DOCTORAL THESIS

Novel Neural Network
Accelerator Architectures
for FPGAS

Madis Kerner

TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2024

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
16/2024

Novel Neural Network Accelerator
Architectures for FPGAs

MADIS KERNER

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

The dissertation was accepted for the defence of the degree of Doctor of Philosophy on
27 March 2024

Supervisor: Prof. Dr. Jaan Raik,
Department of Computer Systems, School of Information Technologies,
Tallinn University of Technology,
Tallinn, Estonia

Co-supervisor: Assoc. Prof. Dr. Kalle Tammemae,
IT College, School of Information Technologies,
Tallinn University of Technology,
Tallinn, Estonia

Co-supervisor: Prof. Dr.-Ing. Thomas Hollstein,
Research Center Future Aging,
Frankfurt University of Applied Sciences,
Frankfurt, Germany

Opponents: Prof. Dr. Alberto Bosio,
Institute of Nanotechnology Ecully,
Ecully, France

Prof. Dr. Jari Nurmi,

Faculty of Information Technology and Communication Sciences,
Tampere University,

Tampere, Finland

Defence of the thesis: 10 April 2024, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Madis Kerner

signature

Copyright: Madis Kerner, 2024

ISSN 2585-6898 (publication)

ISBN 978-9916-80-130-7 (publication)

ISSN 2585-6901 (PDF)

ISBN 978-9916-80-131-4 (PDF)

DOI https://doi.org/10.23658/taltech.16/2024
Printed by Koopia Niini & Rauam

Kerner, M. (2024). Novel Neural Network Accelerator Architectures for FPGAs [TalTech
Press]. https://doi.org/10.23658/taltech.16/2024

https://digikogu.taltech.ee/et/Item/3568fe35-19c3-43e6-9525-73c79371ab13

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
16/2024

Uudsed narvivorkude kiirendite
arhitektuurid FPGAdele

MADIS KERNER

TAL
TECH

Contents

(R o) i (U o] [Tor= 4o] s PP 7
Author’s Contributions to the Publicationscooiiiiiiiiiiiiiiiiiiii i 8
7 o] o] =17 = 1 Lo T3 P 9
L [14 Te [¥ ot o o N PP 10
LT MOtiVatioN .. e 1
1.2 Problem Formulation ...t e 12
1.3 ContribUtion e 12
1.4 Thesis Organizationcooiiiiiiiii i, 13
2 Efficient Hardware Architecture for Contractive Autoencoders.................... 15
2% I o 1 4o o 11 o o o A 15
2.2 Contractive AULOENCOETot 18
2.3 Literature REVIEW. ...t e e e 19
2.4 Background: Theory of Contractive Autoencoderccvie..n. 22
240 FOIrWard Pass.ueeeiiiiie ettt et 22
2.4.2 LOSSFUNCHION .. ooiie e 23
2.4.3 Gradient DeSCENtcoiiiiiie et 24
2.4.4 WeightandBiasUpdatecooiiiiiiiiiiiiii e 26
2.5 Novel Architecture for Contractive Autoencoders.................ccoveee..n. 27
2.5.1 Equations optimization.........ccooviiiiiiiiiiiii i 27
2.5.2 Executiontime estimationcooiiiii i 28
2.5.3 Architecture 1: Baseline (BL)covuuerieiiiieee i 29
2.5.4 Architecture 2: Efficient Communication (CCom) 33

2.5.5 Architecture 3: Resource Optimised CAE with efficient Communi-
€ation (CCOMRO) .ttt i 37
2.5.6 Usage of HW RESOUICESiiiiiiiii e eiiie i i 39
2.5.7 Performance CompPariSONouuieeireeeieeiieeiieeiaeeieeennnns 40
2.5.8 Field Test with MNIST databasecccoviiiiiiiiiiiiiiiiaea 1
N < I o] Vol 15 o] 3 - 1
3 Multiply-Accumulate Unit for DNNiiiiiiiiii it iiieiiieeeeeeenaennanns 43
B INtrOdUCHION .. e, 43
3.2 Literature REVIEW. ... e 46
3.3 Datatype selection.........oooviiiiiiiiiiiii e 49
3.3.1 Design Space Explorationccooiiiiiiiiiiiiiii e 50
3.3.2 Triple Fixed-Pointcoovuiiiiiiiii i 52
3.4 SIMUIAtION L. e 54
340 ENVIFONMENt ... s 54
3.4.2 Triple Fixed-Point Convolutional Layer for MATLAB................... 55
3.4.3 RESUIS oot e 56
G T o I o [T = o 59
3.5.1 Input Multiplexer Selectioncooiiiiiiiiiii i 62
3.5.2 MACOuUtput Formationcooovuiiiiiiiiii i 64
3.5.3 Usage of HW RESOUICES ...ttt it i 64
3.6 CONCIUSIONS ...ttt e e e, 66

4 Conclusions and fULUrE WOrK «...veveiin ittt it iieieieraeeeenaanenns 68

TSy o) o= U] N 71
LiSt Of TabI@S « v vuenet e 72
REFEIENCES .. ittt i i ittt 73
ACKNOWIEdZEMENES .ttt ittt ittt ittt tieeeeieeaeeeaeaaeenaaanas 83
Y - ot 84
KOKKUVOLE «uuiiiiii e i ittt ittt e 86
Yo7 o1=] oo |3 IS P 89
Y0 0 1=Y T 13" 93
Y] 011 e 137G T 101
CUTICUIUM VItaE weiitiiiiii ittt ittt ee e enieaaees 107
o 1T LYo T3 =] o 113 109

List of Publications

The present Ph.D. thesis is based on the following publications that are referred to in the
text by Roman numbers.

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Archi-
tecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), pp. 230-230,
Institute of Electrical and Electronics Engineers Inc., 5 2020

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Novel Architectures for Contrac-
tive Autoencoders with Embedded Learning,” in 2020 17th Biennial Baltic Electronics
Conference (BEC), vol. 2020-October, pp. 1-6, IEEE Computer Society, 10 2020

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Triple Fixed-Point MAC Unit for
Deep Learning,” in 2021 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), vol. 2021-February, pp. 1404-1407, Institute of Electrical and Electronics
Engineers Inc., 2 2021

Author’s Contributions to the Publications

I In I, I was the main author, wrote the Verilog HDL, conducted simulations, prepared
the figures, wrote the manuscript, and presented the work.

Il In Il, I was the main author, wrote the Verilog HDL, conducted simulations, prepared
the figures, wrote the manuscript, and presented the work.

Il In 1, I was the main author, wrote the Verilog HDL, conducted MATLAB and HDL
simulations, prepared the figures, wrote the manuscript, and presented the work.

Abbreviations

AE
ANN
ASIC
BFP
BL
CAE
CCom
CCom-RO
CNN
CPU
DFxP
DL
DNN
DSP
ECG
EEG
FP
FPGA
FSM
FxP
GPS
GPU
HDL
HW
[o]V]
IP
LSTM
LUT
MAC
mAP
MSE
NN
PE

PL
RAM
RelU
SoC
SVM
SW
TFxP

Autoencoder

Artificial Neural Network
Application Specific Integrated Circuit
Block Floating-Point

baseline

Contractive Autoencoder

CAE with efficient Communication
Resource Optimised CAE with efficient Communication
Convolutional Neural Network
Central Processing Unit

Dual Fixed-Point

Deep Learning

Deep Neural Network

Digital Signal Processing
Electrocardiogram
Electroencephalogram
Floating-Point

Field Programmable Gate Array
Finite State Machine
Fixed-Point

Global Positioning System
Graphical Processing Unit
Hardware Description Language
Hardware

Intersection over Union
Intellectual Property

Long short-term memory

Look Up Table
Multiply-Accumulate

Mean Average Precision

Mean Squared Error

Neural Network

Processing Element
Programmable Logic

Random Access Memory
Rectified Linear Unit

System On Chip

Support Vector Machine
Software

Triple Fixed-Point

1 Introduction

The Deep Learning (DL) systems have made their way to different domains nowadays
and enhance the contemporary information age in many ways. Examples of more or less
successful deployments of DL can be found in almost any field, including self-driving cars
[1, 2], monitoring the operation of the human heart [3], classifying the human activity [4],
including the activity related to sport [5], and monitoring the industrial machinery [6] to
mention few. Not only that, the different algorithms and methods are so widespread that
often the user of the system is not even aware of the existence of a DL network excelling
in the background. Due to its increasing popularity, it is no longer explicitly mentioned or
advertised but considered the normality.

While the increasing number of successful deployments can give the impression that
DL networks and algorithms are relatively new inventions, it is not so: the earliest multi-
layer network was published quite a while ago, in 1965: the network described in [7] can
be considered the first of its kind. However, the authors in the cited work did not use
backpropagation to train the network. Instead, they trained the network layer-by-layer
using least-squares fitting.

Speaking of Convolutional Neural Networks (CNNs), this type of network is a famil-
iar invention, too, and can be dated back to 1979: authors in [8] published a network
with convolutional and pooling layers similar to the ones deployed nowadays. However,
they did not use backpropagation for training but relied on reinforcement learning: they
increased the weight values of neuron connections firing together on different layers. Fig-
ure 1 presents the network as was initially proposed by the authors: the layered structure
and feature extraction scheme resembles that of the contemporary CNNs.

e T L

& 58 @

&
o B e L
Figure 1 - Architecture of the CNN like network, published in 1979 ([8]). The layered structure and
feature extraction scheme are similar to what is used in contemporary algorithms.

However, the backpropagation methods also have a long history and date back to the
1960s. The work published in [9] is the first implementation similar to the training scheme
used in contemporary networks, although the author did not mention the neural networks
as the target application for the provided method.

The first implementation of backpropagation for training the DL network is presented
in [10], where the network was trained to recognize hand-written digits. The system also
got successfully deployed to read the hand-written checks.

Despite the existence of methods and successful applications like [10], the DL
gained little popularity. Instead, the Support Vector Machine (SVM) introduced in [11]
enjoined the attention of researchers. Figure 2 presents a simple separable problem in
two-dimensional space as was presented by the authors.

The true advent of DL still had to wait for its opportunity, and it arrived with increased
computational power in personal computers. Moreover, the appearance of Graphical Pro-
cessing Units (GPUs) played an even more prominent role here. With the more reasonable

10

optimal margin

optimal hyperplane

o O

Figure 2 - An example of a separable problem in a 2-dimensional space, [11].

training times and suitable platforms, it turned out that DL models can achieve better re-
sults than other algorithms if trained enough, and this becomes possible using Hardware
(HW) like GPUs with enough computational power.

1.1 Motivation

Coming the long way, applications of DL networks are really ubiquitous nowadays.
Therefore, researchers also address issues running these algorithms on battery-powered
resource-constraint systems to expand the usage even more. Naturally, the interest in
running these algorithms on less powerful devices follows successful deployments on
more powerful HW: there are no arguments about the usefulness of DL.

Training methods, or the loss function of the network, can roughly be divided into
supervised- or unsupervised ones. In supervised learning, there is a need for labeled data,
and the network output is analyzed based on that, i.e., the loss function is constructed
using the actual network response to the input and labels on that specific input. These
kinds of networks require pre-training, and due to the need for labeled data, it has to
be carried out before deployment; therefore, there are no restrictions to the HW for the
training phase. For example, training the supervised DL networks can freely be carried
out using GPUs.

Unsupervised DL networks can also be pre-trained using GPUs. However, it has to be
noted that these kinds of networks do not rely on labeled data. Therefore, the training
process can autonomously carry on during the entire lifespan of a system. An excellent
scenario example requiring constant network training is provided in [12]. Authors use the
pre-trained DL network to detect analog trojans in the manufactured integrated circuits.
They claim that there might be a need to change the network weight values based on the
environmental noise level. This need could be handled by letting the system train itself and
autonomously handle the drifts of normality. Therefore, accelerators, which also address
the training phase of the network, are needed to run unsupervised Deep Neural Networks

1

(DNNSs) on resource-constraint systems.

Regarding resource-constrained systems, the majority of research focuses on execut-
ing the pre-trained DL models on these platforms. So, naturally, there are issues to tackle:
storage of the network weights and other parameters, levels of possible parallelisms, and
replacing the floating point data representations with something less HW hungry variants,
to mention a few. However, it has to be emphasized that the focus is precisely on running
pre-trained networks, i.e., on forward pass, or inference phase, and the network training
has to be performed on more powerful HW. This is the field this thesis focuses on: en-
able the HW based training of unsupervised networks and provide a suitable data-type to
replace the floating point representations.

Elaborating on data-types, the common practice in resource-constraint systems is to
binarize the network hyperparameters or rely on fixed-point data representations. How-
ever, both of these methods require retraining of the network: existing floating-point
based already trained DL implementations can not be directly converted to resource-
constraint targets. Therefore, the study of possible data representation that can directly
replace the floating point values is needed.

1.2 Problem Formulation

Field Programmable Gate Arrays (FPGAs) have gained a lot of attention among researchers
to accelerate DL networks ([13, 14]). This is caused by a relatively rapid development cycle
compared to the specialized integrated circuits and relatively low power consumption
compared to the GPUs. Also, FPGA is a classical and proven approach for rapid prototyping
circuits.

First, this thesis focuses on executing an unsupervised DL network Contractive Autoen-
coders (CAEs), a flavor of an Autoencoder (AE) with an additional regularization term, on
FPGA. The provided implementations also address the HW based training. Also, as pre-
viously noted, the floating point data type is very HW hungry. Therefore, it has to be
replaced, and a search for a suitable replacement is required.

The research questions being investigated in this thesis are:

1. If unsupervised neural networks are implemented in hardware, they also require
the hardware-based training process. Using contractive autoencoder as an ex-
ample, can the architecture be efficiently implemented in hardware, including
hardware-based training?

2. Hardware implementations of any artificial neural network need efficient process-
ing elements for the network nodes. How must the generic, high-precision, and
hardware-efficient processing node be designed, and is the floating point data type
required, or can it be replaced by a more hardware-conservative counterpart?

1.3 Contribution

This thesis contributes to finding solutions for FPGA based HW accelerators and addresses
accelerating the learning phase as well.

First, chapter 2 presents the HW architectures of the CAE Artificial Neural Network
(ANN). Although implementations of FPGA based accelerators for ANNs are available in
the literature, the presented architectures in this thesis are novel because they embed
the HW based learning in CAE for the first time.

Two conference publications back up the presented proposals: the first paper was pub-
lished in the International Symposium on Field-Programmable Custom Computing Ma-

12

chines, FCCM, in 2020, [15]. Further, the second extended publication about the FPGA
based CAE architectures with embedded learning was published in Baltic Electronics Con-
ference, BEC, also in 2020, [16].

Secondly, the thesis takes a broader look and proposes Multiply-Accumulate (MAC)
architecture, which uses triple-fixed-point datatype. Testing results show that the pro-
posed architecture can replace the floating-point-based calculations without retraining
the YOLOV2 CNN [17]. This contribution shows that using triple-fixed-point data enables
running DNNs on embedded platforms like FPGAs even while using the same network hy-
perparameter and weight values as in the case of GPU based counterparts excelling with
floating point. Also, this thesis proposes to compare the network’s actual output while
comparing the accuracy using different data types: the network’s output should stay the
same. Comparing the inference accuracy can yield wrong conclusions: changing the data
type can introduce effects hiding issues related to the network training, like overfitting.

The contribution about using triple-fixed-point based MAC is backed up by a confer-
ence paper published in Design, Automation and Test in Europe, DATE in 2021, [18].

Summarizing, the main scientific contributions of this thesis beyond the state-of-the-
art are:

e First contractive autoencoder implementation in hardware with hardware-based
learning.

¢ Novel Triple Fixed-Point (TFxP) based MAC unit suitable for various neural network
architectures, having high numerical precision (comparable to floating point) and
very hardware-efficient implementation. This architecture can be directly used in
ANN networks (e.g., CNN), which have been trained in software as hardware imple-
mentation, without retraining the network. The results are identical to using float
data types but do not require implementing floating point support in HW.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

Chapter 2 is devoted to the CAE. Section 2.1 provides an introducion to the AEs in
general, followed by section 2.2 describing specifics of CAE. The literature review de-
scribing the state-of-the-art is presented in section 2.3. Section 2.4 and its subsections
provide the mathematical background of the CAE network, including forward pass, loss
function, gradient descent, and equations for updating the weight and bias values dur-
ing the training phase. Section 2.5 provides the details of the implementation. First, the
theoretical equations are optimized in subsection 2.5.1, followed by theoretical estima-
tions for the execution times in subsection 2.5.2. Subsections 2.5.3 to 2.5.5 descibe the
three proposed architectures. The usage of HW resources is provided in table 6, and the
performance of the provided implementation is compared in subsection 2.5.7. In subsec-
tion 2.5.8, the MNIST database of handwritten digits is used for training and evaluation
purposes to prove the functionality of the provided solutions. Section 2.6 concludes the
chapter 2.

Further, chapter 3 presents the study performed on MAC unit suitable for DNN im-
plementations in general. Section 3.1 provides an introduction to the MAC unit as a DNN
building block, and a literature review of existing solutions is provided in section 3.2. Fur-
ther, section 3.3 discusses possible candidates for the data type for the MAC unit realiza-
tion, followed by the description of the MATLAB simulation environment and simulation
results using the selected type in section 3.4. Section 3.5 describes the Hardware Descrip-
tion Language (HDL) design of the MAC unit, including details about the HW resources

13

provided in subsection 3.5.3. The second part of the thesis is concluded in section 3.6.
Overall conclusions of the thesis and guidelines for possible future work are provided
in chapter 4.

14

2 Efficient Hardware Architecture for Contractive Autoen-
coders

2.1 Introduction

This chapter introduces the AEs before going into the theory and following proposals.

Autoencoders are a kind of ANN that reconstruct the network input to its output.
Although this might not sound useful, the real benefit of such a network is related to
its middle layer.

Figure 3 present a typical AE network. As can be seen, the network consists of two
main portions: the encoder part following the input and the decoder part following the
middle layer. As the name suggests, the encoder’s role is to encode the input signal and
represent it in the middle layer. Then, the following decoder portion uses this represen-
tation to reconstruct the network input to its output. Also, the number of layers used in
such a network may vary, but the principal idea remains the same.

One side comment or explanation about the coloring scheme used in figure 3: the
same colors will be used throughout the entire chapter 2. Green will be used for the
middle layer features, and blue denotes the external layers.

Zl 22 cese Zn
oV}
£ d dy ... dy
(]
)
e Wi\ W21 Wam
w,
T Wi nm
Y1 cee Ym
Cl e Cm
oo
£
o
S
S wn) Wom
w21 2m Wai
X1 X2 e Xn

Figure 3 - Architecture of the AE. Middle layer Y is the compressed representation of input X, and
Z is the reconstruction of X. The rest of the figures and tables use the same color scheme: blue
denotes the external nodes, while green identifies the middle layer.

AEs, as a typical ANN, construct a layer output based on scaled inputs from the previ-
ous layer. These scales are referred to as weight values: every connection in the network
has its weight value w associated with it. The same principle holds for the encoder and
decoder portions of the AE. In theory, this corresponds to the MAC operation.

While the operation of the AE is not complicated, there are things to note.

First, AEs are unsupervised networks: there is no need to have labeled data available
for the training process. This is caused by the nature of the AE: the network’s output must
be the same as its input, i.e., everything is inherently available for constructing the loss
function, which is the metric used for the network training.

This fact that AEs are unsupervised networks brings them to the focus of this the-
sis. Providing three state-of-the-art AE architectures for resource-constraint systems with
HW enable learning is especially valid for unsupervised networks. On the other hand,
embedding the learning process into the final deployment platform is not required for
supervised networks: the training process requires labeled data and, therefore, can not
be performed while already deployed. Therefore, the training process can be carried out

15

using any available powerful enough HW.

Further, beyond the fact that AEs are unsupervised networks, the central feature is the
representation of the input data in its middle layer. What is important here is that AEs are
constructed so that the output can not directly mirror the input. In figure 3, the middle
layer is deliberately narrower, with less Processing Elements (PEs) on it to illustrate this:
the network has to compress its input signal. Further, these compressed features are then
used to construct the network output. Therefore, as the output has to match the input,
the middle layer of the well-trained AE has to contain intrinsic features of the input signal.

The ability of AEs to extract the input signal features makes it potentially helpful in data
pre-processing and paves the road for future work. E.g., feeding the following ANN with
features extracted by a AE potentially reduces the layer count of the following network or
alternatively speeds up the cascaded ANN training process.

However, feature extraction in AE network requires additional care to succeed. For
example, a possible scenario would be remembering the input signal and producing the
output based on memorized indexes. This is a typical overfitting problem: the network
performs exceptionally well on training data but poorly on a test set. Figure 4 presents
this behavior: on figure 4a, the middle layer node c; has learned to react on a specific
input and is the only node participating in the output code formation. Figure 4b presents
the same scenario for the middle layer node c¢,,.

21 22 - Zn 2] 2 . Zn
gl |4 d 4 gl [4a d d
'_E 1 2 n '6 1 2 n
o]
o o
[} Q
o Wit \ W21 Wom © Wit \ W21 Wom
W, W,
o B nm o i nm
Y1 Ym Y1 Ym
Cq Cop c1 G
o0 o0
£ £
° i)
8 w 8 w
Im Im
S| wn Wam S| wn Wam
w2l 2m Wi w21 2m Wi
X1 X2 cee Xn X1 X .. Xn
(a) Middle layer node c, is the only one reacting to the (b) Middle layer node c,, is the only one reacting to the
specific input, and the output is constructed using the specific input, and the output is constructed using the
same single node. same single node.

Figure 4 - Example of the overfit AE network: a specific middle layer node has learned to represent
a single input.

This thesis concentrates on delivering state-of-the-art architectures for the CAE, with
the learning process also performed in HW. While CAE is still an AE, section 2.2 introduces
its regularization methods.

Further, in addition to the background information provided in this section, the thesis
continues with the literature review in section 2.3.

The theoretical background and understanding of the required calculations are def-
initely necessary before realizing any HW accelerator. Therefore, all the mathematical
background of the CAE forward pass and backpropagation is provided in subsections 2.4.1
and 2.4.3. These subsections provide the full calculation scheme, including the descrip-
tions of the Rectified Linear Unit (ReLU) normalization function and all the equations for
derivatives used for training.

16

Additionally, as the basis of the backpropagation, the training process, the loss func-
tion deserves a separate paragraph: subsection 2.4.2. The backbone of the loss function
is Mean Squared Error (MSE); however, CAE introduces an additional regularization term,
which should reduce the sensitivity of the coded values to the small input changes. Math-
ematically, this term is the Frobenius norm of the Jacobian matrix. The total loss function,
MSE plus the additional regularization, is the input for the training process, as in the case
of any ANN, although the loss functions vary case by case. Subsection 2.4.4 present the
results of the backpropagation calculations: equations for weight and bias updates.

Although the mathematical background is well covered, implementing the calculus on
real HW might require additional optimizations. These optimizations should partition the
equations to make it possible to reuse the calculated values. Subsection 2.5.1 addresses
this and provides updated equations for weight and bias updates.

In total, three different architectures are described in the following chapters. Although
they all realize the same network, there are differences in either communication schemes
between the PEs or optimizations of those, i.e., optimizations in targeting performance
or conserving the HW while keeping the same functionality. Furthermore, as mentioned
before, all three approaches can perform the learning process entirely in HW. In a nutshell,
all three PEs architectures wrap a HW Digital Signal Processing (DSP) slice complemented
by dedicated control Finite State Machine (FSM), block Random Access Memory (RAM)
and some registers for storing the intermediate calculation results.

The first described architecture, baseline (BL), described in subsection 2.5.3, follows
the structure of the actual CAE network: there are dedicated PEs for different network
layers. Also, the data flow follows the layered structure, and the architecture uses a cross-
bar switch for communication between the PEs.

In addition to the node architecture’s data path, subsection 2.5.3 also provides tables
specifying the detailed execution flow during the forward pass and backpropagation. At
the same time, the coloring scheme in the presented tables helps to understand the lay-
ered execution, and the accompanying description provides a complete understanding.
Also, the BL architecture uses optimized equations described in subsection 2.5.1.

The scalability of the BL architecture is limited by the resources available in the target
platform: every PE wraps a HW DSP slice. However, the equations provided in the the-
oretical discussion section must be developed further for vertical scalability to support
additional layers.

The second architecture, CAE with efficient Communication (CCom), described in sub-
section 2.5.4, focuses on optimizing the HW cost of the communication channel. Although
the cross-bar switch connects all the PEs, subsection 2.5.6 shows that the area of the ac-
tual HW occupied by it is relatively high compared to the resources allocated for PEs.

The CCom architecture skips the cross-bar-switch style communication channel. In-
stead, it uses a carousel-like transmission scheme: data is rotated to the next node every
timestep.

Furthermore, there is an additional consequence: while the BL architecture PEs are
synchronized by the availability of data or communication resources provided by the cross-
bar, the PEs of the CCom architecture are designed to be synchronous, i.e., the PEs expect
the transmission channel to be available at certain moments. Therefore, in addition to the
fewer resources allocated for the inter-PE communication, as shown in subsection 2.5.6,
subsection 2.5.7 shows that the throughput of the CCom architecture is also higher com-
pared to the BL. Moreover, the throughput of the CCom architecture is almost equal to
the theoretical maximum presented in subsection 2.5.2. This effect can be explained by
the availability of the resources guaranteed by the synchronous design; there are more

17

infrequent wait cycles compared to the BL version.

As with BL architecture, the datapath of the PE of the CCom is also presented, and the
flow of calculations is the same. However, the CCom architecture does not differentiate
between PEs based on the layer they belong to; all the PEs share the same design and
wrap a HW DSP slice. This makes the architecture more universal, and together with a
lighter use of HW resources spent for the inter-node communication, subsection 2.5.6
shows that it ultimately allows a bigger CAE network to be synthesized on the same target
platform.

Subsection 2.5.5 presents the third CAE architecture provided in this thesis: Resource
Optimised CAE with efficient Communication (CCom-RO). It is similar to the CCom version
but skips some performance-biased additions introduced in the latter. It also uses the
carousel-like transmission channel, but unlike CCom, CCom-RO does differentiate nodes
based on the network layer.

The configuration of the CCom-RO design flows from the widest CAE network layer
towards the narrower ones. First, the most expansive layer defines the features required
by all the PEs. Next, if implementing the following layer requires some additional HW,
only the amount of nodes matching the narrower layer PE count include the required
additions.

However, optimizing away some of the HW from CCom-RO network nodes comes at
a price. That means that the CCom architecture keeps all the PEs constantly busy and
even calculates multiple sets of some results during the execution to ensure the data is
available on every timestep. However, that is not the case for CCom-RO: some results are
calculated only by the fully equipped PEs, and the carousel transmission channel intro-
duces an additional delay. It requires additional timesteps to rotate the necessary data to
all the depending PEs.

As stated before, all the described architectures perform the same from the functional
point of view. The differences come from the inter-PE transmission channel and different
emphasis on execution speed or allocated HW resources or performance.

The synthesis results presented in subsection 2.5.6 show that the CCom-RO vyields
the most extensive CAE network on the same target platform. This result was expected:
it improves the communication channel over the BL architecture and, as the acronym
suggests, is resource optimized compared to the CCom version.

Also, the performance of all three architectures is compared in subsection 2.5.2. It is
shown that the CCom architecture results in the fastest possible CAE network. Moreover,
CCom architecture almost reaches the theoretical maximum using the presented theoret-
ical basis.

Further, the proof of the correct execution is provided in subsection 2.5.8: the MNIST
database of handwritten digits was used for that purpose. Finally, it is shown that the
network converges and can produce an output similar to the network input, as required
by autoencoders, CAE being one of those.

2.2 Contractive Autoencoder

As stated before, AE is a type of ANN that reconstructs its input signal to the output using
the extracted features on the middle layer. Furthermore, there are different types of AEs,
distinguished using the regularization methods: additional criteria in the loss function to
force the middle layer encoding towards valuable features.

One natural assumption would be that similar inputs should yield similar encoding on
the middle layer, i.e., if the input changes very little, it can be reconstructed using almost
the same set of features. This is precisely the basis of how the CAE uses regularization.

18

To achieve this, CAE uses the regularization term based on derivatives of the encoding
with respect to the input in addition to the primary qualification that the output has to
be the same as the input.

In mathematical terms, this additional regularization is expressed as the Frobenius
norm. In a nutshell, a Frobenius norm is a matrix of partial derivatives of middle-layer
features with respect to the inputs. This additional regularization forces small changes in
the inputs to yield the same features: it makes similar inputs to contract in generating the
output. In conclusion, for CAE, the regularization controls the behavior of the encoder
portion of the network.

2.3 Literature Review

This chapter reviews the state-of-the-art implementations of AEs found in the literature,
while the thesis focuses on implementing CAE on a resource constraint system such as a
FPGA. More precisely, as the CAE is an unsupervised network, the provided architectures
embed the training process in HW to enable autonomous operations, and the literature
is reviewed accordingly.

ANNs have gained popularity in various fields nowadays. If carefully searched, exam-
ples can probably be found for any possible application, including image recognition, nat-
ural language translation, human activity recognition, and anomaly detection [19, 20, 21].

The most appealing feature of such algorithms is the ability to extract latent features
from the data automatically. Furthermore, this kind of behavior increases the modeling
capabilities [22].

However, regarding handheld and similar resource-constraint devices, the networks
are usually pre-trained on other platforms, or data is offloaded to the cloud for compu-
tations [23]. While the state-of-the-art addresses FPGA based ANN accelerators ([13, 14]),
CAE with embedded learning is missing from the literature.

Further, focusing towards AEs, they are beneficial for squeezing latent features out of
the input data or reducing the data dimensionality as stated in [24]. While the extracted
features can indeed be used in various applications, anomaly detection is one of the fields
where AEs have proved to be a reasonable solution.

The work presented in [25] uses AE for detecting anomalies. At the same time, authors
in [26] use AE for detecting anomalies in multi-dimensional time-series data. Finally, to
complement the theoretical background, authors in [27] use AE for unsupervised anomaly
detection scenario, while they also claim that CAE, the same AE flavor addressed in this
thesis, excel very well in this field.

Authors in [28] propose using autoencoders to compress the captured biometric Elec-
trocardiogram (ECG) data in wearable devices. While the compression results and recon-
structor error are proved to be feasible, authors execute the algorithm on the Cortex-M4
microcontroller. Moreover, the training process is performed using separate hardware in
this work. Another work, [29], also proposes autoencoders for biometric data analysis: au-
thors use Electroencephalogram (EEG) signals to analyze the pilots’ fatigue. Although the
execution HW platform is not restricted in this work, it supports the idea of using autoen-
coders for biomedical data. However, people move around, and analyzing their health and
overall condition can be beneficial. Therefore, this is the field for wearable and resource-
constrained devices, and having suitable implementations around would accelerate the
deployment of these methods.

Besides analyzing biological data, autoencoders have shown their usefulness in motion
recognition. Authors in [30] use a mobile phone and its sensor data to detect different
motions of a human. However, again, the training of the AE is not performed using the

19

same HW. This prevents the network from learning new trends or changes in a user’s
movements or requires the data to be offloaded to the cloud.

Another work using sensor data for motion detection is presented in [31], where au-
thors address the problem of detecting unseen falls using the AEs. They state that detect-
ing the fall is not trivial due to the lack of labeled data and train the AE using only regular
motions. While this work does not address resource-constrained devices, it supports the
idea that the availability of such implementations would broaden the deployment pos-
sibilities. Constant unsupervised learning of the regular motions in a wearable device
could improve the accuracy of such a system even more. Finally, the work presented in
[32] provides another example of using AEs for motion detection and, therefore, possible
deployment of proposals presented in this thesis.

Further, another field of study of applications of DNNs addresses the predictive main-
tenance scenarios. For example, the work presented in [33] runs AE on a FPGA to extract
features from the regular operation of a motor. Although the authors train the cascaded
classifier on the same target HW, the AE portion of the proposal lacks this feature and is
trained separately. There are not many implementation details available, but it is worth
noting that authors emphasize the need to run this DNN application on such resource-
constraint platforms. Transferring all the data to the cloud for processing throughout the
monitored system’s entire lifecycle is not always feasible.

The work presented in [34] provides energy- and area-efficient implementation of an
AE. Authors use the extracted features, the middle layer of the AE, as an input to the
CNN based fault classifier. However, the CNN portion of the solution is running on the
controller, not FPGA, but is executed upon request. This idea is presented in figure 5:
software-based CNN can complement the binary classifier, using the features extracted by
the AE as its input. Compared to the proposals in this thesis, the presented work partially
binarises the calculations and misses the HW based training of the network.

Auto-Encoder

. _ Binary Fault
DECODER Detection
Input
» ENCODER
CNN
» CLASSIFIER - Fault

Classification

Figure 5 - Cascaded DL network presented in [34]. The features extracted by the AE are used as the
input to the software based CNN to complement the binary fault detection output upon request.

The extension to the previous work is provided in [35], where authors propose a par-
tially binarized AE for detecting anomalies in the bearing systems of industrial apparatus.
The implementation is very power- and area-efficient but, as stated before, lacks training
in HW. However, the missing HW based training should not be taken as criticism towards
authors: not every application necessarily needs it. Instead, this reference serves as an
example that HW implementations with embedded training are mostly missing from the
literature.

An FPGA-based solution for monitoring industrial machinery is proposed in [6]. More-
over, again, authors restrict themselves to semi-supervised learning using another more

20

powerful HW than the deployment target FPGA. Therefore, the availability of solutions or
proposals for the training process on the target HW platform could open new opportuni-
ties for these kinds of studies.

Another work addressing unsupervised anomaly detection in resource-constraint de-
vices is presented in [36]. Although the proposed method uses a flavor of a CAE network,
the main focus is on the algorithm and not the HW realization. However, the presented
study calls for efficient HW based implementations of such algorithms.

AEs have also found their way to boost indoor location services’ capabilities. However,
solutions based on Global Positioning System (GPS) are not applicable here due to the
satellites’ signal unavailability. Instead, the parameters of wireless network signals are
used. Authors in [37] propose a solution to extract such signal features using an AE. They
use FPGA based accelerator for executing the network, but again, do not have the learning
implemented in HW: the network has to be trained on a different platform.

Authors in [38] use AE stacked with Long short-term memory (LSTM) for outlier de-
tection. This work nicely demonstrates the benefit of using an ensemble of different net-
works: LSTM is fed with latent features extracted by the AE. The target platform used
in this work is based on Xilinx FPGA, DL accelerators are realized using programmable
logic. However, the proposed accelerator involves only the inference phase, and the net-
work’s training is performed before deployment. On the other hand, outlier detection
could benefit from continuous training to overcome the drift in the normality of moni-
tored processes.

Another work that uses AE for anomaly detection is presented in [12]. Authors use the
AE for detecting analog trojans in manufactured integrated circuits and get good results.
Also, the implementation is based on FPGA, but again, misses the HW based training.
However, as stated in this referenced work, changing the weight values might be required
if the noise level changes. This excellent example of an environmental drift demonstrates
the need for constant HW based training to overcome the issue.

Further, authors in [39] present the FPGA based implementation of an AE with the
focus on the inference phase, no training included. However, the authors claim that us-
ing fixed-point data representation gives comparable results to using floating-point data
types, supporting the proposals presented in this thesis. Also, the extensive analysis
provided in this work clearly shows that FPGA based implementations are more power-
conservative compared to the GPU counterparts. However, there is a considerable per-
formance gap between these two platforms in this referenced work, leaving some inter-
pretation room in the presented power figures.

Another general FPGA based ANN accelerator is proposed in [40]. The referenced work
is somewhat similar to the proposals presented in this thesis: only the most expansive
layer is implemented in HW, and all the following layers reuse these resources. However,
the activation function is implemented separately as a single shared unit for all the PEs,
reducing the execution speeds. Nevertheless, on the other hand, this approach allows
using higher HW complexity for the activation function; a single unit can reserve more HW
resources that do not multiply by the size of the implemented layer. However, compared
to the proposals in this thesis, the solution lacks HW based training.

Yet another realization of the AE on FPGA can be found in [41]. However, similar to
the previously reviewed works, this implementation addresses the inference phase only.
But there are also similarities: the referenced work uses fixed-point data representation.
Also, the work provides a comparison to GPU platform using floating-point. Authors claim
that using fixed-point data degrades the precision of the network, but the loss stays within
10%, depending on the exact format selection.

21

Finally, authors in [42] provide a solution for HW based inference and training for a
stacked AE. The referenced work also compares the FPGA based solution to the GPU
based implementation, where FPGA outperforms the GPU in power consumption but lags
in terms of performance. Furthermore, the performance of the FPGA based solution is sig-
nificantly lower for both inference and backpropagation phases. This performance degra-
dation can be related to the fact that authors use OpenCL high-level language for the FPGA
design. Naturally, this kind of approach accelerates the development cycle. However,
carefully crafted solutions using lower level HDL like Verilog or VHDL surely can increase
the network’s throughput and make FPGA based solutions more appealing alternatives to
GPU counterparts.

To conclude the review, there are quite a few implementations of different flavors
of AEs on FPGA platform, but the HW based training still needs to be addressed by the
researchers: this is the field where this thesis provides its contribution. Although the
focus is on the FPGA based implementation of CAE, the ideas can be used to extend the
proposals for other types of networks.

The main contribution of this work is to provide the first full hardware-based imple-
mentation of the CAE [43], comprising hardware-implemented learning. Additionally, the
thesis follows the proposals from the authors of [44] and shares the network weights on
the encoder and decoder parts of the CAE, which helps to conserve the memory require-
ments of the implementation. Additionally, as proposed in [45], the weights and biases
and all the calculations use the fixed-point representation of data.

2.4 Background: Theory of Contractive Autoencoder

2.4.1 Forward Pass

The forward pass, inference phase of an ANN generates the output of the network. Dur-
ing this phase, the input signal passes all the network layers and undergoes all the cor-
responding transforms using the network weight values, layer-specific coefficients, and
global network parameters found during the network’s training.

The following presents the equations for CAE forward pass calculations for the network
presented in figure 3, where n stands for the width of the input and output layers and m
denotes the number of nodes in the hidden layer.

First, the network receives its input via the x nodes, the input layer. Then, all the input
layer nodes connect to the next layer using the weight values w as the scaling factors: the
weight values define the impact of a node input.

Equations (1) and (2) present the calculations to evaluate the ¢ and y values in the mid-
dle layer, where b stands for the node bias value. The same equations hold if there were
more layers in the network presented in figure 3: every node in every layer accumulates
the scaled inputs from the previous layer, adds the bias value, and applies the activation
function. The activation function used in the current example is computationally inexpen-
sive ReLU. While the original ReLU function was proposed in [46], authors in [47] propose
a modification to allow low negative values to leak to the output to avoid dying neurons
problem analyzed by the authors. Figure 6 illustrate the differences between these two
activation functions. This thesis makes use of the modified, leaky ReLU.

cj= Zwijxi—&—b;C) (1)
i=1

yj = f(cj) = ReLU(c)) (2)

The nodes y in the middle layer hold the coded input value. A similar procedure then

22

z, ifz>=0
relu(z) = max(0,z) relu(z) = {az otherwise

(a) ReLU activation function, all input values below (b) LeakyReLU activation function multiplies negative in-
zero are limited to zero. puts by a, allowing low negative values to leak to the out-
put.

Figure 6 - ReLU and LeakyReLU activation functions.

follows in the decoding layer: equations (3) and (4) present the calculations for evaluating
the output of the network.

m

di=Y wijyj+ bf»d) (3)
j=1
i = g(d,') = ReLU(d,') (4)

2.4.2 Loss Function
Training of the ANN, including CAE, is about minimizing the loss function. The training
data is pre-labeled for supervised networks, like CNN, and the network output is assessed
based on these labels. On the other hand, training the unsupervised networks like CAE
does not require manually prepared data: in the case of CAE, the output has to be the
same as the input.

MSE can be used to evaluate the similarity of the network output to its input: equa-
tion (5). The network loss L increases if the output does not match the input, and the
internal weight and bias values can be changed based on that information.

L(X,Z) = (zi —x;)? (5)

S| =
.M=

Il
-

1

In addition to this, the CAE network adds a regularization term to the loss function.
The purpose of an additional regularization is to fulfill some specific criterion: in the case
of CAE the additional term should reduce the sensitivity of the input to the coded values in
the middle layer and yield to more robust encoding. Mathematically this term translates
to the Frobenius norm of the Jacobian matrix (equation (6)) and ensures that a slight
change in networks input translates to the same encoding in the middle layer.

n om ay, 2
ol =33 (52))

=1

The final loss function of the CAE network is the sum of equations (5) and (6): equa-
tion (7), where 6 = W,B(C),B<d) is the collection of all the network parameters, weights

23

and biases, and A is the hyper parameter to limit the amount of the contraction term in
the total loss.

Feae(0) = Lx, g(f(x) + A, (x) 17)

If the network output corresponds to the input, the MSE portion of the loss function is

minimal: every network weight and bias value is adjusted accordingly during the training,
and the standard method for this is gradient descent, covered in subsection 2.4.3.

2.4.3 Gradient Descent
The gradient descent is the standard method for training the ANNs, including CAE. The
purpose of the procedure is to adjust all the network weight and bias values based on the
output of the loss function. First, the derivatives of the loss function with respect to all the
network parameters are calculated, and the values are updated based on these results.
The total loss of the network, equation (7), is the sum of two terms: the MSE term
and the additional contraction term, and the derivatives for these two can be calculated
separately.
After substituting the term (z; fx,-)z with; = (z; —x,-)z inin equation (5), the derivative
of the MSE with the respect to a weight value w,,,, can be found using the chain rule as per
equation (8).

(8)

oL _1 L %azi ad;
aZ,' 8d,» awuv

The first term in the chain rule is the MSE loss derivative with respect to z;: equa-
tion (9).

owyy ni=t

al;
o
The second term is the derivative of the RelLU activation function, z; with respect to
d;: equation (10).

2(zi —xi) 9)

oz _{1, if d; >=0 10)

od; o, otherwise

The derivative of the decoding d; with respect to the weight w,,,, needs to consider only
one term from the equation (3): the one where j = v. All the other terms are independent
of w,,; therefore, they have zero gradients. The weight value of this selected term is

marked as wgvd) if the following equations and its first index is marked as i),

However, y; in equation (3) is the function of weights itself (equations (1) and (2)).
Similar to the equation (3), equation (1) has to consider only the term which has the
dependency to w,,: the one where i = u. Again, the weight value in questions is marked
as wff), and its first index is marked as i(*) = u.

The weight value included by the term selected from the equation (1) has both of its
indexes fixed to i = u and j = v, while w(d> can have i(@) 2 u. This condition specifies if

%
the weight values included by terms selected from equations (1) and (3) are the same or
not, or in other words if the y; in equation (3) is the function of the same weight value it

is multiplied to. Equation (11) specifies these two cases for the derivative calculation.

9d; _ %% aa;,:v’ if i) £ u 1)
OWuy Yy + W,'VaTy,I aavs:v , if l(d) =u

24

where:

ad;

a—y; = Wiy (12)
ayv: 1, ifey >:'O (13)
dey o, otherwise

dc

7awv =Xy (14)

Figure 7 illustrates the term i) 2 u in equation (11), and makes an example for calcu-
lation path dd, /dwi1, u =1 and v = 1. There is exactly one path from the node d,, which
includes the weight value w;;. The dotted line indicates the path in question, which goes
through wy in the decoder portion, marked with the blue arrow, and wy; in the encoder,
marked with the red arrow.

Zl 12 cee Zn
o0
% d dy dy,
o
o H
© wir\ w2 / Wam
w,
ot Wi nm
Y1 i cee Ym
Cl cee Cm
oo R
£ $
o
8
Wi
| g W
> w21 Vom Wal
X1 X2 cee Xn

Figure 7 - lllustration for equation (11): calculation path for dd, /dw11, u =1 and v = 1. The decoder
portion has to select the path through the weight value w,, where i@ = 2. Here, i) #u.

Further, figure 8 illustrates the term i(Y) = u in equation (11), and makes an example
for calculation path dd,/dw,;1, u =2 and v = 1. The value of node y; also depends on
wy1, and the derivative chain rule applies. The dotted line indicates the calculation path,
which goes through the same weight w;; in the decoder and encoder portions, marked
with red arrows.

Calculating the gradients for the bias values has no exceptional case, as the coding and
decoding layers have a separate set of those.

Equation (15) specifies the calculation of the MSE loss derivative w.r.t. bI@.

L 19l dz dd; 15)
op' @ ndz dd; ypld)

(c)

Equation (16) specifies the derivative of the MSE loss w.r.t. bj

oL _ Ly (94 9% 0d; 9y; Ic;
ab — n =\ 9z 9d; dy; dc; gple)
f J

(16)

The contraction term is specified by the equation (6). equation (17) specifies the cal-
culation of derivatives of y; w.r.t. x; included in the contraction term.

25

ZI ZZ ces Zn
gl [a d 4
'_E 1 2 n
(]
)
© Wi \ W21 5 Wam
% w,
o W ‘nm
B cee Ym
cl e Cm
oo
£
e}
S
Wi
S| wn %K) W
w2y 2m Wnl
xl x2 oo Xn

Figure 8 - lllustration for equation (11): calculation path for dd, /dw, 1, u =2 and v = 1. The decoder
portion has to select the path through the weight value w,;, where i) = 2. Here, i(d) = y.

8yj o 8yj aCj
ax,- B TC/ ax,' (17)
where:
dc;
Txi = Wjj (18)

Therefore, every element in the contraction term equals to equation (19).

(Y ()
= (50) =(5) "

Derivative term dy;/dc; in equation (19) is constant according to the equation (13).
Therefore, derivative of r;; w.r.t. w;; can be calculated according to the equation (20).

.. . 2
drij = 2wy (8)},) (20)

8wi,~ aCj

2.4.4 Weight and Bias Update
The negative value of the gradient specifies the direction of change for a parameter to
minimize the loss function (equation (7)).

The sum of equations equations (8) and (20) specify the gradient of a weight value.
Therefore, the new values for weights have to be calculated according to the equation (21),
where o stands for the learning rate and A limits the effect of the contraction term.
8L —1—}1, 8r,‘j)

&Wij 8w,~,~

W,‘j:Wij—OC< (21)

The bias value updates should follow a similar scheme. Equations (22) and (23) present
the update formulas, where 3 sets the update rate for the biases.

(d) _ ,(d) JL
bi - bi - ﬁ ab(d) (22)
(0 _p0_g 9L

2.5 Novel Architecture for Contractive Autoencoders

This section presents the HW architectures for CAE inference and backpropagation calcu-
lations. In total, three architectures are proposed.

The Xilinx Zyng-7020 System On Chip (SoC) is the target HW platform in this work. It
has dual-core ARM Cortex-A9 processors and a programmable logic portion for custom
HW implementations. The programmable logic section contains 85K logic cells, 53200
LUTs, 106400 flip-flops, 140 36Kbit block RAMs, and 220 DSP slices.

According to the equations (1), (3) and (8), the multiply-accumulate calculations are
heavily used; therefore, all the proposed architectures make use of the DSP Intellectual
Property (IP) blocks available in the target architecture. Utilizing the DSP IPs frees the rest
of the programmable logic for other purposes and allows packing more network nodes to
the target HW.

2.5.1 Equations optimization
While the HW implementations of the CAE forward pass exist, the backpropagation and
weight update functions presented in subsections 2.4.3 and 2.4.4 are more complex and
harder to implement in HW efficiently. Therefore, this section regroups the calculations
and defines some reusable values. As shown below, those reusable values can be calcu-
lated once and reused multiple times, yielding more efficient HW.

First, equation (24) defines the term k;:

1 al, aZi
i = Za?,&Tz, (24)

Using this newly defined term k;, rewriting the equation (8) results in equation (25):

aWuv Z (aWuv) (25)

Next, substituting equations (12) and (14) into equation (11) gives equation (26):

dd; _ {wgu if i) £y 26)

aWuv v + Wivg'iz:xu, if l(d> =

From equation (26), it can be seen that the check for the case where i) =y can be
ignored while calculating equation (25) and the correction term k,y, can be added to the
result to compensate for it: equation (27).

oL dyy &

=Xux_— ac Z k Wiy +kuyv (27)

oW

Further, equation (28) defines the reusable summation S,,.

V) o
8? Z (kiwiy) (28)

i=1

Sy =

The weight update value can be rewritten by using this reusable term: equation (29)

dL

= xSy + kyyy (29)
OWuy

27

Using equation (21) and these newly defined substitutions and reordering the weight
value update can be rewritten: equation (30).

dy; 2
Wij=Wij—(X(xiSj+kiyj)—2(X;LWij (&Cj> (30)
j
Similarly, the output layer bias value calculations, equations (15) and (22), can use the
reusable term k;: equation (31).

b = b\ — Bk, (31)

Also, the internal layer bias value calculations, equations (16) and (22), can be rewritten
using the reusable term S presented in equation (28): equation (32).

(© _p© _gg.
b\ = bl — Bs; (32)

In conclusion, recognizing and pre-calculating the k (equation (24)) and S (equa-
tion (28)) values allows the network weight and bias update process to reuse these
results.

2.5.2 Execution time estimation

This subsection provides the theoretical timing estimations for the forward pass and back-
propagation execution steps. Then, the described architectures will be compared against
the derived values to assess the actual throughput in subsection 2.5.7.

During the forward pass, every network node, PE, must multiply every input from the
previous layer by the corresponding weight value and accumulate the results. In addition,
every PE must add the bias value and apply the RelLU activation function: equations (1)
to (4). As every PE accommodates a HW DSP slice, all these operations execute in a single
cycle. This includes the activation function ReLU as it boils down to single multiplication.

Equation (33) presents the generalized formula for the required cycles to complete the
forward pass, where [stands for the number of layers and #; is the i-th layer input size.

l
Crwa =Y, (ni+2) (33)
i=1

For example, applying equation (33) for the network presented in figure 3 results in
n—+m+ 4 cycles to complete the forward pass.

To estimate the theoretically required cycle count for backpropagation, equation (21)
presenting the formula for updating a single weight value is followed.

The term dL/dw;; is computationally most demanding as it includes the summation
term as per equation (8). To calculate the required cycle count for this term, dl;/dz; re-
quires one cycle for subtraction, dz;/dd; requires one cycle, and dd;/dw,, requires three
cycles. Multiplying these values takes another two cycles. Therefore, the summation term
requires 7n cycles in total.

Further, dr;j/dw;; (equation (19)) requires four cycles: one cycle for dy;/dc;, one
cycle for calculating power of two, and another two cycles to multiply this value to the
weight value and to multiply it by two.

Additionally, multiplying dr;j/dw;; by A consumes one cycle, adding the correction
yv to dL/dw;; present in equation (11) and multiplying this to 2/n consumes two cycles.
Adding these two terms takes another cycle, and multiplying this sum by « takes one
cycle. Finally, subtracting the result from the present weight value also takes one cycle.

28

Therefore, it takes ten cycles in addition to the 7n cycles required by the summation
term present in equation (8) to complete the update for a single weight value.

The network presented in figure 3 has m weight values assigned to every PE, and all
these values have to go through the same updated procedure: equation (34) presents the
formula for the required cycle count Gy,

Copw = m(Tn+ 10) (34)

However, subsection 2.5.1 provides some optimizations for the backpropagation cal-
culations. Extracting re-usable portions speeds up the calculations and should also be
considered for theoretical timing estimations for a true comparison.

Equation (30) has to be followed to estimate the required cycles for updating all the
weight values.

The cycle count for the contraction term is the same as before: four cycles. Plus, an
additional cycle to multiply by the term a A, totaling five cycles.

The remaining operations in equation (30) are single cycle multiplications, additions,
and subtractions: the total required cycle count for updating a single weight value totals
eleven cycles.

However, equation (30) contains the re-usable k and S values, which require additional
cycles to calculate.

Equation (24) has to be followed to estimate the cycle count for k, where dl;/dz; takes
two cycles, dz;/dd; takes one cycle and multiplying these values and the constant 1/n
takes additional two cycles. Therefore, the total cycle count to calculate % is five cycles.

Further, equation (28) defines the required calculations for S. The summation term
contains a multiply-accumulate operation carried out by the DSP slice in a single cycle.
Therefore, calculating S requires n + 1 cycles.

Equation (35) defines the total cycle count required to update all the weights in the
network: eleven cycles times m to update all the weights according to the equation (30),
plus 5+n+ 1 cycles to calculate the reusable portions k and S.

Cbpw_optimized =1lm+n+6 (35)

2.5.3 Architecture 1: Baseline (BL)
This subsection presents the BL architecture for CAE. As the following architectures, the
BL version can also execute training, i.e., backpropagation, in the HW.

Although the BL architecture makes use of optimizations of calculations presented in
subsection 2.5.1, it follows the logical structure of the CAE network: every network node
is implemented as a separate PE. Data flow and execution of calculations also follow the
actual CAE architecture. Forward pass calculations start by propagating the input values
to the middle layer nodes where multiply and accumulate operation (equation (1)) and
applying the activation function (equation (2)) takes place, followed by similar operations
in the output layer (equations (3) and (4)). The network training follows a similar layer-
to-layer flow but in the opposite direction, from the output layer towards the network
input.

This scheme means that while the nodes of different network layers are well separated
and more straightforward controlling state machines can be used, only one layer executes
at a time; the resources associated with the other layers stay idle.

The BL and the following architectures utilize the HW block RAM IPs for storing the
network parameters and weight values; Zyng-7020 has 140 units of 36 Kbit RAMs, and

29

every unit is configurable as two 18 Kbit blocks totaling 280 units. However, the design
consideration is which network nodes to assign these resources.

As the internal layer holds the compressed input representation, there are usually
fewer middle layer units than input and output units. Therefore, the BL architecture as-
signs the block RAMs to the middle layer: as m < n, this scheme uses fewer blocks while
storing more values to a single RAM, as every middle layer PE connect to n external layer
nodes (figure 3) and has to store n weight values compared to m values in case of an input
or output node. Figure 9 illustrates this situation, assigning weight value block RAMs to
external layer nodes (figure 9a), requires more, but smaller size block RAMs compared to
when assigned to the internal layer nodes (figure 9b).

RAM RAM RAM
LTI 4 W1 “ W31 s “ “ s
Wia d W2 d, W3 d3

RAM RAM
" 4 “ Wi
W21 W2
W31 di dy W33

W2 Wai W31
RAM RAM RAM
K' | 21 %2‘ 22 %" 23 2] 22 23
12 d] 22 d2 32 d3 dl d2 d3
(a) Block RAMs assigned to the external layer nodes. (b) Block RAMs assigned to the internal layer nodes.

Figure 9 - Assigning block RAMs to external layer nodes requires more, but smaller RAMs, compared
to when assigned to the internal layer.

Figure 10 depicts the data path of the BL architecture external layer PE. Every unit
contains one DSP slice, supporting multiply and accumulate operations and registers T,
b, z, and x for result storage. Inputs of the DSP slice have multiplexers to select necessary
data for calculations. The Cxx block is the communication channel entry port to exchange
data between the PEs.

Further, figure 11 presents the data path of the BL architecture middle layer PE. Again,
every unit contains one DSP slice, supporting multiply and accumulate operations and
registersy, T, b for result storage. Also, DSP slice inputs are connected to the multiplexers.
Compared to the external layer PE, middle layer version includes the block RAMs to hold
the weight values. The Cxx block is the communication channel entry port to exchange
data between the PEs.

The CAE architecture, figure 3, requires that every network node can communicate
to all the nodes in adjacent layers. However, implementing all these connections in Pro-
grammable Logic (PL) is not possible due to the HW limitations.

The BL architecture uses a cross-bar switch for communication: figure 12. However,
the main focus of this thesis is the design of the CAE network nodes using the DSP blocks
and block RAMs available in the hardware. Therefore, this thesis does not provide an

30

L e] [59
Geaty=
— 1111

dy
—al ¢ *B —a

Figure 11 - Data-path of the CAE middle layer PE.

in-depth analysis of different cross-bar flavors but selects butterfly architecture.

As required by the CAE architecture, every input-output PE has to be able to commu-
nicate to every internal PE and vice versa. Connecting input-output nodes to one side
and internal nodes to the other side of the butterfly cross-bar satisfies this requirement.
Additionally, connecting one communication port from both sides of the cross-bar to the
AXI bus allows the Zynq processing unit to communicate to every node for controlling and
initialization purposes.

The width of the data bus depends on the selected data format: 16 bits in the context of
this thesis. However, the implementation adds additional source and destination address
fields to indicate the origin and select the target node of data.

The implementation also adds the method to control the network nodes over cross-
bar ports marked CNTRL in figure 12, and there are two of those to control the PEs on
both sides of the cross-bar. The controlling ARM processor uses these ports to write
the network’s hyperparameters, input the data, and read the network output. During
the operation, network nodes, PEs, can distinguish between the control and network
execution data by checking the source address: address zero is used for control regardless
of the network size.

Table 2 presents the calculation steps for the CAE forward pass, and the coloring
scheme indicates the PEs performing the calculations. In step 1, all the input-output
nodes broadcast their input value x; to the middle layer nodes. The following steps, 2 to
4, calculate the sum presented in equation (1), and step 5 adds the bias term b\ to the
sum. Step 6 completes the calculation of the middle layer representation y; by applying
the non-linearity function f (equation (2)).

Steps 7 to 8 calculate the terms for summation (equation (3)) and transfer the results

31

CTRL | []]] »| CTRL
N, |- > N
N, |« > N
N; - > N;
Ny - > Ny
N5 |« > Ns
Ne |« > DL
N | > DL

Figure 12 - Layout of the butterfly cross-bar switch. Layers of the CAE connect to the different sides.
CTRL ports are used by the ARM processing unit for flow control and data transfer.

to the corresponding input-output nodes. Input-output nodes perform the summation of
these termsin steps 9 to 11 and add the bias bfd) in step 12 (equation (3)). Step 13 completes

calculating the output Z after applying the non-linearity function g (equation (4)).

Table 2 - Calculations of the CAE forward pass

1 C]* = X1 Cn* = Xn

2 Agc):CH*wu A,(,f)zclm*wlm

3 |49 = Gy awa +A9 | |4 = Cop x Wi + A
4 A§C> = Cn1 *Wp1 +A§C) A£;> = Cumn * Wam +Al<1f)
5 |19 =944 |59 =50 +47

6 V1 :Tl(C) :Tl(c>*f1 yn1:7;1(1C) :TrSLC)*fm
7 |Cny ZTI(C>*W1| | Clm = ,Sp*wlm

8 |Cu= Tl(c> * Wni oo | Gy = }'Stc) *Wnm

9 (4 = A = ¢,

10[49 =c, +4 A =Cp+AY
n[aA9=c,+4?9 |.]a¥=c,,+4¥”
2|19 =P +4P [5D = A

13 |z1=g81 *Tl(d) | Zn=8n *T,,(d>

Table 3 presents the execution steps for updating the weights and biases, and the
coloring scheme of the table corresponds to the table 2. First, every output layer PE
calculates the k; (equation (24)) as the starting point of the gradient descent in table rows
1to 3 and broadcasts the value to every middle layer PE. Next, table rows 4 and 5 describe
the update of the output layer bias values according to the equation (31).

Further, rows 6 to 9 calculate the S, (equation (28)) and transfer the result back to
every connected input-output node. Also, the middle layer PEs transfer their forward pass

32

value y. Rows 10 and 14 multiply every value received from the middle layer by x, add the
kiy; term (equation (30)), and transfer the result back to the middle layer. In parallel,
every middle layer unit updates its bias value (rows 12-13).

The internal layer finalizes the update process. First, it prepares the weight update
value resulting from the contraction term (equation (30)) in rows 17-18. Next, the middle
layer unit repeats steps 19-22 for every connected input-output node to finalize the weight
update process.

2.5.4 Architecture 2: Efficient Communication (CCom)
This subsection presents the CAE architecture with further optimizations. While the BL
architecture nodes are entirely asynchronous and react upon data sent or received from
the communication cross-bar switch, the CCom version takes another approach: the PEs
are synchronous and expect specific data to be present in its communication channel input
and output certain data in a specific clock cycle. This approach simplifies the design of the
FSMs inside PEs and can use a communication channel without handshake and address
signals.

Therefore, the CCom architecture skips the cross-bar switch style communication
channel and replaces it with a carousel-like design: figure 13.

-+]]]

1 1
v v

. . t
SN I PP N R a]

Figure 13 - Carousel like communication channel. Data advances in every clock cycle. The node CTRL
is connected to the controlling ARM processing unit.

The carousel implementation advances the data in every clock cycle. However, as the
BL architecture, the CCom network needs to be configured as well: the implementation
adds two additional data bits to achieve this. One of these bits indicates if a PE sends
control data, and the other is used to denote the control from the processor attached to
the CTRL port. The PEs use the control bit to send the result values of a layer execution,
and a separate control bit for data sent by PEs allows the CTRL port to distinguish and log
those values.

Figure 14 presents the data-path of the CCom network node or PE. The overall ap-
proach is the same as in the case of BL architecture: every PE wraps a HW MAC unit. And
every PE has a block-RAM, registers for holding various values, and multiplexers for MAC
inputs. In the case of CCom architecture, all the PEs share the same architecture.

As stated before, the PEs of the CCom architecture are synchronous: they process the
data received from the communication in a sequence defined in the design time.

The first processing step during the execution is the forward-pass calculation. For this,
the controlling processor outputs the network input values x; to the carousel, and every
PE stores one of the input values to its x register.

Every PE has layer weight values stored in the block RAM, and the MAC operation
follows. During this phase, every MAC performs A x B + C operation, where A and B
inputs of the DSP slice are connected to the block RAM and register X outputs, and input
C is connected to the communication channel. At the same time, the result of the MAC
operation is output to the carousel. This means that every PE adds a w;;x; term to the
value received from the carousel and forwards it, where i is the physical location of the

33

Table 3 - Calculations of the CAE gradient descent

1 Tl(d)=21—x1 J59 =z, —x,

2 |19 =2+1 |59 =241

3 Cl*—T() 3 LD | | Cu =T = g2 51
4 [AY — g1 A = —g«1?

5 <d) b\ 44 §) 65 =Bl 4 Al

6 (C) =Cp1 *xwyy Af,f) =Cim *Wim

7 () = Co1 *wai +A<) AS) = Com x wam +AY)
8 |1\ = Curwn +AY ||V = ot wam + 43
9 [Ca=T\9=1{7+32 |..[Cw=T0" =TV x
10 |AD = ¢y xx a9 = ¢y #x,

M | Cia=y N Comn = Ym

12 (49 =19« 8 LAY =18

13 |59 = p{? + AP 9 = 1Al

14 |cly =i+ T D +A9 | [Cu=Cu+T @D + 4
15 Aﬁd):clm*xl A,gd): i 3

16 | Cim = Clu* TV + 47| .. | Cum = Cun* T + 490
17 |1 = [~ar]+ 2 AT = [—an] « P
18 ch)zrfugg . T,,(,C)—T,,(,)*gim

19 A9 =cp x[—as2 .. AT = o [—t)2)
20 Agc) :T1<C)*w11+A(lc) . A,(,f):Tl(C)*wlquAE,f)
21 |4 = wy +4Y 149 — w4l

22 Wil :A§C> | Wim :AE,;)

2349 =Cux[-a/2 |..[AY =Cux[—a/2]
24 A = 19wy +419 []4Y) = 19 4w + 41
25 | A% = w +4Y 4% =, +4%

26 | w, =AY | W = A

34

RAM

z

&

Figure 14 - Data-path of the CCom network node. All the nodes share the same design.

1

Y N Y Y Y}

PE in the carousel and j stands for the execution step: every PE adds the value rotating in
the carousel to the w;;x; term and forwards it, resulting in complete Y\, w;;x; operation.

After this procedure, every PE holds one of the completed MAC results, adds the layer
bias value to it, and applies the RelLU activation function, completing the equation (2).
Also, it is worth mentioning that the RelLU activation function is computationally light,
even in the case of leaky RelLU: it is the multiplication by 1in the case of a positive value
or by a predefined constant otherwise.

The same procedure follows for every layer present in the network. However, one
more optimization in CCom architecture targets the execution speed if the execution flow
goes from the layer with more PEs towards the narrower one. In that case, all the PEs
still perform the calculations, resulting in more than one set of values available for the
following layer calculations. For example, if there are n PEs in the currently calculating
layer and m PEs in the next layer, and m < n, only m PEs need to complete the calculation
of the next layer values, resulting in m PEs finally holding the correct data for further
execution. This means the values must circulate the entire carousel to be available for
all the PEs. In the case of CCom, multiple sets of required values are calculated, and it
takes m cycles for all the nodes to receive the data.

However, this means that the count of PEs on the following layers has to be multiple
of the PEs in the previous one: the PEs are synchronous and expect the values to arrive
in the correct sequence. Therefore, the carousel has to contain dummy PEs to satisfy this
requirement.

Table 4 provides an example of CCom calculating multiple sets of middle layer values.
In this example, there are seven output layer nodes and five middle layer nodes: three
dummy nodes Dj...D3 must be included to allow two sets of middle layer values to be
calculated. However, one of the dummy nodes can be skipped as a communication node
in every chain acts the same. Every value has to rotate all the PEs, so it takes a total of ten
cycles to complete the calculations, and after this step, every PE receives the input data
for the next layer calculations in five cycles in the correct sequence.

Figure 15 illustrates the carousel’s state after calculating middle layer values; the figure
complements table 4. Every PE can expect five middle layer output values in the successive
five clock cycles, although the ordering of received values is not the same for all the PEs.
However, different ordering is not an obstacle: controlling FSMs can be parameterized
during the synthesis to cope with this.

35

Table 4 - Performance biased calculation scheme of CCom architecture. Multiple sets of values are
calculated to speed up the following execution steps.

D3y | Dy | Dy | N7 | Ng | Ns | Ny | N3 | Ny | Ny

YO [r D e [rP 707 [r0 [r [70] 1)

Y2<1> Yl(l) YS(Z) Y4(2) Y3(2) Y2(2) Yl(z) YS(I) Y4(1) Y3<1)

P O O Ty v e [r O r T [

IR

Y5(1> Y4(1) Y3(1) Yz(l) Yl(l) YS(Z) Y4(2) Y3(2) Y2(2) Yl(z)

rO YT e e e v e 7P (70 v

Y2<2> Yl(z) YS(I) Y4(1) Y3(1) Yz(l) Yl(l) Y5(2) Y4(2) Y3<2)

YT Oy [y e 2P [y 07T [

IR RIS

Y5(2> Y4(2) Y3(2) Y2(2) Yl(z) YS(I) Y4(1) Y3(1) Y2<1) Yl(l)

[om] [o J [o J[m | [m J[m J[m [[[0][~]
R —

)63

plo e s e v e s e M

Figure 15 - Data present on carousel nodes after completion of the middle layer values calculations
in case of CCom architecture.

36

2.5.5 Architecture 3: Resource Optimised CAE with efficient Communication (CCom-RO)
The CCom-RO architecture is similar to CCom: they share the carousel-like communication
channel architecture (figure 13). Also, the architecture of PEs is combined: there are no
dedicated PEs for different layers.

However, as the architecture name suggests, the CCom-RO is a resource-optimized
version of CCom, and not all the PEs share the same design. For example, if the CAE
network contains m internal and n external layer nodes, and m < n, only m PEs include all
the registers and, therefore, wider multiplexers to accommodate all the features required
to act as a PE belonging to either of those layers.

Figure 16 presents the data-path of the CCom-RO full PE architecture. Every PE is
wrapped around the DSP slice, which performs the actual MAC operations. DSP inputs
are connected to the multiplexers to select the required signals and registers 5@, p(©),
X, ¥, z, K, and S hold the calculation results. The communication port S, is required to
communicate to the network’s other PEs.

[N N Y Y}

K
=
J

Figure 16 - Data-path of the CCom-RO architecture full PE. This PE can act as it belongs to both
internal- or external layers.

As the name of the architecture hints, it tries to optimize the HW resources. Therefore,
some of the PEs can act only as part of the external layer. Figure 17 presents this kind of
reduced version PE: it misses registers b(C), y, and S. Also, the constant values required
only on the middle layer are removed, which yields narrower multiplexers. Otherwise,
the PEs carry the same logic compared to the full version: they wrap the DSP slice, add
necessary registers for storing the results, and include the communication port C,, to
exchange data with the rest of the network.

The optimizations of the PEs abandon the CCom architecture speed-up if the execution
flow goes from a wider CAE layer towards the narrower one. Therefore, for a network with
m internal and n external layer nodes, and m < n, there is a maximum n — m cycles delay
for an external layer to start receiving the internal layer output. However, an additional
carousel node is present in the real design: a node for communication with the controlling
processor. This adds one additional delay step.

Table 5 illustrates the effect of optimizations introduced by the CCom-RO architeture
in case of the CAE network with n = 7 external- and m = 5 middle layer PEs. Only the first
m nodes, N ...Ns, hold the y; values upon completion of the middle-layer calculation;
the remaining n — m nodes have a simplified structure. However, all the PEs must receive
all the middle layer values y; to complete the calculations of the next layer. Therefore,
there is an additional delay for PE N5 before it starts receiving those.

Figure 18 illustrates the carousel’s state after calculating middle layer values in the

37

ol
&

RAM |4
3]
WYY} IYYRYY K
]
-B

Figure 17 - Data-path of the CCom-RO architecture reduced PE. The reduced version can operate
only as an external layer PE.

Table 5 - Resource optimised calculation scheme for CCom-RO architecture. Only one set of internal
layer values are calculated. Network nodes Ng ... N7 do not implement all the features required to
act as the internal layer node.

C.|N7|Ng|Ns|Ns|N3|Ny| N

iil-|-|-|Y5 | 3|
Hinn|-|-|-1Y|Y |
s h (Y| -|-1]-|Ys|Y,
Yo\ 3 | Y| -] -|-1Ys

s iy Y3\ | Y| - -] -
-1 Y|\ a3 Y| - -
-l - Y|\ | L -
-l - - s a3 h Y

38

case of CCom-RO architecture; the figure complements table 5. The node N5 must idle
the longest before it starts receiving the middle layer value for further execution.

Lom J Lo J [[Jlo J[w []]n]
' v v v v v v v v
i N I I U N

Figure 18 - Data present on carousel nodes after completion of the middle layer values calculations
in case of CCom-RO architecture.

2.5.6 Usage of HW Resources

This subsection presents the synthesis results for the proposed CAE architectures, and the
work was performed using the Xilinx Vivado Software (SW). All three architectures were
designed using the Verilog HDL.

All the PEs wrap a HW DSP slice. Therefore, the total amount of possible PEs is limited
to the availability of those. The target platform used for this thesis, Xilinx Zyng 7020, has
220 DSP slices.

Table 6 provides the resources used for synthesizing all three architectures for the
target platform. During the synthesis, the count of PEs in the CAE internal layer was fixed
to 30, and the number of PEs in the external layer was increased to fill up the target HW.
In addition, the clock frequency driving the programmable logic was set to 100MHz.

Table 6 - Maximum network sizes and hardware usage for CAE synthesis targeting Zynq7020 SoC;
the size is expressed in FPGA slices.

ExtNode MidNode Chnl | DSP |bRAM
Arch Count | Size | Total | Count | Size | Total | Size | Count | Count
BL 100 | 65 | 6500 | 30 | 90 | 2700 |7500| 130 15
ExtNode Mid+ExtNode | Chnl | DSP | bRAM
CCom N/A |N/A| N/A | 150 |105 [15750| 4377 | 150 75
CCom-RO| 170 | 75 |12750| 30 |105| 3150 | 1678 | 200 | 100

The column size expresses the count of consumed HW slices by the design. Each slice
on the target platform, Xilinx Zynq 7020, consists of four Look Up Tables (LUTs), eight stor-
age elements, multiplexers, and carry logic. The table cells Total under columns ExtNode
and MidNode express the total slices used by either external or middle layer PEs, respec-
tively.

Additionally, the column chnl presents the number of slices used by the communica-
tion channel: cross-bar switch in case of BL architecture, and carousel type channel in
case of CCom and CCom-RO variants. The columns DSP and bRAM hold the number of
DSP slices and block RAMs used by the design.

The data in table 6 suggests that the BL architecture allows the CAE network with the
fewest nodes to be synthesized to the target HW, while the number of slices used by a PE
is the smallest. However, the communication channel design consumes almost twice the
number of slices compared to the CCom. At the same time, the difference is much more
radical compared to the CCom-RO version.

39

The CCom allows the CAE network with more PEs to be synthesized compared to the
BL architecture. While the PEs itself consume more HW slices as they combine the func-
tionality from all the network layers, the communication channel is lighter. It has to be
noted that the CCom synthesis was configured to include 30 middle layer PEs. However,
the design of the external and middle layer PEs is merged. Therefore, the final count of
PEs is 30 internal layer PEs and 150 external layer PEs, resulting in 50 more PEs compared
to the BL architecture.

Finally, the CCom-RO architecture results in the largest CAE network. Again, an addi-
tional explanation is required to interpret the presented numbers correctly: 30 PEs as-
signed to the column Mid+ExtNode also act as the external layer nodes, as the column
header suggests. Therefore, the total number of external layer PEs is 170 + 30 = 200. In
addition, the HW slices consumed by the CCom-RO communication channel must also be
noted. Middle layer PEs require a pipeline as more data must be simultaneously sent.
Therefore, the reduction in required resources is expected because the CCom-RO archi-
tecture has fewer of those than the CCom architecture.

2.5.7 Performance Comparison

This subsection provides an execution time comparison of described CAE architectures.
The CAE network used for benchmarking consisted of 200 external- and 30 middle-layer
nodes, totaling 230 PEs, and the cycle clock was set to 100 MHz. The execution times were
acquired using the Xilinx Vivado HDL simulator.

Table 7 provides the execution times for the described architectures: both forward
path and training or backpropagation times were measured. In addition, the first table
row Theoretical provides the timing estimation using the equations provided in subsec-
tion 2.5.2.

Table 7 - Execution time of the CAE with 200 external- and 30 middle layer nodes. The clock speed
of the designs was set to 100MHz.

Arch Forward Pass (LLs) Training (ws)
Theoretical 2.3 54
BL 13.4 25.7
CCom 2.8 5.9
CCom-RO 6.1 9.5

According to the timing measurements, the fastest architecture is CCom, described in
subsection 2.5.4: it is about four times faster compared to the BL architecture (subsec-
tion 2.5.3). The communication channel used by different architectures can explain this.

The BL architecture uses the cross-bar switch as the communication channel, and the
channel availability synchronizes the PEs. This technique yields less HW resources used
per PE (subsection 2.5.6), but at the same time, PEs are forced to idle if data is required or
has to be sent, but the channel is not available. In other words, competition for commu-
nication resources slows down the overall execution. Further, this kind of resource race is
expected: all the PEs start the execution synchronously and require the communication
channel simultaneously as they all perform the same amount of calculations.

On the other hand, PEs in CCom architecture are synchronized by design: the state of
neighboring PEs is known, and therefore, the availability of the communication resources
is expected and guaranteed. This type of PE architecture requires more HW resources
compared to the BL version, but the lighter communication channel compensates for it.
Furthermore, avoiding the PEs to race for the resources yields fewer idle cycles and faster

40

execution speeds: data can be sent as soon as it becomes available, and the availability of
the communication channel is guaranteed by the synchronous behavior of the PEs.

CCom-RO architecture uses the same kind of communication channel as CCom. How-
ever, as the name suggests, CCom-RO is resource optimized; therefore, the reduced exe-
cution speed compared to the CCom is expected. Nevertheless, CCom-RO architecture is
~ 1.6 times faster compared to the BL version.

Comparing the presented architectures to the theoretical execution time shows that
the CCom architecture almost reaches the target: it can be concluded that PEs in CCom
architecture are utilized the best.

2.5.8 Field Test with MNIST database

To test the correct behavior of the described architectures, the MNIST database of hand-
written digits was used [48].

For successful operation, the middle layer of the CAE should extract compressed fea-
tures of the input data, i.e., these features should be sufficient to reproduce the input
data in the CAE output.

Furthermore, as the CAE is unsupervised ANN, these compressed features could be
used as the input for another unsupervised network. Extracting the features of the input
data with a relatively simple CAE network could speed up the training process of the
following ANNSs. Alternatively, the size of the following network could be reduced after
preprocessing.

While the original MNIST database contains 28x28 pixel images, the data was com-
pressed to 14x14 pixels. This compression yields 196 input data bits, suitable for the target
platform used in this thesis, Xilinx Zyng-7020 SoC.

The CAE network used in this test was configured to have 196-bit input and output
layers to match the size of the compressed MNIST database digits and a 10-bit middle
layer. On the target platform, it was possible to synthesize this network using CCom-RO
architecture (table 6).

Further, 20 images from the MNIST database were used for the test, while every digit
was input 200 times to the CAE, and the network was configured to use 16-bit fixed-point
data with 12 fractional bits. In parallel to the HW experiment, MATLAB implementation of
the CAE was used to verify the correct behavior.

Figure 19 shows the results of the conducted test: the output of the 3-layer 196-10-196
nodes CAE (figure 19b) correlates to the down-scaled 14x14 MNIST database input images
(figure 19a), i.e., it can be concluded that the middle layer successfully extracted essential
features of the input data.

2.6 Conclusions

This section presents the conclusions of the CAE ANNs presented in previous chapters.

First of all, the motivation of chapter 2 is to provide a CAE implementation which is
synthesizable on FPGAs. Further, AE, CAE being one of them, can provide the means
of input data filtering for the following ANN: the middle layer of trained CAE eventually
contains compressed features of the input signal. This way, the following ANN can either
be lighter, containing fewer layers, and PEs or be trained more quickly. Furthermore,
CAE is a self-learning, unsupervised network suitable for deploying in fully autonomous
environments: data processing can adapt to the changes in the surroundings.

It is important to emphasize that learning in HW is essential for CAE just because
it is an unsupervised network. Otherwise, a training process with labeled data would

M

(a) Input to the CAE, down-scaled 14x14 (b) Output of the CAE, using 16.12 fixed-
MNIST images. point representation and 10 internal layer
nodes.

Figure 19 - Operation example of the trained 3-layer 196-10-196 nodes CAE using 16.12 fixed-point
representations.

be necessary if it were a supervised network. This kind of separate training could be
performed using any HW, not necessarily on resource-constrained devices.

The main contribution of chapter 2 was to present the first implementations of the
CAE architectures with full HW based learning. Naturally, this claim has timing limitations
to be valid: studies in the field of ANN HW accelerators are very active nowadays.

To be more precise, this thesis’s contribution is to provide the first full hardware-based
implementation of the CAE [43], comprising hardware-implemented learning. In addition,
the provided implementations follow proposals to use shared weights on the input and
output layers [44] and fixed point representations for weights and biases [45].

The embedded proposals to share the weight values on different layers and to use the
fixed point representation for data representation allows for reducing the HW require-
ments of the target platform: hyperparameters require less storage space. Therefore, the
target HW platform could have fewer resources, yielding more negligible power consump-
tion. This effect should not be overlooked.

42

3 Multiply-Accumulate Unit for DNN

3.1 Introduction

This chapter takes a step from the CAE HW architecture realization proposals presented
in the previous chapter towards versatile execution of the DL algorithms on embedded
targets like FPGAs: HW friendly MAC unit suitable to be used as the building block for
a DL network is presented and proposed here. Naturally, as DL algorithms and applica-
tions based on these algorithms are actively researched nowadays, different proposals
addressing various aspects can be found in the literature, including proposals for MAC
unit designs and data types in use. However, the novelty of the MAC unit proposed in this
thesis is that it makes use of the Triple Fixed-Point (TFxP) data type, which allows direct
conversion of the network parameters without retraining the network, and it makes very
efficient use of the DSP IP blocks found in FPGAs. On top of that, the method of analyzing
the suitability of the replacement data type is also studied. This thesis proposes not to use
the network’s inference precision for comparison but to analyze and compare the actual
output of the network. The problem is that replacing the data type might increase the
inference precision of the original network in case the original network was overfitted.
The main idea is that the network should behave the same after modifications: it should
not perform better or worse.

First, everything is present in the DL architectures for executing the algorithm on con-
ventional computers; why are the research on data types and proposals for HW architec-
tures required at all? Modern computers use the GPUs, and floating point calculations
and successful deployments can be found everywhere.

However, even though FPGAs are suitable for designing and deploying parallel archi-
tectures and, therefore, similar to the GPUs, can be used as the execution platform for the
inherently parallel DL algorithms, there is an essential obstacle: more efficient support for
floating point data types is required.

Naturally, floating point calculations are possible on FPGAs, but the realizations would
consume much more limited HW resources and energy compared to the fixed point arith-
metics. In addition, FPGAs have HW DSP slices available, but again, those slices do not
support floating point data. Therefore, the floating-point-based algorithms can not make
use of these otherwise available IPs, leave the HW unused, and consume the FPGA logic
to rebuild the functionality. Or alternatively, make use of the DSP slices, but spend several
to infer a single MAC caused by the floating point requirements.

On the other hand, the total amount of required MAC calculations for a typical DL al-
gorithm must also be analyzed: there would be no real benefit to fine-tuning an algorithm
step that is only seldom executed and, therefore, relatively little contributes to the final
execution time. Also, additional consumed resources are not critical if only one instance
of a specific HW block is used to realize the algorithm. However, neither assumption holds
for the MAC unit: MAC operations dominate in executing a DL algorithm, and the algo-
rithms are suitable for parallel execution as well. All the PEs can execute in parallel, and
every PE requires a MAC unit. Therefore, performance increases if more MAC units can be
inferred in the target HW, provided that the architecture can feed all the units with input
data and the MAC units can all execute.

As stated before, the MAC operations dominate while executing a DL network; the
total amount can be derived from the equations in use. E.g., equations (1) to (4) define
the operations required for the forward pass for the network presented in chapter 2. If we
set the number of external layer nodes to 200 and 30 for the middle layer nodes, the total
number of MAC operations equals nxm +m*n = 200 % 30 + 30« 200 = 12000. Adding

43

biases on middle- and external layers requires 200 4+ 30 = 230 operations and an equal
amount for the ReLU activation function. So we can see that MAC operations form 12000 %
100/12460 = 96% of the total. The same holds for the gradient descent; following the
equations presented in subsection 2.4.3, it can be seen that the MAC operations indeed
dominate.

Also, continuing the analysis of the same previously presented AE network, every PE
infers a MAC unit to achieve the node-level parallelism. Therefore, fewer HW resources
spent per MAC unit enable more PEs to be inferred, potentially increasing the perfor-
mance.

So we can conclude that ~ 96% of total operations are MAC operations for the net-
work presented previously, plus every PE incorporates one of the MAC units. The pro-
posed unit should be moderate in HW utilization numbers and execute fast to avoid be-
coming the bottleneck.

Further, as the importance of the MAC unit performance and amount of inferred re-
sources per unit is essential and explained above, this chapter continues with the litera-
ture review in section 3.2. The literature review brings out various studies on executing DL
networks on resource-constraint targets, like FPGAs, while focusing on MAC unit design,
the usage of HW resources and retraining requirement.

Section 3.3 analyzes the consequences of using floating point data representation.
Also, the section states that fixed point arithmetics suit well for DSP slices available in
FPGAs, but the represented values lack the dynamic range. Further, as stated in sec-
tion 3.3, using the Block Floating-Point (BFP) data representations solves the dynamic
range problem, but using a somewhat arbitrary list of possible exponents calls for ad-
ditional HW resources, like multiplexers to ensure proper alignment after each MAC op-
eration.

Subsection 3.3.1 selects YOLOv2 ([49]), a CNN, as the target network to analyze the
range requirements of the data type. In addition to the static analysis of the weight val-
ues of the trained network, the chapter also provides a dynamic analysis of the required
numerical ranges during the execution: the range of the layer activation values during the
inference.

Following the analysis, the exploration of the design space, subsection 3.3.2 proposes
TFxP as the data type for the MAC unit. The type reserves two bits for selecting the expo-
nent used for a specific value; therefore, the possible number of required re-alignments of
multiplication results is well limited, while the achievable representation range can be ad-
justed based on the actual DL network in use. Also, the proposed architecture conducts
the radix point alignment of the operands in the DSP slice input, ensuring the internal
multiplication result inside the DSP slice always has the exact radix point location. This ap-
proach allows using the DSP internal accumulator data paths, increasing the performance
and conserving required additional resources.

Section 3.4 conducts the simulation of the converted YOLOv2 network, using the COCO
dataset for precision assesment ([50]). Considering the simulation environment, MATLAB
was selected as a widely used and accepted software package for various calculations.
While MATLAB is well-optimized and excels very efficiently in the matrix calculus domain
using floating point data, it is not so in the case of using a type not native for the underlying
HW like Central Processing Units (CPUs) and GPUs, as described in subsection 3.4.1.

However, MATLAB allows complementing its functionality using C functions. This ap-
proach was used to simulate the YOLOv2 DL network converted to use the TFxP data rep-
resentations in this thesis. Also, the C extension functions use GPU to enhance the sim-
ulation time; subsection 3.4.2 describes the C++ and CUDA-based MATLAB convolutional

44

layer extension with the TFxP data type support.

Subsection 3.4.3 presents the simulation results of the converted YOLOv2 network,
using the MATLAB software extended with TFxP support. The overall conclusion is that
TFxP can replace the Floating-Point (FP) type without retraining the network. However,
the paragraph also states that Mean Average Precision (mAP) is not the best metric to
assess the suitability of the TFxP as FP replacement: the network precision might even
increase if the original network is not trained perfectly. Instead, Intersection over Union
(IOU) is used to measure the similarity of the network outputs: the original network using
FP and the one converted to TFxP. This way, the evaluation criterion is not the overall
network precision but that the converted network must produce the same output as the
original one. For example, if the original network is overfit, the new type should not solve
this but retain the original behavior to be considered a suitable replacement.

Further, section 3.5 provides the details about the HW implementation of the TFxP
MAC unit, where the proposal makes use of the DSP HW slices available in the target
FPGA: Xilinx Zynq SoC. Two flavors of DSPs are considered: DSP48E1, found in the Zyng-
7000 series, and newer DSP48E2, present in Zynq Ultrascale devices. The overall idea of
those two flavors is the same, regardless of the actual DSP: multiplying two TFxP numbers
produces the result with variable radix point location, depending on the ranges of the
inputs. This fact disables the internal accumulation path of the DSP slice: it isimpossible to
directly accumulate values with different radix lengths. Therefore, the paragraph proposes
to fix the radix point in the output and alter the input operands accordingly.

Altering the input operands to guarantee the same output radix length raises another
issue: multiple possible combinations of connecting the inputs. Subsection 3.5.1 describes
the issue and proposes the algorithm that balances the input multiplexers. While the to-
tal number of possible combinations is well limited for TFxP data, the method has to be
defined to allow automatic HDL code generation. Furthermore, balancing the input multi-
plexers increases the possible clock frequency for the FPGA by balancing the combinatorial
paths and also infers fewer HW resources. The assumption about fewer resources used
is that the logic blocks in FPGAs allow building multiplexers with the power of two as the
input count; a multiplexer with three inputs consumes the same amount of logic blocks
as a multiplexer with four inputs. The fifth input would infer additional HW. Therefore,
using two four-input multiplexers infers fewer resources than two multiplexers with five
and three inputs.

Further, subsection 3.5.2 describes the MAC unit output formation. First, the accept-
able range for the TFxP representation has to be selected; this is achieved by observing
the actual magnitude of the output. If possible, the maximum possible fractional part is
selected to retain the precision. And vice versa, the fractional part is reduced to fit the
output value if required by the output magnitude. In addition, as the output of the DSP
slice is 48 bits wide, the under- and overflow check is also possible and conducted.

Finally, chapter 3 is concluded by subsection 3.5.3 where the actual HW usage per
single MAC unit is presented.

The main contributions of chapter 3 are:

e Novel Triple Fixed-Point (TFxP) based MAC unit suitable for various neural network
architectures, having high numerical precision (comparable to floating point) and
very hardware-efficient implementation. This architecture can be directly used in
ANN networks (e.g., CNN), which have been trained in software as hardware imple-
mentation without retraining the network.

e This chapter also proposes a different evaluation method of the data-type suitability

45

as the floating-point replacement: instead of analyzing the inference precision, the
network outputs are compared directly.

3.2 Literature Review

As there is no doubt in the usefulness of the DL networks, the area is very actively re-
searched. Proposals to use various numeric systems and other strategies to bring the
DL algorithms into resource-constraint systems are found in the literature; the goal is to
bring down the power consumption of the executing HW. FPGAs are the natural choice for
these kinds of tasks: they enable parallelism similar to the GPUs. However, they are more
conservative regarding the energy budget and can be more cost-effective depending on
the specific make and model. This chapter provides a literature review of such accelerator
designs, focusing on data type selection and MAC unit design.

Traditionally, DL algorithms rely on floating-point calculations: this is the natural choice
for an application running on CPU or GPU, but not well suited for resource constraint
systems. However, it has to be stated that floating-point calculations are indeed possible
in embedded targets, such as FPGAs: floating-point calculation units can be synthesized
if not available as HW IP blocks. Various proposals are available in the literature to enable
and enhance the floating point calculations for such targets: [51, 52, 53, 54, 55, 56, 57, 58,
59, 60].

Also, floating point calculations are proposed for executing DL networks on FPGAs. For
example, authors in [61] analyze the power and performance of single-precision floating-
point MAC units. However, this reference work does not utilize the DSP blocks available
in modern FPGA architectures. Authors in [62] simplify the floating-point format and pro-
pose another architecture not based on DSP blocks, leaning more towards Application
Specific Integrated Circuit (ASIC) designs. Another work where authors propose a ASIC
flavoring design and use a simplified floating-point data type can be found in [63]. Contin-
uing with research proposing modified floating point data types, authors in [64] propose
LOCOFloat and target FPGA as the execution platform. However, the proposed modifi-
cation still yields the inference of HW resources comparable to the floating point-based
designs. Further, authors in [65] propose to keep the weight values in floating-point for-
mat but use the fixed-point representations for activations. This approach is also more
suitable for ASIC designs as it still needs some means of floating-point HW and does not
directly fit to the DSP blocks available in FPGAs.

Another research direction is to use integer data types in DL networks; integer-based
calculations are less HW hungry and are well suited for FPGAs. For example, authors in
[66] experiment with integer representation and conserve approximately half of the re-
quired HW resources compared to the floating point-based design. In addition, they also
propose the training method: it is only possible to use such severe quantization by re-
training the network. Another works using 8-bit integer representations can be found in
[67, 68, 69]. Although the architectures are not entirely presented in these works, authors
show that the power consumption of the FPGA based solution is reduced by more than
an order of magnitude compared to the GPU based counterpart. Also, authors in [70]
experiment with the integer data type. Again, the implementation of the HW is not pre-
sented, but this work also demonstrates that the floating-point precision is unnecessary
and integer types can be used instead. Another similar work can be found in [71], where
authors analyze the performance and precision of using integer data types instead of float-
ing point representations. The authors conclude that a 16-bit integer is best suited for that
purpose. However, they also retrain the network to maintain accuracy. Moreover, using
highly quantized data types, the retraining requirement opens another research direction;

46

authors in [72, 73, 74, 75, 76] analyze the problems related to low-bit width training and
provide proposals for accelerators.

The low bit width of the network parameters and activations provides an interesting
optimization possibility: it is possible to pack two multiply operations into a single DSP
slice. Authors in [77, 78] provide an example of this kind of design. Also, the same ap-
proach is provided in [79, 80], where authors perform two eight-bit multiplications using
a single DSP slice.

Further, it is possible to reduce the bit width of the data types even more: another
well-studied approach in enabling the DL algorithms to run on FPGAs uses binary- or
ternary data representations. These approaches yield low usage of HW resources, but
as a drawback, the network requires retraining.

For example, authors in [81] propose a ternary network. The work demonstrates that
the inference accuracy of such a DL network can be adequate, but the network has to be
retrained, and the authors also implement and propose tools to achieve that. Also, the
authors claim that ternary data representation yields severe accuracy loss if the network
contains a fully connected layer and propose a fixed-point approach as a subject to study
to overcome this.

Another study of a severely quantized DL network can be found in [82], where the
data type is reduced to a single bit, binary values. This kind of network also requires
retraining. Furthermore, the loss of precision is also encountered. Authors overcome the
reduced precision by executing the floating point-based version of the network on CPU
if the output of the binary network can not be classified with high enough confidence.
This approach boosts the precision, but the network’s latency is no longer constant. In
addition, authors foresee the FPGA accelerator using more bits for data representation as
future work.

A similar deeply quantized network is presented in [83]. Authors achieve a frame rate
of 1000 fps while processing the handwritten digits from the MNIST database. This high
throughput is expected from a deeply quantized network. However, the presented ap-
proach requires special adoption and training of such a network; no direct conversion of
a floating-point-based network is possible. Also, the authors discuss time-domain multi-
plexing of signals to increase the bit-width of the representations.

Also, similar works can be found from [84, 85], all yield efficient hardware but share
the same shortcomings: direct conversion is impossible.

Considering the binarization of the network parameters, authors in [86] take an addi-
tional step further and apply compression to such a network. They achieve the compres-
sion by analyzing the distribution of kernels on DL network layers and select subsets that
cover the variation the best. As a result, the authors successfully reduced the network
size and improved the performance, with the cost of a slight accuracy drop. However, this
research direction requires retraining. In addition, the proposed architecture uses full pre-
cision layers as the first and last one, dictating the presence of floating point capable MAC
units in the design.

However, these deep quantization techniques are outside this thesis'’s scope: instead
of rebuilding and retraining the network, this thesis searches for a direct replacement for
the floating point. Keeping that in mind, it is clear that the dynamic range of binary repre-
sentations is not sufficient. Sure, the precision can be reclaimed after such substitutions
with retraining. Also, binary and ternary representations are undoubtedly conservative
with the HW resources. However, retraining the network is a cost that has to be paid.
Nevertheless, this research direction should be noted: these works suggest that the high
dynamic range of floating point representations is unnecessary, and the format can be

47

replaced.

Literature also proposes to convert the floating point representations to a different
domain while conserving the precision. One work of this kind can be found in [87], where
authors investigate the usability of the logarithmic numeric system. The benefit of us-
ing logarithmic representations comes from multiplication and division, which convert to
addition and subtraction, respectively. However, the drawback of such a conversion is
that simple addition and subtraction operations become much more complex. So, this
approach can not be considered a good option for MAC unit: simplifying the multiplica-
tion at the cost of the complexity of addition operations does not yield a good solution as
the resources conserved in one phase are wasted elsewhere. In addition, additional HW
is required for conversions. However, this can be avoided if the conversion is performed
before the network deployment.

Another work targeting the logarithmic numeric system can be found in [88]. Authors
use 8-bit wide BFP data and convert the values to logarithmic scale before multiplications.
Further, the values are converted back to the linear scale to avoid the added complexity
of the accumulation operation in the logarithmic domain. While the proposed method
yields accuracy comparable to the network using the floating point representations, the
back-and-forth data conversion from linear to logarithmic scale does not allow the design
to use the DSP blocks found in FPGAs.

Another numeric system scientists have studied for DNN is the posit: authors in [89]
use the format to implement the MAC unit. They show that the posit numeric system
yields better accuracy than the floating point for lower bit widths. However, the usage of
HW resources and energy consumption is comparable to the floating point-based solution.

The posit numeric system and related HW architectures are also studied in [90], where
authors propose a generator for hardware instantiation. However, the work presented in
[91] proposes that the overall cost of the posit HW can even increase compared to the
requirements of the floating-point-based systems. Nevertheless, as the authors claim,
using posit numeric systems can increase the accuracy of computations.

Another research direction in the literature uses BFP data representations. This ap-
proach uses fixed-point values and adjusts the fractional portion upon the actual weight
or activation values in the DL network. For example, authors in [92, 93, 94] show that
BFP quantization can be used without retraining and still preserve the precision of the
network. Further, to decrease quantization error, authors in [95, 96] propose a method
of the fractional exponent to effectively use the full range of given mantissa of BFP. How-
ever, the detailed HW implementation has not been provided. As another example, au-
thors in [97] experiment with different approximation techniques, including the BFP and
also report conserved HW resources compared to the floating-point-based designs while
preserving the precision. Also, authors in [98] report the suitability of BFP format for DL
networks and propose an accelerator for CNN networks.

Despite floating-point computations being constantly optimized and improved, fixed-
point calculations conserve less energy and HW resources. Also, as shown in this review,
DL networks do not necessarily need the magnitude of representations provided by the
floating-point: proposals to use even single-bit data representations exist. However, the
real drawback is that such networks require retraining: deploying an existing network on
aresource-constraint system after direct conversion is impossible. Also, as shown, BFP is a
promising research direction: authors successfully convert the weight values and perform
the inference without sacrificing accuracy. Keeping that in mind, authors in [99] provide
Dual Fixed-Point (DFxP) representation which positions between the floating-point and
BFP approaches. This format uses a single bit to decide the radix point position. This idea

48

is developed further in [100], where authors propose dynamically configuring the radix
point locations. Further, authors in [101, 102] analyze the resource usage and accuracy
of the DFxP calculations: it conserves HW resources compared to the floating-point im-
plementations, and on the other hand, increases the dynamic range of the fixed-point
values.

Continuing from here, this thesis proposes TFxP numeric format as a direct replace-
ment for the floating-point data in DL networks: this format adds the third possible radix
point located between the highest magnitude and highest precision regions also achiev-
able with the DFxP numbers. Therefore, the precision in the middle range is increased.
Also, the proposed architecture uses the DSP blocks found in the FPGAs.

3.3 Data type selection

The data type selection directly impacts the MAC unit and the entire accelerator’s over-
all performance. First of all, FPGAs have DSP slices integrated into the programmable
fabric, including those existing hard IP blocks to the MAC architecture gives the best com-
putational performance. However, these blocks are best suited for integer calculations.
Floating-Point (FP) arithmetic is possible, but it requires more than one DSP block per MAC
unit [103], totaling to less MAC units on a selected FPGA platform and, therefore, reduced
possible parallelism.

Although there are FPGAs available with hard FP DSP IP blocks, the integer perfor-
mance is over 20% better [104]. Also, as only the higher-end devices pack the FP HW, it
severely limits selecting a target platform.

Here, we search for a data type that can directly replace the FP parameters without the
network retraining. Therefore, binary or ternary quantization techniques do not qualify.
On the other hand, going beyond the deep quantization infers much more FPGA HW, and
to avoid that, wrapping the MAC unit around the existing DSP slice is a natural choice.

DSP slices integrated into the FPGA are especially suitable for integer calculations.
However, integer representations fail to represent fractional numbers, including the
ranges (—1,0) and (0,1). Therefore, the multiplication of integer operands can only
amplify layer activation values.

Fixed-Point (FxP) representation makes a much better choice for implementing Neural
Networks (NNs) on FPGAs. This format fixes the radix point to a specific location and can
represent fractional numbers. If x is the value of a memory field interpreted as an integer,
and b is the number of FxP fractional bits, equation (36) defines the conversion of x to FP
value d.

d=x-27" (36)

Integer math directly applies to summing FxP numbers if operands have the same b
amount of fractional bits. For multiplication, the result’s fractional part length is the sum
of fractional part lengths of operands (equation (37)), which has to be corrected, resulting
in shift operation in HW.

Ayt = (x1 -27}}) . ()CQ . 2717) =X1-X3" 22 (37)

The issue with FxP compared to the FP is its much narrower representation range.
Authors have addressed this by setting the radix point location & per NN layer or applying
another type of partitioning: radix point location is set according to the pre-analysis for
different phases. This technique is known as Block Floating-Point (BFP): [94] provides an
excellent example of accelerating CNNs using BFP.

49

BFP format requires determining the common exponent value b, for a block of data,
while the data can be partitioned to match communication patterns or by other means.
After partitioning, each data chunk X contains N values with possibly different exponents:
equation (38).

X = (x;-20,xp- 282 xy - 2P (38)

The maximum exponent value is used as the common exponent b, for the entire par-
tition (equation (39)), effectively avoiding overflows.

bp :maxlgigN(bi) (39)

For calculations, the values x; in a partition X are right-shifted by b, — b; positions,
forming the new data chunk X, where all the values share the same exponent value b,:
equation (40).

Xp = (Xp1:Xp25 -, Xpi) - 2br (40)

However, BFP conversions do not limit the set of possible exponent values. Each
unique exponent b, requires a different shift operation in MAC output to correct the radix
point location, which yields configurable shifters and adds the HW complexity.

The authors in [99] propose DFxP format to extend the range of FxP. This format
sacrifices one bit, E, of the representation to select between two possible radix point
locations, extending the range of FxP. This technique effectively combines two FP ranges,
and the equation (41) defines the value d the representation holds.

27k fE=0
a={"" (41)
X270 fE=1

Figure 20 illustrates the DFxP representation, where a, and b, are the lengths of the
integer and fractional part of ranges. If a value can not fit RANGE O, the precision is
reduced, and the value is stored in RANGE 1, using range selection bit E to notify that.

However, if DFXP combines ranges with exponent values by and b, apart enough, the
values just not fitting the RANGE O suffer the most. The precision of values just outside
the reach of FxP experience accuracy drop in that case.

DU s 13 S
Lol L LI o1

_Day 249 200 _2—hoy 201 _2-b;

Figure 20 - DFxP representation adds an additional, less precise range to extend the FxP.

To add some flexibility to range selections, authors in [100] take a step towards BFP and
use FPGA reconfiguration to adjust the DFxP ranges for different NN layers: they identify
NN layers as partitions for BFP which share the same exponent settings. However, re-
configuration decreases the overall throughput, which can be somewhat mitigated using
batch execution. Batch execution, on the other hand, increases the latency.

3.3.1 Design Space Exploration

This subsection analyzes a typical DNN to understand a candidate data type's necessary
range and precision. The target network is YOLOv2: a CNN comprising 23 convolutional

50

layers [49]. Although the mentioned network has a newer version available, version two is
considered enough for an example in this thesis. Figure 21 presents the YOLOv2 structure.

TYPE Cnt SIZE OUTPUT
Conv 32 3x3 416x416

MPool 22/2 208x208 | ‘
Conv 64 3x3 208x208 | ‘
MPool 2x2/2 104x104 ‘

Conv 64 1x1 104x104
Conv 128 3x3 104x104
MPool 2X2/2 52x52 ‘
Conv 256 3x3 52x52 ‘
[
[

l
Conv 128 3x3 104x104 ‘
l
l

Conv 128 1x1 52x52
Conv 256 3x3 52x52
MPool 2x2/2 26x26
Conv 512 3x3 26x26
Conv 256 1x1 26x26
Conv 512 3x3 26x26
Conv 256 1x1 26x26
Conv 512 3x3 26x26

e [[| | | | e e e

MPool 2x2/2 13x13
Conv 1024 3x3 13x13
Conv 512 1x1 13x13
Conv 1024 3x3 13x13
Conv 512 x1 13x13
Conv 1024 3x3 13x13
Conv 1024 3x3 13x13
Conv 1024 3x3 13x13
Concat 3072 13x13
Conv 1024 3x3 13x13
Conv 5x(5+C) 1x1 13x13

TYPE Cnt SIZE OUTPUT
Conv 512 3x3 26x26
Reorg 2048 13x13

Figure 21 - Structure of the YOLOv2 DL networks: there are total of 23 convolutional layers.

The analysis was performed using MATLAB software. The layer information and pre-
trained weight values were loaded using the Darknet Importer' add-on. For execution, a
custom wrapper was developed to collect intermediate activation values.

The first aspect of analyzing was the network weights’ range and mean values: the
candidate data type should accommodate the values without overflows.

"https://se.mathworks.com/matlabcentral/fileexchange/71277-deep-learning-
darknet-importer

51

Table 8 presents the results of the analysis: weight values occupy the range
[—18.6,99.5], while the mean value equals 13.7. This hints that 5 integer bits are enough
to hold the values without overflows.

Table 8 - Analysis of the weights values of YOLOv2.

Median
13.7

Maximum
99.5

Minimum
-18.6

Weights

Next, intermediate layer activation values were analyzed using realistic photos and
images with all pixels set to black or white. Although the analysis was run in MATLAB,
the values were captured right after the convolution operation, just before the activation,
batch normalization, or any other operation, which corresponds to the MAC outputin HW.
Table 9 shows the maximum, minimum, and mean values averaged over all layers. As can
be seen, the most comprehensive numerical range is required for the actual photo frame:
7 integer bits are required to avoid overflows. On the other hand, all the activations’ mean
value equals ~ 1, requiring only a single-bit integer portion.

Table 9 - Analysis of the layer activation values of YOLOv2.

Input Minimum | Maximum | Median

Photo -113.9 106.3 0.7
All white -57.9 31.6 1.4
All black -23.1 28.6 1.2

Deviation in range requirements hints that single FxP format can not be used: either
precision is lost due to the lack of fractional bits, or overflows are introduced if the length
of integer bits field does not suffice. This is especially true for activation values: the mean
values show that most calculations benefit from more fractional bits. At the same time,
extreme cases require more integer digits to avoid overflows.

3.3.2 Triple Fixed-Point

Data-type suitable for MAC operations in a NN should provide a suitable range to avoid
overflows and sufficient precision. Providing suitable precision means that most bits
should carry information: exponent value has to be adjustable, just like in FP. However,
FP calculations infer a lot of HW resources in FPGAs, and therefore, a better alternative
with comparable precision is required.

As the analysis in subsection 3.3.1 shows, the number of integer bits ranges from none
to seven in the YOLOv2 network. Most activation values use zero integer bits, while ex-
treme cases require seven bits during the inference using a real photo (table 9).

The results found in the research publications show that BFP can successfully replace
the FP format in NNs[94]. And DFxP ([99]) gives promising results too, especially if devel-
oping the format towards BFP by adding partition based exponent selection ([100]).

Here, | present the TFxP format. It is related to DFxP and carries a similar idea.

According to the analysis of YOLOv2 CNN, low median values require that all the bits
are used for the fractional portion, while the highest values call for seven integer bits.

52

Most calculations require the lower range, while the higher range is needed to avoid
overflows. The values between these two ranges would be converted to the higher range
in the DFxP format. TFxP adds a middle range to increase the precision for values in that
region: TFxP has three possible exponents to select from for every value.

TFxP representation requires up to four and a minimum of three memory fields: the
mode selection field E, the sign bit, integer portion bits, and fractional bits. Depending
on the pre-configuration, the integer- or fractional bits may be missing: the integer or
fractional portion may occupy all the bits reserved for representing the actual value.

In the following text, the notion n_by_b_b, will be used to define the TFxP format,
where n stands for the total bit length of the representation, and by . ..b, define the ex-
ponent values for three TFxP ranges.

Table 10 presents the memory allocation for a TFxP format 16_13_9_5. The first range,
identified by the range selection field E value 0, has zero integer bits: all bits are reserved
for the fractional portion.

Table 10 - TFxP format 16_13_9_5.

E Signed significand
15[14]13[12[11[10]9]8]7]6]|5[4][3]2]1]0
0|0|S fraction
0| 1]S]| integer | fraction
110]s integer | fraction

Figure 22 gives the visual representation of ranges in TFxP format. Here, a, and b, are
the bit lengths of integer and fractional portions. The representation has three possible
ranges that do not have to be adjacent: exponent values are predefined on design time to
suit the system best. The range with the highest exponent value, by in figure 22, has the
finest gradation but can represent values with the lowest absolute magnitude. If the range
capability does not suffice, the next exponent value b; can be selected, which extends the
absolute magnitude with the cost of precision. The lowest exponent value, b,, yields the
highest range.

RANGE 2
. P =rorm— v ™ >
<+— RANGEQ ——
I T T Y Y Y T I B

o4 _oa _nap 240 _2—ho 2ay _n-b a4y by

Fixed-Point

DFP

TFP

Figure 22 - TFxP representation. Ranges 1and 2 increase the range while sacrificing the precision.

For backward conversion, from TFxP to FP, equation (42) defines the actual value the
TFxP coded memory field holds, where x is the value of combined integer and fractional
fields interpreted as an integer, E defines the range, and b is the exponent value of that
range.

53

x-27 fE=0
d=<{x-20 fE=1 (42)
x-2702 fE=2

To convert a value to the TFxP format, forward conversion, a suitable target range has
to be selected first. Equation (43) presents the range selection criteria: the first range
capable of accommodating the value is selected. After determining the target range, the
converted value must be truncated to have b, fractional bits determined by the selected
exponent value E and possibly masked to have a maximum of a, integer bits. Equa-
tion (44) presents the width of the integer portion, where n stands for the total bits used
by the representation. Overflow can be flagged if the converted range overflows the TFxP
highest range.

0 if —2% < D < 2% —2b ¢lse
1 if =29 <D< 2% —2big
E= ! L (43)
2 if =22 <D< 2% -2 ¢lse
3 overflow
ay =n—by (44)

3.4 Simulation

Apart from the fact that TFxP format extends the range of FxP and improves the preci-
sion of the DFxP, the usefulness has to be proved. Studies with BFP [94], DFxP [99] and
dynamic DFxP [100] show that the FP format can be replaced, even without retraining of
the network. However, these approaches either add HW complexity because of the high
amount of possible exponents the system has to support or introduce a time penalty if
FPGA reconfiguration scheme is used.

This section provides the simulation results of the YOLOv2 CNN [49] using the new
TFxP format for MAC operations.

3.4.1 Environment

The simulation environment used in this work is based on MATLAB software. There was no
particular reason to choose MATLAB over other possibilities like Python and its DL libraries.
Also, it would have been possible to use the "darknet" software 2 developed especially for
the YOLO, but MATLAB provides better visualization and debugging mechanisms than the
C console application.

Dataset, the input data to the system under test, is another essential aspect to con-
sider. Although comparing the TFxP versus FP network output is the primary simulation
criteria here, a community-improved dataset is better. Firstly, public datasets have a vast
amount of data to use. Secondly, results from a common dataset allow a sounder com-
parison to other works.

In this work, the COCO validation dataset has been used for simulations [50]. This
dataset has 40504 pre-annotated images: surely enough to compare the inference accu-
racy of TFxP based MAC to FP. However, inference accuracy is not the primary evaluation
criterion used in this thesis, but the proposed TFxP datatype has to present similar results
compared to the FP instead.

’https://github.com/pjreddie/darknet

54

Undoubtedly, MATLAB is an accepted software for solving mathematical problems,
training, and inferring DNNs among them: it has an additional toolbox available for the
DNN analysis. However, FP is the default datatype MATLAB can effectively use. Addi-
tionally, FxP can be used, although it slows down the execution. This speed penalty is
understandable as the underlying HW does not have native support for FxP operations,
and software wrappers must be used.

The support for TFxP is missing in MATLAB, naturally, which can be added using a
software layer. However, a possible speed penalty has to be carefully considered here:
using a vast amount of testing data, around 40K images from the COCO dataset, would
take a long time to execute. E.g., 1 second extra time spent per input frame results in
40504/60/60 ~ 11 additional hours run time. On the other hand, there are approximately
6.29¢10 MAC operations involved in the inference of a single input image in YOLOv2 CNN.
Therefore, to introduce 1 second additional delay in network output formation, every
MAC operation has to execute as little as 1/6.29¢10 = 1.59e—11 seconds longer. As a
result, implementing a straightforward TFxP wrapper yielded an execution time of over
half a year for the COCO dataset, and this is only for a single TFxP setting. With run time
like this, sweeping the middle range was totally out of the question.

For these kinds of problems, MATLAB supports extending its functionality by mex func-
tions: C/C++ can be used to add support for new data types, like TFxP in this thesis. Also,
mex functions can benefit from GPU support: although MATLAB supports GPU directly,
direct CUDA [105] programming gives more refined control over the parallel execution.

3.4.2 Triple Fixed-Point Convolutional Layer for MATLAB

The MATLAB TFxP mex extension performs the entire convolution operation: the entire
convolutional layer functionality, requiring the TFxP MAC operation, was pushed out from
MATLAB and written in C++ and CUDA.

Algorithm 1 presents the high-level structure of the mex extension function. It accepts
the layer activation, layer weight values, and TFxP ranges as the inputs, checks the inputs’
integrity, and pushes the data to the GPU memory for processing. Input batches are
spread over separate CUDA streams to maximize the parallelism.

Algorithm 1: TFxP convolution layer mex function

Input: Layer activations[N]
Input: Layer weights
Input: TFxP ranges

Result: Convolution result

SanityCheck() // Check the inputs
toGPU(weights) // Copy to GPU
/* CUDA streams loop x/

fori«+ 1t Ndo
toGPU(activations(i))
padding(activations(i))
toCols(activations(i)) // flatten 3-D activation in GPU memory
MAC(activations(i),weights,ranges)
fromGPU(activations(i))
end

The function "toCols()" flatten the input activation data structures to two-dimensional
matrixes: 3-D layer activation input is flattened to 2-D in memory to guarantee sequential
memory access during the MAC operation. Figure 23 illustrates this operation. The selec-

55

tion box B, equal to the layer’s convolution filter’s size, moves across the activation input,
and the selected values are transferred to a sequential memory location. The selections
outside the input data’s bounds are set to zero; this operation is known as "padding."

Vv
/—/%
C
% |
B " U*V*C
u 1X0,0,0/%0,1,0[%0.2,0| - [X0,1,0 Boo [0,0,0/01,00[P2,00P0,1,0] |buve
X1,0,0/%1,1,011.20] - XLaolH U Bio [b0.0.0/P10.0P200P010| < |[Duve
306 X2,0,01%2,1,0(%2,2,0[-+ |%2,1,0 ﬁ> B2 100,0,0/b1,0,0[02,0,0(P0,1,0] - |buye mn
Xm,0,0m,1,0/m,2,0| -+ m.n,0 Binn 100,0,0(01,0,0102,0,0(00,1,0] -+ |buye

Figure 23 - 3-D layer activation input is flattened to 2-D in memory to guarantee sequential memory
access during the MAC operation.

The function "MAC()" performs the actual multiply and accumulate operation: it sim-
ulates the execution of the target DSP HW slice. For performance, every output value, the
input selected by the box B multiplied by corresponding weight values in the convolutional
filters and accumulated, is evaluated by a separate CUDA kernel.

3.4.3 Results

This subsection provides the TFxP based MAC simulation results. In the experiment,
YOLOV2 was tested using the COCO evaluation dataset, comprising 40K images.

The network weights were converted from FP to TFxP for testing. No additional train-
ing was performed, and the network output was compared to the ground truth: the eval-
uation dataset. For evaluation, the mAP for output confidence level 0.5...0.95 was used
for the assessment. The hypotheses used: if the converted network reaches the same
mAP as the original one, the FP can be directly replaced.

The mAP of the original, unconverted network was calculated first. Further, the net-
work weights were converted to DFxP_13_12_5 format, and for comparison, the mAP was
found for this configuration too.

Table 11 presents the mAP results of YOLOv2 network inference using the COCO eval-
uation dataset. As an interesting observation, the mAP is higher if the network was con-
verted to the DFxP_13_12_5 format, i.e., the network under test predicts better if the
precision of weights and calculations is decreased.

Table 11 - mAP of YOLOv2 using FP and DFxP_13_12_5 datatypes

FP | DFxP
mAP@[0.5,0.95] | 0.277 | 0.289

56

A similar simulation was carried out for the YOLOv2 network after converting the
weight values to the TFxP format n_bg_b,_b,. The notion used here is the same as
explained in subsection 3.3.2: n stands for the total bits the format uses, and b, specifies
the length of the fractional part.

Figure 24 presents the inference results of YOLOv2 network with weight values con-
verted to TFxP format. Four different ranges were tested, where the middle range frac-
tional part length, b, was swept over all the possible values (by, by).

Again, the precision of the TFxP converted network outperforms the original, FP based
version. Considering the results of DFxP (table 11), this was expected. However, the loss of
precision for meaningful middle-range fractional lengths is another phenomenon requir-
ing additional investigation. Here, meaningful middle range fractional lengths are consid-
ered to be the ones where b, is located in the middle region of the range (b3,b¢): the
middle range is considered more meaningful if it adds precision and does not closely fol-
low one of the edge ranges.

0.29 T
TFxP_15_12 b1 5
TFxP_16_13_b1_4
0.2895 |- TFxP_16_13 b1 5 5
TFxP_16_13 b1 6
0.289 - _
o 7
B3 /
< /
o a
0 0.2885 - / -
S, /
/
£ 0.288
0.2875 -
0.287 | | | | | |
5 6 7 8 9 10 11 12

b1

Figure 24 - mAP@[0.5,0.95] of YOLOv2 network with weights and calculations converted to TFxP
format n_bo_b;_b,, where b_1 is swept for the simulated ranges.

The presented analysis results clearly show that mAP is not suitable to conclude if the
TFxP can directly replace the FP. The increase of mAP for reduced precision can not be
accurate, but it indicates that the original network could be trained better.

Going further, we can set another criterion to assess the suitability of the replacement
type: the proposed type, TFxP, has to produce similar results as the original version. If the
original network is overfit, the new type should not solve it, but it has to stay that way.
The same holds the other way around: if the network is perfectly trained, the new data
type should not alter the situation, and the network should produce the same results.

Therefore, to evaluate the reproducibility of the FP results, the FP results have to be
used as the ground truth instead. To achieve this, the converted network’s output has
to be compared to the original output, not to the ground truth provided by the COCO
dataset. For this comparison, the same metric can be used as internally utilized by mAP
analysis: 10U.

Figure 25 illustrates the meaning of I0U: IOU of two prediction boxes A and B is the
ratio of areas where the boxes intersect, the area surrounded by the green line, and the
combination, the union, of those two predictions, the red line surrounded area. The IOU
for two perfectly aligned boxes is 1, and the value decreases to zero if the boxes do not

57

intersect.

1777777

NNy

B N NN

77777777

Figure 25 - IOU of two rectangles, A and B, is defined by the ratio of intersection, the double hatched
area surrounded by the red line, and union, surrounded by the green line.

Algorithm 2 presents the functionality of the IOU calculation. The algorithm iterates
over all the prediction boxes in the ground truth array, the boxes the network predicted us-
ing the FP datatype. Then, every ground truth prediction is paired with the best matching
counterpart in the test array, the boxes the network predicted using the new replacement
datatype. The IOU is calculated and averaged for all these pairs.

Algorithm 2: Average 10U calculation function

/* ground truth to be used, FP predictions */
Input: truth[N]
/* predictions with the new datatype x/
Input: test
Result: IOU
I0U=0
/* Loop over ground truth predictions */
for gd < 1to Ndo
/* Loop over test boxes matching the ground truth box image and
category */
subTest = test.select(img == truth(gd).img && category == truth(gd).category)
maxIOU =0
for bx + 1 to subTest.elements() do
tmp = calclOU(truth(gd), subTest(bx)) // 10U of two boxes
if tmp > maxIOU then
| maxIoU = tmp
end
end
IOU = 10U + maxIOU

end
IOU=I0U /N

Figure 26 presents the analysis results using the proposed metrics. The ordinate shows
the IOU of FP versus TFxP over the COCO evaluation dataset, and abscissa sweeps the
middle range fractional length b of presented TFxP formats.

The results show that the middle range of TFxP format brings the network predictions
closer to the output generated using the FP format. Also, these results support the graph

58

presented in figure 24: mAP results converge if the new datatype matches the original
data better. The effect that the TFxP middle range reduced the mAP results resulted from
network training deficiencies and should not be overlooked. Instead, IOU analysis using
the FP output as the ground truth describes better the replacement datatype suitability.

0.99 T T T ——r———
098 - / ~

0.97 |- —

096 - .

[e]V]

0.95 |- —

TFxP_15_12_b1_5
TFxP_16_13_b1_4

0.94 - TFxP_16_13_b1_5
TFxP_16_13_b1_6

0.93 | | | I I I
5 6 7 8 9 10 1 12

b1

Figure 26 - 10U calculated for FP compared to the TFxP formats n_by_b|_b,, where b_1 is swept.

3.5 HDL design

This section presents the HW design of the TFxP MAC unit. The presented design targets
Xilinx FPGAs devices, Xilinx Zyng SoC family, more specifically. Zyng-7000 series Z-7020
and Zynq UltraScale+ ZU9EG were used as the test platforms.

Among other features, Xilinx Zynqg devices have DSP slices available in HW. DSP48E1
is used in the Zyng-7000 series, while Zynq UltraScale uses the newer DSP48E2 DSP slice.
The core functionality is the same for these two flavors; differences are mentioned in the
following text if relevant.

The DSP slices can perform several operations on their inputs, including multiplication
and accumulation, and are highly efficient. Therefore, to target power and performance
efficiency, the proposed TFxP MAC unit wraps the existing DSP slices.

The Xilinx DSP48E1/2 slices can perform MAC operation using fixed-point numbers or
integers. However, the output radix point of a fixed-point result has to be corrected after
the multiplication, which is not a problem from the HW point of view: shift operation is
enough.

In the case of TFxP, the necessary output correction depends on the ranges of the
input operands: multiplying two TFxP numbers, x;, and x, produces output where the
radix point location depends on the modes of input operands (equation (45)).

Aoty = (% -270) - (- 2700) = xy - - 27000 (45)

Both of the inputs have three possible fractional lengths. Therefore, the total num-
ber of different fractional lengths for output equals combinations with repetition. Equa-
tion (46) presents the formula to calculate the number of different radix point locations
¢, for TFxP MAC output, where n is the number of things to choose from, and r is the
number of chosen items. As both of the inputs have three possible radix point locations,

59

we can choose between three different options, and this selection has to be done for two
operands. Therefore, n = 3, and r = 2.

(r+n—1)Y (243-1)!
T m—nr T 261
Figure 27 presents the Xilinx DSP48E1 HW DSP slice data path, where the abstraction
level has been chosen to reflect the MAC operation the best. It can multiply inputs A and
B and use an internal data path for accumulating multiplication results or add input C.
However, according to equations (45) and (46), the multiplication output of two TFxP
numbers, register R,,, can have six different radix point locations after every multiplication
cycle, depending on inputs A and B. Further, the register R, is input to the accumulator,
where the second input comes internally from the output register R, during the MAC op-
eration. However, these registers, R,, and R,,, can have different radix point locations and,
therefore, can not be directly accumulated. This means that the DSP internal accumula-
tion path can not be used and must be built externally to match the radix points.

(46)

DSP48E1

Figure 27 - High level data-path of the Xilinx DSP48E1 HW slice. DSP48E2 has 27-bit A input, com-
pared to 25-bit in the case of DSP48E1.

Building the external DSP accumulation path has an area, speed penalty, or both.
Therefore, a different approach was taken to use the internal accumulation possibility:
the multiplication output is always guaranteed to have the same radix point even though
operands are TFxP numbers.

The output’s exponent term —b, — b, (equation (45)) has to be fixed to a constant
value to achieve that. Naturally, both inputs have their fixed fractional lengths, but we can
still add the term b, to the existing exponents and force the final result to be a constant:
equation (47).

bi+b,+by =b, = const. (47)

Adding the term b, calls an additional shift of one or both of the inputs. This shift can
be implemented by a full-featured HW shifter. Alternatively, as the number of possible
input combinations is limited (equation (46)), the required set of additional shifts can be
implemented by using input multiplexers. Depending on the required fixed shift value of
the multiplication output, b,, an additional shift of b, bits has to be applied to the input:
equation (48).

by =b,— b, —b, (48)

60

Multiplying two TFxP numbers produces the most extended fractional length in output
if both operands belong to the range by: the range with the most fractional bits. Therefore,
the target output’s constant radix point location should be fixed to 2b.

However, there is a maximum for the additional possible shift b,, and analysis of the
DSP inputs and the exact TFxP type defines that. The maximum output shift produced by
multiplying two TFxP_16_13_9_5 numbers is 2by = 26. Similarly, multiplying two range b,
numbers of the same format produces the shortest fractional length 2b, = 10. All the rest
of the input combinations produce the fractional length between these limits. Therefore,
the maximum required additional input shift to guarantee the fixed output shift is the
difference between these two extremes: 2bg — 2b, = 16.

On the other hand, the TFxP_16_13_9_5 format occupies 14 bits in the DSP input: a
total of 13 bits plus the sign bit. This means that the DSP A input can be left-shifted by
a maximum of 25 — 14 = 11 bits, and B input can be shifted by 18 — 14 = 4 bits, and
the maximum possible additional shift is 15 bits, 1 bit less than the required maximum.
However, this limitation holds for DSP48E1; the E2 version has 27-bit wide A input, allowing
27 — 14 = 13 bits shift in A input and 17 bits total maximum additional left shift in input.

To implement TFxP_16_13_9_5 MAC using DSP48E1, the maximum shift can be set to
1 bit less than the theoretical limit. Only one input combination out of 6 produces the
longest fractional length in output. Furthermore, the chances are that one of the inputs
has zero as the least significant bit: losing this last zero does not cause a loss of precision.

Table 12 presents a set of pre-shifts b, for the TFxP_16_13_9_5 to guarantee the multi-
plication result with the fixed shift b, = 25. The target output fractional length is b, = 25
bits; therefore, the additional input shift b, equals the required target minus the existing
shifts due to the input modes (equation (48)). The first two columns, M, and M,,, specify
the TFxP ranges for the inputs.

Table 12 - Pre-shift values b, for TFxP_16_13_9_5 to guarantee the fixed output shift b, = 25 of the
multiplication output.

M, | M, | b be | biib | by | b]
0 0 13 13 26 25 -1
0 1 13 9 22 25 3
0 2 13 5 18 25 7
1 0] 9 13 22 25 3
1 1 9 9 18 25 7
1 2 9 5 14 25 1
2 0 5 13 18 25 7
2 1 5 9 14 25 1
2 2 5 5 10 25 15

Dividing the total required pre-shift b, between the DSP inputs can be done in various
ways. The exact numbers do not matter; the sum of these values is essential. However,
the total amount of required different pre-shifts per input specifies the input multiplexers:
more unique values require more input channels.

Table 13 presents possible combinations of pre-shifts for MAC inputs to achieve the
required b,: by, is applied to the MAC input A, and by, to the input B. The negative pre-
shift value —1 results from DSP48E1 input limitations. It is mitigated by right-shifting one
of the inputs, depending on the least significant bit of the input x;.

Figure 28 presents the TFxP MAC unit: Xilinx DSP48E1 slice wrapped by additional
input and output logic. The input logic selects additional pre-shift b,, and the output

61

Table 13 - Required pre-shift values b, for TFxP_16_13_9_5 MAC, divided between two inputs.

I " T
-1 0/-13 0/-1®
3 3 0
7 3 4
11 11 0
15 11 4

a—1if x,[0] = 0, 0 otherwise.
b—1if x,[0] = 1, 0 otherwise.

logic converts the result back to TFxP format.

The C input of the MAC should also have the same shift as the multiplication output:
b, = 25. Therefore, the value x, connected to the C input should have an additional shift
b,, = 25— b,, where b, depends on the selected TFxP range.

Internally, the MAC operation utilizes the full width of the DSP data-path: 48 bits.
This feature allows intermediate calculations to overflow; the final MAC result must fit
the selected TFxP format. E.g., if b, is set to 25 bits as for the shift values presented in
table 12, the intermediate calculations can use integer portion up to 48 — 25 = 23 bits.

X — s DSP4BET
Xy >> 1 — A
X << 3 —
X << 11 4/&
S 18 B outeur |
Xy >>1 — B P 74 D
! 4 FORMATION

X, <<4 Vs
Xy << 12 — 48
Xy << 16 — y—1C
Xy << 20 4/&‘

X —

X by FIXED RADIX

v —

Figure 28 - Xilinx DSP48E1 slice and the wrapper logic to form TFxP_16_13_9_5 MAC unit. Input
multiplexers assure the fixed output shift b,.

3.5.1 Input Multiplexer Selection
The additional required pre-shift b, can be divided between the DSP inputs: two last
columns in table 13 present the values. However, the exact shift applied to an input chan-
nel does not matter, but the total amount must match the required value b,, and multiple
combinations can achieve that.

The amount of required different shifts per input defines the input multiplexer: more
distinct shifts yield more HW resources. Additionally, the configurable logic blocks in
FPGAs are best utilized for specific multiplexer configurations: the possible number of

62

5:1 multiplexers is the same as 8:1 multiplexers using the same amount of HW, for exam-
ple. Some of the HW remains unused, wasted if the configuration does not match the HW
optimum.

Naturally, the total amount of combinations to consider is limited (equation (46)),
but automatic code generation is not possible if manual multiplexer tuning is required,
i.e., it would be cumbersome to integrate the proposed MAC unit to a more extensive
framework without full automation possibilities.

Therefore, this subsection proposes an algorithm to generate input multiplexers with
the fewest channels while addressing the multiplexer balancing between MAC inputs.

First, the algorithm generates the possible shift value pairs for all input combinations.
E.g., if the total additional shift b, = 3, the shift can be assigned to one of the inputs only or
split between the inputs. All the possible combinations are registered for the next steps.

Further, the algorithm identifies unique shift values that must be included in the final
configuration. In table 13, the last row presents precisely this situation: the total addi-
tional shift b, equals the maximum value possible for the underlying DSP slice. Therefore,
both inputs use the maximum shift, and these values must be present in the final HW.
Otherwise, the first possible shift values from the set with the least possible combina-
tions available are selected if none of the shift value pairs is the only option for a specific
input combination.

The filtering of the possible input shift pairs is performed multiple times. The first two
rounds favor either one or another input for unique value selection. Then, the combi-
nations list is traveled in the opposite direction again, setting the priority to one of the
inputs.

Finally, the set with the least possible combinations is selected. The final selection is
also biased towards more balanced multiplexers.

Figure 29 presents the required number of input multiplexer channels for the
TFxP_16_13_r1_5 MAC unit. The DSP48E2 DSP slice has wider A input; therefore, the
maximum additional shift b, can also be larger, allowing more freedom in selecting
the possible shift combinations. As a result, the MAC unit wrapping the DSP48E2 slice
requires fewer multiplexer channels.

DSP48E1: TFXP_16_13_r1_5 DSP48E2: TFXP_16_13_r1_5

=)
=)

Amux| | Amux | |
BMUX | | BMUX | |
TOTAL TOTAL

1 12 6 7 8 9 10 " 12

multiplexer inputs
o 4 M ® B O ® N ® ©
h)
multiplexer inputs

>
<
|
©
5

(a) DSP48E1 (b) DSP48E2

Figure 29 - Number of input multiplexer channels for TFxP_16_13_r1_5 MAC unit. DSP48E2 has 27
bit wide A input and therefore, requires less channels.

63

3.5.2 MAC Output Formation

Internally, the DSP slice uses 48-bit registers for multiplication results (figure 27). This
means that the intermediate MAC calculations can overflow; only the final results have
to fit the target TFxP format. In the case of the convolutional layer, this corresponds to
multiplying and accumulating one convolution kernel with the layer input in one position,
and table 9 records maximum, minimum, and mean of these values for YOLOv2 CNN.

The common fractional point location b, is the synthesis parameter for the system and
does not depend on MAC inputs, but the selected TFxP format defines it.

Figure 30 presents the 48-bit output of the TFxP_16_13_9_5 MAC unit: the one pre-
sented in figure 28. The common shift b, equals 25, the maximum possible for DSP48E1in
case of TFxP_16_13_9_5 format, i.e., the least 25 bits form the fractional portion of the re-
sult. The values of fields Ry, R, and R, define the final TFxP range, and the field G serves
as the over- or underflow guard region.

Also, the R, fields form the integer portion of the final value. Equation (49) defines
the corresponding lengths r, of these fields, plus the length of the G field, g.

ro =dao
ry=ay—ap (49)
rp=da;—ap

g=48—1—ar—by

48 bits

s G [R [Ri [Ry [FRACTIONAL

g=14 " =4 r=4r=0 by =13 12

Figure 30 - DSP slice output for TFxP_16_13_9_5 MAC unit. Fields Ry, Ry, and R, determine the
range. 14-bit G field is used to check the over- and underflows.

The range selection logic uses the R fields, sign bit S, and the guard field G to determine
the magnitude of the value: figure 31 presents the high-level schematic diagram. All these
fields are tested to be all-ones or all-zeros, and in combination with the sign bit S, the
output range is selected: the output multiplexer selects the correct data from the DSP
slice output bus P. Also, figure 31 defines the actual signals fed to the output multiplexer
using Verilog HDL syntax.

The block RANGE in figure 31is a combinatorial circuit that uses its input signals to drive
the output multiplexer, and table 14 presents the truth table of it. The table columns are
the following: sign bit S from the DSP output, G1 and GO, which indicate if the guard field
G is all ones or all zeros, and similar fields for R, and R;. The last two columns present
the output multiplexer channel number and the TFxP range number for that channel. OFV
and UFW stand for overflow and underflow, respectively.

Figure 32 presents a logic diagram for the output range selection. And due to the
automatic adjustment of input operands of the MAC unit, the selected output value can
directly be fed to the MAC unit in the following layer. The signal names correspond to the
columns in table 14. And the output signals M...M, correspond to the table column Mux.

3.5.3 Usage of HW Resources
This subsection presents the synthesis results of the TFxP based MAC unit presented in

the previous chapters; the Vivado design suite from Xilinx was used to acquire the results.

64

4 \
R[0] R0
Ri[ri—1]
Ri1 {8, P[by +ag — 1 : by — bg),2'b00} o
{S,Plby+a; —1:by—b],2'b01})
R,[0] 50 {S,Plby +ay —1: by —by],2'b10} 5 D
Rafrp—1] ¢ OFV {8, {n{1'b1}},2'b11} 5
UFV {S,{n{1'b0}},2'b11} .
P Ryl | RANGE
M
Sl GO
Glg—1] :
1O
N

Figure 31 - Formation of the MAC output: fields Ry, R, S, and G define the range of the TFxP output.

Table 14 - Truth table of the RANGE selection block presented in figure 31.

[S | Gl | GO [Ryl | Ry0 Ri1 R0 | Mux [Range
0 X 0 X X X X 3 OFV
0 X 1 X 0 X X 2 2
0 X 1 X 1 X 0 1 1
0 X 1 X 1 X 1 0 0
1 0 X X X X X 4 UFV
1 1 X 0 X X X 2 2
1 1 X 1 X 0 X 1 1
1 1 X 1 X 1 X 0 0

65

(fl == } =
GO e
R0 e

Ry =
Ri1 0

yee

R0 ==

Figure 32 - Logic diagram of the range selections logic block. The output signal M selects the proper
range for the output using the multiplexer shown in figure 31. The schematic corresponds to the
truth table in table 14.

The synthesis results are summarized in table 15, and the results are presented for the
most precise formats found from figure 26. The first three rows present the results for
formats where the third TFxP range is changed by a single step. The fourth row presents
the results for TFxP format, which is one bit shorter compared to the first three, and the
last two rows present the results for the DFxP format for comparison.

The most important comparison is between the DFxP and TFxP formats; it can be
concluded that the TFxP does not bring additional resources. The fact that the results
show a slight growth of resources for DFxP can be explained by the fact that most of the
optimization effort in this thesis addressed TFxP MAC version and the DFxP was designed
and synthesized for comparison reasons only. If correctly optimized, the DFxP version
would infer the same amount or less HW compared to the TFxP. However, the conclusion
holds that the TFxP version is not HW heavy but more precise compared to the DFxP.

Also, the power consumption and maximum clock frequency are the same for all fla-
vors. The maximum clock frequency is restricted by the maximum operating frequency of
the DSP slice, i.e., the added wrapper, actual MAC unit design, does not pose any restric-
tions.

3.6 Conclusions

This section presents the conclusions of the MAC unit proposed in chapter 3.

First, MAC operations form the basis of calculations present in DL networks, reaching
over 90% of the entire operations. Therefore, the unit’s throughput has to be high to
avoid becoming the bottleneck. Also, the HW resources consumed by a single MAC unit
have to be carefully considered: more units fit to the target HW enable more concurrent

66

Table 15 - Inferred HW of DFxP and TFxP formats.

Format LUTs Regs Slices Power WNS clk

(W) (ns) (MHz)
TFxP_16_13_9_4 70 20 22 0.142 0.839 393
TFxP_16_13_9_5 69 20 25 0.142 0.837 393
TFXP_16_13_9_6 70 20 26 0.142 0.679 393
TFxP_15_12_9_5 66 19 22 0.140 0.949 393
DFxP_13_12_5 72 18 29 0.133 0.680 393

calculations, i.e., a higher level of parallelism.

Bringing the DL to resource-constraint targets is an active research target nowadays,
mainly because there is no doubt about the usefulness of these algorithms. However,
the HW execution platforms are mostly restricted to GPUs, and this has been the natural
choice for such algorithms requiring massive parallelism. Moreover, due to the exten-
sive usage of GPUs, the floating point is the prevalent data type, but it is unsuitable for
resource-constraint targets.

Reducing the precision of the DL network parameters has shown promising results.
This has been taken to the extreme: literature has proposals for networks using only
single-bit values ([82]), resulting in binarized networks or ternary networks with two-bit
data representation ([81]). While these approaches yield effective MAC units, and the
recall precision of such networks is undoubtedly acceptable, the entire network has to
be retrained: it is impossible to select a well-trained network from the set available for
executing on GPUs and seamlessly adapt it for such a deeply quantized target.

The main contribution of chapter 3 is to propose the MAC unit that can be used to
directly substitute the floating point-based calculations in DL networks without retraining.
The network can be deployed after converting the hyperparameters, like weight values
and biases, using the MAC unit and TFxP format proposed in this thesis.

Another important contribution is the proposal to change the evaluation criteria for
replacement data type suitability. It has been shown that the network inference precision
can increase if the numerical precision is reduced. Therefore, this thesis proposes to use
IOU to compare outputs of the converted and original network based on the floating point
calculations.

Overall, the analysis and HW design presented in chapter 3 show that the TFxP format
can be used as the direct replacement of FP data representation without retraining the
network: the novelty presented in this thesis.

67

4 Conclusions and future work

DL has gained much popularity and can be found in various applications nowadays. Its
deployment is so ubiquitous that the application user might not even be aware of the
presence of such an algorithm in a system anymore.

It has helped to improve the quality of services in different domains, like analyzing
data gathered by medical systems and driver assistance solutions in cars, or has enabled
the development of self-driving cars, to mention a few.

The main driver of the growth of popularity of DL algorithms has been the advances
in computational power the computers can offer, especially the performance growth of
the GPUs. In addition, cloud-based services are also available; there is no need to have a
personal computing system available to enjoy the benefits DL has to provide.

As there is no doubt about the usefulness of such algorithms, contemporary research
also addresses resource-constrained execution platforms. Also, GPUs are power hungry;
executing the algorithm on more conservative targets also has economic benefits.

All this paves the road for FPGAs as the execution platform for the DL. FPGAs consume
less power and are suitable for parallel execution just like GPUs but are more suitable for
executing fixed-point-based algorithms.

This thesis first introduces and proposes an FPGA based accelerator for CAE network
and also includes HW support for the learning phase. CAE is a flavor of an AE and can
be used as a self-learning feature extractor or noise filter. Therefore, as CAE is an unsu-
pervised network, continuous learning can be beneficial and help the system cope with
environmental drifts during its deployment. To enable this, all three proposed CAE archi-
tectures involve HW based learning.

The study results show that the target Xilinx Zyng 7020 SoC can fit 200 PEs in its
programmable logic. Also, the performance has been analyzed, and it has been shown
that the proposal reaches the theoretical limit derived from analyzing the equations. The
field test was performed using the MNIST database of handwritten digits.

Further, the thesis provides a TFxP based MAC unit, aiming not only AEs but various
DL networks. There are positive results available in the literature to use the BFP for the
DL networks. However, TFxP type carries the information about the radix point location,
or the selected range, with it.

First, the thesis analyzed the YOLOv2 network using the proposed TFxP data type. The
results suggested that the corresponding TFxP counterparts can directly replace the float-
ing point values. Also, the thesis proposed not to use the converted network’s inference
precision to assess the conversion’s suitability but to compare the output of the converted
network to the original one based on floating point calculations. Otherwise, as it has been
shown, approximation caused by the data conversion of the network parameters can even
improve the inference accuracy. Therefore, comparing the accuracy of the networks is not
the best metric to assess the suitability of replacement data type. The network has to be-
have the same as the original one.

Further, the proposal of the TFxP MAC unit suitable for various DL networks follows. As
the range selection setting is embedded into the TFxP type, numbers with different radix
point positions, i.e., numbers with different ranges, can simultaneously be loaded into the
proposed unit. Properly shifting the input operands still allows using DSP slice internal
datapath for accumulation. Also, the thesis implements balancing the input multiplexers,
resulting in less inferred HW.

Considering future work, the proposals presented in this thesis can be extended. The
proposed MAC unit can be used to build various networks, but the suitable architecture is
still to be studied. However, as the MAC unit is conservative with the HW, more of those

68

can be inferred in the target architecture, enabling more parallel operations. The most
intriguing study direction would be incorporating the MAC unit into architecture using
dedicated programmable controllers to define the exact behavior. This way, various DL
networks can be executed depending on the instructions loaded into the network con-
trollers.

Regarding the proposed CAE, future work should address using the features extracted
by the network while allowing it to train itself constantly. For example, these auto-tuning
features enable the system to adapt to the installation environment.

69

List of Figures

1

10
1

12
13

14
15

16

17

18

19

20

21

22

23

Architecture of the CNN like network, published in 1979 ([8]). The layered
structure and feature extraction scheme are similar to what is used in
contemporary algorithms. ..ot 10
An example of a separable problem in a 2-dimensional space, [11]........... 1
Architecture of the AE. Middle layer Y is the compressed representation
of input X, and Z is the reconstruction of X. The rest of the figures and
tables use the same color scheme: blue denotes the external nodes, while

green identifies the middle layer............cooo i 15
Example of the overfit AE network: a specific middle layer node has
learned to represent asingle input. ... 16

Cascaded DL network presented in [34]. The features extracted by the
AE are used as the input to the software based CNN to complement the
binary fault detection output uponrequest.ccoiiiiiiiiiiiiiiia, 20
ReLU and LeakyReLU activation functions.............ccooviiiiiiiiiiiiinnt, 23
lllustration for equation (11): calculation path for dd,/dw;i, u = 1 and
v = 1. The decoder portion has to select the path through the weight
value wa;, where i) = 2. Here, i) £ u. ... 25
lllustration for equation (11): calculation path for dd,/dwsi, u = 2 and
v = 1. The decoder portion has to select the path through the weight

value way, where i) = 2. Here, il = u. ...ooveee e 26
Assigning block RAMs to external layer nodes requires more, but smaller

RAMs, compared to when assigned to the internal layer...................... 30
Data-path of the CAE external layer PE........ccooeiiiiiiiiiiiiiinnnns 31
Data-path of the CAEmiddle layer PE.ccoiiiiiiiiiiiiiiiii i 31

Layout of the butterfly cross-bar switch. Layers of the CAE connect to the
different sides. CTRL ports are used by the ARM processing unit for flow

control and datatransfer.coooiiiiiiiii e 32
Carousel like communication channel. Data advances in every clock cycle.
The node CTRL is connected to the controlling ARM processing unit......... 33

Data-path of the CCom network node. All the nodes share the same design. 35
Data present on carousel nodes after completion of the middle layer val-

ues calculations in case of CCom architecture. ...t 36
Data-path of the CCom-RO architecture full PE. This PE can act as it be-
longs to both internal- or external layers............cccoooiiiiiiiiii ... 37
Data-path of the CCom-RO architecture reduced PE. The reduced version
can operate only asan external layer PE.cccooiiiiiiiiiiiiiiiannn. 38
Data present on carousel nodes after completion of the middle layer val-
ues calculations in case of CCom-RO architecture.coooiinn.t. 39
Operation example of the trained 3-layer 196-10-196 nodes CAE using 16.12
fixed-point representations.ccooviiiiiiiiiiii i 42
DFxP representation adds an additional, less precise range to extend the
N 50
Structure of the YOLOv2 DL networks: there are total of 23 convolutional
JAY S, et e 51
TFxP representation. Ranges 1 and 2 increase the range while sacrificing
e PrECiSION. oo e 53
3-D layer activation input is flattened to 2-D in memory to guarantee se-
quential memory access during the MAC operation........................... 56

70

24

25

26

27

28

29

30

31

32

MAP@[0.5,0.95] of YOLOV2 network with weights and calculations con-
verted to TFxP format n_by_b;_b,, where b_1 is swept for the simulated
L= T =427 N 57
10U of two rectangles, A and B, is defined by the ratio of intersection, the
double hatched area surrounded by the red line, and union, surrounded

by the green line.o e 58
10U calculated for FP compared to the TFxP formats n_bo_b1_b,, where
/2 B V=] o] S S 59
High level data-path of the Xilinx DSP48E1HW slice. DSP48E2 has 27-bit A
input, compared to 25-bit in the case of DSP48E1.ccoviiiviiea.... 60
Xilinx DSP48ET1 slice and the wrapper logic to form TFxP_16_13_9_5 MAC
unit. Input multiplexers assure the fixed output shiftb,,. 62
Number of input multiplexer channels for TFxP_16_13_r1_5 MAC unit.
DSP48E2 has 27 bit wide A input and therefore, requires less channels...... 63

termine the range. 14-bit G field is used to check the over- and underflows. 64
Formation of the MAC output: fields Ry, R, S, and G define the range of
The TEXP OULPUL. ..o e e e 65
Logic diagram of the range selections logic block. The output signal M
selects the proper range for the output using the multiplexer shown in
figure 31. The schematic corresponds to the truth table intable 14. 66

DSP slice output for TFxP_16_13_9_5 MAC unit. Fields Ry, Ry, and R, de-

71

List of Tables

w

10
1
12

13

14
15

Calculations of the CAE forward passccooviiiiiiiiiiiiiieeiiiiiaeannn, 32
Calculations of the CAE gradientdescentccooiiiiiiiiiiiiiiina. 34
Performance biased calculation scheme of CCom architecture. Multiple

sets of values are calculated to speed up the following execution steps. 36

Resource optimised calculation scheme for CCom-RO architecture. Only
one set of internal layer values are calculated. Network nodes Ny . .. N7 do
not implement all the features required to act as the internal layer node. .. 38
Maximum network sizes and hardware usage for CAE synthesis targeting

Zyng7020 SoC; the size is expressed in FPGAslices........cooovvviiiiiiinnn... 39
Execution time of the CAE with 200 external- and 30 middle layer nodes.

The clock speed of the designs was set to 100MHz............................ 40
Analysis of the weights values of YOLOV2.ccooiiiiiiiiiiiini .. 52
Analysis of the layer activation values of YOLOV2..............oiiiieeaa... 52
TEXP fOrmMat 16 13 0 5.ttt ettt et e e et 53
mAP of YOLOv2 using FP and DFxP_13_12_5 datatypes 56
Pre-shift values b, for TFxP_16_13_9_5 to guarantee the fixed output shift

b, = 25 of the multiplication output. 61
Required pre-shift values b, for TFxP_16_13_9_5 MAC, divided between

WO INPULS. e i e e e 62
Truth table of the RANGE selection block presented in figure 31. 65
Inferred HW of DFxP and TFxP formats............oooiiiiiiiiiiiiin i, 67

72

References

[1]

(2]

(3]

[4]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

Q. Rao and J. Frtunikj, “Deep Learning for Self-Driving Cars: Chances and Chal-
lenges,” in 2018 IEEE/ACM 1st International Workshop on Software Engineering for
Al in Autonomous Systems (SEFAIAS), pp. 35-38, IEEE Computer Society, 5 2018.

A. N. Aneesh, L. Shine, R. Pradeep, and V. Sajith, “Real-time Traffic Light Detection
and Recognition based on Deep RetinaNet for Self Driving Cars,” in 2019 2nd Inter-
national Conference on Intelligent Computing, Instrumentation and Control Tech-
nologies (ICICICT), pp. 1554-1557, IEEE, 2019.

A. Gogna, A. Majumdar, and R. Ward, “Semi-supervised Stacked Label Consistent
Autoencoder for Reconstruction and Analysis of Biomedical Signals,” IEEE Transac-
tions on Biomedical Engineering, vol. 64, no. 9, pp. 2196-2205, 2017.

M. A. Alsheikh, A. Selim, D. Niyato, L. Doyle, S. Lin, and H.-p. Tan, “Deep Activity
Recognition Models with Triaxial Accelerometers,” in AAAI Workshop, pp. 1-8, 2016.

T. Kautz, B. H. Groh, J. Hannink, U. Jensen, H. Strubberg, and B. M. Eskofier, “Ac-
tivity recognition in beach volleyball using a Deep Convolutional Neural Network:
Leveraging the potential of Deep Learning in sports,” Data Mining and Knowledge
Discovery, vol. 31, no. 6, pp. 1678-1705, 2017.

T. Zabinski, Z. Hajduk, J. Kluska, and L. Gniewek, “FPGA-Embedded Anomaly Detec-
tion System for Milling Process,” IEEE Access, vol. 9, pp. 124059-124069, 2021.

A. G. lvakhnenko and V. G. Lapa, Cybernetic Predicting Devices. CCM Information
Corporation, 1965.

K. Fukushima, “Neocognitron: A Self-Organizing Neural Network Model for a Mech-
anism of Pattern Recognition Unaffected by Shift in Position,” Biological Cybernet-
ics, vol. 36, pp. 193-202, 1980.

S. Linnainmaa, The representation of the cumulative rounding error of an algorithm
as a Taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ.
Helsinki, 1970.

Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and
L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,” in
Advances in Neural Information Processing Systems 2 (D. S. Touretzky, ed.), pp. 396-
404, Morgan-Kaufmann, 1990.

C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20,
pp. 273-297, 9 1995.

J. Kan, Y. Shen, J. Xu, E. Chen, J. Zhu, and V. Chen, “RF Analog Hardware Trojan
Detection Through Electromagnetic Side-channel,” IEEE Open Journal of Circuits
and Systems, pp. 1-1, 9 2022.

E. Wang, J. J. Davis, R. Zhao, H. C. Ng, X. Niu, W. Luk, P. Y. Cheung, and G. A. Constan-
tinides, “Deep neural network approximation for custom hardware: Where We've
Been, Where We're going,” ACM Computing Surveys, vol. 52, no. May, pp. 1-39,
2019.

73

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

[26]

(27]

S. Mittal, “A survey of FPGA-based accelerators for convolutional neural networks,”
Neural Computing and Applications, vol. 32, no. 4, pp. 1109-1139, 2020.

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Ar-
chitecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 230-
230, Institute of Electrical and Electronics Engineers Inc., 5 2020.

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Novel Architectures for Contrac-
tive Autoencoders with Embedded Learning,” in 2020 17th Biennial Baltic Electron-
ics Conference (BEC), vol. 2020-October, pp. 1-6, IEEE Computer Society, 10 2020.

J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Triple Fixed-Point MAC Unit for
Deep Learning,” in 2021 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), vol. 2021-February, pp. 1404-1407, Institute of Electrical and Electronics
Engineers Inc., 2 2021.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436-444,
52015.

J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Net-
works, vol. 61, pp. 85-117, 2015.

T. Plotz and Y. Guan, “Deep Learning for Human Activity Recognition in Mobile Com-
puting,” Computer, vol. 51, no. 5, pp. 50-59, 2018.

H. F. Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep learning algorithms
for human activity recognition using mobile and wearable sensor networks: State
of the art and research challenges,” Expert Systems with Applications, vol. 105,
pp. 233-261, 9 2018.

J.Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-based activity
recognition: A Survey,” Pattern Recognition Letters, vol. 119, pp. 3-11, 2 2018.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with
Neural Networks,” Science (New York, N.Y.), vol. 313, no. July, pp. 504-507, 2006.

C.Zhou andR. C. Paffenroth, “Anomaly Detection with Robust Deep Autoencoders,”
in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD 17, 2017.

T. Kieu, B. Yang, and C. S. Jensen, “Outlier Detection for Multidimensional Time
Series Using Deep Neural Networks,” in 2018 19th IEEE International Conference on
Mobile Data Management (MDM), vol. 2018-June, pp. 125-134, IEEE, 6 2018.

O. K. Oyedotun and D. Aouada, “A Closer Look at Autoencoders for Unsupervised
Anomaly Detection,” in ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings, vol. 2022-May, pp. 3793-3797, Institute of Elec-
trical and Electronics Engineers Inc., 2022.

74

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

D. Del Testa and M. Rossi, “Lightweight Lossy Compression of Biometric Patterns via
Denoising Autoencoders,” IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2304-
2308, 2015.

E. Q. Wu, X. Y. Peng, C. Z. Zhang, J. X. Lin, and R. S. Sheng, “Pilots’ fatigue status
recognition using deep contractive autoencoder network,” IEEE Transactions on
Instrumentation and Measurement, vol. 68, pp. 3907-3919, 10 2019.

X.Zhou, J. Guo, and S. Wang, “Motion Recognition by Using a Stacked Autoencoder-
Based Deep Learning Algorithm with Smart Phones,” in Wireless Algorithms, Sys-
tems, and Applications (H. Xu, KuaiZhu, ed.), vol. 9204 of Lecture Notes in Computer
Science, (Cham), pp. 778-787, Springer International Publishing, 2015.

S. S. Khan and B. Taati, “Detecting unseen falls from wearable devices using
channel-wise ensemble of autoencoders,” Expert Systems with Applications, vol. 87,
pp. 280-290, 2017.

L. Wang, “Recognition of human activities using continuous autoencoders with
wearable sensors,” Sensors (Switzerland), vol. 16, no. 2, 2016.

P. K. Gopalakrishnan, B. Kar, S. K. Bose, M. Roy, and A. Basu, “Live Demonstration:
Autoencoder-based Predictive Maintenance for loT,” 2019.

P. Vitolo, G. D. Licciardo, L. Di Benedetto, R. Liguori, A. Rubino, and D. Pau, “Low-
Power Anomaly Detection and Classification System based on a Partially Binarized
Autoencoder for In-Sensor Computing,” in 2021 28th IEEE International Conference
on Electronics, Circuits, and Systems, ICECS 2021- Proceedings, Institute of Electrical
and Electronics Engineers Inc., 2021.

P. Vitolo, A. De Vita, L. D. Benedetto, D. Pau, and G. D. Licciardo, “Low-Power De-
tection and Classification for In-Sensor Predictive Maintenance Based on Vibration
Monitoring,” IEEE Sensors Journal, vol. 22, pp. 6942-6951, 4 2022.

D. Kim, H. Yang, M. Chung, S. Cho, H. Kim, M. Kim, K. Kim, and E. Kim, “Squeezed
Convolutional Variational AutoEncoder for unsupervised anomaly detection in edge
device industrial Internet of Things,” in 2018 International Conference on Informa-
tion and Computer Technologies (ICICT), pp. 67-71, IEEE, 3 2018.

C. Liu, C. Wang, and J. Luo, “Large-Scale Deep Learning Framework on FPGA for
Fingerprint-Based Indoor Localization,” IEEE Access, vol. 8, pp. 65609-65617, 2020.

N. A. Mohamed and J. R. Cavallaro, “Real-time FPGA-Based Outlier Detection using
Autoencoder and LSTM,” in Conference Record - Asilomar Conference on Signals,
Systems and Computers, vol. 2021-October, pp. 1195-1199, IEEE Computer Society,
2021.

M. G. Coutinho, M. F. Torquato, and M. A. Fernandes, “Deep neural network hard-
ware implementation based on stacked sparse autoencoder,” IEEE Access, vol. 7,
pp. 40674-40694, 2019.

L. D. Medus, T. lakymchuk, J. V. Frances-Villora, M. Bataller-Mompean, and
A.Rosado-Munoz, “A Novel Systolic Parallel Hardware Architecture for the FPGA Ac-
celeration of Feedforward Neural Networks,” IEEE Access, vol. 7, pp. 76084-76103,
2019.

75

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

(52]

(53]

Z.Li, M. Zhu, Y. Zhu, S. Yang, H. Shi, J. Jiang, Q. Wang, and Z. Xing, “FPGA Realization
of Stacked Auto-encoder with Three Fully Connected Layers,” in 2021 IEEE Interna-
tional Conference on Advances in Electrical Engineering and Computer Applications,
AEECA 2021, pp. 997-1001, Institute of Electrical and Electronics Engineers Inc., 8
2021.

J.Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked Autoencoders Using Low-
Power Accelerated Architectures for Object Recognition in Autonomous Systems,”
Neural Processing Letters, vol. 43, no. 05, pp. 445-458, 2016.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders:
explicit invariance during feature extraction,” in Proceedings of The 28th Interna-
tional Conference on Machine Learning (ICML-11), pp. 833-840, 2011.

A. Suzuki, T. Morie, and H. Tamukoh, “FPGA implementation of autoencoders hav-
ing shared synapse architecture,” in Neural Information Processing, pp. 231-239,
2016.

J. Jiang, R. Hu, D. Wang, J. Xu, and Y. Dou, “Performance of the fixed-point autoen-
coder,” Tehnicki vjesnik - Technical Gazette, vol. 23, no. 02, pp. 77-82, 2016.

V. Nair and G. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Ma-
chines,” in Proceedings of the 27th International Conference on Machine Learning,
pp. 807-814, 2010.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification,” in 2015 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 1026-1034, IEEE, 12 2015.

Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten digit database,” ATT Labs,
vol. 2, 2010.

J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings - 30th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-
Janua, pp. 6517-6525, 2017.

T-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L.
Zitnick, “Microsoft COCO: Common Objects in Context,” in Computer Vision - ECCV
2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds.), (Cham), pp. 740-755,
Springer International Publishing, 2014.

M. Langhammer and B. Pasca, “Design and Implementation of an Embedded FPGA
Floating Point DSP Block,” tech. rep., Altera, 2014.

A. Ehliar, “Area efficient floating-point adder and multiplier with IEEE-754 com-
patible semantics,” in Proceedings of the 2014 International Conference on Field-
Programmable Technology, FPT 2014, pp. 131-138, Institute of Electrical and Elec-
tronics Engineers Inc., 4 2015.

H. Zhang, D. Chen, and S. B. Ko, “Area- and power-efficient iterative single/double-
precision merged floating-point multiplier on FPGA,” IET Computers and Digital
Techniques, vol. 11, pp. 149-158, 7 2017.

76

[54]

[55]

[56]

(57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

K. V. Gowreesrinivas and P. Samundiswary, “Resource efficient single precision float-
ing point multiplier using karatsuba algorithm,” Indonesian Journal of Electrical En-
gineering and Informatics, vol. 6, pp. 333-342, 9 2018.

S.Kim and R. A. Rutenbar, “An area-efficient iterative single-precision floating-point
multiplier architecture for FPGA,” in Proceedings of the ACM Great Lakes Sympo-
sium on VLSI, GLSVLSI, pp. 87-92, Association for Computing Machinery, 5 2019.

M. F. Hassan, K. F. Hussein, and B. Al-Musawi, “Design and implementation of fast
floating point units for FPGAs,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 19, pp. 1480-1489, 9 2020.

S. S. Ganesh, J. J. J. Nesam, and U. Subramaniam, “High Speed Half-Precision
Floating-Point Fused Multiply and Add Unit Using DSP Blocks,” in Proceedings -
2020 1st International Conference of Smart Systems and Emerging Technologies,
SMART-TECH 2020, pp. 227-230, Institute of Electrical and Electronics Engineers
Inc., 11 2020.

A. Panahi, K. Stokke, and D. Andrews, “A Library of FSM-based Floating-Point Arith-
metic Functions on FPGAs,” 2019 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), pp. 1-8, 2019.

J. Kralev, “Design of Floating-Point Arithmetic Unit for FPGA with Simulink,” in IEEE
EUROCON 2019 -18th International Conference on Smart Technologies, pp. 1-5,
2019.

V. Krishnan, A. Rajiv, and N. Deborah, “A comparative study on the performance of
FPGA implementations of high-speed single-precision binary floating-point multi-
pliers,” in 2019 International Conference on Smart Systems and Inventive Technol-
ogy (ICSSIT), pp. 1041-1045, 2019.

G. Jha and E. John, “Performance analysis of single-precision floating-point MAC for
deep learning,” in Midwest Symposium on Circuits and Systems, vol. 2018-August,
pp. 885-888, Institute of Electrical and Electronics Engineers Inc., 12019.

H. J. Kang, “Short floating-point representation for convolutional neural network
inference,” IEICE Electronics Express, vol. 16, no. 2, pp. 1-11, 2019.

T. Tamble, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush, D. Brooks, and G.-Y. Wei,
“Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings for Resilient
Deep Learning Inference,” in 2020 57th ACM/IEEE Desigh Automation Conference
(DAC), pp. 1-6, 2020.

A. Sanchez, A. de Castro, M. S. Martinez-Garcia, and J. Garrido, “LOCOFloat: A low-
cost floating-point format for FPGAs.: Application to HIL simulators,” Electronics,
vol. 9, 12020.

L. Lai, N. Suda, and V. Chandra, “Deep Convolutional Neural Network Inference with
Floating-point Weights and Fixed-point Activations,” 3 2017.

X. Wei, W. Liu, L. Chen, L. Ma, H. Chen, and Y. Zhuang, “FPGA-based hybrid-type im-
plementation of quantized neural networks for remote sensing applications,” Sen-
sors (Switzerland), vol. 19, 2 2019.

77

[67]

[68]

[69]

[70]

[71]

[72]

[73]

(74]

[75]

[76]

[77]

(78]

[79]

X. Chen, J. Li, and Y. Zhao, “Hardware Resource and Computational Density Efficient
CNN Accelerator Design Based on FPGA,” in 2021 IEEE International Conference on
Integrated Circuits, Technologies and Applications, ICTA 2021, pp. 204-205, Insti-
tute of Electrical and Electronics Engineers Inc., 2021.

H. S. Lee and J. Wook Jeon, “Accelerating Deep Neural Networks Using FPGAs and
ZYNQ,” TENSYMP 2021 - 2021 IEEE Region 10 Symposium, 8 2021.

V. K. Kodavalla, “Enabling Deep Learning Inferencing in Edge Devices,” in 2022 IEEE
3rd Global Conference for Advancement in Technology, GCAT 2022, Institute of Elec-
trical and Electronics Engineers Inc., 2022.

X. Liu, “Hardware-friendly model compression technique of DNN for edge comput-
ing,” in Proceedings - 2021 2nd International Conference on Computing and Data
Science, CDS 2021, pp. 344-355, Institute of Electrical and Electronics Engineers
Inc., 2021.

G. Tatar, S. Bayar, and I. Cicek, “Performance Evaluation of Low-Precision Quantized
LeNet and ConvNet Neural Networks,” 16th International Conference on INnova-
tions in Intelligent SysTems and Applications, INISTA 2022, 2022.

M. Wang, S. Rasoulinezhad, P. H. Leong, and H. K. So, “NITI: Training Integer Neu-
ral Networks Using Integer-Only Arithmetic,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, pp. 3249-3261, 11 2022.

S. Fox, J. Faraone, D. Boland, K. Vissers, and P. H. Leong, “Training deep neural
networks in low-precision with high accuracy using FPGAs,” in Proceedings - 2019
International Conference on Field-Programmable Technology, ICFPT 2019, vol. 2019-
December, pp. 1-9, Institute of Electrical and Electronics Engineers Inc., 12 2019.

C. Su, S. Zhou, L. Feng, and W. Zhang, “Towards high performance low bitwidth
training for deep neural networks,” Journal of Semiconductors, vol. 41, no. 2, 2020.

C. Lammie, W. Xiang, and M. R. Azghadi, “Training Progressively Binarizing Deep
Networks using FPGAs,” in 2020 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pp. 1-5, 2020.

M. Kiyama, M. Amagasaki, and M. lida, “Deep learning framework with arbitrary
numerical precision,” Proceedings - 2019 IEEE 13th International Symposium on Em-
bedded Multicore/Many-Core Systems-on-Chip, MCSoC 2019, pp. 81-86, 10 2019.

M. Véstias, R. P. Duarte, J. T. De Sousa, and H. Neto, “Parallel Dot-Products for Deep
Learning on FPGA,” in 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1-4, 2017.

M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, “A fast and scalable architec-
ture to run convolutional neural networks in low density FPGAs,” Microprocessors
and Microsystems, vol. 77, 2020.

D. Nguyen, D. Kim, and J. Lee, “Double MAC: Doubling the performance of con-
volutional neural networks on modern FPGAs,” in Proceedings of the 2017 Design,
Automation and Test in Europe, DATE 2017, pp. 890-893, Institute of Electrical and
Electronics Engineers Inc., 5 2017.

78

[80]

(81]

(82]

(83]

[84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

S. Lee, D. Kim, D. Nguyen, and J. Lee, “Double MAC on a DSP: Boosting the
performance of convolutional neural networks on FPGAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, pp. 888-897,
52019.

Y. Chen, K. Zhang, C. Gong, C. Hao, X. Zhang, T. Li, and D. Chen, “T-DLA: An
Open-source Deep Learning Accelerator for Ternarized DNN Models on Embedded
FPGA,” in Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI,
vol. 2019-July, pp. 13-18, IEEE Computer Society, 7 2019.

S. Amiri, M. Hosseinabady, S. McIntosh-Smith, and J. Nunez-Yanez, “Multi-precision
convolutional neural networks on heterogeneous hardware,” in Proceedings of the
2018 Design, Automation and Test in Europe Conference and Exhibition, DATE 2018,
vol. 2018-January, pp. 419-424, Institute of Electrical and Electronics Engineers Inc.,
4 2018.

R. Fuchikami and F. Issiki, “Fast and Light-weight Binarized Neural Network Imple-
mented in an FPGA using LUT-based Signal Processing and its Time-domain Exten-
sion for Multi-bit Processing,” in 2019 IEEE 9th International Conference on Con-
sumer Electronics (ICCE-Berlin), pp. 120-121, 2 2019.

A. M. Abdelsalam, A. Elsheikh, S. Chidambaram, J. P. David, and J. M. Langlois,
“POLYBINN: Binary Inference Engine for Neural Networks using Decision Trees,”
Journal of Signal Processing Systems, vol. 92, pp. 95-107, 1 2020.

Q. H.Vo, N. Linh Le, F. Asim, L. W.Kim, and C. S. Hong, “A Deep Learning Accelerator
Based on a Streaming Architecture for Binary Neural Networks,” IEEE Access, vol. 10,
pp. 21141-21159, 2022.

Y. Wang, Y. Yang, F. Sun, and A. Yao, “Sub-bit Neural Networks: Learning to Com-
press and Accelerate Binary Neural Networks,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 5340-5349, Institute of Electrical and
Electronics Engineers Inc., 2021.

M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, and K. Scott Hem-
mert, “A Comparison of Floating Point and Logarithmic Number Systems for FP-
GAs,” in 13th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’05), pp. 181-190, 2005.

C. Ni, J. Lu, J. Lin, and Z. Wang, “LBFP: Logarithmic Block Floating Point Arithmetic
for Deep Neural Networks,” Proceedings of 2020 IEEE Asia Pacific Conference on
Circuits and Systems, APCCAS 2020, pp. 201-204, 12 2020.

Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Ku-
dithipudi, “Deep Positron: A Deep Neural Network Using the Posit Number Sys-
tem,” in 2019 Desigh, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1421-1426, 12 2019.

M. K. Jaiswal and H. K. So, “PACoGen: A Hardware Posit Arithmetic Core Generator,”
IEEE Access, vol. 7, pp. 74586-74601, 2019.

Y. Uguen, L. Forget, and F. De Dinechin, “Evaluating the hardware cost of the posit
number system,” in 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pp. 106-113, 2019.

79

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

H. Fan, H. C. Ng, S. Liu, Z. Que, X. Niu, and W. Luk, “Reconfigurable acceleration of
3D-CNNs for human action recognition with block floating-point representation,”
in Proceedings - 2018 International Conference on Field-Programmable Logic and
Applications, FPL 2018, pp. 287-294, Institute of Electrical and Electronics Engineers
Inc., 11 2018.

H. Fan, G. Wang, M. Ferianc, X. Niu, and W. Luk, “Static Block Floating-Point Quan-
tization for Convolutional Neural Networks on FPGA,” in Proceedings - 2019 In-
ternational Conference on Field-Programmable Technology, ICFPT 2019, vol. 2019-
December, pp. 28-35, Institute of Electrical and Electronics Engineers Inc., 12 2019.

X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance fpga-based cnn
accelerator with block-floating-point arithmetic,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 8, pp. 1874-1885, 2019.

P-Y. Tsai, T-l. Yang, C-H. Lee, L.-M. Chen, and S.-Y. Lee, “Design of a Tunable Block
Floating-Point Quantizer with Fractional Exponent,” in 2019 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pp. 1-5, 2019.

P.Y.Tsai, T. 1. Yang, C. H. Lee, L. M. Chen, and S. Y. Lee, “Tunable Block Floating-Point
Quantizer with Fractional Exponent for Compressing Non-Uniformly Distributed
Signals,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,
pp. 1245-1254, 4 2020.

G. Lentaris, G. Chatzitsompanis, V. Leon, K. Pekmestzi, and D. Soudris, “Combining
arithmetic approximation techniques for improved CNN circuit design,” in ICECS
2020 - 27th IEEE International Conference on Electronics, Circuits and Systems, Pro-
ceedings, Institute of Electrical and Electronics Engineers Inc., 11 2020.

H. Zhang, Z. Liu, G. Zhang, J. Dai, X. Lian, W. Zhou, and X. Ji, “A Block-Floating-Point
Arithmetic Based FPGA Accelerator for Convolutional Neural Networks,” in 2019
IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1-5,
2019.

C. Te Ewe, P. Y. K. Cheung, and G. A. Constantinides, “LNCS 3203 - Dual Fixed-Point:
An Efficient Alternative to Floating-Point Computation,” in Field Programmable
Logic and Application, pp. 200-208, Springer Berlin Heidelberg, 2004.

G. A. Vera, M. Pattichis, and J. Lyke, “A dynamic dual fixed-point arithmetic archi-
tecture for FPGAs,” International Journal of Reconfigurable Computing, 2011.

A. Jacoby and D. Llamocca, “Dual fixed-point CORDIC processor: Architecture and
FPGA implementation,” in 2016 International Conference on ReConFigurable Com-
puting and FPGAs (ReConfFig), pp. 1-8, 2016.

A. Jacoby and D. Llamocca, “Dynamic dual fixed-point CORDIC implementation,” in
2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 235-240, 2017.

Xilinx, “Performance and Resource Utilization for Floating-point.” https://www.
xilinx.com/support/documentation/ip_documentation/ru/floating-
point.html.

80

[104] D. L. N. Hettiarachchi, V. S. P. Davuluru, and E. J. Balster, “Integer vs. Floating-Point
Processing on Modern FPGA Technology,” in 2020 10th Annual Computing and
Communication Workshop and Conference, CCWC 2020, pp. 606-612, Institute of
Electrical and Electronics Engineers Inc., 2020.

[105] J. Nickolls, 1. a. N. Buck, and M. Garland, “Scalable Parallel Programming,” Queue,
vol. 6, no. April, pp. 40-53, 2008.

81

Acknowledgements

Firstly, and most importantly, | want to express my gratitude to my supervisors for all the
support | have received during my Ph.D. studies.

Also, | would like to thank my family for allowing me to participate in that journey,
indeed, it took me effort and time.

83

Abstract
Novel Neural Network Accelerator Architectures for FPGAs

Artificial intelligence and Deep Learning (DL) networks have gone through a long journey
and proved useful in many application domains: the deployment is so ubiquitous nowa-
days that the system users are often unaware of the presence of such algorithms.

Although the earliest DL networks date back to 1965, the first proposals did not enjoy
direct success: other algorithms, like Support Vector Machines (SVMs), were used instead.
Insufficient computational power was the main obstacle for DL, and the problem was
solved by the Graphical Processing Units (GPUs).

This thesis focuses on problems and challenges running otherwise proven and ac-
cepted DL algorithms on embedded resource-constraint targets, Field Programmable Gate
Arrays (FPGAs). There are two main questions stated and answered in this thesis. First,
is it feasible to execute the backpropagation directly in hardware in case of unsupervised
networks? And second, is it possible to replace the Floating-Point (FP) data in these al-
gorithms without retraining the network and construct a hardware-efficient Processing
Element (PE) for DL algorithms based on the new replacement data type?

The thesis proposes three architectures, baseline (BL), CAE with efficient Communica-
tion (CCom), and Resource Optimised CAE with efficient Communication (CCom-RO) for
Contractive Autoencoder (CAE) DL network to answer the first question. CAE is a flavor
of Autoencoder (AE) and uses unsupervised training process. Therefore, as CAE does not
require labeled data, the training process can execute throughout the system’s entire lifes-
pan to adapt to environmental drifts.

The proposed architectures’ novelty is that the backpropagation training process is
included in Hardware (HW).

These three proposed architectures differ in communication scheme and optimization.
Otherwise, all three architectures include the HW based training and use the node level
parallelism: each network node executes as an individual PE. Furthermore, each PE wraps
a Digital Signal Processing (DSP) slice available in the target platform: Xilinx Zyng-7020
System On Chip (SoC), resulting in efficient design.

The proper functionality of the architectures is proven using the MNIST digital
database of handwritten digits. Also, synthesis results and performance figures of the
proposed architectures are presented.

Next, the thesis looks further and searches for data type suitable to replace floating
point representations in DL networks. FP data is suitable for GPUs, but realizations on
FPGAs infer a lot of resources compared to accelerators for integer-like data arithmetics.

In literature, there are proposals to use even binary representations for weight values
in DL networks, i.e., it can be concluded that the numerical range provided by floating
point values is optional for successful deployment. However, the drawback of such deep
quantization is that the network has to be retrained.

As a result of the analysis of the YOLOv2 Convolutional Neural Network (CNN), the
thesis provides a novel Triple Fixed-Point (TFxP) representation. The proposed format
uses two bits to select the radix point location, giving an adjustable dynamic range to a
conventional fixed point representation. The simulation results show that the precision of
the YOLOvV2 network did not change after converting floating point weight values to the
proposed type. And the precision was preserved without retraining.

Also, the thesis proposes not to analyze the inference precision of the network af-
ter the data type conversion but rather to compare the converted and original network
outputs. This is because approximation of the calculations and weight values can even
improve the precision, as shown in the thesis, and therefore, yield wrong conclusions re-

84

garding the suitability of the conversion. The network has to perform the same after con-
version; the precision should not decrease, and at the same time, it should not increase
either.

The simulation results of the converted YOLOv2 network are acquired using MATLAB.
However, MATLAB does support calculations using the proposed TFxP values. Therefore,
this thesis also implements C and CUDA MATLAB extensions to add the necessary support.

Further, the thesis proposes a Multiply-Accumulate (MAC) unit based on the novel
TFxP data type. The proposed architecture accepts TFxP inputs with different ranges and
internally adjusts the values to guarantee the exact pre-defined radix point location for
multiplication results. This allows the use of the internal accumulation paths of the DSP
slice, resulting in fewer additional external HW required to complete the design. Also,
synthesis and performance results are presented.

The presented architectures can be extended as future work. For example, the pro-
posed CAE implementation can be cascaded with another type of DL algorithm and use
the extracted features as the input to the second processing stage. Also, the TFxP based
MAC unit calls for further research: the exact architecture of possible DL execution plat-
form has to be designed, using the proposed MAC unit as the building block.

85

Kokkuvote
Uudsed narvivorkude kiirendite arhitektuurid FPGAdele

Tehisintellekti ja stivadppe algoritmid on labi teinud pika arengu ja tdestanud enda kasu-
likkust erinevates valdkondades: tanapaeval leiab nende rakendusi koikvoimalikest erine-
vatest slisteemidest ja stisteemi kasutajad ei ole nende algoritmide kasutamisest enam
tihti teadlikud.

Stivadppe algoritmidel on pikk ajalugu, esmased teadust6od on avaldatud juba 1965
aastal. Sellele vaatamata ei leidnud algoritmid esmalt kuigivord kasutust ja konkureerivad
algoritmid nagu naiteks tugivektor-masinad leidsid ennemini rakendust. Pohiliseks takis-
tuseks stivadppe algoritmide laialdasemaks kasutuseks voib pidada ebapiisavat arvutus-
joudlust. See probleem sai aga lahenduse seoses graafikaprotsessorite kasutusele votuga.

Kaesolev doktoritoo keskendub siivadppe algoritmide rakendamisele piiratud joudlu-
sega seadmetel nagu naiteks viliprogrammeeritav loogika (FPGA). Kiesolevas to6s pusti-
tatakse ja pakutakse vastus kahele kiisimusele: kas oleks voimalik ja ka otstarbekas konst-
rueerida riistavaline kiirendi slivadppe algoritmidele, mis tuginevad juhendamata 6ppi-
misele (unsupervised learning) ja kas stivadppe algoritmides oleks tldisemalt voimalik il-
ma algoritmi uuesti petamata asendada ujukoma andmed méne sobivama andmettiilibi-
ga, mis voimaldaks konstrueerida riistvaraliselt saastlikuma kiirendi.

Esiteks pakutakse selles t66s vélja kolm arhitektuuri "lepingulise autoenkood-
ri"(contractive autoencoder) slivadppe algoritmi realisatsiooniks. See algoritm on oma
olemuselt autoenkooder ja voimaldab oma olemuselt juhendamata 6petamise (unsuper-
vised leaning) protsessi. Ehk siis teisisonu see algoritm ei ndua treenimiseks eelnevalt
ettevalmistatud ja sildistatud andmeid ja seetottu voib Gppe protsess kesta ka kogu
stisteemi kasutusaja jooksul. Jarjepidev algoritmi treenimine voimaldab siisteemil naiteks
kohanduda keskkonna muutustega.

Valjapakutud arhitektuuride uudsus seisneb just nimelt asjaolus, et ka algoritmi treeni-
mise protsess on teostatud tdielikult riistvaraliselt, mis siis omakorda voimaldab algoritmil
jarjepidevalt 6ppida nagu see pohimotteliselt taolise algoritmi puhul voimalik on.

Kolme erineva pakutud realisatsiooni erinevus seisneb kommunikatsiooni kanalis ja
optimeerimise meetodites. Muus osas on arhitektuurid samavaarsed. Koik kolm varianti
sisaldavad riistvara pohist treenimist ja samuti on koéigi kolme arhitektuuri paralleel t66t-
luse pohimotted samad. Samuti, koigi kolme arhitektuuri puhul sisaldab iga arvutusiiksus
Uhte digitaalset signaaliprotsessorit, mis on t66s kasutatud testplatvormil, Xilinx Zyng-
7020, realiseeritud riistvaras ja kasutamiseks valmis.

Korrektse funktsionaalsuse hindamiseks kasutatakse antud t66s MNIST andmebaasi
kasikirjalistest numbritest. Lisaks esitatakse t60s koikide arhitektuuride kohta riistvara
stinteesi tulemused ja joudlusnaitajad.

Edasi votab kaesolev t66 laiema vaate ja anallilisib voimalusi siivadppe algoritmides
ujukoma arvutuste asendamiseks. Kirjandusest leiab edukaid rakendusi, kus ujukoma for-
maat on asendatud isegi binaarsete vaartustega, seega voib jareldada, et see on on kind-
lasti voimalik ja ujukoma esituste diinaamiline diapasoon ei ole ilmtingimata vajalik. Vaata-
mata edukatele kasetustele nduavad taoliselt konverteeritud algoritmid uuesti petamist.

Reaalseks analiitisiks kasutatakse selles t66s YOLOv2 konvolutsiooni algoritmi, mille
tulemusena pakutakse valja uudne formaat: kolme erineva tapsusega pisipunkt esitus,
kus tapne koma asukoht maaratakse formaadis sisalduvate kahe lisabiti abil. Simulatsiooni
tulemused naitavad, et taoliselt imber konverteeritud YOLOv2 algoritm kaitub sarnaselt
kasutades kas siis ujukoma arvutusi voi t66s valja pakutud uudset formaati.

Lisaks pakub t66 olulise kriteeriumi andmettitibi sobivuse analiilisiks. Nimelt, nagu on
ka t66s naidatud, voivad uuest andmetiilibist tingitud lahendused kohati isegi originaal

86

algoritmi tapsust parandada, millest voib teha uue andmetiilibi sobivuse kohta valesid
jareldusi. Seetottu antud t66s vorreldakse teisendatud algoritmi valjundit originaalrea-
lisatsiooniga: sama sisendi korral peavad valjundid olema véimalikult sarnased ja kogu
algoritmi tapsus ei tohiks ei suureneda ega kahaneda.

Algoritmide simulatsioonid on antud t66s labi viidud MATLAB tarkvaraga. Kuivord aga
MATLAB ei toeta arvutusi kasutades t66s valja pakutud uudset formaati, siis on antud
doktoritd6 raames ka valja to6tatud C ja CUDA programmeerimiskeeltel baseeruv taien-
dusmoodul MATLAB-ile.

Lopetuseks pakutakse kadesolevas doktoritéos valja uudsel andmetiilibil baseeruv
korrutamis-liitmis seade (MAC). Esitatud realisatsioon aktsepteerib sisenditena vaartusi,
mis voivad kasutada erinevaid tapsusi ehk siis vaartusi, milledes koma koht on erineval
positsioonil nagu vilja pakutud formaat voimaldab. Tagamaks, et korrutamise tulemustes
oleks koma koht eelnevalt maaratud positsioonil mistahes sisendite kombinatsiooni pu-
hul, nihutatakse sisendvaartuseid vastavalt. Taoline optimeerimine véimaldab kasutada
riistvaras juba leiduva konventsionaalse korrutus-liitmis seadme sisemisi struktuure ja
valtida lisatava riistvara hulka. Samuti esitatakse uudse korrutus-liitmis seadme riistvara
slinteesi- ja joudlusnaitajad.

Antud doktoritdos valja pakutud lahendusi saab ja tuleks jargnevates t66des edasi
arendada. Esiteks, pakutud autoenkooderit saab kasutada sisend andmetest oluliste tun-
nuste eraldamiseks ja saadud andmeid omakorda kasutada sisendina jargnevale sivadppe
algoritmile. Samuti tuleb edasi arendada pakutud korrutamis-liitmis seadme kasutusvoi-
malusi, uurides erinevaid voimalikke arhitektuure, mis kasutaks valja pakutud seadet ja
andmetidpi.

87

Appendix 1

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based
Architecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 230-230, Institute of Electrical and Electronics
Engineers Inc., 5 2020

89

An Efficient FPGA-based Architecture for
Contractive Autoencoders

Madis Kerner*, Kalle Tammemie*, Jaan Raik*, Thomas Hollstein**
*Tallinn University of Technology, Tallinn, Estonia
Frankfurt University of Applied Sciences, Frankfurt, Germany
Email: madis.kerner@taltech.ee, kalle.tammemae @taltech.ee, jaan.raik @taltech.ee, hollstein @fb2.fra-uas.de

Abstract—Deep learning neural networks have gained much
attention in recent research. Excellent results in various domains
have proved the usefulness of such algorithms. However, training
a deep learning network requires substantial computational
effort; therefore, resource-constrained systems like edge devices
in the IoT domain still lack full implementations, and training
of the network is offloaded to the cloud. Online or unsupervised
training of the network, on the other hand, is often a must if
the system has to adjust to possible drift of the environment
parameters or there is not enough data available initially. This
paper proposes the first Xilinx Zynq FPGA (Field Programmable
Gate Array) based implementation of the contractive autoencoder
(CAE), including training of the network.

I. INTRODUCTION

Deep learning (DL) algorithms have been proved to be
useful in various domains: image recognition, natural language
translation, human activity recognition, and anomaly detection
[1]1, [2], [3]. However, the current state-of-the-art solutions
rely on graphical processing units and other general-purpose
hardware accelerators.

The DL algorithms extract the essential features of the
input signal automatically; this enables automatic learning and
increases the DL modeling capabilities [4].

Before the deployment, DL algorithms need training, which
requires substantial computational power. Therefore, the net-
work is either trained offline, or using the cloud [5].

The broader focus of this work is related to the unsu-
pervised DL algorithms and implementations on resource-
constrained systems. One class of this kind of methods are
autoencoders, which reproduce the input signal to its output.
The middle layer of an autoencoder contains compressed
features [6], which can be used for different purposes, like
data-compression [7].

[8] describes the framework for FPGA based forward pass
execution of various DL networks but does not include the
training, which has to be carried out separately.

Considering autoencoders, [9] provides the study of an
FPGA based sparse stacked autoencoder, but again, it does
lack the training.

Using high-level synthesis is another approach found in
the literature; [10] provides the solution to train stacked au-
toencoders. However, the proposed solution lacks the training
speed and the contraction term.

The main contribution of this work is to provide the first
hardware-based implementation of the Contractive Autoen-

coder (CAE) [11]. Also, this paper follows proposals to use
shared weights on the input and output layers [12] and fixed-
point representations for weights and biases [13].

The proposed architecture uses node-level parallelism. For
back-propagation, additional parallelism was achieved by max-
imally reusing the computational results.

The functionality of the solution was verified using the
downscaled MNIST dataset [14]. The 38us total execution
time for a forward pass and training yields to a maximum of
26KS input rate.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436-444, 5 2015.

[2] J. Schmidhuber, “Deep Learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85-117, 2015.

T. Plotz and Y. Guan, “Deep Learning for Human Activity Recognition

in Mobile Computing,” Computer, vol. 51, no. 5, pp. 50-59, 2018.

[4] H. E Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep

learning algorithms for human activity recognition using mobile and

wearable sensor networks: State of the art and research challenges,”

Expert Systems with Applications, vol. 105, pp. 233-261, 9 2018.

J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-

based activity recognition: A Survey,” Pattern Recognition Letters, vol.

119, pp. 3-11, 2 2018.

[6] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” Science (New York, N.Y.), vol. 313, no.
July, pp. 504-507, 2006.

[7] O. Yildirim, R. S. Tan, and U. R. Acharya, “An efficient compression of
ECG signals using deep convolutional autoencoders,” Cognitive Systems
Research, vol. 52, pp. 198-211, 2018.

[8] L. D. Medus, T. lakymchuk, J. V. Frances-Villora, M. Bataller-
Mompean, and A. Rosado-Munoz, “A Novel Systolic Parallel Hard-
ware Architecture for the FPGA Acceleration of Feedforward Neural
Networks,” IEEE Access, vol. 7, pp. 76 084-76 103, 2019.

[9] M. G. Coutinho, M. F. Torquato, and M. A. Fernandes, “Deep neural

network hardware implementation based on stacked sparse autoencoder,”

IEEE Access, vol. 7, pp. 40674-40694, 2019.

J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked Autoen-

coders Using Low-Power Accelerated Architectures for Object Recogni-

tion in Autonomous Systems,” Neural Processing Letters, vol. 43, no. 05,

pp. 445-458, 2016.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive

auto-encoders: explicit invariance during feature extraction,” in Proceed-

ings of The 28th International Conference on Machine Learning (ICML-

11), no. 1, 2011, pp. 833-840.

A. Suzuki, T. Morie, and H. Tamukoh, “FPGA implementation of

autoencoders having shared synapse architecture,” in PLoS One, vol. 13,

no. 03, 2018, pp. 1-22.

J. Jiang, R. Hu, D. Wang, J. Xu, and Y. Dou, “Performance of the fixed-

point autoencoder,” Tehnicki vjesnik - Technical Gazette, vol. 23, no. 02,

pp. 77-82, 2016.

Y. LeCun, C. Cortes, and C. J. Burges,

digit database,” ATT Labs, vol. 2, 2010.

http://yann.lecun.com/exdb/mnist/

3

[5

[10]

[11]

[12]

[13]

[14] “MNIST handwritten

[Online]. Available:

Appendix 2

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Novel Architectures for
Contractive Autoencoders with Embedded Learning,” in 2020 17th Biennial
Baltic Electronics Conference (BEC), vol. 2020-October, pp. 1-6, IEEE Com-
puter Society, 10 2020

93

Novel Architectures for Contractive Autoencoders
with Embedded Learning

Madis Kerner*, Kalle Tammemée*, Jaan Raik*, Thomas Hollstein**
*Tallinn University of Technology, Tallinn, Estonia
TFrankﬁu’l University of Applied Sciences, Frankfurt, Germany
email: madis.kerner@taltech.ee, kalle.tammemae@taltech.ee, jaan.raik@taltech.ee, hollstein @tb2.fra-uas.de

Abstract—A Contractive Autoencoder (CAE) is an unsuper-
vised Artificial Neural Network (ANN) with a regularization term
controlling the internal representations. During its operation,
the autoencoder extracts dominant features of the input, which
can be either used for communication bandwidth reduction
or as an input to another neural network. While hardware
implementations for the forward pass of various ANNs can
be found in literature, this paper proposes three novel archi-
tectures for Field Programmable Gate Array (FPGA) based
implementations of CAE, for the first time with embedded
learning: (i) topography-affine inter-layer communication via
crossbar; (ii) efficient carousel-type communication scheme; (iii)
optimized carousel-type architecture. All architectures use node-
level parallel calculation scheme and have been implemented on
a Xilinx Zynq 7020 System On Chip (SoC).

I. INTRODUCTION

Successful applications of Deep Learning (DL) algorithms
include image recognition, natural language translation, hu-
man activity recognition, and anomaly detection [1], [2], [3].
Different implementation will and have moved the boundaries
of contemporary life in various ways.

The appealing benefit of DL is its ability to extract the
essential features of the input signal automatically; these
algorithms do not rely on domain expert knowledge and
manual pre-processing of the input. Automatic feature extrac-
tion increases the modeling capabilities of DL [4].

Before the deployment, DL algorithms need training. This
procedure adjusts the internal weights and biases of the
network to ensure the desired behavior. However, training a
DL network requires substantial computational power, and
therefore, current implementations on resource-constrained
systems do not include it. Instead, the model is trained offline,
or the task is offloaded to the cloud [5].

This work focuses on unsupervised DL algorithms and im-
plementations on resource-constrained systems; unsupervised
behavior enables autonomous operation. One class of this
kind of methods are Autoencoders (AEs), which reproduce
the input signal to its output, while internal weight values are
updated to minimize the difference. The middle layer(s) of an
AE contain compressed features [6], which can be used for
different purposes, like data-compression [7] or as input to
DL network to follow.

978-1-7281-9444-8/20/$31.00 (©2020 IEEE

While the state-of-the-art addresses FPGA based ANN
accelerators ([8], [9]), CAE with embedded learning is missing
from the literature. [10] provides an FPGA based implemen-
tation of the sparse stacked autoencoder. However, the work
does not implement hardware-based training of the network,
only forward pass.

[11] provides a framework for the forward pass calculations
for various architectures, with no training included. However,
several applications may require embedded training.

[12] uses high-level synthesis to train stacked autoencoders.
While autoencoders are all inherently related, the solution
lacks the contraction term and training speed.

The main contribution of this work is to provide the
first full hardware-based implementation of the CAE [13],
comprising hardware-implemented learning. In addition, this
paper follows proposals to use shared weights on the input and
output layers [14] and fixed point representations for weights
and biases [15].

The rest of the paper is organized as follows: Section II pro-
vides the necessary background information about CAE and
the equations for the forward path and training of the network,
Section III presents and analyzes the proposed architectures of
the Xilinx Zynq based implementation of CAE, Section IV
explains the functioning of the proposed architectures and
presents timing and hardware utilization figures, and Section V
provides the conclusions.

II. CONTRACTIVE AUTOENCODER

An AE is a type of ANN that tries to reproduce the input
signal to its output while reducing the data dimensionality [6].
Fig. 1 presents the architecture of an AE network, consisting
of encoding and decoding parts.

The internal representation, however, does not necessarily
converge to a useful generalization of the input unless some
quality measure, known as regularization, is explicitly set. One
type of an AE which does this is the Contractive Autoencoder
(CAE) [13]; regularization is to ensure that small changes in
the input yield to the same internal representation, effectively
driving the middle layer towards more general features.

A. Forward Pass

This section presents the equations for CAE forward pass
calculations, where n is the number of inputs and outputs, and
m is the count of middle layer nodes.

decoding

encoding

Figure 1: Architecture of the AE. Middle layer Y is the com-
pressed representation of input X, and Z is the reconstruction
of X. The rest of the figures and tables use the same coloring
scheme: blue color denotes the external nodes, while green
color identifies the middle layer.

The forward pass starts with the calculation of hidden
representation Y corresponding to the input X (Eq. (1)). The
activation function g(x) used in the current proposal is the
Rectified Linear Unit (ReLU), first proposed in [16].

Yi =g sz‘jﬂﬁi + b;'c)> (1
=1

Next, using Eq. (2), the internal representation Y is used to
calculate Z, the output.

zi=yg Z wijy; + b @
=t

Egs. (1) and (2) complete the forward pass calculation.
However, this paper addresses the training of the CAE as well.

B. Loss Function

Training of a ANN is about minimizing the loss function,
which describes the difference between the actual and de-
sired output. We have selected computationally efficient Mean
Squared Error (MSE) for that (Eq. (3)).

1 n
L(X, 7)==~ 2 — ;)2 3)
(%.2)= 33 (e =)

In the case of CAE, the loss function includes a regulariza-
tion term to force the internal representation to be less sensitive
to the input, yielding to more robust features. Mathematically
this term translates to the Frobenius norm of the Jacobian
matrix (Eq. (4)).

n m O 2
ety =23 (52) @

i=1 j=1

The total loss of the CAE is the sum of Eqs. (3) and (4):
Eq. (5), where 0 = W, B, B is the collection of all the
parameters, weights and biases, present in the network and A

is the coefficient to limit the amount of the contraction term
in the total loss.

Joap(0) = Lz, g(f(2)) + Al s (2)]|% (%)
C. Gradient Descent

Training of the CAE is about minimizing the loss function,
ideally to zero. Gradient descent is the standard algorithm for
finding such adjustments.

To simplify the notations to follow, we first mark the
squared error term in Eq. (3) as I; = (z; — x;)2. After this
substitution, we can calculate the derivative of the MSE loss
w.r.t. every weight value w,, using the chain rule: Eq. (6).

Owyy 1 ; <8zi ad; 8wuv> ©®)

The terms J1;/0z; and 0z;/9d; in the Eq. (6) are computa-
tionally light, while the calculation of dd; /0w, follows the
chain rule, again. It is important to note the impact of sharing
the weights in input and output layers: if ¢ = u in Eq. (6) then
dy = Wyy * Yyp,where y, = f(wyy) and the derivative w.r.t
Wy, has to follow the product rule. Equation (7) presents the
derivative of the decoding value.

odi _ [Gnitdes, i@ 2e
: - Yy ey F —
Owyy Yo + Wu G2 o=, if i) = u

Contraction term adds additional member to the final weight
update, Eq. (8) presents the formula for calculating the deriva-
tive of the contraction term w.r.t. Wy,

(9'!’2'1' 6yj 2
= 2w, | ==
awij Wis <8C]' (8)

D. Weight and bias update values

The negative value of the gradient specifies the direction of
change for a parameter to minimize the loss function (Eq. (5)).
Egs. (9) and (10) presents the update calculation for the
weight and bias values, where « amd /3 stand for the learning

rate.
_ (9[/ 87‘7;]'
Wi =t e <8wi.7‘ M Aawi]') ©
oL
by = b; — Babi (10)

III. PROPOSED ARCHITECTURES

CAE forward pass, and backpropagation calculations in-
volve many loops: all the nodes in a layer need to multiply
the previous layer inputs by the corresponding weights and
accumulate the results. Unrolling the loops provides excellent
possibilities for hardware accelerators.

All three following architecture proposals make use of the
digital signal processing (DSP) slices for Multiply-Accumulate
(MAC) operations, and therefore, the maximum number of
possible parallel calculations is equal to the amount of avail-
able DSP based Processing Elements (PEs). Le., keeping all

the DSP slices busy at all times gives the best performing
accelerator. However, to maximize the use of DSP slices, the
hardware utilization per PE has to be small to accommodate
the design in the target hardware. Also, the communication
channel should use the minimum amount of hardware while
providing a reasonable bandwidth to feed the PEs with data.

The following proposals use the node-level parallelism:
all the network nodes in CAE make use of one PE. The
differences involve communication channel selection and node
pruning. All the weight values and intermediate calculations
are stored in distributed block RAMs associated with PEs.

The target hardware for this research is Xilinx Zyng-
7020 SoC, it incorporates dual-core ARM Cortex-A9 plus
Programmable Logic (PL). The PL section contains 85K
logic cells, 53200 LUTs, 106400 flip-flops, 140 36Kbit block
RAMs, and 220 DSP slices. The ARM cores are responsible
for configuring the PL based CAE network and feeding it with
the input data.

A. Timing Estimations

This section presents the timing estimations for CAE using
the node-level parallelism.

During the forward pass, it takes the number of equal to the
previous layer size MAC operations for a node to complete
its output. Adding the bias and applying the computationally
inexpensive ReLU activation add another two cycles per layer
(Egs. (1) and (2)). Eq. (11) presents the generalized formula
for calculating the required cycles to complete the forward
pass, where [stands for the number of layers and n; is the
i-th layer input size.

!

wad = Z(TLI + 2)

i=1

1D

In total, it takes n + m + 4 cycles to complete the forward
pass for a network presented in Fig. 1.

Analysis of the Eq. (9) gives the required cycle count to
update a single weight value: 7n + 10. Therefore, the total
cycle count to update all the weights equals to m(7n + 10),
where m is the number of weights assigned to a node.

To accelerate the backpropagation, we have determined the
common parts present in calculations to maximize the data
reuse: Egs. (12) and (13).

"7 N0z 0d; 12
s, = 3 Koy (13)

n aC]'

i=1
Eq. (14) presents the weight update formula after extracting
and substituting the common parts.

ari J
P (14)

After the substitutions, the total cycle count to update a
single weight value is reduced to 11 cycles. Calculation of S

’LUZ']' = UJZ']' - OK(ZCZ'S]' + Kly]) —a\

e T
L ﬁéﬁé\‘ |
f

55 —B—ax 5 B8 —a

Figure 2: Data-path of the middle and IO layer PE. Blue color
designates the items only present in the external layer, while
the green color marks middle layer only elements. Items with
no background color are present in every PE

and K; values takes n+ 1 and 5 cycles, respectively. Eq. (15)
defines the cycle count required to update all the weights
in the network presented in Fig. 1 in the case of node-level
parallelism.

Chp=1lm+n+6 (15)

B. Architecture 1: Baseline (BL)

The BL architecture follows the logical structure of the
CAE (Fig. 1); every node is a separate PE, and the ordering
of calculations follows the layered structure. Forward pass
calculations start by propagating the input values to the middle
layer nodes where MAC operations take place (Eq. (1)),
followed by similar operations in the output layer (Eq. (2)).
Training of the network follows similar layer-to-layer flow but
in the opposite direction, from the output to the input.

This scheme means that while the internal and external
nodes are well separated and more straightforward controlling
Finite State Machines (FSMs) can be used, only one layer is
executing at a time; the resources associated with the other
layers are staying idle.

Figure 2 presents the data-path of the PEs, and the coloring
scheme follows the rules presented in Fig. 1.

The central part of the PE is the DSP slice, which carries
out the calculations. The output of the DSP can be stored to
one of the registers, to the block RAM holding the weight
values w;;, or transmitted to another node via the cross-
bar connection point C,,, and the inputs use multiplexers to
connect to the data sources. DSP can execute a set of pre-
defined instructions; the instruction selection and switching
of the input multiplexers are under control of the FSM. This
setup is sufficient for the forward pass and backpropagation
calculations.

Network nodes in CAE need to communicate with each
other as the output calculation and updating the weight values
are performed in collaboration. BL architecture uses the cross-
bar switch (Fig. 3) as the communication channel to achieve
that. Both sides of the cross-bar have controlling ports CTRL
for reading and writing the input and output data and for
network configuration purposes, and dummy loads DLd to

CTRL | > < > < > < » CTRL
Soo S10 S20

T o N g T
So1 S11 Sa1

N3 N3

Ny Ny

" So2 S12 S22 P

5 5

. >\ -
Sos Si13 Sa3

N7 DLd

Figure 3: Layout of the butterfly cross-bar switch. Layers of
the CAE connect to the different sides. CTRL ports are used
by the ARM processing unit for flow control and data transfer.

balance the cross-bar and assist synthesizer in pruning the
redundant hardware.

C. Architecture 2: Efficient Communication (CCom)

The second proposal combines the network layers to over-
come the phenomenon of the idling layers present in BL
architecture. Further, it replaces the crossbar switch by the
simple carousel-like communication (CCom) channel (Fig. 4).

This kind of architecture reaches the maximum performance
while executing the layers with the size equal to the count
of available PEs, or if the network layer node count is the
multiple of PE count: it takes the number of equal to layers
input size cycles for a layer to complete the forward pass. Node
N, in Fig. 4 can proceed with the next layer after receiving the
last input value without waiting for the node Ny to complete.

The same does not hold for smaller layers: n — m PEs
are not needed and stay idle. While the CCom architecture
can not avoid that problem entirely, it tries to mitigate the
consequences by calculating multiple sets of outputs for a
smaller layer. In the case of CAE, an output layer node has
to receive all the middle layer outputs to complete its forward
pass calculation, for example. It takes m cycles if multiple sets
of interleaved middle layer outputs are available, compared
to n cycles required otherwise. lL.e., performing redundant
calculations speeds up the start of the next layer calculations.
The same holds for the S (Eq. (13)) calculations in case of
backpropagation.

Table I presents an example of the described scheme for the
middle layer representation in the network with n = 7 external

v | [] []

o]
T T T
Y Y Y
SN R SN N N N

Figure 4: Carousel like communication channel. Data advances
in every clock cycle. The node CTRL is connected to the
controlling ARM processing unit.

layer and m = 5 internal layer nodes. Every node adds w;;x;
to the data present in the carousel and forwards it, completing
the Eq. (1).

However, this scheme requires the total amount of nodes
to be equal to multiple of the internal layer units m; the
following calculations require the set of internal layer values
to arrive in the correct sequence. Therefore, the network must
include dummy nodes D; ... Ds. These dummy nodes act as
a network node with all weight values set to zero and forward
the data.

Table I: Performance biased calculation scheme of CCom
architecture. Multiple sets of values are calculated to speed
up the execution steps to follow.

D3 D2 D1 N7 NB N5 N4 N3 N2 Nl
YO O VO VP YO VO [y v v v
YO O YO O @ Y@ v [y [y @ [y

1 1 1 2 2 2 2 2 1 1
YO O O O v YO v v Y [y
YO YO O YO YO VO YO [v® [y @ [y @
YO YO O v [y I O [y & v [y [y
YO YT O YO YO vO [y [y [y O [y
YO YO [y O O I v O YO v O

2 2 2 1 1 1 1 1 2 2
oyt oyt |y b oy
Y v vy v v [y v vt v |
YO YO YO v [y v [y [y [y [y D

Figure 5 presents the data-path of the CCom PE, where
all the PEs implement all the features. This design choice
increases the throughput of the network at the cost of the
hardware resources.

D. Architecture 3: Resource-Optimized (CCom-RO)

Architecture CCom-RO shares the carousel-like communi-
cation channel (Fig. 4) design with CCom but is resource
optimized version of it.

While the PEs in CCom-RO are still combined, only m
nodes have the full functionality. The rest n—m nodes include
the necessary hardware to support the middle layer related
calculations only. Naturally, this design choice reduces the
throughput: the network calculates only one set of middle layer
features, causing maximum of n — m clock cycles delay for a
PE to receive data for further operations.

Table II presents an example of CCom-RO network with
n = 7 external layer- and m = 5 internal layer nodes. Only the
first m nodes, Ny ... N5, hold the y; values upon completion
of the middle-layer calculation, the remaining n — m nodes
have simplified structure.

Figure 5 presents the data-path of the CCom-RO architec-
ture PE. As stated, this architecture has a different design for
the PEs: green color indicates the additional paths and registers
included in the first m PEs, while the reduced PEs comprise
the uncolored part only.

IV. RESULTS AND ANALYSIS

First of all, an FPGA based architecture needs to be syn-
thesizable and provide a feasible amount of functionality. As

Table II: Resource optimised calculation scheme for CCom-
RO architecture. Only one set of internal layer values are
calculated.

N 7 N 6 N 5 N. 4 N: 3 N. 2 N 1
Yi| -] - [Y5 | Yy [Ys | Yo
Yo [Y1 | - - | Y5 [Ya|Ys
Y3 YQ Y1 - - Y5 Y4
Yy Y3 Yo Y1 - - YE

Y5 Y4 Y3 YZ Yl - -
- | Y5 | Yy [Y3 [Yo | Yh | -
-l - 1Y Y5 [Yo [V1

Q
]

v

ble) p(d)
!—T Y
LY
—a| 2
L —p A F 5

Figure 5: Data-path of the CCom and CCom-RO PEs. In case
of CCom, every PE implements all the elements. For CCom-
RO, reduced PEs do not incoroprate the green colored features.

RAM |9

g

all the proposed architectures use one DSP slice per PE, the
maximum number of parallel PEs equals to the number of
available slices. Selected target platform Xilinx Zynq 7020
has 220 DSP slices.

Table III provides the synthesis results. All the architectures
were synthesized using 30 internal layer nodes, 100MHz clock
speed, and the external layer size was increased to fill the
target hardware. The unit for the size value is hardware
slices. The column Chnl Size provides the resource usage for
communication channel: cross-bar for the BL and carousel-
like channel for the CCom and CCom-RO architectures, and
the columns DSP and bRAM hold the total amount of DSP
slices and block RAMs used, respectively.

The BL allows the maximum network with fewest nodes to
be synthesized to the target hardware. Although the PEs use
fewer resources than in the case of the other two architectures,
the size of the cross-bar switch is the bottleneck; the carousel-
like chain is more straightforward and not as resource hungry.

CCom results in a higher node count compared to the BL.
While combining the layers functionality results in a higher
amount of resources required by a single PE, the communica-
tion channel is lighter, boosting the maximum network size by
50 additional nodes. It has to be noted that CCom synthesis
has 150 external- and 30 middle layer nodes, merged into the
combined count.

The largest CAE can be synthesized using the CCom-RO
architecture; again, it has to be noted that the total size for
the external layer is 170 + 30 = 200, the sum of full and

Table III: Maximum network sizes and hardware usage for
CAE synthesis targeting Zynq7020 SoC; the size is expressed
in FPGA slices.

ExtNode MidNode Chnl DSP | bRAM
\ Arch Count | Size | Count | Size Size | Count | Count
i BL 100 65 30 90 7500 130 15
ExtNode Mid+ExtNode | Chnl | DSP | bRAM
[CCom N/A | N/A 150] 105 4377 150 75
| CCom-RO 170 | 75 30 [105 1678 200 100

reduced PEs. The largest possible network was expectable as
the resources allocated for the performance boost included in
the CCom were skipped. The decrease in the communication
channel size is expected as well; only the nodes with full mid-
dle layer functionality use an additional pipeline to transmit
more data at once.

Table IV provides the forward pass and training execution
times for the described architectures and the theoretical max-
imum (Egs. (11) and (15)). The timing results were acquired
using the HDL simulator, and the size of the network was the
maximum achieved during the synthesis: 200 external- and 30
middle layer nodes.

The fastest architecture is CCom, and it is about four times
faster compared to the BL. The usage of the cross-bar switch
can explain the reduced execution time of the BL: a node
has to wait until the channel becomes available to be able
to transmit the data. Similarly, if data from another node is
required for calculations, the node has to wait for it. Further,
many calculation results have to be broadcasted to every PE
in the following layer; only one broadcast can complete in
every clock cycle, the rest of the PEs have to wait for the
communication resources become available. In conclusion,
synchronization by the communication channel yields to more
straightforward design and lower usage of hardware per PE
but slows down the execution.

CCom and CCom-RO use synchronous PEs; the state of
other PEs is known in every time step, and there is no
competition for the communication channel. The availability
of resources is guaranteed by design, ensuring the optimal
execution flow and faster execution times. Also, the commu-
nication channel does not have to implement any handshake
signals.

The fact that CCom-RO is slower compared to the CCom
is expected. However, CCom-RO is still about 1.6 times faster
compared to BL.

Another important observation is that only the CCom archi-
tectures almost reached the theoretical maximum performance.
CCom-RO does not optimize the calculations for the smaller
middle layer, and therefore, the execution speed suffers.

Further, data from the MNIST database of handwritten
digits [17] was used to prove the functionality of the design.
However, this paper does not aim to outperform state-of-the-art
classifiers but uses the MNIST database to prove the operation
of the HW based implementation.

While the database contains 28x28 pixel images, the format
was reduced to 14x14 pixels, resulting in 196 node input

Table IV: Execution time of the CAE with 200 external- and
30 middle layer nodes. The clock speed of the designs was
set to 100MHz.

Arch Forward Pass (u.s) Training (@s)
Theoretical 2.3 5.4
BL 13.4 25.7
CCom 2.8 59
CCom-RO 6.1 9.5

layer, which was possible to synthesize using CCom-RO
architecture. During the experiment, the CAE was trained
using the first 20 images from the MNIST database, and
every digit was input to the network 200 times. The network
converged using 16 bit long fixed-point implementation with
12 fractional bits. In parallel to the hardware execution, Matlab
functional model was used to ensure proper execution.
Figure 6 shows the results of the conducted test: the output
of the 3-layer 196-10-196 nodes CAE (Figure 6b) correlate to
the down-scaled 14x14 MNIST database images (Figure 6a).

(a) Input to the CAE, down- (b) Output of the CAE, using

scaled 14x14 MNIST images. 16.12 fixed-point representation

and 10 internal layer nodes.

Figure 6: Operation example of the trained 3-layer 196-10-196
nodes CAE using 16.12 fixed-point representations.

V. CONCLUSIONS

The novel contribution of this work is to provide entirely
FPGA-based implementations of a CAE, including embedded
learning. The three presented approaches follow proposals to
use shared weights in the input and output layers [14] and
fixed-point representations for weights and biases [15].

The synthesize results and execution speed propose that
mimicking the theoretical architecture of the network (BL)
in hardware is not feasible; resources used by the cross-bar
switch are high compared to the network itself. Also, using
the same set of PEs for all layers (CCom and CCom-RO) prune
the idling nodes and improve the computation efficiency.

A carousel-like communication scheme resulted in faster
execution speed and lower hardware resources used. Whereas
the choice between the architectures CCom and CCom-RO
is the matter of resources to execution speed tradeoff, while
CCom proves that simple communication channel is sufficient
to feed the PEs with data in case of node-level parallelism.

Also, Section III-A proves that extracting the common terms
from backpropagation algorithms can further improve the
node-level parallelism. Rearranging the computational loops

resulted in m(7n 4 10)/(11m + n + 6) = 42300/536 ~ 79
times fewer cycles to update all the weights in the test network.

The functionality of the network was proved using 20
downscaled images from the MNIST database. Every digit was
applied to the network 200 times, and the network converged
using 16 bit fixed-point implementation with 12 fractional bits.

CCom-RO architecture resulted in the network with the
most nodes in the target hardware platform: Xilinx Zynq 7020
can accommodate CAE with 200 external- and 30 middle layer
nodes. While CCom architecture provides the fastest execution
time, it takes 2.8 + 5.9 = 8.7(us) to execute forward pass
and backpropagation in 200-30-200 node CAE, running at
100MHz clock speed.

REFERENCES
[
[2

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

pp. 436444, 5 2015.

J. Schmidhuber, “Deep Learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85-117, 2015.

T. Plotz and Y. Guan, “Deep Learning for Human Activity Recognition

in Mobile Computing,” Computer, vol. 51, no. 5, pp. 50-59, 2018.

[4] H. F. Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep

learning algorithms for human activity recognition using mobile and

wearable sensor networks: State of the art and research challenges,”

Expert Systems with Applications, vol. 105, pp. 233-261, 9 2018.

J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-

based activity recognition: A Survey,” Pattern Recognition Letters, vol.

119, pp. 3-11, 2 2018.

[6] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality

of Data with Neural Networks,” Science (New York, N.Y.), vol. 313, no.

July, pp. 504-507, 2006.

O. Yildirim, R. S. Tan, and U. R. Acharya, “An efficient compression of

ECG signals using deep convolutional autoencoders,” Cognitive Systems

Research, vol. 52, pp. 198-211, 2018.

[8] E. Wang, J. J. Davis, R. Zhao, H. C. Ng, X. Niu, W. Luk, P. Y.

Cheung, and G. A. Constantinides, “Deep neural network approximation

for custom hardware: Where We’ve Been, Where We're going,” ACM

Computing Surveys, vol. 52, no. May, pp. 1-39, 2019.

S. Mittal, “A survey of FPGA-based accelerators for convolutional

neural networks,” pp. 1109-1139, 2020.

[10] M. G. Coutinho, M. E. Torquato, and M. A. Fernandes, “Deep neural
network hardware implementation based on stacked sparse autoencoder,”
IEEE Access, vol. 7, pp. 40 674-40694, 2019.

[11] L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-
Mompean, and A. Rosado-Munoz, “A Novel Systolic Parallel Hard-
ware Architecture for the FPGA Acceleration of Feedforward Neural
Networks,” IEEE Access, vol. 7, pp. 76084-76 103, 2019.

[12] J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked Autoen-
coders Using Low-Power Accelerated Architectures for Object Recogni-
tion in Autonomous Systems,” Neural Processing Letters, vol. 43, no. 05,
pp. 445-458, 2016.

[13] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: explicit invariance during feature extraction,” in Proceed-
ings of The 28th International Conference on Machine Learning (ICML-
11), no. 1, 2011, pp. 833-840.

[14] A. Suzuki, T. Morie, and H. Tamukoh, “FPGA implementation of
autoencoders having shared synapse architecture,” in PLoS One, vol. 13,
no. 03, 2018, pp. 1-22.

[15] J. Jiang, R. Hu, D. Wang, J. Xu, and Y. Dou, “Performance of the fixed-
point autoencoder,” Tehnicki vjesnik - Technical Gazette, vol. 23, no. 02,
pp. 77-82, 2016.

[16] V. Nair and G. Hinton, “Rectified Linear Units Improve Restricted Boltz-
mann Machines,” in Proceedings of the 27th International Conference
on Machine Learning, 2010, pp. 807-814.

[17] Y. LeCun, C. Cortes, and C. J. Burges,

digit database,” ATT Labs, vol. 2, 2010.

http://yann.lecun.com/exdb/mnist/

3

[5

[7

9

“MNIST handwritten
[Online]. Available:

Appendix 3

M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Triple Fixed-Point MAC
Unit for Deep Learning,” in 2021 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), vol. 2021-February, pp. 1404-1407, Institute of
Electrical and Electronics Engineers Inc., 2 2021

101

2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) | 978-3-9819263-5-4/21/$31.00 ©202110.23919/DATE51398.2021.9474020

978-3-9819263-5-4/DATE21/©2021 EDAA

Triple Fixed-Point MAC Unit for Deep Learning

Madis Kerner*, Kalle Tammemie*, Jaan Raik*, Thomas Hollstein*T
*Tallinn University of Technology, Tallinn, Estonia
TFrankﬁ,trt University of Applied Sciences, Frankfurt, Germany
email: madis.kerner @taltech.ee, kalle.tammemae @taltech.ee, jaan.raik @taltech.ee, hollstein @{b2.fra-uas.de

Abstract—Deep Learning (DL) algorithms have proved to be
successful in various domains. Typically, the models use Floating
Point (FP) numeric formats and are executed on Graphical
Processing Units (GPUs). However, Field Programmable Gate
Arrays (FPGAs) are more energy-efficient and, therefore, a better
platform for resource-constrained devices. As the FP design
infers many FPGA resources, it is replaced with quantized fixed-
point impl tations in state-of-the-art. The loss of precision is
mitigated by dynamically adjusting the radix point on network
layers, reconfiguration, and re-training. In this paper, we present
the first Triple Fixed-Point (TFxP) architecture, which provides
the computational precision of FP while using significantly fewer
hardware resources and does not need network re-training.
Based on a comparlson of FP and existing Fixed-Point (FxP)

tations in combination with a detailed precision analysis
of YOLOVZ weights and activation values, the novel TFxP format
is introduced.

I. INTRODUCTION

Deep Learning (DL) algorithms have been successfully
deployed in various domains, including image recognition,
natural language detection, among others [1], [2]. These
algorithms automatically extract the input signal’s essential
features and do not rely on domain expert knowledge and
manual pre-processing.

A DL algorithm has a layered structure and comprises var-
ious types of layers. Each layer includes neurons that receive
and process data from the previous layer and feeds the next
layer. This kind of build-up provides excellent possibilities for
acceleration: all the neurons can execute in parallel. Therefore,
typical platform for running DL is PC based, using Graphical
Processing Unit (GPU).

Due to the success of DL, contemporary research explores
the possibilities to execute these algorithms in resource con-
strained devices as well: Field Programmable Gate Arrays
(FPGAs) form an excellent platform for this. While FPGAs
are power efficient compared to GPUs, the DL algorithms rely
on Floating Point (FP) representations of parameters, which
infer a lot of Hardware (HW) resources. Despite the search for
efficient FP support in FPGAs [3], the available Digital Signal
Processing (DSP) slices are still more suitable for fixed-point
operations.

Although it is undoubtedly possible to perform FP cal-
culations on FPGAs, the inferred HW resources are high:
constructing a half-precision multiply-accumulator, which is
a typical computational unit in Artificial Neural Networks
(ANNSs), requires three DSPs and several hundred LUTs and
registers [4].

Contemporary research tries to overcome this obstacle and
explores different approximation techniques to get rid of FP
representations. Typically, it means quantizing the network
parameters to fixed-point numbers of some sort, or binary
values in extreme cases [5]. Many works have achieved reason-
able inference accuracy using quantized networks, suggesting
that the precision of FP is not required. However, there are
proposals that better precision than the deep-quantization is
necessary [6].

In this paper, we propose a novel Triple Fixed-Point (TFxP)
based Multiply-Accumulate (MAC) unit for ANNs. TFxP
extends the Dual Fixed-Point (DFxP) format [7] by introducing
one additional range. This extra middle range allows extending
the usable dynamic range of the format, while the added HW
cost is small.

‘We show that TFxP can be used as the drop-in replacement
for FP. To justify the proposal, we first analyzed the required
representation range of the YOLOv2 network [8]. This net-
work comprises 23 convolutional layers, which all make heavy
use of MAC operations. Further, as our simulations show, the
YOLOV2 network achieves the same inference precision with
TFxP format as with FP and does not require retraining to
accomplish that.

The rest of the paper is organized as follows: Section II
performs the design space exploration by analysing the weight
and activation values of YOLOV2 network, Section III presents
the TFxP format, Section IV analysis and compares the
average precision of converted network, Section V presents
the XILINX DSP48El based TFxP MAC unit and synthesis
results, and Section VI provides the conclusions.

II. DESIGN SPACE EXPLORATION

This section provides an analysis of a Deep Neural Network
(DNN) to determine the numeric type requirements. The DNN
of our choice was YOLOV2; it is a well-known Convolutional
Neural Network (CNN) and comprises 23 convolutional layers,
among others.

Convolutional layers make heavy use of MAC operations:
kernels move across the input feature map, and input values
multiplied by the corresponding weight values are accumulated
to form the output. Fig. 1 illustrates this operation.

In a typical CNN, 90% of the execution time goes to
the convolutional layers during the inference phase [9]. Le.,
the MAC unit has to be efficient; it should execute fast and
not infer too much of HW to allow the maximum amount of
parallelism.

1404

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 07,2021 at 21:06:20 UTC from IEEE Xplore. Restrictions apply.

L0,0 |To,1|{T02| - |Tom 0,0 0.0 Yoo |Yo.1|Yo2 | - |Yon

L10 | P11 T12| e | Tn Wo,0| Wo,1|Wo,2 Yrod Y (Y2 | - |Yin

0| T2 | To2| o |T2n| % |Wi0|Wia|Wi2| Y 4+b =|Y20| Y21 |T22| - |Y2n

W2,0|W2,1|W2,2

u, U, v

Lm,0Tm,1|Tm2| - |Tmn Ym,0|Ym,1|Ym2| - [Ymn

Figure 1. Convolution: m*n input features X are convolved with u*v weight
matrixes to form the output Y.

To analyze the required range of the network parameters,
we first performed a statical analysis and determined the
minimum, maximum, and median of all the network’s weight
values. After this, we run the inference using a realistic photo,
white image, and black image while recording all the layer
outputs’ extreme and median values. Table I presents the
analyses results.

Table I
ANALYSIS OF THE WEIGHTS AND ACTIVATION VALUES OF YOLOV2.
Mini Maxi Medi
Weights -18.6 99.5 13.7
Photo -113.9 106.3 0.7
All white -57.9 31.6 1.4
All black -23.1 28.6 1.2

As the analysis shows, most activation and weight values
are low in magnitude. However, there are larger values present
as well. The candidate drop-in replacement for FP should
cope with the range and keep the maximum precision for
median values. Additionally, the chosen data type has to use
a minimum amount of bits to cope with memory bandwidth’s
limitations.

According to Table I, a numeric type with an 8-bit integer
part can fit all the extreme values without over- or underflow.
However, median values suggest that this range is not required
for most of the calculations. While FP representations inher-
ently solve this problem, fixed-point numbers have to use other
means to overcome this.

A typical approach found in literature either makes use of
dynamically adjusting the radix point in fixed-point numbers
[10], or uses FPGA re-configuration to change the numeric
format [11]. Both of these approaches have drawbacks: dy-
namically adjusting the radix point requires arbitrary shifters
in Processing Elements (PEs), while re-configuration slows
down the algorithm’s execution.

This paper proposes the drop-in replacement for FP repre-
sentations, which does not require re-configuration or dynamic
adjustments: Triple Fixed-Point (TFxP).

III. TRIPLE FIXED-POINT

In search of a numeric format that does not sacrifice small
numbers’ precision to the range as much as the fixed-point
representation does, the authors in [7] propose DFxP. DFxP
makes use of a single exponent bit to select the radix point
location. Authors in [12] use the format to replace the FP for

Design, Automation and Test in Europe Conference (DATE 2021)

CORDIC calculations and extend the work to use dynamic
DFxP in [13].

Dynamic DFxPs undoubtedly improve the accuracy of com-
putations as it takes a step towards FP representations. While
the format is more HW friendly, the dynamic nature calls for
arbitrary shifters.

Reserving one extra bit for exponent extends the DFxP
to Triple Fixed-Point (TFxP). It bears the same objective as
dynamic DFxP: develop the precision for a specific numeric
range, but infers less FPGA resources.

Fig. 2 presents the proposed TFxP format, where a, and b,
are the bit length of integer and fractional parts respectively.
Depending on the range, (1) defines the numeric value D the
representation is holding, where X is the significand, and E/
denotes the value of the exponent field.

RANGE 2
RANGE 1
RANGE 0

_ou g _9-bi gm _9-bi ga _9-h
Fixed-Point
DFP
TFP

Figure 2. Triple Fixed-Point (TFxP) representation. Ranges 1 and 2 increase
the range while sacrificing the precision.

X270 ifE=0
D={X.27" ifE=1 (1
X270 ifE=2

In order to convert FP to TFxP, a suitable target range
has to be selected. Equation (2) defines the range selection:
the first range capable of accomodating the value without the
over- or underflow is chosen, and the exponent field E is set
accordingly. The value 3 indicates over- or underflow, based
on the sign bit S.

0 if —2% < D <20 —27% else
1 if —291 < D <29 —27b1 ¢l
E— 1 < < , else @)
2 if —2% <D <2% —27% else
overflow

Table II shows the bit fields of the TFxP format 16_13_9_5,
where the notion of format is n_by_b;_by and n is the total
number of bits the representation uses.

Table II
TRIPLE FIXED-POINT (TFXP) FORMAT 16_13_9_5.

[Mode Signed significand |
[15[14 |13 [12[11]10]9[8]7]6]5[4[3[2[1]0]

0]0]S fraction
0[1]S integer | fraction
1[0]S integer [fraction

A numeric format’s critical property is the dynamic range:
the ratio of the absolute values of the largest and smallest
numbers the format can accommodate (3).

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 07,2021 at 21:06:20 UTC from IEEE Xplore. Restrictions apply.

1405

1406

Dynamic Range = 20log;,(2927%) (dB) 3)

The maximum dynamic range for the TFxP is the same as
for DFxP. However, constructing such a range with DFxP loses
the precision in the middle range entirely. TFxP mitigates this
problem by using the middle range, and therefore, ensures a
more comprehensive usable dynamic range.

IV. TFXP YOLOV2 INFERENCE PRECISION

This section provides the results of YOLOV2 inference
precision using the TFxP and DFxP and FP formats. The
analysis was performed using MATLAB, while mex functions
were used to add support for DFxP and TFxP.

Before the experiment, all the network’s weight values were
converted to the data type under test, and the AP@[.5:.95] on
COCO 2014 validation dataset [14] was used for comparison.
Table IIT presents the network accuracy for different formats,
including the FP. The length of bitfields is marked using the
same notation as for TFxP (Table II).

Table IIT
PRECISION OF THE YOLOV2 NETWORK USING FIXED-POINT (FXP),
DFXP, TFXP, AND FP FORMATS.

FxP DFxP | DFxP | TFxP P
1613 | 16139 | 16.13.5 |16.139_5
[AP@[5:95] 045 | 047 | 049 | 052 | 052 |

The first format presented in Table III, FxP 16_13, has only
three bits for the signed integer part. However, range analysis
in Table I suggests that seven bits plus the sign bit are required.
Therefore, FxP 16_13 can not reach the precision of FP.

The second format, DFxP 16_13_9, extends the maximum
integer part to five bits while preserving the lower range accu-
racy. The precision increases, but as there are still overflows
present, it can not reach the level of FP either.

The DFxP 16_13_5 format sets the upper range to nine bits,
ensuring no overflows. The precision increases but does not
reach the level of FP. Here, there is a more significant gap
between upper and lower ranges than DFxP 16_13_9. TFxP
addresses that issue by introducing one additional range.

As the results show, TFxP is the only format that reaches
the precision of FP. Compared to DFxP 6_13_5, which can
avoid overflows as well, the TFxP extends the precision of
middle range values.

V. MAC UNIT

This section presents the TFxP MAC unit. It has been
synthesized to XILINX System On Chip (SoC) device Z-7020
and makes use of HW DSP48El slices.

The DSP48E1 has four inputs and can natively perform
various operations on them using integers, including MAC.
However, using the FxP format requires additional considera-
tions like radix point alignment.

Multiplication of two TFxP numbers produces the output O
with shifted radix point, (4).

O=Dy 2% Dy 2" =Dy - D, - 20"t)

In the case of FxP multiplications, both operands have the
same radix point location. Therefore, the result always has
the same shift, and the internal accumulator can directly be
used. The same does not hold for TFxP format: the radix point
location of the multiplication output is the sum by + b; (4).
The total number of possibilities equals the combinations with
repetitions: there are six different shifts possible.

Operands with different radix point locations cannot directly
be summed; correction logic is required in the accumulator
loop. This either reduces the maximum operating frequency
of the MAC unit or increases the latency if a pipeline is used.

The proposed MAC unit (Fig. 3) ensures the fixed shift in
multiplication output, independent of the input operands. The
maximum possible shift in the multiplication output equals
20°: double the shift of the lowest range. In case one of the
inputs does not belong to the lowest range, an additional pre-
shift has to be applied: the proposed MAC unit uses input
multiplexers to achieve that. Compared to FP, the TFxP MAC
does not require full-featured shifters as the total amount of
possible input combinations is limited.

FIXED RADIX
DSP48E1
A —]
A>>1 — 245
A<<3 —
A<<ll —| MODE(
MODEI
B — 18 . 48 MODE2 16
] | 7
UFLW
C<<12 — 48 48
C<<16 — —H’ }»
C<<20 —| OFLW
UFLW (———
MODE

A —]
B —
c —

MODE

Figure 3. TFxP MAC. The design wrapes XILINX DSP48E1 HW slices.
Blue arrows mark the locations where the radix point positions are matched.

The DSP48EL1 slice has an additional input C, which can
be added to the multiplication result instead of the internal
accumulation. This input’s radix point is set to the same
position as the multiplication output.

The maximum pre-shift is limited to the DSP slice capa-
bilities. Given that the width of the input A is 25 bits, the
maximum possible left-shift for that input is 25 — 14 = 11.
For input B, the maximum shift is 18 — 14 = 4, yielding
11 + 4 = 15 bits total.

The maximum shift for the format presented in Table II
is 20" = 26 bits. Similarly, the shortest fractional part in
multiplication output is 26> = 10. Therefore, the total required
pre-shift is 26 — 10 = 16, one bit more than the maximum of
15. The proposed MAC unit mitigates this problem by setting
the common fixed shift to 25, and performs the 1-bit right shift
to one of the operands if both multiplication inputs belong to
the lowest range.

Table IV presents the required pre-shifts to fix the multi-
plication output radix point. The least significant bit of input
A selects the behavior if both of the operands are from the

Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 07,2021 at 21:06:20 UTC from IEEE Xplore. Restrictions apply.

lowest range: if AO = 0, input A is right-shifted; otherwise,
the input B is right-shifted, and one or zero bits of data is lost.

Table IV
RANGES OF THE TFXP MULTIPLICATION INPUTS AND REQUIRED
PRE-SHIFTS FOR THE FIXED RADIX POINT LOCATION IN THE OUTPUT.

[ARange | BRange [> Shift | A Pre-Shift [B Pre-Shift
0 0 26 0-1# 0-1P
0 1 22 3 0
0 2 18 3 4
1 0 22 3 0
1 1 18 3 4
1 2 14 11 0
2 0 18 3 4
2 1 14 11 0
2 2 10 11 4
a—1if A0 = 0, 0 otherwise.

b_1 if A0 = 1, 0 otherwise.

Figure 4 presents the DSP slice’s output: signed fixed-point
number with 25 fractional bits. The bits in the OF GUARD
field have to match the sign bit; over or underflow has occurred
otherwise. The range selection logic is similar to overflow
check: if all the bits in field Ry equal to the sign bit, the
highest range is not needed. The same holds for the field R;.

P 48 bits _
- >
[s| OFGUARD [R, | Ri | FRACTIONAL | |
<+—— P4 Pt >t t—— >

14 4 4 13 12

Figure 4. DSP slice output. Fields Ry and Ry determine the range. 14-bit
OF GUARD is used to check the over- and underflows.

Table V presents the synthesis results of the MAC unit.
Additionally, all the formats infer a single DSP slice.

The first format, 16_14_9_5, uses a maximum 14-bit frac-
tional part: restricting the exponent field to 1 bit for the range 0
allows it. The maximum output radix point is 28 in that case,
which yields to 18 bits pre-shift, 3 bits more than allowed.
Additional logic to analyze and loose three least significant
bits from the input if both operands belong to the lowest range
infers a lot of additional HW compared to 16_13_9_5 format.
Therefore, the proposed MAC unit uses the latter.

Table V
INFERRED HW OF DFXP AND TEXP FORMATS.
Format LUTs | Regs | Slices | Power | WNS clk
W) (ns) | (MHz)
TFxP 16_14 9 5] 124 23 35 0.148 | 0.834 393
TFxP 16_13_9_5 80 22 23 0.147 | 0.909 393
DFxP 16_13_5 72 18 29 0.133 | 0.680 393

Comparing the TFxP 16_13_9_5 and DFxP 16_13_5 for-
mats reveals that additional middle range has mild impact
on iferred HW. As an interesting observation, the synthesizer
managed to combine the TFxP MAC to fewer HW slices
compared to the DFxP.

Despite the positive Worst Negative Slack (WNS), the
maximum operating frequency is limited by the DSP slice.
All the designs can execute at 393 MHz.

Design, Automation and Test in Europe Conference (DATE 2021)

VI. CONCLUSIONS

The novel contribution of this work is to provide the
Triple Fixed-Point (TFxP) format for Deep Neural Networks
(DNNs); it can directly replace the Floating Point (FP) format
without the network re-training. The format is proposed based
on analyzing the YOLOV2 network parameters and activation
values during the inference phase, followed by the converted
network’s precision analysis. From the application point of
view, direct conversion of FP to TFxP allows training the
network using a Graphical Processing Unit (GPU), and de-
ployment on Field Programmable Gate Array (FPGA), for
example.

In addition to the format proposal, TFxP based Multiply-
Accumulate (MAC) unit has been presented. The proposed
MAC unit wraps the XILINX DSP48El slice to achieve
the best performance and power efficiency. Compared to the
FP, TFxP MAC infers much less HW resources, while the
inference precision of the network is retained without the re-
training.

REFERENCES
[1

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

pp. 436444, 5 2015.

J. Schmidhuber, “Deep Learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85-117, 2015.

M. Langhammer and B. Pasca, “Design and Implementation of an

Embedded FPGA Floating Point DSP Block,” Altera, Tech. Rep., 2014.

[Online]. Available: https://hal.archives-ouvertes.fr/hal-01089172

Xilinx, “Performance and Resource Utilization for Floating-point.”

[Online]. Available: https://www.xilinx.com/support/documentation/ip_

documentation/ru/floating-point.html

[S] E. Wang, J. J. Davis, R. Zhao, H. C. Ng, X. Niu, W. Luk, P. Y.

Cheung, and G. A. Constantinides, “Deep neural network approximation

for custom hardware: Where We’ve Been, Where We're going,” ACM

Computing Surveys, vol. 52, no. May, pp. 1-39, 2019.

S. Mittal, “A survey of FPGA-based accelerators for convolutional

neural networks,” Neural Computing and Applications, vol. 32, no. 4,

pp. 1109-1139, 2020.

C. Te Ewe, P. Y. K. Cheung, and G. A. Constantinides, “LNCS

3203 - Dual Fixed-Point: An Efficient Alternative to Floating-Point

Computation,” in Field Programmable Logic and Application. Springer

Berlin Heidelberg, 2004, pp. 200-208.

[8] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[91 M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, “A fast

and scalable architecture to run convolutional neural networks in low

density FPGAs,” Microprocessors and Microsystems, vol. 77, 2020.

C. Su, S. Zhou, L. Feng, and W. Zhang, “Towards high performance low

bitwidth training for deep neural networks,” Journal of Semiconductors,

vol. 41, no. 2, 2020.

G. A. Vera, M. Pattichis, and J. Lyke, “A dynamic dual fixed-point arith-

metic architecture for FPGAs,” International Journal of Reconfigurable

Computing, vol. 2011, 2011.

A. Jacoby and D. Llamocca, “Dual fixed-point CORDIC processor: Ar-

chitecture and FPGA implementation,” in 2016 International Conference

on ReConFigurable Computing and FPGAs (ReConFig), 2016, pp. 1-8.

, “Dynamic dual fixed-point CORDIC implementation,” in 2017

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2017, pp. 235-240.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dolldr, and C. L. Zitnick, “Microsoft COCO: Common Objects

in Context,” in Computer Vision — ECCV 2014, D. Fleet, T. Pajdla,

B. Schiele, and T. Tuytelaars, Eds. = Cham: Springer International

Publishing, 2014, pp. 740-755.

2

3

[4

[6

[7

[10]

[11]

[12]

[13]

[14]

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on December 07,2021 at 21:06:20 UTC from IEEE Xplore. Restrictions apply.

1407

Curriculum Vitae

1. Personal data

Name

Madis Kerner

Date and place of birth 18 December 1977 Tallinn, Estonia

Nationality

Estonian

2. Contact information

Address

Phone
E-mail

3. Education

2017-2023

2015-2017

1996-2001

Tallinn University of Technology, School of Information Technologies,
Department of Computer Systems, ICT-509,

Ehitajate tee 15A, 12618 Tallinn, Estonia

+372 620 2267

madis.kerner @ttu.ee

Tallinn University of Technology, School of Information Technologies,
Computer Systems, PhD studies

Tallinn University of Technology, School of Information Technologies,
Computer Systems, MSc cum laude

Tallinn University of Technology, Institute of Computing,

Computer Systems, BSc

4. Language competence

Estonian
English
Finnish

native
fluent
fluent

5. Professional employment

2022- ...

2010-2022
2008-2010
2005-2008
2003-2005
2001-2003
2000-2001

Liewenthal Electronics Ltd., Senior embedded software/FPGA engineer
Teleplan Estonia OU, Embedded design Engineer

IPTE Estonia OU, Embedded design Engineer

JOT Automation, Embedded design Engineer

Orbis Estonia OU, Electronics design Engineer

PMJ-Orbis Hong Kong Ltd., Electronics design Engineer

Orbis Estonia OU, Electronics design Engineer

6. Computer skills

Operating systems: Window, Linux, macOS

Document preparation: vim, BIgX

e Programming languages: C, C++, C#, ARM assembler

Hardware description languages: VHDL, Verilog, System Verilog

e Scientific packages: MATLAB

107

7. Honours and awards

e 2020, HiPEAC award for:
M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Archi-
tecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), pp. 230-230,
Institute of Electrical and Electronics Engineers Inc., 5 2020

9. Scientific work
Papers

1. M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Archi-
tecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), pp. 230-230,
Institute of Electrical and Electronics Engineers Inc., 5 2020

2. M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Novel Architectures for Contrac-
tive Autoencoders with Embedded Learning,” in 2020 17th Biennial Baltic Electron-
ics Conference (BEC), vol. 2020-October, pp. 1-6, IEEE Computer Society, 10 2020

3. M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “Triple Fixed-Point MAC Unit for
Deep Learning,” in 2021 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), vol. 2021-February, pp. 1404-1407, Institute of Electrical and Electronics
Engineers Inc., 2 2021

108

Elulookirjeldus

1. Isikuandmed

Nimi Madis Kerner
Slinniaeg ja -koht 18.12.1977, Tallinn, Eesti
Kodakondsus Eesti

2. Kontaktandmed

Aadress Tallinna Tehnikadlikool, Usaldusvairsete arvutististeemide keskus,
Arvutisiisteemide instituut
Ehitajate tee 15A, 12618 Tallinn, Estonia

Telefon +372 620 2267

E-port madis.kerner@ttu.ee

3. Haridus

2013-... Tallinna Tehnikadlikool, Informaatika teaduskond,
Arvutisisteemide instituud, doktoriope

2011-2013 Tallinna Tehnikatilikool, Informaatika teaduskond,

Arvutisiisteemide instituud, MSc cum laude
2008-2011 Tallinna Tehnikadlikool, Informaatika teaduskond,
Arvutistiisteemide instituud, BSc

4. Keelteoskus

eesti keel emakeel
inglise keel korgtase
soome keel korgtase

5. Teenistuskaik

2022- ... Liewenthal Electronics Ltd., sardstisteemide tarkvara ja FPGA insener
2010-2022 Teleplan Estonia OU, sardsiisteemide insener

2008-2010 IPTE Estonia OU, sardsiisteemide insener

2005-2008 JOT Automation, sardstisteemide insener

2003-2005 Orbis Estonia OU, elektroonika insener

2001-2003 PMJ-Orbis Hong Kong Ltd., elektroonika insener

2000-2001 Orbis Estonia OU, elektroonika insener

6. Arvutialased oskused
e Operatsioonisisteemid: Window, Linux, macOS
e Kontoritarkvara: vim, BTIEX

e Programmeerimiskeeled: C, C++, C#, ARM assembler

Riistvarakirjelduskeeled: VHDL, Verilog, System Verilog

Teadustarkvara paketid: MATLAB

109

7. Tunnustused ja autasud

e 2020, HIiPEAK tunnustus artiklile:
M. Kerner, K. Tammemae, J. Raik, and T. Hollstein, “An Efficient FPGA-based Archi-
tecture for Contractive Autoencoders,” in 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), pp. 230-230,
Institute of Electrical and Electronics Engineers Inc., 5 2020

8. Teadustegevus
Teadusartiklite, konverentsiteeside ja konverentsiettekannete loetelu on toodud
ingliskeelse elulookirjelduse juures.

110

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-131-4 (PDF)

