockchain) and the decentralized consensus protocol that
Bitcoin nodes use to extend it, have revived Nick Szabo’s idea of smart contracts

744 V. Dwivedi et al.

i.e. programs whose correct execution is automatically enforced without relying
on a trusted authority [17]”.

5 Preliminary or Intermediate Results

The research problem addressed by us can be considered as an intermediate
result for examining sociotechnical utility [16] and legal relevance [7]associated
with smart contracts. Ideally, the start contract must possess process awareness
to avoid situation of security breach and transparency to all the participating
parties for smooth execution in case a conflict arises. Along with this, verification
of the correctness of the smart contract being developed is provided to improve
its effectiveness at execution time and efficiency of cross organisational business.

The address gap extracted focuses on socio technical and legal relevance
elements for the development of a smart contract language. It also includes
issues relating to lack of control for participants, dearth of social meaning and
understanding of business process in cross organisational infrastructure. Also, we
examined and identified various impediments for adopting existing legal frame-
work of the contract.

These findings set the vision of our research work, to improve the language
development that combines the social element of business collaboration in a legal
framework.

6 Discussion

This section discusses the study results and answers the research questions that
we defined in Sect. 3.

Ethereum is one of the most suitable platforms to propose the conception
of smart contracts in the blockchain. It boasts the turing completeness of its
smart contract platform. The language used i.e. Solidity is good enough to make
it Turing complete but it does lack in the flexibility which is provided by the
languages used today. Wanchain’s distributed ledger relies on the strengths of
Ethereum, and any Ethereum DApp will run on Wanchain without any code
alteration. To enhance these applications, Wanchain uses solidity that offers a
number of APIs designed to expand cross-chain capabilities and improve privacy
protection.

The overreaching functional goal of Æternity blockchain smart contracts is to
be able to runs code on the chain. That is, code execution that is verifiable by a
miner and which can alter the state of the chain. For efficient contract execution
Æternity provides a very high level language for blindingly fast execution of
simple contracts. For more advanced contracts the Sophia language is used and
that is compiled to a virtual machine tailored for execution of the contracts. This
machine is a high level machine with instructions for operating on the chain and
on Sophia data structures without any need to do explicit stack and memory
management.

Formal-Verification of Smart-Contract Languages: A Survey 745

Zen blockchain uses a Total language to express smart contracts rather than
depending on evaluation model which tracks gas in order to ensure the totality.
Total languages are capable of expressing arbitrary logic like recursion and loops,
and this is also the case for Zen Protocol. Zen’s smart contracting language is
‘Dependently Typed’, i.e every expression has a type that depends on both the
expressions and the types. Dependent type systems are expressive to use them
for the purpose of the formal Verification. Such types can express arbitrary
properties of expressions. Zen Protocol’s smart contract takes dependently typed
source code, that must express the resource consumption. Zen Protocol is very
limited by the time taken to run the smart contracts, and therefore, must be
able to process transactions involving smart contracts faster—smart contracts in
Zen are not only faster to run, but can be executed most of the time in parallel.

Counterparty blockchain relies on Bitcoin for its consensus. But it also sup-
ports ethereum smart contracts. It uses solidity or serpent to write smart con-
tract code and compile it to a more compact form (bytecode). Serpent is a
language for smart contract development based on Python language. Python
is arguably one of the best language for novice programmers, and a very pro-
ductive language for experienced developers. Serpent, originally developed for
Ethereum, is currently being used in complex enterprise projects.

RChain is a project that focuses on scalability by using a multi-threaded
blockchain with its own smart contract language. Smart contracts employ a
number of industry-leading functions such as meta-programming, reactive data
streams, pattern matching. As a result, RChain contracts have programmability
that can be used on RChain nodes. Rholang is a “process-oriented” i.e. com-
putations being done by message passing. Messages are passed via “channels”,
that are like message queues.

Qtum is an Ethereum-based smart contracts system that run on top of a
Bitcoin-based blockchain. It uses a modified version Blackcoin’s Proof of Stake
(PoS) implementation for consensus. Qtum has added the custom adaptation
layer that maps the Ethereum account balances to sets of Bitcoin Unspent Trans-
action Outputs (UTXOs). Qtum is planning to extend their smart contracts
offering to include a x86 virtual machine that will enable the smart contracts
development in languages such as Java, C++, and Haskell. However, leverage
with existing tooling, it doesn’t specifically address the security issues inherent
to Solidity’s design.

7 Conclusions

Presently solidity language is being used to develop smart contracts in block-
chain systems. It has some limitations associated with it such as pattern-based
design, process awareness, matching of the process. In this study, we develop
artifacts that incorporate socio-technical utility which enables to automate cross
organizational business collaboration adhering to the legal relevance. Further,
we develop a language for smart contracts that can preserve autonomy and
transparency among participants in peer to peer decentralized infrastructure.

746 V. Dwivedi et al.

In our work, we will provide a language incorporating the strength of existing
languages while overcoming their limitation. Future, we will refine the language
features along with its testing in a realistic environment.

Acknowledgement. This Ph.D. research is partially supported by Quantum Founda-
tion, Singapore under the supervision of Prof. Alex Norta, Associate Professor, Depart-
ment of Software Science, Tallinn University of Technology, Tallinn, Estonia. Email:
alex.norta.phd@ieee.org We thank our Prof. Alex Norta who provided insight and
expertise that greatly assisted the research.

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

2. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0 31

3. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White paper (2014)

4. Christensen, L.B.: Experimental Methodology. Allyn & Bacon, Boston (2004)
5. ConsenSys: trufflesuite/truffle (2015). https://github.com/trufflesuite/truffle.

Accessed 3 Mar 2018
6. Ethereum: ethereum/solidity (2015). https://github.com/ethereum/solidity.

Accessed 3 Mar 2018
7. Giancaspro, M.: Is a ‘smart contract’ really a smart idea? Insights from a legal

perspective. Comput. Law Secur. Rev. 33(6), 825–835 (2017)
8. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–

145 (1968)
9. March, S.T., Storey, V.C.: Design science in the information systems discipline: an

introduction to the special issue on design science research. MIS Q. 32, 725–730
(2008)

10. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
11. Norta, A., Ma, L., Duan, Y., Rull, A., Kõlvart, M., Taveter, K.: eContractual

choreography-language properties towards cross-organizational business collabora-
tion. J. Internet Serv. Appl. 6(1), 8 (2015)

12. Norta, A.H.: Exploring dynamic inter-organizational business process collabora-
tion. Dissertation Abstracts International, 68(04) (2007)

13. RChain: RChain/rholang. https://steemit.com/smart/@alexbafana/smart-
contract-languages-comparison

14. Roxenhall, T., Ghauri, P.: Use of the written contract in long-lasting business
relationships. Ind. Mark. Manag. 33(3), 261–268 (2004)

15. Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design
research. MIS Q. 35, 37–56 (2011)

16. Singh, M.P., Chopra, A.K.: Violable contracts and governance for blockchain appli-
cations. arXiv preprint arXiv:1801.02672 (2018)

Formal-Verification of Smart-Contract Languages: A Survey 747

17. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

18. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

Curriculum Vitae
1. Personal data

Name Vimal Kumar DwivediDate and place of birth 17th August, Allahabad, IndiaNationality India
2. Contact information

Address

E-mail
3. Education

2017–. . .

Tallinn University of Technology, School of Information Technologies, Department of Software Science,Ehitajate tee 5, 19086 Tallinn, Estoniavimal.dwivedi@ttu.ee

Tallinn University of Technology, School of Information Technologies, Computer science, PhD studies
2013–2015 Guru Gobind Singh Indraprastha University,

 Information Technology, Master of technology cum laude 2008–2012 Dr. A.P.J. Abdul Kalam Technical University,
Information Technology, Bachelor of technology

4. Language competence

Hindi native English fluent
5. Professional employment

2021– . . . University of Tartu, Tartu, Junior Lecturer2015–2017 Krishna engineering College, India, Assistant Professor
6. Computer skills

• Operating systems: Windows
• Programming languages: Python, C, Sql, XML and Java

7. Honours and awards

• 2021, Best paper award for presenting a paper "Auto-Generation of Smart Con-tracts from Domain-Specific XML-Based Language" in FICTA-2021, Springer

213

8. Defended theses

• 2015, Offline Signature verification through wavelet feature extraction and SVMclassifier, M.Tech, supervisor Assoc. Prof. Tushar Patanaik, Guru Gobind Singh In-draprastha University, India.
9. Field of research

• Blockchain Systems
• Requirement Engineering
• Machine Learning
• Supply Chain Analytics

214

Vimal Kumar Dwivedi17th August, Allahabad, IndiaIndia

Elulookirjeldus
1. Isikuandmed

NimiSünniaeg ja -koht Kodakondsus
2. Kontaktandmed

Aadress
E-post
3. Haridus

2017–. . .

Tallinna Tehnikaülikool, Infotehnoloogia teaduskond, Ehitajate tee 5, 19086 Tallinn, Estoniavimal.dwivedi@ttu.ee

Tallinna Tehnikaülikool, Infotehnoloogia teaduskond, arvutiteadus, doktoriõpe
2013–2015 Guru Gobind Singh Indraprastha ülikool, Infotehnoloogia,

 Tehnoloogia magister cum laude2008–2012 Dr A.P.J. Abdul Kalami tehnikaülikool, Infotehnoloogia,tehnoloogia bakalaureus
4. Keelteoskus

hindi keel emakeelinglise keel kõrgtase
5. Teenistuskäik

2021– . . . Tartu Ülikool, Tartu, noorem õppejõud2015–2017 Krishna insenerikolledž, India, dotsent
6. Arvutioskused

• Operatsioonisüsteemid: Windows
• Programmeerimiskeeled: Python, C, Sql, XML and Java

7. Autasud

• 2021, Parima artikli auhind artikli "Nutikate lepingute automaatne genereerimine domeenispetsiifilisest XML-põhisest keelest" eest konverentsil FICTA-2021
(Springer)

215

8. Kaitstud lõputööd

• 2015, Võrguühenduseta allkirja kontrollimine lainete funktsioonide eraldamise ja SVM-klassifikaatori kaudu, M.Tech, juhendaja Assoc. Prof. Tushar Patanaik, Guru Gobind Singh Indraprastha ülikool, India.
9. Teadustöö põhisuunad

• Plokiahela süsteemid
• Nõuete kavandamine
• Masinaõpe
• Tarneahela analüüs

216

ISSN 2585-6901 (PDF)
ISBN 978-9949-83-816-5 (PDF)

	List of Publications
	Author's Contributions to the Publications
	Abbreviations
	INTRODUCTION
	Thesis Motivation
	Research Questions
	 Contributions
	Research Methodology and Methods
	Structure of the Thesis

	BACKGROUND AND RELATED WORK
	Blockchain and Smart Contracts
	Technologies supporting the blockchain
	Legal implications of smart contracts

	State of Art of Smart Contract Development
	Agent-based approach
	Business process-based approach
	State machine approach
	UML approach

	Running Cases
	Case 1: Decentralized system of automobile collaborative supply chain.
	Case 2: Collaborative dairy supply chain for business processes, process views

	 LEGALLY BINDING SMART-CONTRACT LANGUAGE DEVELOPMENT FRAMEWORK
	Introduction
	Existing SCLs
	Domain-specific SCLs
	Formally verifiable SCLs
	Easy-to-use SCLs
	Legally-enforceable SCLs
	Business process SCLs

	Suitability and Expressiveness Properties
	Semantic suitability
	Workflow suitability
	Expressiveness

	Evaluation of SCL Suitability and Expressiveness
	 Novel Framework for Designing Legally-Binding SCL
	Chapter Conclusion

	FORMAL SPECIFICATION LANGUAGE
	Introduction
	Multi-Tiered Contract Ontology
	Upper core layer of smart contracts
	Specific domain layer

	Rights and Obligations Monitoring
	Repository accessing
	Manage service type
	Conformance validation

	SLCML: A Contract Specification Language
	Upper-level smart-contract definition
	Obligation-type definition

	Chapter Conclusion

	APPROACH FOR TRANSLATING SLCML-BASED SCs TO SOLIDITY
	Introduction
	SLCML Instantiation
	Patterns and Transformation Rules
	SLCML to Solidity Translation
	Chapter Conclusion

	EVALUATION OF THE SMART-LEGAL CONTRACT MARKUP LANGUAGE
	Introduction
	Assessment of Evaluation Methods for Modeling Languages and Their Support Tools
	Evaluation approaches:
	Modeling-language evaluation aspects
	Usability evaluation aspects of modeling language:

	SLCML Schema Evaluation
	SLCML Usability Evaluation
	Chapter Conclusion

	CONCLUSION
	Discussions
	Discussions from the development of a legally binding SCL
	Discussions from the SCL ontology description
	Discussions from the development of the patterns and transformation rules
	Discussions from the SLCML evaluations results

	Answer to Research Questions and Chapter Summaries
	Answers to RQ1
	Answers to RQ2
	Answers to RQ3

	Summary of Evaluation Results
	Thesis Limitations and Future Work

	List of Figures
	List of Tables
	References
	Acknowledgements
	Abstract
	Kokkuvõte
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Curriculum Vitae
	Elulookirjeldus

