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Abstract 

Localization is a critical operation in industrial robotics, ensuring the precise positioning 

and handling of products by robots. This thesis explores the use of laser sensors to 

enhance localization accuracy in robot work process. The study focuses on implementing 

laser sensor-based localization in two different robot workstations. Both robots must 

localize the product and create product plane based on the laser measurement results. 

Specifically, during the robots work the orientation of the robot tool must be 90 degrees 

relative to the robot base in the first workstation and relative to the product plane in the 

second. 

All the work in this thesis was done on collaborative industrial robots UR10e. Thesis 

work shows that using lasers for localization gives highly accurate measuring results and 

operates without localization errors.  

The thesis is written in English and is 36 pages long, including 6 chapters, 30 figures and 

5 tables.  
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Annotatsioon 

KOLLABORATIIVSE TÖÖSTUSROBOTI TÖÖJAAMA 

LOKALISEERIMISE LOOGIKA LASERANDURI BAASIL 

Lokaliseerimine on kriitiline protsess tööstusrobootikas, mis tagab täpse toodete 

positsioneerimise kasutatava roboti jaoks. See lõputöö uurib võimalust lokaliseerimise 

protsessi tugevdamiseks kasutades toote lokalisserimiseks laserandurit. Uuring 

keskendub laseranduri baasil lokaliseerimise lisamisele kahele erinevale roboti 

tööjaamale. Mõlemad robotid peavad lokaliseerima toote ning looma tootepõhise tasandi, 

mis põhineb laseranduri abil mõõdetud mõõtetulemustel. Esimese tööjaama robot liigub 

tööriistaga toote peal 90-kraadise nurgaga, lähtudes roboti enda tasandist. Teise tööjaama 

robot liigub tööriistaga toote peal 90-kraadise nurgaga lähtudes toote arvutatud tasandist. 

Antud lõputöö on tehtud UR10e roboti baasil. Lõputöö näitab, et laseri kasutamine toote 

lokaliseerimisel annab täpsed mõõtetulemused ning robot töötab ilma erroriteta, mis 

tulenevad lokaliseerimisest. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 36 leheküljel, 6 peatükki, 30 

joonist ja 5 tabelit.   
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List of Abbreviations and Terms 

TCP   Tool Center Point 

2D Two dimensional 

3D  Three dimensional 

Rx Coordinate that displays rotation around x axis 

Ry Coordinate that displays rotation around y axis 

Rz Coordinate that displays rotation around z axis. 

GUI Graphical User Interface 

UR Universal Robots 

RPC Remote Procedure Call 

Cobot Collaborative robot 
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1. Introduction 

Nowadays robots are used widely in the production process all over the world and their 

usage will continue to grow. Based on statistics, in 2021 global Mobile Cobots Market 

was valued at 656.1 million USD and the market size is predicted to reach 7.660.4 million 

by 2023. [1] 

The localization process is a crucial part of the industrial robot workflow, as it dictates 

the precise positioning of the product for robot operation. Industrial robot workstations 

employ various methods of product localization, each utilizing different hardware. For 

instance, options include 2D cameras, which capture images in two dimensions and 

provide flat object representations; 3D cameras, offering three-dimensional object 

representations; touch sensors, yielding analog/digital values upon product contact; 

ultrasonic sensors, utilizing sound waves to detect object presence and distance; and laser 

sensors, providing digital/analog values when the laser beam detects the product.  

The problem that author is going to solve is based on the fact that the company lacked a 

consistent and sustainable localization logic for Universal Robot workstations. Different 

robot lines had their own localization methods, leading to inconsistency. For instance, 

some lines relied on 2D cameras for product localization, but due to fluctuations in 

product surface light reflection, these cameras often produced errors. Additionally, 2D 

cameras were unable to measure the height of the product, necessitating the use of 

separate laser sensors for height measurement on each robot. In some instances, within 

the company, certain robots operated without any localization process, relying on fixed 

product positioning within the robot workplace. This solution had also problems as 

individual products or fixation equipment often possess unique offsets. Consequently, 

when high accuracy was required, the robot frequently encountered difficulties and failed 

to execute the process successfully. 

The author has proposed a solution to use laser sensor for collaborative robot localization 

process. This enables the company to have one consistent localization logic for all the 

collaborative robot workstations. Since the products that laser sensor must measure 

variable surface reflectance it is not certain that laser sensors are suitable for the 

localization process. Since there is no logic for laser sensor measurement localization 

available in the company, the author will program the logic for localization process. 
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Thesis will cover the testing of the laser sensor on real products to find out accuracy and 

possibility to use laser sensors for localizing surfaces that have no consistent reflection. 

Based on the test results, the author will choose the sensors for the projects. Two projects 

are done during thesis work where localization process is added to the two separate UR 

robot workstations. When localization process is added to the workstations author will 

perform tests on both workstations to ensure how well this way of localizing products 

works. 

Next chapter covers the requirements that are set for the products and the robot 

workstations. Chapter 3 focuses on explaining the updates necessary for the robot so it 

can manage the required laser localization process. Chapter 4 has information on how the 

author chose the laser sensor suitable for the project. Chapter 5 shows the way program 

was created for localization process and in Chapter 6 the test results about localization 

process are explained and shown.  
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2. Requirements 

For the laser localization project, the first step was to understand the required process, 

outcomes and select the correct hardware. This chapter explains the project and its 

requirements. The chapter is divided to requirements that are set for the product and 

requirements set for the robots and its workstations. The layout of the robot workstation 

can be seen on Figure 1.  

 

Figure 1. Top side view of robot workstation layout with product placement, robot reach 1300 mm and 

measurement points P1, P2, P3, P4. 

2.1 Product  

Laser localization logic that was programmed during this thesis works only for specific 

products. Main requirements for the products were following: 

1. The shape of the product is rectangle or must have at least two measurable edges 

that have 90-degree angle between them like shown on Figure 1. 

2. Product dimensions are enough for robots to take measurements of product edges. 

It means that from the robot’s perspective, product dimensions must enable robot 
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to take two measurements of products outer edge and products right side edge as 

shown on Figure 1. 

3. To get the correct measurement results robot must be able to measure height of 

the product in points P1, P2, P3 and P4. The spots where the height is measured 

must share the same surface level. 

2.2 Robot workstations  

Laser measurement logic had to be added for two separate robot workstations that 

performed different tasks. Both workstations were using robot UR10e. This section 

explains both workstations and the requirements to the localization logic for both 

workstations. 

2.2.1 Robot workstation 1 

Workstation 1 robot had the task of dispensing material on the product. After the 

localization process robot had to dispense the material to the edges of product as shown 

on  Figure 2Error! Reference source not found.. During the dispensing process, the 

dispensing tool that was mounted on the robot had to have vertical orientation based on 

robot base. It means that no matter how big of a tilt the product had, robot dispensing tool 

had to always have the same rotational orientation so Rx, Ry, Rz would always remain the 

same as visible on  

Figure 3.  
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Figure 2. Workstation 1 process shown on product. The red line near the edges of the product is shown as 

the material that workstation 1 robot dispenses on product. 

 

Figure 3. Robot tool orientation shown on tilted product on workstation 1. Tool will not take the products 

orientation but will remain with the same orientation as robots base. 

 

2.2.2 Robot workstation 2 

Workstation 2 placed tighteners to fix the components on the product shown on 

Figure 4. Tool of workstation 2 had to take the vertical orientation based on calculated 



17 

product plane. It means that when product was placed on the workstation with having 

tilted position then robot had to be able to give its tool the same rotational orientation. 

Because of that the Rx, Ry, Rz were not static but always changing with different product 

processes as shown on Figure 5.   

 

Figure 4. Visualized version of workstation 2 work on product. The red dots simulate places on product 

where robot must do the tightening process. This is just a visualized figure meaning that the tightening 

amount and places differ when compared to the real product process. 

 

Figure 5. Robot tool orientation shown on tilted product on workstation 2. Robot will give its tool 

rotational orientation based on calculated product plane. 
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3. Updating the robots 

This chapter explains the necessary updates that were done for the UR robots so they can 

support laser measurement logic. Chapter 3.1 has information about updates regarding 

polyscope version and Chapter 3.2 has updates regarding the changes in robots operating 

system. 

3.1 Updating the polyscope software 

UR robots have GUI software named polyscope. Using polyscope it is possible to do the 

programming of the robot. Polyscope can be seen at Error! Reference source not 

found.. It is recommended to always update to latest version of the software, as each new 

release will fix bugs, add new features, and in general improve performance [2]. Robots 

were updated to the latest polyscope version 5.15.  

 

 

Figure 6. Universal Robot programming interface named polyscope [3]. 

3.2 Adding python packages to the robots operating systems 

In addition to the polyscope software update polyscope operating system had to be 

modified. Polyscope is based on the Linux operating system with Debian GNU/Linux 
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distribution, and it uses python 2 programming language. To implement laser 

measurement logic there had to be NumPy and SymPy python libraries available for 

calculation. Procedure of work to get these libraries into UR robot Linux system were 

following: 

1. Access the robot Linux terminal with connecting the keyboard to the polyscope 

and press following buttons together: CTRL+ALT+F  

2. Log in as the root user. Default login and password for Universal Robots are: 

login: root 

password: easybot 

3. Go to the folder where sources.list file is located: cd /etc/apt 

4. Open sources.list file for modification: nano sources.list 

5. Write following lines into sources.list: 

deb http://archive.debian.org/debian/ jessie main non-free contrib 

deb-src http://archive.debian.org/debian/ jessie  main non-free contrib 

deb http://archive.debian.org/debian-security/ jessie/updates main non-free 

contrib 

deb-src http://archive.debian.org/debian-security/ jessie/updates main non-free 

contrib 

6. Use following commands in the following order: 

apt-get update 

sudo apt install python-pip 

sudo apt install build-essential 

sudo apt install python-sympy 

sudo apt install python-numpy 

7. Exit the Polyscope terminal screen by pressing together following buttons: 

CTRL+ALT+F7 

 

  

http://archive.debian.org/debian/
http://archive.debian.org/debian/jessie/
http://archive.debian.org/debian-security/
http://archive.debian.org/debian-security/
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4. Choosing the laser sensor 

It was also necessary to choose the laser sensors for workstations. At first the choice had 

to be made between the analog laser sensor and the digital sensor. Project that was done 

during this thesis had to have a high accuracy measurement process. The maximum 

offsets that were allowed were ±1 mm. If the offsets were higher than ±1 mm the process 

cycle would fail or have unaccepted end-product quality. This chapter explains the 

process of choosing the laser sensors based on the specification and tests that author 

made. Panasonic Analog laser sensor that was included in the tests is shown at Figure 7. 

 

Figure 7. Panasonic Analog laser sensor HG-C1200-P [4]. 

4.1 Laser sensor specification 

In the specification analog and digital sensors both qualified for the project. Specification 

of those laser sensors are shown in  Error! Reference source not found. and Error! 

Reference source not found..  
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Table 1. Digital laser sensor characteristics [5]. 

Characteristics Characteristics value 

Company Panasonic 

Name HG-C1200L3-P 

Output IO-Link 

Measurement center distance (mm) 200  

Measurement range (mm) ±80  

Repeatability (μm) 200  

Linearity ±0.2 %F.S. 

Beam diameter (μm) 300  

 

Table 2.  Analog laser sensor characteristics [4]. 

Characteristics Characteristics value 

Company Panasonic 

Name HG-C1200-P 

Analogue output (current) 0 to 5 V 

Analogue output (voltage) 4 to 20 mA 

Measurement center distance (mm) 200  

Measurement range (mm) ±80  

Repeatability (μm) 200  

Linearity ±0.2 %F.S. 

Beam diameter (μm) 300  

4.2 Testing the laser sensors 

While testing the Digital laser sensor in the measurement process it was noticed that robot 

has offsets larger than ±1 mm. Because of this, test runs were made with both analog- and 

digital laser sensors. New programs were programmed into robot for testing purposes. 

One program was for the testing of analog laser sensor and the other program was made 

for the digital laser sensor testing. Based on these programs robot went to measure 

products height on one point 50 times. Robot movement speed and measurement point 

were the same in both testing programs. For digital sensor the Figure 8 flowchart shows 

the flowchart of the program created for testing. 
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Figure 8. Flowchart of digital laser accuracy testing program. 

When testing the analog sensor on Error! Reference source not found. it is shown that 

laser can be configured to show output as voltage or current. For testing it was decided 

to use electrical current as configuration since its measuring distance of 4-20 mA is 

wider than voltage 0-5V. The wider the measuring result distance the more accurate 

measurements can be received. Testing program of analog laser sensor is shown as 

flowchart in Figure 9. It is important to notice that the captured output of laser sensor 

was set to 0.012 (12mA).    

 

Figure 9. Testing program for analog laser sensor. 
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Testing results are shown in the Error! Reference source not found.. It was decided to 

use analog sensor for the project because test results were much more accurate with 

analog device. The reason of differences might be because of the surface reflection of 

product.  

Table 3. Laser sensor testing results where max offset is calculated Z max – Z min. 

Sensor HG-C1200L3-P HG-C1200-P 

Type Digital Analog (Current) 

Maximum offset (mm) 1.97 0.21 

4.3 Choosing the laser sensor for workstations 

Workstation 1 and workstation 2 had different tools that were different sizes. Figure 10 

shows how laser was mounted to the robot according to the tool. When choosing the 

laser, it was important to know the Tool Z offset visible on Figure 10 according to the 

laser because different lasers have different measurement range and measurement 

distance.  
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Figure 10. Laser location shown with the perspective of the tool.  On the left side it is shown as front view 

where Y and Z offsets are displayed. On the right side it shows the side view where X offset is visible. 

Table 4 shows the parameters of all the analog laser sensors available. 

Table 4. Panasonic analog laser sensors specification based on measuring distance [6] 

Parameter HG-C1030-P HG-C1050-P HG-C1100-P HG-C1200-P HG-C1400-P 

Measurement 

center distance 

30 mm 50 mm 100 mm 200 mm 400 mm 

Measurement 

range 

±5 mm  ±15 mm ±35 mm ±80 mm ±200 mm 

Furthest 

measurement 

distance 

35 mm 75 mm 135 mm 280 mm 600 mm 

Nearest 

measurement 

distance 

25 mm 35 mm 65 mm 120 mm 200 mm 

 

Laser sensors selection was based on the measurement range of the laser sensor that is 

visible on Table 4 and based on Tool Z offset visible on Figure 10. For workstation 1 laser 

sensor HG-C1200-P was chosen and for the workstation 2 laser sensor HGC1100-P was 

selected.  
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5. Programming of the logic 

This section explains the laser measurement logic that was implemented into both 

workstations. Laser measurement process consists mainly of two parts: 

1. Product measurement and plane calculation 

2. Calculating waypoint coordinates based on the calculated plain and robot tool 

TCP 

Product measurement and plane calculation logic was the same for both workstations. 

Waypoint calculation process was different when considering two workstations because 

of the tool rotation requirements explained in the chapter 2.2. 

This chapter is divided into sections that explain the flow of the programs that were made 

for both workstations, product measuring process logic, and plane calculation logic that 

was programmed for the robot. 

5.1 Flow of the program 

Programs of both workstations were divided into sections using URScript Switch Case 

statements since it makes it possible to program clear and understandable code as shown 

at Figure 11 and Figure 12. 
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Figure 11 Flowchart of the program flow inside workstation 1 robot. 
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Figure 12. Flowchart of the program flow inside workstation 2 robot. 

 

5.2 Measuring product with laser 

Four waypoints were defined in the robot code to measure the product. At the start of the 

measurement step robot moves to the first measurement position based on the defined 

tool TCP in robot’s base coordinate system. Waypoints P1, P2, P3, P4 were defined 
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manually by programmer by moving the robot in desired position and saving the robot’s 

current position. Defining waypoints like that makes it easy to modify waypoints in the 

future. Location of waypoints P1, P2, P3, P4 are visible on Figure 13. 

 

 

Figure 13. Waypoints at the start of the measurement process. 

The flowchart of the measuring process is visible at Figure 14. 
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Figure 14. Flowchart of the measuring process. 

 

5.2.1 Defining variables 

First step in the measurement process is variable definition. Following variables were 

defined: 

1. First_H_Analog – Height limit that is set for the first edge capturing process. 

2. Sensor_Min_H_mm - Analog laser sensor minimum measuring distance. 

3. Sensor_Max_H_mm – Analog laser sensor maximum measuring distance. 

4. Sec_H_Analog – Height limit that is set for the second edge capturing process. 
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5. Scale_Sens_Val – Line equation calculated variable based on laser sensor 

measuring distance. 

Figure 15 shows the declaration of the variables in polyscope code. 

 

 

Figure 15. Defining necessary variables in Polyscope at the beginning of the measurement process. 

To calculate received laser sensor mA value to the mm it is needed to use line equation. 

Defined Scale_Sens_Val is the variable that holds the constant value that is located inside 

the line equation: 

1. Line equation formula: 

 
𝑦−𝑦1

𝑦2−𝑦1
=

𝑥−𝑥1

𝑥2−𝑥1
 

 

2. Line equation based on laser minimum and maximum values: 

 
𝑦−120

280−120
=

𝑥−20

4−20
 

 

3. After solving this the equation looks like this: 

 𝑦 = ((20 − 𝑥) ∗ 10) + 120 

 

4. In this equation x will be the analog input robot receives, y represents the height 

value that laser sensor recorded, and number 10 is the constant value of variable 

Scale_Sens_Val. 

5.2.2 Moving to the first waypoint and setting tool rotation 

Since waypoints were defined manually laser might have rotational angle when faced 

downwards. This will result in inaccurate measurements since in different measurement 
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heights laser will catch product in different distance. To overcome this problem after 

moving to the start of the measurement point robot must create a new waypoint by getting 

the current location TCP coordinates and setting the rotational coordinates Rx, Ry, Rz to 

0. This process is visible in Figure 16. 

 

Figure 16. Part of the Polyscope code where robot moves to the location of P1, creates new waypoint 

Get_P1_Rot0 and moves to that point. 

5.2.3 Height measurement 

Next step for the robot is to start moving with linear movement in direction of the product 

until product is detected by laser. To detect a product using laser robots must read 

constantly its analog input where the laser is connected. The analog input value that laser 

will send to robot is shown as mA and the range is 4 mA to 20 mA. In the program robot 

will move towards the product until input value where laser is connected is over 

First_H_Analog variable value that is set to 10. Also, in case the edge is not detected 

robot will give error message. After the edge of the product is detected, robot will move 

3 mm in the same direction so that laser will point in the center of products edge surface. 

Polyscope code of this process is shown at Figure 17. 

 

Figure 17. Part of the Polyscope code where robot moves to the direction of the product until it catches 

the edge. 

At this point laser is pointing to the products edge surface as P1 in Figure 1. Next step for 

the robot is to measure height of the edge surface. Using bool variable Height_AVG main 

program will control height measurement thread. This thread reads lasers analog data 
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around 400 times during which it records minimum and maximum analog value. This 

process is necessary to make data recorded by laser sensor more accurate. Process of 

thread control is visible in Figure 18 and thread is visible in Figure 19. 

 

 

 

 

Figure 18. Controlling the thread and calculating average analog data with minimum and maximum 

values. 

 

Figure 19. Thread that captures laser sensor minimum and maximum values. 

 

After reading the laser sensor analog values robot will calculate variable Edge_Height. 

This variable represents the robot’s waypoint coordinate Z in the respective laser sensor.  

It is calculated by converting laser sensor analog value into height in mm and subtracting 
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it from the robot’s current height. Also, robot will be moved to the height based on the 

recorded analog value. It is important because this way when measuring X and Y 

coordinates of the four spots laser captures the product edge always around the same 

height. It makes the process more accurate. Lastly in this step robot moves 5mm away 

from the product to be ready to capture the edge X and Y. Code of this process is visible 

at Figure 20. 

 

Figure 20. Calculating edge height and moving to the position to start measuring edge X and Y 

coordinates. 

5.2.4 Measure edge X and Y coordinates 

Last step in the products edge measuring process is capturing X and Y coordinates of the 

products edge. Now robot will start to move with the speed of 1 mm/s towards the 

product. When Edge is detected by robot it will stop, save its current coordinates and 

define a new waypoint where it will overwrite current height value by earlier calculated 

variable Edge_Height. The code of this part is visible at Figure 21. Now robot has 

successfully measured point P1 that is shown at Figure 13. Robot will repeat this process 

in rest of the points.  

 

Figure 21. Measure X and Y coordinates of the product and save the data as waypoint. 
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5.3 Plane equation calculations 

To calculate plane equation, it is necessary to first find the origin of the product. In this 

section robot will use functions from RPC server to make necessary calculations. 

5.3.1 RPC Server 

In the background of the robot GUI runs RPC server python script. This program contains 

functions that can be called from the polyscope. Having the possibility to use python 

functions with robot code makes programming Universal robots much more  

effective and flexible. For plane calculation the RPC server function named  

Find_Cp_Dist(X1, X2, Y1, Y2)  is used to calculate origin of the product.  

For origin calculation firstly program makes two vector equations in three-dimensional 

space based on the measured points. With the help of Eulers theorem the origin is 

calculated in the RPC server function and returned to the polyscope. Now the plain 

equation can be calculated using origin, P1 and P4. The location of origin on product is 

visible on Figure 22. The program of origin calculation can be seen on Appendix 2 and 

polyscope code is visible on Figure 23. 

 

Figure 22. Product point of origin with 4 measurement points. 
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Figure 23. Polyscope code that calculates product plane equation. 

 

5.4 Moving the robot based on product 

Movement coordinates that robot receives are from the perspective of the calculated 

product plane origin. Getting X and Y coordinates about the product and defining them 

in the URScript programming language as a waypoint can be seen on Figure 24.  

 

 

Figure 24. Defining point P1 X and Y coordinates based of the distance on product. 
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Coordinates that are defined for the products are based on the calculated product plane. 

Since robot will make its movements according to its base the given coordinates must be 

converted from the plane coordinate system to the robot’s base coordinate system. This 

process is done with the help of URScript pose_trans() function that is based on 

transformation matrix multiplication.  

„For calculation of kinematics, a transformation matrix can be defined as a 4-by-4 matrix, 

consisting of rotation matrix and position vector. The rotation vector and/or RPY will be 

converted to the rotation matrix. We can calculate the robot position and orientation based 

on the transformation matrix multiplication.” [7] 

„pose_trans() is using the principle of the transformation matrix. The calculated position 

and orientation is referred to the tool frame. With respect to pose_add(), the calculated 

position is the sum of two position inputs, but the resulted orientation is the matrix 

multiplication of two rotation matrix. In other words, in pose_add(), the position is 

corresponding to the base frame but the orientation is referred to the tool frame.” [7] 

Syntax of the function is following:  

▪ resulting_pose = pose_trans(p_feature, p_wrt_feature) [8] 

Parameters: 

▪ p_feature: starting pose (spatial vector representing feature frame) [8] 

▪ p_wrt_feature: pose relative to feature-frame (spatial vector w.r.t feature frame as 

new origin) [8] 

Return Value: 

▪ resulting_pose: pose relative to base-frame [8] 

Both workstations have the same logic of converting the x, y, z coordinates, but 

differences are in rotation coordinates Rx, Ry, Rz. 
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5.4.1 Workstation 1 coordinate calculation 

At the beginning of the calculation rotational variables are defined as a waypoint in robot 

as zero since workstation 1 robot must move on the product with vertical position as 

shown in Figure 3. Figure 25 below shows the definition of rotational coordinates. 

 

Figure 25. Defining rotational variables to zero as a waypoint. 

After rotational coordinates definition movement waypoints are defined that are based on 

the product plane. Definition is visible in Figure 26. Array named Product_Info that is 

used to define coordinates of the waypoints consists of product dimensions what are 

explained on Figure 27. 

 

Figure 26. Defining 6 waypoints in Polyscope.  
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Figure 27. Product_Info variable explained with the simulated product. 

After coordinates are defined based on the product it is needed to convert them from 

plane coordinate system to the base coordinate system. This process was performed 

with earlier described pose_trans() function. Conversion of coordinates is visible on 

Figure 28. 

 

Figure 28. Using URScript pose_trans function to convert coordinates from the product plane coordinate 

system to the robot’s base coordinate system. 

At this point coordinates are converted to the robot’s base coordinate system but since 

origin was measured according to the laser, the points are also defined according to the 

laser sensor. To define coordinates in respective of robot’s tool tip, all the coordinates are 

given offsets from laser to robot’s tool tip in base coordinate system. The offsets have 

constant value based on the robot workstation and are visible at Figure 10. Polyscope 

code where the offsets are added is visible on Figure 29. 
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Figure 29. Offsetting coordinates in base coordinate system with Laser_Info array values 

5.4.2 Workstation 2 coordinate calculation 

In workstation 2 robot reads coordinates from the excel file and moves accordingly. This 

process is performed in the while loop what returns when all the waypoints are read from 

excel. With each loop cycle robot will: 

1. Read coordinates from excel, 

2. Perform calculations with coordinates, 

3. Move to the calculated coordinate and perform the task. 

Waypoint variables that workstation 2 robot uses are following: 

1. SafeStart – location where robot goes before its target position. This waypoint is 

located above the Pose waypoint. 

2. Pose – Target location of robot read from excel. 

3. SafeEnd - location where robot goes in the end of the process. This waypoint is 

located above the Pose waypoint. 

The calculations are similar to those in Chapter 5.4.1, but this time, rotational variables 

are also included in the pose_trans() function. The objective is to set rotational variables 

to zero, based on the product plane, and then convert them from product plane to base 

coordinates. This approach allows us to move the robot tool with the same tilt as the 
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current product plane. Coordinate calculations in workstation 2 robot are visible on 

Figure 30. 

 

Figure 30. Coordinate calculation process on robot of workstation 2. 
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6. Testing of the program 

In case of errors in laser localization process robot will move to the assigned locations 

with inaccurate coordinates. This chapter explains how both workstation project 

localization processes were tested and reveals the results. 

6.1 Testing of workstation 1 localization 

The localization process for Workstation 1 was tested on four different products by 

running it 30 times under normal conditions and 30 times with the products deliberately 

tilted. The accuracy of each process was assessed through visual inspection and the 

robot's error-handling mechanism. The error rate for Workstation 1 was 0, indicating that 

localization yielded correct results in 100% of cases. 

6.2 Testing of workstation 2 localization  

The localization process for Workstation 2 underwent testing 30 times under normal 

conditions and an additional 20 times with intentionally tilted products. Three different 

products were used for testing of workstation 2. During one trial, the robot was tasked 

with placing tighteners at 15 different locations on the product. In Workstation 2, even a 

small measurement inaccuracy can result in errors during tightener insertion, as the robot 

is unable to accommodate a deviation as small as 2 mm. The accuracy of the process was 

assessed through visual inspection, the robot's error-handling mechanism and correct 

placement of the tighteners. The error rate for Workstation 2 was 0, indicating that 

localization yielded correct results in 100% of cases. 

6.3 Assessment of the testing results 

Both workstation testing processes gave 100% of the time correct results. Based on this, 

the author can claim that the way laser measurement localization process was done 

during thesis is highly accurate. Testing process results are shown in Table 5. 
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Table 5. Testing results based on error rate where products are marked as P.  

 Workstation 1 Workstation 2 

 Normal conditions Tilted product Normal conditions Tilted product 

 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P1 P2 P3 

Error rate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 

Total error rate 0 
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Summary 

The goal of this thesis was to make a localization process based on laser sensor that works 

without constant errors happening in localization process. The localization process based 

on laser measurement had to give accurate product measuring results so that robots can 

provide a good end-product quality. Accurate localization process will enable the 

company to produce more units in the specific time limit and provide higher quality 

products. 

Thesis work was based on the author’s proposed solution. Thesis work consisted of 

choosing and evaluating the laser sensors and choosing acceptable sensors based on test 

results. After the laser sensor was selected, the author made programs for two different 

robot workstations that had different conditions for robot tool rotation. Workstation 1 

robot had to have constant tool rotational position regarding the robot base. Workstation 

2 robot had to have dynamic tool rotational position that was depending and changing 

based on products rotation.  

After creating the programs, the author evaluated the accuracy of implemented 

localization processes. Test results gave remarkably high accuracy results with an error 

rate of zero. Based on these results author can conclude that using laser sensors for 

localization is suitable and highly accurate way of product localization in industrial 

process using collaborative robots. 

Next step for author is to start implementing laser-based localization systems in other 

robot lines in the company that are based on UR robots. The author will keep improving 

the laser-based localization system to improve the cycle time of localization and to make 

it possible to use laser measurement localization with products that have different shapes.  
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Appendix 2 – RPC Server origin calculation 

def Find_Cp_Dist(X1,X2,Y1,Y2): 
    t = sympy.Symbol('t') 
    s = sympy.Symbol('s') 
    VX= [(X2[0]-X1[0]),(X2[1]-X1[1]),(X2[2]-X1[2])] ## Vector of 
X Line 
    VY= [(Y2[0]-Y1[0]),(Y2[1]-Y1[1]),(Y2[2]-Y1[2])] ## Vector of 
Y Line 
    CPX=[X1[0]+VX[0]*t,X1[1]+VX[1]*t,X1[2]+VX[2]*t] ## Closest 
Point on X Line 
    CPY=[Y1[0]+VY[0]*s,Y1[1]+VY[1]*s,Y1[2]+VY[2]*s] ## Closest 
Point on Y Line 
    if Y1!=Y2 :  
        CPY_CPX=[(CPY[0]-CPX[0]),(CPY[1]-CPX[1]),(CPY[2]-
CPX[2])] ## Closest Points Vectors ( If This Value Equal=0 This 
2 Lines Cross)  
    else :  
        CPY_CPX=[(Y1[0]-CPX[0]),(Y1[1]-CPX[1]),(Y1[2]-CPX[2])] 
         
 
    CPY_CPX_VX= np.dot(CPY_CPX, VX) ## Using Dot Product . 
Multiply 2 Vectors . 
    ## CPY_CPX_VX= result = np.multiply(CPY_CPX, VX) ## This 
should Equal=0 . Multiply with (PQ*VX) ( Because It should Be 
Perpendicular) 
    ## CPY_CPX_VX=(CPY_CPX_VX[0]+CPY_CPX_VX[1]+CPY_CPX_VX[2]) ## 
This should Equal=0 . Multiply with (PQ*VX) ( Because It should 
Be Perpendicular) 
    CPY_CPX_VY= np.dot(CPY_CPX, VY) ## Using Dot Product . 
Multiply 2 Vectors . 
    ## CPY_CPX_VY= result = np.multiply(CPY_CPX, VY) ## This 
should Equal=0 . Multiply with (PQ*VX) ( Because It should Be 
Perpendicular) 
    ## CPY_CPX_VY=(CPY_CPX_VY[0]+CPY_CPX_VY[1]+CPY_CPX_VY[2]) ## 
This should Equal=0 . Multiply with (PQ*VX) ( Because It should 
Be Perpendicular) 
 

    equation1 = sympy.Eq(CPY_CPX_VX,0) ## Dot product of 2 
vectors Should equal=0    
    equation2 = sympy.Eq(CPY_CPX_VY,0) ## Dot product of 2 
vectors Should equal=0 
    
 

    solution_t1 = sympy.solve(equation1,s) ## To Find t value 
leave s alone 
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    solution_t2 = sympy.solve(equation2,s) ## To Find t value 
leave s alone 
     
 
    solution_s1 = sympy.solve(equation1,t) 
    solution_s2 = sympy.solve(equation2,t) 
     
     
    if Y1!=Y2 :  
        equation_s = sympy.Eq(solution_s1[0],solution_s2[0]) 
        equation_t = sympy.Eq(solution_t1[0],solution_t2[0]) 
 

        solution_s = sympy.solve(equation_s) 
        solution_t= sympy.solve(equation_t) 
 
        t=solution_t[0] 
        s=solution_s[0] 
    else : 
        t=solution_s1[0] 
         
 
    CPX = [expr.subs('t', t) for expr in CPX] 
    CPY = [expr.subs('s', s) for expr in CPY] 
    CPY_CPX = [expr.subs('t', t).subs('s', s) for expr in 
CPY_CPX] ## Write New Value inside sub methot 
 

    norm = math.sqrt(sum(x ** 2 for x in CPY_CPX)) ## Calculate 
Vectors Length 
 
    CPX=[float(CPX[0]),float(CPX[1]),float(CPX[2])] 
    CPY=[float(CPY[0]),float(CPY[1]),float(CPY[2])] 
    if Y1!=Y2 :  
        Center=[(CPX[0]+CPY[0])/2,(CPX[1]+CPY[1])/2,(CPX[2]+CPY[
2])/2] 
    else :  
        Center=CPX 
    
 
    return Center 
 


