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MASINÕPPEL BASEERUVA
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Hyperparameter Tuning for Machine Learning Based

Parkinson’s Disease Diagnostics

Abstract

Primary goal of present thesis is to improve the quality of drawing tests analy-

sis for Parkinson’s disease diagnostics. The majority of the machine-learning-based

results use kinematic- and pressure- based features to describe the drawing process.

While highly accurate results have been reported in the literature, very little atten-

tion is paid to the problem of tuning the hyperparameters of classification models

and the inclusion of the tested subject’s personal information. These two problems

constitute the scope of the present research.

In the study Fisher score and principal component analysis were used for feature

selection in data preparation phase. In this research six classification models, that

represent different classification approaches, were trained on Parkinson’s disease

diagnosed patients data. Cross-validation, grid and random searches were imple-

mented to optimize and evaluate performance of the aforementioned classifiers. In

the evaluation stage classifier model behavior was analyzed with classification met-

rics, such as accuracy, precision, sensitivity, specificity, f1-score and auc roc curve.

The main outcome of current research is a framework that executes feature selec-

tion and provides hyperparameter tuning with performance evaluation for different

classification models. It was demonstrated that tuning of the hyperparameters sig-

nificantly affects model’s prediction. Some of the best results show that accuracy

increased from 76.7% to 92.4%, precision from 68.4% to 96% and f1 score from 65.7%

to 80.8%.

Inclusion of patient’s additional data had a positive impact on model’s behavior.

Generally, extra features combinations had much better overall performance than

initial ones. After optimization process extra features had the highest metric scores

almost in every fine-motor test.

The thesis is in English and contains 44 pages of text, 5 chapters, 11 figures, 8

tables.



Hüperparameetrite häälestamine masinõppel baseeruva

Parkinsoni tõve diagnostika jaoks

Annotatsioon

Käesoleva lõputöö peamine eesmärk on parandada Parkinsoni tõve diagnostika

joonistustestide analüüsi kvaliteeti. Suurem osa masinõppepõhistest tulemustest

kasutab joonistamisprotsessi kirjeldamiseks kinemaatilisi ja rõhupõhiseid tunnuseid.

Ehkki kirjanduses on esitatud väga täpseid tulemusi, pööratakse klassifitseerimis-

mudelite hüperparameetrite häälestamise raskustele ja testitava isiku isiklike and-

mete kaasamisele väga vähe tähelepanu.

Uuringus kasutati andmete ettevalmistamise etapis funktsioonide valimiseks Fish-

eri skoori ja peakomponentide analüüsi. Selles uuringus treeniti Parkinsoni tõvega

diagnoositud patsientide andmete põhjal kuut klassifikatsioonimudelit, mis esin-

davad erinevaid klassifitseerimisviise. Eespool nimetatud klassifikaatorite toimivuse

optimeerimiseks ja hindamiseks viidi läbi ristvalideerimine, ammendavad ja juhus-

likud otsingud. Hindamisetapis analüüsiti klassifikaatori mudeli käitumist klassifit-

seerimismõõdikutega.

Uurimustöö peamine tulemus on raamistik, mis teostab tunnuste valiku ja pakub

hüperparameetrite häälestamist koos toimivuse hindamisega erinevate klassifikat-

sioonimudelite jaoks. Tulemustest tuleneb, et hüperparameetrite häälestamine mõjutab

oluliselt mudeli üldist headust. Mõned parimad tulemused näitavad, et accuracy

kasvas 76,7%-lt 92,4%-ni, precision 68,4%-lt 96%-ni ja f1-score 65,7%-lt 80,8%-le.

Patsiendi täiendavate andmete lisamine mõjutas positiivselt mudeli käitumist.

Üldiselt oli lisatunnuste kombinatsioonide üldine jõudlus palju parem kui algsete

andmete oma. Pärast optimeerimisprotsessi näitasid lisatunnused kõige kõrgemad

tulemused peaaegu igas peenmotoorses testis.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 44 leheküljel, 5 peatükki,

11 joonist, 8 tabelit.



List of abbreviations and terms

AUC Area Under The Curve

FN False Negatives

FP False Positives

FPR False Positive Rate

HC Healthy Control

IDE Integrated Development Environment

KNN K-Nearest Neighbors

PC Personal Computer

PCA Principal Component Analysis

PD Parkinson’s Disease

ROC Receiver Operating Characteristics

SVC Support Vector Classification

SVD Singular Value Decomposition

SVM Support Vector Machine

TN True Negatives

TP True Positives

TPR True Positive Rate
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Chapter 1

Introduction

According to statistical evidence Parkinson’s disease is one of the most widely spread

neurodegenerative disorders worldwide. At the present moment there is no known

cure from the disease. Nevertheless, early diagnosis and proper therapy may relieve

the patients from the symptoms and enhance the quality of everyday life.

Parkinson’s disease is complex neurodegenerative disorder that mostly affects

human muscle movements. Diagnosed patients experience variety of symptoms such

as tremor, stiffness of the limbs, slowness in movements (bradykinesia) [1, 2], prob-

lems with coordination and balance. Therefore, recent studies endorse handwriting

and drawing as a proven biomarker for Parkinson’s disease, since these processes

demand high synchronization of many muscles and appear difficult for Parkinson’s

disease patients [3, 4, 5].

Fine-motor tests have been used to detect neurological disorders for over a cen-

tury. Over this period of time many different versions have been presented that

investigate drawing of patterns or analyze handwriting of the sentences. While tests

are generally performed with plain paper and pencil, advances in technology have

also led to the use of tablet PCs [6]. With their help, it is also possible to record

kinematic, geometric and pressure parameters [1, 7, 8, 9] that are invisible for the

naked eye. For example, writing and drawing speed, acceleration, pen pressure, an-

gles, etc. Machine-based analysis of the features calculated from these parameters

helps to reduce the subjectivity of doctors due to different experiences in diagnostics

and provides additional information for decision-making. In order for this method to

be used in medical practice, it is important to evaluate and optimize the accuracy
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CHAPTER 1. INTRODUCTION

of the algorithms used. While the analysis of fine-motor tests based on machine

learning is a widespread trend, the selection and tuning of the hyperparameters of

the models used has not received much attention in published research. Moreover,

personal communication and some preliminary results have indicated that patient’s

additional information that can provide insight on patient’s lifestyle can also benefit

classification processes.

Machine learning algorithms have hyperparameters that allow one to manipulate

the behavior of the model to specific dataset. These parameters are specified during

model configuration and it can be challenging to foresee the best values of a given

algorithm on a given dataset. Therefore, it is common to use grid and random search

strategies for different hyperparameter values [10].

Present thesis is a part of bigger research series in Tallinn University of Tech-

nology, Tallinn University and University of Tartu. This research was conducted to

study how selection and tuning of hyperparameters affect classifier’s performance,

since it has not been a main focus in previous studies before.

Primary goal of present thesis is to analyze whether and what effect the tuning

of hyperparameters of machine learning models on Parkinson’s disease diagnosed

patient data has on the final results. Also, investigate whether and what effect the

inclusion of patient personal data (such as gender, age, dominant hand, weight and

height) for model training has.

The initial data is pre-processed and additional data is integrated with it. Fea-

ture selection is applied to reduce high dimensionality of the data using Fisher score

and principal component analysis. After completing data preparation phase hyper-

parameters of six classification algorithms were looked into to define hyperparam-

eters with the biggest impact on models’ optimization. Selected hyperparameters

are used in cross-validation, grid and random searches to evaluate the performance

of each model based on six evaluation metrics.

Main outcome of current research is a framework that is capable of pre-processing

given data, providing feature selection option and hyperparameter tuning with per-

formance evaluation for various classification models. Also, make it easy to integrate

patient’s personal information with initial dataset and make it possible to analyze

the effect of including personal data on model training. As a result, it was con-
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CHAPTER 1. INTRODUCTION

firmed that the tuning of the hyperparameters may significantly improve classifier’s

behavior and inclusion of patient’s additional data also has a positive impact on

classification.

Thesis is organized as follows. Chapter 1 consists of background description and

problem statement. Chapter 2 gives insight on data preparation, data description

and feature selection. Chapter 3 describes used classification algorithms and how

to validate their performance. Chapter 4 explains the optimization processes and

describes obtained results. Chapter 5 offers discussion about acquired results.
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Chapter 2

Data Preparation

2.1 Data Description

At the initial stage of the research, data computed from the raw signals was given.

Several drawing tests are included in the dataset. Each row of the data represents

a Parkinson’s disease diagnosed patient or an age-matched healthy control subject.

For each performed test case there are features that stand for different kinematic,

pressure and geometric properties. To effectively store, access and process data,

given Excel file was converted into Pandas dataframe. Example of the features

dataframe is shown on Table 2.1, where HC is a healthy control subject and PD is

a diagnosed patient.

test name label feature 1 ... feature n

spiral HC01 36.2351 ... 5135.421

spiral HC02 43.22 ... 544.0021

spiral HC03 12.0 ... 3590.1

spiral PD01 107.3 ... 3525.74

spiral PD02 153.044 ... 2535.7

Table 2.1: Data Description — Dataframe Example

Aforementioned data needs to be cleaned and divided into subsets by category.

Then, each drawing test’s dataset needs to be rectified and implemented in classifiers’

training for hyperparameter tuning processes.

9



2.1. DATA DESCRIPTION CHAPTER 2. DATA PREPARATION

2.1.1 Drawing Tests

Over the course of one hundred years various drawing and writing tests have been

developed to diagnose different disorders and assess their progress [11].

The present research is based on the information conducted from fine-motor skill

tests that were performed by Parkinson’s disease diagnosed patients and control

subjects of the same age group. Fine-motor tests were performed using iPad and

digital pen. During the test different kinematic, geometric and pressure parameters

were recorded and afterwards used to define features that this research uses to train

classification algorithms on.

A subset of conducted fine motor tests is shown below.

Figure 2.1: Drawing Tests — Archimedean Spiral

Figure 2.2: Drawing Tests — Luria’s Alternating Series Test 1

Figure 2.3: Drawing Tests — Luria’s Alternating Series Test 2

10



2.2. ADDITIONAL DATA CHAPTER 2. DATA PREPARATION

2.2 Additional Data

Patient’s personal information integration and analysis have crucial part in the

present thesis. It is speculated that patient’s personal information that helps to

describe or give insight on person and his/her lifestyle may also assist with the di-

agnosis of Parkinson’s disease. In order to study whether and how additional data

affects the diagnosis, extra data needs to be integrated into the classification work-

flow. However, the extra data will only be implemented together with the most

appropriate variables that were obtained during feature selection. It is essential

to validate whether additional information is more relevant than already existing

attributes.

In present study gender, age, dominant hand, weight and height attributes were

integrated. It was demonstrated in [12] that gender has a significant impact on gross-

motor skill analysis for Parkinson’s disease diagnostics. Also, age is considered a

natural factor that causes degradation of fine motor movements.

Feature Unit Type

gender male=0, female=1 Integer

age years Integer

dominant hand right=1, left=0 Integer

weight kg Float

height cm Float

Table 2.2: Additional Data — Extra Features Description

After successful data integration, combinations of initial and extra feature will

be implemented in classification processes.

2.2.1 Data Imputing

Incomplete data might not be suitable for some classification algorithms and needs

to be pre-processed to be applied [10]. There are several approaches to handle absent

values in datasets and the decision must be based on the essence and type of given

data.

11



2.2. ADDITIONAL DATA CHAPTER 2. DATA PREPARATION

In the current research missing values will be imputed with mean strategy that

works well with small datasets. Chosen method is perfect for current problem, since

initial data is relatively small with only numeric values and after integrating extra

features will also contain a lot of missing values. The main aim is to maintain

existing records and avoid information loss.

12



2.3. FEATURE SELECTION CHAPTER 2. DATA PREPARATION

2.3 Feature Selection

Feature is a property that helps to describe and analyze observable object. In

datasets features, also known as ”attributes” or ”variables”, appear as columns and

number of attributes may vary widely. In this research the initial data is high

dimensional, there are 142 initial variables to consider with. Therefore, to increase

the effectiveness of classification algorithms it is crucial to find features that are the

most informative and discriminating [13].

Feature selection is one of the most important steps in data pre-processing pro-

cess. In fact, real data may contain features of varying relevance. Attributes that

do not contribute much to class labeling may harm the accuracy of classifiers and

be the source of computational inefficiency. Feature selection helps to eliminate

redundant features without dropping classifier’s performance. Additionally, feature

selection reduces the probability of overfitting - a problem that occurs when model

becomes too attuned to the data it was trained on and is not appropriate for any

other dataset. Also, training algorithms become faster on hardware level due to

decreased number of operations needed in classification process [13, 10].

Feature selection methods for classification can be categorized into three primary

types [13].

1. Filter models : The quality of a feature or a subset of features is evaluated

using some mathematical criterion. Irrelevant features are filtered out using

based on the criterion.

2. Wrapper models : It is assumed that a classifier is available to evaluate how

well the model performs with a particular subset of features. The relevant set

of features is determined by wrapping a feature search algorithm around the

classification model.

3. Embedded models : The solution to a classification model often contains useful

hints about the most relevant features. These features are isolated, and the

classifier is retrained on the pruned features.

In this research Fisher score method that belongs to filter models was selected

and implemented.
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2.3. FEATURE SELECTION CHAPTER 2. DATA PREPARATION

2.3.1 Fisher Score

Charu C. Aggarwal’s definition: ”The Fisher score is naturally designed for numeric

attributes to measure the ratio of the average interclass separation to the average

intraclass separation. The larger the Fisher score, the greater the discriminatory

power of the attribute.”

Let µj and σj, respectively, be the mean and standard deviation of data points

belonging to class j for a particular feature, and let pj be the fraction of data points

belonging to class j. Let µ be the global mean of the data on the feature being

evaluated. Then, the Fisher score F for that feature may be defined as the ratio of

the interclass separation to intraclass separation:

F =

∑k
j=1 pj(µj − µ)2∑k

j=1 pjσ
2
j

(2.1)

The numerator quantifies the average interclass separation, whereas the denom-

inator quantifies the average intraclass separation. Aggarwal states that the at-

tributes with the largest value of the Fisher score might be more suitable for classi-

fication algorithms [13].

14



2.4. DIMENSIONALITY REDUCTION CHAPTER 2. DATA PREPARATION

2.4 Dimensionality Reduction

In real data sets, a significant number of correlations exist among different attributes.

In some cases, hard constraints or rules between attributes may uniquely define some

attributes in terms of others. Frequently, these correlations are imperfect and hard

to detect. However, aforementioned correlations and constraints imply the existence

of some subsets of the dimensions that can be used to predict the values of the other

dimensions. Also, it is notable to mention that high dimensionalty raises the risk

of encountering curse of dimensionality. A problem that deals with analyzing and

organizing data in high-dimensional spaces [13].

There are several methods that are used for correlation analysis and dimen-

sionality reduction. Principal component analysis (PCA) and singular value de-

composition (SVD) are two natural procedures that help to automate the way of

dimensionality reduction with axis rotation. Both methods are closely related, but

not identical on definition level. SVD is a more general framework and can be used

to perform PCA as a special case. However, the concept of principal component

analysis is intuitively easier to understand [13].

In the present research PCA will be applied to discover possible hidden cor-

relations among initially given and extra features. Built-in PCA functionality of

scikit-learn library will be implemented and transformed data will be used on clas-

sification models.

2.4.1 Principal Component Analysis

Principal component analysis is a procedure that is used to reduce the dimensionality

of datasets that have great amount of features. The goal of PCA is to transform

initial dataset into a smaller one and preserve as much information as possible.

PCA method applies data’s covariance matrix to compute principal components.

Principal components are the attributes with the greatest possible variance. In

order to find principal component PCA performs axis-rotation to maximize the sum

of the squared distances of the attribute values projected in the n-th dimension.

The following principal component is calculated in the same way, but has to be

perpendicular to the previous one [13, 10].

15



2.4. DIMENSIONALITY REDUCTION CHAPTER 2. DATA PREPARATION

The principal components can be organized by their importance by ranking

eigenvectors in order of their eigenvalues. Eigenvectors and eigenvalues come in

pairs and their number is equal to the number of the data dimensions. Eigenvectors

of covariance matrix are the directions of the axes with the most variance. Eigenval-

ues are the variance coefficients attached to eigenvectors, that describe the amount

of information in principal component. Later, the eigenvalue of each principal com-

ponent is divided by the sum of eigenvalues to compute the percentage of variance

accounted for by each component.

16



Chapter 3

Classification

3.1 Classifiers

Classification algorithms are trying to solve labeling problems. Classification is a

type of supervised learning where data is already labeled and important attributes

are separated into well defined categories. The data is fed to the algorithm that

knows what features are vital and thus has a ground truth for classification [10].

The data is divided into training and testing sets. The testing process helps

to analyze how well classifier predicts the labels after being given before unseen

dataset. It is crucial to avoid testing on the data that classifier was trained on, since

the outcome would be extremely biased due to model’s knowledge of the patterns

[10].

Scikit-learn library, that was heavily used in the present research, provides var-

ious classifiers that are easy to implement. For the particular problem that this

research tries to solve following classifier were applied.

3.1.1 Decision Tree

Decision Trees are classification models that implement hierarchical tree-like struc-

ture for classification process. Tree nodes represent decisions. Each decision is based

on one or more features in the training data and is referred as split criterion, that

divides the training data into two or more parts. Combination of split criteria and

nodes above it define subset of the data space [13].

The induction algorithm uses internal nodes to navigate and leaf nodes to label

17



3.1. CLASSIFIERS CHAPTER 3. CLASSIFICATION

dominant class. The root node is a special case of internal node that corresponds

to the whole feature space. The decision tree starts with the full training dataset

and recursively partitions the training data in each node. Partitioning is based

on splitting criterion and the growth is stopped based on stopping criterion. For

example, all data samples belong to one class [13].

The decision tree classifier has several advantages. Unlike most machine learning

models, there is almost no need for data preparation. Classification’s computational

speed is high due to cost of deduction being logarithmic. However, the decision trees

are also vulnerable to overfitting [10].

In this research during the tuning of classifier’s hyperparameters main focus

was on splitting criterion and leaf nodes. Scikit-learn’s DecisionTreeClassifier was

integrated into main framework and it’s performance was studied on the previously

pre-processed data.

Hyperparameters shown in Table 3.1 were chosen for optimization processes in

the present research.

Hyperparameter Value

criterion {“gini”, “entropy”}, default=”gini”

splitter {“best”, “random”}, default=”best”

max_features int, float or {“auto”, “sqrt”, “log2”}, default=None

max_depth int, default=None

min samples split int or float, default=2

Table 3.1: DecisionTreeClassifier — Hyperparameters

Criterion defines the function to measure the quality of a split by the Gini

impurity or the information gain with ”entropy”. Splitter sets the strategy for

node splitting. Min samples split is the minimum number of samples that are

needed to split an internal node. Max depth controls the maximum depth of the

tree and if it is not defined, then nodes are expanded until all leaves are pure or the

minimum number of samples for each node is reached. Max features parameter is

used to consider number of features when selecting the best split [10].

18



3.1. CLASSIFIERS CHAPTER 3. CLASSIFICATION

3.1.2 Random Forest

Random Forest classifier consist of numerous decision trees that operate as an en-

semble. Each decision tree in the random forest performs it’s own prediction com-

putations and then the class with the most votes gets to be chosen as a model’s

prediction [13].

The low correlation between individual decision trees is the reason why random

forest outperforms each model’s separate prediction. The greater the number of

uncorrelated trees in the random forest model the higher is the chance to accurately

predict the label. The majority vote helps to bypass errors, that are made by a few

single decision trees, and keep moving in the right direction. However, features still

have to possess enough information in order to correctly predict the class [10, 13].

Each decision tree’s behavior is regulated by bagging. Bagging is a process that

randomly samples data with replacement and the size of the training subset stays

the same. However, using decision trees only with bagging is not enough, since it is

statistically likely that split choices at the top levels of the tree remain roughly equal

to bootstrapped sampling [13]. Therefore, correlation between individual models

persists and the handling of the error reduction is limited.

Additionally, random-split selection approach is applied to increase randomness

of the single decision tree. An integer parameter q, that represents the size of the

attributes’ subset, regulates the node’s splitting execution in the tree. Using small

values of q reduce the correlations in the random forest. On the other hand, bigger q

values enlarge single model’s accuracy, but also result in correlated trees. Therefore,

the goal is to achieve the best possible trade-off. The method is inefficient if the

dimensionality is small and then the combinations of the attributes at each node’s

split are introduced. The combinations help to operate with the small number of

attributes [13].

The RandomForestClassifier algorithm introduced in Scikit-learn is flexible and

has many hyperparameters to operate with. During the research the centre of at-

tention was the number of trees in the model. Main hyperparameters used during

optimization can be seen in the Table 3.2, where n estimators defines the number

of decision tress in the model and other hyperparamters characterize the behavior

of decision trees [10].
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Hyperparameter Value

n estimators int, default=100

criterion {“gini”, “entropy”}, default=”gini”

max_features int, float or {“auto”, “sqrt”, “log2”}, default=”auto”

Table 3.2: RandomForestClassifier — Hyperparameters

3.1.3 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a supervised machine learning algorithm that as-

sumes that classes with similar attributes exist nearby. KNN is a type of instance-

based learning that simply stores instances of the training data. The algorithm

computes distances between test instance and its k -nearest neighbors. Then the

dominant label from these k -nearest neighbors is selected as an applicable one [10].

The optimal k value highly depends on the features of the data and may be

determined by calculating error rate for different k values or using leave-one-out

cross-validation method for the training subset. Usually, a larger k suppresses the

effects of noise, but makes the classification boundaries less distinct. The perfor-

mance is greatly affected by the distance function that searches for the neighbors

[13].

Advantages of the current algorithm is that it is simple and adjustable. It can be

used to solve both classification and regression problems. Nevertheless, KNN gets

significantly slower when implemented on the data with high dimensionality.

Scikit-learn’s implementation of KNN classifier KNeighborsClassifier offers high

customization options. In the present research high attention was given to the

choice of the algorithm and the k value. The performance speed of the KNN was

not an issue since the data dimensionality was previously reduced to a few observable

features.

The Table 3.3 shows used hyperparameters and their default values. N neighbors

represents the number of neighbors used to define a label. Weights is a function

used in prediction that defines point’s relevance. Algorithm parameter is an ap-

proach used to compute the nearest neighbors. BallTree and KDTree algorithms

use leaf size in their implementations and the size have significant impact on the
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classifier’s speed performance. The distance calculation is decided by metric. In

this research ”euclidean”, ”manhattan” and ”minkowski” distance metrics were used

[10].

Hyperparameter Value

n neighbors int, default=5

weights {”uniform”, ”distance”} or callable, default=”uniform”

algorithm {”auto”, ”ball tree”, ”kd tree”, ”brute”}, default=”auto”

leaf size int, default=30

metric str or callable, default=”minkowski”

Table 3.3: KNeighborsClassifier — Hyperparameters

3.1.4 AdaBoost

AdaBoost uses boosting approach to make a strong learner form a sequence of weak

learners and thus reducing the overall bias. In boosting a weight is assigned to each

training instance and with each iteration the weights are modified depending on

classifier performance. The future models are build from the results of the previous

ones using the same weak learning algorithm. The final verdict is produced through

a weighted majority vote or a sum [10].

During boosting iterations weight is added to each of the training samples. In

the initial iteration weak learners train on the original data and with each following

iteration the weights are modified. The algorithm forces weak learners to concentrate

on the training examples that were miscalculated by increasing their weight and

decreasing weight of correctly predicted ones. For better variance reduction the

weights must be modified less aggressively between rounds. The approach finishes

when the classification accuracy is 100% or the maximum number of iteration rounds

is reached. Some implementations of the algorithm reset the weights if accuracy falls

below 50% since it means that the classifier performs worse than guessing classifier

[13, 10].

Boosting may inappropriately overtrain the model due to excessive noise in the

data. The reason behind under-performance is that boosting mistakes noise for the

21



3.1. CLASSIFIERS CHAPTER 3. CLASSIFICATION

bias component of instances near the incorrectly modeled decision boundary [13].

Scikit-learn’s AdaBoostClassifier implements the algorithm known as AdaBoost-

SAMME. The implementation allows to set base estimator using base estimator,

if ”None” then DecisionTreeClassifier with max depth=1 is used. Also, modify

the number of iterations at which boosting process is terminated with n estimators

and learning rate based on weights with learning rate. There is a choice between

SAMME discrete boosting and SAMME.R real boosting algorithms that selected by

algorithm parameter. Moreover, a possibility to reproduce output across multiple

function calls by defining random state using random state [10].

Hyperparameter Value

base estimator object, default=None

n estimators int, default=50

learning rate float, default=1

algorithm {”SAMME”, ”SAMME.R”}, default =”SAMME.R”

random state int, RandomState instance or None, default=None

Table 3.4: AdaBoostClassifier — Hyperparameters

3.1.5 Logistic Regression

Logistic Regression is a linear model for classification that calculates the probability

of an outcome. Logistic regression categorizes the target variable into a discrete

category [10]. The algorithm’s name comes from the core function it is build on -

logistic function, also known as sigmoid function:

P =
1

1 + e−L
(3.1)

where:

• P is the probability of the logistic regression model for a individual example

• L represents the logit function, the logarithm of the odds.

A specified threshold value is used to determine the category of a particular test

instance. For example, if threshold is set to 0.7 then all instances with probability

above the threshold are categorized as class ”A” and all other as class ”B”.
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The classification algorithm is commonly used for binary classification problems,

but can also be applied to multi-class classification problems [13]. Logistic regression

can be classified into three types:

• Binomial: exist only two possible types of the dependent variables, such as

”pass” or ”fail”, 0 or 1, etc.

• Multinomial: exist three or more possible unordered types of the dependent

variables, such as ”dog”, ”cat”, ”mouse”.

• Ordinal: exist three or more possible ordered types of the dependent variables,

such as ”bad”, ”good”, ”excellent”.

The LogisticRegression class from scikit-learn library can fit binary, One-vs-Rest

or multinominal logistic regression with optional regularization. The class imple-

ments many solver algorithms to handle optimization problem. However, introduced

solvers only support specific regularization norms [10].

Hyperparameters presented in the Table 3.5 were used for tuning processes. Hy-

perparameter named solver selects the algorithm for optimization. In this research

only ”liblinear” was used, since Parkinson’s disease patient data is small and rep-

resents binary classification problem. Moreover, some of penalty parameters that

specify the norm used in the penalization, are incompatible with most of the solvers

making it impossible to perform exhaustive search hyperparameter tuning. Inter-

cept scaling defines the constant’s value used in prediction and is efficient only

when using ”liblinear” solver. C is the inverse of regularization strength, where

smaller values state stronger regularization. Max iter sets the maximum number

for iterations and multi class defines classification method. In this research only

”ovr” was used, since the algorithm selects it automatically if the data is binary

[10].

3.1.6 SVC

Support Vector Classification (SVC) is another popular supervised learning algo-

rithm for classification. SVC, or SVM (Support Vector Machine), tries to find

optimal hyperplane in n-dimensional space to separate different classes [10].
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Hyperparameter Value

penalty {”l1”, ”l2”, ”elasticnet”, ”none”}, default=”l2”

intercept scaling float, default=1

C float, default=1.0

solver {”newton-cg”, ”lbfgs”, ”liblinear”, ”sag”, ”saga”}, default=”lbfgs”

max iter int, default=100

multi class {”auto”, ”ovr”, ”multinomial”}, default=”auto”

Table 3.5: LogisticRegression — Hyperparameters

Hyperplane is a function that is used to define the decision boundary between

different labels. Support vector points are data points that are closer to the hy-

perplane and define it’s position and orientation. The margin is the distance from

hyperplane to support vector points. The greater the distance, the better is the

class separation [13].

SVM can perform linear classification, but also is suitable for non-linear classifi-

cation due to so-called kernel trick. Kernel method converts low dimensional input

space into high dimensional input space and tries to find a way to separate the data

[13].

The algorithm is used to classify numeric binary data. However, it can also op-

erate on multi-dimensional dataset by converting it to binary form using conversion

approaches [13]:

• one-against-rest: k different binary problems are created. Each problem

corresponds to a class, thus making a total of k models.

• one-against-one: a training dataset is created for each of the
(
k
2

)
pairs of

classes and producing a total of k*(k-1)/2 models.

The classifier is super effective when there are more features than training sam-

ples. SVM performs classification very well on complicated binary data. Despite

being a powerful tool the algorithm is also hard to optimize and selecting the right

kernel can be challenging. The computation performance downgrades as dataset

gets larger [10, 13].
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Scikit-learn’s SVC class, one of many implementations of SVM algorithms in the

library, was utilized. The algorithm is the most suitable for smaller data samples,

because the fit time scales tremendously and might be impractical for large datasets.

The one-vs-one approach is applied. Optimization provides five kernel types and

additional hyperparameters to modify kernel functions.

In the Table 3.6 there are shown main hyperparameters that were used during

classifier’s tuning. C is the reqularization parameter that must be strictly positive.

Kernel specifies the kernel type used in the classification algorithm. In this research

focus was on ”poly” and ”rbf” kernel types, since these two showed the best results

with the given dataset. For ”poly”, polynominal, kernel type there is additional

hyperparameter called degree that is ignored by all the other kernels. Shrinking

parameter helps to shorten the training time if the number of iterations is huge.

However, it might have a negative impact on optimization speed, if stopping toler-

ance is large. Class weight uses parameter C to adjust class weights, by default all

classes have weight one. Parameter coef0 is an independent term in kernel function

and is only significant in ”poly” and ”sigmoid” [10].

Hyperparameter Value

C float, default=1.0

kernel {”linear”, ”poly”, ”rbf”, ”sigmoid”, ”precomputed”}, default=”rbf”

degree int, default=3

shrinking bool, default=True

class weight dict or ”balanced”, default=None

coef0 float, default=0.0

Table 3.6: SVC — Hyperparameters
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3.2 Performance Evaluation

Evaluation of model’s performance is crucial to succeed in classification. To study

model’s behavior the data needs to be divided into the training and the testing

samples. Testing model on the training dataset is forbidden since the classification

algorithm already knows the patterns and will be extremely bias. In the testing

process the model tries to label before unseen data. After the predictions are made,

the predicted and actual values are matched. The result of matching is computed

into a metric to measure the performance of the model.

There are many different metrics that help to evaluate the model’s behaviour.

The most common metric is accuracy since everybody seems to know what it does.

However, there are much better metrics to take into account when dealing with

imbalanced classification. For example, recall and precision provide much more

information about a classification model and how it acts.

In the current research classification algorithms are evaluated with accuracy,

precision, recall, specificity, F1 score and AUC-ROC curve. Scikit-learn library

provides easy implementation for all aforementioned metrics with a few lines of

code [10].

3.2.1 Confusion Matrix

A confusion matrix, also known as an error matrix, is a table that is often used

in machine learning to describe classifier’s performance. The table on Figure 3.1

represents combinations of actual and predicted values. With the help of confusion

matrix several useful evaluation metrics can be measured such as accuracy, precision,

recall, specificity, F1 score and AUC-ROC curve [10].

• True positives (TP): prediction is positive and actual is positive.

• False positives (FP): prediction is positive, but actual is negative.

• True negatives (TN): prediction is negative and actual is negative.

• False negatives (FN): prediction is negative, but actual is positive.
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Figure 3.1: Evaluation — Confusion Matrix

3.2.2 Accuracy

Accuracy measures the fraction of correct predictions form 0 to 1. High percentage

of accurate predictions indicates better performance. Accuracy is the most common

metric to judge model’s performance. However, in case of imbalanced datasets

accuracy can be misleading and thus cause model’s inaccurate evaluation.

Accuracy =
true positives + true negatives

true positives + false positives + true negatives + false negatives
(3.2)

3.2.3 Precision

Precision measures the fraction of actual positives among those examples that are

predicted as positive. The range is also 0 to 1 and a larger value indicates better

prediction.

Precision =
true positives

true positives + false positives
(3.3)

3.2.4 Sensitivity

Sensitivity, also known as recall or true positive rate, measures the percentage of

actual positives that are predicted as positive. Larger value is considered as a better

predictive accuracy.

27



3.2. PERFORMANCE EVALUATION CHAPTER 3. CLASSIFICATION

Recall =
true positives

true positives + false negatives
(3.4)

3.2.5 Specificity

Specificity, or true negative rate, measures the proportion of negatives that are cor-

rectly recognized. Higher percentage of true negatives indicates better performance.

Both sensitivity and specificity are widely used metrics in medical diagnostics.

Specificity =
true negatives

false positives + true negatives
(3.5)

3.2.6 F1 Score

F1 score is a harmonic mean of precision and sensitivity. Both metrics are taken

into account in the following equation:

F1 = 2 ∗ precision ∗ recall

precision + recall
(3.6)

3.2.7 AUC-ROC Curve

AUC (Area Under The Curve) ROC (Receiver Operating Characteristics) curve is

one of the most vital evaluation metrics that helps to describe classification model’s

behaviour. Basically it tells how well model distinguishes between classes. In this

research’s context, the higher the AUC the better the model is at differentiating

between Parkinson’s disease diagnosed patients and test subjects.

The ROC curve is plotted with TPR (true positive rate) against the FPR (false

positive rate) where TPR is on the y-axis and FPR is on the x-axis.

The range of AUC is from 0 to 1. The higher the value the better is separability.

If model’s prediction is completely wrong the value will be 0, which means that

model predicts one class as another in all cases.
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3.3 Model Validation

Cross-validation is a technique used in machine learning that helps to assure that

model uses correct patterns from the data, to validate model’s stability. Also, cross-

validation has great impact on the tuning of hyperparameters. The basic idea behind

the technique is to train model on the subset of the dataset and then evaluate the

model on the complementary subset. The dataset is divided into the training subset,

that is meant to learn patterns, and the testing subset, that is used to evaluate

model’s prediction capabilities [13, 10].

General steps of cross-validation:

1. Divide data into two portions

2. Use the first portion to train the model

3. Validate model on the second one

The segmentation of data greatly affects validation, especially if data is small.

Testing model on small samples of data that does not accurately represent the

training dataset may cause incorrect evaluations. There are several methodologies

for model validation that help to reduce underfitting and overfitting [13]:

1. Holdout method - is the most basic one. The labeled data is randomly

divided into two subsets. Usually the training data corresponds to two-thirds

or more of the initial dataset and the remaining is used for testing. The method

can be repeated numerous times to provide better estimation. The problem

of this approach is that random variations might be overrepresented in the

training data and underrepresented in the testing data. Therefore, repetition

is suggested to minimize the error of the evaluation. Moreover, the data will

not be used to the full potential since only subset of data is used in the model

training.

2. K-Fold cross-validation - compensates for the lack of data samples. When

there is not enough data to train a model, an underfitting problem may occur

due to small training subset. By reducing the training data for validation

there is a risk of losing vital patterns viable for accuracy and thus producing
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label bias. K-Fold cross-validation provides plentiful of data for model training

and validation testing. The data is divided into n subsets, one subset is used

for testing purposes and n-1 subsets are used for model training. Holdout

method is repeated n times using each time a different subset for training. The

error is averaged through all repetitions thus improving prediction accuracy.

The solution remarkably reduces bias and variance, since most of the data

information is used in both training and testing subsets.

3. Stratified K-Fold cross-validation - is a variation of K-Fold cross-validation

technique that is designed to balance the percentage of labels in each fold.

Thus making it good for classification problems.

4. Leave-P-Out cross-validation - leaves p data points out of training data

and uses for validation. Process is repeated for all possible combinations and

in case of large p sample can be computationally expensive. A particular case

known as leave-one-out cross validation is more preferable since the number

of combinations is equal to the number of original data points.

Scikit-learn library provides different data splitting strategies. In the current

research Stratified K-Fold with predefined random seed was applied. Scikit-learn’s

algorithms, that implement cross-validation, select it as default if the target data is

a binary or the estimator is a classifier. Also, it is a good choice when dealing with

small dataset and helps to balance class ratio in each stratified fold [10].
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Hyperparameter Tuning

4.1 Methods

Initially given data consists of numerous calculated features that were obtained from

various fine motor tests on iPad tablets. In the initial stage of data preparation

- features will be transformed from excel file into Python dataframe object and

duplicate test cases will be removed. Then, feature selection will be performed with

Fisher scoring algorithm for each drawing test to determine which features have the

biggest weight during classification process. Later, patient’s personal information

will be added to the initial dataset. Unfortunately, additional features’ dataset is

incomplete, since not all information was provided. Therefore, missing values will

be imputed in order to save size of already small data. Lastly, principal component

analysis will be performed on combinations of the best selected features and extra

features to study additional information’s relevance on classification.

After completing pre-processing and transformation phase, the data will be ready

to be implemented on various classifiers to discover the best performing classifica-

tion models. Primary goal of current research is to examine how tuning of hyper-

parameters affects classification. Secondary one is to investigate whether patient’s

additional information has effect on diagnosis of Parkinson’ disease. The current

research’s dataset only has two labels standing for a Parkinson’s disease diagnosed

patient and a test subject, HC and PC respectively. Therefore, it can be consid-

ered as a standard binary classification problem that can be solved using machine

learning algorithms.
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In this research six classification algorithms were implemented and respective

hyperparameters studied. The research process was performed using k-fold cross-

validation and search techniques to estimate hyperparameter’s impact on label

prediction. Performance was evaluated based on the results obtained from cross-

validation with classifier’s default hyperparameter settings. Not all hyperparame-

ters are equally important, they highly depend on given data and the problem that

classifier tries to solve. Therefore, hyperparameters with the biggest effect were

looked into. In parallel, patient’s additional information was examined on the same

models using same search techniques.

Research, analysis and tuning of hyperparameters was performed using Python

programming language and PyCharm IDE. Also, Jupyter Notebook was imple-

mented to make interactive graphs. Following open-source Python libraries were

extensively used on different study stages:

• NumPy and Pandas — for data effective storage and manipulation

• Matplotlib, Plotly and Seaborn — for figure plotting

• Scikit-learn — for training and validation of numerous classifier models

4.1.1 Cross-Validation

As was mentioned in Chapter 3.3 cross-validation is a crucial part of the model

building process. The cross validation function from scikit-learn library allows to

specify multiple metrics for evaluation.

The algorithm supports different data splitting strategies including StratifiedK-

Fold that was used in this research. StratifiedKFold is a variation of standard k-fold

method, but returns stratified folds where each set contains approximately the same

percentage of samples of each target class as the complete set [10].

The initial Parkinson’s disease patients data was not arbitrary. Therefore, as it

was suggested in scikit-learn’s documentation shuffling was enabled to get more

meaningful results. The random state parameter was set to 42 to preserve same

folds across all iterations.

Initial cross-validation using six classifiers with default hyperparameters for each

test case was executed. The models were validated on different combinations of top

performing features based on Fisher scoring and patient’s additional features. In
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this research top five features for each test case were selected and then last one or

two features were swapped with additional ones. In total there were 16 collections

of features for each test instance.

4.1.2 Grid Search

Grid search is an exhaustive hyperparameter tuning technique that searches for

the best parameters defined by some metric score. Scikit-learn’s GridSearchCV

generates all the possible combinations of parameter values for given dataset, eval-

uates them and then the best hyperparamter values are retained [10]. Just as in

cross validate method StratifiedKFold with fixed random state was applied.

The Figure 4.1 illustrates Decision Tree’s grid search precision score results.

Three dimensions represent max depth, max features and min samples split

hyperparamters and each sphere is a possible combination. The bigger the sphere

the larger is the precision score. The Figure clearly indicates that by lowering

max depth value the score increases. Therefore, it is safe to say that some hyper-

parameters are more important than others and even by the slightest modification

of one parameter whole outcome could be different.

Figure 4.1: Grid Search — Decision Tree’s Precision
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4.1.3 Random Search

Random search is an alternative method for hyperprameter optimization. Random-

izedSearchCV executes randomized search over distribution of possible hyperparam-

eter values for each iteration. Random search helps to include more hyperparameters

and values since the computational cost can be chosen independently [10]. Com-

putational budget, or sampling iterations, is specified using the n iter parameter.

Sampling is done using a dictionary, similar to GridSearchCV’s one. StratifiedKFold

was applied once again.

Figures 4.1 and 4.2 display the main difference between grid and random searches.

While exhaustive search provides all possible combinations, it also requires a lot of

resources. On the other hand, randomized search implementation is able to manage

computation costs, but might not be able to find best hyperparameter values to

maximize the scores.

Figure 4.2: Random Search — Decision Tree’s Precision
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4.2 Results

The results obtained from the experiment indicate that most combinations with

extra features perform much better than original top five attributes. For example,

Decision Tree classifier’s performance scores shown in Figure 4.3 make it clear that

original features combination, that is the second from the top, has lower values than

most of the others. For particular test replacing ”slopes mass” with ”dom hand”

feature increased the accuracy score from 0.727 to 0.804, precision from 0.684 to

0.848, f1 score 0.662 to 0.746 and other metrics grew as well.

Figure 4.3: Decision Tree — Default Performances Scores

Figure 4.4 shows that variance between combinations in RandomForestClassi-

fier, DecisionTreeClassifier and AdaBoostClassifier results are much notable than

in SVC, LogisticRegression and KNeighborsClassifier algorithms’ outcomes. Means,

that are marked as crosses, and medians, as thick bars, of score metrics state that

attribute combinations have more impact on algorithms such as AdaBoost, Ran-

dom Forest and Decision Tree classifiers due to inner computations that are based

on feature values.

Tuning of the hyperparameters certainly increased overall performance of all
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Figure 4.4: Cross-Validation — Classifiers’ Performances

classification algorithms. For example, Decision Tree’s accuracy on spiral test case

went from 0.727 to 0.882 for initial top five features and to 0.904 for new combina-

tion of attributes. Applying PCA transformation on the training dataset increased

accuracy even more, raised it up to 0.924, and other metrics have significant grow

as well. Top scores were achieved by including dominant hand feature.

Figure 4.5: Grid Search — Decision Tree’s Accuracy

As for Random Forest classification best scores were also achieved after perform-
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ing PCA transformations. Cross-validation with default hyperparameters on initial

features gave accuracy of 0.807 and precision of 0.814. After optimization new best

scores across all combinations were 0.924 and 0.96 respectively. Combinations, that

included original attributes, dominant hand and height, were the most successful

ones.

Figure 4.6: Grid Search — Random Forest’s AUC-ROC Curve

KNN results on default settings were identical for all feature combinations. This

means that implemented algorithm in scikit-learn library for particular classifier

most likely uses only features with the most information for classification. The

outcome was 0.825 for accuracy and 0.933 for precision, but with low sensitivity

score of 0.65 points. After optimization all metric scores grew, recall increased to

0.8 points.

AdaBoost classifier’s scores with default hyperparameters and original features

were all around 0.75 points. Better attributes with PCA transformed data gave

up to 0.824 accuracy and 0.874 precision points and lifted other metrics as well.

Dominant hand, gender and height were the most frequent attributes in top lists.

Logistic Regression’s results were also almost identical when default settings were

used. However, top five features showed lower scores than other combinations. It

is possible that original features caused overfitting. The lowest accuracy score was

0.824 and the highest 0.904 points. Hyperparameter tuning had no effect on improv-

ing the scores. PCA transformation had a negative impact on overall performance.
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Figure 4.7: Grid Search — AdaBoost’s F1 Score

SVC classifier’s performance with default settings were 0.864 for accuracy and

0.96 fro precision with 0.7 for sensitivity. Optimization helped to slightly increase

overall behavior.
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Chapter 5

Conclusion

Primary goal of present thesis was to analyze whether and what effect the tuning

of hyperparameters of machine learning models for Parkinson’s disease diagnosed

patients data has on the final results. Also, investigate whether and what effect the

inclusion of patient’s personal data (such as gender, age, dominant hand, weight

and height) has on the model performance.

Research is based on handwriting data collected from patients with diagnosed

Parkinson’s disease and healthy control subjects within same age group.

In the beginning of the data pre-processing phase initial raw data was studied

and Fisher scoring algorithm was applied to filter out the most promising features.

This method greatly reduced the data dimensionality and also decreased chance of

overfitting.

Later patients’ additional data was merged with initially given data. Missing

values in the dataset were imputed using median strategy. The goal of imputing

was to save as much information as possible.

To study how patient’s additional data influences model training, combinations

of previously selected top features and additional attributes were given to hyper-

parameter tuning algorithms. In detail, top five features of each test were selected

and one to two least viable attributes were replaced by additional ones covering all

combinations.

Additionally, principal component analysis was performed to inspect how the

model’s optimization is affected by it. The training data subsets of different feature

combinations were transformed and then used in hyperparameter tuning processes.
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The results obtained during optimization show that even slightest hyperparam-

eter tuning may significantly change model’s behavior. Overall goodness of all clas-

sifiers increased. Models, that had good accuracy, but other metrics were poor,

enhanced their performance even further. Some of the best achieved scores were

accuracy of 92.6% and precision of 96.7%.

As for patient’s additional data, it is clear that including extra features helped

to achieve better performance. In fact, performing cross-validation with default

hyperparameter settings on additional features combinations showed greater metric

scores than on initial attributes almost in every fine-motor test. Generally, extra

attributes had also better results after hyperparamter tuning.

Obtained results of present thesis clearly indicate, that main goals were success-

fully achieved. Present research can evolve in different ways.

There are two possible directions to apply findings of the present study. The

first one is to generalize its findings to other drawing and writing tests. The second

one is to apply developed workflow to the case of gross-motor tests.
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[3] S. Nõmm, A. Toomela, J. Kozhenkina, and T. Toomsoo. Quantitative analysis

in the digital luria’s alternating series tests. In 2016 14th International Confer-

ence on Control, Automation, Robotics and Vision (ICARCV), pages 1–6, Nov

2016. doi: 10.1109/ICARCV.2016.7838746.

[4] Mathew Thomas, Abhishek Lenka, and Pramod Kumar Pal. Handwriting anal-

ysis in parkinson’s disease: Current status and future directions. Movement

Disorders Clinical Practice, 4(6):806–818, 2017. doi: 10.1002/mdc3.12552.
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1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose
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1.2. üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna
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ka autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi

ega isikuandmete kaitse seadusest ning muudest õigusaktidest tulenevaid õigusi.
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