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Introduction

Semiconductor heterostructrues have become a promising basis to produce
emission in the higher end of terahertz region (1...10 THz). This thesis, di-
vided into 4 chapters, handles modelling methods and algorithms for semi-
conductor quantum well heterostructures designed to produce radiation in
the terahertz and mid-infrared (5...30 µm) region of the electromagnetic
spectrum. The devices based on quantum well heterostructures are mainly
produced using Molecular Beam Epitaxy (MBE), which is relatively expens-
ive technology for small production quantites. Modelling of such devices is
therefore an important stage in the development process to avoid faulty
designs and save resources.

The vast increase in computing power during the last 10�15 years has
provided opportunities to build more complex models to simulate the struc-
tures under conditions closer to the real environment. The models are based
on the laws of quantum mechanics, covering many general phenomena (car-
rier scattering, phonon generation, electron transport, etc), being applied
on quantum well heterostructures. Chapter 1 gives an overview of the the-
oretical principles of semiconductor emitters, covering also the main applic-
ations of terahertz range technology. Publication IV gives an overview of
the latest achievements in this �eld as well.

The author's main objective is to analyse, develop and optimise the se-
lected models and algorithms used for quantum well heterostructures. The
speed and accuracy of existing models should be improved. A cheaper way
to produce incoherent terahertz radiation is analysed; therefore, a relevant
new model for electron transport, where the electrons are pumped laterally,
will be introduced. Lateral transport will give an incoherent terahertz ra-
diation source that could work at room temperature, which makes it less
expensive, as it does not require cooling. It is well known, that the majority
of the sources otherwise require low working temperatures (below 164 K @
3.0 THz in 2007 [1], 200 K @ 2.85 THz in 2012 [2]).

Chapter 2 presents the �nding of a digitally graded parabolic quantum
well heterostructure, which is necessary for the lateral electron transport
task. Designing of parabolic quantum wells using MBE is an engineering
challenge, as MBE grows structures layer by layer. In this chapter alterna-
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tion of layers of 0.2825 nm GaAs and AlGaAs is used to achieve one of the
subobjectives, the e�ective parabolicity. An analysis of numerical methods
to solve the 1D time-independent Schrödinger equation is also performed in
this chapter.

Chapter 3 covers the methodology for calculating the emission character-
istics for emitters based on laterally pumped quantum well heterostructures.
Generally the direction of electron transport is perpendicular to quantum
wells, whereas in this chapter lateral transport is analysed. Relevant models
for this are designed.

The models handled in this thesis are based on the Third Edition of
�Quantum Wells, Wires and Dots� [3], which is also the main theoretical
basis of this thesis. A set of computer codes [4] was published with the
book, later referred to as QWWAD software tools, which is the realisation
of the models described in the QWWAD book. Technically, it is a library
containing general functions that are called by custom applications over
a speci�c application interface (API). The set of codes is in continuous
development by Leeds University and their partners, also being updated by
the the author of the thesis' new and modi�ed models. References to some
speci�c program in the QWWAD software tool are marked in bold letters.

However, some of the existing models are too time consuming. Numer-
ical calculations carried out by the author in 2007 have shown long cal-
culation times using either a personal computer (days) or even computing
grid (hours), demanding improvements of algorithms and methods. Hence,
another goal for the author is to redevelop some of the existing models in
order to improve them by speed and accuracy. Optimisation without losing
the precision of the results is a complex task. Chapter 4 gives an overview
of improvements made to optimise the Quantum Cascade Laser simulation
models (QCLSIM) in the QWWAD software tool.
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Chapter 1

Overview of the terahertz
region

This chapter is based on publication IV, providing an overview of
advances in the terahertz range of the electromagnetic spectrum.

1.1 Overview of technology in the THz region

The range of the terahertz spectrum lies roughly between the frequencies
of 1 THz and 10 THz (300 µm and 30 µm) [5], being between regions of
mid-infrared and radio waves. The range of the terahertz region varies in
di�erent pulications [6], giving the wider boundaries of the region 300 GHz
and 30 THz, as seen in Fig. 1.1 .

During the last 20 years, the development of sources and detectors of
terahertz radiation has been rapidly boosted, providing numerous prospect-
ive applications of the terahertz range in spectroscopy, imaging, and com-
munications [6]. The terahertz region of the electromagnetic spectrum has
been underdeveloped since there was lack of technology generating coherent
high-power radiation [7] (see also Fig. 1.2). In browsing one of the most
commonly used scienti�c databases, the ISI Web of Knowledge, the number

���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
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Figure 1.1: The location of terahertz region in electromagnetic spectrum [6]
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Figure 1.2: Wavelength-temperature coverage of THz region in electromagnetic
spectrum, which is mostly covered by Quantum Cascade Lasers. Higher temper-
atures are not yet well covered [6].

of publications related to the terahertz area started growing from the be-
ginning of the 1990s, making another vast "climb" between 2003 and 2009
(see Fig.1.3). The notable decrease in the number of publications after 2009
is presumably related to the global economic crisis.

The development of terahertz radiation sources has also been obstructed
for a long time, due to low computing power available before the 1990s to
do the modelling of quantum well heterostructures. This technology is said
to be the most e�cient technology to produce [6] and detect [11] coher-
ent terahertz range emission. Vast development in computing technologies
during the last decades have given way to develop applications based on
quantum mechanical laws. The main necessity to have extreme comput-
ing power is to solve the Schrödinger equation, a di�erential equation that
helps us to analyse the quantum well heterostructures as devices [3]. A
variety of quantum well photodetectors of terahertz radiation is also being
developed[12].

The majority of applications for terahertz radiation are related to spec-
troscopy, as all chemical elements have a unique absorption spectra at the
terahertz region, which can be measured via absorption spectrum [13]. Se-
curity services need rapid detection and identi�cation of all kind of explos-
ives, illegal drugs, weapons, etc., which are excellent areas in which to apply
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Figure 1.3: Number of publications corresponding to keywords �terahertz� and
�quantum cascade laser� (or �qcl�) in ISI Web of Science database [8][9][10].

THz spectroscopy [14]. In addition, monitoring pollution and detection of
noxious substances are some examples of such applications [15]. In Fig. 1.4,
an example of spectra of absorption and trasmittance of di�erent explosives
are shown.

Imaging is a second important application of the terahertz region. There
are number of applications in medicine and security services to provide
"seeing" through non-organic material (see Fig. 1.5) [15]. Terahertz pulsed
imaging is a completely non-invasive and non-destructive way to analyse
tablets in a pharmacy, performing 3D analysis on tablets to determine the
coating integrity and thickness, and to detect and identify localised chemical
or physical structure, etc. [15]. Non-destructive imaging of illegal drugs is
also a good example of an application of terahertz imaging [16].

Terahertz communication is an area which promises very high bitrates
in extremely absorption-free environments. Up to 1 Tbit/s is estimated by
2015 with wired communication, and 0.1 Tbit/s by 2020 with wireless [17].

1.2 THz radiation sources

The majority of sources of coherent terahertz radiation need to work at
very low temperatures, which makes them expensive to use. Fortunately,
not all of the applications need the coherent radiation, and can work with
incoherent emission too. To get incoherent radiation, there is no need to use
expensive lasers � some kind of cheaper solution can be developed that could

14



Figure 1.4: (a) Theoretical absorption spectrum of six di�erent well known ex-
plosives. (b) Trasmittance of RDX explosive studied using four di�erent Terahertz
technologies from di�erent sources. [14]

Figure 1.5: On the left side, there is a legendary photo of man with a knife, showing
potential usage of terahertz rays [15]. On the right side, there is an example photo
of analysis of a maple seed pod using THz-rays [5].
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work even at room temperature. Incoherent radiation can be produced with
a quantum well that is pumped by lateral current. The radiation is then gen-
erated in spontaneous radiative transitions between size-quantized states,
requiring only the electron excitation to higher subbands. No population
inversion is needed.

Quantum wells also have a broad range of applications. There have
beenAlGaAs/GaAsbased LEDs manufactured, using single and double het-
erostructures [18]. These heterostructures are used in highly e�ective red
LEDs. A drawback ofAlGaAs/GaAsbased LEDs is the requirement of very
thin GaAs quantum wells surrounded byAlGaAsbarriers. An example usage
of quantum wells in LEDs is shown in Fig. 1.6.

Figure 1.6: An example application of quantum wells in Light Emitting Diodes.
The multiple quantum wells act there as an active region and increase the e�ciency
of light generation. Source: Fig. 4.14 (a) in [18]

The emission generated by a rectangular quantum well will have a rel-
atively wide spectrum, being quite ine�cient. To improve the bandwidth
and make it comparatively narrow, a parabolic well should be used. Para-
bolic quantum wells have equal energy spacings and in such wells the only
strong optical transitions are between adjacent states. The bandwidth of
such emitters is limited by the spontaneous emission width.

In reality, it is a complex task to produce parabolic quantum wells, as the
doping concentration needs to be changed homogeneously. One solution for
producing parabolic wells could be by digital grading. This means that the
shape of the parabolic well is replaced by rectangular layers of two materials
giving the behaviour of a real parabolic quantum well (i.e. equidistant
energy levels). Preparing such a digitised parabolic well is presented here
in the second part of Ch. 2.

To make such a parabolic well emitting spontaneous radiation, external
bias should be applied to it. External bias will produce a lateral electric
�eld that gives additional kinetic energy to electrons. Additional kinetic
energy increases the probability that electrons "jump" to higher energy
levels via scattering process. This is therefore the excitation process via
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Figure 1.7: A conduction band diagram of the Quantum Cascade Laser. Only two
periods of the multiple layer structure are shown here. Numbers show the energy
levels of electrons counting from the bottom of one period. [9]

lateral electric �eld and it is described in the second part of the thesis, in
Ch. 3.

Using molecular beam epitaxy (MBE), a more complex and powerful
radiation source can be built � a Quantum Cascade Laser (QCL) [9]. In
2002, the THz region was achieved using this technology [10]. In addi-
tion to MBE, Liquid Phase Epitaxy and Metal Organic Chemical Vapour
Deposition methods are used to grow quantum well heterostructures with
ultra-thin layers [19].
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Chapter 2

Time-independent Schrödinger
equation numerical solution
methods. Application to
digitally graded GaAs/AlGaAs
parabolic quantum wells

This chapter is based on publications I and II, covering method-
ology to �nd electron energy eigenvalues and wave functions ap-
plied on digitally graded GaAs/AlGaAs parabolic quantum wells.

2.1 Introduction

To �nd the band structure of quantum well heterostructures, the basic time-
independent 1D Schrödinger equation (see eq. (2.101) in [3]) is used:

− ~2

2m∗(z)
∂2

∂z2
ψ(z) + V (z)ψ(z) = Eψ(z) , (2.1)

where m∗(z) is the e�ective mass that depends on the coordinate (whether
it is GaAs or AlGaAs at that point), ψ(z) is the wave function, and E the
energy eigenvalue. A more precise form of this equation with di�erential
mass is preferable for thin potential barriers (see eq. (2.96) in [3]):

−~2

2

∂

∂z

1

m∗(z)
∂

∂z
ψ(z) + V (z)ψ(z) = Eψ(z) . (2.2)

The Schrödinger equation solutions are the energy eigenvalues and corres-
ponding wave functions that allow us to make the electron transport calcu-
lations. Knowing energy eigenvalues helps us to �nd the su�cient design
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suitable for a digitally graded parabolic well that could give the best ap-
proach to the ideal parabolic well. It is known that parabolic wells give
equally spaced energy levels; therefore, similar equal spacing must be found
by constructing suitable digital grading. The solutions are also needed to
perform the carrier transport calculations, which are described in the next
chapter.

Two di�erent methods to solve the Schrödinger equation were examined
to �nd better accuracy. The �rst method attempted was the shooting
method, and the other was the matrix eigenvalue and eigenstates solution
method, both described in Paul Harrison's book, "Quantum Wires, Wells,

and Dots" [3].

2.2 Choosing a suitable numerical method

2.2.1 Shooting method

The shooting method is based on solving a di�erential representation of the
Schrödinger equation with initial values that are known (see eq. (1.107)
from [20]):

ψ (z + δz) =

[
2m∗(z)

~2
(δz)2 (V (z)− E) + 2

]
ψ (z)− ψ (z − δz) . (2.3)

In this di�erential equation it is clearly visible that three consecutive
points in the wave function ψ depend on each other. Energy E is the
parameter that is searchable and its value is being searched by boundary
condition ψ(z →∞)→ 0. As the di�erential equation unites three points,
two of them need to be given as the initial values. When these initial values
are known, the �nal value for ψ(zn) can be calculated by repeating the
funcion iteratively 9n− 2 times.

Two initial values depend on the symmetry of the concrete wave func-
tion. The potential shape needs to be symmetrical to solve the Schrödinger
equation using the shooting method. Solution of the di�erential equation
needs to be started from the centre of potential. If the potential is sym-
metrical, the wave functions can either be symmetrical or non-symmetrical
(see Fig. 2.1).

The inital values need therefore to be chosen according to the type of
symmetry of the wave function. For symmetric and non-symmetric wave
function, the initial values are (respectively):

{
ψ (0) = 1

ψ (δz) = 1
, and

{
ψ (0) = 0

ψ (δz) = 1
. (2.4)
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Figure 2.1: Comparison of symmetric (left) and non-symmetric (right) wave func-
tions.

As the shooting method uses a di�erential equation, the wave function
is very precise near the initial values at z = 0 and z = ∂z. The �nal
part of the wave function tends to de�ect from the boundary condition
ψ(z → ∞) → 0, as �nding the precise E that matches the real eigenvalue
is very complicated. The real values always have a de�nite precision, which
makes it impossible to �nd the precise value for energy. The fact that the
�nal part of the wave function depends on the values in the beginning part
of the wave function also makes sense. Therefore, it is very complicated
to �nd solutions that are precise enough using the shooting method, as
conformance to outer boundary conditions is not easily achievable.

Trials to solve the task using the shooting method are considered there-
fore to be too inaccurate. The orthogonality of wave functions were
checked (

∫
i 6=j ψiψfdz = 0) and it was found that

∫
i 6=j ψiψfdz ≈ 0.1 while∫

ψiψidz = 1. That means the orthogonality of the wave functions is not
good enough and this method needed to be replaced.

2.2.2 Energy and wave function coupled solution method
(Newton method)

One way to improve the results of the shooting method was by applying an-
other method to it. A method called the energy and wave function coupled

solution method (EWC) was introduced [21] which is very precise but needs
initial energies and wave functions as inputs. Those input values can there-
fore be prepared with the shooting method.

EWC method solves Schrödinger equations system with clearly �xed
boundary conditions � both ends of the wave function can be �xed to some
initial value. Both energy eigenvalues and wave functions are calculated
simultaneously. The method is based on a 3-point scheme of spatial dis-
cretisation that corresponds to the equation derived from Schrödinger eq.
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(2.1):

− ~2

2m

(
ψi+1 − ψi

∆z
− ψi − ψi−1

∆z

)
1

∆z
+ Viψi = Eψi , (2.5)

where ψi denotes ψ(zi) and Vi ≡ V (zi). The exact boundary conditions
for the outer calculation area of ψ is set to zero (i.e. ψ1 = ψN = 0). This
boundary condition corresponds to the assumption of in�nitive external
barriers, as they cause the wave function to go to zero on the borders.

This is the representation with constant or slowly changing mass. In
case of dynamic mass, it goes inside the brackets, as it can be seen in the
following form:

−~2

2

(
ψi+1 − ψi
mi+ 1

2
∆z
− ψi − ψi−1

mi− 1
2
∆z

)
1

∆z
+ Viψi = Eψi , (2.6)

where mi+ 1
2
(and mi− 1

2
) is the average mass between mi and mi+1 (mi and

mi−1 respectively).

EWC method does not calculate the energies and wave functions dir-
ectly, but only their corrections. That makes it more optimal, as it is not
necessary to carry the absolute values through the calculations. The cycle
of calculations is iterative, and can be stopped when the results no longer
change much.

The eq. (2.6) can be converted to a representation that allows it to be
calculated using the following equations:

Y = Ỹ + δY , (2.7)

[∂F/∂Y ]× δY = −F̃ , (2.8)

where Ỹ is the approximate unknown vector, δY is the correction vector,
F̃ ≡ (F̃1, F̃2, ... , F̃N )T is the right-hand side vector of the system calculated
by Ỹ , and [∂F/∂Y ] is the N ×N Jacobi matrix with the Newton method
derivatives [21]. The Jacobi matrix [∂F/∂Y ] has a triagonal structure where
the �rst row and column are additionally �lled out [21]. The �rst element of
the main diagonal is zero. For example, for the constant mass formulation
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shown in eq. (2.5), the matrix has the following structure:

[∂F/∂Y ] =




0 2ψ2 2ψ3 2ψ4 · · · 2ψN−3 2ψN−2 2ψN−1 2ψN
ψ2 a2 c 0 · · · 0 0 0 0
ψ3 c a3 c · · · 0 0 0 0
ψ4 0 c a4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

ψN−3 0 0 0 · · · aN−3 c 0 0
ψN−2 0 0 0 · · · c aN−2 c 0
ψN−1 0 0 0 · · · 0 c aN−1 c
ψN 0 0 0 · · · 0 0 0 1




,

(2.9)
where c ≡ ~/(2m∆z2) and ai ≡ E − Vi − 2c. For a deeper overview of this
method, see [21].

This method is very precise, as by the end of iterations the increment
vector δY approaches computer zero. The disadvantages of this method
are, �rstly, the need to obtain an initial guess for the wavefunction, and
secondly, the possibility to skip some eigenvalues. It was therefore decided
not to use the method for rather di�cult multibarrier digitised quantum
well. The use of more common methods for trivial eigenvalue problems
could solve these disadvantages, which is the topic of the next subsection.

2.2.3 Method based on matrix eigenvalue standard solvers

This method is based on classical linear algebra methods that are meant
for �nding eigenvalues and eigenvectors of matrices. This will be much
more precise than the shooting method, because the elements no longer
depend on each other. To solve the Schrödinger eq. (2.1) using matrices,
the di�erencial equation needs to be modi�ed to di�erence representation
(see eq. (3.53), page 83 in [3]):

1

m ∗ (z + δz/2)
ψ (z + δz) =

=

(
2 (δz)2

~2
[V (z)− E] +

1

m ∗ (z + δz/2)
+

1

m ∗ (z − δz/2)

)
ψ (z)−

− 1

m ∗ (z − δz/2)
ψ (z − δz) . (2.10)

The eq. (2.10) is a di�erence equation, which means that it connects
three consecutive wave function values. To solve it, standard eigenvalue
and eigenvector computing methods can be used and the equation needs to
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get matrix representation. The �rst step should be to rewrite the equation
to the following form:

− 1

m∗
(
zi− 1

2

)ψi−1 +


2 (δz)2

~2
V (zi) +

1

m∗
(
zi+ 1

2

) +
1

m∗
(
zi− 1

2

)


ψi−

− 1

m∗
(
zi+ 1

2

)ψi+1 =
2 (δz)2

~2
E · ψi , (2.11)

where ψi = ψ (z), ψi∓1 = ψ (z ∓ δz), zi = z and zi∓ 1
2

= z∓δz
2 . For eigen-

value problems it is better to present this equation without the coe�cient
in front of energy E. Therefore, the whole equation needs to be multiplied
by ~2

2(δz)2
and will get the following form:

− k

m∗
(
zi− 1

2

)ψi−1 +


V (zi) +

k

m∗
(
zi+ 1

2

) +
k

m∗
(
zi− 1

2

)


ψi−

− k

m∗
(
zi+ 1

2

)ψi+1 = E · ψi , (2.12)

where k denotes the coe�cient ~2
2(δz)2

.

The coe�cients before ψ-s can be placed into a symmetric tridiagonal
band matrix and the task can be reformulated as a standard eigenvalue
problem:

[A] · [ψ] = E[ψ] , (2.13)

where [A] is the N × N matrix, [ψ] is a column vector with N elements,
and E is the energy eigenvalue we want. By solving this eigenvalue problem
with standard software (e.g. dstev and dstevx in LAPACK1), the energies
El (eigenvalues) and corresponding wave functions ψl (eigenvectors) can be
found (where l is the number of energy level, l = 1 ... Nl).

The orthogonality of the wave functions is much better using this
method. The value of nondiagonal elements of the orthogonality matrix
was

∫
i 6=j ψiψfdz ≈ 10−9, which shows clearly how much better this method

is than the shooting method.

1LAPACK is an acronym of words Linear Algebra PACKage. See
http://www.netlib.org/lapack for more information.
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2.2.4 Comparison of all three methods

The comparison of the main properties and pros and cons of all these meth-
ods are listed in tables 2.1 and 2.2.

Table 2.1: Comparison table of all three methods. N is the number of net points

Property Shooting
method

Newton
method

Matrix
eigenvalue
method

1. Boundary
conditons

One side is set
to 2 pts

Both sides
�xed to 0

Neither side
�xed

2. Wave function
orthogonality

≈ 10−1 ≈ 10−12 ≈ 10−9

3. Time e�ciency Medium
(time ∼ N)

Very High
(time ∼ N)

High
(time ∼ N3)

4. Initial guess for
wave function

Unnecessary Necessary Necessary

5. Implementation
complexity

Medium High Low

6. Traceability Good Poor Poor
7. Other
assumptions

Symmetrical
potential
needed

Outer barriers
are in�nitively

high

Not very clear
boundary
conditions

Table 2.2: Advantages and disadvantages of the three methods

Method Advantages Disadvantages

Shooting
method

Easy to implement Not very precise; May
skip energy levels if they
are too close to each other

Newton
method

Boundaries �xed
to 0; Relatively

fast

Initial guess for energies
and wave functions

needed; May skip energy
levels if they are too close

to each other
Matrix
eigenvalue
method

Standard
implementation

Not very clear boundary
conditions
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Figure 2.2: An example of parabolic quantum well with digital grading. Minimal
width of a monolayer is 0.2825 nm due to restrictions set by MBE [3].

2.3 Optimising digitally graded potentials

2.3.1 Introduction

The main task in this chapter is to �nd digitally graded potential layout
that could be a good approximation to parabolic quantum well. An example
of parabolic quantum well with digital grading is shown in Fig. 2.2. Digital
grading is needed to simplify the production process of parabolic quantum
well devices. Molecular Beam Epitaxy is a technology that layers semicon-
ductor materials one on top of the other [22]. Using this technology, it is not
possible to manufacture quantum wells that have a parabolic shape. One
option to overcome this obstacle is digitalisation of the parabolic well. This
means the two materials used in the parabolic well (GaAs and AlxGa1−xAs)
are altered as many times as necessary to achieve similar behaviour to true
the parabolic well. Finding the right digital grading can be time consum-
ing, because all the thick layers must be carefully shifted left and right to
�nd the best approach to equal spacing between energy levels. The spacing
serves as a feedback in the digitised parabolic well construction method.

2.3.2 Building initial potential

Building the initial structure was relatively easy. The �rst criterion while
building the structure was the integral of the potential function (the area)
that needs to be equal for both cases � for the original parabolic well and for
the digitised well. This de�ned the number of layers. The second criterion
was needed to de�ne their initial placement. The algorithm for assigning
the layers to their initial places started moving from the centre of potential
and integrated over the original potential well. If the integral happened to
exceed the area of one monolayer, a layer was put into this place where it
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Figure 2.3: The algorithms used to �nd adequate quasi-parabolic quantum well
using digital grading of two substrates. The shifts are done symmetrically for both
sides.

occurred. Then the counter was zeroed and integration continued until the
end of the potential. Initial potential behaved more or less like the parabolic
well, but it was still not very precise.

2.3.3 Optimising the potential

To optimise the initial potential, several algorithms were tried. The �rst and
easiest was to move layers one step2 left and right, doing it one by one with
each of the layers. After each movement, the uni�ed spacing parameter
between energy levels was calculated again and compared to the current
minimal spacing parameter. This process was also continued with several
other algorithms until the spacing no longer improved.

To characterise the deviation of spacings from desired value, a statistical
parameter � Root Mean Square (RMS ) � was used. The parameter was
calculated using the following equation:

RMS =

√∑N−1
i=1 (∆Ei,i+1 −∆Ewanted)2

N − 1
, (2.14)

where ∆Ei,i+1 = Ei+1 − Ei is the spacing between energy levels i and
i + 1, ∆Ewanted is the desired energy spacing (a constant value), and N is
the number of energy levels. After each displacement of a layer, the RMS

is recalculated and used in later movements as a comparison. If a new
relocation changed the RMS, the position of the corresponding monolayer
is �xed and another layer taken into focus.

All the algorithms used are described below and shown in Fig. 2.3.

2the width of a monolayer (0.2825 nm)
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A. Moving one stick at a time to the left and right This was
the �rst method tried to improve the RMS of energy level spacings. The
algorithm started from the centre of potential and moved symmetrically
to the direction of the edge. When it reached the end, it started coming
back in reverse to the centre. The algorithm continued this cycle until the
movement of layers no longer improved the energy spacings.

If the new position of a layer is occupied by another layer, then this layer
will also be moved on. If there are many layers, then all of them will be
moved.

B. Moving a group of sticks to the left and right This method
was the �rst improvement to the previous one, as it did not give the best
approach. The method starts again from the middle of the well and goes
to the side. The �rst movement incorporates all the layers that are moved
to the right and to the left. The second movement leaves out the �rst layer
and takes all the others (n− 1 if n is the number of layers) with it.

C. Moving two consecutive sticks towards and away from each
other This was the last improvement attempted to make the achieved
results even better. The process starts again from the middle of the well
and goes to the side. All the consecutive layers were moved towards each
other and then away from each other.

In �nal calculations, all the methods were combined, alternating them
after each step. Acting that way gave the best result � the precision of
energy spacings came to around 5 percent, which was also the initial goal
[23]. See Fig. 8 in [23].

2.4 Conclusion

There are two main results achieved in this chapter. The aim of the �rst
task was to �nd a proper method for band structure calculation. This
task was performed successfully � a standard linear algebra method to �nd
matrix eigenvalues and eigenvectors was chosen to be the best one. The
initial data was chosen such that the eigenvalues were the energy values
and eigenvectors the corresponding wave function.

The second task in this chapter was to �nd a good approximation to
parabolic quantum well using digital grading, i.e. alteration of two di�erent
substances, GaAs and AlGaAs. After the layout of layers was �xed, the
energy levels had more or less equal spacing, and the �nal results were to
be calculated. After the �nal energy eigenvalues and wave functions were
ready, the process continued with carrier transport calculations, which is
handled in the next chapter 3.
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Chapter 3

Lateral transport task of a
quantum well-based
broadband terahertz emitter

This chapter is based on publication III, covering methodology to
calculate emission rates for lateral transport of charge carriers.

3.1 Introduction

The quantum wells we are using are two dimensional, which means that the
electrons have two directions where they can move and one direction where
they are �xed. This is therefore called in-plane electron transport. Fig. 3.1
shows how the electrons can move along the valley (y-axis) and up along
the subband (x-axis). Along the z-axis the electrons are not free.

Lateral transport brings up the e�ect of scattering � the electrons are
colliding with vibrating atoms in the lattice (phonons) and other electrons.
Such collisions heat the electrons up, giving them higher kinetic energy.
This will cause the electrons to climb up along the subband until they collide
with the lattice and jump to higher subbands through the scattering process
(see Fig. 3.2). Higher subbands will therefore have a higher population of
electrons. Electrons in excited subbands will then relax into lower ones and
produce spontaneous emission of photons. The main idea is therefore in
increasing the output power by additional spontaneous emission.

A device emitting terahertz radiation can be built using this idea. An
example of such a device can be seen in Fig. 3.3.

The lateral electric �eld therefore causes the Fermi-Dirac distribution
function needed in transport calculations to shift along the energy axis to
some extent (see Fig. 3.4 and section 3.2). The original distribution function
for equilibrium is given by (see eq. (2.49) in [3]):

28



Figure 3.1: In-plane dispersion curves and the subband structure. Source: Fig.
2.5, page 22 in [3].

Scattering

n=0
n=1

n=2

Photons
Energy eigenstates

k

Energy

Electric field acceleration

Figure 3.2: Model of subband excitation and relaxation processes. Nonradiative
intersubband scattering processes (polar LO phonons and acoustic deformation
potential phonons) cause electron transitions between subbands. The lateral elec-
tric �eld accelerates electrons within every subband. Optical radiation output is
caused by spontaneous drop of electrons from higher subbands to lower ones, while
∆k ≈ 0.

SOURCE DRAIN

doping

e−e−e−

Al0.42Ga0.58As

ECEV E

z

Al0.42Ga0.58As

GaAs

Figure 3.3: An example device based on a laterally pumped quantum well
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fFD (E) =
1

exp [(E − EF ) /kT ] + 1
, (3.1)

where EF is the Fermi energy.

k

F = 0

f sFD(k, F )

k00

F < 0

Figure 3.4: The shifted Fermi-Dirac distribution function with e�ective electron
temperature. The shift is caused by the lateral electric �eld, and the �atness is
caused by the increase in temperature.

3.2 Shifted Fermi-Dirac distribution function

The internal electric �eld of lateral transport causes electrons to obtain a
remarkable drift velocity (vd > 0), heating themselves up. This will cause
the Fermi-Dirac distribution function (3.1) to shift along the E axis by
energy that corresponds to vd , as Eshifted = E0 + ~2k2

2m∗ = E0 + ~2vd
2

2m∗ .
The distribution function will then get the following form:

f sFD (k) =


1 + exp

En0 +
~2

(
(kx−kx0 (F ,Tlatt))

2
+k2y

)
2m∗ − EFn

kBTel (F ,Tlatt)




−1

, (3.2)

where k = (kx, ky) is the in-plane wave vector that is proportional to energy
E in the original equation, En0 is the subband minimum energy, EFn is the
quasi-Fermi level of the n-th subband, kx0 is the drift wave vector along the
x-axis, and Tel the heated electron temperature. kx0 and Tel depend both
on the electric �eld F and lattice temperature Tlatt.

Two unknown parameters are introduced with shifted distribution func-
tion � drift wave vector and electron temperature (kx0 and Tel) � and both
are functions of applied electric �eld F and lattice temperature Tlatt. The
author decided to take these functions from the literature, as there have
already been several studies done on this matter.

Dependence between the drift velocity and electric �eld is taken from
[24]. The relevant �gure is 3.5 (the left one), which is a copy of the original
�gure from the paper. The points on this graph were carefully written out
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and interpolated using Lagrange's interpolation method. The interpolated
data were then written out again and presented here as the right curve in
the same �gure. It can be seen that the result conforms more or less to
the original data. Experiments showed that this small di�erence does not
a�ect the overall result signi�cantly. In calculations where the wave vector
k is used instead of speed v, the conversion can be done using the following
relationship [25]:

k (F ) =
m∗v (F )

~
. (3.3)

The electron temperature and electric �eld dependence are also taken
from the same paper. Fig. 4 in [24] shows the dependence between the
electric �eld and average energy for GaAs at 300 K. The comparison is
presented in Fig. 3.6, where both the original and interpolated curves are
presented. The average energyE is converted to temperature T using the
equation from the ideal gas model [25]:

T (F ) =
2E (F )

3kB
. (3.4)

3.3 Calculation methodology

3.3.1 Overview

The process of calculations is described in Fig. 3.7. The calculation has two
cycles: the inner one is iterative to �nd the proper subband populations,
and the outer one that is over the electric �eld values. The band structure
needs to be calculated in advance.

3.3.2 Calculation of raw scattering rates

Electrons moving in a crystal lattice will sooner or later collide with lattice
atoms. That way the electrons can change their states � collisions may
either increase or decrease their energy. According to Fermi's Golden Rule,

the scattering process is described as follows: if there is a time-dependent
perturbation H̃, which could transfer an electron from state|i〉with energyEi
to state|f〉with energyEf , the lifetime of the carrier in state|i〉 is (according
to eq. (10.1) in [3]):

1

τi
=

2π

~
∑

f

∣∣∣〈f | H̃ |i〉
∣∣∣
2
δ (Ef − Ei) . (3.5)

There are several types of scatterings, but only longitudinal optic and
acoustic deformation potential are taken into account, as the others do not
a�ect the results greatly. All the scattering types have their own equations
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Figure 3.5: Comparison of the original (left) and interpolated (right) dependence
between drift velocity and electric �eld at 300 K in GaAs (source: Fig. 3 in [24]).

Figure 3.6: Comparison of the original and the interpolated dependence between
average energy and electric �eld at 300 K in GaAs (source: Fig. 4 in [24]).
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Calculation of raw scattering rates

Calculation of quasi−Fermi energies

Averaging scattering rates

Subband population calculation

LOa, LOe, ACa, ACe

(original code)

(original code)

(modified code)

(new code)

(new code)

Initialisation

Calculation of energies
and wave functions

(modified code)

Assigning initial guess for subband

Shifted Fermi−Dirac distribution

function and parameters

(modified code)

(new code)Calculation of power (incl spectrum)

Calculation of radiative lifetimes

Is the change in emitted

power less than 1%?

Yes

No

multicalculate (new code)End

Yes

electric field value?

Was it the lastNo

finite_difference_method

srelo

sradp

sbp

srmpr

ND2ni

srrad

radpow

1
τ
= f (|k|) , k =

√
k2x + k2y

El, ψl(z), where l = 1...N

populations nl, where l = 1...N

Assigning new ele
tri
 �eld F

Finding empiri
al Te and vd

over kx, ky using

Te, vd, EFl
, where l = 1...N

using rate equations∣∣∣∣∣∣∣∣∣

∑
i

1
τ1i

−1
τ21

· · · −1
τN1−1

τ12

∑
i

1
τ2i

· · · −1
τN2

.

.

.

.

.

.

.

.

.

.

.

.

−1
τ1N

−1
τ2N

. . .
∑

i
1

τNi

∣∣∣∣∣∣∣∣∣

Figure 3.7: Overview of the calculation process. The source of codes' given mean:
original � code taken from [3], modi�ed � code taken from [3] and modi�ed by the
author, and new � code written by the author. Variable N means the total number
of energy levels (subbands). The majority of the calculations are automated using
a program called multicalculate.
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for the perturbation H̃, which gives the �nal form to the scattering rate
equations described below.

The calculation of longitudinal optic (LO) phonon scatterings were per-
formed using Paul Harrison's book (section 10.3 in [3]). According to this
section, the scattering rate eq. (3.5) can be improved and will �nally get
the following form (see eq. (10.147) in [3]):

1

τi
=
m∗e2ωP ′

(2π)2 ~2

∫ ∞

−∞

π |Gif (Kz)|2√
K2
z + 2K2

z

(
2k2

i − 2m∗∆
~2
)

+
(

2m∗∆
~2
)2 dKz , (3.6)

where ∆ is the sum of subband minimal energy and the kinetic energy within
the band Ef−Ei∓~ω (The upper sign in front of ~ω represents the emission

of a phonon and decreases the absorption), P =
(

1
ε∞
− 1

εs

) (
N0 + 1

2 ∓ 1
2

)

(where ε∞ and εs are the high- and low-frequency permittivities of the ma-
terial, and N0+ 1

2∓ 1
2 represents the number of phonons per unit area within

the crystal, having minus in case of emission and plus in case of absorption,
where N0 is the Bose-Einstein factor), Kz and ω are the wave vector (along
the growth axis) and angular frequency of the phonons, ki is the momentum
of phonon in the initial state, and Gif =

∫
ψ∗f (z) e−iKzzψ∗f (z) dz is the form

factor of scattering events.
Scattering rate acoustic deformation potential (AC) calculations were

performed according to section 10.9 in Paul Harrison's book, [3]. The equa-
tion for AC scattering is in the form (see eq. (10.186) in [3]):

1

τi
(ki) =

D2
Am
∗

ρvs (2π)2 ~2

(
N0 +

1

2
∓ 1

2

)∫ ∞

0

∫ 2π

0
(Gif (Kz))

2×

×
(

Θ (α1)α1

√
α2

1 +K2
z + Θ (α2)α2

√
α2

2 +K2
z

α1 − α2

)
dφdKz , (3.7)

where DA is electron acoustic deformation potential (in case of Γ-valley
of GaAs DA = 7.0 eV. Source: Table 2.1 in [26]), Gif is the form factor
of scattering events (see the previous paragraph), α1,2 = −ki cosφ ±√
k2
i cos2 φ− 2m∗∆E

~2 (according to eq. (10.182) in [3]), ki is the phonon
wave number of inital subband, Kz is the wave vector of the phonons, Θ
is the Heaviside function, ρ and vs are the density and speed of sound (re-
spectively) in GaAs, and N0 + 1

2 ∓ 1
2 represents the number of phonons per

unit area within the crystal, having minus in case of emission and plus in
case of absorption (where N0 is the Bose-Einstein factor).

There is a standard implementation to solve these tasks [4]. A program
called srelo is designed for LO scattering calculations and sradp for AC
scattering. Therefore, in the overall calculation process, this part was solved
using these standard programs.
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3.3.3 Calculation of quasi-Fermi energies

In the calculation of mean scattering rate (subsection 3.3.4), the shifted
Fermi-Dirac distribution function is constructed. According to the eq. (3.1),
the Fermi-Dirac distribution function depends on Fermi energy EF . In
lateral transport the Fermi energy is separate for all the subbands:

fFD
i (E) =

1

exp [(E − EFi) /kT ] + 1
, (3.8)

where the index i expresses the index of subband. Fermi energy is therefore
a 'quasi' energy describing the carrier population within a subband.

Quasi-Fermi energies need to be calculated for the shifted distribution
function in the next subsection. As the Fermi energy is tightly related to
carrier population within one subband, the problem can be solved using the
eq. (2.48) in [3]. The equation will give the electron occupation of state i:

ni =
m∗

π~2

∫

subband
fFD
i (E) dE . (3.9)

By putting equations (3.8) and (3.9) together, the Fermi energies can be
found using reverse search method if the subband populations are known.
The subband populations will be calculated later in subsection 3.3.5. This
is not a problem that they are calculated in reverse order, because of the
iterative calculation procedure. Arbitrary populations are used in the �rst
round.

In Paul Harrison's book, [3], the method was implemented for equilib-
rium (a program called sbp). The script was modi�ed to provide a shifted

Fermi-Dirac distribution function for the non-equilibrium.

3.3.4 Calculation of mean scattering rates

Calculation of subband populations in the next subsection (3.3.5) depends
on mean scattering rates. Therefore, it is necessary to �nd the mean rates
using eq. (8.149)1 from Paul Harrison's book, [3]:

〈
1

τif

〉
=

∫
1
τif
fFD
i (E)

(
1− fFD

f (E ∓ Ephonon)
)

dE
∫
fFD
i (E) dE

, (3.10)

where the indexes i and f stand for 'initial' and '�nal' states, and Ephonon

is the phonon energy with minus in case of emission and plus in case of
absorption.

As lateral transport shifts the distribution function away from the zero,
its shifted form should be used in this equation too. The integral over energy

1The corrected form is presented here according to the errata of the book
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has also to be changed to integral over wave vector k then. In computational
implementation, the equation will look like this:

〈
1

τif

〉
=

∫
kx

∫
ky

1
τif
f sFD
i (kx,ky)

(
1− fFD

f (E −∓Ephonon)
)

dkxdky
∫
kx

∫
ky
fsFD
i (kx,ky) dkxdky

,

(3.11)
where E = Ei + ~2

2m∗

(
k2
x + k2

y

)
(where Ei is the subband minimum energy

and ~2
2m∗

(
k2
x + k2

y

)
the kinetic energy), and fsFD

i (k) is the shifted Fermi-
Dirac distribution function (see section 3.2).

This function was implemented using a standard program srmpr from
Paul Harrison's book, [3], which was improved with the shifted distribution
function.

3.3.5 Calculation of subband populations using rate equa-
tions

To calculate the subband populations, rate equations need to be constructed
using average scattering rates. It is known that the number of electrons
leaving a state is equal to the number of electrons coming to the state.
Therefore, the following rate equation can be used:

dnf
dt

=
N∑

i=1

1

τif
ni − nf

N∑

i=1

1

τfi
= 0 , (3.12)

where τ−1
if is the total averaged scattering rate from i-th to f -th subband, ni

is the electron population of i-th subband, and N the number of subbands.
This equation contains N unknown variables ni-s, which means at least
N −1 equations need to be found in addition to solve it. As the equation is
meant for one subband only (f -th), it can be applied for all the N subbands:





∑N
i=1

1
τi1
ni − n1

∑N
i=1

1
τ1i

= 0∑N
i=1

1
τi2
ni − n2

∑N
i=1

1
τ2i

= 0
...

...
...∑N

i=1
1
τiN

ni − nN
∑N

i=1
1
τNi

= 0

. (3.13)

Unfortunately, in this case, zero populations will also give a true result
(ni = 0, i = 1 ... N). Therefore, an additional equation which connects the
subband populations to overall electron concentration in the semiconductor
should be introduced:

n1 + n2 + n3 + · · ·+ nN = ND , (3.14)

where ND is the overall density of electrons.
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These equations can easily be solved using the following matrix equation

Ax = y , (3.15)

where

A =

∣∣∣∣∣∣∣∣∣∣∣∣

∑
i

1
τ1i

1
τ21

· · · 1
τ(N−1)1

1
τN1

1
τ12

∑
i

1
τ2i

· · · 1
τ(N−1)2

1
τN2

...
...

. . .
...

...
1

τ1(N−1)

1
τ2(N−1)

· · · ∑i
1

τ(N−1)i

1
τN(N−1)

1 1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

,

x =

∣∣∣∣∣∣∣∣∣∣∣

n1

n2
...

nN−1

nN

∣∣∣∣∣∣∣∣∣∣∣

, and y =

∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
ND

∣∣∣∣∣∣∣∣∣∣∣

.

To solve this task, a new program ND2ni was written.
A similar model for �nding subband populations can also be used in

quantum well infrared photodetectors [27].

3.3.6 Calculation of emission characteristics

The emission characteristic we are interested in is the emitted power, both
the total value and the spectrum. The whole cycle of calculations done
before was to �nd the subband populations ni for the equation of emitted
power:

Ptotal =

N∑

i>f

ni

τ rad
if

(Ei − Ef ) , (3.16)

where ni is the population of i-th subband, τ rad
if is the spontaneous radiative

lifetimes and ~ωif = Ei − Ef the energy di�erence between i-th and f -th
subbands [3]. The radiative lifetime is given by:

1

τ rad
if

=
e2n (Ei − Ef )3 d2

if

3πε0c3~4
, (3.17)

where n is the refractive index, dif are the optical dipole matrix elements,
dif =

∫
ψf (z) zψi (z) dz [3]. Spontaneous radiative lifetimes 1

τ radf

do not

depend on subband populations ni, which means they can be calculated
prior to other calculations. This is important in practical implementation,
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because this calculation can be omitted in the main cycle to save time. The
second output needed, the power spectrum, is calculated as a well-known
Lorentzian spectrum:

P (E) =

N∑

i>f

ni

τ rad
if

(Ei − Ef )
Γ

π

1

(E − (Ei − Ef ))2 + Γ2
, (3.18)

where Γ is the line width (half-width at half maximum) of the intersubband
transitions, Ei and Ef the energies of initial and �nal subbands, and τ rad

if

the spontaneous radiative lifetimes.

3.3.7 Overall calculation automation

According to Fig. 3.7, the main cycle of transport calculations are being
controlled by the program multicalculate. This means that the band
structure needs to be calculated in advance, then the transport calculations
can be started. The program requests all the input data from the user
(i.e. the electric �eld values Fi, temperature T , and total electron density
ND) and calls the subroutines automatically with the right arguments in
the right order. The program checks the change in power emission after
each inner iterative calculation cycle and exits as soon as one per cent of
precision is achieved. All the inner iterative cycles are a part of an outer
cycle which runs over the array of electric �elds.

3.4 Conclusion

The calculations show that the emitted radiation spectrum peaks are above
the blackbody level for all considered lattice temperatures 77�400K [28],
[29]. The main problem through the development process was validation of
the results. As there are standard implementations (that can be trusted) for
an unbiased case in Paul Harrison's book, [3], the results for F = 0 V/cm
can be compared. Calculations performed for the 7 THz frequency show
the di�erence under 1 %. The comparison is given in table 3.1. During the
early stage of calculations, the error in results was around 30 %. By now,
the methods have been improved and corrected, so the precision has become
better.

It can therefore be stated that the modelling method for electron trans-
port in laterally pumped semiconductors has been developed and imple-
mented.
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Table 3.1: Comparison between results got by standard implementation (taken
from [3]) and author's implementation. Electric �eld is not applied (F = 0 V/cm),
having only black body radiation.

77 K 300 K

Implementation taken from
QWWAD ([3]). Averaging is

done using eq. (3.10)

16.97 W/m2 16.98 W/m2

Implementation made by the
author. Averaging is done using

eq. (3.11)

17.02 W/m2 17.07 W/m2

Deviation 0.3 % 0.5 %
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Chapter 4

Optimisation of mathematical
models for terahertz range
quantum cascade lasers

This chapter is based on publication V and manuscript [30], ana-
lysing strategies for optimisation of mathematical models.

4.1 Introduction

In this chapter, possibilities for optimisation of mathematical models in the
QWAAD software tool [4] are analysed, particularly models in the QCL
simulator (QCLSIM), which is a module of this tool. The software tool is
developed by Leeds University and published as an appendix to Paul Har-
rison's book, �Quantum Wells, Wires and Dots� (QWAAD). It is designed
to simulate semiconductor nanostructures. The software has a modular
architecture, providing easy understanding of the overall calculation pro-
cess, while each module may have a very complex structure. Although the
toolkit is a promising set of software programs, there is a growing need
for improving the speed and accuracy of components of the toolkit. For
large quantum well structures, the toolkit is rather used on computing
grids, as the computational time is overwhelmingly large. Users need to
run this software on a regular PC to perform the simulations fast enough
(in the range of 10 minutes, rather than hours). In this chapter, the op-
tions regarding how to improve the toolkit are analysed and software up-
dates are implemented. The main program in the QCLSIM toolkit is called
qclsim, which is described in Fig. 4.1. Several sub-programs shown in
that scheme contain other sub-programs. For example, the program called
poisson_schroedinger contains scripts visible in Fig. 4.2 and the pro-
gram called solve_schroedinger has content visible in Fig. 4.3.
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Figure 4.1: Main architecture of Quantum Cascade Laser toolkit. The bold strings
inside the large dotted rectangle are all sub-programs inside the main toolkit pro-
gram qclsim.
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Figure 4.2: Architecture of Poisson-Schrödinger equation solver
(poisson_schroedinger)
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Figure 4.3: Architecture of Schrödinger solver (solve_schroedinger)
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Figure 4.5: Architecture of scattering rate calculation module
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Figure 4.6: Conduction band diagram of QCL used for test calculations. Three
energy levels per each period of QCL can be seen.

During the optimisation task, two structures are used to perform the test
calculations to verify the results. The �rst structure is a single quantum
well (10 nm GaAs/Al0.15Ga0.85As quantum well with 50 nm barriers), later
referred to as structure #1. The second structure is a triple-quantum-
well GaAs/Al0.2Ga0.8As QCL described in [3] (pages 337�338), labelled as
structure #2, which can be seen in Fig. 4.6. In tables 4.1 and 4.2 you
can see the time spent on running the QCLSIM tool for each module. This
detailed analysis helps us to discover the most ine�cient modules in the
software that could be optimised. There are two methods for solving the
Schrödinger equation used (see module fwf in Fig. 4.3). Method #1 is the
Taylor approximation of �nite di�erence method, which is fast and accurate
for states near the band edge, but gives errors when Estate − Eband edge ≈
Ebandgap [3]. Method #2 is the �nite di�erence method accounting for band
nonparabolicity, which has good precision for all states but is slow [31]. In
this analysis, only structure #1 was calculated, as the overall process needs
the device to be nothing other than QCL.

According to the results of experimental calculations1 given in table 4.1,
the most time-consuming software tool is self_consistent_elec_temp.

1All the calculations in this chapter were done using PC with the processor: 64-bit
Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz.
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Table 4.1: Analysis of time consumption per sub-programs in qclsim. The number
of calculations was 3 for method #1 and 1 for method #2. It can be seen that the
most time-consuming sub-program is self_consistent_elec_temp.

Sub-program of
qclsim

Schrödinger
solution method

#1

Schrödinger
solution method

#2
Average
time, s

% Average
time, s

%

heterostructure 0.068 0.01 0.059 0.00
condbandpotential 0.305 0.03 0.212 0.00
internal_�eld 0.049 0.00 0.045 0.00

�nd_�eld_e�ects... 1.049 0.09 1.286 0.00
solve_schroedinger 2.045 0.18 406.338 1.09
self_consistent...? 1130.813 99.67 36809.054 98.90

wfplot 0.083 0.01 0.100 0.00
gain 0.142 0.01 0.219 0.00

current 0.003 0.00 0.101 0.00
Total 1134.557 37217.310

? Cumulative time over unlimited number of periods until the convergence
of electron temperature Te .

According to Fig. 4.1, the script called poisson_schroedinger should
be analysed as well. The results for the time consumption of pois-
son_schroedinger are given in Table 4.2. According to this, the most
ine�cient module is solve_schroedinger in the case of Schrödinger solu-
tion method #2, and �nd_scattering_rates in the case of method #1.
Opportunities for optimisation of other modules were not analysed.

4.2 Improvement of the Schrödinger solver

The most �time-wasting� part of the software is solving Schrödinger (script
solve_schroedinger in Fig. 4.2) in the case of method #2. The method
itself is realised in script fwf (see Fig. 4.3). This is an eigenvalue problem
(EVP) to �nd energy eigenvalues and corresponding wave functions of elec-
trons in the system. Method #2 is one of the preferred methods QCLSIM
uses for solving the Schrödinger equation, as it takes band nonparabolicity
into account (see details in [31]). Although the method is very precise, it is
also very time consuming. According to eq. (14) in [31], there is a matrix
equation containing a large sparse matrix to be solved for EVP. All the cal-
culations were originally performed using a dense matrix EVP solver from
the LAPACK library. As Cooper has shown in [31], the linearised EVP
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Table 4.2: Analysis of time consumption per sub-programs in pois-
son_schroedinger. The number of runs for poisson_schroedinger was 11
for method #1 and 17 for method #2. Sub-programs ran 8 times more cycles (see
Fig. 4.2).

Sub-program of
poisson_
schroedinger

Schrödinger
solution method

#1

Schrödinger
solution method

#2
Average
time, s

% Average
time, s

%

densityinput 0.026 0.22 0.044 0.01
�nd_fermi 0.062 0.52 0.090 0.02
�nd_scattering_rates 8.701 72.57 12.537 3.03
pop 0.044 0.37 0.053 0.01
�nd_fermi 0.046 0.38 0.083 0.02
�nd_�eld_e�ects... 1.007 8.40 1.310 0.32
chargedensity 0.073 0.61 0.078 0.02
gain 0.019 0.16 0.034 0.01
excrates 0.019 0.16 0.033 0.01
solve_schroedinger 1.985 16.56 398.827 96.54
delta 0.007 0.06 0.016 0.00
Total 11.989 413.105
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could in principle be solved faster when using some custom library rather
than using LAPACK.

According to [31], the EVP was solved using this matrix equation:




0 1 0
0 0 1

−A−1
3 A0 −A−1

3 A1 −A−1
3 A2






ψ
Eψ
E2ψ


 = E




ψ
Eψ
E2ψ


 , (4.1)

where 0 is the matrix containing zeros, 1 is the unit matrix, A0, A1, A2 and
A3 are matrices containing kinetic and potential energies of electrons and
applied �elds and are described in [31], E is the vector for energy eigenvalues
of electrons, and ψ is the matrix of corresponding wave functions. A more
general representation of this equation is:

Aψ = Eψ , (4.2)

where A is the left-most matrix in eq. (4.1). Technically, matrix A is equal
to:

A =







0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0







1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1







0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0







0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0







0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0







1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1







b1 c1 · · · 0
a1 b2 · · · 0
...

...
. . .

...
0 0 · · · bN







e1 f1 · · · 0
d1 e2 · · · 0
...

...
. . .

...
0 0 · · · eN







g1 0 · · · 0
0 g2 · · · 0
...

...
. . .

...
0 0 · · · gN







,

where ai, bi, ci, di, ei, fi, and gi are nonzero real coe�cients.
As matrix A is a sparse matrix, experiments with the ARPACK library

(that supports sparse matrices) showed that simple swapping from general
matrix methods to sparse matrix methods brings up converging problems.
According to [32], the shift and invert spectral transformation should be
done to improve convergence. This means that the original eq. (4.2) is to
be transformed to
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Structure #1 Structure #2
# Taylor LAPACK ARPACK Taylor LAPACK ARPACK

1 0.003 1.795 0.079 1.174 408.989 21.477
2 0.003 1.410 0.082 1.007 399.101 20.403
3 0.003 1.843 0.090 1.023 403.421 20.563
4 0.003 1.582 0.080 1.097 404.587 20.496
5 0.004 1.916 0.085 0.957 379.871 20.430
6 0.004 1.422 0.077 0.984 375.256 20.656
7 0.008 1.773 0.078 1.216 384.427 21.125
8 0.004 1.923 0.077 1.167 396.451 21.509
9 0.004 1.800 0.082 0.974 401.195 22.575
10 0.016 2.119 0.075 1.429 370.507 23.671

AVG 0.005 1.758 0.081 1.103 392.381 21.291

Table 4.3: Comparison of time spent (in seconds) on solving Schrödinger using
three methods. Taylor is method #1, LAPACK is methd #2, and ARPACK is
the improved version of method #2.

(A− σ)−1 ψ = Eνψ ,

where σ 6= E is the shift in absolute values for elements of A, and
Eν = σ + 1

E is a vector containing shifted eigenvalues. As ARPACK suppor-
ted this kind of transformation, further experiments with this library still
showed some convergence problems. By analysing and changing the mag-
nitude of matrix A elements, the converging was improved. The magnitude
of matrix A elements is around 10−58, which is relatively small. By norm-
alising the matrix, setting1 as the average value of matrixA, the converging
problems disappeared. It has been mentioned that ARPACK works bet-
ter with eigenvalues of a large magnitude [32]. Experiments showed much
smaller calculation times when using the ARPACK library in shifted and
inverted spectral transformation mode.

Table 4.3 and the corresponding Fig. (4.7) show time spent on two
calculation series of the Schrödinger equation with two structures. Time
saved when using the sparse matrix solver rather than general matrix solver
is around 1.758 s

0.081 s = 21.7, with structure #1 and 392.381 s
21.291 s = 18.4 times with

structure #2, giving approx. 20 times the average success.

4.3 Improvements due to the reuse of data

During the simulation process, many parameters are calculated over and
over, but could be reused instead. In Fig. 4.8 you can see an example of
subband populations calculated for a QCL for di�erent electric �elds. To
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Figure 4.7: Comparison of time consumed by the module fwf to solve the
Schrödinger equation. [30]

get characteristic curves as in this �gure, the whole process, as seen in Fig.
4.1, needs to be repeated dozens or hundreds of times for each electrical
�eld and lattice temperature value. We cannot directly use any data from
previous calculations, but we could use previous data as an initial guess.
The process in Fig. 4.2 contains an iterative part, which means that during
the calculation some values are converging from their initial states to the
values we are seeking. With initial values closer to the expected results we
could decrease the number of iterations required.

If we could already leave out a few steps in the iterative process, we
could gain in calculation time. A calculation on structure #1 with a few
more cycles was made (see Fig. 4.9, E = 18.7 kV/cm, T = 77K ). The �rst
calculation made was simply a calculation of subband populations from their
default initial values, which were all equal to each other (each subband was
initially equipopulated). The second calculation was purely to reuse data of
the subband population from a previously completed calculation, where the
electric �eld was 18.6 kV/cm (The di�erence from the current calculation
is 0.1 kV/cm). According to this, the initial value of electron population is
pretty close to the convergence value later. In spite of that, the value starts
�uctuating straight from the �rst iterations and merges quickly with the
values from the original calculation, giving no direct positive impact on the
speed of convergence.

The next calculation with data reuse was to merge potential-related data
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Figure 4.8: Data reuse example

together with population data into the initial data. Due to the �eld e�ects,
the potential of the QCL structure is slightly changed during each iteration
(stage 4 in Fig. 4.2). Incorporating the potential data could improve the
e�ciency of data reuse. As can seen from Fig. 4.9, the e�ect is small but
notable. The solid line shows that the number of subband populations re-
mains close to the converging value for quite a few steps from the beginning,
then suddenly jumps remarkably to a higher value, coming then back again
close to the converging value. This experiment showed better results, but
it is still too unstable to allow for a decrease in the number of iterations to
be performed per one calculation.

4.4 Integration improvements

When analysing scattering rate calculations in the script called
�nd_scattering_rates, a numerical issue was found. Numerical calcula-
tions may become very di�cult if there are complex integrations during the
simulation process. During the calculation of acoustic phonon scattering
rate (script srac in 4.5), the following integration needs to be calculated
numerically (see eq. (3.7) in this work, as well as eq. (10.186) in [3]).

According to this equation, α1 and α2 can cause integrals to become
in�nite, if α1 = α2. This equation can be solved analytically without any
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problems (although the solution is very complicated), but numerically spe-
cial care needs to be taken according to the denominator of the large frac-

ture. The values of α will coincide, if
√
k2
i cos2 φ− 2m∗∆E

~2 is zero, which

may happen in the case of k2
i cos

2φ = 2m∗∆E
~ . That condition can easily

be veri�ed for every summation done during the numerical integration.
This work has revealed that leaving out only these integration steps

where α1 P α2 still causes roughness in scattering rate spectra of acoustic
phonons (see the dotted lines in Fig. 4.10). In analysing the scattering
rate's exact dependence on φ, it was seen that φ values near the α1 = α2

condition cause 1
τi

to grow unexpectedly high. Mathematically, it is clear
that if the denominator approaches zero, the result approaches in�nity. The
physical meaning represent some speci�c angles between the initial and
�nal momentum states of the carrier that are causing unexpectedly high
scattering rates and should thus be avoided. According to the numerical
experiments, the 'smoothness' of the scattering rate was improved, leaving
out not only these integration steps where α1 = α2, but also neighbouring
steps (as seen in Fig. 4.11).

In eq. (3.7) it can be seen that the overall value of the integral does not
change if we replace integral

∫ 2π
0 dφ with integral 2

∫ π
0 dφ. Doing this will

make the solution process of this integration approximately 2 times faster.
Modi�ed acoustic phonon calculation showed that the roughness in scat-

tering rate spectra of acoustic phonons decreased, making the code more
precise (see the solid lines in Fig. 4.10).
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Figure 4.10: Small roughnesses in the scattering rate spectra of acoustic phonons
[30]

Figure 4.11: Integration can cause problems...
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4.5 Conclusion

In this chapter, three main ideas regarding how to optimise the QWWAD
software tool were presented. The improved Schrödinger solver, which
handles nonparabolicity, is now 20 times faster than it was before. Find-
ing new values for initial guesses of subband calculations showed a slight
opportunity for improvement in terms of the number of iterative cycles,
which could be reduced. This approach needs further research. The third
idea was related to numerical integrations that could be performed more
precisely and faster. An example calculation showed smoother results in
acoustic phonon scattering rates.
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Conclusion

The main objective formulated initially was to analyse, develop and op-
timise the models and algorithms used for quantum well heterostructures.
As a result an alternative source and relevant algorithms were investigated
to produce incoherent spontaneous terahertz emission using lateral electron
transport. In conjunction with this many algorithms were improved (incl.
Schrödinger equation solver) to optimise the overall simulation process. Five
articles related to this thesis have been published. One manuscript is await-
ing acceptance [30].

The main results of this thesis are listed in the following:

1. According to Ch. 3, laterally pumped GaAs/AlGaAs quantum wells
can be considered potential coherent broadband sources of terahertz
radiation. The in-plane �eld accelerates electrons, heating them and
increasing the population inversion. In the range around 7 THz, the
power of the radiation rose over the black body radiation even at
room temperature 300 K. The dependence between the lateral electric
�eld and emitted power is shown in [III]. It has been shown that the
population inversion takes place even near a temperature of 400 K
[29]. QCLs (the main coherent terahertz sources) need low lattice
temperature (under 200 K @ 2.85 THz [2]); therefore, any success in
developing devices that work at room temperature is very important.

2. Ch. 2, [I] and [29] present a new method implemented to generate
the digitised quasi-parabolic quantum wells, seeking equal spacings
between energy eigenvalues. For 7 THz emission frequency, a root-

mean-square deviation of energy spacings below 4 % was achieved,
which is enough for the practical approximation of parabolic quantum
well.

3. According to Ch. 2 and [II], the most reasonable method to solve the
Schrödinger equation numerically is the standard linear algebra solver
(for example, LAPACK and ARPACK). Solving di�erence equations
numerically showed remarkably worse results.
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4. According to Ch. 4 and [30], ARPACK shift-inverted sparse mat-
rix methods gave approximately 20 times faster algorithms than
LAPACK dense matrix methods in solving the Schrödinger equation,
taking band nonparabolicity into account. The matrix equation com-
posed for this solution contains mostly zeros, which makes it reas-
onable to use sparse matrix methods instead of methods for general
dense matrices.

5. According to Ch. 4 and [30], the amount of time the QCL simulation
algorithm runs depends on the initial guess values for the subband
population. Experiments showed a slight opportunity for improve-
ment in the number of iterative cycles that could be reduced. This
approach needs further research.

6. Several calculation modules originally taken from [3] (QWWAD) were
re-implemented, and a few new modules were built. The list of mod-
i�ed and newly implemented calculation modules is given in Table
C1.

7. An overview of the advances in terahertz technology was written and
published as [IV].

In the future, the algorithms to simulate semiconductor quantum well
heterostructures should be optimised further to achieve a fast simulation
platform without signi�cant calculation times. Although the increase in
computing power will continue for a long time, the methods of calculation
still need to be improved too. New models should also be built to achieve
better compliance with the real physical environment.

A user interface that is easy to use should be built to simplify the learning
process for using these simulation tools. It would be ideal for the interface to
be accessible via web page (i.e. as an applet), providing very broad access
to the simulation methods and broadening the scienti�c opportunities in
this area.
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Table C1: The list of QWWAD calculation modules modi�ed and added.
Code New or

modi�ed
Description

fwf modi�ed Calculation of Schrödinger
equation using nonparabolic
approach. The algorithm was
improved, which is now 20
times faster.

sbp modi�ed Calculation of quasi-Fermi
energies for each subband.
The algorithm was improved
to allow nonzero electric
�elds.

srac modi�ed Calculation of acoustic
scattering rates. The
precision of the algorithm
was improved.

srmpr modi�ed Calculation of mean
scattering rates. The
Fermi-Dirac distribution
function was replaced by the
shifted FD function. Nonzero
electric �eld support was also
added.

srrad modi�ed Calculation of spontaneous
radiative lifetimes. The
method in the original
version was improved to take
laterally pumped electron
transport into account.

ND2ni new Calculation of subband
populations using rate
equations.

radpow new Calculation of generated
radiation power and
spectrum.

�nite_di�erence_method new Calculation of Schrödinger
equation using standard
matrix eigenvalue solver
LAPACK.
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Abstract

Improvement and optimisation of simulation software for
terahertz range radiation sources based on quantum well hetero-
structures

This thesis addresses the �eld of semiconductor quantum electronics
and is based mainly on tasks to solve the Schrödinger equation and
model electron transport in GaAs/AlGaAs multibarrier heterostructures.
An overview of the latest achievements in the terahertz region of the
electromagnetic spectrum along with basics of the main principles for
semiconductor emitters is given in the �rst chapter. Numerical solution
methods to solve a 1D time-independent Schrödinger equation are com-
pared and tested in Ch. 2. It was found that the most optimal way to
solve the Schrödinger equation is to use standard linear algebra solvers for
eigenvalue problems. Calculations are performed for digitally graded para-
bolic quantum wells and results are presented in 3 separate publications.
The methodology for calculating the emission characteristics for laterally
pumped quantum well heterostructure-based emitters is given in the third
chapter. The e�ect of lateral electric �eld is explored and relevant methods
presented. The results show that a real emitter can be built using only one
layer of GaAs bordered by Al0.42Ga0.58As layers. For the 7 THz emitter
the overall emitted power rises higher than black body radiation. There is
one publication on this topic. Optimisation strategies to improve the speed
and accuracy of methods in QWWAD QCL simulation tools are handled in
chapter 4. The results show an algorithm which is approximately 20 times
faster in Schrödinger equation when using sparse matrix methods in the
ARPACK library. There is one paper published and one paper waiting to
be published on this topic.

Key words: Schrödinger equation, shifted Fermi-Dirac distribution
function, digitised parabolic quantum well, lateral transport, terahertz
emitter, quantum cascade laser
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Kokkuvõte

Kvantaukudega heterostruktuuridel põhinevate terahertskiirguri-
te simulatsioonitarkvara täiendamine ja optimeerimine

Töö käsitleb pooljuht-kvantelektroonika valdkonda ja baseerub peami-
selt Schrödingeri võrrandi lahendamise ülesannetele ja elektroni transpordi
modelleerimisele GaAs/AlGaAs mitmikbarjääridega heterostruktuurides.
Töö esimeses osas antakse ülevaade elektromagnetkiirguse spektri tera-
hertzpiirkonna viimastest saavutustest koos pooljuhtkiirgurite aluste ja
tööpõhimõtetega. Töö teises osas on võrreldud ja proovitud ühemõõtmelise
ajast sõltumatu Schrödingeri võrrandi numbrilisi lahendusmeetodeid.
Optimaalseimaks viisiks Schrödingeri võrrandi lahendamiseks osutus
standardne lineaaralgebra lahendusmeetod omaväärtusprobleemi jaoks. On
tehtud arvutusi digitaalselt tasandatud paraboolsete kvantaukude jaoks ja
tulemused on avaldatud 3 eraldi artiklis. Töö kolmandas osas esitatakse
lateraalselt ergastatud kvantauk-heterostruktuuridel põhinevate kiirgurite
emissioonikarakteristikute arvutamismetoodika. Uuritakse lateraalse elekt-
rivälja mõju ja tutvustatakse seonduvaid meetodeid. Tulemused näitavad,
et ühel GaAs kihil, mis on ümbritsetud Al0.42Ga0.58As kihtidega, põhinevat
kiirgurit on reaalselt võimalik ehitada. 7 THz kiirguri jaoks ületab kiiratav
võimsus musta keha kiirgusvõimsuse. Sellel teemal on avaldatud üks
artikkel. Töö neljas osa käsitleb QWWAD QCL simulatsioonivahendite
meetodite optimeerimist kiiruse ja täpsuse osas. Tulemused näitavad
umbes 20 korda kiiremat Schrödingeri lahendamise algoritmi, kui kasutada
ARPACK teegi hõredate maatriksite meetodeid. Sellel teemal on avaldatud
üks publikatsioon, veel üks artikkel on avaldamise ootel.

Võtmesõnad: Schrödingeri võrrand, nihutatud Fermi-Diraci jaotus-
funktsioon, digitaliseeritud paraboolne kvantauk, lateraalne transport,
terahertskiirgur, kvantkaskaadlaser
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R. Reeder, A. Udal, E. Velmre, and P. Harrison. Numerical in-
vestigation of digitised parabolic quantum wells for terahertz Al-
GaAs/GaAs structures. Proc. of the 10th Biennial Baltic Elec-
tronics Conference (October 2-4, 2006, Tallinn, Estonia), pp. 51-
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ABSTRACT: The calculations of quasi-parabolic quantum 
wells (QW) with smooth and digitised potential distributions 
on GaAs/Al0.42Ga0.58As system for 1÷7 THz frequencies are 
accomplished by numerical one-dimensional Schrödinger 
equation solvers. It is shown that for energy eigenvalues 
equal spacing in smooth QWs the 18% quartic addition to 
parabolic potential is needed to compensate the electron 
effective mass increase in AlxGa1-xAs as x → 0.42. The 
optimisation of digitised multibarrier distributions revealed 
existence of two types of optimal solutions. At that the 
second type with periodically filled centre yielded low rms-
deviations below 5% for energy spacings in frequency range 
4÷7 THz. For frequencies below 2 THz the accuracy of 
digitised approach became insufficient to guarantee 
reasonably equally spaced energy levels. 

1.  Introduction 
The quantum well (QW) with parabolic potential 
distribution is a simple classical quantum physics task but 
energy levels equal spacing in it opens very attractive 
possibilities for optoelectronic applications which are 
realised on semiconductor heterostructures. The most 
investigated and used GaAs/AlxGa1-xAs system gives 
possibilities to create QWs with deepness of 0.3÷0.4 eV 
range for electrons. This suites well for terahertz region 
1÷10 THz applications (∆E = 4.135 ÷ 41.35 meV; 
λ = 30 ÷ 300 µm, QW sizes ca 50 ÷ 500nm). 

Generally rectangular QWs with abrupt 
GaAs/AlxGa1−xAs interfaces are the easiest to fabricate 
but with molecular-beam epitaxy (MBE) growth method 
the engineering of various potential profiles became 
feasible since 1980-ies [1]. To realise the parabolic 
quantum wells (PQW), the gradual changing of the 
material composition x [2] or use of the digital grading 
(DG) [1,3,4] are possible. The DG method bases on 
alternating deposition of thin layers of two fixed 
compositions GaAs and AlxGa1−xAs so that in average the 
influence close to smooth potential is obtained. At that the 
digitised barrier/well layer widths may be reduced to one 
crystalline monolayer ( 1 m.l. ≈ 0.283 nm), see e.g. [5,6]. 

Below we report the one-dimensional Schrödinger 
equation numerical solution results in order to evaluate 
feasibility of energy eigenvalues equal spacing with 
accuracy ± 5% on GaAs/Al0.42Ga0.58As system for 

frequencies 1÷7 THz. The smooth and digitised potential 
(layer thickness 1 m.l. and 2 m.l.) cases are considered. 
Figure 1 presents one possible application – a broadband 
terahertz radiation source. 

Figure 1 Schematic presentation of the broadband 
terahertz emitting device. The spectrum of emitted 
radiation is defined by energy eigenvalues spacing in 
GaAs layer quantum well 

2.  Models and numerical algorithms 
The basis for calculations is the time-independent 1D 
Schrödinger equation: 

where a modified kinetic energy term is used as 
commonly accepted in variable effective mass 
semiconductor QW calculations [7, p.44]. The condition 
for defining of energy eigenvalues is the vanishing wave 
functions ψ → 0   at active area boundaries. 

The two numerical algorithms were used 
independently and/or in a combined way: a) the energy-
trying shooting method with open boundaries [7] and b) 
the Newton method solver realising the simultaneous 
calculation of wave functions and energy values with zero 
boundary conditions. For both methods the usual three-
point discretisation in space was applied for kinetic 
energy term [7]. The shooting method was found reliable 
to scan over the energies interval to obtain approximate 
solutions. Using those precalculated solutions, the 
Newton method exhibited superior convergence speed 
(usually 3-4 iterations with efficient 3-diagonal bordered 
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matrix internal solver). The two necessary starting ψ
values in QW centre for shooting method were specified 
from symmetric and antisymmetric wave function 
conditions [7]. The shooting method’s idea of stepping 
over space and energy is explained by Figure 2. 

Figure 2 Algorithm of shooting method 

The band gap and electron effective mass linear 
dependences on Al percentage x were adopted from [7, 
p.431] what gave QW deepness Vmax = 0.3509 eV for 
xmax = 0.42 and increase of m* from 0.067 to 0.102 if x
increases from 0 to 0.42. For digitised potential barriers 
and wells the basic step 1 monolayer ( 0.2825 nm) was 
taken and rectangular potential shape was assumed. The 
typical spatial discretisation step was 0.01 nm.  

3.  Results for smooth diffused QWs 
Figure 3 shows the investigated smooth potential profiles 
and variation of effective mass in the case of 7 THz PQW. 
Figure 4 gives the calculated energy levels and level 
spacings for highest and lowest analysed frequency. 
Figure 5 shows the form of calculated 12 wave functions 
in 7 THz PQW. To specify the potential distributions, the 
wanted energy spacings  ∆E = (28.95 meV)( f /7 THz) and 
relevant ideal PQW widths   lQW = (61.72nm)( 7 THz / f )
(at V=Vmax level for unlimited parabola; m*= 0.067) were 
used as the backing values. Figure 4 shows that the 
limited height of QW excludes only one level out of 5% 
criterion. In contrast to that the variable effective mass 
causes significant decrease of higher energy spacings. 
However, introduction of 18% quartic addition to 
parabolic potential   

V(z) = Vmax (z / 0.5 lQW )2+ 0.18 Vmax (z / 0.5 lQW )4

nearly entirely compensates this effect. 

Figure 3 Specified potential distributions and electron 
effective mass distribution in parabolic 
GaAs/Al0.42Ga0.58As quantum well, 7 THz case shown

Figure 4 Calculated energy spacing versus energy in 
parabolic quantum wells: 7 THz above and 1 THz below  

Figure 5 Calculated wave functions (in arbitrary units, 
rised by energy eigenvalues) and parabolic potential (with  
18%  z4 –term) in 7 THz parabolic quantum well 



4.  Results for digitised quantum wells 
The digitised QW is actually a complex 
multibarrier/multiwell system what is rather demanding 
task for calculation and especially for optimisation to 
obtain equal energy eigenvalues spacing. Since every 
pillar-like potential barrier causes abrupt inversion of 
wave function 2nd derivative (curvature) it is expected that 
to maintain wave function picture similar to Fig. 5, the 
barrier width must be kept minimal, i.e. 1 monolayer. 
This is confirmed by Table 1 where optimisation results 
for 2 m.l. barrier/well step are clearly worse than for 1 
m.l. step. All other results below correspond to step 1 m.l. 

The search of optimal digitised potential distributions 
was started from 7 THz, where numbers of energy levels 
(11÷12) and potential pillars (ca 30, max ≈200) are the 
lowest. Initial distribution was specified from condition 
that averaged digital potential corresponds to the smooth 
parabola. In optimisation the barrier/well inversions and 
barrier shifts (single and group) were tried to minimise 
the root mean square (RMS) deviation of energy spacings 
( in respect of wanted exact ∆E ). The optimisation 
procedure revealed the existence of two types of optimal 
distributions: 
1) Type 1 “classical parabolic QW like” with empty 

QW centre (see below Figs. 6 and 9) and low first 
energy level E1 ≈ (0.15 ÷ 0.35)∆E; 

2) Type 2 “superlattice centre type” with nearly 
periodically (period 12÷13 monolayers) filled by 
single pillars centre (see below Figs. 7 and 10 ) and 
with high frequency-independent first energy level 
E1 ≈ (28 ÷ 42) meV.  

Table 1 Comparison of minimised RMS-deviations of 
energy level spacing for the barrier/well width 
technological steps of 1 and 2 monolayers (for 7 THz) 

RMS-deviation of ∆E Optimised digital  
 distribution type   1 monolayer    2 monolayers 
 Type 1 
 “Empty centre” 8.0% 17.1% 
 Type 2   “Periodically  
 filled centre”  3.3% 8.6% 

Figure 6 Optimised digital potential distribution of type 1 
and respective wave functions (in arb. units), rised by 
energy eigenvalues in 7 THz quantum well 

Figure 7 Optimised digital potential distribution of type 2 
and respective wave functions (in arbitrary units), rised by 
energy eigenvalues in 7 THz quantum well 

The optimised type 2 distributions gave approximately 
twice lower ∆E RMS-deviations than type 1 (see Figs. 8 
and 11, also Table 1). The wave functions for type 2 
potential, especially the lower ones, obtained specific 
curved fragments with potential pillars period (Fig. 7). 
Note that the ∆E maximum deviations were typically 
2÷2.5 times higher than the RMS-deviations from Fig.8. 

Figure 8 Spacing of energy eigenvalues for 7 THz (a), 
5 THz (b), 3THz (c), 2 THz (d) digitised quantum wells 



Figures 9 and 10 compare at four frequencies type 1 
and type 2 optimised digitised potential distributions. 
Note that at all frequencies the period of central potential 
pillars in type 2 is 12÷13 monolayers. 

Figure 11 summarises the achieved ∆E RMS-
deviations from performed optimisation calculations. 

Figure 9 Comparison of optimised potential distributions 
type 1 for frequencies 7 THz (a), 5 THz (b), 3 THz (c) and 
2 THz (d) 

Figure 10 Comparison of optimised potential 
distributions type 2 for frequencies 7 THz (a), 5 THz (b), 
3 THz (c) and 2THz (d) 

Figure 11 Achieved minimised RMS-deviations of 
energy level spacing ∆E at different operation frequencies 
for digital potential distributions of type 1 and 2 

5.  Conclusions 
General results from Fig.11 show that the goal 5 % is 
feasible for frequencies 4 ÷ 7 THz if we consider RMS-
deviations. However, the maximum ∆E deviations which 
were ca 2 ÷ 2.5 times higher, would yield only 8 ÷ 10 %
for same frequencies. The main reason, why at low 
frequencies the achieved accuracy is lower, is the 
increasing number of energy levels for what all is difficult 
to find satisfying locations of potential pillars. It should 
be mentioned that in present preliminary study we could 
not get reliable digitised potential distribution for the 
lowest frequency 1 THz. This is because of computer 
time growth as ~1/f 3 per one optimisation sweep (number 
of energy levels, potential pillars and spatial steps all 
grow as ~1/f ) and because of breaking of normal 
optimisation process due to inevitable appearance of some 
very closely located energy levels in the case of greater 
number of levels and potential pillars. 

If only part of energy range could be selected out by 
importance, the general results might be essentially better. 
In practical device design could be considered use of 
lower Al percentage (lower QW depth and smaller 
number of energy levels) at lower frequencies. 

To estimate practical feasibility of current results, in 
the following the sensitivity of ∆E deviations to digitised 
potential small changes must be studied. Also the barrier 
periodity results observed here need deeper theoretical 
generalisation. 
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Abstract. Direct numerical approaches for the solution of the time-independent one-dimensional 
Schrödinger equation are discussed. Applications to multiquantum well (MQW) semiconductor 
heterostructure potentials need linear dependence of the computer time compt  on the number of 
spatial grid points .N  Although acknowledged as a very effective Fourier grid Hamiltonian (FGH) 
method, it has cubic dependence on the number of spatial grid points, i.e., 

3

comp
,t N∼  which limits 

its use to problems with a complexity of 1000.N ≤  A simple straightforward shooting method 
(ShM), which is based on trial stepping over the coordinate and energy, has the necessary compt N∼  
dependence with moderate energy convergence efficiency but the recommended symmetry pre-
conditions and the not very clearly defined external boundaries make its application inconvenient. 
This paper offers a new reliable and effective energy and wave function coupled solution (EWC) 
method with a Newton iteration scheme and an internal bordered tridiagonal matrix solver. The 
method has a linear compt N∼  dependence and may by applied to arbitrary potential energy 
distribution tasks with complexity up to 510N =  and beyond. Zero or cyclic boundary conditions 
may be specified for the wave function. For versatile MQW tasks the combined use of ShM and 
EWC is illustrated. Detailed accuracy and computer time comparisons show that the combined 
ShM + EWC method is three orders of magnitude more effective than the FGH method. 
 
Key words: multiquantum well structures, Schrödinger equation, bound states, numerical methods, 
energy, wave function. 

 
 

1. INTRODUCTION 
 
In spite of the fact that Erwin Schrödinger formulated his famous equation 80 

years ago in 1926 and that for over 70 years scientists have proposed various 
analytical and numerical methods for the solution of this central quantum 
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mechanics equation, approaches even to one-dimensional solutions are still a 
subject of debate. This is confirmed by the continuing appearance of new 
publications in this field [1–6]. Since 1990s, one of the driving forces in this field 
has been physical chemistry and its applications. The second spur of motivation 
has come from the extremely wide application area in semiconductor hetero-
structures with quantum wells, wires and dots [7]. Although nowadays the 
available sophisticated ab-initio software tools already make quite realistic three-
dimensional calculations possible, almost every research task needs an estimation 
of static bound states in a one-dimensional (1D) approximation either in spherical 
or rectangular coordinates. The last case is more typical for semiconductor 
heterostructures where the calculation of 1D bound states for complex multi-
barrier quantum well systems like, e.g. in quantum cascade lasers [8] or digitized 
quasi-parabolic quantum wells [9], may be a rather time-consuming subtask. 

In applications in physical chemistry, the potentials in the atomic subnano-
meter scale are rather smooth and relatively small number ( 100)N ≤  of spatial 
grid points may be sufficient to obtain accurate results. In contrast to that, MQW 
structures with great numbers of relatively abrupt potential steps over the 10–
1000 nm spatial scale may need spatial grid sizes over 410N >  to achieve 
acceptable results [7,9]. This means that for the analysis and even more for the 
optimization of MQW structures the methods of solving the Schrödinger 
equation must consume computer time no more than proportionally to .N  

The FGH method [1–3] has been declared to be very effective and the simplest 
method for the calculation of bound states from the time-independent 1D 
Schrödinger equation. It can take as input an arbitrary potential distribution, but 
its computer execution time compt  scales as 3.N  The use of the Fast Fourier 
Transform in the construction of the Hamiltonian matrix may reduce the last 
number to 2 lnN N×  but not more [2]. The internal algebraic solver of the FGH 
method uses standard procedures from the EISPACK computer package [10]. 

Actually, the most elementary solution method with the required linear 
dependence of the computer time on the grid size comp( )t N∼  is the shooting 
method [7], which finds eigenvalues of the bound state energy by using a trial 
procedure, based on the condition that an iteration over the spatial coordinate 
from the centre of the active area into the surrounding barriers must yield a 
vanishing wave function 0.Ψ →  The ShM needs two initial values of the wave 
function to start the iteration over the spatial coordinate. Those two values may 
be correctly defined for symmetric potentials but in the general case it needs an 
approximate auxiliary algorithm [7]. Another problem, troubling the application 
of the ShM, is associated with the exponentially growing components of the 
wave function in the outer barrier regions, which can impede the detection of the 
theoretical boundary condition 0.Ψ →  

In the present work we propose an effective iterative coupled energy and wave 
function method for solving the time-independent one-dimensional Schrödinger 
equation, which possesses linear compt N∼  dependence and may be applied to 
arbitrary potential energy distributions without any symmetry restrictions. The 
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method uses an iterative approach in the Newton method and its internal algebraic 
task involves the solution of a linear system, represented by a bordered tri-diagonal 
matrix; zero or cyclic boundary conditions may be specified. In the case of 
arbitrarily complex MQW problems the combined ShM + EWC approach is 
necessary when approximate wave functions and estimations for the energy 
eigenvalues for the EWC method are supplied by the ShM. Considering formation 
of the Jacobi matrix in the Newton method by zero boundary conditions, the EWC 
method is similar to the known relaxational approach [4]. As one can see below, 
direct comparison of FGH and ShM + EWC methods reveals that the latter may be 
over three orders of magnitudes more effective than the FGH method for tasks with 

1000.N >  Some results of application of the present work are published in [9]. 
In the present study we discuss neither semi-analytical approaches with specific 

application areas like [6] nor the new original “random trial” approaches [5]. 
 
 

2. METHODS  OF  THE  NUMERICAL  SOLUTION 

2.1. The  Fourier  grid  Hamiltonian  method 
 
The Fourier grid Hamiltonian method for numerical solution of the time-

independent Schrödinger equation was introduced in 1989 by Marston and Balint-
Kurti [1]. Initially it was formulated for an odd number of coordinate grid points N  
in rectangular coordinates [1]. Later it was modified for an even number of grid 
points and for spherical coordinates with the possibility of applying the Fast 
Fourier Transform to accelerate the formation of the Hamiltonian matrix [2,3]. The 
theory behind the method is based on relating the potential energy at the N  grid 
points with the kinetic energy in the momentum space via forward and reverse 
Fourier transforms between the coordinate and the momentum space. The N N×  
symmetric matrix ,H  obtained by discretization, has elements in the form of 
cosine sums. The task of calculating the bound state eigenenergies and eigen-
functions is thereby transformed to the task of finding eigenvalues and eigen-
vectors of the matrix .H  As suggested by the authors of the FGH method, this may 
be accomplished by standard subroutines such as the EISPACK package [10]. The 
source code of the computer implementation of the method, FGHEVEN [2], for an 
even number of nodes, is freely distributed via the internet [11]. Subsequently, the 
method was extended to the three-dimensional case [12]. In the present work we 
have realized the odd number FGH method in rectangular coordinates and in the SI 
unit system for testing, following reference [1]. 

Assuming that the length of the calculation area L  is divided into N  steps, 
the discrete grid is defined as 

 

( 1 2) , , 1, 2, ..., .ix i x x L N i N= − ∆ ∆ = =                       (1) 
 

Equation (1), which defines nodes in the centre of every interval ,x∆  differs 
somewhat from the original one ix i x= ∆  [1] but is more correct in the case of 
symmetric QW tasks. 
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Following [1], the spatial discretization and transformations performed yield a 
symmetric matrix H  of size N N×  
 

1

2

2
cos( 2 ( ) ) ( ) , ( 1) 2,

2
,

n

ij l i ij
l

l

H l i j N T V x n N
N

l
T

m L

π δ

π
=

= − + = −

 =  
 

∑

�

             (2) 

 

where 2h π≡�  is the reduced Planck constant, m  is the electron rest mass and 
the Kronecker symbol ijδ  ensures that potential energy values at grid nodes 

( )iV x  are only added to the main diagonal. 
The EISPACK subroutines return N  eigenvalues and N  eigenfunctions with 

values at all N  grid nodes. The eigenvalues, which lie below the potential energy 
values at the solution area borders (0)V  and ( ),V L  may be interpreted as the 
bound state energies of the system [1]. The other eigenvalues may be interpreted 
as extraneous solutions, which unfortunately consume computer time for their 
calculation. On the other hand, the maximum number of eigenvalues is limited by 
the grid size .N  As experience shows, in practical quantum well calculations 
sufficiently thick outer barrier layers with a sufficiently high potential V  must be 
included to ensure sufficient decay of wave functions and hence remove any 
uncertainty in the boundary conditions in the FGH method. It should be added 
that by selecting different subroutines from the EISPACK package, it is possible 
to calculate the energies without wave functions [11], which reduces the computa-
tion time approximately 1.5 times. 

 
2.2. The  shooting  method 

 
The shooting method is one of the simplest numerical algorithms and its key 

idea is to replace a boundary condition problem with multiple trial runs of a 
remarkably simple initial condition task. This is also the most straightforward 
method for solution of the time-independent Schrödinger equation if the varied 
trial parameter is the energy E  ([7], Chapter 3). The trial energy equals the 
bound state energy if the wave function vanishes ( 0)Ψ →  in the surrounding 
barriers when moving away from the QW area. In spite of the extreme simplicity, 
ShM has a linear dependence of the computer time on the grid node number 

comp ,t N∼  which makes it efficient for MQW tasks. 
The time-independent 1D Schrödinger equation in its classical form, where 

kinetic energy is defined by the second spatial derivative, reads 
 

2 2

2
.

2
V E

m x

Ψ Ψ Ψ∂− + =
∂

�
                                        (3) 

 

In the present study, which is focused on the effectiveness of numerical 
methods, we ignore the fact that in semiconductor heterostructures, a more 
sophisticated kinetic energy term [7] 
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2 1

2 m x

Ψ∂ ∂−
∂ ∂

�
                                                (4) 

 

is recommended for tasks with a variable effective mass ( ).m x  
To realize discrete stepping over the spatial coordinate, the second derivative 

in the Schrödinger equation (3) is replaced by a three-point discretization scheme 
 

2
1 1 1

,
2

i i i i
i i iV E

m x x x

Ψ Ψ Ψ Ψ Ψ Ψ+ −− − − − + = ∆ ∆ ∆ 

�
                     (5) 

 

where iΨ  denotes ( )ixΨ  and ( ).i iV V x≡  
To initialize the iteration in Eq. (5), two starting values of the wave function are 

needed. That is facilitated by the obvious fact that the Schrödinger equation (3) and 
the energy eigenvalues defined by it are insensitive to constant multipliers of .Ψ  
That means that prior to the wave function normalization with the condition 
 

2 ( ) d 1,x xΨ
+∞

−∞

=∫                                                   (6) 

 

the scale of the wave function has no importance. 
Thus for symmetrical QWs, the initial conditions in the QW centre cx  may be 

specified in the case of symmetrical wave functions by [7] 
 

2 2( ) 1, ( ) 1 ( )( ( ) ),c c cx x x m x V x EΨ Ψ= + ∆ = + ∆ −�  
 

and for antisymmetrical wave functions by [7] 
 

( ) 0, ( ) 1.c cx x xΨ Ψ= + ∆ =  
 

In the more general non-symmetrical case, the stepping must start from two 
adjacent grid points within one barrier, e.g. in the left barrier from coordinates 

leftx  and left :x x+ ∆  
 

left left( ) , ( ) exp( ),x x x xΨ ε Ψ ε κ= + ∆ = ∆                        (7) 
 

where ε  is a small (but finite) number and κ  is the theoretical wave function 
exponential growth/decay constant, which follows directly from Eq. (3) for the 
constant barrier height V E>  and energy eigenvalue guess E  as [7] 

 

22 ( ) .m V Eκ = − �                                            (8) 
 

The condition for energy eigenvalue detection is the vanishing wave function in 
the opposite external barrier: 0Ψ →  as x → ∞  ([7], p 75). Beside numerical 
problems, associated with the great range of numerical values of ,Ψ  the 
advantage of considering only half of the structure in the symmetrical case is lost 
in the general non-symmetrical QW case. 

One principal inconvenience with the numerical realization of the shooting 
method is associated with detecting the condition 0.Ψ →  The reason for this is 
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the fact that the Schrödinger equation (3) as a second order differential equation 
has solutions which contain both growing and decaying exponentials in a 
uniform potential barrier: 

 

( ) exp( ) exp( ),x A x B xΨ κ κ= − ∆ + + ∆                           (9) 
 

where the constant κ  is defined by Eq. (8). This theoretical form of the wave 
function in the outer barriers, surrounding the QW, means that every small 
change in the trial energy from the exact eigenvalues, as well discrepancies in 
arithmetic operations (rounding errors) are amplified as the stepping iteration 
proceeds into the barrier. Consequently, in a numerical realization of the ShM 
algorithm, instead of the theoretical condition 0Ψ →  the energy value must be 
sought that changes the sign of the “tail” of the wave function ([7], p 77). 

The idea of the shooting method of stepping over space and energy is 
explained in Fig. 1. 

 

 
 

Fig. 1. Algorithm of the shooting method. The internal cycle performs the stepping over space and 
two external cycles find the eigenvalues of the energy. 
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2.3. The  method  of  coupling  the  energy  and  wave  functions 
 
As seen above, realization of the shooting method demands a rather small 

amount of computations but the definition of the boundary conditions and the 
process of finding the exact energy eigenvalues need special care. Serious 
numerical problems may arise in the case of relatively thick barriers ( 1 ),w κ>>  
where exponential growth of the wave function follows from an inaccurately 
defined energy eigenvalue or discrepancies due to the limited number of 
significant figures available for the arithmetic operations. To avoid these 
problems, the EWC method was developed, which solves system of equations 
with clearly fixed boundary conditions simultaneously for the energy eigenvalue 
and wave function values across the spatial grid nodes. The 3-point scheme of 
spatial discretization used corresponds exactly to that of the shooting method  
in Eq. (5). The exact zero or cyclic boundary conditions for Ψ  for the calcula-
tions are fixed. The zero boundary conditions actually correspond to the assump-
tion about infinite potential barriers on the external borders of the calculation 
area. To find the energy eigenvalue together with the values of the wave function 
on the grid nodes, an additional equation is necessary, besides the discretized 
Schrödinger equation, which is the normalization condition of the wave func-
tion (6). The latter states that the probability of finding an electron over the  
entire space of the calculation equals unity. With this additional condition  
the calculated wave functions from the EWC method are automatically 
normalized. 

The unknown vector Y  of the EWC method contains N  components:  
the energy eigenvalue E  and wave function values ( )i ixΨ Ψ≡  in nodes 

2, 3, ,i N= …  of the grid: 
 

( 1) , ( 1), 1, 2, ..., ,ix i x x L N i N= − ∆ ∆ = − =                 (10) 
 

2 3( , , , ..., ) ,T
NY E Ψ Ψ Ψ=                                     (11) 

 
where the superscript T  denotes transposition. 

The value of the wave function in the 1st spatial node is not included in Y  
since 
 

1 NΨ Ψ=                                                   (12) 
 
is assumed for both boundary condition types. 

The zero boundary conditions are then specified simply as 
 

0.NΨ =                                                     (13) 
 

The cyclic boundary condition may be specified by the discrete Schrödinger 
equation (5) for the boundary node .N  Taking into account the translational 
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symmetry, the node N  is equivalent to node 1,  node 1N +  is equivalent to 
node 2  etc. Thus the necessary three “neighbour” wave function values in the 
boundary node N  are 1,NΨ −  1,NΨ Ψ=  2.Ψ  

Thus the first non-linear equation of the EWC method system is the rewritten 
normalization condition of the wave function (6) in discrete form 
 

2
1 2 3

2

( , , ..., ) 1 0.
N

N i
i

F xΨ Ψ Ψ Ψ
=

≡ ∆ − =∑                              (14) 

 
The next necessary 2N −  equations are the discrete Schrödinger equa-

tions (5) for the internal grid nodes 2, 3, ..., 1:i N= −  
 

2
1 1

1 1
1

( , , , ) ( ) 0,
2

i i i i
i i i i i iF E E V

m x x x

Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ+ −
− +

− − ≡ − + − = ∆ ∆ ∆ 

�
      (15) 

 
where for 2i =  according to Eq. (12) holds 1 .i NΨ Ψ− =  

In the case of zero boundary conditions, the last equation of the system is 
 

( ) 0.N N NF Ψ Ψ≡ =                                            (16) 
 

In the case of the cyclic boundary condition, the last equation of the system is 
similar to Eq. (15) with the replacement 1 2 :NΨ Ψ+ =  
 

2
2 1

1 2
1

( , , , ) ( ) 0.
2

N N N
N N N N NF E E V

m x x x

Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ−
−

− − ≡ − + − = ∆ ∆ ∆ 

�
   (17) 

 
The system (14)–(17) is non-linear as Eq. (14) contains squares of the values 

of the wave function and Eqs. (15) and (17) contain products of energy and wave 
functions. This system may be linearized and solved iteratively using the Newton 
method. For every iteration, the unknown vector Y  may be written as 
 

,Y Y Yδ= +�                                                  (18) 
 

[ ] ,F Y Y Fδ∂ ∂ × = − �                                          (19) 
 
where Y�  denotes the approximate unknown vector, Yδ  is the correction vector, 

1 2( , , ..., )T
NF F F F≡� � � �  is the RHS vector of the system calculated by Y�  and 

[ ]F Y∂ ∂  is the N N×  Jacobi matrix with the Newton method derivatives. In the 
case of normal convergence, both Yδ  and F�  approach to zero. 

The Jacobi matrix, obtained by differentiation of Eqs. (14)–(17), has a 
tridiagonal structure with filled first row and column and zero element in the 
upper left corner. Four terms in the last line and the last column are not zero in 
the case of cyclic boundary conditions for Eq. (17): 
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(20) 
 
where 2 2(2 )c m x≡ ∆�  and 2 .i ia E V c≡ − −  

In the case of zero boundary conditions of Eq. (16), in the last line of the 
matrix (20) there remains only one non-zero element 1.Na =  A more radical way 
is to solve the problem with the ( 1) ( 1)N N− × −  matrix without the last row and 
column for the respectively reduced unknown vector, since 0NΨ =  is fixed and 
must not be considered as an unknown variable. 

To solve the linear system (19) with the tridiagonal bordered matrix (20), a 
special effective Gaussian elimination algorithm ([13], p 90) was applied. 

Using approximate form for the wave function and the value of the energy 
level, the EWC method described here finds iteratively the exact value for energy 
and wave function for any specified potential. The approximate initial solution 
may be obtained from theoretical estimations or with any other method. The only 
drawback of the EWC method is that in the case of a poor initial approximation 
when, e.g., a wrong number of halfwaves of the wave function within the QW is 
determined, the convergence process may give a solution for a different eigen-
state instead of the one which was wanted. The method was tested in the case of 
MQW structures with hundreds of abrupt potential barriers [9]. A reliable scan 
over the whole range of eigenenergies was obtained if rough approximations 
were precalculated by the shooting method. 

Numerical tests showed that in the case of poor initial solutions the EWC 
method usually needed 5–7 iterations to converge. Divergence was never 
observed. In a combined use together with the shooting method, the typical 
number of Newton iterations decreased to 3–4 to reach convergence with 
practically zero error. Figure 2 illustrates very high quadratic convergence speed 
of the EWC method. 
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       Iteration 
 
Fig. 2. Typical convergence characteristics of the iteration process of the EWC method. Figure 
shows in logarithmic scale the decrease of the bound state energy increment δE (eV), the decrease 
of the maximum relative wave function increment and the approach of the particle finding 
probability to its theoretical limit of 1. 

 
 

3. RESULTS  OF  THE  EFFICIENCY  TEST 

3.1. Comparison  of  the  accuracy  of  the  FGH  and  EWC  methods 
 
Prior to comparing the efficiency on the basis of consumption of the computer 

time, an estimation of equivalent spatial grid sizes should be performed. Some 
preliminary calculations in the case of a nearly sine wave function showed that 
minimal rough accuracy may be achieved with the FGH method if the number of 
grid nodes per wave of Ψ  is 2–3. For EWC method the corresponding number 
was 4–5. A more accurate comparison was performed for a triple QW task as 
described in Fig. 3. 

The structure in Fig. 3 has three quantum wells of 9 Å width and 10 eV  
depth, separated by 1 Å barriers. The size of the outer barriers on both sides is 
9 Å. The structure has 15 energy levels below 10 eV. The separation of energy 
levels has peculiarities and the wave functions contain intervals with different 
spatial frequencies. In tests, the free electron rest mass was used. To achieve 
maximum compatibility between the FGH and EWC methods, which use  
slightly different localization of spatial grid nodes, special care was taken. 
Additionally,  for the  border  nodes in the FGH  method a  high  potential energy  
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Coordinate, Å 
 
Fig. 3. Potential energy (▬) and 15 calculated wave functions (—) in the triple quantum well  
test structure. The variable part of wave functions is presented in an arbitrary scale but the  
average values are fixed in accordance to the corresponding energy level. Free electron rest mass is 
used. 

 
 

value was assigned to model the zero boundary conditions of the EWC method. 
In this comparison the accuracy of both methods was evaluated by a comparison 
of the accuracy of the energy eigenvalues calculations. Since the computer time 
consumption of the FGH method became very high for greater grid point 
numbers, exact reference numbers were obtained with the EWC method for the 
grid with 30 000.N =  The accuracy criterion for finishing the Newton iterations 
in the EWC method was practically set to zero 9( 10 eV).Eδ −≤  The results are 
presented in Fig. 4. 

As Fig. 4 shows, for both methods the error of energy level decreases with the 
grid step as 2.x∼ ∆  However, to achieve a comparable accuracy, the EWC 
method needs approximately three times more grid nodes. For example, a 
relatively good accuracy of 0.1 meV needs approximately 1500 nodes in the case 
of the FGH method and 4500 nodes in the case of the EWC method. 
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          Grid step ∆x, Å 
 

Fig. 4. The accuracy of calculated energy eigenvalues versus grid step for FGH and EWC methods. 
The triple QW structure (Fig. 3) is tested. The maximum error and the root mean square error for 
the set of 15 energy levels are shown. 

 
3.2. Comparison  of  computation  times  of  the  FGH  and  EWC  methods 

 
The computer times for both approaches are compared in Fig. 5. The calcula-

tions were performed for a triple QW structure with 15 energy levels according 
to Fig. 3. As the approximate wave functions and energy eigenvalues for the 
EWC method were calculated by shooting method, the corresponding results are 
marked as ShM + EWC in Fig. 5. In the case of the FGH method, the computer 
time practically depends only on the number of grid points and not on the form of 
the potential. In the case of the EWC method, the amount of computer time is 
also proportional to the number of energy levels. Numerical experiments were 
performed on a desktop PC with a 3 GHz Pentium-4 processor on Windows XP 
platform using GNU-Fortran-77 programming language. 

Figure 5 shows the 3
compt N∼  dependence of the FGH method. That limits the 

practical use of this method to the grid sizes from 2000 to 3000. It is interesting 
that the reduced version of the FGH, which does not calculate the wave 
functions, does not significantly reduce the computational time. In contrast to the 
FGH, in the case of the EWC method compt  depends linearly on .N  Although the 
EWC method needs roughly  three times more grid nodes for the same  accuracy,  
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Number of grid nodes, N 

 
Fig. 5. Comparison of the computer times versus grid size for FGH and EWC methods. The latter is 
completed with ShM, which provides approximate energy values and wave functions. Triple QW 
structure with 15 bound state energy levels (Fig. 3) is tested. 

 
 

the comparison proves clearly that the ShM + EWC approach is more than three 
orders of magnitudes more effective than the FGH method. Computer times of 
subsecond range show that the ECW method may be easily applied to very 
complex MQW problems that demand 510  and more grid nodes. 

Some tests were also performed with the shooting method on its own. 
However, the exact results of a comparison between the ShM and the combined 
ShM + EWC method depend on the specific finishing criteria for the coordinate 
and energy iteration processes in the ShM. The EWC method is rather insensitive 
in the sense that its boundary conditions are clearly fixed and the energy 
convergence speed is very high (Fig. 2). Numerical experiments showed that by 
careful selection of the accuracy criteria and using the benefit of a symmetric 
structure, it was possible to obtain 30–40% shorter computer times with the pure 
ShM. However, in the general case of a non-symmetrical structure and guaranteed 
high accuracy the combined ShM + EWC approach was approximately 1.5–2 
times more effective than the use of the ShM only. 
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4. DISCUSSION  AND  CONCLUSIONS 
 
We have discussed and tested qualitatively some practical approaches to the 

solution of the time-independent 1D Schrödinger equation without any restric-
tions on the potential energy distribution. The comparison was centred around 
two effective methods: the Fourier grid Hamiltonian method known from the 
field of physical chemistry and the shooting method often applied to semi-
conductor quantum well calculations. We established cubic computer time 
dependence on the number of grid points in the FGH method and concluded that 
it is very difficult to use this method for complex tasks which need more than 
2000 grid points. 

We also critically analysed the drawbacks of extremely simple trial-and-
correction type shooting methods and offered a more general and reliable 
coupled energy and wave function method (EWC) with a Newton iteration 
scheme and an internal linear task with a tridiagonal bordered matrix. We 
formulated this EWC method for two types of boundary conditions: zero wave 
function (hard wall) or cyclic. A survey of the literature showed that the EWC 
method was actually an extended version of a relaxational approach [4] published 
in 2001. 

For versatile multiquantum well problems we developed an effective and 
reliable combined approach (ShM + EWC) where at first the shooting method is 
used for a rough estimation of the energy eigenvalues and approximate wave 
functions. Secondly, the fast-converging EWC method is applied for reliable 
calculation of more exact results. Detailed investigation of the grid error and 
computer time on the basis of a triple quantum well task for both the FGH and 
ShM + EWC approaches was performed. The results show that although the 
ShM + EWC method needs approximately three times more grid nodes than the 
FGH method, it is still several orders of magnitudes more effective than the FGH 
method. On modern computers, MQW tasks with grid point numbers over 510  
may be easily solved with the EWC method. 
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Schrödingeri  võrrandi  lahendusmeetodite  võrdlus  
mitmik-kvantaukudega  heterostruktuuride  jaoks 

 
Andres Udal, Reeno Reeder, Enn Velmre ja Paul Harrison 

 
On võrreldud otseseid numbrilisi lahendusmeetodeid ajast sõltumatu ühemõõt-

melise Schrödingeri võrrandi lahendamiseks. Mitmik-kvantaukudega (MQW) 
pooljuht-heterostruktuuride arvutused nõuavad meetodeid, mille puhul arvutusaeg 
tcomp sõltub ruumivõrgu sammude arvust N lineaarselt. Tuntud ja väga efektiivseks 
peetav Fourier Grid Hamiltoniani (FGH) meetod (Fourier’ teisenduse ja ruumi-
võrgu alusel moodustatud hamiltoniaani analüüsiv meetod) omab aga kuup-
sõltuvust tcomp ~ N 3, mistõttu selle meetodi rakendusala on piiratud probleemidega, 
kus N ≤ 1000 on piisav. Lihtsaim otsene lahendusmeetod on nn tulistamismeetod 
(ShM), mis põhineb katselisel astumisel üle ruumikoordinaadi ja energiaväärtuste. 
Tulistamismeetod omab vajalikku lineaarset sõltuvust tcomp ~ N ja rahuldavat 
energiaväärtuste koondumiskiirust, kuid ebaselgelt määratletud piiritingimused 
teevad meetodi kasutamise ebamugavaks. Artiklis on esitatud energianivoode ja 
lainefunktsioonide kooslahendamise meetod (EWC), mis on töökindel ja efektiivne 
ning omab lineaarset sõltuvust tcomp ~ N. Meetod põhineb mittelineaarsete võrrandi-
süsteemide lahendamiseks sobival Newtoni iteratsioonimeetodil, kusjuures sise-



 261

mise lineaarse ülesandena lahendatakse kolmediagonaalse ääristatud maatriksiga 
süsteem. Esitatud meetod on rakendatav suvalise potentsiaalse energia jaotusega 
ülesannetele keerukusega N = 105 ja üle selle nii nulliliste kui ka tsükliliste piiri-
tingimuste puhul. Praktiliste MQW-ülesannete jaoks on realiseeritud võimalus 
kasutada meetodeid kombineeritult, mille puhul arvutatakse ShM-i abil energiate ja 
lainefunktsioonide ligikaudsed alglähendid väga kiirelt koonduvale EWC-meeto-
dile. Kolmik-kvantaugu näitel formuleeritud testülesande lahendamise teel on 
võrreldud vaadeldud meetodite ruumilist täpsust ja arvutiaega. Tulemused näi-
tavad, et kombineeritud meetod ShM + EWC on FGH-meetodist mitu suurusjärku 
efektiivsem. 
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In this work we consider lateral current pumped GaAs/AlGaAs quantum wells as sources of
incoherent terahertz radiation. The lateral field heats the electrons in a two-dimensional quantum
layer and increases the population of higher subbands, hence also increasing the radiation power
generated in spontaneous intersubband emission processes. Digitally graded quasi-parabolic and
simple square quantum wells are considered, and the advantages of both types are discussed.
Calculations at lattice temperatures of 77 K and 300 K, for electric fields up to 10 kV/cm, show
that the optical output power of �100−200 W/m2 may be achieved for the 7 THz source. The main
peak of the spectrum, at 7 THz, of the quasi-parabolic quantum well exceeds the black body
radiation at 300 K by approximately a factor of two and by two orders of magnitude at 77 K.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2783779�

I. INTRODUCTION

The development of sources of terahertz radiation has
become a hot topic in the last decade because of numerous
prospective applications. The successful realization of tera-
hertz quantum cascade lasers has made a huge impact on
Terahertz technology. These coherent sources are able to give
good levels of output power but still require low tempera-
tures for their operation �below 164 K �Ref. 1��. However,
not all possible applications of terahertz radiation really re-
quire coherent and highly monochromatic sources. In fact, it
is sometimes advantageous to have a reasonably broadband
terahertz source that would preferably operate at room tem-
perature. In this work we consider the possibility of using a
relatively simple quantum well, pumped by a lateral current,
as a source of incoherent terahertz radiation. This would be
generated in spontaneous radiative transitions between size-
quantized states and requires just electron excitation into
higher states �subbands� and not any population inversion.
The bandwidth of such sources is limited from below by the
spontaneous transition line width, i.e., is intermediate be-
tween those obtained from lasers and from thermal sources.
However, a more broadband output can be achieved by ap-
propriately engineering the subband structure. Their emitting
area can be quite large, generally limited only by the wafer
size. In structures based on conventional III/V materials like
GaAs/AlGaAs, the generated radiation is intrinsically polar-
ized perpendicularly to the well layer, hence propagating in
this plane, but surface-normal emission is possible by using
grating-type outcouplers.

II. THEORETICAL CONSIDERATIONS

Electrons in excited subbands of a quantum well relax
into lower ones mostly by scattering processes �with
phonons, interface roughness, etc.� and also, though with a
small efficiency, by spontaneous emission of photons. The
emitted radiation is linelike, its bandwidth determined by the
line broadening. Some amount of radiation is emitted even
under equilibrium due to a finite population of excited sub-
bands at any finite temperature, and the power spectrum is
also linelike, because a quantum well is not a black body.
Driving the system off equilibrium, e.g., by applying a lateral
electric field �Fig. 1�, will generally increase the population
of excited subbands and hence, the generated optical power.
To get a comparatively narrowband �i.e., spontaneous-
emission-width-limited� emitter of this type, one can pursue
one of the following two approaches. One is to use a quan-
tum well with a number of equispaced subbands, e.g., a
parabolic-like quantum well, and rely on the fact that the
only strong optical transitions are those between adjacent
states. In an ideal parabolic potential only these transitions

a�Electronic mail: reeno@ioc.ee
FIG. 1. Laterally pumped quantum well emitter. The doping is localized in
a 2D quantum layer and in the regions under the contacts.
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are indeed allowed �have nonzero dipole matrix elements�,
but the situation is similar for many other conventional po-
tentials. Any strong optical transition in such a system would
thus contribute to the same emission profile, which would
thus be independent of how strongly the system is pumped,
i.e., what number of higher subbands are significantly popu-
lated. The other approach would be to use a quantum well
with the lowest two states spaced by the required amount,
while the third state would be much higher up and therefore
unlikely to acquire a significant electron population, the situ-
ation which effectively guarantees a narrowband emission
spectrum.

In either case, there is clearly a tradeoff between the
pumping strength �and hence the emitted optical power� and
the degree of monochromaticity of the emitted radiation, the
latter being compromised by electron excitation into high
subbands which cease to be equispaced �in the case of quasi-
parabolic wells�, or into the third or higher subbands �in case
of a square well�. To address this question, we performed
modeling of subband population dynamics in appropriate
quantum wells subject to an in-plane electric field. The rel-
evant physics is shown in Fig. 2. Electrons obtain kinetic
energy from the in-plane electric field, their in-plane distri-
bution being shifted upward along the subband. The change
of the distribution modifies the electron scattering rates.2 In
particular, for sufficiently large fields the “upward” �i.e.,
subband-elevating� scattering rates will clearly increase, be-
cause a large fraction of electrons in a lower subband will
have a large enough kinetic �and hence also the total� energy
to be above a higher subband near its zone center. Electrons
thus climb up the subband ladder, which results in an in-
creased population of higher subbands compared to the equi-
librium case. Electrons in higher subbands relax into lower
ones not only by scattering but also by spontaneous photon
emission. The generated optical power depends only on sub-
band populations, not on the in-plane electron distribution,
because optical transitions are vertical �electron wave vector
conserving� and, within the parabolic in-plane dispersion
model, pairs of subbands are essentially equispaced for all

wave vectors. It is worth noting that considerations of hot
electrons in a square well as a source of terahertz radiation
have been presented in Ref. 3 but within a simple model that
assumed equilibrium electron distribution throughout the
system, with their temperature taken as an input parameter.

The electron distribution due to an in-plane electric field
in a multisubband system may be found by solving the Bolt-
zmann equation with all intra- and intersubband scattering
processes taken into account. In this work, however, we use
a simplified and much faster approach, taking the in-plane
electron distribution �over the wave vectors of a subband� to
be described by the shifted Maxwell–Boltzmann �MB� dis-
tribution and then explicitly handling only the intersubband
scattering processes. Detailed calculations of the electron
transport in bulk semiconductors show that the shifted MB
distribution �see Fig. 3�, with appropriate field-dependent
temperature and drift velocity in the direction of the field,
can be a very good approximation to the actual calculated
distribution.4 It has also been previously used, in form of a
shifted Fermi–Dirac �FD� distribution, in single-subband
electron-transport calculations in quantum wells.5 In this
work we apply such a model to systems with a number of
size-quantized subbands and assume that each of them will
have the same form of shifted-MB distribution over the in-
plane wave vectors, which is then used to evaluate the
distribution-averaged intersubband scattering rates, Eq.
�9.153� from Ref. 6.

It should be noted that the validity of this approximation
relies on having strong electron-electron intrasubband scat-
tering, because this is the major process which brings about
the electron thermalization �by which we mean that the dis-
tribution acquires the MB- or FD-like form, with its tempera-
ture generally different from that of the lattice�. Under the
operating conditions typical for the devices we consider �T
=77–300 K, area doping �1012 cm−2�, estimates of the
electron-electron intrasubband scattering time constant put it
into the deep subpicosecond region.5,7 This is much faster
than any other intra- or intersubband scattering process in-
volved in this work �slightly subpicosecond timescale, at
best�, and therefore using the shifted MB distribution ap-
proximation can be justified. On the other hand, it may not
be necessary to explicitly include the intersubband electron-
electron scattering in the rate equations. The rate of this pro-
cess decreases with intersubband spacing,6 and in view of the
relatively large spacings we deal with ��30 meV�, we have

FIG. 2. �Color online� Model of subband excitation and relaxation
processes.

FIG. 3. Shifted distribution function. The dashed line corresponds to an
equilibrium zero field case. The displayed wave vector k in the direction of
the field has a shift k0 proportional to average drift velocity of electrons. The
other, perpendicular direction is not shifted, but the broadening �described
by the increased electron temperature� is present in either direction.
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indeed accounted only for polar LO phonon and acoustic
phonon intersubband scattering, the former being the major
intersubband scattering process. Since the calculation of
electron-electron scattering in a multisubband system is far
slower than for phonon-electron scattering, this makes large
savings of computation time. At any reasonable value of the
field �high enough to give technically significant effects in
the system under consideration� the electron temperature is
large enough that the MB and FD distributions �both shifted,
in this instance� are essentially indistinguishable, and we use
the latter form just for convenience.

The electron energy in the nth subband is En=En0

+�2k2 /2m*, where En0 is the size-quantized subband mini-
mum energy, and the kinetic component depends on the two-
dimensional �2D� in-plane wave vector k. According to the
shifted-FD distribution model, the electron distribution over
the in-plane k states depends not simply on their energy but
is rather described as

fsFD�k�

= �1 + exp

En0 +
�2��kx − k0�F,Tlatt��2 + ky

2	 − EFn

2m*

kBTel�F,Tlatt�



−1

,

�1�

where k= �kx ,ky� is the in-plane wave vector, EFn
is the

quasi-Fermi level of the nth subband, while the drift wave
vector k0 and electron temperature Tel both depend on the
field F �here taken in the x direction� and the lattice tempera-
ture Tlatt. For the numerical calculations the relations
k0�F ,Tlatt� and Tel�F ,Tlatt� may be obtained using data from
the literature �e.g., Refs. 2 and 8–10�, partly relying on the
fact that the energy loss rate of the electron gas versus elec-
tron temperature dependence is almost the same for 2D and
3D systems.11 Figure 4 shows the electron drift velocity vd

=�k0 /m* and temperature dependencies on the field, as used
in this work. These were assembled using the theoretically
calculated and experimental data from several sources.2,8–10

At equilibrium �F=0� the �quasi-�Fermi level is the same

for all subbands, but for nonzero electric fields the subband
populations ni change, and the Fermi level for each subband
is found from

ni =
2

4�2�
kx,ky

fsFD�k�dkxdky . �2�

The rate equations describing the subband population
dynamics in the steady state read

dnf

dt
= �

i=1

N
1

�if
ni − nf�

i=1

N
1

� fi
= 0, �3�

where �if
−1 is the total averaged scattering rate from the ith to

the fth subband, due to all scattering processes accounted
for, and N the number of subbands included in the model.
There are N such equations, making a homogeneous system.
Any one of these is linearly dependent on all the others and
is replaced by the particle conservation law �i.e., the global
charge neutrality�, n1+n2+ . . . +nN=ND, where ND is the
overall electron concentration per unit area, set by the struc-
ture doping. This makes a standard inhomogeneous linear
system of equations, to be solved.

In deciding on the number of subbands to be included,
one normally takes all those low-lying subbands that are ex-
pected to host a non-negligible electron population. Typical
quantum well structures have a limited number of bound
states �subbands�, of the order of 10 or so, and including all
of them present no difficulties on the computational side.
However, if the actual calculation shows that even the high-
est bound subband becomes significantly populated at some
value of the in-plane field, this is a signal that population of
the above-the-barrier �continuum� subbands has begun. The
model has then to be expanded to include a sufficiently large
range of energies in the continuum. Since we have encoun-
tered such an operating regime, the model includes a range
of continuum states, along with all the bound subbands, in
the description. The continuum is described by embedding
the real quantum well in a box much wider than the well
width, which produces a dense spectrum of quasi-continuum
states. Including any reasonable range of continuum states
grossly increases the total number of states that are explicitly
handled, i.e., the order N of the system �Eq. �3��, but this has
to be done for sufficiently large fields.

The subband populations are thus found from the rate
equations, using the distribution-averaged intersubband scat-
tering rates, which themselves depend on the Fermi levels.6

With this cross-dependence, it is clearly necessary to use an
iterative �self-consistent� solution of the whole system, start-
ing with arbitrary initial values, until the required precision
is achieved.

With the subband populations found, the total emitted
�more precisely, internally generated� optical power, due to
spontaneous intersubband transitions, is calculated from

FIG. 4. Electron drift velocity and temperature dependencies on the lateral
electric field used in this work, assembled from various theoretical and
experimental data �Ref. 2 and 8–10�.
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Ptotal = �
i�f

N
ni

�if
rad��if , �4�

where �if
rad and ��if =Ei−Ef are the radiative lifetime and

energy spacing between ith and fth subband, respectively.
The radiative lifetime is given by6

1

�if
rad =

e2n̄�Ei − Ef�3dif
2

3��0c3�4 , �5�

where n̄ is the refractive index, and dif the optical dipole
matrix element, dif =
� f�z�z�i�z�dz. The Lorentzian-type
power spectrum is calculated from

P���� = �
i�f

N
ni

�if
rad��if

�

�

1

��� − ��if�2 + �2 , �6�

where � is the linewidth �half width at half maximum� of the
intersubband transitions, here set to 5 meV as a typical value.

III. NUMERICAL RESULTS AND DISCUSSION

In this work, the emission characteristics of the digitally
graded, quasiparabolic and square wells were investigated.
Continuous composition-graded wells which would provide
a truncated parabolic potential, based, e.g., on AlxGa1−xAs
alloys, are quite difficult to grow. Furthermore, a strictly
parabolic composition grading does not lead to equispaced
states because of the effective mass variation, though this can
be corrected by modifying the composition profile.12,13 For
these reasons we have tailored a more readily realized, digi-
tally graded quantum well, with the layer widths carefully
adjusted to give 12 equispaced states to high accuracy, with
the state spacing equal to approximately 29 meV, corre-
sponding to a 7 THz radiative transition frequency.13 The
structure is shown in Fig. 5. The layer widths are integer
multiples of crystalline monolayer �0.283 nm�, which should
minimize interface roughness.

Calculations were performed for the lattice temperatures
of 300 and 77 K. Doping of 1012 cm−2, only within the
quantum well layer structure, was assumed. Using just the 12
equispaced bound states proved insufficient; hence, an addi-
tional 24 states of the quasicontinuum, covering the energy
range of 0.110 eV above the barrier top, were also included
in the model, because a sizeable fraction of electrons gets
excited into these continuum states at larger fields. Certainly,

the equispaced-states property does not apply to the con-
tinuum. The confinement box size for the quasicontinuum
states was selected as 185 nm, approximately 3 times greater
than the width of the QW.

In Fig. 6 we give the total generated power dependence
on the lateral electric field. This starts to increase signifi-
cantly only beyond 1 kV/cm �2 kV/cm for 77 K�, and en-
ters a saturation for biases in excess of 8 kV/cm. The power
range obtained, �100−200 W/m2, is limited by the general
cubic dependence on the energy spacing �as follows from
Eqs. �4� and �5�, together with the fact that dif

2 �1/��if�. The
power spectrum also evolves with the field and becomes pro-
gressively less narrow, as shown in Fig. 7 for the quasipara-
bolic structure. For fields up to about 4–5 kV/cm the spec-
trum is rather “monochromatic,” with a single peak around
the required frequency of 7 THz, as expected from a light-
emitting diode �LED� device. For higher fields, however, the
side-peaks at 21 THz and 35 THz start to contribute to the
output power. One can easily estimate, assuming the unity
value for the surface emissivity, that the total power within
the 7 THz peak at 10 kV/cm exceeds the black body radia-
tion in the same spectral range by approximately a factor of
2, even at room temperature �300 K�, and grossly exceeds it,
by 2 orders of magnitude, at 77 K.

FIG. 5. Digitally graded quasiparabolic quantum well for 7 THz emission
�Ref. 13�. The equivalent ideal parabolic well potential is also shown. The
layer widths in crystalline monolayer units, starting from the middle one
�because the structure is symmetric�, are as follows: 12, 1, 11, 1, 8, 1, 1, 1,
2, 1, 7 , 1, 1, 2, 4, 1, 4, 3, 1, 2, 5, 7, 3, 3, 1, bulk �GaAs - boldface,
Al0.42Ga0.58As - regular font�.

FIG. 6. Total generated optical power dependence on the lateral electric
field, calculated for the digitally graded, quasiparabolic well, and for the
simple square well for lattice temperatures 77 K and 300 K.

FIG. 7. �Color online� Generated power spectrum for the digitally graded
quantum well. The 11 displayed spectral profiles are for electric fields of
0 ,1 ,2 , . . .10 kV/cm.
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The appearance of higher frequencies is clearly related
to the increasing electron population in higher, continuum
subbands, as shown in Fig. 8, which becomes quite promi-
nent for fields above 3 kV/cm. It should be noted, however,
that it may not be just electron escape to continuum which
contributes to spectrum broadening. It is only the ideal para-
bolic potential, and not just any equispaced-states potential,
which has the property that no other transitions except those
between adjacent states are allowed. Indeed, starting with the
parabolic potential one can generate families of asymmetric
equispaced-states potentials which have quite significant
transition matrix elements between more remote states.14

However, in the digitally graded well considered here the
dipole matrix elements between subbands with the quantiza-
tion index changing by three are between 1 and 2 orders of
magnitude smaller than those between the adjacent sub-
bands, and others are much smaller; hence, this path for the
power spectrum broadening is still of minor importance: the
major part of broadening comes from the transitions from
continuum states.

Another set of calculations was performed for a 20 nm
wide GaAs square well embedded in a Al0.3Ga0.7As barrier.
The well width was chosen so that the energy spacing of the
first two subbands is about the same as in the quasiparabolic
well, i.e., approximately 30 meV. This structure has five
bound subbands, at 10.1, 40.4, 90.5, 159, and 238 meV. It
was embedded in a 220 nm wide outer box, and 31 quasi-
continuum states were also included in the model. The cal-
culated emission characteristics are shown in Figs. 6 and 9,
and the relevant subband populations in Fig. 10. Clearly, the
total power generated in this structure exceeds that of the
quasiparabolic well, but the spectrum is much broader.

IV. CONCLUSION

Laterally pumped GaAs/AlGaAs quantum wells were
considered as potential broadband sources of incoherent tera-
hertz radiation, generated on spontaneous intersubband opti-
cal transitions. The in-plane field heats the electrons and
hence increases the population of higher subbands, and
therefore also the output power. Two types of quantum wells

were considered, a digitally graded, quasiparabolic well and
a simple square well, and their performance was compared.
Despite the higher overall emitted power from the square
well system, the emission spectrum of the quasiparabolic
well is generally narrower, and up to the moderate fields
remains rather monochromatic, as expected from spontane-
ous emission-based sources like LED devices. The total op-
tical output power at 7 THz is limited due to the cubic de-
pendence of the spontaneous emission on the subband energy
spacing. However, the spectral power at 7 THz still exceeds,
by approximately a factor of two, the ideal black body radia-
tion at 300 K. The analysis presented predicts that this de-
vice, in contrast to quantum cascade lasers, may operate at
room temperature, or even at 400 K. A higher optical output
may be achieved either by increasing the electron density or
by using a stack of multilayer structures. Furthermore, by
appropriate modifications of the digitally graded quantum
well, it appears possible to realize limited-bandwidth inco-
herent terahertz sources, the spectral properties of which are
controllable by the built-in GaAs/AlGaAs composition dis-
tribution, and also dynamically �to an extent� by the lateral
field.
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Introduction 
 

After several rises and falls of enthusiasm in terahertz 
domain during many decades [1], it seems that at last the 
T-rays research and technology has found the real boost 
during last 10 years. At that an important role have had the 
long time waited solid state source - the Quantum Cascade 
Laser (QCL) which idea was proposed already in 1971 by 
R. Kazarinov and R. Suris but the real working devices 
were realized in mid-infrared region reqion (3-5 μm) only 
in 1994 [2] and in THz-region in 2002 .[3]. The increase of 
relevant research during last 10 years has been impressive, 
see Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Annual number of published papers that contain either 
keyword “terahertz” or “quantum cascade laser” according to the 
ISI Web of Science database. Year 2009 is incomplete as not all 
publication have arrived 

 
Terahertz frequency area promises many new 

applications on spectroscopy, terahertz imaging and 
microscopy, genetic sensing, detection of biological and 
explosive hazards, astronomical telescopes [4], high-speed 
wireless communications [5, 6], and even real-time 
terahertz imaging at video rate [7, 8].  

Historically the THz range was often called as 
“terahertz gap” because of the lack of sources in this part 
of spectrum. Solid-state electronics capability was limited 
for a long time at terahertz frequencies, for example, in 
1922 the unexplored region was between the wavelengths 
of 0.2 and 2 mm [9]. The early emitters in this range were 
either very inefficient or their development was 
complicated [1], leaving the beginning of the race in this 
area to the end of 20th century. In 2005 the clear gap in 
power still existed in the field of the solid-state THz 
sources [1], see Fig.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Existing gap and development goals in the solid-state 
terahertz sources field 
 

The conventional central terahertz range lays between 
the frequencies 1÷10 THz [7] (corresponding wavelengths 
are from 300 μm to 30 μm), but the good consensus is 
missing about the exact wider boundaries, especially from 
far-infrared (FIR) side. The wider THz range varies in the 
literature from 300 GHz to 30 THz [4, 10-13], overlapping 
partly the FIR region, see Fig. 3 on next page. Quite sure is 
boundary with microwaves (wavelength 1 mm).  
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Fig. 3. Electromagnetic spectrum with focus on terahertz region. There is a small consensus about the location of border between FIR 
and T-rays area 
 
Advances in Terahertz Sources 
 

The variety of terahertz sources is quite large by 
today. Narrow-band THz radiation can be produced by 
free-electron lasers and fast diodes. Broadband terahertz 
radiation can be produced by thermal sources, laser-driven 
sources, and by short electron bunches in accelerators [14]. 
Depending on the type of application, either narrow or 
broadband sources can be used. Most of the possible 
applications expect the emitter to have high power and 
small dimensions, and to be cheap and portable. Today, 
there are several techniques that provide high power, but 
the equipment for that is often not very compact, being 
rather built in to a laboratory, than portable. 

The first source best satisfying the need for high 
power is Free Electron Laser (FEL). It is a monochromatic 
tunable oscillator having good power but unfortunately it is 
unportable. There are reports that say about 400 watts of 
average and 600 kW of pulse power in the range of 1.3 – 
7.5 THz using FEL [15] that are remarkably good result. 
Another report tells about a 1-watt average result in the 
range of 0.5 – 1.5 THz [16]. 

Another way to produce high power broadband THz 
radiation is using subpicosecond electron bunches in an 
accelerator. Using this technology 20 watts of power have 
been measured in the terahertz region [14]. 

An also good technology yielding relatively good 
power in THz band is gyrotron, which use vacuum tubes 
that emit terahertz beams by bunching electrons with 
cyclotron motion in a strong magnetic field [17]. In the 
experiments by Idehara et al the frequency of the gyrotron 
is tunable between 120 GHz and 1080 GHz having 
magnetic field of 20 T at the highest frequency, giving 
output power from several tens of watts to several 
hundreds of watts [18,19]. The equipment of these 
experiments is very large, occupying even several floors, 
but making the device compact is under progress. 

The next way to generate the radiation is using p-
Germanium laser which is based on population inversion 
between light and heavy holes. Up to 100 mW of power in 
the range of 170 – 200 μm (1.7 – 1.5 THz) have been 
reported [20]. A bad side of this source is the requirement 
for low temperatures near 15 K [21]. 

Quite an old method to produce terahertz emission is 
using CO2 gas laser, either based on molecular pumping 
[22] or mixing of different frequencies [23]. Molecular 
pumping have a relatively broad spectrum, ranging from 
0.580 to 4.25 THz, giving 20 – 30 mW output power [22]. 

Another method is to use tunnel injection transit time 
diodes, which are so called TUNNETT diodes [24]. 
Reports are showing up to 140 μW power in 0.355 THz 
frequency [25]. 

Backward-wave oscillators that use biplanar 
interdigital slow wave circuits are reported to give 23.8 
mW near 0.650 THz [26]. 

Up to 1.1 mW power in the range of 3.2 – 4.8 μm 
have been obtained [27] using the difference frequency 
generation. This is a principal method to get higher 
frequency ω3  by summing two lower frequencies ω1 and  
ω2 [28]. 

Optical rectification which is based on mixing two 
frequencies, was first showed in 1962 [29]. This method is 
based on the inverse process of the electro-optic effect. 

Terahertz radiation from nano-acoustic motion of 
standing waves in an impedance-mismatched layer 
sandwitched by GaN-based piezoelectric heterostructures 
have been investigated recently [30]. This may lead us to a 
new way to produce terahertz radiation. 

By combining monolitic microwave integrated circuit 
amplifier frequency tripler chips, output power > 1 mW 
have been demonstrated at around 0.9 THz [31]. 

Simulations have been done by the authors of the 
present work too using spontaneous radiation from 
laterally pumped quasiparabolic GaAs/AlGaAs quantum 
wells [32]. The results show at 7 THz ca 100−200 W/m 2 
output power couple times over blackbody radiation up to 
temperature 400K. 
 
Advances in Development of Quantum Cascade Lasers 
 

A small hop can be seen near 1994 when the MIR 
Quantum Cascade Laser was demonstrated by Faist et al 
[2]. Shift to the THz domain in 2002 [3] initiated also the 
terahertz era in semiconductor emitters. After that a bigger 
hop in general was near 2004 caused by commercial 
sources coming to the market. This boosted up the 
publishing of results on application related experiments. 
 Currently, Quantum Cascade Lasers are the only 
semiconductor devices operating from the mid-infrared 
region to the THz range of frequencies [33].  
 The main problems with QCL-s are their low working 
temperature and small power. The main emphasis is on 
developing these properties – to increase working 
temperature, where they are still effective, and to increase 
the power in general. 

During last couple years, the THz QCL-s have been 
quickly approaching the higher temperatures and longer 



49 
 

wavelengths by applying different sophisticated design 
ideas and the strong external magnetic field. By 2008 the 
maximum operating temperature without external magnetic 
field was  increased to 178K in pulsed mode and 117K in 
continuous wave (CW) mode at the lowest frequency of 
1.2 THz [34]. 

In 2009 demonstrated Wade et al (5 leading research 
centers of USA) that with resonant phonon desing and with 
strong magnetic field (over 16 T) may be achieved QCL  
work in 1 THz regime at temperatures up to 215 K, and 3 
THz regime at up to 225 K [35]. In the resonant-phonon 
design scheme, the population inversion is ensured by 
selectively injecting electrons through resonant tunnelling 
into the upper state of the laser transition [35].  

The room temperature lasers exist in MIR range [36], 
e.g. InGaAs-AlAsSb QCL 3–4 μm, several mW at 270 K 
[36]. Using metal grating distributed feedback, continuous 
wave room temperature operation at wavelengths 4.5–7.5 
μm and output power 20 mW is achieved [37]. 

The general trends of THz QCL development are 
illustrated in Fig.4 below. At longer wavelengths the 
design problems become especially complicated if the 
temperature energy exceeds the energy of quantum: 

λν /h chTkB =≥  .  (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The achieved results and general trends of development of 
THz quantum cascade lasers 

 
The output frequency of QCL-s can be tuned either 

by bias voltage [38] or by external cavity properties [39]. 
Recent achievements include also Quantum Cascade 
Lasers with Ultra-Strong Coupling Injection with peak 
power of 8W (2W) at 80K (300K) [40]. 
 
Conclusion 
 

Since the year 2002 the development of THz 
Quantum Cascade Lasers has become an extremely 
dynamic research field. The present paper discusses the 
recent advances in this area. 
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Electrical Engineering. – Kaunas: Technologija, 2010. – No. 8(104). – P. 47–50. 
 Starting from the year 2002 when the development of quantum cascade lasers shifted from mid-infrared to the terahertz domain, the 
remarkable rise in the terahertz research has followed. The paper discusses the recent achievements in development of the terahertz 
radiation sources with emphasis on quantum cascade lasers. Moving towards the higher working temperatures, longer wavelengths and 
higher output power is discussed. Ill. 4, bibl. 40 (in English; abstracts in English, Russian and Lithuanian). 
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Начиная с 2002 года, когда рабочие частоты квантово-каскадных лазеров сместились со средне-инфракрасного в 
терагерцовый диапазон, наблюдается заметное ускорение темпа исследований в области терагерцовой технологии. 
Обсуждаются последние достижения в разработке источников терагерцового излучения, в частности квантово-каскадных 
лазеров. Отмечается постепенное движение в направлении более длинных волн, а также более высоких рабочих температур и 
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 Pastaruoju metu jau plačiai taikoma terahercinė technologija. Straipsnyje aprašomi šios technologijos kvantiniai–pakopiniai lazeriai. 
Pažymėta, kad ryškėja tendencija grįžti į ilgesniųjų bangų diapazoną, didinant darbo temperatūrą bei išėjimo galią. Il. 4, bibl. 40 (anglų 
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Curriculum vitae

1. Personal data
Name: Reeno Reeder
Date and place of birth: 07/12/1981, Tallinn
E-mail address: reeno.reeder@ttu.ee

2. Education
Educational
institution

Graduation
year

Education (�eld of study/degree)

Tallinn University
of Technology

2005 Electronics and Biomedical
Engineering/BSc

Tallinn University
of Technology

2007 Electronics and Biomedical
Engineering/MSc

Tallinn University 2013 Teacher's Pro�esional Studies

3. Language competence/skills
Language Level
Estonian Fluent
English Fluent
Russian Basic skills
Swedish Basic skills

4. Special courses
Period Educational or other organisation
04/09/2006 - 22/12/2006 Visitor student in Leeds University
30/06/2012 - 21/07/2012 Participation in CERN International

High School Teachers Programme

5. Pro�essional employment
Period Organisation Position
01/05/2002 -
31/07/2011

Cybernetica AS Programmer, System
Analyst

22/08/2011 -
31/08/2013

Keila Hariduse
sihtasutus

Physics Teacher

01/08/2013 - ... Tallinn University
of Technology

Teaching Assistant

109



6. Research activity

Honours:
Students' research diploma by Archimedes in 2005.

Theses:
Bachelor thesis: Introductory Numerical Methods in Quantum Mechanics
(supervised by Andres Udal, 2005)
Master thesis: Modelling of terahertz broadband radiation sources based
on GaAs/AlGaAs quantum well heterostructures (supervised by Andres
Udal, 2007)

Publications:

• R. Reeder. Numerical solution of 1D Schrödinger equation for the ex-
ample of double quantum wells. Paper presented for the conference of

International Telecommunication Day in Tallinn University of Tech-

nology (May 13, 2005, Tallinn, Estonia), �Raadiotehnika 2005�, pp.
138-148, 2005.

• R. Reeder, A. Udal, E. Velmre, and P. Harrison. Numerical investiga-
tion of digitised parabolic quantum wells for terahertz AlGaAs/GaAs
structures. Proc. of the 10th Biennial Baltic Electronics Conference

(October 2-4, 2006, Tallinn, Estonia), pp. 51-54, 2006.

• A. Udal, R. Reeder, E. Velmre, and P. Harrison. Comparison of meth-
ods for solving the Schrödinger equation for multiquantum well het-
erostructure applications. Proc. Estonian Acad. Sci. Eng., Volume
12, Number 3-2, pp 246-261, September 2006.

• R. Reeder, Z. Ikoni¢ P. Harrison, A. Udal, and E. Velmre. E�-
ciency Estimation for a Broadband 7 THz Radiation Source with
GaAs/AlGaAs Parabolic Quantum Wells. Abstract for the Confer-

ence on Intersubband Transitions in Quantum Wells (September 9-14,

2007, Ambleside, Cumbria, U.K.), 2 pages, 2007.

• R. Reeder, Z. Ikoni¢ P. Harrison, A. Udal, and E. Velmre. Laterally
pumped GaAs/AlGaAs quantum wells as sources of broadband THz
radiation. Journal of Applied Physics, Volume 102, Number 7, p.
073715, October 2007.

• R. Reeder, A. Udal, and E. Velmre. Advances in Terahertz Technology
with Emphasis on Quantum Cascade Lasers. Proc. for the Conference
of Electronics and Electrical Engineering (May 19-20, 2010, Vilnius,

Lithuania), 8 (104), pp. 47-50, 2010.
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• A. Udal, R. Reeder, Z. Ikoni¢ P. Harrison, and E. Velmre. Develop-
ment of quantum cascade laser simulation software. Proc. of the 13th
Biennial Baltic Electronics Conference (October 3-5, 2012, Tallinn,

Estonia), pp. 47-48, 2012.

• R. Reeder, A. Udal, E. Velmre, Z. Ikonic, P. Harrison, and D. In-
djin. Discussion of the development aspects of the quantum cascade
laser simulation software. Abstract for the International Conference

on THz and Mid Infrared Radiation and Applications to Cancer De-

tection Using Laser Imaging (October 10-11, 2013, She�eld Hallam

University, U. K.), 1 page, 2013.

• R. Reeder, A. Valavanis, P. Harrison, A. Udal, and E. Velmre. Nu-
merical Aspects of the Development of Quantum Cascade Laser Sim-
ulation Software. Proc. of the 14th Biennial Baltic Electronics Con-

ference (October 6-8, 2014, Tallinn, Estonia), 4 pages (submitted),
2014.
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Curriculum vitae

1. Isikuandmed
Nimi: Reeno Reeder
Sünniaeg ja -koht: 07/12/1981, Tallinn
Kodakondsus: Eesti
E-posti aadress: reeno.reeder@ttu.ee

2. Hariduskäik
Õppeasutus Lõpetamise

aeg
Haridus (eriala/kraad)

Tallinna
Tehnikaülikool

2005 elektroonika ja
biomeditsiinitehnika/BSc

Tallinna
Tehnikaülikool

2007 elektroonika ja
biomeditsiinitehnika/MSc

Tallinna Ülikool 2013 õpetaja kutseõpingud

3. Keelteoskus
Keel Tase
eesti keel kõrgtase
inglise keel kõrgtase
vene keel algtase
rootsi keel algtase

4. Täiendusõpe
Õppimise aeg Täiendusõppe korraldaja nimetus
04/09/2006 - 22/12/2006 Külalistudeng Leedsi Ülikoolis
30/06/2012 - 21/07/2012 Osalemine CERN-i rahvusvahelises

gümnaasiumiõpetajate programmis

5. Teenistuskäik
Töötamise aeg Tööandja nimetus Ametikoht
01/05/2002 -
31/07/2011

Cybernetica AS programmeerija,
süsteemianalüütik

22/08/2011 -
31/08/2013

Keila Hariduse
sihtasutus

füüsikaõpetaja

01/08/2013 - ... Tallinna
Tehnikaülikool

assistent
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6. Teadustegevus

Tunnustused:
Diplom üliõpilaste teadustööde riiklikult konkursilt, Archimedes, 2005.
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