
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Caner Gür 165512IASM

A COMPARISON OF
MICROSERVICE AND SERVERLESS

ARCHITECTURES
FOR BACKEND SERVICES

Master’s Thesis

Supervisor: Lembit Jürimägi

 Lecturer

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Caner Gür

25.12.2018

3

Abstract

The main object in this thesis is to give a comparison between microservice and serverless

architectures for implementations of the REST APIs. Before, making the experimental

implementations and testing, an historical overview given about these architectures. In

addition to that some information given about the usages of these architectures in current

market and the biggest cloud service providers which gives support to these architectures

on their platforms.

In experiments section, there are two experimental applications created using C#

programming language on .NET platform. One of these implementations is for

microservice and the other one is the serverless architecture. Both implementations are

using common code base to make a better comparison between these two architectures.

These experimental applications deployed to Microsoft Azure cloud environment for

testing.

An open source tool Locust is used for creating load tests against two implementations

and outputs from this tool represented in graphics to explain and compare the results.

All the results acquired from tests and development are compared from three perspectives

as cost, performance and development.

This thesis is written in English and is 56 pages long, including 7 chapters, 32 figures and

8 tables.

4

List of abbreviations and terms

API Application Program Interface

AWS Amazon Web Services

BaaS Backend as a Service

CDN Content Delivery Network

CPU Central Processing Unit

CRM Customer Relationship Management

DB Database

FaaS Function as a Service

IOT Internet of Things

JSON JavaScript Object Notation

MVC Model View Controller

OTT Over the Top

RAM Random Access Memory

REST Representational State Transfer

RPS Requests per Second

SDK Software Development Kit

SOA Service Oriented Architecture

UI User Interface

5

Table of contents

1 Introduction ... 10

2 Cloud Computing Architectures .. 11

2.1 Microservice Architecture .. 11

2.1.1 Service Oriented Architecture ... 11

2.1.2 Microservice Architecture ... 12

2.1.3 Backend as a Service ... 14

2.2 Serverless Architecture ... 15

2.2.1 Function as a Service ... 16

3 Infrastructures of the Common Services in the Market ... 19

3.1 Social Media Services .. 19

3.2 Video on Demand Services .. 20

3.3 E-Commerce Services .. 22

4 Cloud Service Providers .. 23

4.1 Amazon Web Services .. 23

4.1.1 Microservice Solution ... 23

4.1.2 Serverless Solution .. 24

4.2 Google Cloud Platform ... 24

4.2.1 Microservice Solution ... 24

4.2.2 Serverless Solution .. 24

4.3 Microsoft Azure .. 25

4.3.1 Microservice Solution ... 25

4.3.2 Serverless Solution .. 25

4.4 Comparison ... 26

5 Experiment Setup .. 27

5.1 Backend as a Service (BaaS) Implementation .. 30

5.2 Function as a Service (FaaS) Implementation .. 31

5.3 Testing .. 32

6 Benchmarks for BaaS and FaaS .. 36

6.1 Performance .. 36

6.1.1 BaaS Test Results .. 36

6

6.1.2 FaaS Test Results .. 37

6.1.3 Comparison .. 37

6.2 Cost ... 39

6.2.1 Microservice Cost Calculation .. 40

6.2.2 Serverless Cost Calculation ... 40

6.2.3 Comparison .. 42

6.3 Development ... 43

7 Conclusion ... 44

References .. 45

Appendix 1 – ThesisProject – Common ... 47

Appendix 2 – ThesisProject – MicroserviceApp .. 50

Appendix 3 – ThesisProject – ServerlessApp .. 52

Appendix 4 – ThesisProject – Testing .. 54

7

List of figures

Figure 1 Overview of SOA [4] ... 12

Figure 2 Microservice Architecture Representation [6] ... 13

Figure 3 Logical Representation of BaaS [2] ... 14

Figure 4 Comparison of Monolithic, SOA, Microservice and Serverless Architectures 16

Figure 5 Sample cost comparison of dedicated servers and serverless from AWS [12] 18

Figure 6 Social Media Service Sample Microservice Infrastructure 19

Figure 7 Video on Demand Service Sample Microservice Infrastructure 20

Figure 8 E-Commerce Service Sample Microservice Infrastructure 22

Figure 9 Example Benchmark Solution Structure .. 27

Figure 10 Common Service Project Structure .. 28

Figure 11 Post Request Body ... 28

Figure 12 Success Class Definition .. 28

Figure 13 Sample response for "POST /api/test" ... 29

Figure 14 SampleModel Class Definition .. 29

Figure 15 Sample response for "GET /api/test" ... 29

Figure 16 ICommonService Interface Definition ... 30

Figure 17 BaaS Implementation Project Structure ... 31

Figure 18 Initialization of CommonService in Startup .. 31

Figure 19 Dependency Injection for TestController ... 31

Figure 20 FaaS Implementation Project Structure ... 31

Figure 21 Instantiation of CommonService in Function .. 32

Figure 22 Testing Folder Structure ... 33

Figure 23 Locust Test Scenarios .. 33

Figure 24 Locust Load Test Web UI Main Page .. 34

Figure 25 Locust Graphical Interface ... 35

Figure 26 Locust Request Logs Tab ... 35

Figure 27 BaaS Test Results ... 36

Figure 28 FaaS Test Results ... 37

Figure 29 Requests per Second Comparison .. 38

Figure 30 Response Time Comparison .. 39

8

Figure 31 Standard service plan pricing for Service App [22] 40

Figure 32 Pricing for Serverless [26] ... 41

9

List of tables

Table 1 Microservice platforms comparison by service providers 26

Table 2 Serverless platforms comparison by service providers 26

Table 3 Microservice cost calculation parameters ... 40

Table 4 Request count calculation parameters ... 40

Table 5 Serverless resource cost calculation parameters .. 41

Table 6 Serverless execution cost calculation parameters .. 42

Table 7 Serverless total cost calculation parameters .. 42

Table 8 Microservice and Serverless Monthly Cost Comparison 42

10

1 Introduction

From beginning of software development history, there are various architectures and

methodologies which created within the time until now. All those are created because of

the changing requirements of the services and technologies. Nowadays, computers and

software are all around us. They are in most of the devices that we use in our daily lives

such as mobile phones, watches, cars, air conditioners, even washing machines and much

more. Also, with IOT, these devices are connecting to internet and communicate each

other, so it makes the systems even more complex.

Developers are constantly working on solving problems with the systems and trying to

make development and maintenance easier. If the systems get bigger and complex,

development and maintenance also get difficult. To solve that kind of issues, there are

some architectural approaches for software development which they will be mentioned

about in this study.

Service oriented architecture is one of the most important of these architectures. It has

been introduced in 90s and started to be used widely in 2000s. With the rapid

technological developments after 90s to today, this architecture is extended with new

approaches like Microservices.

Microservices approach tries to divide the system by small logical pieces which have

different purposes and can work independently from each other and they contain all the

necessary resources like DB, cache etc. and communicate with each other using external

messaging methods. Even if, it makes development easier, with the latest developments

sometimes it can be hard to maintain this kind of services as well. So, a new architecture

called Serverless Architecture is introduced recently.

Serverless architecture is a new approach which still in early stages of its support by cloud

providers and common usage in the software development area. This approach gives the

flexibility to developers to write the code and deploy it directly without thinking any

maintenance and performance issues caused by server limitations. That’s a great idea for

the first look, but we’ll take a look in this study to see if it’s really good solution or not.

11

2 Cloud Computing Architectures

In this study, as it mentioned in the introduction there will be a comparison between

Microservice and Serverless architectures. In this section, it’ll be mentioned about the

history and some specifications of these architectures.

2.1 Microservice Architecture

Microservice architecture is an architecture which extends the Service Oriented

Architecture. So, firstly SOA will be briefly explained to give a brief history about

evaluation on these architectures.

2.1.1 Service Oriented Architecture

Software architectures has changing over the years to design the software systems in a

better, cheaper and more efficient way. To achieve this goal lots of different architectures

are developed in time. Therefore, the service-oriented architecture is one of them [1].

Service-oriented architecture is dividing a big system to logical subsystems that have

[2]different purposes, as services. These services encapsulate some specific logic behind

for specific purpose. These services can be reused by other systems and also can

communicate with other services via messaging to work cooperatively [1].

In service-oriented architecture, services are divided according to business activities.

Each service needs to have clearly defined responsibilities. In that way model-driven

implementation, message-based communication., service composition and discovery

methods can be applied to the system. Therefore, more flexible and convenient systems

can be developed in less time [1, 3].

12

Figure 1 Overview of SOA [4]

Block explanations according to Figure 1 [4].

• Software services are interfaces between the users from business operations of

enterprise and computers. They can be web applications or some other user

interfaces like control panel of some device.

• Infrastructure is an environment to execute software services. It has an operating

system to run the services and also provides networking to communicate other

services via messaging. This part of the system managed by technical staff via

provided user interfaces.

• Business information can be stored and transferred through infrastructure between

services inside the system.

2.1.2 Microservice Architecture

Microservice architecture is a style of designing a system using small independent

subsystems which have different business roles, and this is a type of service-oriented

architecture. Microservice architecture consists of the microservices as primary building

blocks. A single microservice a has single purpose, not dependent to other services in the

system and also self-contained [5, 3]. As seen on the Figure 2 microservices are self-

contained and independent from each other, but also can communicate among other

services and the user interfaces.

13

Figure 2 Microservice Architecture Representation [6]

Microservice architecture [5];

• Reduces the complexity development and operation. Only needed microservices

could be changed in a system while development and doesn’t affect other parts.

Operation of the system will be also easier for scaling and easy to manage some

disruptions in services.

• Simplifies the system functionally. Each microservice has own functionality and

own purpose. So, it’s easy to debug and it prevents the services being functionally

complex.

• Reduces time to market. It allows faster development and deployment. Especially

for smaller coding changes can be applied very fast comparing to a monolithic

system. Also, it’s easier to deploy services because it requires less resources than

a monolithic system and it can be scaled as microservice based when it’s needed

for lower prices.

• Is more convenient to use DevOps approach with the methods like Continuous

Deployment and Integration.

14

• Gives better user experience. It’s easy to recover services in case of a failure and

prevent other services to fail such kind of scenarios. It also helps to improve the

uptime rate for system.

2.1.3 Backend as a Service

Backend as a Service is a development approach to use cloud services linked with mobile

and web applications. This approach can be used in applications such as social media

platforms, OTT media platforms, online games etc. via some software development kits

or application programming interfaces. It’s described as “turn-on infrastructure” by

technology analysts and it’s a cloud computing category that used by companies who tries

to make setup easier for developers and connect all web, mobile and tablet applications

with backend cloud resources easily [7]. Backend as a service architecture can be

represented like in Figure 3 with a cloud service used by different kind of client

applications.

Figure 3 Logical Representation of BaaS [2]

Most of the mobile and web applications uses similar features like instant messaging,

social media integration etc. All these services need an application programming interface

to be connected to application and more services complicates the development process

15

for developers. Therefore, the BaaS provides a bridge between these services and frontend

applications as an SDK or API. API-based BaaS approach provides some third-party

services as backend functions which can be reusable in different applications. These

functions are available for all frontend applications regardless their platforms like mobile,

web or tablet. BaaS has several advantages comparing to regular frontend

implementations like an additional layer of security for information exchange and also,

quick application development using existing backend functions and features. Here are a

couple of benefits that BaaS provides [7, 8].

• It allows more accessibility using the same base backend for all platforms and it

makes easy to develop cross platform applications represented in Figure 3. Also,

it provides better communication between frontend apps and cloud applications

and resources.

• Provides ability to create different platforms using same base model. If we

consider the base BaaS model as a class, users of this class can create their custom

objects using this base model. Using this unified backend gives better and stronger

user base.

• It prevents to make unnecessary development for each application for different

platforms. BaaS can provide most of the processing logic for applications via

provided SDKs and APIs. Therefore, there will be no need to make them on client

device and most of the functions can be executed by cloud applications.

• It reduces time-to-market thanks to ease of frontend development by keeping the

application logic in the backend services.

2.2 Serverless Architecture

Serverless architecture is a new way to design software applications without handling any

server-side operation, maintenance, scaling and all kind of server related issues. It

provides a clear separation between coding and hosting environment. All functions need

to be invoked by a trigger. There are plenty of trigger options such as http request, time

schedule, queue messages etc. depends on the cloud service provider which the functions

deployed on [9].

16

Software architecture evolves in a way that, there are functions in an atomic form that

have single purpose like add a new record to database, send a message to queue, process

an image etc. All the resources for these processes are managed by cloud service provider

and developer doesn’t need to think about provisioning or scaling the resources. For each

function call, needed resources are allocated from cloud servers and freed after function

completion. So, it prevents to use unnecessary resources [9, 10].

2.2.1 Function as a Service

Function as a Service as known as FaaS is the way to implement serverless application as

services. The key point of FaaS is to develop the code and leave the rest to cloud service

providers as a feature of serverless architecture. This approach gives a more granular

structure than Microservices.

As it’s mentioned earlier, microservices have specific purposes to make some business

logic behind the scene, but the functions have only one logic behind that they can achieve.

So, evolution from monolithic applications to functions can be visualized like in the

Figure 4.

Figure 4 Comparison of Monolithic, SOA, Microservice and Serverless Architectures

Monolithic SOA Microservices Functions

17

Here are some features of FaaS [10];

• FaaS gives an opportunity to code without any provisioning and managing the

servers and run the functions only they triggered and freeing the resources after

process completion. So, there is no need to keep resources running all the time.

• There is a wide range of support for different programming languages depending

on the cloud service providers. So, it gives flexibility to developers to use the

programming language that they already familiar with.

• Deployment of the code is also different than the traditional architectures. So, it’s

only needed to push the codes to cloud service provider and they’ll handle the rest

of the deployment and new version of code will be running for next executions.

• There is no need to think about the performance for high load scenarios. Namely,

all the auto scaling is performed by cloud service provider and more resources is

created for high loads. So, lots of parallel executions can be supported without

any issues.

• Functions can be triggered by different type of triggers such as http requests, file

uploads, queue messages, time schedules and many more of them. So, this gives

a flexibility and ease of development for developers to use these kinds of triggers

without using any custom trigger handling implementations.

Also using FaaS approach with the features that mentioned above has some benefits such

as [11];

• It’s easy to maintain and operate. The serverless architecture provides us a clear

separation between infrastructure and applications. Auto scaling feature helps to

reduce computing cost as well as the maintenance and operation overheads.

Comparing to traditional services, it requires almost no effort to make a

deployment of the code and it doesn’t require any containerization or continuous

delivery configurations. It means a completely serverless application doesn’t

require any system administration.

18

• It gives an opportunity to innovate faster. Software architects and developers can

focus only to innovate and develop new features regardless of thinking the

maintenance, deployment, scaling and performance issues. So, it gives more time

to think about the actual product and functionalities.

• It reduces the costs of operation and maintenance. This is one of the most

important benefit of the FaaS approach. The cost for the serverless solution is

managed servers, databases and application logic. So, cost of usage will be based

on running functions in solution. It means that if usage increases then cost will be

increased on the contrary application owners need to pay for dedicated servers

regardless of any usage.

It can be seen obviously that cost is going high depends on usage, unlike traditional

services running on dedicated servers in Figure 5.

Figure 5 Sample cost comparison of dedicated servers and serverless from AWS [12]

19

3 Infrastructures of the Common Services in the Market

There are various types of services in our daily lives which using different architectures

and resources. In this study, it will be tried to give some overview about some actual

services that we use commonly such as social media, video on demand and e-commerce

services.

3.1 Social Media Services

Social media services are commonly used services by many people, and it contains lots

of user data, some contents like photos posts, videos etc. Therefore, to handle all these

content and requests coming from lots of users a solid architecture need to be used.

Simply we can describe an architecture with microservices for social media like in the

Figure 6.

Figure 6 Social Media Service Sample Microservice Infrastructure

According to Figure 6;

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

Phone TabletWeb Smart TV Some other
platform

User Services Content
Services

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

Games, applications,
other services

User

20

• User management service does the registration, login, keeping user data like

profile information.

• Content management service manages the posts, pictures, videos etc. and keeping

them in storage or some file databases. It can be the biggest microservice among

others, it’ll keep lots of data and take lots of requests. So, it can be divided some

small functions for simple duties like adding posts, removing posts, like, dislike

kind of actions and many more. This can be a good sample usage of serverless

architecture for social media.

• CRM service can be also a microservice manage customer services.

3.2 Video on Demand Services

Video on demand services are the platforms which users can subscribe to some plans to

watch shows, movies etc. These kinds of services can give some content set based on

subscription of users and also can give one-time purchases to watch only one content like

a movie. In these services, there are some subservices like user, subscription, content and

streaming services and also, they like described in Figure 7.

Figure 7 Video on Demand Service Sample Microservice Infrastructure

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

Phone TabletWeb Smart TV Some other
platform

User Services Content
Services

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

Subscription Service

User

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

Streaming Service

21

According to Figure 7;

• User service provides login, registration, user profile etc. features just like the

social media services. In user service there can be some features like keeping

watch history, adding favorite shows and more. These features can be

implemented as functions for these actions like add to favorite, update watch

history and so on.

• Subscription service provides the ability for user to subscribe different plans for

different needs and also gives entitlement to user to get content according to

subscribed plans. In this case this entitlement requests will be very high because

each watch attempt will create an entitlement request so these endpoints also can

be changed as functions and they will be not a problem to handle those even for

the peak hours.

• Content service provides the metadata for the content like movies, tv shows and

all kind of video on demand content. This part also can be divided to smaller

pieces to get content with small queries such as get movie, get show so on.

• Streaming service is a service that provides the video or music streaming

according to metadata acquired from content service. It contains storage and CDN

services inside.

22

3.3 E-Commerce Services

E-Commerce services can be various, selling services, goods, some digital contents and

so on. For these kinds of services, we also need similar structure with other services like

in Figure 8.

Figure 8 E-Commerce Service Sample Microservice Infrastructure

According to Figure 8;

• User service provides register, login or profile management features for users.

• Content service provides the metadata of the products on sale. This part can be

divided to functions to get benefits of auto-scaling feature since it’s the part of the

system that will create most of the load.

• CRM services gives ability to service provider to manage the customers and give

customer service.

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

Phone TabletWeb Smart TV Some other
platform

User Services Content
Services

API

DB

Service 1

Service 2

Other
Resource
(Cache,
storage

etc.)

CRM, other services

User

23

4 Cloud Service Providers

There are plenty of cloud service providers which they can support serverless architecture.

In this study, it’ll be mentioned the first three biggest cloud service providers;

• Amazon Web Services

• Google Cloud Platform

• Microsoft Azure

All these providers have similar services, application and resources that they provide to

users. Users can deploy and maintain application, use virtual machines, store data in

storage spaces and databases and they can use many more features. In this study it’ll be

used resources for serverless and microservices for comparison.

Serverless solutions for these providers are very similar about various aspects. All

platforms have equivalent triggering options such as database triggers, schedulers, queue

triggers, http triggers and so on. Also, they’re similar in aspect of scaling. Therefore, the

using programming languages and familiarity for this kind platforms make an effect on

choosing the provider.

4.1 Amazon Web Services

Amazon Web Services as known as AWS is the cloud service platform that created by

Amazon in 2006. AWS is started to offer infrastructure services for businesses in a form

of web services as known as cloud platforms. Cloud platforms gives ability to businesses

to use servers and resources instantly without any procurement of servers or any other

infrastructure elements. Now AWS offers scalable, reliable and low-cost cloud

infrastructure solutions in 190 countries around the world with the datacenters in U.S.,

Europe, Brazil, Singapore, Japan, and Australia. [13]

4.1.1 Microservice Solution

Microservice solution which can be used in this study that provided by Amazon is the

AWS Elastic Beanstalk. It’s a web service platform which can be used as a REST API or

any other web application for both frontend and backend. These web applications use

24

some resources from other type infrastructure elements basically virtual machines and

storage. Virtual machine solution is EC2 and storage is S3 Bucket in AWS. [14]

• Supported languages are Go, Java, .NET, Node.js, PHP, Python, and Ruby [14].

• Pricing is done according to pricing of EC2 instances and the S3 Buckets which

contains runtime of the EC2 instance and storage used in S3 Bucket [15].

4.1.2 Serverless Solution

The solution for serverless architecture of Amazon is AWS Lambda platform [16].

• It supports Java, Node.js, C#, and Python code currently and many other

languages will be supported in the future.

• It’s billed depending on the compute time to run the code for per 100 milliseconds.

4.2 Google Cloud Platform

Google Cloud Platform is the platform which released by Google in 2008 to provide cloud

services to customers. It provides various cloud-based services around the world with 18

datacenters. [17]

4.2.1 Microservice Solution

Microservice solution provided by Google is Google App Engine. It can be used to deploy

frontend web applications or backend APIs [18].

• Supported languages for App Engine are Java, PHP, Node.js, Python, C#, .Net,

Ruby, Go [18].

• App Engine pricing is done based on the resource consumption such as run time,

storage, network traffic according to selected configuration plans [19].

4.2.2 Serverless Solution

Google supports serverless architecture by Google Cloud Functions [20].

• It supports only JavaScript (Node.js) and Python as programming languages. So,

this a disadvantage of Google platform against AWS.

25

• It’s also billed in execution time of function per 100 milliseconds.

Google also have another cloud service platform called Firebase and it has a serverless

solution named Cloud Functions for Firebase. It supports JavaScript and TypeScript for

as programming languages for function implementation [21].

4.3 Microsoft Azure

Azure is the cloud services platform which created and released in 2010 by Microsoft as

Windows Azure and it’s renamed as Microsoft Azure in 2014. It provides wide range of

cloud services worldwide as the other service providers that’s mentioned before. There

are 54 datacenters around the world which provides most of the services that Azure

platform supports. [22]

4.3.1 Microservice Solution

Microservice web application infrastructure which provided by Microsoft Azure is the

Azure Web Apps [23].

• It supports .NET, Java, Node.js, PHP, and Python on Windows or .NET Core,

Node.js, PHP or Ruby on Linux as programming languages [23].

• Billing is calculated according to run time of the application based on hourly price

of the selected tier [24].

4.3.2 Serverless Solution

Azure Functions is the equivalent solution of Microsoft like the other providers.

• Programming language options are pretty much better than the other providers

since it supports C#, JavaScript, F#, Java as main languages. Also, there is support

for Python, TypeScript, PHP, Batch, Bash and PowerShell languages for

experimental use [25].

• It’s billed depending on the compute time to run the code for per 100 milliseconds.

26

4.4 Comparison

For the solutions and specifications for the microservice and the serverless platforms

which provided by Amazon, Google and Microsoft can be compared like in the Table 1

and Table 2.

Table 1 Microservice platforms comparison by service providers

Specifications AWS Elastic Beanstalk Google App Engine Azure Web App
Service

Pricing
calculation

Runtime of EC2
instance per hour
Storage consumption for
S3 Bucket per GB

Sum of run time,
network traffic,
storage according to
selected configuration

Runtime of instance
per hour

Supported
languages

Go, Java, .NET,
Node.js, PHP, Python,
Ruby

Java, PHP, Node.js,
Python, C#, .Net,
Ruby, Go

.NET, .NET Core,
Java, Ruby, Node.js,
PHP, Python

Visual Studio
Integration

Yes (with extension) Yes (with extension) Yes

Table 2 Serverless platforms comparison by service providers

Specifications AWS Lambda
Functions

Google Cloud
Functions

Azure Functions Apps

Pricing
calculation

Execution time per 100
ms
Resource consumption
per 128 MB

Sum of number of
invocations, compute
time, network traffic
according to selected
configuration

Execution time per 100
ms
Resource consumption
per 128 MB

Supported
languages

Java, Node.js, C#,
Python

JavaScript (Node.js),
Python

C#, JavaScript, F#, Java
(Python, TypeScript,
PHP, Batch, Bash,
PowerShell for
experimental use)

Visual Studio
Integration

Yes (with extension) No Yes (native)

27

5 Experiment Setup

For a complete project such as social media, shopping, game applications it’s needed to

use various infrastructure resources like database, messaging queues, storage etc. All

resources which is used it the system may have bottlenecks on high loads. For example,

application server resources like CPU, RAM supports to make 1000 requests per second

for implemented application, but database may support only 100 simultaneous queries

per second, so it can be problem to check actual effect of the used architecture that

serverless or microservice.

Therefore, a new sample benchmark project solution created independent from other

infrastructural resources like database or storage. Thus, it’s possible to compare pure

architecture effect on this sample application.

In this study, it has been chosen to create sample applications for microservice and

serverless approaches using C# programming language. The reason for this choice is

familiarity for me to use C# language.

Microsoft Azure is selected platform to make experiments and benchmarks for

microservices and serverless services because it supports the C# language and .NET

applications and it gives a better development experience with Visual Studio and Azure

integrations.

For microservice deployment, Azure Web Apps is used and all the deployment processes

for both implementations are done by the Visual Studio and Azure publishing integration

tools.

Both projects created in one .Net solution in structure given in Figure 9 and Microsoft

Visual Studio for Mac Community Edition used as IDE for development.

Figure 9 Example Benchmark Solution Structure

28

A Common .NET Standard Library project is created to be referenced as a common

service interface to use the same code base for both services to make a better comparison

by reducing coding difference. There is one ICommonService interface and

CommonService class as implementation along with the Success, Error and SampleModel

response model classes in the structure given in Figure 10.

Figure 10 Common Service Project Structure

There are two endpoints defined for both serverless and microservice projects as;

• “POST /api/test/” : Gets the body as in Figure 11 from the request as a JSON

object with “data” and “cpu” values and returns Success response with a message

contains the value of “data” given in Figure 12 and Figure 13.

Figure 11 Post Request Body

Figure 12 Success Class Definition

29

Figure 13 Sample response for "POST /api/test"

• “GET /api/test/” : Gets integer values “input” and “cpu” as query parameters and

returns number of items same as input value as a list of SampleModel given in

Figure 14 and Figure 15.

Figure 14 SampleModel Class Definition

Figure 15 Sample response for "GET /api/test"

There are two methods defined in interface for CommonService to be used for GET and

POST endpoints like in Figure 16.

30

Figure 16 ICommonService Interface Definition

• RunGet method runs a process to consume some CPU resources according to

given CPU usage percentage for a random duration between 500 and 1500

milliseconds then generates a list of SampleModel according to given number in

the request and returns the list.

• RunPost method runs a process to consume some CPU resources according to

given CPU usage percentage for a random duration between 500 and 1500

milliseconds and returns Success result with a message contains input value.

5.1 Backend as a Service (BaaS) Implementation

BaaS implementation MicroserviceApp is created as ASP .NET Core Web API project in

the structure given in Figure 17.

31

Figure 17 BaaS Implementation Project Structure

CommonService is initialized in Startup like in Figure 18 to be injected as a dependency

for TestController in runtime like in Figure 19 as a common approach for using service

classes [26]. It has been chosen to use dependency as Scoped to create an instance of

CommonService for each request as well as in ServerlessApp.

Figure 18 Initialization of CommonService in Startup

Figure 19 Dependency Injection for TestController

5.2 Function as a Service (FaaS) Implementation

FaaS implementation ServerlessApp is created as Azure Functions project in the structure

given in Figure 20.

Figure 20 FaaS Implementation Project Structure

32

Since functions are static methods, all the resources like used class instances, database

connections etc. must be initialized for each function call. For this case only

CommonService class need to be instantiated manually in function like in Figure 21.

Figure 21 Instantiation of CommonService in Function

To observe scaling for Azure Functions extra logging is added to see instance ids like in

Figure 21. Thus, it’ll be possible to see more different instances created when load goes

high.

It’s not possible to get query parameters or body parsed directly by function

infrastructure. So, some custom function helper extensions created to get query

parameters and parse request body.

5.3 Testing

Http load testing should be done for comparison of the serverless and microservice

implementations and for observation of scaling for serverless functions. There are various

options to make load testing for REST APIs but many of them are commercial. So, an

open source testing tool Locust [27] decided to be used for load testing in this study.

Because it’s free and easy to customize by changing the source codes since it’s an open

source tool.

Locust is a load testing tool created using Python programming language and it uses

Python scripts to test API endpoints. It also has a web user interface while it’s running to

check the logs and statistics.

There is new folder is created for testing in solution. It contains Python script for endpoint

testing and commands to run testing tool for serverless and microservices in structure in

Figure 22.

33

Figure 22 Testing Folder Structure

It’s possible to create lots of various test scenarios using the locustfile.py. For this study,

a scenario is created for each endpoint like in Figure 23. Both “GET” and “POST”

scenarios are configured to consume 20% of CPU resources while running the process

using the “cpu” parameter as input for the endpoints.

Figure 23 Locust Test Scenarios

Locust testing tool can be run simply using the command “locust --host=<host_url> --

port <port_number>”. After running the command, test run can be started using the web

interface on “http://localhost:<port_number>” like in Figure 24.

34

Figure 24 Locust Load Test Web UI Main Page

The value number of users to simulate is for defining maximum number of users to be

simulated and hatch rate is to add number of users per second until it reaches to maximum

number of users.

Locust runs a load test using the request definitions in the locust files and the parameters

given from web interface. But the hatch rate doesn’t support different periods than

seconds so it’s hard to observe performance. So, it’s created custom testing scripts using

bash script language to run tests directly from command line.

There are two scripts created to run custom test scenario as “test_microservice.sh” and

“test_serverless.sh”. Both scripts get a parameter as “start” or “stop”.

• “start” : Starts the testing process on deployed microservice starting with 50 users

and increases the number of users per minute by 50 until it reaches to 400 users.

Then it runs extra one more minute for 400 users and stops running process. Also,

it opens the default browser to check statistics immediately after starting the

process on “localhost:8073” for microservice and “localhost:8072” for serverless.

• “stop” : Stops all the running testing processes

Test results can be seen from web user interface as graphics like in Figure 25.

35

Figure 25 Locust Graphical Interface

Also, with some small changes in testing tool, a new tab “Request Logs” added in scope

of this study to get the status for each one second to create combined graphs like in the

Figure 26. It generates a “|” separated list and it can be divided into columns using Excel

and any graphics can be created using the generated data.

Figure 26 Locust Request Logs Tab

36

6 Benchmarks for BaaS and FaaS

Benchmarks for BaaS and FaaS will be evaluated in perspectives as performance, cost

and development according to experimental application which is developed for this study.

6.1 Performance

From performance perspective, three different results will be compared with BaaS and

FaaS. These are requests per second, response times and the number of users.

Same load testing scenario is run on the both platforms. Number of users started from 50

and increased by 50 per minute until it reaches to 400 users and load continued on 400

one more minute.

6.1.1 BaaS Test Results

As seen on the Figure 27, response time starts to increase after second 180 with 200 users.

Then there is a dramatic increase on the response times when the user count continues to

increase. On the other hand, request per second stops increasing after second 180 with

200 users. So, it’s obvious that if the load is increased on the one instance of a service it

affects response time and performance and it has a limit to serve without problems. In

this case the limit is approximately 60 requests per second.

Figure 27 BaaS Test Results

37

6.1.2 FaaS Test Results

As seen in the Figure 28, request per second is increased with user count increase.

Response times are not changed significantly except some peaks on increases. It can be

seen after 240 there are new instances created and response time is back to normal again.

So, scaling is worked nicely to handle more requests and there are no issues with response

times and it can support up to 120 requests per second with 17 function instances.

Figure 28 FaaS Test Results

6.1.3 Comparison

Both implementations give the same throughput until 200 users like in the Figure 29.

After 200 users;

• Microservice implementation stays same around 60 requests per second. We can

understand that the service reached the maximum capacity after 200 users.

• Serverless implementation could handle the all requests and reached to 120 RPS

thanks to automatic scaling feature.

38

Figure 29 Requests per Second Comparison

If we compare the response times in Figure 30, both services provide same response times

until the user count is increased to 200. After 200 users,

• Serverless implementation has a small peak at second 240 when the users count

increased from 200 to 250. At that time scaling worked and response times back

to normal again.

• But for microservice implementation, response times started to increase

dramatically to the end of testing and it reached to 3 seconds.

39

Figure 30 Response Time Comparison

If we use more powerful server for the microservice, response times will be decreased

and also it can support more requests, but it comes with a price. Also, it needs to be

considered that, these response times are only for this experimental implementation. If

there are more dependencies and more resources like database, cache etc. response time

will be increased for serverless application since it’s all the resources need to be initialized

while running the functions. But that’s not the case for microservice, most resources are

created when start-up of application and it’ll respond quickly using the resources that are

already initialized.

As a result for this comparison, serverless applications gives more stable response while

instant load increases thanks to auto-scaling. But both implementations give the same

performance for some average loads as around 50 RPS for this experiment.

6.2 Cost

Microservice applications are deployed on a dedicated instance which is billed hourly per

instance [24]. Also, there are ways to scale these kinds of services using load balancing

and additional scaling options by creating new instances. For this experiment Standard

S2 Service Plan used as a tier.

Serverless applications are deployed on function apps which is billed by per request and

the execution time for consumption plans [28] and scaling of the application done by

automatically. For this experiment consumption plan is used.

Test results can used to calculate the cost of microservice and serverless implementations

like following.

• In microservice implementation total requests per second approximately could

reach up to 75 RPS for 400 users and it caused 100% CPU usage on deployed

application instance and it made huge impact on response times. So last stable

response times and RPS was around 65 RPS with 350 users.

• In serverless implementation total requests per second approximately could reach

up to 120 RPS for 400 users and there is no impact on the response times thanks

to scaling of function apps.

40

6.2.1 Microservice Cost Calculation

As we use Standard S2 plan for service application, hourly prices are like in the Figure 31.

Figure 31 Standard service plan pricing for Service App [24]

Microservice cost calculation can be done by multiplying cost and duration like the Equation (1).

𝐻𝑃𝑀 ∗ 𝐶𝑃𝐻 = 𝑇𝐶𝑃𝑀 (1)

Input and output values are explained in Error! Not a valid bookmark self-reference..

Table 3 Microservice cost calculation parameters

Parameter Description Type Value

HPM Hours per month (Total hours for 30 days) Input 720

CPH Cost per hour Input 0,20 $

TCPM Total cost per month Output 144 $

6.2.2 Serverless Cost Calculation

Calculation is a bit more complex for serverless. Both request count and process time

need to be considered in calculation.

If the max RPS is considered as 65 for both implementations to calculate the total number

of requests per month Equation (2) can be used.

𝑅𝑃𝑀 = 𝑅𝑃𝑆 ∗ 𝑆𝑃𝑀 (2)

According to Equation (2) input and output parameters are explained in Table 4.

Table 4 Request count calculation parameters

Parameter Description Type Value

SPM Seconds per month (Total seconds for 30 days) Input 2592000

RPS Number of requests per second Input 65

41

RPM Total number of requests per month Output 𝟏𝟔𝟖𝟒𝟖𝟎𝟎𝟎𝟎

Figure 32 Pricing for Serverless [28]

This experimental application is designed to consume CPU only so there is no significant

memory usage for these both applications. But we can make an assumption for usage as

128 MB since it’s the minimum memory assigned for a single function instance.

So, resource cost can be calculated according to memory usage per second by subtracting

the free grant like in the Equation (3)

(𝑀𝑈𝑃𝑅 ∗ RTPR ∗ 𝑅𝑃𝑆 ∗ 𝑆𝑃𝑀 − 𝐹𝐺𝐹𝑅) ∗ 𝐶𝑃𝐺𝑃𝑆 = 𝑅𝐶𝑃𝑀 (3)

According the Equation (3) parameters are defined in the Table 5 with the given values

and the result.

Table 5 Serverless resource cost calculation parameters

Parameter Description Type Value

MUPR Memory usage per request Input 128 MB (0,125
GB)

RTPR Response time per request (obtained
from test results)

Input 300 ms (0,3s)

CPGPS Cost per GB per second Input 0,000016 $

FGFR Free grant for resources Input 400000

RCPM Resource consumption cost per month Output 94,69 $

Execution cost can be calculated by multiplying the cost per million requests with the
total requests subtracted by free grant like in the Equation (4)

(𝑅𝑃𝑀 − 𝐹𝐺𝐹𝐸) ∗ 9:;<
=>>>>>>

= 𝐸𝐶𝑃𝑀 (4)

Parameters are explained and input/output values are given in the Table 6 for the
Equation (4).

42

Table 6 Serverless execution cost calculation parameters

Parameter Description Type Value

CPMR Cost per million requests Input 0,20 $

FGFE Free grant for execution Input 1000000

ECPM Execution cost per month Output 33,49 $

Total cost should be the sum of the resource and execution costs like in the Equation (5).

𝑇𝐶𝑃𝑀 = 𝑅𝐶𝑃𝑀 + 𝐸𝐶𝑃𝑀 (5)

Parameters explained in Table 7 for Equation (5).

Table 7 Serverless total cost calculation parameters

Parameter Description Type Value

TCPM Total cost per month Output 128,18 $

6.2.3 Comparison

With whole month full load for the microservice users can get maximum 65 RPS

throughput for used tier in the experiments. Serverless implementation can provide more

than 120 RPS within the tests also, it can support more than that with the scaling. But of

course, the costs will increase with the number of requests.

Table 8 Microservice and Serverless Monthly Cost Comparison

Microservice Monthly Cost Serverless Monthly Cost

144 $ 128 $

According to full load cost calculations comparison will be like in the Table 8. So

serverless implementation seems slightly better than microservice implementation for this

load. But for a system generally it’s not a case to work on full load for whole month even

whole day. There should be some peak hours or peak days. So, if the system gets 10 RPS

as average, in the peak hours it can be 50 RPS for example. To support such scenarios,

application need to run on a server which can support 50 RPS, in this case resources will

be wasted for other times than the peak times. As a result, if we calculate 30 RPS cost for

43

serverless, it will be nearly half of the calculated result above but also it can support 65

RPS for peak times. For microservice we need to keep the same service tier to support 65

RPS and need to pay the same amount.

As contrary, if the number of requests very high for the system such as a social media

application running worldwide. Then it will be cheaper to use a dedicated server or

microservice application for that. Because the load will be steadier and very high. For

such systems it is also an option to use multiple instance for same servers or applications

with the load balancers but it’s also additional cost and need more maintenance.

6.3 Development

In this experiment, the programming language used is C# for both microservice and

serverless applications. MVC approach is used for implementing the microservice

application. Serverless applications has their own structures with a static function class

and handler method in it. Unlike the microservices, serverless application has one entry

point and runs only one process from there. It runs with a static method and all the needed

processes need to be completed within that method.

Since serverless functions are static, all the connections to DBs, services used, and all

kind of resources needed for the process need to be initialized from each function handler

method. But for microservices, all the needed resources can be initialized on start-up of

the application using dependency injection and all the initialized services, connections or

resources can be used in runtime easily.

As a result, functions are not suitable for complex processes with lots of other resource

dependencies. It can be used perfectly for some database queries, add, delete, update

actions, sending notifications or such. But it’s not suitable for creating reports using

different sources or making some long running processes like data migrations on

databases or such.

44

7 Conclusion

To summarize this study, divide an conquer method is also valid for the software systems

namely, to divide big systems to small subsystems like microservices and functions -as

the subject for this study- makes development and management easier for us. These

architectures will be in continuous development in the future with the new requirements

coming from the technological developments.

As a result for the experiments in this study, it can be seen there are benefits of serverless

on microservices with no maintenance and auto-scaling features, on contrary there are

disadvantages of serverless as well such as stateless development which can cause long

response times because of initialization of all resources for each function call. Therefore,

it can’t be said that the serverless architecture can replace the microservice architecture a

least for a near future.

In my opinion, for a better architecture for a good and robust system, serverless and

microservice architectures should be combined to have all the advantages of both

approaches.

45

References

[1] The Open Group, “SOA Reference Architecture,” [Online]. Available:

http://www.opengroup.org/soa/source-book/soa_refarch/index.htm.
[2] Backendless, “Backend as a Service,” [Online]. Available:

https://backendless.com/platform/backend-as-a-service/.
[3] M. Richards, Microservices vs. ServiceOriented Architecture, O’Reilly Media,

2015.
[4] The Open Group, “Service-Oriented Architecture,” [Online]. Available:

http://www.opengroup.org/soa/source-book/soa/index.htm.
[5] The Open Group, “Microservices Architecture,” [Online]. Available:

http://www.opengroup.org/soa/source-book/msawp/index.htm.
[6] Edvantis, “Microservice Architecture,” [Online]. Available:

https://www.edvantis.com/blog/101-series-edvantis-software-benefits-
microservices-architecture/.

[7] BitHeads Custom Software Development, “A BaaS Overview,” [Online].
Available: https://telusdigital-marketplace-
production.s3.amazonaws.com/iot/user-content/product/818d-o.pdf.

[8] Integrove, “ Backend as a Service (BaaS),” [Online]. Available:
http://www.integrove.com/backend-as-a-service-baas/.

[9] M. Fowler, “Serverless Architectures,” [Online]. Available:
https://martinfowler.com/articles/serverless.html.

[10] K. Chowhan, Hands-On Serverless Computing, Packt Publishing, 2018.
[11] Maruti Techlabs, “Serverless Architecture the Future of Business Computing,”

[Online]. Available: https://www.marutitech.com/serverless-architecture-business-
computing/.

[12] Stelligent, “Serverless Delivery: Architecture (Part 1),” [Online]. Available:
https://stelligent.com/2016/03/17/serverless-delivery-architecture-part-1/.

[13] Amazon Corporation, “Amazon Web Services - About AWS,” [Online].
Available: https://aws.amazon.com/about-aws/.

[14] Amazon Corporation, “What is Elastic Beanstalk,” [Online]. Available:
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html.

[15] Amazon Corporation, “Elastic Beanstalk Pricing,” [Online]. Available:
https://aws.amazon.com/elasticbeanstalk/pricing/.

[16] Amazon Corporation, “AWS Lambda,” [Online]. Available:
https://aws.amazon.com/lambda/features/.

[17] Google Corporation, “About Google Cloud Platform,” [Online]. Available:
https://cloud.google.com/about/.

[18] Google Corporation, “Google App Engine,” [Online]. Available:
https://cloud.google.com/appengine/.

[19] Google Corporation, “Google App Engine Pricing,” [Online]. Available:
https://cloud.google.com/appengine/pricing.

[20] Google Corporation, “Cloud Functions,” [Online]. Available:
https://cloud.google.com/functions/features/.

46

[21] Google Corporation, “Cloud Functions for Firebase,” [Online]. Available:
https://firebase.google.com/docs/functions/.

[22] Microsoft Corporation, “Microsoft Azure Global Infrastructure,” [Online].
Available: https://azure.microsoft.com/en-us/global-infrastructure/.

[23] Microsoft Corporation, “Azure Web Apps,” [Online]. Available:
https://azure.microsoft.com/en-us/services/app-service/web.

[24] Microsoft Corporation, “Pricing - App Service,” [Online]. Available:
https://azure.microsoft.com/en-us/pricing/details/app-service/windows/.

[25] Microsoft Corporation, “Supported languages in Azure Functions,” [Online].
Available: https://docs.microsoft.com/en-us/azure/azure-functions/supported-
languages.

[26] Microsoft Corporation, “Dependency Injection in ASP.NET Web API 2,”
[Online]. Available: https://docs.microsoft.com/en-us/aspnet/web-
api/overview/advanced/dependency-injection.

[27] Locust, “Locust Documentation,” [Online]. Available:
https://docs.locust.io/en/stable/.

[28] Microsoft Corporation, “Pricing - Functions,” [Online]. Available:
https://azure.microsoft.com/en-us/pricing/details/functions/.

[29] Microsoft Corporation, “Serverless apps: Architecture, patterns, and Azure
implementation,” [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/standard/serverless-architecture/.

47

Appendix 1 – ThesisProject – Common

Models

using Newtonsoft.Json;

namespace Common.Models
{
 public class Error
 {
 [JsonProperty(PropertyName = "message")]
 public string Message { get; set; }

 public Error(string message)
 {
 Message = message;
 }
 }
}

using Newtonsoft.Json;

namespace Common.Models
{
 public class PostBody
 {
 [JsonProperty(PropertyName = "cpu", Required = Required.Default,
 NullValueHandling = NullValueHandling.Ignore)]
 public int? CPU { get; set; }

 [JsonProperty(PropertyName = "data", Required = Required.Default,
 NullValueHandling = NullValueHandling.Ignore)]
 public string Data { get; set; }
 }
}

using Newtonsoft.Json;

namespace Common.Models
{
 public class SampleModel
 {
 [JsonProperty(PropertyName = "id")]
 public string Id { get; set; }

 [JsonProperty(PropertyName = "name")]
 public string Name { get; set; }
 }
}

48

CommonService

using Newtonsoft.Json;

namespace Common.Models
{
 public class Success
 {
 [JsonProperty(PropertyName = "message")]
 public string Message { get; set; }

 public Success(string message)
 {
 Message = message;
 }
 }
}

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Threading;
using Common.Models;

namespace Common
{
 /// <summary>
 /// A common test service interface to use in
 /// both microservice and serverless implementations
 /// </summary>
 public interface ICommonService
 {
 /// <summary>
 /// Run some process and return some values
 /// </summary>
 /// <remarks>Returns a list of values according to input</remarks>
 /// <param name="input">Count of items to be generated</param>
 /// <param name="cpu">CPU usage percentage</param>
 object RunGet(int input, int? cpu);

 /// <summary>
 /// Run some process and return success
 /// </summary>
 /// <param name="input">Value to be returned in response</param>
 /// <param name="cpu">CPU usage percentage</param>
 object RunPost(string input, int? cpu);
 }

 /// <inheritdoc />
 public class CommonService : ICommonService
 {
 private char[] _alphabet =>
 "abcdefghijklmnopqrstuvwxyz".ToCharArray();

 /// <inheritdoc />
 public object RunGet(int input, int? cpu)
 {
 ConsumeCpu(cpu ?? 5);
 return GenerateData(input);
 }

49

 /// <inheritdoc />
 public object RunPost(string input, int? cpu)
 {
 ConsumeCpu(cpu ?? 5);
 return new Success($"Process successful for data {input}");
 }

 private IEnumerable<SampleModel> GenerateData(int itemCount)
 {
 for (var i = 0; i < itemCount; i++)
 {
 yield return new SampleModel()
 {
 Id = Guid.NewGuid().ToString(),
 Name = GenerateName()
 };
 }
 }

 private string GenerateName()
 {
 var name = "";
 var numOfChars = new Random().Next(3, 10);
 for (var i = 0; i < numOfChars; i++)
 {
 var idx = new Random().Next(0, _alphabet.Length - 1);
 name += _alphabet[idx];
 }

 return name;
 }

 private void ConsumeCpu(int percentage)
 {
 if (percentage < 0 || percentage > 100)
 throw new ArgumentException("percentage");

 var duration = new Random().Next(100, 200);
 var mainWatch = new Stopwatch();
 var watch = new Stopwatch();
 mainWatch.Start();
 watch.Start();

 while (mainWatch.ElapsedMilliseconds < duration)
 {
 if (watch.ElapsedMilliseconds <= percentage)
 continue;

 Thread.Sleep(100 - percentage);
 watch.Reset();
 watch.Start();
 }

 watch.Stop();
 mainWatch.Stop();
 }
 }
}

50

Appendix 2 – ThesisProject – MicroserviceApp

Controllers

using Common;
using Common.Models;
using Microsoft.AspNetCore.Mvc;

namespace MicroserviceApp.Controllers
{
 /// <summary>
 /// Test controller definition for microservice implementation
 /// </summary>
 [Route("api/test")]
 public class TestController : Controller
 {
 private readonly ICommonService _commonService;

 /// <inheritdoc />
 public TestController(ICommonService commonService)
 {
 _commonService = commonService;
 }

 /// <summary>
 /// Runs some process and returns a list of object
 /// <param name="input">Item count to be returned</param>
 /// </summary>
 [HttpGet]
 public IActionResult HttpGet(int input, int? cpu)
 {
 var result = _commonService.RunGet(input, cpu);
 return new JsonResult(result);
 }

 /// <summary>
 /// Runs some process and returns success
 /// </summary>
 /// <param name="input">Any string</param>
 [HttpPost]
 public IActionResult HttpPost([FromBody]PostBody body)
 {
 var result = _commonService.RunPost(body.Data, body.CPU);
 return new JsonResult(result);
 }
 }
}

51

Startup

Program

using Common;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;

namespace MicroserviceApp
{
 public class Startup
 {
 public Startup(IConfiguration configuration)
 {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 // This method gets called by the runtime.
 // Use this method to add services to the container.
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddScoped<ICommonService, CommonService>();

 services.AddMvc()
 .SetCompatibilityVersion(CompatibilityVersion.Latest);
 }

 // This method gets called by the runtime.
 // Use this method to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
 {
 app.UseExceptionHandlerMiddleware();
 app.UseHttpsRedirection();
 app.UseMvc();
 }
 }
}

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

namespace MicroserviceApp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args)
 => WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
 }
}

52

Appendix 3 – ThesisProject – ServerlessApp

Functions

using Common;
using Common.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Logging;

namespace ServerlessApp
{
 /// <summary>
 /// Test function definitions for serverless implementation
 /// </summary>
 public static class TestFunctions
 {
 /// <summary>
 /// Runs some process and returns a list of object
 /// </summary>
 /// <param name="req"></param>
 /// <param name="log"></param>
 [FunctionName("HttpGet")]
 public static IActionResult HttpGet(
 [HttpTrigger(AuthorizationLevel.Anonymous, "get",
 Route = "test")]
 HttpRequest req, ILogger log)
 {
 log.LogWarning(FunctionHelpers.InstanceId);

 var commonService = new CommonService();
 var input = req.Query.Get<int>("input");
 var cpu = req.Query.Get<int>("cpu");

 var result = commonService
 .RunGet(input, cpu == 0 ? null : (int?)cpu);
 return new JsonResult(result);
 }

 /// <summary>
 /// Runs some process and returns success
 /// </summary>
 /// <param name="req"></param>
 /// <param name="log"></param>
 [FunctionName("HttpPost")]
 public static IActionResult HttpPost(
 [HttpTrigger(AuthorizationLevel.Anonymous, "post",
 Route = "test")]
 HttpRequest req, ILogger log)
 {
 log.LogWarning(FunctionHelpers.InstanceId);

 var commonService = new CommonService();
 var body = req.Body.Get<PostBody>();

 var result = commonService.RunPost(body.Data, body.CPU);
 return new JsonResult(result);
 }
 }
}

53

Function Helpers

using System;
using System.IO;
using System.Linq;
using Microsoft.AspNetCore.Http;
using Newtonsoft.Json;

namespace ServerlessApp
{
 public static class FunctionHelpers
 {
 /// <summary>
 /// Gets the instance identifier.
 /// </summary>
 /// <value>The instance identifier.</value>
 public static string InstanceId => Environment
 .GetEnvironmentVariable("WEBSITE_INSTANCE_ID",
 EnvironmentVariableTarget.Process);

 /// <summary>
 /// Get the specified parameter value from request query.
 /// </summary>
 /// <returns>The get.</returns>
 /// <param name="query">Query.</param>
 /// <param name="param">Parameter.</param>
 public static T Get<T>(this IQueryCollection query, string param)
 {
 var value = (object)query?
 .FirstOrDefault(a =>
 a.Key.Equals(param, StringComparison.OrdinalIgnoreCase)
 .Value.FirstOrDefault();

 if (typeof(T) == typeof(int))
 value = int.TryParse((string)value, out var intOut)
 ? intOut
 : 0;

 return (T) Convert.ChangeType(value, typeof(T));
 }

 /// <summary>
 /// Get the request body as specified type.
 /// </summary>
 /// <returns>The get.</returns>
 /// <param name="body">Body.</param>
 public static T Get<T>(this Stream body)
 {
 using (var reader = new StreamReader(body))
 {
 var strBody = reader.ReadToEnd();
 return typeof(T) == typeof(string)
 ? (T)Convert.ChangeType(strBody, typeof(T))
 : JsonConvert.DeserializeObject<T>(strBody);
 }
 }
 }
}

54

Appendix 4 – ThesisProject – Testing

Locust File

from locust import HttpLocust, TaskSet

import resource

resource.setrlimit(resource.RLIMIT_NOFILE, (10240, 9223372036854775807))

def testGet(self):
 self.client.get("/api/test?input=10&cpu=20")

def testPost(self):
 self.client.post("/api/test", json={"data": "some test string", "cpu":
20})

class LoadTestSample(TaskSet):
 tasks = {testGet: 1, testPost: 2}

class WebsiteUser(HttpLocust):
 task_set = LoadTestSample
 min_wait = 1000
 max_wait = 5000

55

Microservice Testing Script

#!/bin/bash

RunSwarm()
{
 curl -X POST http://localhost:8073/swarm \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "hatch_rate=$1&locust_count=$2"
}

StopSwarm()
{
 curl -X GET http://localhost:8073/stop
}

AutoSwarm()
{
 n=0
 while [$(($n * $2)) -lt $3]
 do
 n=$((n+1))
 RunSwarm $2 $(($n * $2))
 sleep $1
 done

 sleep $1

 StopSwarm
}

if ["$1" == "start"]
then
 locust --host=http://cg-microservice.azurewebsites.net --port 8073 &
 sleep 2
 AutoSwarm 60 50 400 &
 sleep 1
 open "http://localhost:8073"
elif ["$1" == "stop"]
then
 ps -ef | grep locust | grep 8073 | awk '{ print $2 }' | xargs kill -9
 ps -ef | grep test_microservice | grep start \
 | awk '{ print $2 }' | xargs kill -9
else
 echo "Undefined command"
fi

56

Serverless Testing Script

#!/bin/bash

RunSwarm()
{
 curl -X POST http://localhost:8072/swarm \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "hatch_rate=$1&locust_count=$2"
}

StopSwarm()
{
 curl -X GET http://localhost:8072/stop
}

AutoSwarm()
{
 n=0
 while [$(($n * $2)) -lt $3]
 do
 n=$((n+1))
 RunSwarm $2 $(($n * $2))
 sleep $1
 done

 sleep $1

 StopSwarm
}

if ["$1" == "start"]
then
 locust --host=http://cg-serverless.azurewebsites.net --port 8072 &
 sleep 2
 AutoSwarm 60 50 400 &
 sleep 1
 open "http://localhost:8072"
elif ["$1" == "stop"]
then
 ps -ef | grep locust | grep 8072 | awk '{ print $2 }' | xargs kill -9
 ps -ef | grep test_serverless | grep start \
 | awk '{ print $2 }' | xargs kill -9
else
 echo "Undefined command"
fi

