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Abstract

Turn-based games present a difficult challenge for game developers when developing AI
opponents. Turn-based games demand planning, resource management, and dealing with
imperfect information while presenting a large number of possible actions.

The goal of this thesis is to develop an alternative approach for creating opponents for
turn-based games utilizing machine learning techniques. The work primarily focuses
on adapting and implementing the AlphaZero algorithm with new modifications to the
author’s game. The new algorithm is referred to as PlayerZero. PlayerZero is able to
automatically learn the strategies to play the game, by only utilising the rules of the game
and data generated from playing against itself.

Model training was done using Python 3 with the Keras API, and the models were exported
in the ONNX format. To ensure that the self-play game logic for reinforcement learning
is efficient and shared with the game itself, it was developed within the Godot Game
Engine, primarily using the C++ programming language. Model inference capabilities
were retroactively added to the Godot Engine using the GDExtension technology with
ONNX Runtime, hardware-accelerated by CUDA. The model training server trains multiple
models, which are automatically upgraded to facilitate network curriculum learning.

The algorithm’s performance is compared to multiple configurations of the Monte-Carlo
Tree Search algorithm. We evaluate its performance based on algorithms ability to make
optimal decisions, computational time, and memory usage.

The results show that PlayerZero is able to outperform the MCTS algorithm with an equal
number of simulations after training for just one generation. After multiple generations
of training, PlayerZero is able to outperform MCTS algorithms with a larger number of
iterations while requiring less time to make decisions and using significantly less system
memory.

The thesis is written in English and is 45 pages long, including 5 chapters, 10 figures and 3
tables.
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Annotatsioon
Masinõppemeetodite analüüs tehisintellekti arendamiseks ja

rakendamiseks käigupõhises mängus

Käigupõhised mängud pakuvad keerukat väljakutset mänguarendajatele, kes arendavad AI-
vastaseid. Käigupõhised mängud nõuavad planeerimist, ressursside haldamist ja tegelemist
mittetäieliku informatsiooniga, samal ajal esitades suure hulga võimalikke tegevusi.

Selle lõputöö eesmärk on välja töötada alternatiivne lähenemine AI loomiseks mas-
inõppe tehnikate abil. Töö keskendub peamiselt modifitseeritud AlphaZero algoritmi
rakendamisele autori mängus. See uus algoritm on nimetatud PlayerZero’ks. PlayerZero
algoritm suudab automaatselt õppida mängu mängimise strateegiaid, kasutades ainult
mängureegleid ja enda vastu mängimisel genereeritud andmeid.

Mudelite treenimist viidi läbi Python 3 abil, kasutades Keras API-d, ja mudelid eksporditi
ONNX-formaati. Algoritmi enda vastu mängimise (Self-Play) loogika arendati Godot
mängumootoris C++ programmeerimiskeelega, et tagada tõhusus ja ühilduvus mängu-
mootoriga.

Mudelite ennustamise võimekus lisati tagantjärele Godot’isse, kasutades GDExtensioni
tehnoloogiat ja ONNX Runtime’i, mis on kiirendatud CUDA-ga. Mudelitreeningu server
treenib mitut mudelit, mida uuendatakse automaatselt, et hõlbustada võrgu õppekava
õppimist (Network Curriculum Learning).

Algoritmi jõudlust võrreldakse mitme Monte-Carlo puuotsingu algoritmi konfigurat-
siooniga, hinnates selle võimet teha optimaalseid otsuseid kiiresti.

Tulemused näitavad, et PlayerZero suudab pärast vaid ühe põlvkonna treenimist ületada
MCTS algoritmi võrdse arvu simulatsioonidega. Mitme põlvkonna järel suudab PlayerZero
ületada suuremaid MCTS algoritme, kasutades samal ajal vähem ressursse.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 45 leheküljel, 5 peatükki, 10
joonist, 3 tabelit.
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List of Abbreviations and Terms

API Application Programming Interface
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DCNN Deep Convolutional Neural Network
DNN Deep Neural Network
GARB Global Attention Residual Block
GDE GDExtension
GPU Graphics Processing Unit
L2 Ridge Regression
MCTS Monte Carlo Tree Search
ML Machine Learning
NCL Network Curriculum Learning
NN Neural Network
ONNX Open Neural Network Exchange
ORT ONNX Runtime
RAM Random Access Memory
RL Reinforcment Learning
RPG Role-Playing Game
ReLU Rectified Linear Unit
TBS Turn-Based Strategy
TBT Turn-Based Tactics
VRAM Video Random Access Memory
UCB Upper Confidence Bound
UCT Upper Confidence Bound applied for Trees
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1. Introduction

The topic of this bachelor’s thesis is the implementation and analysis of machine learning
techniques to direct actors in a new turn-based game environment. The final goal is to
develop a sophisticated algorithm capable of playing the game at a level high enough to
challenge human opponents.

The conventional approach to developing AIs for turn-based computer games primarily
involves hand-crafted algorithms. [1, 2] This thesis explores an alternative approach
where known techniques and algorithms from machine learning are used to develop a new
algorithm capable of playing the game without relying on domain knowledge.

There are several significant limitations regarding the available approaches, which motivate
the choices made in this thesis. Among them, the most significant is the absence of prior
play data. AlphaGo [3], DeepChess [4], and other implementations [5] of AI for directing
actors in turn-based games with the aid of ML leverage vast quantities of data from existing
games played by human experts to train the models. However, methods utilizing existing
data would not be applicable for a game that nobody has played before.

The choice of solutions is further constrained by the available computational resources
during gameplay. It is crucial for the algorithm to output its decisions within a short
timeframe on consumer hardware.

We employ an algorithm known to be capable of playing a variety of difficult board games,
AlphaZero [6], in the author’s own game. The techniques chosen are domain-agnostic and
can be applied to other environments, not limited to a specific game. The thesis addresses
the challenges of integrating the algorithm into the game engine, as well as the necessary
modifications to the neural network architecture.

To achieve this goal, all essential game logic was rewritten in C++ with efficiency in mind.
This facilitated running simulations and data generation algorithms without additional
overhead from game graphics and other unnecessary systems. Modifications to the game
engine were made using appropriate technologies to retroactively add support for model
inference, hardware accelerated by CUDA via ORT. Both supervised learning and rein-
forcement learning techniques were utilized to train the final network. The core approach
is largely based on AlphaZero [6], with some notable modifications and techniques from

10



other papers. The final algorithm is compared to a traditional MCTS algorithm on multiple
characteristics through a novel tournament-based evaluation method.

The open-source solution is provided in Appendix 2.

The description of the rules of the game is written in Appendix 3.

The information about the system used for training the algorithm is provided in Appendix
4.
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2. Background

2.1 Turn-Based Games

Turn-based games are a distinct type of game where players can only take actions during
discrete turns. This stands in contrast to real-time games, where actions can occur at any
moment, and the game progresses continuously. In turn-based games, players face no
immediate penalty for taking time to consider their optimal actions, allowing them the
opportunity to carefully plan and strategize. These aspects challenge the players to think
ahead, allocate resources effectively, and, in some cases, make decisions with incomplete
information.[7]

2.1.1 Popular Types Of Turn-Based Games

Turn-Based Strategy

Typically, strategic wargames like chess, checkers, and Go are popular examples of TBS
board games. However, TBS games extend beyond traditional board games and are
prevalent in the space of computer games as well. Prominent series of TBS computer
games include Sid Meier’s Civilization, Total War, and Heroes of Might and Magic.

Turn-Based Tactics

Turn-based tactics games, as the name implies, distinguish themselves from regular TBS
games by focusing on smaller-scale combat scenarios where players control individual
squads or characters to achieve specific objectives. Popular series of TBT games include
XCOM, Wargroove, and Fire Emblem.

Turn-Based Elements in Other Games

Elements of turn-based combat exist in many other game series, particularly in RPGs,
where the player controls a small party of characters in a series of encounters to advance
through the game. These types of games are popular in the mainstream and include some of
the best-selling franchises, such as Pokémon[8], and the 2023 Game of the Year: Baldur’s
Gate 3.[9]
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2.1.2 AI And Turn-Based Games

Turn-based games only work when human players are matched against a challenging
opponent. Game developers are tasked with creating algorithms that can serve as opponents
for human players. "Successful turn-based strategy games depend strongly on robust
artificial intelligence"[10].

Due to the way that the design of turn-based games emphasizes planning, resource man-
agement, and various other aspects, it is not trivial to develop algorithms that are able to
play these games efficiently. Specifically, we are interested in decision making algorithms.
The classic approach that game developers take is through algorithms that are hand-crafted
for a specific domain, for example, decision trees [1].

Another example, the mechanism behind the AI in the critically acclaimed role-playing
game Divinity: Original Sin 2, as outlined in Larian Studios’ documentation, relies on
calculating the score of an action based on how it affects the game state. The action
with the highest score is selected. The system depends on many parameters, tuned by
the developers specifically for the many possible scenarios that can occur in the game.[2]
Appendix 5 has the descriptions for 6 out of a total of 173 multipliers used to calculate
action scores [11].

Creating algorithms that are able to play turn-based strategy games has historically been a
difficult task, and any time that major breakthroughs have resulted in AI being capable of
beating human players in complex games such as Chess or Go, it became an important
milestone for AI and AI research. [3, 12]

2.2 Monte-Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a decision-making algorithm that generates value
estimates for actions from a given state. It does so by performing a large number of
simulations, usually in the order of hundreds or thousands. The results from random
simulations are used to iteratively build up a tree of nodes representing possible game
states, where a transition from one node to another represents an in-game action.

Because the basic implementation of MCTS relies only on game simulations, it does not
require any additional heuristics to work and can be implemented using only the rules of
the game. However, numerous optimizations and modifications have been developed to
successfully improve the performance of MCTS for specific domains. Such domains in-
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clude those outside of games; for example, scheduling, vehicle routing, chemical synthesis,
and security-related problems.[13, 14]

2.2.1 How Classic MCTS Works

MCTS is an algorithm that gradually builds up a tree of game states connected by actions
taken by players of the game. Given enough time, the algorithm converges to the optimal
action. If stopped prematurely or run for a lower number of iterations, it can still output a
result with a small error probability [15]. There is a trade-off between accuracy and the
resources required when running MCTS for a low number of iterations versus a higher
one.

The following explination of the MCTS algorithm is a simplified summary of the Basic The-
ory provided in the article "Monte Carlo Tree Search: A Review of Recent Modifications
and Applications" [14].

The Phases of MCTS

Each iteration of MCTS can be split into 4 main phases. The phases are described in the
same order they are performed when the algorithm runs for a single iteration. The tree
initially consists of just the root node, representing the state for which the next optimal
action has to be determined.

1. Selection
The Selection phase searches the tree for the first leaf node (a node that does not
have any child nodes). The search begins from the root node and selects the child
with the highest UCT score (see Section 2.2.2 for the UCT formula). This process is
repeated for the children of the selected node until the first leaf node is found. On
the first iteration, this will always be the root node.

2. Expansion
In the Expansion phase, new children are added to the currently selected node for
every possible action that can be taken from the game state associated with the node.
If the selected node is terminal, meaning the game has ended, then no expansion is
performed.

3. Simulation (Sometimes reffered to as "Rollout")
A child is selected from the previous expansion phase, and a simulation of the game
is performed starting from the game state of the node. A simulation consists of
playing the game by randomly selecting actions from the state until the game ends.
The game state can be evaluated using the rules of the game, and a score is calculated
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based on the outcome. For example, the score for losses can be represented as −1.0,
for victories as 1.0, and 0.0 for draws. For terminal nodes, the score is immediately
available without the need to perform the simulation.

4. Backpropogation
In the Backpropogation phase, the number of visits and the score of the selected
node and all of its parents are updated by propagating it through the tree all the way
back to the root.

An illustration of this process is shown in Figure 1.

Figure 1. An image illustrating the 4 phases of MCTS: Selection, Expansion, Simulation,
and Backpropagation.

2.2.2 Upper Confidence Bound Applied To Trees

The UCT is the policy used during the selection phase, fulfilling two important tasks. The
first is selecting nodes that already have a high score associated with them, and the second
is selecting nodes that are underexplored. These two terms are referred to as exploitation
and exploration, respectively, and they are both essential for finding the optimal action
[15]. Nodes which have never been visited have the highest priority; the rest of the nodes
are evaluated with the following formula:

uct(n) =
s

v
+ C

√
ln vp
v

(2.1)

Where:

■ v is the number of times a given node has been visited.
■ s is the sum of the scores of the node.

15



■ C is a constant, usually
√
2, but depends on the game.

■ vp is the number of times the parent node has been visited.

When modeling the actions of the opponent for the MCTS algorithm, the exploitation
term is inverted 1− s/v. The intuition is that while the algorithm chooses actions which
maximize its own likelyhood of victoriy, the opponent chooses actions which minimize it.

Recovering The Best Action

The UCT policy exploitation term means that when the MCTS algorithm eventually
converges to an optimal action, the corresponding node will have the highest score and
the highest number of visits. However, when stopping the algorithm prematurely, the best
possible decision for the current state can be recovered from the tree by picking either the
action with the most visits or the highest score, which may not always align and produce
different results [16].

2.3 Imperfect Information Games

IGG are games where there is limited observability of the game state. This can include
games where certain information is unavailable, such as in card games, where it is unknown
what cards are going to be drawn from the deck or the cards in the opponent’s hand.
Imperfect information can also include randomness; a simple example would be the
outcomes of dice rolls. These types of games are more difficult to model than games with
perfect information and are the primary challenge when using tree search-based algorithms
such as MCTS. Many modern games are also imperfect information games, which makes
addressing these challenges a high priority. [13, 14]

2.3.1 Addressing Randomness In IIG By Determinization

A rather simple approach to addressing randomness in IIG when using the MCTS algorithm
is by Determinization. This technique has already been previously successfully applied to
card games with inherent randomness, such as "Magic: The Gathering" [17]. It essentially
works by sampling every possible outcome from a random event and adding it to the tree as
new nodes. This approach has some drawbacks, as it can drastically increase the branching
factor of the tree [14].
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2.3.2 Other Modifications To MCTS

There are multiple articles written which review different modifications for the classic
MCTS algorithm [14, 16]. The modifications in these articles cover various aspects
of the algorithm, such as multiple approaches to parallelization, alternatives to the UCT
selection policy, and more. However, while many of them have the potential to significantly
boost the performance of the algorithm, they also introduce additional complexity into
the implementation and, more importantly, bias. As outlined in [14], bias improves the
algorithm’s performance for one task but lowers its performance for a different task. In
the scope of this thesis, we focus on the vanilla implementation of MCTS, with some
exceptions, namely the introduction of determinization, as outlined in Section 2.3.1.

The introduction of Determinization into our implemenetation of MCTS is not motivated
by the need to optimize it, but rather as a necessary modification to allow the algorithm to
play the game. Another such unavoidable modification is the support for varying length
turns. As it is not directly based on any prior work, this modification is explained in detail
in the Implementation Chapter 3 of the thesis in Section 3.1.5

2.4 AlphaZero

AlphaZero is an algorithm developed by Google DeepMind that achieves superhuman
performance in a variety of challenging decision-making tasks, including the games of
Chess, Shogi, and Go. AlphaZero is a generalized approach created from AlphaGo Zero,
an algorithm that learned to play the game of Go at a superhuman level, trained entirely
through self-play. These algorithms do not receive any hints about the correct way to play
the game or about the optimal strategies; however, they are able to discover them naturally
through playing against themselves and learning from the data they create. AlphaZero
is not restricted to just one domain like its predecessor AlphaGo Zero, and it is capable
of outperforming state-of-the-art algorithms within hours of training in games like Shogi
without major changes to the algorithm. [6]

AlphaZero is of particular interest to us due to its proven ability to learn to make decisions
in other games, its relatively fast and stable training, and its lack of reliance on any prior
knowledge of how to play a game.

We will provide a basic intuition of how the AlphaZero algorithm works; however, for
a deeper understanding of the algorithm, it is recommended to read the original articles
published for its predecessor AlphaGo Zero [18] and AlphaZero [6] itself, respectively.
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2.4.1 How AlphaZero Works

The AlphaZero algorithm achieves its performance by combining MCTS and a DCNN. It
performs a tree search similar to classic MCTS; however, instead of relying on the results
of a large number of randomly played simulations, it utilizes the predictions of the DCNN
to more efficiently direct the tree search.The DCNN takes as input the game state and has
two outputs: the game state value and the policy. For the sake of this explanation, we will
assume that the DCNN has already been trained and the predictions are close to optimal.
The details on training are covered in the following Section 2.4.1.

The first output is the value, which represents the predicted outcome of the game given
the current board. This is similar to the score value acquired when the game ends during
the Simulation phase in classic MCTS, with the major difference being that this value is
immediately available to us for any board state, rather than just a terminal one.

The second output is the policy, a probability distribution over all possible actions from the
given state, where better actions have a higher probability and unfavorable actions have a
close to zero probability.

A simplified AlphaZero DCNN model architecture is shown in Figure 2, with the two
prediction heads illustrated.

Figure 2. A simplified diagram of the AlphaZero DCNN model architecture.
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The policy output is used during the initialization of new nodes in the expansion phase,
where we are immediately able to assign which actions are more favorable given the game
state. These probabilities are later used in the selection phase, where a different function is
used in place of UCT, which takes advantage of these predictions to better direct its search
to select actions with higher probability.

The value output is used to entirely replace the random play of the simulation phase.
The value predicted by AlphaZero DCNN is a more accurate and reliable metric than a
single simulation, and we use it to immediately assign the node with a score. If the node
represents a terminal state, then the rules of the game are used for evaluation instead. Even
a weak function for evaluating the game state is better than a long sequence of random
decisions [14].

The problem with simulations in classic MCTS is that we do not know if the reason for a
particular outcome of a simulation has had anything to do with our selected action or a
coincidence when there are other actions which could have led to the result. The scores
only start to become reliable once the MCTS has run a sufficient number of iterations and
we can leverage the statistics of one action resulting in a higher average win rate than the
other.

The diagram of the modified MCTS used in AlphaZero is shown in Figure 3.

Figure 3. The input for the DCNN is the selected node. The value head prediction is a
single number in the −1.0 to 1.0 range, which represents the predicted winner given the
game state. The value is relative to the current player, so −1.0 represents a loss, a 0.0
represents a draw, and 1.0 represents a victory. The policy head prediction is a vector of
positive values which add up to 1.0.

It is possible to use the DCNN directly without MCTS to direct an actor in a game; however,
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when combined with MCTS, the algorithm is able to achieve far superior performance.
The policy that is produced by MCTS is an improvement over the initial policy prediction
from the DCNN. An arbitrary example of how this improvement looks is illustrated in
Figure 4.

Figure 4. (a) The initial policy prediction by the DCNN. (b) The number of visits for each
of the actions after running the MCTS (values are normalized such that the sum adds up to
1).

This description of the AlphaZero algorithm was based on the following sources: [6, 14,
18, 19].

AlphaZero Self-play And Training

The training of AlphaZero can be separated into two steps. The first step is Self-Play,
where the algorithm plays a large number of games against itself and generates Self-Play
data. As we established, MCTS is able to improve on the original policy predicted by the
DCNN. This improved policy is the visit counts for each action, normalized to add up to
1.0. During Self-Play, the AlphaZero algorithm saves the game state, the improved policy,
and the winner of the game [6].

Figure 5 illustrates this process for a single game; however, it is done many times for every
generation of training to generate adequate quantities of data.

After a certain number of Self-Play games are played, the Self-Play process is stopped,
and the data is used to train the DCNN using gradient descent. The policy head is trained
to predict the new policy that was improved by MCTS, while the value head is trained on
the final winner of the game, adjusted relative to the player.[6]
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Figure 5. AlphaZero Self-Play: Data from every turn is stored. The data consists of the
improved policy generated by the MCTS combined with DCNN, the game state, and the
winner of the game.

2.5 The Game

The focus of this thesis is a new turn-based game that combines mechanics inspired by
popular franchises with new original ideas.In short, the game is a grid-based roguelike
with turn-based combat. A more detailed outline of the rules of the game is provided in
Appendix 5. Development of the game began around 2022 as a hobby project using the
Godot Engine. The motivation behind this thesis was the development of an algorithm
capable of serving as an opponent to human players. Integrating the algorithm into the
game engine was a priority, and certain technology choices were made to fulfill this need.

2.5.1 The Godot Game Engine

For the game engine, Godot Engine [20] was initially chosen due to being a free and
open-source technology distributed under the MIT license, and because of its ease of
use. Godot Engine is one of the most popular game engines for indie game developers,
according to the total number of projects on itch.io [21]. It officially supports GDScript,
C#, and C++ programming languages. GDScript is a language created specifically to be
used within Godot Engine. "It is a high-level, object-oriented, imperative, and gradually
typed programming language" [22].

A truncated code example from the official documentation GDScript documentation [22].

v a r a = 5

v a r s = " H e l l o "
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v a r a r r = [ 1 , 2 , 3 ]

v a r d i c t = {" key " : " v a l u e " , 2 : 3}

v a r o t h e r _ d i c t = { key = " v a l u e " , o t h e r _ k e y = 2}

v a r t y p e d _ v a r : i n t

v a r i n f e r r e d _ t y p e := " S t r i n g "

func s o m e _ f u n c t i o n ( param1 , param2 , param3 ) :

c o n s t l o c a l _ c o n s t = 5

i f param1 < l o c a l _ c o n s t :

p r i n t ( param1 )

e l i f param2 > 5 :

p r i n t ( param2 )

e l s e :

p r i n t ( " F a i l ! " )

f o r i i n r a n g e ( 2 0 ) :

p r i n t ( i )

w h i l e param2 != 0 :

param2 −= 1

match param3 :

3 :

p r i n t ( " param3 i s 3 ! " )

_ :

p r i n t ( " param3 i s n o t 3 ! " )

v a r l o c a l _ v a r = param1 + 3

r e t u r n l o c a l _ v a r
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3. Implementation

Implementation consists of two major components, reflecting the two important steps in
the AlphaZero algorithm: the Self-Play client and the Training Server. The purpose of the
Self-Play client is to generate Self-Play data, while the training server handles the building
of new models, training them with the generated data, and deploying them to be used by
the game client.

The two components are explained in detail in the following sections.

The architecure of the two components and how they integrate is shown in Figure 6.

Figure 6. Self-Play Client and Training Server architecture.

3.1 Self-Play Client

3.1.1 Requirements For Self-Play Game Logic

The Game logic is an essential component of the game and Self-Play. It is directly
responsible for implementing the rules of the game. It is paramount that the game logic
fulfills specific requirements for it to be possible to use with the AlphaZero algorithm. The
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requirements are outlined as follows:

1. The game logic needs to be as performant as possible.
2. The game logic needs to be integratable into the Godot Engine.
3. The game logic needs to support creating copies of game states.

The game logic needs to be as performant as possible

There are multiple reasons why this is important.

During self-play, the results of thousands of games are required to generate enough data
to train the next generation of the algorithm. Every single one of those games consists
of multiple turns, and during each turn, the MCTS algorithm is run. MCTS itself plays
the game for thousands of turns. Needless to say, if the algorithm is not optimized, it
becomes very time-consuming to develop, debug, train, and test. While the training time
also depends on the hardware and the rules of the game, it is not always possible to change
those aspects. We already established in Section 2.2.1 that the number of iterations is
directly proportional to the performance of the algorithm; we cannot avoid these large
numbers. The exact number needed for the MCTS algorithm to reach close to optimal
performance can vary based on the rules of the game; however, it can easily reach thousands
or tens of thousands. The more performant our code is, the more iterations we can run, and
the better the results we will see.

The game logic needs to be integratable into the Godot Engine

If our final goal is to use AlphaZero to direct actors in the game, then the logic that powers
it should also be integratable into the game.

The game logic needs to support creating copies of game states

Each node in the MCTS tree represents a transition from one state to another. Expansion
relies on taking the current state of the node and creating a new copy of that state where
the next action was taken. Many board games can be represented as a simple Bitboard
[23] or a similar data structure. Copying and modifying the state for these games is
fairly trivial. However, not all games are easily representable with a single bitboard or a
multi-dimensional array. For our game specifically, we have several mechanics that make
this a challenging requirement to fulfill. One example is that each character in the game
consists of a large number of attributes and has a complex internal state.
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3.1.2 Addressing Performance Limitations of GDScript

As already established, performance is incredibly important for generating large quantities
of Self-Play data games. GDScript is easy to use; however, that comes at the cost of
performance. According to the official engine documentation, for the fastest performance,
it is advised to use GDExtension with C++ instead of GDScript [24]. All of the original
game logic as presented in Appendix 5 was rewritten in C++.

3.1.3 Model Inference In Godot Engine

The Godot Engine does not natively support any form of model inference or have any
ML-related functionality. Existing projects offering this functionality were considered;
however, they either offer unnecessary functionality or are made for outdated versions of
the engine and are no longer supported. This functionality had to be implemented.

Godot offers multiple ways of achieving this. As Godot Engine is an open-source technol-
ogy, there was always an option to directly modify the source. A more reasonable approach,
outlined in the official documentation for Godot 4, is GDExtension. "GDExtension is
a Godot-specific technology that lets the engine interact with native shared libraries at
run-time." [25] One of the requirements was to optimize the game code by rewriting it from
GDScript to C++. This meant that both model inference and optimized game logic could
be implemented as a single GDExtension in C++. C++ is the only officially supported
language at the time of writing this thesis.

Runtime For Inference

There were never any plans to do model inference from scratch; the goal was instead to find
a suitable technology that could be integrated into Godot Engine through GDExtension
to perform this job. ONNX Runtime[26] fits this role perfectly. It is a cross-platform
open-source high-performance inference engine for deep learning models. The ORT API
is available for C++ as a thin wrapper around C, which is perfect for our needs since we
can implement the GDExtension interface for ORT and optimized game logic all in one
language.

ONNX Runtime supports an impressive suite of platforms, APIs, architectures, and hard-
ware acceleration solutions. Particularly, we were interested in using CUDA [27] hardware
acceleration. Using CUDA hardware acceleration can provide a significant boost to the
performance of model inference during the generation of Self-Play data, as it offloads the
heavy computations from the CPU to the GPU.
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3.1.4 Game Logic Implementation

This section provides a short overview of the game logic implementation. The game logic
was written in C++ and integrated into the Godot Game Engine using the GDExtension
[25] technology.

The game state is managed using a custom Surface class. Various objects populate the
game board, such as characters (implemented as the Unit class) and walls (implemented
as the DestructibleElement class). Both of these classes inherit from the SurfaceElement

class.

CastInfo Struct

The CastInfo is a C++ Struct (composite data type similar to a record). It contains all of
the information about the action being used by a charather in the game.

It consists of the following:

■ Surface: A reference to the Surface object where the action is used.
■ Caster: A reference to the Unit object, which is the character using the action.
■ ActionIdentifier: An enum used to identify which action is being used.
■ Target: A Vector2i object representing the position where the action is used by the

Caster (irrelevant in some cases).

Actions

The actions are implemented through static functions, each of which takes as input a
CastInfo struct. Each action consists of the following three functions:

■ Checker Function: Returns a boolean value representing whether a given CastInfo

is valid with respect to the rules of the game.
■ Caster Function: Modifies the state of the Surface based on the action’s rules.
■ Generator Function: Generates and returns a list of CastInfo structs representing all

valid targets for the action. This function sometimes reuses logic from the checker
function. Used by MCTS and PlayerZero during the Expansion phase.

Cloning

Every object implements a clone function, which returns an identical object. When the
Surface object is cloned, it calls the clone functions of the SurfaceElement objects within
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it.

Integration With The Rest Of The Engine

Each object inherits the Godot RefCounted class, and all of its methods are registered so
that the game logic can be reused in the Godot Game Engine. This allows us to use the
optimized logic written in C++ in conjunction with logic written in GDScript, significantly
simplifying the integration into the actual game.

3.1.5 MCTS Implementation

Although the complete MCTS algorithm is not essential for the implementation of Alp-
haZero, it was developed for several reasons. Firstly, it offers a notably simpler alternative
compared to AlphaZero. This allowed for thorough testing of the game logic, ensuring
the proper functioning of its various components when running millions of iterations.
Moreover, the MCTS algorithm serves as a baseline for assessing the performance of
AlphaZero during benchmarking.

Varying Length Turns

A unique mechanic in the game, which is unusual for most board games like chess, is
the fact that the turn of the current player does not end after performing an action. This
means that a varying number of actions can be performed in a single turn. Turns are only
ended when explicitly using the "End Turn" action. Figure 7 illustrates this difference
when observing the game tree compared to games where the sides swap after every action.

Figure 7. A diagram demonstrating the effect of varying length turns on the game tree.
Different sides (players) are represented by white and black colored nodes. (a) Game tree
for games where turn duration is exactly 1 action. (b) Game tree for a game where the turn
can last a varying number of actions, the nodes where the "End Turn" action is performed
are marked with an E.

Because a turn no longer consists of just one action, the logic to recover the best action is
also slightly different from traditional MCTS. We perform a search on the built MCTS tree
where we take a sequence of actions with the highest number of visits until we reach the
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"End Turn" action. This process is illustrated in Figure 8.

Figure 8. A diagram demonstrating how the optimal series of actions is recovered from
MCTS with varying length turns. The numbers on the connections represent the number
of times the nodes have been visited. The blue highlight shows the optimal sequence of
actions.

Determinization of Random Outcomes Via Random Nodes

One of the challenges in implementing MCTS into the game was addressing random events.
Imperfect information is introduced into our game through an action called "Action Refill"
and at the start of each new turn. The game engine generates a random number to decide
which outcome is chosen.

The solution used to address this is Determinization. Whenever a node that generates a
random outcome is encountered in the expansion phase, we rely on specialized logic. In
this special expansion phase, instead of adding nodes that represent the possible options of
actions that can be taken, we first add nodes for each possible random outcome, as shown
on the left side (a) in Figure Figure 9. We will refer to these special nodes as Random
Nodes.

During the selection phase, the UCT algorithm is not used to evaluate the Random Nodes.
In this case, it does not make sense to favor one random outcome over another if they are
equally likely. During the MCTS selection phase, all random outcomes are sampled the
same number of times. To achieve this, the selection policy picks the random node with
the fewest visits.
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Figure 9. Determinization with Random nodes in MCTS. (a) An action with a random
outcome is marked with "R", the triangles represent random nodes corresponding to each
of the possible outcomes. (b) After expansion of the random nodes, the tree structure
continues as before.

Recovering Actions After Random Outcomes

A unique case that can occur when recovering a sequence of actions is when the sequence
includes a random event with multiple branches of random nodes. In this case, the recovery
logic simply observes the true game state as it executes actions and determines which
Random Node in the generated tree matches the outcome. After the correct branch is
chosen, the action sequence recovery proceeds as usual.

3.1.6 Generating Starting Conditions For Self-Play

Chess and many other board games all start the same, with the board in a standard starting
state. However, for games where there are numerous possible scenarios that can play out in
different contexts, we need to simulate this variety of starting conditions. This is achieved
through randomly generating the starting conditions for every self-play instance. This is
done at a higher level using GDScript, as generating the initial conditions is only done
once per self-play game, so there is little performance gain from doing it in GDExtension
with C++.

3.1.7 Tournament

Tournaments is a new system created specifically for testing and evaluating actors within
the context of a new game. Since there is no prior knowledge about the intended way to
play the game and optimal strategies, evaluating the algorithms can become difficult. The
tournament approach involves pitting actors against one another and saving the results of
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each game. Similar to self-play, the tournament relies on the same logic to initialize the
starting conditions for each game played.

However, each randomly generated starting state is played twice, with each actor playing
as both sides. This approach is taken because most of the time, the starting conditions
favor one of the two actors. Unfortunately, this approach is not entirely perfect due to the
inherent randomness of the game. There will be some noise in the results, and there is
always a possibility that the more capable actor might lose more games due to bad luck.

To mitigate some of these drawbacks, an increased number of tournaments are run.

3.2 Training Server

The training server is responsible for building the model files used for self-play and training
them using gradient descent. Python 3 is the language used for training models and running
the training server, benefiting from its robust suite of libraries for data science and machine
learning.

The high-level API used for developing and training the models is Keras with TensorFlow.
Although alternative backends for Keras, such as PyTorch, exist, the choice was made
based on personal preference and familiarity with the TensorFlow and Keras APIs. These
alternatives are equally valid and can be used as long as they can be converted into the
format required by ONNX Runtime on the game side, which the vast majority of popular
machine learning frameworks support.

The conversion from TensorFlow models to ONNX models is performed using the Python-
based library tf2onnx [28].

Not all data is used for training. The data loader samples a maximum of 7 turns per game
to reduce overfitting on particularly long games. The turns sampled are chosen randomly.
Reducing the number of sampled games also helps with memory usage during training.

3.2.1 Data Augmentation

Data Augmentation is a common technique in computer vision that can effectively generate
more data from existing data [29]. Because the game board is symmetrical both horizontally
and vertically, we can exploit this to improve generalization and reduce overfitting by
applying appropriate augmentations to the data prior to training.
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The data loader independently applies a horizontal flip and vertical flip, each with a 50%
probability. These flips are applied to the board input, mask input, and true policy output.
For a single training sample, either all of these components are flipped or none of them are.

3.3 Neural Network Architecture

The NN architecture is heavily based on the AlphaZero DCNN. However, several important
changes have been made to both the network and the training process. We refer to this
modified model architecture as PlayerZero. A simplified diagram of the PlayerZero model
architecture is shown in Figure 10.

Figure 10. The architecture of PlayerZero model. Numbers in square brackets represent
the shape of data in the layers.

3.3.1 Model Input And Output Format

The model input consists of two large vectors of values. The first vector represents the
board or the game state. The second input is the policy mask, which exclusively contains
only ones and zeroes, representing which actions are valid given the game state.

The output of the model is the same as the classic implementation of AlphaZero. The model
determines which unit it is currently selecting an action for based on the "Is Controlled"
flag on each cell. The value output ranges from -1 to 1, where -1 represents a loss, 0
represents a draw, and 1 represents a victory. The policy output is a probability distribution
over all actions. Actions that are invalid given the state have a probability of 0.
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In Figure 11, the format of the input and output is shown.

Figure 11. The architecture of PlayerZero model.

3.3.2 Addressing Large Number Of Features In Input With Encoder

Inspired by various types of encoder networks and word embeddings, the encoder layer
transforms raw game data into densely encoded vectors. The encoder is implemented as
a regular densely-connected NN layer [30]. However, instead of applying it to the game
state input as a whole, it is applied to each position individually in the same manner. The
weights used to encode all positions on the board are the same.

The initial feature vectors are quite large, with 78 features for each of the 144 positions
on the grid, totaling 11232 features to represent the whole game state, with an additional
4320 features to represent the policy mask.

These encodings reduce the dimensionality of the initial features while capturing intricate
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relationships between them.

Figure 12 illustrates the dense encoder layer of the PlayerZero DCNN.

Figure 12. The PlayerZero Input Encoder.

3.3.3 Network Curriculum Learning

Network Curriculum Learning is a technique introduced in the training procedure for
the NoGoZero+ algorithm to play NoGO. During training, two networks are trained: the
smaller coach network and the larger student network. The coach network converges faster,
while the student network takes longer to train. We use the smaller coach network to
generate self-play data for training both networks. Once the coach network converges
and can no longer be trained further, it is replaced with the student network. The student
network then becomes the new coach, and a new, larger student network is created. [31]

Although not outlined in the original article that pioneered this idea, another benefit is that
the coach network takes less time to perform inference, thus reducing the time required for
the self-play phase compared to starting immediately with a large network. The network
shown in Figure 10 is am example of the smallest initial coach network of scale 1. The
table 1 displays various sizes of the PlayerZero network.

Table 1. A Table representing how the PlayerZero network scales during NCL. A dedicated
Python 3 building script is used to generate new sizes of PlayerZero directly from the
’scale’ parameter.

Scale Residual
Blocks

Channels Total number of parameters

1 3 16 63,678

2 5 32 314,974

Continues...
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Table 1 – Continues...

Scale Residual
Blocks

Channels Total number of parameters

3 7 48 912,510

4 9 64 2,009,886

5 11 80 3,760,702

3.3.4 Training The First Generation From MCTS

Before we can begin Self-Play, we need to have a network. However, without generated
data, the best network we can create would output either evenly distributed values or
completely random values. In both cases, this network would not be able to play the game
well. With enough generations, it would eventually learn the optimal strategy. However,
by using an actor better than just random for Self-Play, we can skip some early struggles
in the training process. Since we already have a simple MCTS implementation that can
play the game, we propose to use it as our first actor for generating Self-Play data. This
approach helps to speed up the initial training process for the first few generations and
provides an immediate dataset with knowledge of how to play the game.

Figure 13 illustrates the data generation for training the different PlayerZero generations.

Despite the simplicity of the approach, an additional benefit of having this MCTS Self-Play
was that it allowed for faster development of the PlayerZero model architecture. The same
MCTS Self-Play data can be used to train multiple networks and then directly compare
those networks’ abilities to learn, by comparing model training metrics such as accuracy
and loss.

3.3.5 Masking The Policy

The game state is not the only input the model receives; in our implementation, we also
have a policy mask. The policy mask input matches the shape of the output policy; the
values represent which actions are valid given the current board state. Valid actions are
represented by ones, and invalid positions by zeros. This information is already available
from the rules of the game, and we are simply passing it along to the network.

AlphaZero does not usually need this, as it can learn which actions are valid simply by
training. However, in our game, the space of possible actions is larger than in Chess or

34



Figure 13. First generation of PlayerZero is trained on data from MCTS Self-Play.

Go, and the network itself is also smaller. Which actions can be cast is dependent on
the hand attribute of the current unit. By providing the mask to the network, we make
the task of predicting the policy significantly easier and increase its accuracy without
additional training. Additionally, we can preserve a relatively low number of trainable
model parameters.

Before the mask is applied it goes through a custom "Process Mask" layer that applies
element-wise the following function to the values in the mask:

f(mi) = −108 ∗ (1.0−mi) (3.1)

This function convets all values of 1.0 to 0.0, and values where there were initally 0.0 to a
very large negative float. The resulting processed mask is then added element-wise to the
output of the head. This process is very important, and the reason behind it is the Softmax
activation function that follows it. Softmax activation function works such that it takes
inputs in logits form, where their range is from negative infinity to positive infinity and
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then maps them to the 0.0 to 1.0 range. Additionally, the sum over the output of a softmax
activation function always adds up to 1.0, effectively creating a probability distribution. If
a large negative value is added to the input, it is then interpreted by Softmax activation
function as 0.0 probability, if 0.0 is added to the input, then the value remains as is.

Figure 14 illustrates the modified architecture of the policy head.

Figure 14. Policy head architecture of PlayerZero

3.3.6 Other PlayerZero NN Implementation Details

Other minor adjustments and techniques used in PlayerZero.

■ All input features are automatically normalized by the NN.
■ 32-bit floats were used instead of Pythons 3 default 64-bit to reduce VRAM usage.
■ L2 Regression was used to add a penalty term to the loss function.
■ Learning Rate Scheduler was used to automatically lower the learning rate during

gradient decent by a factor after each step.
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3.4 Communication Between Self-Play Client And Training Server

The communication between the Self-Play Client and Training Server is facilitated using a
TCP connection. Both GDScript and Python 3 have built-in functionality to achieve this
with minimal code. The two components communicate via packets of a set size, performing
a series of handshakes.

3.4.1 Self-Play Data Format

The Self-Play Data is stored on disk in a custom compact format to represent the game
state. An example of a single Self-Play data file is provided in Appendix 6, along with
additional details about the meaning of the data. These files are generated by the Self-Play
Client and then read from the RAM Disk by the Training Server.

3.4.2 Temporary Data Storage On RAM Disk

A RAM Disk offers a solution for storing temporary data that needs to be quickly read and
written frequently. The read-write speeds of RAM Disks are orders of magnitude higher
than traditional storage devices. Unlike storage devices, RAM does not wear down from
repeated writes, allowing the hardware to last longer [32]. The data is stored in a serialized
compact format, and only 0.5 GB of 32 GB of RAM was allocated as a RAM disk. For
reference, information from 5000 Self-Play Games on average takes up 100 MB.

The RAM Disk was used to save the results of self-play for training purposes. After the
data is used for training and a new self-play routine is started, all the data is removed from
the drive.
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4. Results

4.1 Configuration Used For Attaining The Results

The information about the hardware used for training PlayerZero model is available in
Appendix 4.

PlayerZero was trained for 6 generations, with the first model trained using the MCTS
self-play data. All subsequent generations are trained on data generated by the previous
generation. The models are trained for 150 steps with 256 batches. Each generation took
approximately 3 hours to generate and train, except for the first generation, which took 6
hours due to the configuration of MCTS used. The Self-Play Client generated the data in
parallel using 10 worker threads.

4.2 Model Training Metrics

Figure 15 shows the training metrics of PlayerZero.

From these training results, it can be seen that subsequent generations more accurately
match the ground truth policy of their ancestors. The loss is also rapidly decreasing,
indicating convergence of the output values.

A single important metric is omitted from these results: value accuracy. This is done
because the best value accuracy does not noticeably increase from one generation to
another, consistently converging at around 0.66. The reason behind this is at least in part
due to the random nature of the game; the outcome given the board state can never be
perfectly accurate due to the inherent randomness of the game.

4.3 Tournament Results

For every pair of algorithms, 160 different initial game scenarios are played. Each scenario
represents one randomly generated initial game state, played until a winner is found or the
game ends in a draw. Games that last over 64 turns are also counted as draws; however,
most games end with a winner, as seen in the results.

The algorithms in the tournament are configured as follows:
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Figure 15. Training of PlayerZero model generations. The X axis represent the training step
(epoch). The blue line represents the sum of the losses of the policy and value prediction
of the network (lower is better). The green line represents the accuracy of the predicted
policy (higher is better). The colored text represents the best value for a given metric
achieved during training the generation.

■ MCTS 1000: Standard MCTS implementation with 1000 iterations, and each
simulation lasts a maximum of 32 turns.

■ MCTS 4000: Similar to MCTS 1000, but with 4000 iterations.
■ PlayerZero 1: Our algorithm after 1 generation of training using only MCTS

Self-Play data.
■ PlayerZero 4: Our algorithm after 4 generations of training, with 3 generations

trained using reinforcement learning (RL).

Each scenario is played twice, so that every algorithm gets to play both sides.

Results of these tournaments are presented below in Table 2.
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Table 2. Tournament results. A1 and A2 are abbrevations for Algorithm 1 and Algorithm 2.
Time taken is the average time required by the algorithm to perform 1 decision. The unit is
miliseconds.

Algorithm 1 Algorithm 2 A1
Wins

A2
Wins

Draws Time taken
by A1 (ms)

Time taken
by A2 (ms)

MCTS 1000 MCTS 4000 139 159 22 15828 56806

PlayerZero 1 MCTS 1000 157 150 13 24130 19701

PlayerZero 1 MCTS 4000 150 157 14 24165 67277

PlayerZero 4 PlayerZero 1 164 140 16 28426 31147

PlayerZero 4 MCTS 1000 169 131 20 22968 20045

PlayerZero 4 MCTS 4000 163 138 19 22352 69141

The "Time Taken" is inflated due to being run in parallel, in pratices, when determining
the optimal sequence of actions for a single turn, all algorithms take less than 0.7 seconds,
with the exception of MCTS 4000, which takes approximately 2.5 seconds.

From the Table above 2, we are able to draw several conclusions, the first is that the
PlayerZero 4 is the overall best performing algorithm, achieving higher winrate than all of
the others. The second important observation is that the PlayerZero 1 algorithm is already
able to outperform MCTS 1000 after just one generation of training. While MCTS 4000 is
still better than PlayerZero 1, it is notable that MCTS 4000 also takes considerably more
time.
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5. Summary

The goal of this thesis was to explore an alternative approach utilising ML techniques for
creating algorithms to control opponents in turn-based games. The approach taken utilised
AlphaZero combined with multiple modifications.

The game logic was rewritten in C++, we added model inference functionality into the
game enigne accelerated by CUDA, developed a Self-Play Client and Training Server
components to facillitate RL. We introduced new optimizations to the algorithm, including
additional model inputs in form of Policy Mask, modifications to the NN architecture in
form of Input Encoder, and modified the training process by using MCTS to train the first
generation.

The resulting algorithm was called PlayerZero, its performance was evaluated based on
multiple metrics and compared to classic MCTS.

We show that it is indeed possible to apply these algorithms and techniques to a turn-based
computer game with a more dynamic ruleset. More over, PlayerZero is able to outperform
MCTS after just one generation of training while performing the same number of iterations.
By the 4th generation of training, is still able to considerably outperform MCTS algorithms
that are given more than twice the amount of time to make a decision.

The inital goal that was put forth in this thesis has been achieved.
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Appendix 2 – Github Reposiotry

Link to the Github repostory with the code for the project https://github.com/
Klazkin/player-zero/.
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Appendix 3 – Game Rules

Introduction

The game is played on a 2-dimensional gird that is 12 by 12 cells. Each player controls
one of the two factions and has access to 1 or more Units. A Unit is similar to a chess
piece on a board, and factions are analagous to sides or teams. The game ends if only units
of one faction remain on board. It is possible for no factions to remain on the board, in that
case the game is counted as a draw. Players interact with the board through their controlled
units, each unit has certain actions they can perform.

Unit Attributes

Each unit has a list of attributes that affect their combat capabilities.

■ Maximum Health - Units maximum health value. If a unit is healed, the health
cannot go above this value.

■ Current Health - Units current health value, Unit is considered dead if it reaches 0
and is permanently removed from the game.

■ Attack - Affects outgoing damage.
■ Defence - Affects incoming damage.
■ Speed - Used to determine the order of turns, Units with higher speed go first.
■ Deck - A list of Actions that the Unit has access to during the game.
■ Hand - A list of Actions immediately available to the unit.
■ Status Effects - A list of temporary afflictions, effects vary based on the exact status.

Flow of the Game

The order in which units get to act depends on their Speed attribute, higher speed means
that units act first. If there is a speed tie then units of Faction 1 act first.

During the units turn they are able to use any action that is in their hand, the action "End
Turn" is always present. The Unit may use up all of their actions in a single turn, or none
of them. Certain actions can be combined into new, more powerful actions with unique
effects. The Unit gets new actions from their Deck, at the start of every turn the Unit get 1
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random action from the deck. The unit may hold only 1 of each action in their hand, and if
the unit already has every action then they do not recieve anything at the start of the turn.

Actions

Actions which deal damage to their targets use the following formula:

d = max(0, ad + ua − ud) (1)

Where:

■ d is the final damage.
■ ad is the action damage.
■ ua is the attacking units "attack" attribute.
■ ud is the "defence" attribute of the unit recieving the attack.

List Of All Actions

■ Move
ID: 0
Combination recipe: None
Description: Allows the unit to move to any neighbor cell within a radius of 5 cells
centered around the Unit.
Note: This action is always restored at the start of the turn, along with 1 other action
from the Units deck.

■ Sword
ID: 1
Combination: None
Description: Strikes all Units of opposing faction within a cross shaped area in-front
of the Unit. Deals 4 damage points to the target.

■ Bow
ID: 2
Combination: None
Description: Shoots an arrow at a single Unit. Deals 1 damage point plus 1 extra for
every 2 cells of distance between the Unit and the target. Can only be used if there
is a clear line-of-sight between the two Units.

■ Spear
ID: 3
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Combination: None
Description: Strikes all Units of opposing faction within a straight line area in-front
of the Unit. Deals 4 damage points to the target.

■ Spark
ID: 4
Combination: None
Description: Deals 3 points of damage to a single selected target with 5 cell radius
around the Unit. Applies a Burn status to the target which lasts 3 turns and lowers
defence by -1. While the Burn status is active the target loses 2 health at the start of
every single turn.

■ Ground
ID: 5
Combination: None
Description: Creates a stone wall in the selected neighbor cell. The cell becomes
unoccupiable and the wall blocks line-of-sight checks. The wall can be destroyed by
actions which deal damage.

■ Action Drawing
ID: 6
Combination: None
Description: Deals 3 damage points to the Unit which used this action but immedi-
ately refills the Move action and one other random action.

■ Weaker Spark
ID: 7
Combination: None
Description: Deals 3 points of damage to a single selected target with 4 cell radius
around the Unit. Can only be used if there is a clear line-of-sight between the two
units.

■ Dust
ID: 8
Combination: None
Description: Applies Dusted status effect to all units within 4 radius centered around
the Unit for 2 turns. Dusted status effect lowers the speed of the afflicted Units by -2.

■ Slow Heal
ID: 9
Combination: None
Description: Applies Slow Healing status effect to the target Unit (can be used on
your own Unit) for 4 turns. Slow healing restores 2 health points to Unit at the start
of every turn while it is active.

■ Damage Chain
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ID: 11
Combination: Obtained by combining "Action Drawing" and "Slow Healing".
Description: Applies Chain status effect to the target unit for 3 turns. When your
unit is attacked, the target unit also recieves the damage.

■ End Turn
ID: 13
Combination: None
Description: Ends the turn of the current Unit. Note: This action is always available
to the unit.

■ Combine Actions
ID: 13
Combination: None
Description: Allows to combine two specific actions into one, the actions used for
combining are lost and replaced with 1 new action. Note: This action does not
disappear after use.

■ Position Swap
ID: 15
Combination: Obtained by combining "Move" and "Action Drawing".
Description: Swaps the Units position with the targets position on the board.

■ Dust Spark
ID: 19
Combination: Obtained by combining "Weaker Spark" and "Dust".
Description: Deals 10 points of damage to all units within 4 radius centered around
the Unit, if those units are afflicted with "Dusted" status effect. If the units do not
have the status effect, this action does nothing.

■ Spark Dive
ID: 20
Combination: Obtained by combining "Move" and "Spark".
Description: Instantly teleports the Unit to an empty cell near the target, the target is
also hit with the "Spark" action.

■ Shatter
ID: 21
Combination: Obtained by combining "Ground" and "Spark".
Description: Deals 5 damage to the chosen target, if this action kills the target, then
additional 7 damage points is dealt to all targets within 3 radius centered around
the initial strike. The secondary effect also triggers if the target is a wall created by
"Ground" action.

■ Shield
ID: 22
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Combination: Obtained by combining "Ground" and "Slow Healing".
Description: Applies Shield status effect to the selected ally Unit for 3 turns (can be
cast on self). The Shield status effect lowers speed attribute by -1 and nullifies one
attack, if it disappears immediately after blocking.

■ Boost
ID: 23
Combination: Obtained by combining "Spark" and "Action Drawing".
Description: Removes 50% of current health from the selected ally Unit and applies
Boost status effect to it for 4 turns. The Boost status effect increases speed by +1
and attack by +4, but lowers defence by -1. When the Boost status effect ends, it
heals back the 50% of health that it removed.

■ Armor
ID: 26
Combination: Obtained by combining "Move" and "Ground".
Description: Applies Armor status effect to the selected ally Unit for 3 turns (can be
cast on self). The Armor status effect increases defence by +2.

■ Fast Heal
ID: 27
Combination: Obtained by combining "Move" and "Slow Healing".
Description: Immediately restores 5 health to the Unit which used this action.
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Appendix 4 – System Configuration

Software

■ Operating System: Windows 10 Pro N
■ Windows Subsystem for Linux (WSL) version: 2.1.5.0, Ubuntu 22.04.1 LTS
■ Hardware Acceleration: CUDA 12.1

Hardware

■ GPU: Nvidia GTX 1080Ti
■ CPU: AMD Ryzen 7 5800X3D 8-Core Processor 3.40 GHz
■ RAM: 32GB @ 3200 MHz, 0.5GB of which are dedicated to the RAM Disk
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Appendix 5 – Combat AI Modifiers

Table 3. Modifiers used to calculate the score of an action in Divinity 2 Original Sin. This
a small subset of the full table.

Modifier Base
Value

Description

MULTIPLIER_TARGET_MY_-
ENEMY

1.50 Used when the target of the action is at-
tacking the source character

MAX_HEAL_MULTIPLIER 0.50 A multiplier to determine the importance
of healing someone that’s close to dying.
Has to be in between 0.00 and 1.00

MULTIPLIER_MOVEMENT_-
COST_MULTPLIER

0.9 Used in the ActionCostModifier explained
in MULTIPLIER_FREE_ACTION.
MULTIPLIER_MOVEMENT_COST_-
MULTIPLIER is multiplied with the
AP cost of the movement needed to
execute the action and added to the
ActionCostModifier

MULTIPLIER_INVISIBLE_-
MOVEMENT_COST_MULT-
PLIER

0.30 If the player is sneaking or invisible this
modifier is used on top of MULTIPLIER_-
MOVEMENT_COST_MULTIPLIER

MULTIPLIER_HEAL_SELF_-
POS

1.0 Healing score on self that’s considered pos-
itive (this is just healing)

MULTIPLIER_ENDPOS_-
HEIGHT_DIFFERENCE

0.002 Used when calculating the PositionScore.
MULTIPLIER_ENDPOS_HEIGHT_-
DIFFERENCE is multiplied with the
height difference between the current
and the new position and added to the
PositionScore
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Appendix 6 – Self-Play Data Example

Example of a Self-Play data file generated by the 3rd generation of the PlayerZero algo-
rithm. In this case the game only lasted for only 3 turns. Some of the rows are shortened to
be more readable.

3

9 , 1 0 , 1 , 0 , 0 , 0 , 3

1 1 , 1 1 , 0 , 1 , 0 , 0 , 8 , 1 6 , 0 , − 1 , − 2 , 2 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . . .

9 , 1 1 , 0 , 0 , 1 , 1 , 2 , 2 0 , 2 , − 2 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 . . .

5

9 , 1 1 , 1 3 , 0 . 1 8 8 2 9 1 , 0 . 0 0 8 5 7 2 5 9 , 4 4 7 , − 0 . 9 9 9 9 0 7

9 ,1 1 , 2 3 , 0 . 0 97 0 2 3 3 , 0 . 0 00 9 2 6 1 71 , 2 29 , − 1

1 0 , 1 1 , 1 , 0 . 4 2 5 7 5 5 , 0 . 7 9 7 2 2 4 , 1 6 0 7 , − 0 . 9 9 1 3 8 1

9 , 1 0 , 1 , 0 . 1 6 1 2 6 6 , 0 . 0 8 5 8 4 1 7 , 3 9 8 , − 0 . 9 9 9 0 7 2

8 , 1 1 , 1 , 0 . 1 2 7 6 6 5 , 0 . 1 0 7 4 3 6 , 3 1 8 , − 0 . 9 9 8 8 3 8

2

1 1 , 1 1 , 0 , 1 , 0 , 0 , 1 , 1 6 , 0 , − 1 , − 2 , 2 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . . .

9 , 1 1 , 0 , 0 , 1 , 1 , 2 , 2 0 , 2 , − 2 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . . .

2

9 , 1 1 , 1 3 , 0 . 6 8 3 8 2 2 , 0 . 9 9 9 0 6 1 , 1 2 2 3 , − 0 . 9 8 9 3 4 5

9 , 1 1 , 2 3 , 0 . 3 1 6 1 7 8 , 0 . 0 0 0 9 3 8 9 5 7 , 3 8 3 , − 1

2

1 1 , 1 1 , 0 , 1 , 0 , 1 , 1 , 1 6 , 0 , − 1 , − 2 , 1 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . . .

9 , 1 1 , 0 , 0 , 1 , 0 , 2 , 2 0 , 2 , − 2 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 . . .

2

1 1 , 1 1 , 1 3 , 0 . 2 4 3 1 4 8 , 0 . 6 6 1 4 2 6 , 2 9 5 7 , 1

1 1 , 1 1 , 9 , 0 . 7 5 6 8 5 2 , 0 . 3 3 8 5 7 4 , 4 2 , 0 . 0 2 3 7 6 3 6

0

0

0

0

How To Read The Self-Play Data

The first row of the data represents K number of objects in the game state, then K rows
follow, each row representing the either a charahter or a wall. The first two integers are
the x and y coordinates of the object on the grid, the rest are the attributes. The total row
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to represent characters is 80 integers long. Exactly one of the characters also has an "Is

Controlled" flag value set to 1, the rest have it at 0. This defines which unit is currently
taking action. After that follows another number N , representing the number of possible
actions that the current unit can take. N rows of actions follow, each action is represented
by 7 values. Some of the values are no longer used or used exclusively for debugging and
testing.

The meaning of the values is described below:

1. The x coordinate of the target for the action.
2. The y coordinate of the target for the action.
3. The id used to identify the action.
4. The initial policy as predicted by the PlayerZero DCNN (not used for training, only

debugging).
5. The old value used for improved policy based on score (is no longer used).
6. The visits count, used to generate improved policy.
7. The average score of the action (not used for training, only debugging).

The pattern of K rows and N rows repeats until the game ends, which is signfied by
two rows of zeroes. The last row in the file, which in this case also happened to be zero,
represents the winner of the game.

The possible values for the last row are:

■ −1 - Game ended with a Draw.
■ 0 - Game ended with Faction 1 victory.
■ 1 - Game ended with Faction 2 victory.

55


	Introduction
	Background
	Turn-Based Games
	Popular Types Of Turn-Based Games
	AI And Turn-Based Games

	Monte-Carlo Tree Search
	How Classic MCTS Works
	Upper Confidence Bound Applied To Trees

	Imperfect Information Games
	Addressing Randomness In IIG By Determinization
	Other Modifications To MCTS

	AlphaZero
	How AlphaZero Works

	The Game
	The Godot Game Engine


	Implementation
	Self-Play Client
	Requirements For Self-Play Game Logic
	Addressing Performance Limitations of GDScript
	Model Inference In Godot Engine
	Game Logic Implementation
	MCTS Implementation
	Generating Starting Conditions For Self-Play
	Tournament

	Training Server
	Data Augmentation

	Neural Network Architecture
	Model Input And Output Format
	Addressing Large Number Of Features In Input With Encoder
	Network Curriculum Learning
	Training The First Generation From MCTS
	Masking The Policy
	Other PlayerZero NN Implementation Details

	Communication Between Self-Play Client And Training Server
	Self-Play Data Format
	Temporary Data Storage On RAM Disk


	Results
	Configuration Used For Attaining The Results
	Model Training Metrics
	Tournament Results

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Github Reposiotry
	Appendix 3 – Game Rules
	Appendix 4 – System Configuration
	Appendix 5 – Combat AI Modifiers
	Appendix 6 – Self-Play Data Example

