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Introduction

State of the Art

Observers

Various control tasks, based on the state-space representation of the system,
require that the values of the states are available. Among such tasks are, for
instance, computation of the state feedback and monitoring of the system
behavior. However, in practice all state variables are rarely available for
direct (on-line) measurement, or even if measurable, measurement can be
expensive. In such situations the suitable estimates of the states can be used
instead of their actual values. The tool which is intended to produce the
required estimates is called observer. In brief, the observer is an auxiliary
dynamical system which estimates the state from the knowledge of the
inputs and outputs of the system under observation (generally, the model
of the system is also required). Moreover, it is desirable that the observer
is constructed in such a way that the error between the actual value of the
state and its estimate vanishes as time increases. Though the estimation
problem is also studied by the stochastic approaches (such as Kalman filter),
this section focuses on the overview of the deterministic methods.

Since the first works of David G. Luenberger [71], [72], the problem of
observer design for linear time-invariant systems is much studied and the re-
spective theory is well established. Though for nonlinear systems there is no
general solution, a great number of methods and approaches can be found
in the literature. Among the most typical are the high-gain and sliding
mode observers for the continuous-time systems, the Newton observer for
the discrete-time systems and the Luenberger-type observer for the systems
of both time domains. The methods for the construction of the high-gain
observer were proposed, for instance, in [15], [30], [91]. The author of [91]
proposed the linear and robust observer for the state and parameter esti-
mation of nonlinear single-output autonomous systems. The main result
of [30] claims that under certain technical assumptions (such as some func-
tions are globally Lipschitz) an exponential observer can be built, which
is in fact a kind of an extended Luenberger observer. The authors of [15]
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generalized the technique presented in [30] to the multi-input multi-output
(MIMO) case. The design of the sliding mode observer was introduced in
[87] and developed further in [74]. The development of the Newton observer
design can be found in [13] and [77]. The authors of [77] proposed the ap-
plication of the Newton’s algorithm as the sampled-data observer. In [13]
the modified Newton observer was introduced. The proposed observer has
a hybrid structure, combining discrete-time iterations with the continuous-
time filters. The methods for construction of the Luenberger-type observer
were presented in [53] and [54]. In [53] the problem of observer design
for continuous-time nonlinear systems was translated into the problem of
solving a system of singular first-order linear partial differential equations.
The similar approach was employed in [54] for the discrete-time systems in
order to formulate the observer design problem via a system of first-order
linear nonhomogeneous functional equations. In both cases rather general
set of necessary and sufficient conditions was derived.

Observer Form Approach

A distinct from the above-mentioned approaches is the method of lineariza-
tion by input-output injections. The main feature of the method is the in-
termediate step implying the transformation of the system into the special
form, called the observer form. Roughly speaking, a system in the observer
form is a linear observable system that is interconnected with an input-
output-dependent nonlinearities, called input-output injections. Once the
system is in the observer form, the construction of the nonlinear observer is
relatively easy. The advantage of the approach is that the dynamics of the
estimation error are linear. Furthermore, the method is, in a sense, system-
atic and can be applied to both continuous- and discrete-time systems. The
pioneers of the research in this direction were the authors of two indepen-
dent contributions [12], [62]. In both papers the existence of state transfor-
mation, bringing the nonlinear continuous-time autonomous system with
single output into the observer form, was studied. The difference is that
the authors of [12] investigated the problem for the time-varying systems,
whereas in [62] the time-invariant systems were considered. Moreover, the
paper [62] provided the necessary and sufficient solvability conditions using
the tools of differential geometry. Afterwards, these results were extended
to MIMO case in [63], [97]. The authors of [97] improved some results of [63]
and proposed a different set of necessary and sufficient conditions as well
as a procedure for the practical computation of the state transformation.
The approach of [12] was developed further in [67], where the necessary
and sufficient conditions for the existence of the state transformation were
presented as rank conditions of certain matrices. The multi-output version
of these conditions was given later in [96].
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The problem in the context of discrete-time autonomous systems was
addressed in the papers [23], [66]. In [23] the results of [62] were carried
over to the discrete-time case with a view to investigating the effects of
time-sampling on the solvability of the observer error linearization problem.
The paper [66] originated as a parallel result to the continuous-time case
[97]. The authors of [66] derived the necessary and sufficient solvability
conditions for both single- and multi-output cases.

Extensions and Generalizations of the Observer Form

The observer form approach, relying on the state transformation only, has
the disadvantage of imposing restrictive conditions for the existence of the
observer form for nonlinear control system. This fact motivates various
extensions and generalizations of the observer form as well as the gener-
alization of the transformations to enlarge the class of systems for which
the observer with linear error dynamics can be constructed. The majority
of such generalizations, proposed in the literature, can be classified into
three categories: (i) application of the output transformation in addition
to the state transformation, (ii) generalization of the form of the matrix A
(the coefficient matrix of the state vector in the matrix representation of
the observer form), and (iii) generalization of the form of the input-output
injections.

The generalization of category (i) has appeared already in the early pa-
per [63], where the state transformation was supplemented by the output
transformation, implying that the output in the observer form can be a
function of the original output. The further development of this approach
can be found in [83], [16], where certain algorithms for attaining the ob-
server form are proposed. In [57] the output transformation is applied for
the discrete-time systems in such a way that the usual addition opera-
tion in the observer form is replaced by a more general associative binary
operation, yielding the associative observer form. Though this approach
allows to reduce nonlinearities to the linearities in the representation of the
observer form, its limitation is that the amount of the known associative
binary operators is not very large.

The generalization of category (ii) can be found, for example, in [10],
[36], [37], [88], [101]. The authors of [36] developed the necessary and suffi-
cient conditions under which the continuous-time system is transformable
into the observer form, where the matrix A is allowed to depend on the
input. A different set of conditions and an alternative procedure for trans-
formation were provided in [37]. The paper [10] is a kind of the discrete-time
version of the results presented in [36]. In [101], the matrix A is allowed to
depend on output, whereas in [88] on both input and output.
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The observer forms with the generalizations of category (iii) are pre-
sented, for instance, in [70], [76], [84], [86], [92] for continuous-time systems
and in [42], [68] for discrete-time systems. In [84] two types of generalized
observer form were considered. In the first type the input-output injections
are allowed to depend not only on the input and output but also on the
derivatives of the input, whereas in the second type the derivatives of both
the input and the output are allowed. The first type of the observer form
was considered for MIMO systems, whereas the second for systems with
single output and the extension to the MIMO case was provided in [70]. In
[76] the another generalized observer form was proposed for MIMO systems.
Though the input-output injections in the observer form can also depend
on the derivatives of the input, this dependence is reduced. In both [86]
and [92] the nonlinear term, playing the role of the input-output injection,
is allowed to depend on certain state variables. In [92] such dependence
leads to the triangular structure of the observer form. The extended ob-
server form, proposed in [68] for the discrete-time multi-input single-output
(MISO) systems, contains the input-output injections, which, besides the
input and output, also depend on a finite number of their past values. In
[42] less general case of the systems without inputs was considered. Though
the extended observer form presented in [42] can also depend on the past
values of the output, the input-output injections are structurally different
from those considered in [68].

Furthermore, three categories of generalization may frequently occur in
various combinations. The combination of categories (i) and (iii) can be
found, for example, in [31], [40] for continuous- and discrete-time cases,
respectively. The observer form presented in [31] is similar to the first
type of the observer form considered in [84], but equipped with the output
transformation. In [40] the output transformation was used to extend the
results of [42]. The generalizations of categories (i) and (ii) were addressed
in [9], [18], [19], [64], where the output transformation is employed and
the matrix A is allowed to depend on input. In [9] the continuous-time
MISO system was considered, whereas [18] and [19] addressed the cases of
the discrete-time MISO and MIMO systems, respectively. The alternative
approach to the discrete-time MISO systems is presented in [64], where,
unlike [18], the solvability conditions are expressed in more simple form
of certain partial derivatives and do not involve more complex elements of
differential geometry.

It should be mentioned, that a number of methods, generalizing the
observer form approach, are beyond the classification given above. For
example, the method, proposed in [34], [85] for the continuous-time sys-
tems with single output, implies the application of output-dependent time-
scaling transformation such that with respect to the new time-scale the sys-
tem becomes transformable into the observer form. The approach of [34] is
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based on the language of differential forms and exterior calculus, whereas
in [85] the tools of differential geometry are applied. The extension of the
method to the multi-output case was presented in [93]. The attempt to
develop a discrete-time counterpart of the time-scaling technique can be
found in [69]. The other two related methods are the system immersion
and the dynamic observer error linearization techniques (for the continuous-
time case see [3], [4], [11], [46] and [5], [17], [81], [98], [99], respectively).
The main feature of both methods is embedding the original system into
the higher-dimensional one, being transformable into the observer form.
The difference is that the immersion involves the application of the certain
change of state variables, whereas in the case of dynamic observer error
linearization the auxiliary dynamics and virtual outputs are introduced to
augment the system. The discrete-time version of the dynamic observer
error linearization and both the immersion and the dynamic observer error
linearization can be found in [65] and [100], respectively.

Dynamical Systems on Time Scales

Roughly speaking, a time scale is a model of time. The most typical special
cases instances of time scale are continuous and discrete time. However,
there are a number of other time models, for example, the partly contin-
uous and partly discrete time, q-models (the set of all integer powers of a
number q > 1, including 0), sets of disjoint closed intervals, Cantor set,
etc. The theory of dynamical equations on time scales is a new and popu-
lar research area, which was initiated in 1988 by Stefan Hilger in his PhD
thesis [39] (supervised by Bernd Aulbach) with the intention of unifying
continuous and discrete analysis. Afterwards, Martin Bohner and Allan
Peterson published the first monograph on this topic [14]. From a model-
ing point of view, dynamical systems on time scales incorporate both the
continuous- and discrete-time systems as the special cases, allowing that
way to unify the study and consider the classical results as the special
cases from the new theory. On the other hand, the study of dynamical sys-
tems on time scales helps to reveal and explain discrepancies, occasionally
appearing between the results obtained for continuous-time systems and
their discrete-time counterparts. However, it is important to note that the
discrete-time model in the time scale formalism is given in terms of the
difference operator, and not in terms of the more conventional shift oper-
ator as, for example, in [1], [2], [33]. The difference-based models, often
referred to as delta-domain models, are not completely new for description
of the discrete-time systems. They have been promoted during the last
decades as the models closely linked to the continuous-time systems, being
less sensitive to round-off errors at higher sampling rates [32], [73].

15



The properties of linear systems, defined on time scales, were studied,
for instance, in [7] and [27]. In [6] the algebraic formalism in terms of
differential one-forms has been developed for the study of nonlinear con-
trol systems defined on homogeneous time scales and used later to study
different problems like realization, transfer equivalence, irreducibility and
reduction of nonlinear input-output equations [8], [20], [56], [58].

NLControl package

The solutions of nonlinear control problems require a huge amount of sym-
bolic computations. Unfortunately, the nonlinear control systems, unlike
their linear counterparts, practically miss a support of professional soft-
ware products. For this reason, the special software package NLControl
was developed in the Control System Department of the Institute of Cy-
bernetics at Tallinn University of Technology. The NLControl package is
implemented within the computation system Mathematica, the commercial
software developed by Wolfram Research company [95]. The purpose of
the package is to provide the symbolic computational tools that assist the
solution of different modeling, analysis, and synthesis problems for nonlin-
ear control systems. The majority of provided tools rely on the algebraic
approach of differential one-forms and the related methods based on the
theory of the skew polynomial rings. The development of the NLControl
package was originally initiated more than decade ago and at the first stages
the functions were implemented mainly by Maris Tõnso (see, for example,
[60], [61], [89]). At the moment the package consists of more than 100
functions/programs, assisting in research and teaching of nonlinear control
theory.

Note, however, that the NLControl package is not stand-alone software
and cannot be used outside of the Mathematica environment. In order to
overcome this obstacle the NLControl website [43] was created. Employing
webMathematica technology (developed by Wolfram Research), the web-
site makes available the most important functions from NLControl via the
Internet, such that no other software except for a web browser needs to be
installed on a computer [90].

Choice of Research Directions: Motivation

On the one hand, the transformation of the nonlinear system into the
observer form is a recognized approach to the state estimation problem.
Being, in a sense, systematic and applicable to both the continuous- and
discrete-time systems, the method is attractive for researchers. Another
advantage of the method is that it allows to construct the nonlinear ob-
server in such a way that the dynamics of the estimation error are linear,
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which guaranties that the error converges asymptotically to zero. On the
other hand, the research area related to the observer form approach is still
active, which is confirmed by numerous recent publications (see [17], [64],
[65], [69], [93], [98], [100]). There are still a number of unsolved problems
and the techniques that can be improved. One of the possible directions
for improvement is the development of the constructive algorithms, im-
plementable in symbolic software. The main part of this thesis presents
the results obtained by the author in this direction. Both the continuous-
and discrete-time cases are investigated. The theoretical research was per-
formed with the intention of implementing the results within the Mathemat-
ica based package NLControl. This motivated the author to develop more
simple and direct formulas, as well as the algorithms which are constructive
(at least in a sense of symbolic computations).

The Problems to Be Studied

In the continuous-time case the problem of transforming the single-input
single-output (SISO) nonlinear control system into the observer form, us-
ing both the state and output transformations, is addressed. Regarding the
classification from the previous section, the generalization belongs to the
category (i). The starting point for our research served the contribution
[31], where the approach based on differential forms was applied to the prob-
lem and the solution is found as a result of two-step procedure. The neces-
sary condition, stated in [31] for the existence of the output transformation,
is very mild and far from being sufficient. Obviously, its validity does not
guarantee the solvability of the problem. To verify whether the problem is
solvable, one has first to apply the output transformation and then check
whether in the new output coordinates the system is transformable into
the observer form by the state coordinate transformation only. For the
latter the recursive algorithm was developed. Our aim was to find direct
and simple solvability conditions, which would be both necessary and suf-
ficient. The obtained conditions are formulated in terms of an unknown
single-variable output dependent function and the differential one-forms,
directly computable from the input-output equation, corresponding to the
state equations. Note that the unknown function can be found solving cer-
tain differential equation. Once the function is obtained, the verification of
the remaining conditions becomes straightforward.

In the discrete-time case the problem of transforming the SISO nonlin-
ear state equations into the extended observer from was considered. The
main feature of the extended observer form lies in the input-output injec-
tion terms, which, besides the input and output, depend also on a finite
number of their past values. Though the past values of input and output
require additional memory, the construction of the observer is as simple as
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in the case of traditional observer form, preserving the asymptotic error
convergence to zero. Again, the output transformation in addition to the
extended state coordinate change is employed. Thus, according to the clas-
sification from the previous section, the generalizations are of categories (i)
and (iii). The problem, mentioned above, was addressed earlier in [40] for
the systems without inputs. The approach of [40] relies on the sophisticated
language of differential geometry and verification of the proposed conditions
requires calculation of the exterior derivatives and wedge products of certain
one-forms, associated with the system, as well as the Lie derivatives, Lie
brackets and interior product, which leads to complicated computations.
This motivated us to search for more simple conditions. Another goal of
the research was extension of the theory to the input-dependent systems.
As a result, two sets of necessary and sufficient conditions were obtained.
The first set is formulated in terms of certain differential one-forms and has
the advantage of being intrinsic. Though the second set of conditions is not
intrinsic, it is formulated in terms of certain partial derivatives and, thence,
is very simple to verify. Besides, certain algorithm for the transformation
of the state equations into the extended observer form was proposed.

Another direction of the research presented in the thesis is study of
nonlinear control systems, defined on homogenous time scales. Since the
observability of the system is frequently assumed by the observer form
approach, we decided to study this property for systems on time scales. Our
intention was to unify the observability related results, obtained separately
for continuous- and discrete-time systems, and to analyze the differences
between two time domains. In particular, the observable space is always
integrable in the continuous-time case, but is not necessarily so for the
discrete-time systems.

Outline and Contributions of the Thesis

The main part of the thesis is divided into five chapters. Chapter 1 contains
the introductory material. Chapters 2–4 present the theoretical results of
the thesis, whereas Chapter 5 describes the implementation of the results
from the previous chapters within the NLControl package.

Chapter 1

This chapter summarizes the main theoretical concepts and mathematical
tools used throughout the thesis. The first section contains the introduction
to the calculus on time scales. The next two sections define the object of
the study, i.e. the nonlinear dynamical system, and recall the algebraic
framework based on differential one-forms, respectively. The last section
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presents the theorem, stated and proved by the author of the thesis in [49].
The theorem is necessary for the proof of the main result of Chapter 2.

Chapter 2

The problem of transforming the continuous-time state equations into the
observer form, using both the state and the output transformations, is
addressed in the chapter. The main contributions of the chapter are the
necessary and sufficient solvability conditions and the algorithm for finding
the state and output transformation, bringing the system into the observer
from. Moreover, the comparison of our results with those presented earlier
in [31] is presented at the end of the chapter. The content of the chapter
rests on the results published in [47] and [48].

Chapter 3

The chapter is devoted to the transformation of the discrete-time state
equations into the extended observer form. In this form, the input-output
injections depend not only on the input and the output but also on their
past values, the number of which is determined by the integer, called the
buffer. Furthermore, besides the extended coordinate change, the output
transformation is allowed. Two sets of necessary and sufficient conditions
are presented in the chapter. The first set of conditions is expressed in terms
of certain differential one-forms. The second set of conditions, expressed in
terms of certain partial derivatives, was initially proposed by Tanel Mullari
et al. in [79] for the special case when the buffer equals 1. Moreover, the
sufficient conditions presented in [79] are valid only for the buffer satisfying
certain relation regarding the system order and/or the highest and the
lowest shifts of input and output in system input-output equation. The
necessary and sufficient conditions for the general case and an arbitrary
buffer are presented in this chapter. The last contribution of the chapter is
the algorithm for transforming the system into the extended observer form.
The chapter is based on the results published in [50], [51].

Chapter 4

The chapter addresses the observability property of the MIMO nonlinear
system, defined on homogeneous time scale. The observability necessary
and sufficient condition is provided through the notion of the observable
space. The related notions of the observability filtration and the observ-
ability indices are extended to the systems on homogeneous time scale. For
the unobservable systems, whose observable space is completely integrable,
the certain procedure of the decomposition into observable/unobservable

19



subsystems is presented. The main contributions of the chapter are differ-
ent lemmas and propositions proved in terms of the time scale formalism.
Time scale analysis allows to consider the classical results, obtained sep-
arately for continuous- and discrete-time systems, as the special cases of
the new theory. On the other hand, the time scale formalism includes the
description of a discrete-time system based on the difference operator de-
scription (delta-domain approach), for which the results presented in this
chapter are new, since the previous results have been obtained for discrete-
time systems considered on the basis of the shift-operator formalism. The
chapter rests on the results to be published in [52].

Chapter 5

The chapter presents several Mathematica functions, implementing the the-
oretical results from the previous chapters. The developed functions are the
integral part of the NLControl package and can be also used online via the
NLControl website [43]. Several functions were programmed to assist the
transformation of the continuous- or discrete-time system into the respec-
tive observer forms. The other set of functions was developed for the system
on homogeneous time scale to check the observability, find the observability
filtration, observability indices, observable and unobservable spaces, as well
as to decompose the system into the observable/unobservable subsystems,
whenever possible.
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Chapter 1

Preliminaries

The objective of this chapter is to introduce the basic notions and math-
ematical tools necessary in the main part of the thesis. The first section
gives an overview of the basic concepts and computation rules of time scale
analysis, necessary to understand the results of Chapter 4 of this thesis.
The next two sections describe the nonlinear control system and the alge-
braic formalism of differential forms, applied in our studies. The theorem,
presented in the last section, provides the formula used later for the proof
of the main result in Chapter 2.

1.1 Time Scale Calculus

This section serves as a brief introduction to the time scale calculus. The
basic notions and results, applied in the thesis, are recalled from [14].

A time scale T is an arbitrary nonempty closed subset of the set R of real
numbers. The standard cases comprise the continuous time case, T = R,
the discrete time cases, T = Z and T = τZ := {τk | k ∈ Z} for τ > 0, but

also T = qZ := {qk | k ∈ Z} ∪ {0} is a time scale. We assume that T is a
topological space with the topology induced by R. The so-called forward
and backward jump operator are key notions in time scale calculus.

Definition 1.1. For t ∈ T the forward jump operator σ : T→ T is defined
by

σ(t) := inf {s ∈ T | s > t} ,
while the backward jump operator ρ : T→ T is defined by

ρ(t) := sup {s ∈ T | s < t} .

In this definition we set in addition σ(maxT) = maxT if there exists a
finite maxT and ρ(minT) = minT if there exists a finite minT. Obviously
both σ(t) and ρ(t) are in T when t ∈ T. This is because of our assumption
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that T is a closed subset of R. In the analysis on time scales the graininess
function plays a central role.

Definition 1.2. For t ∈ T the graininess functions µ : T → [0,∞) and
ν : T→ [0,∞) are defined by

µ(t) := σ(t)− t and ν(t) := t− ρ(t),

respectively.

A time scale T is called homogeneous if µ = ν ≡ const. Let Tκ denote
the truncated set consisting of T except for a possible maximal point maxT
such that ρ(maxT) < maxT.

Definition 1.3. Let f : T→ R and t ∈ Tκ. Then delta derivative of f at t,
denoted by f∆(t), is the real number (provided it exists) with the property
that given any ε > 0 there is a neighborhood U = (t − δ, t + δ) ∩ T (for
some δ > 0) such that

|(f(σ(t))− f(s))− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . Moreover, we say that f is delta differentiable on Tκ provided
f∆(t) exists for all t ∈ Tκ.

Example 1.1.

• If T = R, then σ(t) = t, µ(t) ≡ 0 and delta derivative f∆(t) is the

ordinary time derivative, i.e. f∆(t) = df(t)
dt .

• If T = τZ for τ > 0, then σ(t) = t+ τ , µ(t) = τ and

f∆(t) =
f(σ(t))− f(t)

µ(t)
=
f(t+ τ)− f(t)

τ

always exists.

• If T = qZ for q > 1, then σ(t) = qt, µ(t) = (q − 1)t and

f∆(t) =
f(qt)− f(t)

(q − 1)t

for all t ∈ T \ {0}.

It is easy to observe, the first two time scales are homogeneous, whereas
the third is not, since in this case the graininess function depends on t.

For f : T → R define the function fσ : T → R by fσ(t) := f(σ(t)) for
all t ∈ T, i.e. fσ := f ◦ σ. The theorems below provide the general rules
for application of delta derivative.
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Theorem 1.1 ([14]). Assume the functions f, g : T→ R are delta differen-
tiable at t ∈ Tκ. Then the delta derivative satisfies the following properties

(i) The sum f + g : T→ R is delta differentiable at t with

(f + g)∆ (t) = f∆(t) + g∆(t).

(ii) For any constant α, αf : T→ R is delta differentiable at t with

(αf)∆ (t) = αf∆(t).

(iii) The product fg : T→ R is delta differentiable at t with

(fg)∆ (t) = fσ(t)g∆(t) + f∆(t)g(t) = f∆(t)gσ(t) + f(t)g∆(t).

(iv) If g(t)gσ(t) 6= 0, then f
g is delta differentiable at t with

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)gσ(t)
.

Theorem 1.2 (Chain Rule [14]). Let f : R→ R be continuously differen-
tiable and suppose g : T→ R is delta differentiable. Then f ◦ g : T→ R is
delta differentiable and the formula

(f ◦ g)∆(t) =

(∫ 1

0
f
′
(g(t) + λµ(t)g∆(t))dλ

)
g∆(t)

holds.

For a function f : T → R one can define the second delta derivative

f 〈2〉 :=
(
f∆
)∆

: Tκ2 → R provided that the function f∆ is delta differen-

tiable on Tκ2 := (Tκ)κ. In a similar manner one defines higher order delta

derivatives f 〈n〉 :=
(
f 〈n−1〉)∆ : Tκn → R.

1.2 Nonlinear Control Systems

In this section the nonlinear control systems are defined separately for dif-
ferent time domains. Both in continuous- and discrete-time cases the state
space and the input-output representations of the system are given. For the
system, defined on homogeneous time scale, only state space representation
is used.

Note that throughout the thesis we use the abridged notations. First,
in order to simplify the exposition we leave out the time argument t, so
x := x(t). Next, we apply Newton’s notation for the first and second time

derivatives, i.e. ẋ := dx
dt , ẍ := d2x

dt2
, and a more general notation x(k) := dkx

dtk

for the time derivative of an arbitrary order. Finally, in the discrete-time
case we use symbols +, − and [k] instead of the shifted time arguments, so
x+ := x(t+ 1), x− := x(t− 1) and x[k] := x(t+ k).
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1.2.1 Analytic and Meromorphic Functions

In this thesis we assume that the nonlinear control systems are described
by real analytic functions. The choice of analytic functions is motivated
by their nice properties, necessary for the construction of the algebraic
framework, based on the differential one-forms. First, the analytic functions
belong to class C∞, i.e. are infinitely differentiable. However, unlike the
ring of C∞ functions, the ring of analytic functions is integral domain,
meaning that it can be embedded into its quotient field whose elements are
meromorphic functions. Moreover, the employment of analytic functions
allows to study the generic properties of the systems, i.e. properties that
hold in almost all situations except, so to say, the pathological ones. The
notion of generic property does not make sense, in general, for systems
defined by C∞ functions, further details can be found in [25], [26].

1.2.2 Continuous-time Systems

Consider a single-input single-output (SISO) nonlinear continuous-time dy-
namical system, described either by the state equations

ẋ = f(x, u)

y = h(x),
(1.1)

or by the higher order input-output differential equation

y(n) = φ
(
y, y(1), . . . , y(n−1), u, u(1), . . . , u(n−1)

)
, (1.2)

where x(t) : R→ X ⊂ Rn is an n-dimensional state vector, u(t) : R→ U ⊂
R is an input and y(t) : R→ Y ⊂ R is an output. Moreover, f : X×U→ X,
h : X→ Y and φ : Yn ×Un → R are assumed to be real analytic functions.

1.2.3 Discrete-time Systems

Consider a single-input single-output (SISO) nonlinear discrete-time dy-
namical system, described either by the state equations

x+ = f(x, u)

y = h(x),
(1.3)

or by the higher order input-output difference equation

y[n] = φ
(
y, y[1], . . . , y[n−1], u, u[1], . . . , u[n−1]

)
, (1.4)

where x(t) : Z→ X ⊂ Rn is an n-dimensional state vector, u(t) : Z→ U ⊂
R is an input and y(t) : Z→ Y ⊂ R is an output. Moreover, f : X×U→ X,
h : X→ Y and φ : Yn ×Un → R are assumed to be real analytic functions.
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The following assumption is necessary for the algebraic framework based
on differential one-forms (see Section 1.3).

Assumption 1.1. System (1.3) is generically submersive, i.e. almost ev-
erywhere, except on the set of measure zero, f(x, u) satisfies the condition

rank
∂f(x, u)

∂(x, u)
= n.

Assumption 1.1 is not restrictive since it is a necessary condition for sys-
tem accessibility [33]. Moreover, it is more general than the often assumed
reversibility condition, which requires that

rank
∂f(x, u)

∂x
= n

holds generically [29].

1.2.4 Systems Defined on Homogeneous Time Scales

Consider a multi-input multi-output (MIMO) nonlinear dynamical system,
defined on homogeneous time scale1 T and described by the state equations

x∆ = f(x, u)

y = h(x),
(1.5)

where x(t) : T → X ⊂ Rn is an n-dimensional state vector, u(t) : T →
U ⊂ Rm is an m-dimensional input vector and y(t) : T → Y ⊂ Rp is a
p-dimensional output vector. Moreover, f : X× U→ X and h : X→ Y are
assumed to be real analytic functions.

Denote the state transition map of (1.5) by f̃(x, u) := x + µf(x, u).
Like in the discrete-time case, the assumption below is necessary for the
algebraic framework based on differential one-forms (see Section 1.3).

Assumption 1.2. System (1.5) is generically submersive, i.e. almost ev-
erywhere, except on the set of measure zero, f̃(x, u) satisfies the condition

rank
∂f̃(x, u)

∂(x, u)
= n.

Of course, for µ = 0, that corresponds to the continuous-time case, the
assumption above is always satisfied.

1Though the closed interval [a, b] is also an example of homogeneous time scale, we
restrict our consideration to infinite homogeneous time scales T = R and T = τZ for
τ > 0.
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1.3 Algebraic Framework

This section is devoted to the description of the main algebraic structures
employed in the thesis. First, we define the σf -differential and difference
fields, associated with systems (1.5) and (1.3), respectively, and then we
recall the basic concepts and facts from the theory of differential forms.
Note that since the continuous-time system (1.1) is a special case of the
system (1.5) for T = R, the differential field, associated with system (1.1),
is a special case of the σf -differential field for σf = id. By this reason we do
not define the algebraic framework for continuous-time systems separately,
referring the reader to [25] for details.

Henceforth, for notational convenience, denote ξ〈i...n〉 :=
(
ξ〈i〉, . . . , ξ〈n〉

)

and ξ[i...n] :=
(
ξ[i], . . . , ξ[n]

)
for 0 ≤ i ≤ n, implying ξ〈0〉 = ξ[0] := ξ and

recalling that symbols 〈i〉 and [i] stand for the ith delta derivative and ith
time shift, respectively.

1.3.1 σf -Differential and Difference Fields

Consider the system described by the equations (1.5). Let K denote the
field of meromorphic functions in a finite number of independent system
variables from the infinite set

C =
{
xi, i = 1, . . . , n; u〈k〉υ , υ = 1, . . . ,m, k ≥ 0

}
.

For F
(
x, u〈0...k〉

)
∈ K the forward-shift operator σf : K → K is defined by

F σf
(
x, u〈0...k+1〉

)
:= F

(
x+ µf(x, u), u〈0...k〉 + µu〈1...k+1〉

)
,

where f(x, u) is determined by (1.5). It is easy to note that in the continuous-
time case (µ = 0), the forward-shift operator is identity, i.e. σf = id. Under
Assumption 1.2, σf is injective endomorphism and so the operator σf is
well defined on K [6]. Note that for the k-fold application of the forward-

shift operator we use the notation F σ
k
f :=

(
F σ

k−1
f

)σf
. Furthermore, for

F
(
x, u〈0...k〉

)
∈ K the delta derivative operator ∆f : K → K is defined by

F∆f

(
x, u〈0...k+1〉

)
:=

=





F σf
(
x, u〈0...k+1〉)− F

(
x, u〈0...k〉

)

µ
if µ 6= 0,

∂F

∂x

(
x, u〈0...k〉

)
f(x, u) +

∑

k≥0

∂F

∂u〈0...k〉

(
x, u〈0...k〉

)
u〈1...k+1〉 if µ = 0.

Hereinafter, the k-fold application of the delta derivative operator is de-

noted by F 〈k〉 :=
(
F 〈k−1〉)∆f .
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Proposition 1.1 ([6]). For F,G ∈ K the delta derivative and forward-shift
operators satisfy the following properties

(i) F σf = F + µF∆f ,

(ii) (αF + βG)∆f = αF∆f + βG∆f , for α, β ∈ R,

(iii) (FG)∆f = F σfG∆f + F∆fG (generalization of Leibniz rule),

(iv) if GGσf 6= 0, then (F/G)∆f = (F∆fG− FG∆f )/(GGσf ),

(v) on homogeneous time scale operators ∆f and σf commute, i.e

(F σf )∆f =
(
F∆f

)σf .

An operator satisfying the generalized Leibniz rule is called a σf -de-
rivation and a commutative field endowed with a σf -derivation is called
a σf -differential field [24]. Therefore, under Assumption 1.2, K endowed
with the delta derivative operator ∆f is a σf -differential field. For µ = 0,
σf = σ−1

f = id and K is inversive. Though K is not inversive in general, it
is always possible to embed K into an inversive σf -differential overfield K∗,
called the inversive closure of K [24]. Since σf is injective endomorphism,
it can be extended to K∗ so that σf : K∗ → K∗ is an automorphism. A
practical procedure for construction of K∗ for (µ 6= 0) is given in [6].

In order to define the difference field, associated with system (1.1), de-
note by K the field of meromorphic functions in a finite number of inde-
pendent system variables from the infinite set

C =
{
xi, i = 1, . . . , n; u[k], k ≥ 0

}
.

For F
(
x, u[0...k]

)
∈ K the forward-shift operator δ : K → K is defined by

δ
(
F
(
x, u[0...k]

))
:= F

(
f(x, u), u[1...k+1]

)
,

where f(x, u) is determined by (1.3). Note that throughout the thesis the
alternative notation F+ := δ(F ) is employed and the k-fold application of
the operator δ is denoted by F [k] := δ

(
F [k−1]

)
. Under Assumption 1.1, δ

is injective and K endowed with the forward-shift operator δ is a difference
field. Like the σf -differential field, the difference field K is not inversive
in general, necessitating to embed K into its inversive closure K∗, which is
always possible. A construction of K∗ for practical computations is given
in [2].
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1.3.2 Differential Forms

Consider the infinite set of symbols

dC =
{

dxi, i = 1, . . . , n; du〈k〉υ , υ = 1, . . . ,m, k ≥ 0
}

and denote by E the vector space spanned over the field K∗ by the elements
of dC, namely E := spanK∗dC. Any element of E has the form

ω =
n∑

i=1

Aidxi +
∑

k≥0

m∑

υ=1

Bυ,kdu
〈k〉
υ ,

where only a finite number of coefficients Bυ,k are nonzero elements of K∗.
The elements of E are called the differential one-forms.

For F
(
x, u〈0...k〉

)
∈ K∗ define the operator d : K∗ → E as follows

dF :=
n∑

i=1

∂F

∂xi
dxi +

k∑

l=0

m∑

υ=1

∂F

∂u
〈l〉
υ

du〈l〉υ . (1.6)

One says that ω ∈ E is an exact one-form if ω = dF for some F ∈ K∗. We
will refer to dF as to the total differential of F .

For one-form ω =
∑

iAidζi, where Ai ∈ K∗ and ζi ∈ C, one can define
the operators ∆f : E → E and σf : E → E by

ω∆f :=
∑

i

(
A

∆f

i dζi +A
σf
i d

(
ζ

∆f

i

))
(1.7)

and
ωσf :=

∑

i

A
σf
i d

(
ζ
σf
i

)
.

Since A
σf
i = Ai + µA

∆f

i ,

ω∆f =
∑

i

(
A

∆f

i dζi +
(
Ai + µA

∆f

i

)
d
(
ζ

∆f

i

))
.

Adapting Leibniz rule for an arbitrary-order derivatives of product to the
computation of an arbitrary-order delta derivative of one-form, we obtain

ω〈r〉 =
r∑

q=0

Cqr
∑

i

(
A
〈r−q〉
i

)σqf
dζ
〈q〉
i , (1.8)

where Cqr is a binomial coefficient and σ0
f implies id.

In the same manner, over the field K∗ one can define the difference vector
space E := spanK∗ dC of differential one-forms, where

dC =
{

dxi, i = 1, . . . , n; du[k], k ≥ 0
}
.
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The vector space E may be also endowed with the forward-shift operator
δ : E → E , defined by

δ

(∑

i

Aidζi

)
:=
∑

i

δ (Ai) dδ (ζi) ,

where Ai ∈ K∗ and ζi ∈ C.
Note that throughout the thesis the symbol dω means the exterior

derivative of the differential form ω and ∧ means the exterior or wedge
product (for details see [22]). A one-form ω for which dω = 0 is said to
be closed. It is well known that exact forms are closed, while closed forms
are only locally exact. Integrability of the subspace of one-forms may be
checked by the Frobenius theorem below.

Theorem 1.3 (Frobenius theorem [22]). Let V = spanK∗{ω1, . . . , ωr} be a
subspace of E. V is integrable if and only if

dωi ∧ ω1 ∧ · · · ∧ ωr = 0

for any i = 1, . . . , r.

1.4 Theorem on the Differentiation of a Compos-
ite Function with a Vector Argument

The theorem below was stated and proved by the author of the thesis with
the intention of proving the main result of Section 2. The theorem shows
how the partial derivative of the total derivative of the composite function
with a vector argument can be expressed through the total derivative of
the partial derivative of it.

Theorem 1.4. Assume that Φ(ξ1(t), ξ2(t), . . . , ξr(t)) is a composite func-
tion for which derivatives up to order a+ b are defined; then

∂ (Φ(ξ1(t), ξ2(t), . . . , ξr(t)))
(a+b)

∂
(
ξ

(a)
l (t)

) = Cba+b

(
∂Φ(ξ1(t), ξ2(t), . . . , ξr(t))

∂ξl(t)

)(b)

,

where l = 1, 2, . . . , r, Cba+b is the binomial coefficient and a, b are nonnega-
tive integers.

The proof of the theorem is given in the Appendix. Some useful corol-
laries of the theorem are given below.

Corollary 1.1. Under the assumptions of Theorem 1.4

∂ (Φ(ξ1(t), ξ2(t), . . . , ξr(t)))
(a+b)

∂ξl(t)
=

(
∂ (Φ(ξ1(t), ξ2(t), . . . , ξr(t)))

(a)

∂ξl(t)

)(b)

,

where a and b are nonnegative integers.
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Corollary 1.2. Under the assumptions of Theorem 1.4

∂ (Φ(ξ1(t), ξ2(t), . . . , ξr(t)))
(a)

∂ξl(t)
=

(
∂Φ(ξ1(t), ξ2(t), . . . , ξr(t))

∂ξl(t)

)(a)

,

where a is nonnegative integer.

The following example illustrates the statement of Theorem 1.4.
Example 1.2. Consider the composite function Φ(u(t), y(t)) and assume
that we need to take the partial derivative with respect to ÿ(t) of the 3rd-
order total derivative of the function. Direct computations yield

∂ (Φ(u(t), y(t)))(3)

∂ÿ(t)
= 3

∂2Φ(u(t), y(t))

∂y(t)2
ẏ(t) + 3

∂2Φ(u(t), y(t))

∂u(t)∂y(t)
u̇(t).

On the other hand, taking the partial derivative of Φ(u(t), y(t)) with respect
to y(t) and the total derivative of the obtained result, one gets

(
∂Φ(u(t), y(t))

∂y(t)

)(1)

=
∂2Φ(u(t), y(t))

∂y(t)2
ẏ(t) +

∂2Φ(u(t), y(t))

∂u(t)∂y(t)
u̇(t).

Multiplying both sides of the equality above by C1
3 , we have

C1
3

(
∂Φ(u(t), y(t))

∂y(t)

)(1)

= 3
∂2Φ(u(t), y(t))

∂y(t)2
ẏ(t) + 3

∂2Φ(u(t), y(t))

∂u(t)∂y(t)
u̇(t).

It is not difficult to check that

∂ (Φ(u(t), y(t)))(3)

∂ÿ(t)
= C1

3

(
∂Φ(u(t), y(t))

∂y(t)

)(1)

.
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Chapter 2

Generalized Observer Form
for Continuous-Time
Systems

This chapter is devoted to the problem of transforming the continuous-time
nonlinear state equations into the observer form, using both the state and
output transformations. The brief introduction into the issue is followed by
the solvability conditions and the algorithm for finding the transformations,
whenever they exist. Section 2.4 shows the advantage of the presented
conditions over those suggested earlier in [31]. The example in the last
section illustrates the application of the theory.

2.1 Problem Statement

Recall from Subsection 1.2.2 a SISO system, described by the state equa-
tions

ẋ = f(x, u)

y = h(x),
(2.1)

and the higher order input-output (i/o) differential equation

y(n) = φ
(
y, y(1), . . . , y(n−1), u, u(1), . . . , u(n−1)

)
, (2.2)

where x(t) : R → X ⊂ Rn is an n-dimensional state vector, u(t) : R →
U ⊂ R is an input and y(t) : R → Y ⊂ R is an output. The functions
f : X × U → X, h : X → Y and φ : Yn × Un → R are real analytic.
From now on, we consider system (2.1) to be observable in a sense of rank
condition [25].
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The purpose is to find the conditions under which there exist a local
state transformation (i.e. diffeomorphism) ψ : X→ X defined by

z = ψ(x) (2.3)

and a real analytic output transformation Ψ : Y→ Y, defined by

Y = Ψ(y) (2.4)

such that in the new coordinates the state equations (2.1) are in the observer
form

ż1 = z2 + ϕ1(Y, u)

...

żn−1 = zn + ϕn−1(Y, u)

żn = ϕn(Y, u)

Y = z1.

(2.5)

Note that the state equations (2.1) can be transformed into the observer
form (2.5) with the state transformation (2.3) and output transformation
(2.4), if the i/o equation (2.2), corresponding to (2.1), can be rewritten in
the form

Y (n) = (ϕ1(Y, u))(n−1) + · · ·+ (ϕ2(Y, u))(1) + ϕn(Y, u). (2.6)

Remark 2.1. Note that under observability assumption, one may always
find the i/o representation (2.2), at least locally, using the state elimination
algorithm [25], [28]. However, the global state elimination problem is a
difficult task that results generally in an implicit i/o equation accompanied
with a number of inequations [28].

If (2.6) holds, one can define the new state variables as

z1 = Y,

z2 = Ẏ − ϕ1(Y, u),

z3 = Ÿ − (ϕ1(Y, u))(1) − ϕ2(Y, u),

...

zn = Y (n−1) − (ϕ1(Y, u))(n−2) − · · · − (ϕ2(Y, u))(1) − ϕn−1(Y, u),

(2.7)

yielding the state equations in the observer form (2.5). Though (2.7) is
expressed via the elements of the i/o equation (2.6), it implicitly determine
the state transformation (2.3) (see Step 6 of Example 2.1).
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2.2 Necessary and Sufficient Conditions

The necessary and sufficient solvability conditions are formulated in terms
of certain one-forms ωi which can be derived stepwise from the i/o equation
(2.2) by means of the algorithm given below.

Consider first the one-forms

Pi :=
n−1∑

q=0

Aqidy
(q) +

n−1∑

q=0

Bq
i du

(q), i = 1, . . . , n,

whose coefficients Aqi , B
q
i ∈ K∗ can be found by setting P1 = dφ and then

computing recursively, for i = 1, . . . , n− 1

Pi+1 := Pi − ω(n−i)
i , (2.8a)

where ω
(n−i)
i denotes the (n−i)th time derivative of the one-form ωi, defined

by
ωi := An−ii dy +Bn−i

i du, i = 1, . . . , n. (2.8b)

Note that the algorithm above is a modification of the one given in [25].
The main difference is in skipping the step where the integration of the
one-forms is required. Unlike [25], in (2.8a) instead of the functions we use
the one-forms, which are not required to be integrable.

The proposition below provides the direct formula for computation of
the one-forms1 ωi, i = 1, . . . , n. This formula simplifies the computations
and will be used in the sequel to prove the main result, that is Theorem
2.1.

Proposition 2.1. The one-forms ωi, i = 1, . . . , n in (2.8) can be computed
directly by the formula

ωi =

i−1∑

j=0

(−1)jCjn−i+j

[(
∂φ

∂y(n−i+j)

)(j)

dy +

(
∂φ

∂u(n−i+j)

)(j)

du

]
, (2.9)

where Cjn−i+j denotes the binomial coefficient.

The proof of Proposition 2.1 is given in the Appendix. Moreover, in
order to prove Theorem 2.1, we need the following technical lemma.

Lemma 2.1.

(i)
ς∑

j=1

(−1)j−1Cj−1
ς = (−1)ς−1 for ς ≥ 1,

1Alternatively the one-forms ωi can be computed using the approach based on the
notion of adjoint polynomial [35].
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(ii)
ς−s+1∑

j=1

(−1)j−1Cj−1
ς−s = 0 for s = 1, . . . , ς − 1 and ς ≥ 2.

The proof of Lemma 2.1 is also given in the Appendix.

Furthermore, denote the composite function of ϕs (Y, u) and Ψ(y), for
s = 1, . . . , n, as

ϕ̄s (y, u) := ϕs (Ψ(y), u) . (2.10)

Now we are ready to prove the main result of this chapter.

Theorem 2.1. The system (2.1) can be transformed by the state transfor-
mation (2.3) and the output transformation (2.4) into the observer form
(2.5) iff there exists a function λ(y), such that for ς = 1, . . . , n the one-
forms

(−1)ς−1Cςnλ
(ς)dy +

ς∑

i=1

(−1)ς−iCς−in−iλ
(ς−i)ωi, (2.11)

where ωi’s are defined by (2.9), are closed.

Proof. Necessity. Assume that system (2.1) is transformable into the form
(2.5). Consequently, the i/o equation (2.2) can be rewritten in the form
(2.6). Complete the following steps:

• Take the partial derivatives of both sides of the i/o equation (2.6)
with respect to y(n−ς+j−1) for j = 1, . . . , ς.

• Next, take the (j − 1)th time-derivative of each expression, obtained
in the previous step.

• Denote

αj := (−1)j−1Cj−1
n−ς+j−1 (2.12)

and multiply by αj both sides of the equalities obtained in the previ-
ous step.

• Sum the obtained equalities over j = 1, . . . , ς.

Repeat the same steps with respect to the control variable u. As a result,
one obtains the equalities

LY = RY and LU = RU, (2.13)
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where

LY :=
ς∑

j=1

αj

(
∂Ψ(n)

∂y(n−ς+j−1)

)(j−1)

,

RY :=

ς∑

j=1

n∑

s=1

αj

(
∂ϕ̄

(n−s)
s

∂y(n−ς+j−1)

)(j−1)

,

LU :=

ς∑

j=1

αj

(
∂Ψ(n)

∂u(n−ς+j−1)

)(j−1)

,

RU :=
ς∑

j=1

n∑

s=1

αj

(
∂ϕ̄

(n−s)
s

∂u(n−ς+j−1)

)(j−1)

.

Note that Ψ(n) in LY and LU depends, besides other arguments, on y(n)

which, according to (2.2), must be replaced by the function φ. In order to
take this replacement into account, consider the explicit formula of the nth
derivative of the output transformation Ψ(y), which, according to Faà di
Bruno’s Formula [45], reads

Ψ(n) =
∑ n!

k1! · · · kn!
ΨK

n∏

ι=1

(
y(ι)

ι!

)kι
, (2.14)

where K = k1 + · · · + kn denotes the order of derivative with respect to y
and the sum is taken over all possible different sets of nonnegative integers
k1, . . . , kn being the solutions of the Diophantine equation k1 + 2k2 + · · ·+
nkn = n. It is easy to observe that y(n) appears in (2.14) only in the term
defined by ι = n and kn = 1. In this case k1 = · · · = kn−1 = 0 and the
corresponding addend of the sum is Ψ′y(n), where the prime means the
derivative with respect to y. In order to take the replacement (2.2) into
account and avoid the complication in the further transformations of Ψ(n)

we add to LY a formal zero term, such that LY now reads as

LY =

ς∑

j=1

αj



(

∂Ψ(n)

∂y(n−ς+j−1)

)(j−1)

+

(
∂
(
Ψ′φ−Ψ′y(n)

)

∂y(n−ς+j−1)

)(j−1)

 ,

where in Ψ(n) we consider y(n) as a symbol which we do not have to replace.
This trick simplifies the proof below by allowing to use Theorem 1.4.

By Theorem 1.4 for r = 1, a = n− ς + j − 1 and b = ς − j + 1,

∂Ψ(n)

∂y(n−ς+j−1)
= Cς−j+1

n (Ψ′)(ς−j+1),
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yielding

LY =
ς∑

j=1

αj


Cς−j+1

n (Ψ′)(ς) +

(
∂
(
Ψ′φ−Ψ′y(n)

)

∂y(n−ς+j−1)

)(j−1)

 .

Using product rule for finding the derivative one can write

∂
(
Ψ′φ−Ψ′y(n)

)

∂y(n−ς+j−1)
= Ψ′

(
∂φ

∂y(n−ς+j−1)
− ∂y(n)

∂y(n−ς+j−1)

)
+

+
(
φ− y(n)

) ∂Ψ′

∂y(n−ς+j−1)
.

Since n−ς+j−1 < n for ς = 1, . . . , n and j = 1, . . . , ς, then ∂y(n)

∂y(n−ς+j−1) = 0.

Also taking into account that, according to (2.2), y(n) = φ, one obtains

∂
(
Ψ′φ−Ψ′y(n)

)

∂y(n−ς+j−1)
= Ψ′

∂φ

∂y(n−ς+j−1)
,

which, using the Leibniz Formula for the higher order derivative of the
product, yields

(
∂
(
Ψ′φ−Ψ′y(n)

)

∂y(n−ς+j−1)

)(j−1)

=

j−1∑

i=0

Cij−1(Ψ′)(j−1−i)
(

∂φ

∂y(n−ς+j−1)

)(i)

.

Thus, LY can be rewritten as follows

LY =

ς∑

j=1

αjC
ς−j+1
n (Ψ′)(ς) +

ς∑

j=1

j−1∑

i=0

αjC
i
j−1(Ψ′)(j−1−i)

(
∂φ

∂y(n−ς+j−1)

)(i)

.

Changing the summation order
∑ς

j=1

∑j−1
i=0 aj,i =

∑ς
i=1

∑i−1
j=0 aς−i+j+1,j

one obtains

LY =
ς∑

j=1

αjC
ς−j+1
n (Ψ′)(ς)+

+

ς∑

i=1

i−1∑

j=0

ας−i+j+1C
j
ς−i+j(Ψ

′)(ς−i)
(

∂φ

∂y(n−i+j)

)(j)

.

Using (2.12) and taking into account that (−1)ς−i+j = (−1)ς−i(−1)j and
that by direct computations

Cj−1
n−ς+j−1C

ς−j+1
n = CςnC

j−1
ς and Cς−i+jn−i+jC

j
ς−i+j = Cς−in−iC

j
n−i+j ,
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we obtain

LY = Cςn(Ψ′)(ς)
ς∑

j=1

(−1)j−1Cj−1
ς +

+

ς∑

i=1

(−1)ς−iCς−in−i
(
Ψ′
)(ς−i) i−1∑

j=0

(−1)jCjn−i+j

(
∂φ

∂y(n−i+j)

)(j)

.

Applying (i) of Lemma 2.1 we obtain

LY = (−1)ς−1Cςn(Ψ′)(ς)+

+
ς∑

i=1

(−1)ς−iCς−in−i
(
Ψ′
)(ς−i) i−1∑

j=0

(−1)jCjn−i+j

(
∂φ

∂y(n−i+j)

)(j)

.

Since LY and LU have a similar structure, the transformations made
with LY can be made also with LU , yielding

LU = (−1)ς−1Cςn

(
∂Ψ

∂u

)(ς)

+

+

ς∑

i=1

(−1)ς−iCς−in−i(Ψ
′)(ς−i)

i−1∑

j=0

(−1)jCjn−i+j

(
∂φ

∂u(n−i+j)

)(j)

,

which, taking into account that ∂Ψ
∂u = 0, yields

LU =
ς∑

i=1

(−1)ς−iCς−in−i(Ψ
′)(ς−i)

i−1∑

j=0

(−1)jCjn−i+j

(
∂φ

∂u(n−i+j)

)(j)

.

Next consider RY . Note that if s > ς−j+1 then n−s < n−ς+j−1 and

so ∂ϕ̄
(n−s)
s

∂y(n−ς+j−1) = 0. Therefore, instead of taking s = 1, . . . , n we can take

s = 1, . . . , ς − j + 1. Moreover, by Theorem 1.4 for r = 2, a = n− ς + j − 1
and b = ς − s− j + 1

∂ϕ̄
(n−s)
s

∂y(n−ς+j−1)
= Cς−s−j+1

n−s

(
∂ϕ̄s
∂y

)(ς−s−j+1)

.

Thus, one can write

RY =

ς∑

j=1

ς−j+1∑

s=1

αjC
ς−s−j+1
n−s

(
∂ϕ̄s
∂y

)(ς−s)
.

Changing the summation order
∑ς

j=1

∑ς−j+1
s=1 aj,s =

∑ς
s=1

∑ς−s+1
j=1 aj,s, ap-

plying (2.12) and taking into account that by direct computations

Cj−1
n−ς+j−1C

ς−s−j+1
n−s = Cς−sn−sC

j−1
ς−s ,
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one obtains

RY =
ς∑

s=1

Cς−sn−s

(
∂ϕ̄s
∂y

)(ς−s) ς−s+1∑

j=1

(−1)j−1Cj−1
ς−s .

Note that for ς = 1 RY = ∂ϕ̄1

∂y . In case ς ≥ 2, one can separate the last
addend of the sum RY , yielding

RY =
∂ϕ̄ς
∂y

+
ς−1∑

s=1

Cς−sn−s

(
∂ϕ̄s
∂y

)(ς−s) ς−s+1∑

j=1

(−1)j−1Cj−1
ς−s .

By (ii) of Lemma 2.1, RY = ∂ϕ̄ς
∂y . In the same manner we get RU = ∂ϕ̄ς

∂u ,
for ς = 1, . . . , n.

As a result, (2.13) can be rewritten as

∂ϕ̄ς
∂y

= (−1)ς−1Cςn(Ψ′)(ς)+

+

ς∑

i=1

(−1)ς−iCς−in−i(Ψ
′)(ς−i)

i−1∑

j=0

(−1)jCjn−i+j

(
∂φ

∂y(n−i+j)

)(j)

,

∂ϕ̄ς
∂u

=
ς∑

i=1

(−1)ς−iCς−in−i(Ψ
′)(ς−i)

i−1∑

j=0

(−1)jCjn−i+j

(
∂φ

∂u(n−i+j)

)(j)

.

Adding together the equalities above and taking into account (2.9) and the
notation

λ := Ψ′, (2.15)

we finally obtain the closed differential one-forms

dϕ̄ς = (−1)ς−1Cςnλ
(ς)dy +

ς∑

i=1

(−1)ς−iCς−in−iλ
(ς−i)ωi. (2.16)

Obviously the right-hand side of equality (2.16) equals (2.11).

Sufficiency. If there exists a function λ(y), such that the one-forms
(2.11) where ωi’s are defined by (2.9), are closed, then the function Ψ(y)
for the output transformation (2.4) can be calculated as an integral

Ψ(y) =

∫
λ(y)dy. (2.17)

Integrating the closed one-forms (2.16) one can find functions ϕ̄ς for ς =
1, . . . , n. By means of functions Ψ(y) and ϕ̄ς the state equations in the
observer form (2.5) can be easily constructed.
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2.3 Algorithm

In this section we represent the algorithm for transformation of the state
equations (2.1) into the observer form (2.5), whenever possible. Note that
the algorithm is applied to the i/o representation (2.2) of the system (2.1)
(see Remark 2.1).

Algorithm 2.1.

Step 1. Using (2.9), compute the one-forms ωi for i = 1, . . . , n.

Step 2. Keeping in mind that λ̇ = λ′ẏ, where prime means the derivative
with respect to y, take the exterior derivative of the one-form (2.11)
for ς = 1. For this one-form to be closed its exterior derivative has to
equal zero, which yields the differential two-form2

nλ′dẏ ∧ dy + λ′dy ∧ ω1 + λdω1 = 0,

which, using (2.9), can be rewritten as

nλ′dẏ∧dy+

[
λ′

∂φ

∂u(n−1)
+ λ

(
∂2φ

∂y∂u(n−1)
− ∂2φ

∂u∂y(n−1)

)]
dy∧du+

+ λ
n−1∑

i=1

(
∂2φ

∂y(i)∂y(n−1)
dy(i) ∧ dy +

∂2φ

∂u(i)∂y(n−1)
du(i) ∧ dy+

+
∂2φ

∂y(i)∂u(n−1)
dy(i) ∧ du+

∂2φ

∂u(i)∂u(n−1)
du(i) ∧ du

)
= 0. (2.18)

To satisfy the equality, all the components of the two-form on the left-
hand side of (2.18) must be zero. Summation of these components
leads to the differential equation

λ′
(
n+

∂φ

∂u(n−1)

)
+ λ

(
∂2φ

∂y∂u(n−1)
− ∂2φ

∂u∂y(n−1)
+

+
n−1∑

i=1

(
∂2φ

∂y(i)∂y(n−1)
+

∂2φ

∂u(i)∂y(n−1)
+

+
∂2φ

∂y(i)∂u(n−1)
+

∂2φ

∂u(i)∂u(n−1)

))
= 0, (2.19)

that has to be solved with respect to λ(y). If the solution does not
exist, the problem is not solvable; stop.

Step 3. Using ωi’s and λ(y) compute the one-forms (2.11), for ς = 1, . . . , n.

2For the detailed definition of differential k-from see [25]
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Step 4. Check whether the one-forms (2.11) are closed or not. If at least
one of them is not closed, the problem is not solvable; stop.

Step 5. Rewrite the (closed) one-forms (2.11) as dϕ̄ς (see (2.16)) and in-
tegrate them, yielding ϕ̄ς for ς = 1, . . . , n. Using λ(y) and (2.17)
one can find the output transformation Ψ(y) and the functions ϕς in
terms of which the system in the observer form (2.5) can be easily
constructed.

Step 6. Using the functions ϕ1, . . . , ϕn and the output transformation
(2.4), find the system equations in the observer form (2.5).

One can observe that the most difficult part of the algorithm is Step 2,
which requires the solution of partial differential equation.

2.4 Comparison with the Earlier Results

The alternative solvability condition was given earlier in [31]. We recall
this condition in Theorem 2.2.

Theorem 2.2. If the system (2.1) can be transformed by the state trans-
formation (2.3) and the output transformation (2.4) into the observer form
(2.5), then

d

(
∂2φ

∂ẏ∂y(n−1)

)
∧ dy = 0. (2.20)

Moreover, if (2.20) is satisfied, then the possible output transformation
Ψ(y) is a solution of

Ψ′
∂2φ

∂ẏ∂y(n−1)
+ nΨ′′ = 0, (2.21)

where the prime and the double prime mean, respectively, the first and the
second derivatives with respect to y.

Using (2.15), equality (2.18) can be rewritten as

(
Ψ′

∂2φ

∂ẏ∂y(n−1)
+ nΨ′′

)
dẏ ∧ dy+

+

[
Ψ′′

∂φ

∂u(n−1)
+ Ψ′

(
∂2φ

∂y∂u(n−1)
− ∂2φ

∂u∂y(n−1)

)]
dy ∧ du+

+ Ψ′
n−1∑

i=2

∂2φ

∂y(i)∂y(n−1)
dy(i) ∧ dy + Ψ′

n−1∑

i=1

(
∂2φ

∂u(i)∂y(n−1)
du(i) ∧ dy+

+
∂2φ

∂y(i)∂u(n−1)
dy(i) ∧ du+

∂2φ

∂u(i)∂u(n−1)
du(i) ∧ du

)
= 0. (2.22)
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Recall that the equality implies that all the components of the two-form on
the left-hand side of (2.22) are zero. Note that the coefficient of dẏ ∧ dy is
exactly the left-hand side of condition (2.21). Thus, (2.18) obviously im-
plies (2.21). However, the converse does not hold, since the condition (2.21)
does not guarantee that the other components of the two-form (2.18) equal
to zero. It should be mentioned that (2.20) is just the exterior derivative
of (2.21) multiplied by dy. To summarize, it can be stated that conditions
from Theorem 2.2 are very mild and far from being sufficient. The out-
put transformation obtained from (2.21) does not guarantee that the i/o
equation (2.2) can be represented in the form (2.6). To verify whether the
problem is solvable, one has to apply the output transformation to the i/o
equation (2.2) and check whether the obtained i/o equation is transformable
into the observer form by the state coordinate transformation only [31].

2.5 Example

Example 2.1. Examine the model of a direct current (DC) motor, de-
scribed by the equations (see [25])

ẋ1 = −Kmx1x2 −
Ra +Rf

K
x1 + u

ẋ2 = −B
J
x2 − x3 +

Km

J
Kx2

1

ẋ3 = 0

y = x1,

(2.23)

where x1 denotes the magnetic flux and verifies x1 > 0; x2 denotes the
rotor speed; x3 denotes the constant load torque; Ra and Rf denote the
stator and the inductor resistances, respectively; B is the viscous friction
coefficient, and Km is the constant motor torque. The i/o equation, corre-
sponding to (2.23), is

y(3) =
B

J

(
u̇− ÿ +

ẏ (ẏ − u)

y

)
− 2KK2

my
2ẏ

J
+

+ ü− 2u̇ẏ + ÿ (u− 3ẏ)

y
+

2ẏ2 (u− ẏ)

y2
.

We will follow Algorithm 2.1.
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Step 1. Compute, according to (2.9),

ω1 =

(
−B
J
− u− 3ẏ

y

)
dy + du,

ω2 =

(
B (2ẏ − u)

Jy
− 3ÿ

y
+

2uẏ

y2
− 2KK2

my
2

J

)
dy+

+

(
B

J
− 2ẏ

y

)
du,

ω3 =

(
(3ẏ − 2u) ÿ − 2u̇ẏ

y2
+
B

J

(
u̇− 2ÿ

y
+
ẏ2

y2

)
+

+
2 (u− ẏ) ẏ2

y3
+
ü

y

)
dy +

(
ÿ

y
− Bẏ

Jy

)
du.

(2.24)

Step 2. The differential equation (2.19) reads as

4

(
λ

y
+ λ′

)
= 0,

solving which with respect to λ(y), one obtains

λ(y) =
1

y
. (2.25)

Step 3. For the case n = 3 the one-forms (2.11) read as

3λ̇dy + λω1,

−3λ̈dy − 2λ̇ω1 + λω2,

λ(3)dy + λ̈ω1 − λ̇ω2 + λω3,

which, according to (2.24) and (2.25), yield

−Ju+By

Jy2
dy +

1

y
du,

−Bu+ 2KK2
my

3

Jy2
dy +

B

Jy
du,

0.

Step 4. It is not hard to verify that all three one-forms, given above, are
closed, meaning that the conditions for transformation of the system
(2.23) into the observer form (2.5) are satisfied.
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Step 5. Now one can define

dϕ̄1 := −Ju+By

Jy2
dy +

1

y
du,

dϕ̄2 := −Bu+ 2KK2
my

3

Jy2
dy +

B

Jy
du,

dϕ̄3 := 0,

integration of which yields

ϕ̄1 = −B ln y

J
+
u

y
,

ϕ̄2 =
Bu

Jy
− KK2

my
2

J
,

ϕ̄3 = 0.

Taking into account (2.4), (2.17) and (2.25), one finds the output
transformation

Y = Ψ(y) = ln y, (2.26)

which, according to (2.10), leads to

ϕ1 = −BY
J

+
u

eY
,

ϕ2 =
Bu

JeY
− KK2

me2Y

J
,

ϕ3 = 0.

Step 6. By (2.7) for n = 3, one can define the new state variables as

z1 = Y,

z2 = Ẏ +
BY

J
− u

eY
,

z3 = Ÿ +
BẎ

J
− u̇− uẎ

eY
− Bu

JeY
+
KK2

me2Y

J
,

which, due to the output transformation (2.26) and state equations
(2.23), can be rewritten as

z1 = lnx1,

z2 = −Ra +Rf
K

+
B lnx1

J
−Kmx2,

z3 = −B (Ra +Rf )

JK
+Kmx3,

(2.27)
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that leads to the new state equations in the observer form:

ż1 = z2 −
Bz1

J
+

u

ez1

ż2 = z3 +
Bu

Jez1
− KK2

me2z1

J
ż3 = 0

Y = z1.

(2.28)

Remark 2.2. Note that in [25] the output of the system (2.23) was already
chosen as y = lnx1. Such farsighted choice allowed to transform the system
into the observer form only by the state transformation and to avoid the
necessity in the output transformation, which was not considered in [25].
Our task was to show how the output transformation Y = lnx1 can be
computed. Therefore, we used the output y = x1, which is more natural
for the model of DC motor [21].
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Chapter 3

Extended Observer Form for
Discrete-Time Systems

This chapter addresses the problem of transforming the discrete-time non-
linear state equations into the extended observer form, which, besides the
input and output, also depends on a finite number of their past values.
The first section introduces the reader into the issue. Sections 3.2 and 3.3
provide two sets of the necessary and sufficient solvability conditions. The
first set of conditions is formulated in terms of the differential one-forms
and have the advantage of being intrinsic. The conditions of the second
set are expressed in terms of the certain partial derivatives, related to the
input-output equation of the system. Due to their matrix representation
the validity of the conditions can be checked almost by direct inspection.
Furthermore, Section 3.4 presents the algorithm for transforming the state
equations into the extended observer form. The objective of the last section
is to illustrate the application of the theory by means of examples.

3.1 Problem Statement

Recall from Subsection 1.2.3 a SISO system, described by the state equa-
tions

x+ = f(x, u)

y = h(x),
(3.1)

and the higher order input-output (i/o) difference equation

y[n] = φ
(
y, y[1], . . . , y[n−1], u, u[1], . . . , u[n−1]

)
, (3.2)

where x(t) : Z → X ⊂ Rn is an n-dimensional state vector, u(t) : Z →
U ⊂ R is an input and y(t) : Z → Y ⊂ R is an output. The functions
f : X × U → X, h : X → Y and φ : Yn × Un → R are real analytic.
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From now on, we consider system (3.1) to be observable in a sense of rank
condition [55].

The purpose is to find the conditions under which there exist an ex-
tended coordinate change1 ψ(·, ξ1, . . . , ξ2N ) : X → X, parameterized by
(ξ1, . . . , ξ2N ) and defined by

z = ψ
(
x, y[−1], . . . , y[−N ], u[−1], . . . , u[−N ]

)
, (3.3)

as well as an output transformation (i.e. diffeomorphism) Ψ : Y → Y,
defined by

Y = Ψ(y), (3.4)

such that in the new coordinates the state equations (3.1) are in the fol-
lowing extended observer form with buffer N ∈ {1, . . . , n− 2}

z+
1 = z2 + ϕ1

(
Y, Y [−1], . . . , Y [−N ], u, u[−1], . . . , u[−N ]

)

...

z+
n−N = zn−N+1 + ϕn−N

(
Y, Y [−1], . . . , Y [−N ], u, u[−1], . . . , u[−N ]

)

z+
n−N+1 = zn−N+2

...

z+
n−1 = zn

z+
n = 0

Y = z1,

(3.5)

where the forward shift of the coordinates z depends besides the input u and
the output y also on their past values u[−1], . . . , u[−N ], and y[−1], . . . , y[−N ].
This form without inputs was considered earlier in [40], [41]. We do not
address the case when the buffer N = n−1 since, as shown in by Huijberts
et al. in [41], the system can be always transformed into such form (even
without the output transformation), whenever the system under considera-
tion is strongly observable. The proof carries over to systems depending on
control too. Therefore, it is obvious that the results of this chapter address
only the case n ≥ 3.

Note that the state equations (3.1) can be transformed into the extended
observer form (3.5) by means of the extended coordinate change (3.3) and
the output transformation (3.4), if the i/o equation (3.2) corresponding to
(3.1), can be rewritten in the form

Ψ ◦ φ =
n−N∑

l=1

ϕl

(
Y [n−l], . . . , Y [n−l−N ], u[n−l], . . . , u[n−l−N ]

)
. (3.6)

1The details about the properties of the extended coordinate change can be found in
[40] for the case of autonomous systems.
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Remark 3.1. Note that under observability assumption, one may always
find the i/o representation (3.2), at least locally, using the state elimination
algorithm. However, the global state elimination problem is a difficult
task that results generally in an implicit i/o equation accompanied with a
number of inequations [28].

If (3.6) holds, one can define the new state variables as

z1 = Y,

zi = Y [i−1] −
min(i−1,n−N)∑

l=1

ϕl

(
Y [i−1−l], . . . , Y [i−1−l−N ],

u[i−1−l], . . . , u[i−1−l−N ]
)
, i = 2, . . . , n,

(3.7)

that leads to the state equations in the extended observer form (3.5).

3.2 Intrinsic Necessary and Sufficient Conditions

In this section the conditions will be formulated in terms of differential
one-form, associated with the i/o equation (3.2), corresponding to the state
equations (3.1). Define for i = 0, . . . , n− 1 the differential one-forms

ωi :=
∂φ

∂y[i]
dy[i] +

∂φ

∂u[i]
du[i] (3.8)

and the codistributions

Ωi := spanK∗
{
ωk,du

[k] | k 6= i, k = max(0, i−N), . . . ,

min(i+N,n− 1)
}
. (3.9)

For example, if N = 1 and n = 5, then

Ω0 = spanK∗
{
ω1, du

+
}
,

Ω1 = spanK∗
{
ω0, du, ω2,du

++
}
,

Ω2 = spanK∗
{
ω1,du

+, ω3, du
[3]
}
,

Ω3 = spanK∗
{
ω2,du

++, ω4,du
[4]
}
,

Ω4 = spanK∗
{
ω3,du

[3]
}
.

The minimal number of independent generators of a codistribution is called
its dimension. For an arbitrary one-form ω and an r-dimensional codistri-
bution Ω = spanK∗ {υ1, . . . , υr}, we will say that

dω ≡ 0 mod Ω
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if and only if

dω ∧ υ1 ∧ · · · ∧ υr = 0.

Moreover, define the composite functions of ϕl and Ψ as

ϕ̄l

(
y, y[−1], . . . , y[−N ], u, u[−1], . . . , u[−N ]

)
:=

ϕl

(
Y, Y [−1], . . . , Y [−N ], u, u[−1], . . . , u[−N ]

)

and the vector argument

νl :=
[
y[n−l], . . . , y[n−l−N ], u[n−l], . . . , u[n−l−N ]

]
(3.10)

for l = 1, . . . , n − N . The latter will be used in the sequel to simplify
the exposition. In order to prove the main result of this section, that is
Theorem 3.1 below, we need the following lemma, the proof of which is
given in the Appendix.

Lemma 3.1. For functions ϕ̄1(ν1), . . . , ϕ̄n−N (νn−N ) the following holds

n−N∑

l=1

dϕ̄l(νl) =

n−1∑

i=0

Υi, (3.11)

where

Υi :=

min(i,n−1−N)∑

l=max(0,i−N)

(
∂ϕ̄n−N−l(νn−N−l)

∂y[i]
dy[i]+

+
∂ϕ̄n−N−l(νn−N−l)

∂u[i]
du[i]

)
. (3.12)

Theorem 3.1. The system (3.1) can be transformed by the extended coor-
dinate change (3.3) and the output transformation (3.4) into the extended
observer form (3.5) with buffer N ∈ {1, . . . , n− 2} if and only if for all
0 ≤ i, j ≤ n− 1

dωi ∧ ωj + dωj ∧ ωi ≡ 0 mod
(
(Ωi + Ωj) \ spanK∗ {ωi, ωj}

)
. (3.13)

Remark 3.2. Note that in (3.13) the buffer N is hidden inside the defini-
tion of the codistributions Ωi and Ωj .

Now we are ready to prove the main result of this section.
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Proof. Necessity. Assume that system (3.1) is transformable into the ex-
tended observer form (3.5). Consequently, the i/o equation (3.2), corre-
sponding to (3.1), can be rewritten in the form (3.6), the total differential
of which reads as

(
Ψ′ ◦ φ

)
dφ =

(
Ψ′ ◦ φ

) n−1∑

i=0

ωi =
n−N∑

l=1

dϕ̄l (νl) ,

where Ψ′ ◦ φ means the derivative of the function Ψ evaluated at φ. Ac-
cording to Lemma 3.1,

(
Ψ′ ◦ φ

) n−1∑

i=0

ωi =

n−1∑

i=0

Υi. (3.14)

From (3.14) we have for i = 0, . . . , n− 1

(
Ψ′ ◦ φ

)
ωi = Υi. (3.15)

Consider the functions ϕ̄n−N−l (νn−N−l) for l = max(0, i−N), . . . ,min(i, n−
1−N). Taking into account (3.10) for new index n−N − l, one can write

dϕ̄n−N−l (νn−N−l) =
N∑

s=0

(
∂ϕ̄n−N−l(νn−N−l)

∂y[l+s]
dy[l+s]+

+
∂ϕ̄n−N−l(νn−N−l)

∂u[l+s]
du[l+s]

)
. (3.16)

Note that the codistribution Ωi, defined by (3.9), can be rewritten as

Ωi = spanK∗
{

dy[l+s], du[l+s] | l + s 6= i, s = 0, . . . , N,

l = max(0, i−N), . . . ,min(i, n− 1−N)
}
. (3.17)

As a consequence, from (3.16) one obtains

dϕ̄n−N−l(νn−N−l) ≡
(
∂ϕ̄n−N−l(νn−N−l)

∂y[i]
dy[i]+

+
∂ϕ̄n−N−l(νn−N−l)

∂u[i]
du[i]

)
mod Ωi, (3.18)

which, by (3.15) and (3.12), leads to

(
Ψ′ ◦ φ

)
ωi ≡

min(i,n−1−N)∑

l=max(0,i−N)

dϕ̄n−N−l(νn−N−l) mod Ωi.
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Application of the exterior derivative to the equality above yields

d
(
Ψ′ ◦ φ

)
∧ ωi +

(
Ψ′ ◦ φ

)
dωi ≡ 0 mod Ωi.

From the relationship above we obtain

dωi ≡ −d ln
∣∣Ψ′ ◦ φ

∣∣ ∧ ωi mod Ωi

for i = 0, . . . , n− 1. Obviously,

dωi ∧ ωj ≡ −d ln
∣∣Ψ′ ◦ φ

∣∣ ∧ ωi ∧ ωj mod
(
(Ωi + Ωj) \ spanK∗ {ωi, ωj}

)
,

using which, one gets for i, j = 0, . . . , n− 1

dωi ∧ ωj + dωj ∧ ωi ≡ −d ln
∣∣Ψ′ ◦ φ

∣∣ ∧ (ωi ∧ ωj+
+ ωj ∧ ωi) mod

(
(Ωi + Ωj) \ spanK∗ {ωi, ωj}

)
. (3.19)

Since the wedge product is anticommutative, the expression in the paren-
theses on the right-hand side of (3.19) is always zero, which yields (3.13).

Sufficiency. The proof consists of three steps. On the first step (i) we
will show that under the conditions (3.13) there exist functions χl(νl) for
l = 1, . . . , n−N , such that

ωi ≡ λi
min(i,n−1−N)∑

l=max(0,i−N)

dχn−N−l(νn−N−l) mod Ωi (3.20)

for i = 0, . . . , n − 1. On the second step (ii) we will prove that for all ωi
there exists the common integrating factor λ, and finally, on the last step
(iii) we will show that from steps (i) and (ii) follows the existence of output
transformation Ψ such that its composition with φ yields (3.6).

(i) Note that in case i = j (3.13) yields

dωi ∧ ωi ≡ 0 mod Ωi, (3.21)

from which follows the existence of the integrating factor λi(y, y
[−1], . . . ,

y[n−1], u, u[−1], . . . , u[n−1]) such that

ωi ≡ λidχ̄i(ν̄i) mod Ωi (3.22)

for some functions2 χ̄i(ν̄i), where ν̄i is the vector argument which consists of
the elements of the set

{
y[k], u[k] | k = max(0, i−N), . . . ,min(i+N,n−1)

}
.

Note that, taking into account (3.8) and (3.9), according to (3.22),

1

λi
ωi =

∂χ̄i(ν̄i)

∂y[i]
dy[i] +

∂χ̄i(ν̄i)

∂u[i]
du[i]. (3.23)

2The functions χ̄i(ν̄i) should not be confused with the functions χl(νl) in (3.20). The
number of functions χ̄i(ν̄i) is n, but the number of functions χl(νl) is n−N . Moreover,
the vector arguments ν̄i and νl have different number of elements.
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Choose the function ζ
(
y, y[1], . . . , y[n−1], u, u[1], . . . , u[n−1]

)
such that

∂ζ

∂y[i]
dy[i] +

∂ζ

∂u[i]
du[i] =

∂χ̄i(ν̄i)

∂y[i]
dy[i] +

∂χ̄i(ν̄i)

∂u[i]
du[i] (3.24)

for i = 1, . . . , n− 1, and consequently

n−1∑

i=0

1

λi
ωi = dζ.

As we will show in the sequel, the function ζ really exists and can be
represented in the form

ζ =

n−N∑

l=1

χl(νl) (3.25)

for some functions χ1(ν1), . . . , χn−N (νn−N ). Note that (3.25) holds, if the
following second order partial derivatives of ζ equal zero,

∂2ζ

∂y[i]∂y[j]
= 0,

∂2ζ

∂u[i]∂u[j]
= 0,

∂2ζ

∂u[i]∂y[j]
= 0,

∂2ζ

∂y[i]∂u[j]
= 0

(3.26)

for i, j = 0, . . . , n − 1, j 6= i −N, . . . , i + N . Our next purpose is to prove
that (3.26) holds. Taking into account (3.23), (3.24) and (3.8), one can
rewrite (3.26) as follows

∂λ−1
i

∂y[j]

∂φ

∂y[i]
+ λ−1

i

∂2φ

∂y[i]∂y[j]
= 0,

∂λ−1
i

∂u[j]

∂φ

∂u[i]
+ λ−1

i

∂2φ

∂u[i]∂u[j]
= 0,

∂λ−1
i

∂y[j]

∂φ

∂u[i]
+ λ−1

i

∂2φ

∂u[i]∂y[j]
= 0,

∂λ−1
i

∂u[j]

∂φ

∂y[i]
+ λ−1

i

∂2φ

∂y[i]∂u[j]
= 0.

(3.27)

Expressing ∂λ−1
i /∂y[j] from the first equality of (3.27) and substituting

it into the third equality, and also expressing ∂λ−1
i /∂u[j] from the second

equality and substituting it into the fourth equality, one obtains

∂φ

∂y[i]

∂2φ

∂u[i]∂y[j]
− ∂φ

∂u[i]

∂2φ

∂y[i]∂y[j]
= 0,

∂φ

∂u[i]

∂2φ

∂y[i]∂u[j]
− ∂φ

∂y[i]

∂2φ

∂u[i]∂u[j]
= 0.
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It is easy to verify that under the conditions (3.21) the equalities above
are satisfied and, as a consequence, the function ζ really exists, satisfying
(3.25), which yields

n−1∑

i=0

1

λi
ωi =

n−N∑

l=1

dχl(νl), (3.28)

from which, using Lemma 3.1 and (3.18) for functions χl(νl), one obtains
(3.20).

(ii) Take the exterior derivative of (3.20) and then apply (3.20) as follows

min(i,n−1−N)∑

l=max(0,i−N)

dχn−N−l(νn−N−l) ≡
1

λi
ωi mod Ωi.

This yields

dωi ≡ dλi ∧
min(i,n−1−N)∑

l=max(0,i−N)

dχn−N−l(νn−N−l) ≡ d ln |λi| ∧ ωi mod Ωi.

By the conditions (3.13)

(d ln |λi| − d ln |λj |) ∧ ωi ∧ ωj ≡ 0 mod
(
(Ωi + Ωj) \ spanK∗ {ωi, ωj}

)
,

from which follows λi = λj = λ for i, j = 0, . . . , n− 1.
(iii) From (i) and (ii) follows that one can find functions ϕ̄l(νl), l =

1, . . . , n − N for which there exists the common integrating factor λ such
that (3.28) can be rewritten as

n−1∑

i=0

ωi = λ

n−N∑

l=1

dϕ̄l(νl). (3.29)

Since dφ is a total differential, its exterior derivative

d2φ =
n−1∑

i=0

dωi = dλ ∧
n−N∑

l=1

dϕ̄l(νl) = d ln |λ| ∧
n−1∑

i=0

ωi = d ln |λ| ∧ dφ

equals zero and by Cartan’s Lemma d ln |λ| ∈ spanK∗ {dφ}. Therefore, λ
can be represented as a composite function of φ and some other function.
We will show below that the choice λ = 1/ (Ψ′ ◦ φ) guarantees, that the
composite function Ψ ◦ φ has the form (3.6). First, we prove that Ψ′ ◦ φ is
the common integrating factor for all one-forms ωi, that is

(
Ψ′ ◦ φ

)
ωi ≡

min(i,n−1−N)∑

l=max(0,i−N)

dϕ̄n−N−l(νn−N−l) mod Ωi.
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Taking the exterior derivative of (Ψ′ ◦ φ)ωi, one obtains

d
[(

Ψ′ ◦ φ
)
ωi
]
≡
(
Ψ′′ ◦ φ

)
dφ ∧ ωi +

(
Ψ′ ◦ φ

)
dωi ≡

≡
(
Ψ′′ ◦ φ

)
dφ ∧ ωi +

(
Ψ′ ◦ φ

)
d ln |λ| ∧ ωi ≡

≡
(
Ψ′′ ◦ φ

)
dφ ∧ ωi − d

(
ln
∣∣Ψ′ ◦ φ

∣∣) (Ψ′ ◦ φ
)
∧ ωi ≡ 0 mod Ωi,

meaning the functions ϕ̄l(νl) really exist. Finally, multiplying dφ by Ψ′ ◦ φ
and taking into account (3.29), one obtains

d (Ψ ◦ φ) =
(
Ψ′ ◦ φ

)
dφ =

(
Ψ′ ◦ φ

) n−1∑

i=0

ωi =

n−N∑

l=1

dϕ̄l(νl),

yielding (3.6).

3.3 Simple Necessary and Sufficient Conditions

This section presents the conditions expressed in terms of partial deriva-
tives, related to the i/o equation (3.2), corresponding to the state equations
(3.1). In order to present the theorem and the proof in a more compact
form, denote by α the variable, which can be either u or y. Then by β
is denoted u, if α is y and y if α is u. Moreover, denote by jα and jα,
respectively, the highest and the lowest shifts of α the function φ depends
on. For example, if φ

(
y, y[2], y[3], u[1], u[2], u[4]

)
, then jy = 0, ju = 1, jy = 3

and ju = 4.

Theorem 3.2. The system (3.1) can be transformed by the extended coor-
dinate change (3.3) and the output transformation (3.4) into the extended
observer form (3.5) with buffer N ∈ {1, . . . , n− 2} if and only if there exists
a function S

(
y, . . . , y[n−1], u, . . . , u[n−1]

)
such that for i, j = 0, . . . , n − 1,

j 6= i−N, . . . , i+N

∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂α[i]

∣∣∣∣
)

=
∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂β[i]

∣∣∣∣
)

=:
∂S

∂α[j]
, (3.30a)

and in case 2N ≥ jα−jα the function S satisfies for r = jα−N, . . . , jα+N
and an arbitrary j 6= r the following additional conditions

∂S

∂α[j]

∂φ

∂α[r]

(
∂φ

∂α[j]

)−1

=
∂S

∂β[j]

∂φ

∂α[r]

(
∂φ

∂β[j]

)−1

=:
∂S

∂α[r]
. (3.30b)

Remark 3.3. Note that in the case 2N < jα−jα the conditions (3.30a) are

both necessary and sufficient, but in the case 2N ≥ jα − jα they are only
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necessary, and for sufficiency3 one needs the additional conditions (3.30b),
which in the case 2N < jα − jα hold by (3.30a).

Remark 3.4. Suppose that for some q = 0, . . . , n−1 the function φ (and S,
as a consequence) does not depend on the variable y[q] (or u[q]). In this case
either the left-hand side or the middle part in the corresponding condition
of (3.30a) should be omitted, depending on whether the α[i] or β[i] stands
for y[q] (or u[q]). Thus, for instance, in the case of system without input
one obtains the conditions (3.30a) where α = y and middle part is omitted.

Remark 3.5. If the conditions (3.30a) are satisfied it is enough to check
the conditions (3.30b) only for one j 6= r. However, one has to choose (if
possible) j such that the function φ (and S, as a consequence) depends on
both y[j] and u[j]. If such a choice is not possible, then either the left-hand
side or the middle part of (3.30b) should be omitted, depending on whether
α[j] or β[j] stands for the variable, the function φ does not depend on. Thus,
for instance, in the case of system without input one obtains the conditions
(3.30b) where α = y and the middle part is omitted.

Remark 3.6. Taking N = 0, the conditions (3.30a) (and (3.30b) for the
special case jα = jα) can be used to check whether the system is trans-
formable into the observer form without the buffer (see the different results
in [40] for systems without input and [78] for input dependent systems).

In order to prove Theorem 3.2, we need the following lemma, the proof
of which is given in the Appendix.

Lemma 3.2. From conditions (3.30a) (and in the case 2N ≥ jα − jα
(3.30b)) follows

dS ∧ dφ = 0. (3.31)

Now we are ready to prove the main result of this section.

Proof. Necessity. Assume that system (3.1) is transformable into the ex-
tended observer form (3.5). Consequently, the i/o equation (3.2), corre-
sponding to (3.1), can be rewritten in the form (3.6), yielding that the
following second-order partial derivatives of the composition Ψ ◦φ equal to

3Without going into details, one can say that in order to prove sufficiency we need
∂S

∂α[j] for all j = jα, . . . , jα. However, we should take into account that in conditions
(3.30a) index j depends on index i and buffer N . This dependency implies that j =
jα, . . . , jα −N − 1, jα +N + 1, . . . , jα, which in the case 2N < jα − jα yields that j runs

from jα to jα without interruption, whereas in the case 2N ≥ jα − jα there is a gap

between jα −N − 1 and jα +N + 1. To compensate this gap we use (3.30b) in addition
to (3.30b) (in other words, index r complements j).
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zero for i, j = 0, . . . , n− 1, j 6= i−N, . . . , i+N :

∂2 (Ψ ◦ φ)

∂α[i]∂α[j]
=
∂ (Ψ′ ◦ φ)

∂α[j]

∂φ

∂α[i]
+
(
Ψ′ ◦ φ

) ∂2φ

∂α[i]∂α[j]
= 0,

∂2 (Ψ ◦ φ)

∂β[i]∂α[j]
=
∂ (Ψ′ ◦ φ)

∂α[j]

∂φ

∂β[i]
+
(
Ψ′ ◦ φ

) ∂2φ

∂β[i]∂α[j]
= 0,

(3.32)

where Ψ′◦φ means the derivative of the function Ψ evaluated at φ. Dividing
the first equation of (3.32) by (Ψ′ ◦ φ)

(
∂φ/∂α[i]

)
and the second equation

by (Ψ′ ◦ φ)
(
∂φ/∂β[i]

)
yields

1

Ψ′ ◦ φ
∂ (Ψ′ ◦ φ)

∂α[j]
+

∂2φ

∂α[i]∂α[j]

(
∂φ

∂α[i]

)−1

=

=
∂ ln |Ψ′ ◦ φ|

∂α[j]
+

∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂α[i]

∣∣∣∣
)

= 0,

1

Ψ′ ◦ φ
∂ (Ψ′ ◦ φ)

∂α[j]
+

∂2φ

∂β[i]∂α[j]

(
∂φ

∂β[i]

)−1

=

=
∂ ln |Ψ′ ◦ φ|

∂α[j]
+

∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂β[i]

∣∣∣∣
)

= 0.

The equalities above suggest that the function

S = − ln
∣∣Ψ′ ◦ φ

∣∣ (3.33)

will make the conditions (3.30a) and (3.30b) to hold.
Sufficiency. Suppose the conditions (3.30a) and (3.30b) are satisfied.

Then, according to Lemma 3.2, dS ∧ dφ = 0, which by Cartan’s Lemma
yields dS ∈ spanK∗ {dφ}. Therefore, the function S can be represented as a

composition of some function Ψ̂ with φ, i.e. S = Ψ̂◦φ. We will show below
that the choice S = − ln |Ψ′ ◦ φ| guarantees that the equalities (3.32) are
satisfied, meaning that the composition Ψ◦φ has the form (3.6). Replacing
the function S in (3.30a) by the expression − ln |Ψ′ ◦ φ|, one obtains

∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂α[i]

∣∣∣∣
)

= −∂ ln |Ψ′ ◦ φ|
∂α[j]

,

∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂β[i]

∣∣∣∣
)

= −∂ ln |Ψ′ ◦ φ|
∂α[j]

.

By the derivative of the logarithmic function, one can rewrite the equalities,
given above, as

(
∂φ

∂α[i]

)−1 ∂2φ

∂α[i]∂α[j]
+

1

Ψ′ ◦ φ
∂ (Ψ′ ◦ φ)

∂α[j]
= 0,

(
∂φ

∂β[i]

)−1 ∂2φ

∂α[i]∂β[j]
+

1

Ψ′ ◦ φ
∂ (Ψ′ ◦ φ)

∂α[j]
= 0.
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Multiplying the first equality by (Ψ′ ◦ φ)
(
∂φ/∂α[i]

)
and the second by

(Ψ′ ◦ φ)
(
∂φ/∂β[i]

)
yields (3.32). This completes the proof.

3.3.1 Matrix Representation of the Conditions

In this subsection we represent the conditions (3.30a) and (3.30b) in the
matrix form, which makes them easier to check by direct inspection.

Denote by Aα,α and Aα,β the n×n matrices, whose elements are defined
by (i = 0, . . . , n−1 pointing to the row and j = 0, . . . , n−1 to the column)

aα,αi,j :=





0,
j = i−N, . . . , i+N, or

φ does not depend on α[i],
∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂α[i]

∣∣∣∣
)
, otherwise,

and

aα,βi,j :=





0,
j = i−N, . . . , i+N, or

φ does not depend on β[i],
∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂β[i]

∣∣∣∣
)
, otherwise,

respectively. Thus, the matrices contain zeros on the main diagonal and N
diagonals above and below it. Moreover, if the function φ does not depend
on the variable y[i] or u[i] for some i = 0, . . . , n− 1, then the corresponding
elements of the matrices are zeros too. Also denote the 2n× 2n matrix as

A :=

[
Ay,y Au,y

Ay,u Au,u

]
. (3.34)

Proposition 3.1. If the conditions (3.30a) hold, then in every column of
the matrix A all nonzero elements are equal.

Remark 3.7. Note that if the function φ depends on the variables y[q] or
u[q] for all q = 0, . . . , n− 1, then Aα,α = Aα,β.

If in every column of the matrix A all nonzero elements are equal, one
needs to check whether there exists a function S such that for j = 0, . . . ,
n − 1 the nonzero elements of the (j + 1)th and (j + 1 + n)th columns
are equal to ∂S/∂y[j] and ∂S/∂u[j], respectively. In the case 2N ≥ j − j
(where j := max(jy, ju) and j := min(jy, ju)), the matrix A does not

contain nonzero elements in the (j − N + 1)th up to (j + N + 1)th and

(j − N + n + 1)th up to (j + N + n + 1)th columns. As a consequence,
the conditions for corresponding partial derivatives of S are absent. The
additional conditions (3.30b) compensate this aspect. In order to represent
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the conditions (3.30b) in the matrix form, denote by Bα,α and Bα,β the
(2N + jα − jα + 1)× 1 vectors whose elements are defined by

bα,αr :=
∂S

∂α[j]

∂φ

∂α[r]

(
∂φ

∂α[j]

)−1

and

bα,βr :=
∂S

∂β[j]

∂φ

∂α[r]

(
∂φ

∂β[j]

)−1

,

respectively, where r = jα−N, . . . , jα +N . The value of index j should be

chosen according to Remark 3.5 and ∂S/∂α[j], ∂S/∂β[j] can be calculated
from (3.30a).

Proposition 3.2. If the conditions (3.30b) hold, then Bα,α = Bα,β.

If Bα,α = Bα,β and the function S satisfying the conditions (3.30a)
exists, additionally one needs to check whether S is such that ∂S/∂α[r] is

equal to bα,αr (and bα,βr , as a consequence).

3.4 Algorithm

In this section we represent the algorithm for transformation of the system
(3.1) into the observer form (3.5), whenever possible. First, taking into
account (3.8) and (3.12), compare the coefficients of dy[i] and du[i] at both
sides of equality (3.15), to obtain

(
Ψ′ ◦ φ

) ∂φ

∂α[i]
=

min(i,n−1−N)∑

l=max(0,i−N)

∂ϕ̄n−N−l (νn−N−l)
∂α[i]

(3.35)

for i = 0, . . . , n− 1.

The algorithm is applied to the i/o representation (3.2) of the system
(3.1) (see Remark 3.1).

Algorithm 3.1.

Step 1, option 1. Check the validity of conditions (3.13). If they are not
satisfied, the problem is not solvable; stop.

Step 1, option 2. Check for every column of the matrix A whether the
nonzero elements are equal. For 2N ≥ jα − jα check also whether

Bα,α = Bα,β (if both matrices can be constructed, see Remark 3.5).
If the above-mentioned conditions are not satisfied, the problem is
not solvable; stop.
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Step 2. Differentiate both sides of (3.33) with respect to α[j] and compare
the obtained equality with (3.30a). This yields for i, j = 0, . . . , n− 1,
j 6= i−N, . . . , i+N

(
ln
∣∣Ψ′ ◦ φ

∣∣)′ =

= −
(
∂φ

∂α[j]

)−1 ∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂α[i]

∣∣∣∣
)

=

= −
(
∂φ

∂α[j]

)−1 ∂

∂α[j]

(
ln

∣∣∣∣
∂φ

∂β[i]

∣∣∣∣
)
. (3.36)

Note that in order to obtain (ln |Ψ′ ◦ φ|)′ either the middle part or
the right-hand side of the equality above can be used, whereas the
indices j and i should be chosen such that the function φ depends
on both α[j], α[i] (or α[j], β[i]). Next, solving the i/o equation (3.2)
with respect to an arbitrary variable α[i], find the replacement rule
α[i] = F (·). The application of the replacement rule to (ln |Ψ′ ◦ φ|)′
yields

(
ln
∣∣Ψ′ ◦ y[n]

∣∣)′, which can be shifted backward n times to ob-
tain (ln |Ψ′ ◦ y|)′, where now prime means the derivative with respect
to y. Thus, the output transformation can be computed as

Y = Ψ ◦ y =

∫
e
∫

(ln|Ψ′◦y|)′dydy.

Step 3. Solve, if possible, the system of partial differential equations (3.35)
to find the functions ϕ̄1, . . . , ϕ̄n−N , from which the functions ϕ1, . . . ,
ϕn−N can be obtained applying the output transformation.

Step 4. Using the functions ϕ1, . . . , ϕn−N and the output transformation
(3.4), construct the system in the extended observer form (3.5).

One can note that, requiring the integration and solution of differential
equations, Steps 2 and 3 represent the most difficult part of Algorithm
3.1. The additional difficulties were related to the implementation of the
algorithm in NLControl package (see Chapter 5). First, the computation
system Mathematica has no built-in function, which allows to solve the
system of partial differential equations (3.35). Therefore, the step by step
procedure was developed to find the functions ϕ̄1, . . . , ϕ̄n−N from (3.35).
Moreover, the relation (3.36) implies the necessity to program the algorithm
for choosing the value of the indices i and j, satisfying the requirements
described in Step 2.
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3.5 Examples

Example 3.1. Examine the following state equations

x+
1 = x2u

x+
2 = x3

x+
3 = (x1 + x2u+ u) (x2u+ x3) (x1u+ x4)

x+
4 = x1 + u

y = x1.

(3.37)

The i/o equation, corresponding to (3.37), is

y[4] =
(
y + u+ y+u+

) (
y+ + u+ + y++

)
u[3]

(
y++ +

y[3]

u++

)
. (3.38)

Note that once the system is transformable into the extended observer
form with some arbitrary buffer N it is also transformable into the extended
observer forms with the buffers that are greater than N . Therefore, our goal
is to find the least buffer N , for which the system (3.37) is transformable
into the extended observer form (3.5). Consequently, it is reasonable to
initiate Algorithm 3.1 with N = 1.

Step 1, option 1. Compute, according to (3.8),

ω0 =
(
y+ + u+ + y++

)
u[3]

(
y++ +

y[3]

u++

)
(dy + du) ,

ω1 = u[3]

(
y++ +

y[3]

u++

)
((
y + u+ u+

(
u+ + 2y+ + y++

))
dy++

+
(
y + u+ y+

(
y+ + 2u+ + y++

))
du+

)
,

ω2 = u[3]
(
y + u+ u+y+

)
((

y+ + u+ + 2y++ +
y[3]

u++

)
dy++−

−
(
(
y+ + u+ + y++

) y[3]

(u++)2

)
du++

)
,

ω3 =
(y + u+ y+u+) (u+ + y+ + y++)

u++

(
u[3]dy[3]+

+
(
y++u++ + y[3]

)
du[3]

)
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and, according to (3.9),

Ω0 = spanK∗ {ω1, u
+},

Ω1 = spanK∗ {ω0, u, ω2, u
++},

Ω2 = spanK∗ {ω1, u
+, ω3, u

[3]},
Ω3 = spanK∗ {ω2, u

++}.

For the case n = 4 and N = 1 conditions (3.13) are the following

dω0 ∧ ω0 ≡ 0 mod Ω0,

dω1 ∧ ω1 ≡ 0 mod Ω1,

dω2 ∧ ω2 ≡ 0 mod Ω2,

dω3 ∧ ω3 ≡ 0 mod Ω3,

dω0 ∧ ω1 + dω1 ∧ ω0 ≡ 0 mod spanK∗
{

du,du+, ω2, du
++
}
,

dω0 ∧ ω2 + dω2 ∧ ω0 ≡ 0 mod spanK∗
{
ω1,du

+, ω3,du
[3]
}
,

dω0 ∧ ω3 + dω3 ∧ ω0 ≡ 0 mod spanK∗
{
ω1,du

+, ω2,du
++
}
,

dω1 ∧ ω2 + dω2 ∧ ω1 ≡ 0 mod spanK∗
{
ω0,du,du

+,du++, ω3,du
[3]
}
,

dω1 ∧ ω3 + dω3 ∧ ω1 ≡ 0 mod spanK∗
{
ω0,du, ω2,du

++
}
,

dω2 ∧ ω3 + dω3 ∧ ω2 ≡ 0 mod spanK∗
{
ω1,du

+,du++,du[3]
}
.

By direct computations one can confirm that all conditions above
are satisfied, which means that system (3.37) is transformable via
the extended coordinate change and output transformation into the
extended observer form with buffer N = 1.

Step 2. According to (3.36)

(
ln
∣∣Ψ′ ◦ φ

∣∣)′ =

=
−u++

u[3] (u+ y + u+y+) (u+ + y+ + y++)
(
u++y++ + y[3]

) .

The easiest way is to solve the i/o equation (3.38) with respect to
u[3]. This yields the following replacement rule

u[3] =
u++y[4]

(u+ y + u+y+) (u+ + y+ + y++)
(
u++y++ + y[3]

) ,

applying which to (ln |Ψ′ ◦ φ|)′, one obtains

(
ln
∣∣∣Ψ′ ◦ y[4]

∣∣∣
)′

= − 1

y[4]
. (3.39)
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The equality (3.39) shifted backward 4 times leads to (ln |Ψ′ ◦ y|)′ =
−1/y yielding the output transformation

Y = Ψ ◦ y =

∫
e
∫
− 1
y

dy
dy = ln y. (3.40)

Step 3. The system of partial differential equations (3.35) for n = 4, N = 1
and α being both y and u reads as

1

u+ y + u+y+
=
∂ϕ̄3

∂y

u+

u+ y + u+y+
+

1

u+ + y+ + y++
=
∂ϕ̄3

∂y+
+
∂ϕ̄2

∂y+

1

u+ + y+ + y++
+

u++

u++y++ + y[3]
=

∂ϕ̄2

∂y++
+

∂ϕ̄1

∂y++

1

u++y++ + y[3]
=

∂ϕ̄1

∂y[3]

1

u+ y + u+y+
=
∂ϕ̄3

∂u

y+

u+ y + u+y+
+

1

u+ + y+ + y++
=
∂ϕ̄3

∂u+
+
∂ϕ̄2

∂u+

y[3]

(u++)2 y++ + u++y[3]
=

∂ϕ̄2

∂u++
+

∂ϕ̄1

∂u++

1

u[3]
=

∂ϕ̄1

∂u[3]
,

leading to

ϕ̄1 = ln
∣∣∣u[3]

∣∣∣+ ln

∣∣∣∣∣y
++ +

y[3]

u++

∣∣∣∣∣ ,

ϕ̄2 = ln
∣∣y+ + u+ + y++

∣∣ ,
ϕ̄3 = ln

∣∣y + u+ y+u+
∣∣ ,

which, due to the output transformation (3.40), yields

ϕ1 = ln
∣∣∣u[3]

∣∣∣+ ln

∣∣∣∣∣e
Y ++

+
eY

[3]

u++

∣∣∣∣∣ ,

ϕ2 = ln
∣∣∣eY +

+ u+ + eY
++
∣∣∣ ,

ϕ3 = ln
∣∣∣eY + u+ eY

+
u+
∣∣∣ .
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Step 4. Using (3.7), one can define the new state variables

z1 = Y,

z2 = Y + − ln |u| − ln

∣∣∣∣eY
−

+
eY

u−

∣∣∣∣ ,

z3 = Y ++ − ln
∣∣u+
∣∣− ln

∣∣∣∣∣e
Y +

eY
+

u

∣∣∣∣∣− ln
∣∣∣eY − + u− + eY

∣∣∣ ,

z4 = Y [3] − ln
∣∣u++

∣∣− ln

∣∣∣∣∣e
Y +

+
eY

++

u+

∣∣∣∣∣− ln
∣∣∣eY + u+ eY

+
∣∣∣−

− ln
∣∣∣eY − + u− + eY u

∣∣∣ ,

which, due to the output transformation (3.40) and state equations
(3.37), can be rewritten as

z1 = ln |x1| ,
z2 = ln |x2| − ln

∣∣∣x−1 +
x1

u−

∣∣∣ ,
z3 = ln |x3| − ln |x1 + x2| − ln

∣∣x−1 + u− + x1

∣∣ ,
z4 = ln |x1u+ x4| − ln

∣∣x−1 + u− + x1u
∣∣ ,

(3.41)

that leads to the state equations in the extended observer form

z+
1 = z2 + ln |u|+ ln

∣∣∣∣ez
−
1 +

ez1

u−

∣∣∣∣

z+
2 = z3 + ln

∣∣∣ez
−
1 + u− + ez1

∣∣∣

z+
3 = z4 + ln

∣∣∣ez
−
1 + u− + ez1u

∣∣∣
z+

4 = 0

Y = z1.

Example 3.2. Examine the following state equations

x+
1 = x1 + x2 − x3

x+
2 = −x1 − x2

x+
3 = − x1x2

ux3 + x1x2x4

x+
4 = − u (x2)2

(x1 + x2) (x1 + x2 − x3)
− x5

u

x+
5 =

x2 − u (x1 + x2)

x3

y = x2.

(3.42)
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The i/o equation, corresponding to (3.42), is

y[5] =
u+y++

(
y++ + y[3]

)

λ
, (3.43)

where in order to simplify the exposition we denoted λ := (u+)
2

(y+)
2

+
(y + uy+)

(
y++ + y[3]

)
+ u+u++y[4]. Using the conditions of Theorems 3.1

or 3.2, one can verify that the system (3.42) is not transformable into the
extended observer form with buffer N = 1. Next, take N = 2 and follow
the Algorithm (3.1).

Step 1, option 2. Using (3.34), one obtains

A =




0 0 0 sy3 sy4 0 0 0 0 0
0 0 0 0 sy4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
sy0 0 0 0 0 su0 0 0 0 0
sy0 sy1 0 0 0 su0 su1 0 0 0
0 0 0 sy3 sy4 0 0 0 0 0
0 0 0 0 sy4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




,

where we use the notations

sy0 := −2
(
y++ + y[3]

)

λ
,

sy1 := −
2
(

2 (u+)
2
y+ + u

(
y++ + y[3]

))

λ
,

sy3 :=
2u+

(
u+ (y+)

2
+ u++y[4]

)

(
y++ + y[3]

)
λ

,

sy4 := −2u+u++

λ
,

su0 := −2y+
(
y++ + y[3]

)

λ
,

su1 := −
2
(

(y + uy+)
(
y++ + y[3]

)
− (u+)

2
(y+)

2
)

u+λ
.

Since jy = 0, jy = 4, ju = 0, ju = 2 and N = 2, both inequalities

2N ≥ jy − jy and 2N ≥ ju − ju are satisfied and, as a consequence,
one has to check the additional conditions. Choosing j according to
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Remark 3.5, one obtains the following matrices

By,y = By,u =
[
sy2

]
, Bu,u = Bu,y =



su0

su1

su2


 , (3.44)

where

sy2 := 2

(
1

y++ + y[3]
+

1

y++
− y + uy+

λ

)
, su2 := −2u+y[4]

λ
.

Taking into consideration (3.44) and the fact that all the nonzero
elements of every column of the matrix A are equal, one may conclude
that the necessary conditions for transformation of the system (3.42)
into the extended observer form with buffer N = 2 are satisfied.

Step 2. According to (3.36)

(
ln
∣∣Ψ′ ◦ φ

∣∣)′ =

= −
2
(

(u+)
2

(y+)
2

+ (y + uy+)
(
y++ + y[3]

)
+ u+u++y[4]

)

u+y++
(
y++ + y[3]

) .

Solving the i/o equation (3.43) with respect to y, the following re-
placement rule can be obtained

y =
u+y++

y[5]
− (u+)

2
(y+)

2
+ uy+

(
y++ + y[3]

)
+ u+u++y[4]

y++ + y[3]
,

applying which to (ln |Ψ′ ◦ φ|)′, one obtains

(
ln
∣∣∣Ψ′ ◦ y[5]

∣∣∣
)′

= − 2

y[5]
. (3.45)

The equality (3.45) shifted backward 5 times leads to (ln |Ψ′ ◦ y|)′ =
−2/y yielding the output transformation

Y = Ψ ◦ y =

∫
e
∫
− 2
y

dy
dy = −1

y
. (3.46)

Step 3. The system of partial differential equations (3.35) for n = 5, N = 2
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and α being both y and u reads as

− 1

u+y++
=
∂ϕ̄3

∂y

−2 (u+)
2
y+ + u

(
y++ + y[3]

)

u+y++
(
y++ + y[3]

) =
∂ϕ̄3

∂y+
+
∂ϕ̄2

∂y+

(
2y++ + y[3]

) (
u+ (y+)

2
+ u++y[4]

)

(y++)2 (y++ + y[3]
)2 +

+
y + uy+

u+ (y++)2 =
∂ϕ̄3

∂y++
+

∂ϕ̄2

∂y++
+

∂ϕ̄1

∂y++

u+ (y+)
2

+ u++y[4]

y++
(
y++ + y[3]

)2 =
∂ϕ̄2

∂y[3]
+
∂ϕ̄1

∂y[3]

− u++

y++
(
y++ + y[3]

) =
∂ϕ̄1

∂y[4]

− y+

u+y++
=
∂ϕ̄3

∂u

y + uy+

(u+)2 y++
− (y+)

2

y++
(
y++ + y[3]

) =
∂ϕ̄3

∂u+
+
∂ϕ̄2

∂u+

− y[4]

y++
(
y++ + y[3]

) =
∂ϕ̄3

∂u++
+

∂ϕ̄2

∂u++
+

∂ϕ̄1

∂u++
,

leading to

ϕ̄1 = − y[4]u++

(
y[3] + y++

)
y++

,

ϕ̄2 = − (y+)
2
u+

(
y[3] + y++

)
y++

,

ϕ̄3 = −y + y+u

y++u+
,

which, due to the output transformation (3.46) yields

ϕ1 =
(Y ++)

2
Y [3]u++

(
Y ++ + Y [3]

)
Y [4]

,

ϕ2 = − (Y ++)
2
Y [3]u+

(Y +)2 (Y ++ + Y [3]
) ,

ϕ3 = −(Y u+ Y +)Y ++

Y Y +u+
.
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Step 4. Using (3.7), one can define the new state variables

z1 = Y,

z2 = Y + − (Y −−)
2
Y −u−−

(Y −− + Y −)Y
,

z3 = Y ++ − (Y −)
2
Y u−

(Y − + Y )Y +
+

(Y −)
2
Y u−−

(Y −−)2 (Y − + Y )
,

z4 = Y [3] − (Y )2 Y +u

(Y + Y +)Y ++
+

(Y )2 Y +u−

(Y −)2 (Y + Y +)
+

+
(Y −−u−− + Y −)Y

Y −−Y −u−
,

z5 = Y [4] − (Y +)
2
Y ++u+

(Y + + Y ++)Y [3]
+

(Y +)
2
Y ++u

(Y )2 (Y + + Y ++)
+

+
(Y −u− + Y )Y +

Y −Y u
,

which, due to the output transformation (3.46) and state equations
(3.42), can be rewritten as

z1 = − 1

x2
,

z2 =
x2u

−−
(
x−−2

)2
+ x−−2 x−2

+
1

x1 + x2
,

z3 = − 1

x3
+

(
x−−2

)2
u−− − u− (x1 + x2)

x−2
(
x−2 + x2

) ,

z4 = x4 −
(
x−2
)2
u−

x1x2
+
x−−2 + x−2 u

−−

x2u−
,

z5 = −x
−
2 − x2u

− − x1x5 − x2x5

u (x1 + x2)
,

(3.47)

that leads to the state equations in the extended observer form

z+
1 = z2 +

(
z−−1

)2
z−1 u

−−
(
z−−1 + z−1

)
z1

z+
2 = z3 −

(
z−1
)2
z1u
−−

(
z−−1

)2 (
z−1 + z1

)

z+
3 = z4 −

z1

(
z−1 + z−−1 u−−

)

z−1 z
−−
1 u−

z+
4 = z5

z+
5 = 0

Y = z1.
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Chapter 4

Observable Space of the
System on Homogeneous
Time Scale

The observability property of the system, defined on homogeneous time
scale, is studied in this chapter. The definition of the observability is
given through the observability rank condition, commonly used both in
continuous- and discrete-time cases. This, however, differs from the stan-
dard definition, where the concept of (in)distinguishable states is employed.
The observability condition is presented in terms of the observable space.
Moreover, the notions of the observability filtration and observability in-
dices are extended to the systems on homogeneous time scales and the
decomposition of the system into the observable/unobservable subsystems
is addressed. The examples throughout the chapter are intended to illus-
trate different aspects of the theory.

4.1 Observability and Observable Space

Recall form Subsection 1.2.4 the MIMO system, defined on homogeneous
time scale T, that is,

x∆ = f(x, u)

y = h(x),
(4.1)

where x(t) : T→ X ⊂ Rn is an n-dimensional state vector, u(t) : T→ U ⊂
Rm is an m-dimensional input vector y(t) : T→ Y ⊂ Rp is a p-dimensional
output vector. Moreover, f : X×U→ X and h : X→ Y are assumed to be
real analytic functions.

Frequently the observability rank condition is used to check whether the
continuous-time nonlinear system is locally weakly observable [25], [38].
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This condition is sufficient for arbitrary initial state and necessary for al-
most all initial states. Thus, we introduce the definition of (generic) observ-
ability for nonlinear systems, defined on homogeneous time scales, through
the observability rank condition.

Definition 4.1. System (4.1) is called generically (single-experiment) ob-
servable if the rank of the observability matrix is generically equal to n, i.e.
if

rankK∗



∂
(
h1, h

〈1〉
1 , . . . , h

〈n−1〉
1 , . . . , hp, h

〈1〉
p , . . . , h

〈n−1〉
p

)

∂x


 = n. (4.2)

Recall that the superscript 〈i〉 denotes the ith delta derivative. Take into
account, that for T = τZ, τ > 0 the higher order delta derivative can be
computed explicitly as

h〈i〉ν =
1

τ i

i∑

k=0

(−1)kCki h
σi−kf
ν , (4.3)

where Cki is the binomial coefficient, i.e. Cki = i!
(i−k)!k! .

Proposition 4.1. For T = τZ, τ > 0, the following holds

rankK∗



∂
(
h1, h

〈1〉
1 , . . . , h

〈n−1〉
1 , . . . , hp, h

〈1〉
p , . . . , h

〈n−1〉
p

)T

∂x


 =

= rankK∗




∂

(
h1, h

σf
1 , . . . , h

σn−1
f

1 , . . . , hp, h
σf
p , . . . , h

σn−1
f
p

)T

∂x


 . (4.4)

Proof. Separate the first addend of the sum in the right-hand side of (4.3)
and then apply the relation (A.2), given in Appendix, to obtain

h〈i〉ν =
1

τ i

(
h
σif
ν −

i∑

k=1

Cki h
σi−kf
ν

k−1∑

l=0

C lk (−1)l
)
. (4.5)

Changing the summation order

i∑

k=1

k−1∑

l=0

ak,l =

i∑

k=1

i−k∑

l=0

ak+l,l
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and then using the relations Ck+l
i C lk+l = Cki C

l
i−k and 1

τ i
= 1

τk
1

τ i−k , one can
rewrite (4.5) as

h〈i〉ν =
1

τ i
h
σif
ν −

i∑

k=1

1

τk
Cki

1

τ i−k

i−k∑

l=0

(−1)l C li−kh
σi−k−lf
ν ,

which, according to (4.3), yields

h〈i〉ν =
1

τ i
h
σif
ν −

i∑

k=1

1

τk
Cki h

〈i−k〉
ν .

Using the relation above, the arbitrary row of the left-hand matrix in
(4.4) may be rewritten as

∂h
〈i〉
ν

∂x
=

1

τ i
∂h

σif
ν

∂x
−

i∑

k=1

1

τk
Cki

∂h
〈i−k〉
ν

∂x

for ν = 1, . . . , p and i = 1, . . . , n− 1. It is easy to observe, that the sum in
the relation above represents the linear combination of the previous rows
of the matrix and, therefore, can be removed without changing the rank of

the matrix. Since ∂h
σif
ν /∂x is the row of the right-hand matrix of (4.4) for

i = 1, . . . , n− 1, the statement of the proposition holds.

Remark 4.1. Since for T = R the delta derivative coincides with the clas-
sical time derivative, the condition (4.2) is equivalent to observability rank
condition given in [25] for continuous-time systems. By Proposition 4.1 in
the case T = τZ, τ > 0, the condition (4.2) is equivalent to the observ-
ability rank condition given in [55] for discrete-time systems, described in
terms of shift operator.

Though Definition 4.1 may be applied to check observability, it is easier
to be done using the concept of observable space like in the continuous-
time case [25]. Moreover, the observable space, whenever integrable, allows
to decompose the system into the observable/unobservable subsystems. In
the rest of this section we extend the concept of observable space to MIMO
systems, defined on homogeneous time scales, and, using the notion of ob-
servable space, provide the necessary and sufficient observability condition.

Given the system (4.1), denote by X , Yk, Y and U the following sub-
spaces of the differential one-forms

X := spanK∗ {dx} ,
Yk := spanK∗

{
dh〈j〉ν , ν = 0, . . . , p, 0 ≤ j ≤ k

}
,

Y := spanK∗
{

dh〈j〉ν , ν = 0, . . . , p, j ≥ 0
}
,

U := spanK∗
{

du〈l〉υ , υ = 1, . . . ,m, l ≥ 0
}
.

(4.6)
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By analogy with [25], the chain of subspaces

0 ⊂ O0 ⊂ O1 ⊂ · · · ⊂ Ok ⊂ · · · ⊂ Ok∗−1 = Ok∗ =: O∞, (4.7)

where
Ok := X ∩

(
Yk + U

)
(4.8)

is called the observability filtration. Denote by O∞ the limit of the observ-
ability filtration. It is easy to see that

O∞ = X ∩ (Y + U)

and analogously with [25] we call the subspace O∞ of X the observable
space1 of the system (4.1). The unobservable space of system (4.1), denoted
by XŌ, is defined as a subspace of X , which satisfies

XŌ ∼= X/O∞, XŌ ⊕O∞ = X ,

where X/O∞ denotes the factor-space.
From (4.6), taking into account (1.6) and using the linear transforma-

tions, one obtains

Yk + U =

= spanK∗

{
∂h
〈j〉
ν

∂x
dx, ν = 1, . . . , p, 0 ≤ j ≤ k; du〈l〉υ , υ = 1, . . . ,m, l ≥ 0

}
.

Consequently, according to (4.8)

Ok = spanK∗

{
∂h
〈j〉
ν

∂x
dx, ν = 1, . . . , p, 0 ≤ j ≤ k

}
, (4.9)

yielding

O∞ = spanK∗

{
∂h
〈j〉
ν

∂x
dx, ν = 1, . . . , p, j ≥ 0

}
.

Before studying the properties of the observable space we provide Lemma
4.1. Denote the one-forms which generate the observable space O∞ as

ων,j := ∂h
〈j〉
ν
∂x dx for ν = 1, . . . , p, j ≥ 0 and arrange them in the form of the

following matrix:

Ω :=




ω1,0 ω1,1 ω1,2 · · ·
ω2,0 ω2,1 ω2,2 · · ·

...
...

...
ωp,0 ωp,1 ωp,2 · · ·


 .

Denote the arbitrary row of the matrix Ω by Ων .

1Note that O∞ is in general not the observation space (as in [94]), associated with
the concept of the multi-experiment observability.
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Lemma 4.1. If Ων contains the one-form ων,i, being a linear combination
of the former one-forms ων,0, . . . , ων,i−1 from Ων , then the next one-forms
ων,j’s for j > i can also be represented as a linear combination of the one-
forms ων,0, . . . , ων,i−1.

The proof of Lemma 4.1 is given in the Appendix.
The proposition below describes the property of the subspace O∞.

Proposition 4.2.

dimK∗ O∞ = rankK∗



∂
(
h1, h

〈1〉
1 , . . . , h

〈n−1〉
1 , . . . , hp, h

〈1〉
p , . . . , h

〈n−1〉
p

)

∂x


 .

Proof. Represent the observable space as

O∞ = O1
∞ +O2

∞ + · · ·+Op∞,

where Oν∞ is generated by the elements of Ων . Since Oν∞ ⊆ O∞ ⊆ X
and, as a consequence, dimOν∞ ≤ dimO∞ ≤ dimX = n, it is enough to
use n independent differential one-forms ων,j to generate Oν∞. Lemma 4.1
guarantees that the first n one-forms ων,j , 0 ≤ j ≤ n−1, span the subspace
Oν∞. Consequently,

spanK∗

{
∂h
〈j〉
ν

∂x
dx, ν = 1, . . . , p, j ≥ 0

}
=

= spanK∗

{
∂h
〈j〉
ν

∂x
dx, ν = 1, . . . , p, 0 ≤ j ≤ n− 1

}
.

Thus, the rows of the observability matrix



∂
(
h1, h

〈1〉
1 , . . . , h

〈n−1〉
1 , . . . , hp, h

〈1〉
p , . . . , h

〈n−1〉
p

)

∂x


 (4.10)

with n columns can be regarded as the representation of the elements of the
codistribution O∞. Therefore, the number of linearly independent vectors
of O∞, i.e. dimK∗ O∞, can be found as the rank of the matrix (4.10).

The following theorem is the direct consequence of Definition 4.1 and
Proposition 4.2 and provides the characterization of the observability of the
system.

Theorem 4.1. A system (4.1) is (single-experiment) observable if and only
if O∞ = X .
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The following example illustrates how the observability of the system
can be checked using the observable space.

Example 4.1. Consider the continuous-time model of unicycle [25] and its
discrete-time approximation, based on Euler sampling scheme, as a single
model defined on the homogeneous time scale T

x∆
1 = u1 cosx3

x∆
2 = u1 sinx3

x∆
3 = u2

y1 = x1

y2 = x2.

(4.11)

Using (4.9), the observability filtration (4.7) of the system (4.11) may be
computed as follows

O0 = spanK∗ {dx1, dx2} ,
O∞ = O1 = spanK∗ {dx1, dx2, dx3} .

Since the observable space O∞ = X , the system is observable. Alterna-
tively, one may check that direct application of Definition 4.1 yields the
same result though requires more computations:

rankK∗



∂
(
h1, h

∆f

1 , h
〈2〉
1 , h2, h

∆f

2 , h
〈2〉
2

)

∂x


 =

= rankK∗




1 0 0
0 0 −u1 sinx3

0 0 a
0 1 0
0 0 u1 cosx3

0 0 b




= 3,

where

a :=




u1 sinx3 −

(
u1 + τu∆

1

)
sin (τu2 + x3)

τ
if T = τZ, τ > 0,

−u1u2 cosx3 − u̇1 sinx3 if T = R,

b :=




−u1 cosx3 +

(
u1 + τu∆

1

)
cos (τu2 + x3)

τ
if T = τZ, τ > 0,

−u1u2 sinx3 + u̇1 cosx3 if T = R.
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Given a system of the form (4.1), its observability filtration (4.7), like
in the continuous-time case [25], defines a set of structural indices σj for
j = 1, . . . , k∗ by

σ1 := dimK∗ O0,

σj := dimK∗ (Oj−1/Oj−2) , j = 2, . . . , k∗.
(4.12)

Another set of indices si for i = 1, . . . , p, being dual to the set {σj , j =
1, . . . , k∗}, is defined by

si := card {σj | σj ≥ i} (4.13)

and called the set of observability indices of system (4.1). The integer σj
represents the number of observability indices si which are greater than or
equal to j, and duality implies that σj = card {si | si ≥ j}.

Observability indices determine how many delta derivatives of the re-
spective output components one needs to use for computation of the initial
state x on the basis of the inputs and outputs and their delta derivatives.
The following proposition describes the key property of the observability
indices.

Proposition 4.3. Given a system of the form (4.1), one has

dimK∗ O∞ = s1 + · · ·+ sp.

Proof. Note that dimK∗ (Oj−1/Oj−2) = dimK∗ Oj−1 − dimK∗ Oj−2. Using
(4.12) one can write

k∗∑

j=1

σj =
k∗∑

j=1

dimK∗ Oj−1 −
k∗∑

j=2

dimK∗ Oj−2. (4.14)

Separating the last addend of the first sum in the right-hand side of (4.14),
replacing in this sum index j by j−1 and taking into account that Ok∗−1 =
O∞, we obtain

k∗∑

j=1

σj = dimKO∞ +

k∗∑

j=2

dimKOj−2 −
k∗∑

j=2

dimKOj−2 = dimKO∞. (4.15)

The relation between indices σj and si can be expressed by means of a
k∗ × p table, whose (j, i)th element is defined by (j = 1, . . . , k∗ pointing to
the row and i = 1, . . . , p to the column)

aj,i :=

{
1, 1 ≤ i ≤ σj ,
0, (σj + 1) ≤ i ≤ p,

=

{
1, 1 ≤ j ≤ si,
0, (si + 1) ≤ j ≤ k∗.
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Thus, the indices σj and si are the sums of elements in the jth row and ith
column, respectively, i.e.

σj =

p∑

i=1

aj,i, si =
k∗∑

j=1

aj,i. (4.16)

Taking into account (4.15) and (4.16), one obtains

p∑

i=1

si =

p∑

i=1

k∗∑

j=1

aj,i =
k∗∑

j=1

σj = dimKO∞,

which completes the proof.

Example 4.2. (Continuation of Example 4.1). One has σ1 = 2, σ2 = 1 and
so, the observability indices are s1 = 2, s2 = 1. Taking delta derivatives
of y1 and y2 up to the orders s1 − 1 and s2 − 1, respectively, we obtain
y1 = x1, y∆

1 = u1 cosx3, y2 = x2, yielding

x1 = y1

x2 = y2

x3 = arccos
y∆

1

u2
.

4.2 Decomposition of the System into Observable
and Unobservable Subsystems

For certain applications it will be useful to have system representations in
which the observable and unobservable state variables can be explicitly dis-
tinguished. For a continuous-time nonlinear control system the decompo-
sition into observable/unobservable subsystems has been carried out both
via differential geometric [44], [80] and linear algebraic methods [25] and
is proved to be always doable. For example, in [25] the decomposition was
first carried out for linearized system defined in terms of one-forms, and
then, it was proved that the observable subspace of differential one-forms
is always (generically) integrable. Therefore, the observable subspace of
one-forms can be (at least locally) spanned by exact one-forms whose inte-
grals define the observable state coordinates. As demonstrated in [55], for
the discrete-time nonlinear control systems described in terms of the shift
operator σf the decomposition at the level of equations (state variables) is
not always possible since the observable space of one-forms is not neces-
sarily completely integrable. Moreover, the paper [59] provides a general
subclass of systems with non-integrable observable subspace.
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The purpose of this section is to study the possibility to decompose the
nonlinear control system defined on the homogeneous time scale into the
observable and unobservable subsystems. Since the delta-domain model
obtained via sampling [32] behaves similarly to the continuous-time system
and at the limit, when the sampling frequency tends to infinity, approaches
the continuous-time system, it was our working hypotheses that the delta-
domain models are, in general, decomposable into observable/unobservable
parts.

The latter would mean that the respective observable space O∞, as a
space of differential one-forms, is completely integrable. In the case µ ≡ 0
(T = R), the observable space O∞ is proved to be integrable [25]. Unfor-
tunately, unlike the case T = R for the case T = τZ, τ > 0, O∞ is not
necessarily integrable. We give a number of counterexamples.

Example 4.3. Consider the control system, defined on homogeneous time
scale

x∆
1 = x3 + ux3 − x1

x∆
2 = u− x2

x∆
3 = ux1 − x3 − x2

y = x3.

(4.17)

By (4.7), for this system,

O∞ = O2 = spanK∗
{

dx3, 2dx2 +
(
u∆ − µu∆ − 2u

)
dx1, dx2 − udx1

}
.

If T = R, then µ ≡ 0 and obviously2, O∞ = X . If T = τZ, τ > 0, then
O∞ = X , except for the case µ = τ = 1 when

O∞ = spanK∗ {dx3, dx2 − udx1} ,

being non-integrable subspace by Theorem 1.3, since d(dx2−udx1)∧dx3∧
(dx2 − udx1) = du ∧ dx1 ∧ dx2 ∧ dx3 6= 0.

Next example demonstrates that the loss of integrability does not nec-
essarily occur only at µ = 1.

Example 4.4. Consider the system

x∆
1 = x2 −

x1

3

x∆
2 = ux1 + x3 − x2

x∆
3 = eu

2x1+ux3 − x3

3
y = x2

(4.18)

2Of course, for µ ≡ 0 the result also follows from continuous-time theory [25].
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the observable space of which is

O∞ = O2 = spanK

{
dx2, udx1 + dx3,

(
u∆ − µu∆

3

)
dx1

}
.

Like in the previous example, if T = R, then µ ≡ 0 and O∞ = X . If
T = τZ, τ > 0, then O∞ = X , except for the case µ = τ = 3 when
O∞ = spanK∗ {dx2, udx1 + dx3}, again non-integrable by the Frobenius
theorem.

Finally, we provide an example of the system for which the observable
space O∞ is integrable for every choice of the value of µ.

Example 4.5. Consider the system

x∆
1 = tan(x1 − x2)u1

x∆
2 = u1 tan(x1 − x2)− u2 cos2(x1 − x2)

x∆
3 = u1

y1 = x3

y2 = x1 − x2.

(4.19)

The observable space O∞ = O0 = spanK {dx1 − dx2, dx3} is obviously
integrable by direct inspection.

To conclude, we conjecture that the observable space O∞ is in general
integrable except for a few possible µ values where these values correspond
to the sampling frequencies at which the state transition map of the sampled
system is not reversible. The following example illustrates this conjecture.

Example 4.6. (Continuation of Examples 4.3 – 4.5). The state transition
map of system (4.17) is

xσ1 = µ (x3 + ux3 − x1) + x1

xσ2 = µ (u− x2) + x2

xσ3 = µ (ux1 − x3 − x2) + x3.

(4.20)

In order to check the reversibility of the system, one needs to verify whether
the Jacobian matrix ∂f̃(x, u)/∂x is nonsingular. The Jacobian matrix of
system (4.20) is

∂f̃(x, u)

∂x
=




1− µ 0 µ(1 + u)
0 1− µ 0
µu −µ 1− µ


 .

Note that the matrix above is singular for µ = 1, implying that the state
transition map (4.20) is not reversible at the sampling frequency equal 1.
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Next, consider the state transition map of system (4.18), which reads as

xσ1 = µ
(
x2 −

x1

3

)
+ x1

xσ2 = µ (ux1 + x3 − x2) + x2

xσ3 = µ
(

eu
2x1+ux3 − x3

3

)
+ x3.

(4.21)

The Jacobian matrix of system (4.21), i.e.

∂f̃(x, u)

∂x
=




1− µ

3
µ 0

µu 1− µ µ

eu(ux1+x3)µu2 0 1− µ

3
+ eu(ux1+x3)µu



,

is singular for µ = 3. Consequently, the state transition map (4.21) is not
reversible at the sampling frequency equal 3. Finally, the state transition
map of system (4.19) is

xσ1 = µ tan(x1 − x2)u1 + x1

xσ2 = µ
(
u1 tan(x1 − x2)− u2 cos2(x1 − x2)

)
+ x2

xσ3 = µu1 + x3

(4.22)

and its Jacobian matrix reads as

∂f̃(x, u)

∂x
=




1 +
µu1

cos2 (x1 − x2)

−µu1

cos2 (x1 − x2)
0

a 1− a 0

0 0 1


 ,

where

a := µ

(
u1

cos (x1 − x2)2 + u2 sin (2 (x1 − x2))

)
.

One can verify that the matrix above is nonsingular for any µ ≡ const,
meaning that the state transition map (4.22) is reversible at any sampling
frequency. To conclude, comparing the result above with those presented
in Examples 4.3 – 4.5, one can observe the consistency of the sampling
frequencies at which the state transition maps are not reversible and the
values of µ for which the observable spaces O∞ are not integrable. These
examples support our conjecture.
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If the observable space O∞ is integrable, and therefore, has locally an
exact basis {dζ1, . . . ,dζr}, one can complete the set {dζ1, . . . ,dζr} to a basis
{dζ1, . . . ,dζr, dζr+1, . . . ,dζn} of X . Then, in the coordinates {ζ1, . . . , ζn},
the system reads as

ζ∆
1 = f1 (ζ1, . . . , ζr, u) ,

...

ζ∆
r = fr (ζ1, . . . , ζr, u) ,

ζ∆
r+1 = fr+1 (ζ, u) ,

...

ζ∆
n = fn (ζ, u) ,

y = h (ζ1, . . . , ζr) ,

being the decomposition of the system into the observable (first r equations)
and unobservable (equations from (r + 1)th to nth) subsystems.
Example 4.7. (Continuation of Example 4.5). Integrating the observable
space O∞ of the system, we get the set of the observable state variables
ζ1 = x1 − x2 and ζ2 = x3. Next we complete O∞ to a basis of X , taking,
for example, ζ3 = x1. In these coordinates the system equations read as

ζ∆
1 = u1

ζ∆
2 = u2 cos2 ζ2

ζ∆
3 = u1 tan ζ2

y1 = ζ1

y2 = ζ2,

where the first two equations (together with the output equations) define
the observable subsystem. The state ζ3 is unobservable.
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Chapter 5

Implementation of the
Results in the NLControl
Package

The purpose of this chapter is to present several Mathematica functions, im-
plementing the theoretical results of the thesis. The functions are developed
within the package NLControl, which provides the symbolic computational
tools that assist the solution of different modeling, analysis, and synthesis
problems for nonlinear control systems. Therefore, the first section provides
the brief introduction into the basics of the NLControl package. The next
section describes the functions developed to facilitate the transformation
of the continuous- or discrete-time system equations into the (extended)
observer form. The observability related functions are presented in the last
section. The description of the functions is accompanied by illustrative
examples.

5.1 Outline of the NLControl Package

In this section the essential information about the NLControl package is
recalled and the description of its basic functions, necessary in the sequel,
is provided.

To take advantage of the NLControl package, first it should be properly
installed within Mathematica environment and then loaded by means of the
following command

In[1]:= << NLControl‘Master‘

In the further examples of this chapter we assume that the command above
is evaluated and the NLControl package is loaded.
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In order to operate with the system described by the state equations
(1.1), (1.3) or (1.5), it should be entered in the following form

StateSpace[f, Xt, Ut, t, h, Yt, Type],

where f is a list containing the components of the state function; Xt, Ut and
Yt define the lists of the state, input and output variables, respectively; t
is a time argument and h defines the output function. The argument Type
may have one of the following values: TimeDerivative and Shift stand
for continuous- and discrete-time cases, respectively, whereas TimeScale

indicates the system defined on time scale.
Another special object in the NLControl package is

SpanK[{{a11,...,a1i},...,{ak1,...,aki}},{x1,...,xi},-1,t]

which represents the subspace spanned over K∗ by the differential one-
forms aj1dlx1 + ... + ajidlxi for j = 1, ..., k. Argument t means that
all symbols depending on t are considered as variables.

Note that the form of some objects, determined by Mathematica and
the NLControl package, differs from the traditional and familiar form. The
function BookForm is intended to display such objects in a more accus-
tomed form. For instance, it allows to represent the system, specified by
the function StateSpace, in a form of equations. One of the optional argu-
ments of the function BookForm is TimeArgument -> False, which allows
to leave out the time argument t and display the result in the abridged no-
tation. Note that throughout this chapter we will use this option to make
the exposition more compact.

5.2 Transformation of the System into Observer
Form

The functions, presented in this section, were developed within the NLCon-
trol package to facilitate the transformation of the nonlinear control system
into the observer form. The function

ObserverFormTransformability[contSys]

checks the validity of the conditions (2.11) in order to verify whether the
continuous-time system, determined by the argument contSys, is trans-
formable into the observer form (2.5) or not. Besides, the function

ObserverFormTransformability[discrSys, bN, opts]

checks whether the discrete-time system, given by the argument discrSys,
is transformable into the extended observer form (3.5) with the buffer,
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determined by the argument bN . The optional argument opts specifies
the type of the conditions to check. If the value of opts is Method ->

OneForms the function uses the conditions (3.13). The default value of the
argument opts is Method -> PartialDerivatives, yielding the verifi-
cation of the conditions (3.30). In both continuous- and discrete-time cases
the function ObserverFormTransformability returns True if the trans-
formability conditions are satisfied. Otherwise, the output of the function
is False.

For the discrete-time systems was programmed the function

MinBuffer[discrSys],

which recursively applies the function ObserverFormTransformability

to find the minimal buffer, allowing to transform the system into the ex-
tended observer form (3.5).

The function

ObserverForm[contSys, newXt, newYt]

applies Algorithm 2.1 to transform the continuous-time system contSys

into the observer form (2.5), whenever possible. Morover, the same function
called as

ObserverForm[discrSys, bN, newXt, newYt]

applies Algorithm 3.1 to transform the discrete-time system discrSys into
the extended observer form (3.5) with buffer bN , whenever possible. The
argument newXt defines the new state variables, in terms of which the trans-
formed system will be represented. The argument can be entered as a list of
variables or as a pure function z#[t]&, which implicitly generates the list
{z1[t], ..., zn[t]} of the demanded length. The last argument newYt
denotes the new output variable, necessary to represent the transformed
output. If all steps of the corresponding algorithm can be completed, the
function ObserverForm returns the system in the required observer form
together with the change of coordinates ((2.7) or (3.7), respectively) and
the output transformation ((2.4) or (3.4), respectively). In the case when
the transformability conditions are not satisfied, the output of the function
is an empty list {}.

Furthermore, the functions, described above, were implemented online
at the NLContol website [43]. To take advantage of this online tool, one
has to select the option Observer Form either from the section Continuous
or Discrete in the main menu of the site and, after filling the corresponding
text fields, push the button Evaluate.

The following examples illustrate the application of the functions, de-
scribed above.
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Example 5.1. Consider the model of a DC motor from Example 2.1. The
state equations (2.23) can be entered as follows

In[2]:= f = {-Km x1[t] x2[t] - (Ra + Rf) / k x1[t] + u[t],
-B/J x2[t] - x3[t] + Km/J k x1[t]

2, 0};
Xt = {x1[t], x2[t], x3[t]};
Ut = {u[t]};
Yt = {y[t]};
h = {x1[t]};
DCMotor = StateSpace[f, Xt, Ut, t, h, Yt,

TimeDerivative];
BookForm[DCMotor, TimeArgument -> False]

yielding

Out[8]=

x1’ =
k u - x1(Ra + Rf + k Km x2)

k

x2’ =
k Km x1

2 - B x2 - J x3

J
x3’ = 0
y = x1

Applying the function ObserverFormTransformability, one obtains

In[9]:= ObserverFormTransformability[DCMotor]

Out[9]= True

meaning that the state equations can be transformed into the observer
form. To perform the transformation we apply the function ObserverForm

as follows

In[10]:= BookForm[ObserverForm[DCMotor, z#[t]&, Y[t]],
TimeArgument -> False]

Out[10]=

z1’ = e
-z1 u -

B z1

J
+ z2

z2’ = -
e
2 z1 k Km2

J
+
B e-z1 u

J
+ z3

z3’ = 0

Y = z1

z1 = Log[x1]

z2 =
-J (Ra + Rf) + B k Log[x1] - J k Km x2

J k

z3 = -
B (Ra + Rf)

J k
+ Km x3

Y = Log[y]
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The first four rows of the result represent the system in the observer form
(2.28), whereas the rest contains the change of coordinates (2.27) and the
output transformation (2.26).

Example 5.2. Recall the discrete-time system (3.37) from Example 3.1.
One can enter the system as follows

In[11]:= f = {u[t] x2[t],x3[t],
(x1[t] + x2[t] u[t] + u[t]) (u[t] x2[t] + x3[t])
(u[t] x1[t] + x4[t]), u[t] + x1[t]};

Xt = {x1[t], x2[t], x3[t], x4[t]};
Ut = {u[t]};
Yt = {y[t]};
h = {x1[t]};
system1 = StateSpace[f, Xt, Ut, t, h, Yt, Shift];
BookForm[system1, TimeArgument -> False]

Out[17]=

x+1 = u x2

x+2 = x3

x+3 = (x1 + u (1 + x2)) (u x2 + x3) (u x1 + x4)

x+4 = u + x1

y = x1

In order to check whether the system above satisfies the conditions (3.30)
for buffer N = 1, we run the command

In[18]:= ObserverFormTransformability[system1, 1]

Out[18]= True

The validity of the conditions (3.13) for N = 1 can be checked by means of
the command

In[19]:= ObserverFormTransformability[system1, 1,
Method -> OneForms]

Out[19]= True

Both results show that the system can be transformed into the extended
observer form with buffer N = 1. Note that entering 0 as the value of the
buffer, one can check whether the system is transformable into the observer
form without buffer.

In[20]:= ObserverFormTransformability[system1, 0]

Out[20]= False
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The consequence of the result above is that N = 1 is the minimal buffer for
which the system can be transformed into the observer form. The function
MinBuffer confirms this fact.

In[21]:= MinBuffer[system1]

Out[21]= 1

To transform the system into the extended observer form with buffer N = 1,
one can call the function ObserverForm as follows

In[22]:= BookForm[ObserverForm[system1, 1, z#[t]&, Y[t]],
TimeArgument -> False]

Out[22]=

z+1 = -Log[u-] + Log
[
e
z1 + ez

-
1 u-

]
+ Log[u] + z2

z+2 = Log
[
e
z-1 + ez1 + u-

]
+ z3

z+3 = Log
[
e
z-1 + u- + ez1 u

]
+ z4

z+4 = 0

Y = z1

z1 = Log[x1]
z2 = Log[u-] - Log[u- x-1 + x1] + Log[x2]
z3 = Log[u] - Log[u- + x-1 + x1] - Log[u (x1 + x2)] + Log[x3]

z4 = Log[u+] - Log[u- + x-1 + u x1] + Log[u x2 + x3] -

Log[u+ (u x2 + x3)] + Log[u x1 + x4]

Y = Log[y]

The upper block of equations above is the system in the extended observer
form with buffer N = 1. The lower block represents the change of coordi-
nates (3.41) and the output transformation (3.40), respectively.
Example 5.3. Examine the discrete-time system (3.42) from Example
3.2. The system can be entered as follows

In[23]:= f ={{x1[t] + x2[t] - x3[t], -x1[t] - x2[t],
-(x1[t] x2[t]) / (u[t] x3[t] + x1[t] x2[t] x4[t]),
-(u[t]2 x2[t]2 + (x1[t] + x2[t])

(x1[t] + x2[t] - x3[t]) x5[t])//
(u[t] (x1[t] + x2[t]) (x1[t] + x2[t] - x3[t])),

(x2[t] - u[t] (x1[t] + x2[t])) / x3[t]}};
Xt = {x1[t], x2[t], x3[t], x4[t], x5[t]};
Ut = {u[t]};
Yt = {y[t]};
h = {x2[t]};
system2 = StateSpace[f, Xt, Ut, t, h, Yt, Shift];
BookForm[system2, TimeArgument -> False]

84



Out[29]=

x+1 = x1 + x2 - x3

x+2 = -x1 - x2

x+3 = -
x1 x2

u x3 + x1 x2 x4

x+4 = -
u2 x2

2 + (x1 + x2)(x1 + x2 - x3) x5

u (x1 + x2) (x1 + x2 - x3)

x+5 =
x2 - u (x1 + x2)

x3
y = x2

First, find the minimal buffer, allowing to transform the system into the
extended observer form.

In[30]:= bN = MinBuffer[system2]

Out[30]= 2

Next, transform the system into the extended observer form with obtained
buffer.

In[31]:= BookForm[ObserverForm[system2, bN, z#[t]&, Y[t]],
TimeArgument -> False]

Out[31]=

z+1 =
u-- z--1

2 z-1
(z--1 + z-1) z1

+ z2

z+2 = -
u-- z-1

2 z1

z--1
2 (z-1 + z1)

+ z3

z+3 =

(
- 1
z--1

- u--

z-1

)
z1

u-
+ z4

z+4 = z5

z+5 = 0

Y = z1

z1 = -
1

x2

z2 =
u-- x2

x--2
2 + x--2 x-2

+
1

x1 + x2

z3 = -
x-2

2 + x-2 x2 +
(
-u-- x--2

2 + u- (x1 + x2)
)
x3

x-2 (x
-
2 + x2) x3

z4 =
-u-2 x-2

2 + x1 (x
--
2 + u-- x-2 + u

- x2 x4)

u- x1 x2

z5 = -
x-2 + u

- x2 + (x1 + x2) x5

u (x1 + x2)

Y = -
1

y
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The upper block of equations above is the system in the extended observer
form with buffer N = 2. The lower block represents the change of coordi-
nates (3.47) and the output transformation (3.46), respectively.

5.3 Observability Related Functions

The following set of functions was developed within the NLControl package
in order to assist in the verification of the observability condition, construc-
tion of the observability filtration and the observable space, computation
of the observability indices and decomposition of the system into the ob-
servable and unobservable subsystems. Though in the context of the thesis
the functions are applied to the systems, defined on the homogeneous time
scale, they are also applicable to the continuous- and discrete-time systems
(see for details [82]).

The functions and their assignments are listed below.

• Observability[Sys] uses the observability rank condition (4.2) to
check whether the system is observable or not.

• ObservabilityFiltration[Sys] constructs the observability fil-
tration (4.7) of the system.

• ObservableSpace[Sys] constructs the observable subspace O∞ of
the system, i.e. O∞ ⊆ X .

• UnObservableSpace[Sys] constructs the unobservable subspace XŌ
of the system, i.e. XŌ ∼= X/O∞.

• ObservabilityIndices[Sys] computes the sets of the indices σj
and the observability indices si, defined by (4.12) and (4.13), respec-
tively.

• ObservabilityDecomposition[Sys, newXt] decomposes the sys-
tem into observable and unobservable subsystems, whenever possible.

In the functions, described above, the arguments Sys and newXt define
the system under consideration and a list of new state variables, respec-
tively. Moreover, the function ObservabilityDecomposition optionally
may have the argument PrintInfo -> True, which provides the addi-
tional information.

Furthermore, the online implementation of the above-mentioned func-
tions is available at the NLContol website [43]. To take advantage of this
online tool, reveal the content of the section Time Scales in the main menu
of the site, then choose the option Observability and, after filling the corre-
sponding text fields, push the button Evaluate.

86



The application of the functions is illustrated by means of the following
examples.

Example 5.4. Consider the model of unicycle from Example 4.1. One can
enter the equation (4.11) as follows

In[32]:= f = {u1[t] Cos[x3[t]], u1[t] Sin[x3[t]], u2[t]};
Xt = {x1[t], x2[t], x3[t]};
Ut = {u1[t], u2[t]};
Yt = {y1[t], y2[t]};
h = {x1[t], x2[t]};
unicycle = StateSpace[f, Xt, Ut, t, h, Yt, TimeScale];
BookForm[unicycle]

yielding

Out[38]=

x [1]
1 [t] = Cos[x3[t]] u1[t]

x [1]
2 [t] = Sin[x3[t]] u1[t]

x [1]
3 [t] = u2[t]

y1[t] = x1[t]

y2[t] = x2[t]

Note that, unlike the notations in the thesis, in the NLControl package
the superscript [1] stands for the delta derivative. Applying the function
Observability one obtains

In[39]:= Observability[unicycle]

Out[39]= True

meaning that the system is observable. The observability filtration of the
system can be found as follows

In[40]:= BookForm[ObservabilityFiltration[unicycle]
TimeArgument -> False]

Out[40]= {SpanK[dlx1, dlx2],

SpanK[dlx1, dlx2, dlx3], SpanK[dlx1, dlx2, dlx3]}

The last element of the result is the observable space of the system. To
compute the sets of indices σj and si, the function ObservabilityIndices

can be used

In[41]:= ObservabilityIndices[unicycle]

Out[41]= {{2, 1}, {2, 1}}
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In above, the first set of integers represents the indices σj , defined by (4.12),
whereas the second set of integers stands for the observability indices si,
defined by (4.13).

Example 5.5. Consider the system (4.19) from Example 4.5. The equa-
tions can be entered by means of the following commands

In[42]:= f ={{Tan[x1[t] - x2[t]] u1[t],
u1[t] Tan[x1[t] - x2[t]] - Cos[x1[t] - x2[t]]

2 u2[t],
u1[t]}};

Xt = {x1[t], x2[t], x3[t]};
Ut = {u1[t], u2[t]};
Yt = {y1[t], y2[t]};
h = {x3[t], x1[t] - x2[t]};
system3 = StateSpace[f, Xt, Ut, t, h, Yt, TimeScale];
BookForm[system3]

Out[48]=

x [1]
1 = Tan[x1 - x2] u1

x [1]
2 = Tan[x1 - x2] u1 - Cos[x1 - x2]

2 u2

x [1]
3 = u1
y1 = x3
y2 = x1 - x2

Running the command

In[49]:= ObservabilityIndices[system3]

Out[49]= {{2}, {1, 1}}

we obtain the sets of indices σj and si, respectively. Next, compute the
observable and unobservable spaces of the system.

In[50]:= BookForm[ObservableSpace[system3],
TimeArgument -> False]

Out[50]= SpanK[dlx1 - dlx2, dlx3]

In[51]:= BookForm[UnObservableSpace[system3]],
TimeArgument -> False]

Out[51]= SpanK[dlx1]

Since the observable space is not equal to X (or alternatively, the unobserv-
able space is not {0}), the system is not observable, and one can employ
the function ObservabilityDecomposition to decompose the system into
the observable and unobservable subsystems.
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In[52]:= BookForm[ObservabilityDecomposition[system3, z#[t]&,
PrintInfo -> True], TimeArgument -> False]

{z1[t], z2[t]} are observable variables.

{z3[t]} is unobservable variable.

Out[52]=

z [1]
1 = u1

z [1]
2 = Cos[z2]

2 u2

z [1]
3 = Tan[z2] u1
y1 = z1
y2 = z2

z1 = x3
z2 = x1 - x2
z3 = x1

The first two rows of the result provide an additional information about
the new coordinates, the next five rows represent the decomposed system
and the remaining rows show the coordinate transformation, which yielded
the decomposition.
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Conclusions

Concluding Remarks

In such practical control tasks as computation of the state feedback and
monitoring of the system behavior the observer plays an important role,
providing the state estimate, whenever the state itself is not directly mea-
surable or its measurement is very expensive. The thesis is mainly devoted
to the problem of transforming the nonlinear state equations into the (ex-
tended) observer form, for which the observer can be easily constructed.
Both continuous- and discrete-time systems are considered. Our approach
is based on the analysis of the structure of the input-output equation, cor-
responding to the state equations. Under observability assumption, one
may always find the input-output equation, at least locally, using the state
elimination algorithm (see, for example, [25]). The observer form approach,
relying on the state transformation only, imposes restrictive conditions for
transformability of nonlinear control system into the observer form. There-
fore, the aim is to relax the conditions by employing the output transforma-
tion in addition to the state transformation and considering the extended
observer form with generalized input-output injections. The results of the
thesis can be divided into four parts.

• First, the necessary and sufficient conditions are given for the exis-
tence of the state and output coordinate transformations, that bring
the continuous-time state equations into the observer form. The con-
ditions require that certain differential one-forms, associated with the
input-output equation of the system, are closed. Once the input-
output equation is obtained by the state elimination, the conditions
to be checked can be easily constructed due to the direct formula
for computation of the necessary one-forms. However, note that the
conditions depend on an unknown single-variable output-dependent
function. As a consequence, the verification of the conditions requires
to solve certain differential equation, which, sometimes, can be diffi-
cult task. The algorithm is also given for transformation of the state
equations into the observer form. The presented results can be con-
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sidered as an improvement of those given in [31]. Unlike [31], where
the two-step procedure was proposed, the conditions presented in the
thesis are more straightforward for verification.

• Second, the thesis presents two alternative (complementary) sets of
necessary and sufficient conditions for the existence of the extended
coordinate change and the output transformation that allow to trans-
form the discrete-time state equations into the extended observer form
with buffer (i.e. the nonnegative integer determining the number
of past values of the input and output, necessary for transforma-
tion). The first set of conditions is expressed in terms of the exterior
derivatives and the exterior products of certain one-forms, associated
with the input-output equation, corresponding to the state equations.
These conditions have the advantage of being intrinsic. The other set
of conditions is formulated in terms of certain partial derivatives,
related to the i/o equation of the system, and due to the matrix
representation can be checked almost by direct inspection. More-
over, the matrix representation simplifies the determination of the
minimal value of the buffer allowing the transformation. Besides the
conditions, we proposed the algorithm for transformation of the state
equations into the extended observer form. The presented results
generalize those given in [40], [78], [79]. In [78] the authors provided
the necessary and sufficient conditions in terms of one-forms for the
special case of the observer form without the buffer, whereas in [79]
the special case of the buffer being equal to 1 was considered and
the solvability conditions were given in terms of partial derivatives.
Though in [40] the arbitrary buffer was considered, the conditions,
relying on the sophisticated language of differential geometry, were
given only for systems without inputs.

• The third part of the thesis presents the results on observability prop-
erty of the nonlinear system, defined on homogeneous time scale.
Time scale analysis allows to unify continuous- and discrete-time the-
ories, presenting both of them simultaneously under the same lan-
guage. The related notions such as observability, observability fil-
tration, observable space and observability indices were extended to
the systems, defined on time scale. Moreover, the possibility to de-
compose the system into observable/unobservable subsystems is dis-
cussed.

• Finally, the fourth part describes implementation of the theoretical
results of the thesis in the form of Mathematica functions within the
framework of NLControl package. In total nine functions were pre-
sented. Three of them facilitate the transformation of the continuous-
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or discrete-time state equation into the corresponding (extended) ob-
server form, whereas another six functions assist in the verification
of the observability condition, construction of the observability fil-
tration and the observable (unobservable) space, computation of the
observability indices and decomposition of the system into the ob-
servable/unobservable subsystems, whenever possible.

Future Research

The results of the thesis may be extended in several ways. One of the open
topics for future research is the extension of our results for the continuous-
time systems to the case, when the input-output injections in the observer
form are allowed to depend also on the derivatives of the input (as in [31]).
Unlike [31], where the solution was given as a two-step procedure, we are
intended to derive more direct conditions. Moreover, we have an intention
to compare our results with those presented in [63], [85], which rely on the
tools from differential geometry.

In the discrete-time case the future goal is to compare our results with
the dynamic observer error linearization technique, presented in [100], where
in order to transform the system into the generalized observer form, it is
suggested to augment the system by means of the so called dynamic aux-
iliary system of the specific linear form. It is our conjecture that the two
approaches are closely related, since, in principle, the past values of input
and output may be possibly expressed in terms of system extensions.

Regarding the systems, defined on homogeneous time scales, one of the
future goals is to define the observability property using the concept of
(in)distinguishable states. Moreover, we intend to carry over the observer
form approach to the systems on homogeneous time scale.
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Appendix

For the proof of Lemmas A.1 and 2.1 we will use the binomial theorem
(a+ b)k =

∑k
l=0C

l
ka
lbk−l, which for a = −1, b = 1 and k ≥ 1 gives

k∑

l=0

C lk(−1)l = 0. (A.1)

Separating the last addend of the sum above and placing it into the right-
hand side of the equality, yields

k−1∑

l=0

C lk(−1)l = −(−1)k. (A.2)

Proof of Theorem 1.4

Proof. In the proof we omit the variable t, i.e. use instead of ξi(t) a shorter
notation ξi, which allows to write the bulky formulas in a more compact
form. According to Mishkov’s formula [75], the (a+ b)th derivative of the
composite function Φ can be computed by the formula

(Φ(ξ1, ξ2, . . . , ξr))
(a+b) =

∑

0

∑

1

∑

2

· · ·
∑

a+b

(a+ b)!
a+b∏

i=1

(i!)ki
a+b∏

i=1

r∏

j=1

qi,j !

·

· ∂kΦ

∂ξp11 ∂ξ
p2
2 · · · ∂ξprr

a+b∏

i=1

r∏

j=1

(
ξ

(i)
j

)qi,j
, (A.3)

where the respective sums are taken over all nonnegative integer solutions
of the Diophantine equations, as follows

∑

0

→ k1 + 2k2 + · · ·+ (a+ b)ka+b = a+ b, (A.4a)

∑

i

→ qi,1 + qi,2 + · · ·+ qi,r = ki, (A.4b)
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for i = 1, . . . , a+ b, and pj and k on the right-hand side of (A.3) satisfy the
relations

pj = q1,j + q2,j + · · ·+ qa+b,j , j = 1, 2, . . . , r,

k = p1 + p2 + · · ·+ pr = k1 + k2 + · · ·+ ka+b.
(A.5)

In derivation of sum (A.3) with respect to ξ
(a)
l , only addends of sum

(A.3) with qa,l 6= 0 will matter. Denote by H(·) and G(·) the parts of sum
(A.3) corresponding to qa,l 6= 0 and qa,l = 0, respectively; then

(Φ(ξ1, ξ2, . . . , ξr))
(a+b) = H(·) +G(·). (A.6)

Note that it is possible to state that H(·) equals to expression in the right-
hand side of (A.3) where in addition to the restrictions expressed by (A.4)
and (A.5), the condition qa,l 6= 0 has to be satisfied. Note also that if
qa,l 6= 0, then ka 6= 0. We prove the formula separately for the cases a > b
and a ≤ b.

First, consider the case when a > b. Since ka 6= 0 and qa,l 6= 0, in order
to satisfy (A.4) the following must hold

ka = 1, ki = 0, b < i ≤ a+ b, i 6= a,

qa,l = 1, qa,j = 0, j = 1, 2, . . . , r, j 6= l,

qi,j = 0, b < i ≤ a+ b, i 6= a, j = 1, 2, . . . , r.

(A.7)

As a result, under the condition qa,l 6= 0, one can rewrite (A.4a) as follows

∑

0

→ k1 + 2k2 + · · ·+ bkb = b, (A.8)

and in (A.4b), now i = 1, . . . , b.

Using (A.7) and changing the notations, taking p̄j = pj for j = 1, 2, . . . , r,
j 6= l, p̄l = pl − 1 and k̄ = k − 1, equations (A.5) may be rewritten as

p̄j = q1,j + q2,j + · · ·+ qb,j , j = 1, 2, . . . , r,

k̄ = p̄1 + p̄2 + · · ·+ p̄r = k1 + k2 + · · ·+ kb.
(A.9)

Note also that under conditions (A.7)

a+b∏

i=1

(i!)ki = a!

b∏

i=1

(i!)ki ,

a+b∏

i=1

r∏

j=1

qi,j ! =

b∏

i=1

r∏

j=1

qi,j !,

and
a+b∏

i=1

r∏

j=1

(
ξ

(i)
j

)qi,j
= ξ

(a)
l

b∏

i=1

r∏

j=1

(
ξ

(i)
j

)qi,j
.
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Taking into account the equalities above and the fact that the partial deriva-

tive of G(·) in (A.6) with respect to ξ
(a)
l is 0, the variables p̄j and k̄ yield

∂ (Φ(ξ1, ξ2, . . . , ξr))
(a+b)

∂ξ
(a)
l

=
∑

0

∑

1

∑

2

· · ·
∑

b

(a+ b)!

a!

b∏

i=1

(i!)ki
b∏

i=1

r∏

j=1

qi,j !

·

· ∂k̄+1Φ

∂ξp̄11 · · · ∂ξ
p̄l−1

l−1 ∂ξ
p̄l+1
l ∂ξ

p̄l+1

l+1 · · · ∂ξ
p̄r
r

b∏

i=1

r∏

j=1

(
ξ

(i)
j

)qi,j
. (A.10)

Note that in (A.10) all the partial derivatives with respect to ξj are of
order p̄j , except ξl where the order of the partial derivative is p̄l + 1. For
the unification of the orders denote Φ̄ := ∂Φ

∂ξl
. Also we multiply the right-

hand side of equation (A.10) by b!/b! to obtain

∂ (Φ(ξ1, ξ2, . . . , ξr))
(a+b)

∂ξ
(a)
l

= Cba+b

∑

0

∑

1

∑

2

· · ·
∑

b

b!
b∏

i=1

(i!)ki
b∏

i=1

r∏

j=1

qi,j !

·

· ∂k̄Φ̄

∂ξp̄11 ∂ξ
p̄2
2 · · · ∂ξp̄rr

b∏

i=1

r∏

j=1

(
ξ

(i)
j

)qi,j
. (A.11)

It is easy to observe now that, according to Mishkov’s formula, the sum
on the right-hand side of (A.11) together with the conditions (A.4b) for
i = 1, . . . , b, (A.8) and (A.9) is the bth order total derivative of the function
Φ̄. Consequently,

∂ (Φ(ξ1, ξ2, . . . , ξr))
(a+b)

∂ξ
(a)
l

= Cba+bΦ̄
(b) =

= Cba+b

(
∂Φ(ξ1, ξ2, . . . , ξr)

∂ξl

)(b)

. (A.12)

Second, consider the case a ≤ b. Since ka 6= 0, in order to satisfy (A.4),
the following must hold

ki = 0, b < i ≤ a+ b,

qi,j = 0, b < i ≤ a+ b, j = 1, 2, . . . , r.
(A.13)

Therefore, it is possible to rewrite condition (A.4a) as

∑

0

→ k1 + · · ·+(a−1)ka−1 +a(ka−1)+(a+1)ka+1 + · · ·+bkb = b, (A.14)

and in (A.4b), now i = 1, . . . , b.
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Again, in order to unify the notation in (A.14), one can take k̄i = ki
for i = 1, 2, . . . , b, i 6= a and k̄a = ka − 1. This allows to rewrite (A.14) as
follows ∑

0

→ k̄1 + 2k̄2 + · · ·+ bk̄b = b, (A.15)

and (A.4b) as
∑

i

→ qi,1 + qi,2 + · · ·+ qi,r = k̄i, i = 1, . . . , b, i 6= a,

∑

a

→ qa,1 + qa,2 + · · ·+ qa,r = k̄a + 1.
(A.16)

Since qa,l ≥ 1 we can denote q̄a,l := qa,l − 1 and the remaining q’s as
q̄i,j := qi,j . Thereby (A.16) can by rewritten in the unified notation as

∑

i

→ q̄i,1 + q̄i,2 + · · ·+ q̄i,r = k̄i, (A.17)

for i = 1, . . . , b. Changing notations, taking p̄j = pj for j = 1, 2, . . . , r,
j 6= l, p̄l = pl − 1 and k̄ = k − 1, equations (A.5) may be rewritten as

p̄j = q̄1,j + q̄2,j + · · ·+ q̄b,j , j = 1, 2, . . . , r,

k̄ = p̄1 + p̄2 + · · ·+ p̄r = k̄1 + k̄2 + · · ·+ k̄b.
(A.18)

Taking into account (A.13) and using variables k̄i and q̄i,j we have

a+b∏

i=1

(i!)ki = a!
b∏

i=1

(i!)k̄i ,
a+b∏

i=1

r∏

j=1

qi,j ! = (q̄a,l + 1)
b∏

i=1

r∏

j=1

q̄i,j !,

and

a+b∏

i=1

r∏

j=1

(
ξ

(i)
j

)qi,j
=
(
ξ

(1)
l

)q̄1,l · · ·
(
ξ

(a−1)
l

)q̄a−1,l
(
ξ

(a)
l

)q̄a,l+1
·

·
(
ξ

(a+1)
l

)q̄a+1,l · · ·
(
ξ

(b)
l

)q̄b,l b∏

i=1

r∏

j=1
j 6=l

(
ξ

(i)
j

)q̄i,j
.

Furthermore, based on the equalities above and the fact that the partial

derivative of G(·) in (A.6) with respect to ξ
(a)
l equals 0, we obtain, in new

variables p̄j and k̄

∂ (Φ(ξ1, ξ2, . . . , ξr))
(a+b)

∂ξ
(a)
l

=
∑

0

∑

1

∑

2

· · ·
∑

b

(a+ b)!

a!
b∏

i=1

(i!)k̄i
b∏

i=1

r∏

j=1

q̄i,j !

·

· ∂k̄+1Φ

∂ξp̄11 · · · ∂ξ
p̄l−1

l−1 ∂ξ
p̄l+1
l ∂ξ

p̄l+1

l+1 · · · ∂ξ
p̄r
r

b∏

i=1

r∏

j=1

(
ξ

(i)
j

)q̄i,j
.
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Like in case a > b we denote Φ̄ = ∂Φ
∂ξl

and multiply the right-hand side of

the equality above by b!
b! to obtain

∂ (Φ(ξ1, ξ2, . . . , ξr))
(a+b)

∂ξ
(a)
l

= Cba+b

∑

0

∑

1

∑

2

· · ·
∑

b

b!
b∏

i=1

(i!)k̄i
b∏

i=1

r∏

j=1

q̄i,j !

·

· ∂k̄Φ̄

∂ξp̄11 , ∂ξ
p̄2
2 · · · ∂ξp̄rr

b∏

i=1

r∏

j=1

(
ξ

(i)
j

)q̄i,j
. (A.19)

Again it is not difficult to observe that according to Mishkov’s formula
the sum on the right-hand side of the equation (A.19) together with the
conditions (A.15), (A.17) and (A.18) is the bth order total derivative of
the function Φ̄. Consequently, (A.12) holds again, and this completes the
proof.

Proof of Proposition 2.1

In order to prove Proposition 2.1, we need Lemma A.1 below

Lemma A.1. For j ≥ 1 and r ≥ j + 1 the following holds

j∑

i=1

(−1)iCi−1
r−1C

r−j−1
r−i = (−1)jCjr−1. (A.20)

Proof. Take (A.2) for k = j and l = i − 1 and multiply both sides of the
equality by −Cjr−1, where r ≥ j + 1, to obtain

j∑

i=1

(−1)iCi−1
j Cjr−1 = (−1)jCjr−1.

Taking into account the definition of binomial coefficient, i.e. Ckn = n!
(n−k)!k! ,

one can easily verify that Ci−1
j Cjr−1 = Ci−1

r−1C
r−j−1
r−i , which implies the va-

lidity of (A.20).

Moreover, rewriting (1.8) for the continuous-time case (σf = id), we
recall that the rth time derivative of an arbitrary one-form ω =

∑
iAidζi

may be computed as

ω(r) =

r∑

q=0

Cqr
∑

i

A
(r−q)
i dζ

(q)
i . (A.21)

Now we are ready to prove Proposition 2.1.

99



Proof. The proof is by mathematical induction on i. One can easily verify
that (2.8b) and (2.9) coincide for i = 1. Next we assume that the statement
of Proposition holds for i ≤ k (k is an arbitrary integer from 1 to n − 1)
and show that it is true for i = k + 1.

From (2.8a) one obtains

Pk+1 = dφ−
k∑

i=1

ω
(n−i)
i .

From the assumption that (2.9) holds for i ≤ k we have

Pk+1 = dφ−

−
k∑

i=1

i−1∑

j=0

(−1)jCjn−i+j

[(
∂φ

∂y(n−i+j)

)(j)

dy +

(
∂φ

∂u(n−i+j)

)(j)

du

](n−i)

.

Using the rule (A.21), the latter yields

Pk+1 = dφ−
k∑

i=1

i−1∑

j=0

(−1)jCjn−i+j

n−i∑

q=0

Cqn−i·

·
[(

∂φ

∂y(n−i+j)

)(j+n−i−q)
dy(q) +

(
∂φ

∂u(n−i+j)

)(j+n−i−q)
du(q)

]
.

From (2.8b) follows that in order to find ωk+1, only An−k−1
k+1 and Bn−k−1

k+1

are necessary. In other words, we are interested only in such elements of
Pk+1 where the order of differentiation of dy and du is q = n−k−1. Thus,
we have

An−k−1
k+1 =

∂φ

∂y(n−k−1)
−

−
k∑

i=1

i−1∑

j=0

(−1)jCjn−i+jC
n−k−1
n−i

(
∂φ

∂y(n−i+j)

)(j+k−i+1)

(A.22a)

and

Bn−k−1
k+1 =

∂φ

∂u(n−k−1)
−

−
k∑

i=1

i−1∑

j=0

(−1)jCjn−i+jC
n−k−1
n−i

(
∂φ

∂u(n−i+j)

)(j+k−i+1)

. (A.22b)

Note that (A.22a) and (A.22b) have a similar structure. Thus, all the
transformations made with one expression will be similar for the other.
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Taking into account that −(−1)i−1 = (−1)i and changing the sum-
mation order

∑k
i=1

∑i−1
j=0 ai,j =

∑k
j=1

∑j
i=1 ak−j+i,i−1, rewrite (A.22a) as

follows

An−k−1
k+1 =

∂φ

∂y(n−k−1)
+

k∑

j=1

j∑

i=1

(−1)iCi−1
n−k+j−1·

· Cn−k−1
n−k+j−i

(
∂φ

∂y(n−k+j−1)

)(j)

=
∂φ

∂y(n−k−1)
+

+
k∑

j=1

[(
∂φ

∂y(n−k+j−1)

)(j) j∑

i=1

(−1)iCi−1
n−k+j−1C

n−k−1
n−k+j−i

]
. (A.23)

Taking into account that ∂φ
∂y(n−k−1) = (−1)jCjn−k−1+j

(
∂φ

∂y(n−k−1+j)

)(j)
for

j = 0 and using Lemma A.1 for r = n− k + j, one can rewrite (A.23) as

An−k−1
k+1 =

k∑

j=0

(−1)jCjn−k−1+j

(
∂φ

∂y(n−k−1+j)

)(j)

. (A.24a)

Analogously, from (A.22b) we get

Bn−k−1
k+1 =

k∑

j=0

(−1)jCjn−k−1+j

(
∂φ

∂u(n−k−1+j)

)(j)

. (A.24b)

Using (2.8b) and (A.24)

ωk+1 =

k∑

j=0

(−1)jCjn−k−1+j

[(
∂φ

∂y(n−k−1+j)

)(j)

dy +

(
∂φ

∂u(n−k−1+j)

)(j)

du

]

being (2.9) for i = k + 1.

Proof of Lemma 2.1

Proof. (i) Taking into account that −(−1)ς = (−1)ς−1, the equality (A.2)
taken for k = ς and l = j − 1 confirms statement (i).

(ii) Since s = 1, . . . , ς − 1 and ς ≥ 2, then ς − s ≥ 1 and it is eligible to
take (A.1) for k = ς − s, which after replacing the summation index l by
j − 1, leads to (ii).
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Proof of Lemma 3.1

Proof. It is easy to observe that

n−N∑

l=1

dϕ̄l(νl) =
n−N∑

l=1

N∑

s=0

(
∂ϕ̄l(νl)

∂y[n−l−s] dy
[n−l−s] +

∂ϕ̄l(νl)

∂u[n−l−s] du
[n−l−s]

)
.

Replace on the right-hand side of the relationship, given above, the sum-
mation index l by l + 1. In this case l = 0, . . . , n − N − 1 and one can
change the summation order

n−N∑

l=1

N∑

s=0

al,s =
n−N−1∑

l=0

N∑

s=0

an−N−l,N−s,

which yields

n−N∑

l=1

dϕ̄l(νl) =
n−N−1∑

l=0

N∑

s=0

(
∂ϕ̄n−N−l(νn−N−l)

∂y[l+s]
dy[l+s]+

+
∂ϕ̄n−N−l(νn−N−l)

∂u[l+s]
du[l+s]

)
.

Change the summation indices l and s for i = l + s and l. It is easy
to see, that in this case i changes from 0 to n − 1 and l = i − s. Since
s = 0, . . . , N , the minimal and maximal values of i − s are i − N and i,
respectively. On the other hand, l changes from 0 to n−N − 1. Thus, we
take l = max(0, i−N), . . . ,min(i, n− 1−N). As a result, one can use the
following relation

n−N−1∑

l=0

N∑

s=0

al,l+s =

n−1∑

i=0

min(i,n−1−N)∑

l=max(0,i−N)

al,i,

which leads to (3.11).

Proof of Lemma 3.2

Proof. The proof of lemma, though in principle not very difficult, is techni-
cally rather demanding. Figures A.1, A.2 and A.3 below help to follow the
separate steps of the proof. First, let us mention that the cases 2N < jα−jα
and 2N ≥ jα − jα are treated separately. The reason is that conditions
(3.30b) are unnecessary for the first case.

Second, in the proof we will use the matrices (tables) with elements Θk,l

(k pointing to the row and l to the column), where k and l may take values
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from different sets of non-negative integers at different steps of the proof.
However, unlike the typical case when the matrix element is a number
or expression, here its content is two relations (equalities). We do not
manipulate with those relations, the role of the matrix is just to keep the
track of the steps in the proof.

Evaluating the total differentials dS and dφ as well as their wedge prod-
uct dS∧dφ in (3.31), it is easy to observe by direct inspection, after tedious
calculations, that the condition (3.31) is equivalent to the equalities (A.25)
below

∂S

∂α[l]

∂φ

∂α[k]
=

∂S

∂α[k]

∂φ

∂α[l]
,

∂S

∂α[l]

∂φ

∂β[k]
=

∂S

∂β[k]

∂φ

∂α[l]
,

(A.25)

where k, l = jα, . . . , jα. Recall that here, like in the assumptions (3.30a)
and (3.30b) of the lemma, the variable α denotes either input u or output
y, and by β is denoted the other variable; i.e. if α = y, then β = u and vice
versa, if α = u, then β = y. These notations help to make the presentation
more compact1. Now, the contents of Θk,l are the equalities (A.25).

Before turning to separate steps of the proof we rewrite the assumptions
(3.30a) and (3.30b) into the form, suitable for the proof. Namely, the con-
ditions (3.30a) may be given as (A.26) below by evaluation of the derivative
of the logarithmic function and rewriting the conditions separately for α
alone as well as for α and β.

∂S

∂α[j]
=

(
∂φ

∂α[i]

)−1 ∂2φ

∂α[i]∂α[j]
, (A.26a)

∂S

∂α[j]
=

(
∂φ

∂β[i]

)−1 ∂2φ

∂β[i]∂α[j]
, (A.26b)

where i, j = jα, . . . , jα, j 6= i − N, . . . , i + N . Taking into account that α
and β can be mutually interchanged, rewrite the conditions (3.30b) as

∂S

∂α[j]
=

∂S

∂α[r]

∂φ

∂α[j]

(
∂φ

∂α[r]

)−1

, (A.27a)

∂S

∂α[j]
=

∂S

∂β[r]

∂φ

∂α[j]

(
∂φ

∂β[r]

)−1

, (A.27b)

where r = jα −N, . . . , jα +N .

1Note that equalities (A.25) are redundant. Namely, since the first relation is sym-
metric it gives the identical sets of equalities for k = jα, . . . , jα, l = jα, . . . , k − 1 and

k = jα, . . . , jα, l = k + 1, . . . , jα. Moreover, the first relation is trivial for k = l. The
second relation gives the identical sets of equalities for α = u, β = y and α = y, β = u.
Nevertheless, for the compactness of the presentation we omit these details.
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Now we turn to the separate steps of the proof. The separate steps
(i)–(ix) prove the relations in Θk,l for different sets of k and l values so
that jointly the steps cover all necessary k, l values in (A.25). On the steps
(i)–(iv) we will focus on the conditions (3.30a) and will prove that in the
case 2N < jα − jα they yield Θk,l for k, l = jα, . . . , jα (see Figure A.1
and the top of Figure A.3). On the steps (v)–(ix) we will prove that using
additionally the conditions (3.30b), the outcome of the previous four steps
can be complemented to obtain the same result for the case 2N ≥ jα − jα
(see Figure A.2 and the middle part of the Figure A.3).

(i) Consider first (A.26) for j = jα. Since j 6= i − N, . . . , i + N , now
i 6= jα−N, . . . , jα +N and consequently i ≤ jα−N − 1. In (A.26a) denote
index i by index l and compare successively the obtained equality first,
with (A.26a) and second with (A.26b), where in both equalities index i is
replaced by index k. This yields

(
∂φ

∂α[l]

)−1 ∂2φ

∂α[l]∂α[jα]
=

(
∂φ

∂α[k]

)−1 ∂2φ

∂α[k]∂α[jα]
,

(
∂φ

∂α[l]

)−1 ∂2φ

∂α[l]∂α[jα]
=

(
∂φ

∂β[k]

)−1 ∂2φ

∂β[k]∂α[jα]
.

Divide both sides of both obtained equalities by
(
∂φ/∂α[jα]

)
to get

(
∂φ

∂α[jα]

)−1 ∂2φ

∂α[l]∂α[jα]

∂φ

∂α[k]
=

(
∂φ

∂α[jα]

)−1 ∂2φ

∂α[k]∂α[jα]

∂φ

∂α[l]
,

(
∂φ

∂α[jα]

)−1 ∂2φ

∂α[l]∂α[jα]

∂φ

∂β[k]
=

(
∂φ

∂α[jα]

)−1 ∂2φ

∂β[k]∂α[jα]

∂φ

∂α[l]
.

Take the conditions (A.26) for i = jα and in (A.26b) interchange mutually
variables α and β, which is eligible by the definition of α and β. In this
case j ≤ jα − N − 1. Since j changes in the same range as indices k and
l, one can apply (A.26a) for j := l to the left-hand sides of the equalities
above, as well as (A.26a) and (A.26b) for j := k to the right-hand sides of
the first and second equalities above, respectively. This yields

Θk,l, k, l = jα, . . . , jα −N − 1. (A.28)

(ii) Using (A.26a), rewrite the elements of (A.28) for l = jα as follows

(
∂φ

∂α[i]

)−1 ∂2φ

∂α[i]∂α[jα]

∂φ

∂α[k]
=

∂S

∂α[k]

(
∂S

∂α[j]

)−1 ∂2φ

∂α[jα]∂α[j]
,

(
∂φ

∂α[i]

)−1 ∂2φ

∂α[i]∂α[jα]

∂φ

∂β[k]
=

∂S

∂β[k]

(
∂S

∂α[j]

)−1 ∂2φ

∂α[jα]∂α[j]
,
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conditions

(3.30a)

j = jα j = jα

Θk,l

j
α

j
α
−
N
−

1

jα

jα −N − 1

(i)

k = jα

Θk,l

j
α

+
N

+
1

j
α

jα +N + 1

jα

(iii)

Θk,l
j
α

+
N

+
1

j
α

jα

jα −N − 1

(ii)

k = jα

Θk,l

j
α

j
α
−
N
−

1

jα +N + 1

jα

(iv)

Figure A.1: Steps (i)–(iv) of the proof of Lemma 3.2.

where i, j = jα + N + 1, . . . , jα and k = jα, . . . , jα − N − 1. Denoting
l := i = j, after simplification we obtain

Θk,l,
k = jα, . . . , jα −N − 1,

l = jα +N + 1, . . . , jα.
(A.29)

(iii) Next, consider (A.26) for j = jα. Since j 6= i − N, . . . , i + N , now
i 6= jα −N, . . . , jα + N and consequently i ≥ jα + N + 1. Performing the
analogical steps as in (i) we obtain

Θk,l, k, l = jα +N + 1, . . . , jα. (A.30)

(iv) Using (A.26a), rewrite the elements of (A.30) for l = jα as follows

(
∂φ

∂α[i]

)−1 ∂2φ

∂α[i]∂α[jα]

∂φ

∂α[k]
=

∂S

∂α[k]

(
∂S

∂α[j]

)−1 ∂2φ

∂α[jα]∂α[j]
,

(
∂φ

∂α[i]

)−1 ∂2φ

∂α[i]∂α[jα]

∂φ

∂β[k]
=

∂S

∂β[k]

(
∂S

∂α[j]

)−1 ∂2φ

∂α[jα]∂α[j]
,

where i, j = jα, . . . , jα − N − 1 and k = jα + N + 1, . . . , jα. Denotation
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conditions

(3.30b)

r = k r = l

Θk,l

j
α
−
N

j
α

+
N

jα +N + 1

jα

(vi)

l = jα

Θk,l
j
α

+
N

+
1

j
α

jα −N

jα +N

(viii)

k = jα

Θk,l

j
α
−
N

j
α

+
N

jα −N

jα +N

(v)

Θk,l

j
α
−
N

j
α

+
N

jα

jα −N − 1

(vii) Θk,l

j
α

j
α
−
N
−

1

jα −N

jα +N

(ix)

Figure A.2: Steps (v)–(ix) of the proof of Lemma 3.2.

l := i = j and simplification yields

Θk,l,
k = jα +N + 1, . . . , jα,

l = jα, . . . , jα −N − 1.
(A.31)

It is not hard to verify (see Figure A.3) that joining together tables
(A.28), (A.29), (A.30) and (A.31) yields

Θk,l





k, l = jα, . . . , jα, if 2N < jα − jα,
k, l = jα, . . . ,jα −N − 1,

jα +N + 1, . . . , jα,
if 2N ≥ jα − jα.

(A.32)

(v) Consider the case 2N ≥ jα− jα. In (A.27a) replace index r by index
k and compare successively the obtained equality first, with (A.27a) and
second with (A.27b), where in both equalities index r is replaced by index
l. After simplification we obtain

Θk,l, k, l = jα −N, . . . , jα +N. (A.33)

(vi) Next take (A.27) for r = l, j = jα and perform the similar operations
as in step (ii) to get

Θk,l,
k = jα +N + 1, . . . , jα,

l = jα −N, . . . , jα +N.
(A.34)
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2N ≥ jα − jα
j
α

j
α
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N
−

1
j
α
−
N

j
α

+
N

j
α

+
N

+
1

j
α

jα

jα −N − 1
jα −N

jα +N
jα +N + 1

jα

(i) (vii) (ii)

(ix) (v) (viii)

(iv) (vi) (iii)

2N < jα − jα

2N < jα − jα − 1

j
α

j
α
−
N
−

1

j
α

+
N

+
1

j
α

jα

jα −N − 1

jα +N + 1

jα

(i)

(iv)

(ii)

(iii)

2N = jα − jα − 1

j
α

j
α
−
N
−

1

j
α

+
N

+
1

j
α

jα

jα −N − 1
jα +N + 1

jα

(i) (ii)

(iv) (iii)

j
α

j
α

jα

jα

Θk,l
relations

(A.25)
dS ∧ df = 0

Figure A.3: The main steps of the proof of Lemma 3.2.

(vii) Taking the elements of (A.34) for k = jα by analogy with step (iv)
one obtains

Θk,l,
k = jα, . . . , jα −N − 1,

l = jα −N, . . . , jα +N.
(A.35)

(viii) Next, take (A.27) for r = k, j = jα and perform the similar
operations as in step (ii) to get

Θk,l,
k = jα −N, . . . , jα +N,

l = jα +N + 1, . . . , jα.
(A.36)
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(ix) Taking the elements of (A.36) for l = jα by analogy with step (iv)
one obtains

Θk,l,
k = jα −N, . . . , jα +N,

l = jα, . . . , jα −N − 1.
(A.37)

As a result, complementary tables (A.33), (A.34), (A.35), (A.36) and
(A.37) allow to rewrite (A.32) as

Θk,l, k, l = jα, . . . , jα

for arbitrary N (see Figure A.3), which means that under conditions (3.30a)
and (3.30b) the equalities (A.25) are satisfied for k, l = jα, . . . , jα. This
completes the proof.

Proof of Lemma 4.1

In order to prove Lemma 4.1, we need Lemma A.2 below.

Lemma A.2. For the homogeneous time scale T one has

∂h
〈i+1〉
ν

∂x
=
∂h
〈i〉
ν

∂x

∂f(x, u)

∂x
+

(
∂h
〈i〉
ν

∂x

)∆f (
In + µ

∂f(x, u)

∂x

)
,

ν = 1, . . . p, i = 0, 1, . . . , (A.38)

where In is n× n identity matrix.

Proof. By commutativity of operators d and ∆f [6],

d
(
h〈i+1〉
ν

)
=
(

dh〈i〉ν
)∆f

. (A.39)

In what follows, we omit in (A.39) the parts involving the terms du
〈l〉
υ in

the expressions of total differentials, therefore we have

∂h
〈i+1〉
ν

∂x
dx+ · · · =

(
∂h
〈i〉
ν

∂x
dx

)∆f

+ · · · . (A.40)

We compute the delta derivative of the one-form at the right-hand side of
(A.40), using (1.7). Since (dx)∆f = df(x, u), and again, omitting the parts
involving the terms duυ, we get

(
∂h
〈i〉
ν

∂x
dx

)∆f

=

(
∂h
〈i〉
ν

∂x

)∆f

dx+

(
∂h
〈i〉
ν

∂x

)σf
∂f(x, u)

∂x
dx+ · · · .
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Since the vectors dx, duυ,. . . , du
〈i−1〉
υ are independent over the field K∗,

comparing the coefficients of dx at both sides of equality (A.40), we get

∂h
〈i+1〉
ν

∂x
=

(
∂h
〈i〉
ν

∂x

)∆f

+

(
∂h
〈i〉
ν

∂x

)σf
∂f(x, u)

∂x
.

Finally, applying (i) of Proposition 1.1 to
(
∂h
〈i〉
ν
∂x

)σf
we obtain (A.38).

Now we are ready to prove Lemma 4.1.

Proof. According to the condition of the lemma

ων,i :=
∂h
〈i〉
ν

∂x
dx =

i−1∑

k=0

αk
∂h
〈k〉
ν

∂x
dx. (A.41)

We first prove that the statement of the lemma holds for j = i+ 1, i.e.

ων,i+1 =

i−1∑

k=0

βk
∂h
〈k〉
ν

∂x
dx =

i−1∑

k=0

βkων,k (A.42)

for some βk’s. By Lemma A.2 and (A.41)

ων,i+1 =
i−1∑

k=0


αk

∂h
〈k〉
ν

∂x

∂f(x, u)

∂x
+

(
αk
∂h
〈k〉
ν

∂x

)∆f (
In + µ

∂f(x, u)

∂x

)
dx.

Using (iii) of Proposition 1.1 for
(
αk

∂h
〈k〉
ν
∂x

)∆f

and then (i) of Proposition

1.1 for αk, we get

ων,i+1 =
i−1∑

k=0


 ∂h

〈k〉
ν

∂x

(
∂f(x, u)

∂x
α
σf
k + α

∆f

k

)
+

+ α
σf
k

(
∂h
〈k〉
ν

∂x

)∆f (
In + µ

∂f(x, u)

∂x

) 
dx.

By Lemma A.2

(
∂h
〈k〉
ν

∂x

)∆f (
In + µ

∂f(x, u)

∂x

)
=
∂h
〈k+1〉
ν

∂x
− ∂h

〈k〉
ν

∂x

∂f(x, u)

∂x
,

yielding

ων,i+1 =
i−1∑

k=0

α
∆f

k

∂h
〈k〉
ν

∂x
dx+

i−1∑

k=0

α
σf
k

∂h
〈k+1〉
ν

∂x
dx.
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Changing the summation index of the second sum for s = k+ 1, separating
the last addend of the second sum, and applying (A.41) to it, we obtain

ων,i+1 =
i−1∑

k=0

(
α

∆f

k + α
σf
i−1αk

) ∂h〈k〉ν
∂x

dx+
i−1∑

s=1

α
σf
s−1

∂h
〈s〉
ν

∂x
dx.

Separating the first addend of the first sum yields

ων,i+1 =

i−1∑

k=1

(
α

∆f

k + α
σf
i−1αk + α

σf
k−1

) ∂h〈k〉ν
∂x

dx+
(
α

∆f

0 + α
σf
i−1α0

) ∂hν
∂x

dx.

Denoting β0 := α
∆f

0 +α
σf
i−1α0 and βk := α

∆f

k +α
σf
i−1αk+α

σf
k−1 we get (A.42).

The similar arguments can be applied for the cases j > i+ 1.
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[9] G. Besançon. On output transformations for state linearization
up to output injection. IEEE Transactions on Automatic Control,
44(10):1975–1981, 1999.

111
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Kokkuvõte

Mittelineaarsete olekuvõrrandite olekutaastaja ku-
jule teisendamine

Väitekirja põhiliseks uurimisvaldkonnaks on mittelineaarsete ühe sisendi ja
ühe väljundiga juhtimissüstemide mudelite olekutaastaja kujule teisenda-
mine, kasutades teisendusi olekute ja väljundite ruumis. Probleemi uurimi-
seks rakendatakse valdavalt diferentsiaalvormidel põhinevat algebralist for-
malismi. Uuritakse nii pideva ajaga kui ka diskreetaja süsteeme. Pideva-
te süsteemide juhul on leitud tarvilikud ja piisavad tingimused süsteemi
olekutaastaja kujule teisendamiseks, kasutades lisaks olekuteisendusele ka
väljundteisendust. Diskreetsel juhul vaadeldakse süsteemi nn. laiendatud
olekutaastaja kujule teisendamist, mille võrrandid sõltuvad mitte ainult
sisendist ja väljundist, vaid ka nende teatud väärtustest minevikus. Ka siin
lubatakse kasutada lisaks üldistatud olekuteisendusele väljundteisendust.
Leitud on kaks tarvilike ja piisavate tingimuste alternatiivset komplekti.
Esimese komplekti eelis võrreldes pideva juhuga seisneb selles, et tingimused
ei sõltu mingist otsitavast funktsioonist. Teise komplekti tingimused on eri-
ti lihtsad ja esitatud nii, et neid võib kontrollida (peale teatud osatuletiste
leidmist) praktiliselt pealevaatamise teel.

Väitekirja täiendav osa on pühendatud homogeensel ajaskaalal defineeri-
tud mittelineaarse mitme sisendi ja mitme väljundiga juhtimissüsteemi
vaadeldavuse uurimisele. Vaadeldavuse tarvilik ja piisav tingimus on esita-
tud vaadeldava ruumi mõiste abil. Juhul kui süsteem ei ole vaadeldav,
aga vaadeldav ruum, mille elementideks on diferentsiaalsed üks-vormid, on
täielikult integreeruv, on süsteem dekomponeeritav vaadeldavaks ja mitte-
vaadeldavaks alamsüsteemiks.

Teoreetilised tulemused on viidud konkreetsete algoritmide kujule ja
programmeeritud Mathematica funktsioonidena. Funktsioonid on integree-
ritud Küberneetika Instituudis loodud tarkvarapaketti NLControl ja on
kasutatavad paketi NLControl veebisaidil interneti vahendusel ilma Math-
ematica tarkvara lokaalsesse arvutisse installeerimata.
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Abstract

Transformation of Nonlinear State Equations into
Observer Form

The main subject of the thesis is transformation of the nonlinear single-
input single-output state equations into the observer form via change of
coordinates in both state- and output-spaces. An algebraic framework
based on differential forms is used as a main tool of the research. Both
the continuous- and discrete-time cases are considered. In the continuous-
time case necessary and sufficient conditions are given for the existence
of the state and output coordinate transformations, bringing the system
into the observer form. In the discrete-time case we present two different
sets of necessary and sufficient conditions for the existence of the extended
coordinate change and the output transformation that allow to transform
the system into the extended observer form, which, besides the input and
output, depends also on a finite number of their past values. The first set
of conditions has an advantage of being intrinsic, implying that they do not
depend on some unknown function, whereas the conditions of the second
set are very simple and due to the matrix representation can be checked
almost by direct inspection.

The supplementary part of the thesis is devoted to studying the ob-
servability property of the nonlinear multi-input multi-output system, de-
fined on homogeneous time scale. The necessary and sufficient observability
condition is given in terms of the observable space. If the system is not
observable and its observable space, whose elements are differential one-
forms, is completely integrable, then the system can be decomposed into
the observable/unobservable subsystems.

Theoretical results of the thesis are implemented as Mathematica func-
tions, and integrated into the software package NLControl (developed in
the Institute of Cybernetics). Moreover, the functions can be used online
at NLControl website without the necessity to install Mathematica on a
local computer.
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Necessary Conditions for Transformation the Nonlinear Control System
into the Observer Form via State and Output Coordinate Changes

Vadim Kaparin and Ülle Kotta

Abstract— The paper gives more direct and simple necessary
conditions for the existence of state and output coordinate
transformations, allowing to transform the nonlinear single-
input single-output control system into the observer form. Both
the old and new conditions require that the certain n differential
one-forms, associated with the nth order differential input-
output equation (corresponding to the state equations), and
depending on a unknown single-variable output function, are
the total differentials of certain functions.

Index Terms— nonlinear control system, state and output
transformations, observer form, differential one-form.

I. INTRODUCTION

Conditions for the existence of observer form for nonlinear
control system using the state coordinate transformation
are known to be very restrictive (see [2], [9]), motivating
various extensions to enlarge the class of systems for which
observers with linear error dynamics can be designed. Either
the class of transformations was enlarged as in [10], were in
addition to state transformation also output transformation
is allowed or different generalized observer forms were
introduced as in [6] or both as in [1] and [4]. Moreover,
system immersion into higher dimensional system [8], [13]
or output-dependent time scale transformation [5] were also
applied to reach the desired goal.

The paper addresses the problem of transforming the
single-input single-output continuous-time nonlinear control
system into the observer form using both the state and
output transformations. This problem has been addressed
earlier using the approach based on differential forms in
[4] and [11]. In [4] the necessary solvability condition has
been formulated in terms of differential forms, yielding to a
partial differential equation, the solution of which provides
a candidate output transformation function. However, the
necessary condition in [4] is very mild and far from being
sufficient as shown in [11]. Its existence does not guarantee
the solution of the problems. To see, if the problem is
solvable, one has to apply the output transformation and
check whether in the new output coordinates the system is
transformable into the observer form by the state coordinate
transformation. The paper [11] strengthened the necessary
solvability condition, given in [4]. If the conditions in [11]
are satisfied, so are the conditions in [4] but the opposite
does not hold. Moreover, the conditions in [11] are expressed
in terms of original system equations and do not require

This work was partially supported by the Estonian Science Foundation
through the grant Nr. 6922.

V. Kaparin and Ü. Kotta is with the Institute of Cybernetics at Tallinn
University of Technology, Akadeemia tee 21, 12618, Tallinn, Estonia
vkaparin@cc.ioc.ee, kotta@cc.ioc.ee

to apply the output transformation to check the problem
solvability. It is conjectured in [11] that the conditions are
also sufficient, but the proof was left for the future studies.

Note that the conditions in [11] depend on certain n
differential one-forms, associated with the nth order input-
output equation of the control system. In this paper, in order
to simplify the necessary conditions from [11], a different set
of one-forms, associated with a control system, is suggested
to use. Our results, like those of [4] and [11], are neither local
nor global but generic, i.e. they hold in almost all situations
except the pathological cases, see [3].

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a single-input single-output nonlinear conti-
nuous-time system, described by the state equations

ẋ = f(x, u)
y = h(x),

(1)

where x ∈ Rn is the state, u ∈ R is the input and y ∈ R is
the output. Our purpose is to find the conditions under which
system (1) can be transformed into the observer form

ż1 = z2 + ϕ1(Y, u)
...

żn−1 = zn + ϕn−1(Y, u)
żn = ϕn(Y, u)
Y = z1,

(2)

using the state transformation

z = ψ(x) (3)

and the output transformation

Y = F (y). (4)

Consider the input-output equation

y(n) = P (y, ẏ, . . . , y(n−1), u, u̇, . . . , u(n−1)), (5)

corresponding to (1)1, and define the differential one-forms
θi for i = 1, . . . , n as follows

θi =
∂P

∂y(n−i)
dy +

∂P

∂u(n−i)
du. (6)

Moreover, define the composite functions ϕ̄i(y, u) =
ϕi(F (y), u).

In [11] the following theorem was formulated.

1In case when it is difficult to obtain the input-output equation (5) from
the state equations (1), one can compute dP from the tangent linearized
equations dẋ = df(x, u), dy = dh(x) like in [14]
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Theorem 1: One can transform the system (1) into the
observer form (2) by the state transformation (3) and the
output transformation (4) if there exists a function λ(y), such
that the one-forms

dϕ̄i := Ci
nλ

(i)dy + λθi−

−
i−1∑

s=1

(
∂ϕ̄

(n−s)
s

∂y(n−i)
dy +

∂ϕ̄
(n−s)
s

∂u(n−i)
du

)
(7)

for i = 1, . . . , n are the total differentials. The function F for
the output transformation (4) can be calculated as an integral

F (y) =

∫
λ(y)dy. (8)

Denote P1 = P and compute

dPi+1 = dPi − ω(n−i)
i , i = 1, . . . , n− 1, (9)

where by ω(n−i)
i is denoted the (n− i)th order derivative of

the one-form ωi, defined by

ωi =
∂Pi

∂y(n−i)
dy +

∂Pi

∂u(n−i)
du. (10)

Note that for an one-form ω = α1dy + α2du, the rth
derivative can be computed as follows:

ω(r) =

r∑

m=0

Cm
r

(
α
(r−m)
1 dy(m) + α

(r−m)
2 du(m)

)
. (11)

The purpose of this paper is to show that using the one-
forms ωi instead of θi one can simplify the expression (7).

III. RELATIONSHIP BETWEEN ωi AND θi

First we will find the relationship between the one-forms
ωi, defined by (10), and θi, defined by (6). In order to
prove Proposition 1, presenting this relationship, we need
the following lemma, the proof of which is given in the
Appendix.

Lemma 1: For j = 1, . . . , k and r = n − k + j, the
following holds

(−1)jCj
r−1 =

j∑

i=1

(−1)iCi−1
r−1C

r−j−1
r−i . (12)

Proposition 1: Given a control system of the form (5),
the relationship between the one-forms ωi and θi, for i =
1, . . . , n, defined by (10) and (6) respectively, is as follows

ωi = θi +

i−1∑

j=1

(−1)jCj
n−i+j ·

·
[(

∂P

∂y(n−i+j)

)(j)

dy +

(
∂P

∂u(n−i+j)

)(j)

du

]
. (13)

Proof: To simplify the proof, we rewrite (13) in a more
compact form as

ωi =

i−1∑

j=0

(−1)jCj
n−i+j

[(
∂P

∂y(n−i+j)

)(j)

dy +

+

(
∂P

∂u(n−i+j)

)(j)

du

]
, (14)

where the first element of the sum is θi. We will use the
mathematical induction to prove that equation (14) holds for
i = 1, . . . , n. It is easy to check by (6) and (10) that the
statement holds when i = 1. Assume that the statement (14)
holds for i = k and prove that it is true for i = k + 1.
According to (9) and (10) one has

dPk+1 = dP −
k∑

i=1

ω
(n−i)
i .

From the assumption that the statement (14) holds for i = k
we have:

dPk+1 = dP −
k∑

i=1

(
i−1∑

j=0

(−1)jCj
n−i+j ·

·
[(

∂P

∂y(n−i+j)

)(j)

dy +

(
∂P

∂u(n−i+j)

)(j)

du

])(n−i)

.

Using the relationship (11), the latter yields

dPk+1 = dP −
k∑

i=1

i−1∑

j=0

(−1)jCj
n−i+j

n−i∑

m=0

Cm
n−i·

·
[(

∂P

∂y(n−i+j)

)(j+n−i−m)

dy(m) +

+

(
∂P

∂u(n−i+j)

)(j+n−i−m)

du(m)

]
.

From (10) it follows that in order to find ωk+1, only
∂Pk+1

∂y(n−k−1) and ∂Pk+1

∂u(n−k−1) are necessary. Therefore, we are
interested only in such elements of dPk+1 where the order
of differentiation of dy and du is m := n− k− 1. Thus, we
have:

∂Pk+1

∂y(n−k−1)
=

∂P

∂y(n−k−1)
−

k∑

i=1

i−1∑

j=0

(−1)jCj
n−i+j ·

· Cn−k−1
n−i

(
∂P

∂y(n−i+j)

)(j+k−i+1)

(15)

and

∂Pk+1

∂u(n−k−1)
=

∂P

∂u(n−k−1)
−

k∑

i=1

i−1∑

j=0

(−1)jCj
n−i+j ·

· Cn−k−1
n−i

(
∂P

∂u(n−i+j)

)(j+k−i+1)

. (16)

Note that (15) and (16) have a similar structure. Thus, all the
transformations made with one expression will be similar for
the other.

Changing the summation order
∑k

i=1

∑i−1
j=0 ai,j =∑k

j=1

∑j
i=1 ak−j+i,i−1, and taking into account that
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−(−1)i−1 = (−1)i, rewrite (15) as follows:

∂Pk+1

∂y(n−k−1)
=

∂P

∂y(n−k−1)
+

k∑

j=1

j∑

i=1

(−1)i·

· Ci−1
n−k+j−1C

n−k−1
n−k+j−i

(
∂P

∂y(n−k+j−1)

)(j)

=

=
∂P

∂y(n−k−1)
+

k∑

j=1

[(
∂P

∂y(n−k+j−1)

)(j)

·

·
j∑

i=1

(−1)iCi−1
n−k+j−1C

n−k−1
n−k+j−i

]
. (17)

By Lemma 1 one can rewrite (17) as

∂Pk+1

∂y(n−k−1)
=

k∑

j=0

(−1)jCj
n−k−1+j ·

·
(

∂P

∂y(n−k−1+j)

)(j)

, (18)

since ∂P
∂y(n−k−1) = (−1)jCj

n−k−1+j

(
∂P

∂y(n−k−1+j)

)(j)
for

j = 0. Analogously, we get

∂Pk+1

∂u(n−k−1)
=

k∑

j=0

(−1)jCj
n−k−1+j ·

·
(

∂P

∂u(n−k−1+j)

)(j)

. (19)

Using the definition of ωk+1, (18) and (19)

ωk+1 =
k∑

j=0

(−1)jCj
n−k−1+j ·

·
[(

∂P

∂y(n−k−1+j)

)(j)

dy +

(
∂P

∂u(n−k−1+j)

)(j)

du

]

being (14) for i = k + 1.

IV. NEW NECESSARY CONDITIONS

Theorem 2, given below, provides an alternative but equiv-
alent formulation of Theorem 1 in terms of one-forms ωi.
In order to prove Theorem 2, we need the following lemma,
the proof of which is given in the Appendix.

Lemma 2: For k = 1, . . . , n the following holds

(i)

k∑

s=1

s∑

j=1

(−1)s−jCs−j
n−j

j−1∑

p=0

(−1)pCn−j+pC
n−k
n−s ·

·
k−s∑

m=0

Cm
k−sλ

(k−j−m)

((
∂P

∂y(n−j+p)

)(p+m)

dy +

+

(
∂P

∂u(n−j+p)

)(p+m)

du

)
= λθk,

(ii) Ck
n −

k−1∑

s=1

(−1)s−1Cs
nC

n−k
n−s = (−1)k−1Ck

n.

Theorem 2: The system (1) can be transformed by the
state transformation (3) and the output transformation (4)

into the observer form (2) if there exists a function λ(y),
such that the one-forms, denoted by dϕ̄i

dϕ̄i := (−1)i−1Ci
nλ

(i)dy+

i∑

j=1

(−1)i−jCi−j
n−jλ

(i−j)ωj (20)

for i = 1, . . . , n are the total differentials.

Proof: The main idea of the proof is to show by the
mathematical induction that the right hand side of (7) and
the right hand side of (20) are equal. It is easy to check that
the statement holds when i = 1. Assume that statement (20)
holds for i = k− 1 and prove that it is true for i = k. From
(7) we have:

dϕ̄k = Ck
nλ

(k)dy + λθk−

−
k−1∑

s=1

(
∂ϕ̄

(n−s)
s

∂y(n−k)
dy +

∂ϕ̄
(n−s)
s

∂u(n−k)
du

)
. (21)

To simplify the proof let us denote

A :=

k−1∑

s=1

(
∂ϕ̄

(n−s)
s

∂y(n−k)
dy +

∂ϕ̄
(n−s)
s

∂u(n−k)
du

)
.

From the assumption that statement (20) holds for i =
k − 1 one can write:

k−1∑

s=1

dϕ̄(n−s)
s =

k−1∑

s=1

(
(−1)s−1Cs

nλ
(s)dy+

+

s∑

j=1

(−1)s−1Cs−j
n−jλ

(s−j)ωj

)(n−s)

.

Using the compact description of ωi, given by (14), and the
formula (11) for the (n − s)th order derivative of the one-
forms λ(s)dy and λ(s−j)ωj , the latter yields:

k−1∑

s=1

dϕ̄(n−s)
s =

k−1∑

s=1

(−1)s−1Cs
n

n−s∑

m=0

Cm
n−sλ

(n−m)dy(m)+

+

k−1∑

s=1

s∑

j=1

(−1)s−jCs−j
n−j

j−1∑

p=0

(−1)pCp
n−j+p

[
n−s∑

m=0

Cm
n−s·

·
(
λ(s−j)

(
∂P

∂y(n−j+p)

)(p)
)(n−s−m)

dy(m) +
n−s∑

m=0

Cm
n−s·

·
(
λ(s−j)

(
∂P

∂u(n−j+p)

)(p)
)(n−s−m)

du(m)

]
.

In order to find A, one needs the elements of∑k−1
s=1 dϕ̄

(n−s)
s with the order of differentiation of dy and
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du being m := n− k:

A = λ(k)dy

k−1∑

s=1

(−1)s−1Cs
nC

n−k
n−s +

+

k−1∑

s=1

s∑

j=1

(−1)s−jCs−j
n−j

j−1∑

p=0

(−1)pCn−j+pC
n−k
n−s ·

·
[(

λ(s−j)

(
∂P

∂y(n−j+p)

)(p)
)(k−s)

dy+

+

(
λ(s−j)

(
∂P

∂u(n−j+p)

)(p)
)(k−s)

du

]
=

= λ(k)dy

k−1∑

s=1

(−1)s−1Cs
nC

n−k
n−s +

k−1∑

s=1

s∑

j=1

(−1)s−j ·

· Cs−j
n−j

j−1∑

p=0

(−1)pCn−j+pC
n−k
n−s

k−s∑

m=0

Cm
k−sλ

(k−j−m)·

·
((

∂P

∂y(n−j+p)

)(p+m)

dy +

(
∂P

∂u(n−j+p)

)(p+m)

du

)
.

If we add and subtract the addend of the second sum with
s = k, we get:

A = λ(k)dy

k−1∑

s=1

(−1)s−1Cs
nC

n−k
n−s +

k∑

s=1

s∑

j=1

(−1)s−jCs−j
n−j ·

·
j−1∑

p=0

(−1)pCn−j+pC
n−k
n−s

k−s∑

m=0

Cm
k−sλ

(k−j−m)·

·
((

∂P

∂y(n−j+p)

)(p+m)

dy +

(
∂P

∂u(n−j+p)

)(p+m)

du

)
−

−
k∑

j=1

(−1)k−jCk−j
n−jλ

(k−j)ωj ,

which by (i) is

A = λ(k)dy

k−1∑

s=1

(−1)s−1Cs
nC

n−k
n−s + λθk−

−
k∑

j=1

(−1)k−jCk−j
n−jλ

(k−j)ωj .

Note that from (21)

dϕ̄k = Ck
nλ

(k)dy + λθk −A = λ(k)dy

(
Ck

n−

−
k−1∑

s=1

(−1)s−1Cs
nC

n−k
n−s

)
+

k∑

j=1

(−1)k−jCk−j
n−jλ

(k−j)ωj .

Finally, applying (ii) we obtain:

dϕ̄k = (−1)k−1Ck
nλ

(k)dy +

k∑

j=1

(−1)k−jCk−j
n−jλ

(k−j)ωj .

V. EXAMPLE

Examine the following example, where we suppose x1 >
0:

ẋ1 = x2 + ux1

ẋ2 = −x1 +
x22
x1

+ x3 + u(x1 + x2 + x1 lnx1)

ẋ3 = −x1 + x3 +
x2x3
x1

+ x1 lnx1+

+u(x1 + x3 + x1 lnx1)
y = x1.

(22)

The input-output equation, corresponding to (22), is

y(3) = ÿ + 3
ÿẏ

y
− 2

ẏ3

y2
− ẏ2

y
+ ẏu+ yü+ yu̇ ln y + y ln y.

To check, whether it is possible to transform system (22)
via the state and output coordinate transformations into the
observer form (2), one has to check the validity of conditions
(20), which for the case n = 3 require that the one-forms at
the right hand side of

dϕ̄1 := 3λ̇dy + λω1,

dϕ̄2 := −3λ̈dy − 2λ̇ω1 + λω2,

dϕ̄3 :=
...
λdy + λ̈ω1 − λ̇ω2 + λω3

(23)

are, for some function λ(y), the total differentials.
Step 1. Compute, according to (13),

ω1 =

(
1 + 3

ẏ

y

)
dy + ydu,

ω2 =

(
−3

ÿ

y
− 2

ẏ

y
+ u

)
dy + (y ln y − 2ẏ)du,

ω3 =

(
3
ẏÿ

y2
+ 2

ÿ

y
− 2

ẏ3

y3
− ẏ2

y2
+ ü+ ln y+

+u̇ ln y + 1

)
dy + (ÿ − ẏ ln y) du.

(24)

Step 2. To find whether there exists λ(y), consider the first
equation in (23) and take the exterior derivative of both side.
Taking into account that λ̇ = λ′ẏ where the prime means
the derivative with respect to y, this yields the differential
equation 3λ′dẏ ∧ dy + λ′dy ∧ ω1 + λdω1 = 0 that we have
to solve with respect to λ(y). Doing this we get

λ(y) = 1/y, (25)

yielding by (8)
F (y) = ln y. (26)

Step 3. Using (24) and (25), compute according to (23)

dϕ̄1 :=
dy

y
+ du,

dϕ̄2 :=
u

y
dy + ln ydu,

dϕ̄3 :=
dy

y
.

(27)

All three expressions are total differentials, which means that
the necessary conditions for transformation of the system
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(22) into the observer form (2) are satisfied. Integration of
(27) yields ϕ̄1 = ln y+u, ϕ̄2 = u ln y, ϕ̄3 = ln y. Due to the
output transformation (26), Y = F (y) = ln y, and therefore,
ϕ1 = Y + u, ϕ2 = uY , ϕ3 = Y . From (2) one can define
the new state variables as follows:

z1 = Y = lnx1,

z2 = Ẏ − ϕ1 =
x2
x1
− lnx1,

z3 = Ÿ − ϕ̇1 − ϕ2 =
x3
x1
− x2
x1
− 1,

that leads to the new state equations in the observer form:

ż1 = z2 + z1 + u
ż2 = z3 + z1u
ż3 = z1
Y = z1.

VI. CONCLUSIONS

Alternative necessary conditions were suggested for trans-
formability of a single-input single-output state equations
into the observer form using both the state and the output
transformations. Both conditions, the old ones and those
given in this paper, require that certain n differential one-
forms, associated with the nth order differential input-output
equation (corresponding to the state equations), and depend-
ing on an unknown single-variable output dependent func-
tion, are the total differentials of some functions. Although
the new conditions are more direct and more simple, they
still require to check whether a certain partial differential
equation is solvable or not, that might be difficult to test. On
the other hand, in the discrete-time case simple necessary and
sufficient conditions exist that are directly computable from
the input-output equation and do not depend on the unknown
output function. These conditions [12] are expressed in
terms of exterior derivatives and the exterior products of
the one-forms, similar to those in the continuous-time case.
Our further goal is to find out whether it is possible to
extend these conditions to the continuous-time case. Note
that the output transformation and shift operator commute,
whereas this does not hold for the output transformation
and derivative operator, and therefore, the answer is not
immediate. In case the extension turns out to be impossible,
our goal is to reformulate the discrete-time conditions in such
a way that using the mathematical machinery of the pseudo-
linear algebra, the discrete- and continuous-time cases can
be unified into one single condition, from which both results
follow as the special cases. Note that this has been done
for the case when only a state transformation is allowed to
transform the system equations into the observer form [7].

APPENDIX

For the proof of Lemma 1 and Lemma 2 we will use the
Newton’s binomial theorem (a + b)k =

∑k
s=0 C

s
ka

sbk−s,
which for a = −1, b = 1 and k > 0 gives

k∑

s=0

Cs
k(−1)s = 0. (28)

A. Proof of Lemma 1

Proof: Since Ck
n = n!

(n−k)!k! , proving (12) is equivalent
to prove that

(−1)j =

j∑

i=1

(−1)iCi−1
j . (29)

Note that from (28), taking 0 =
∑j

p=0 C
p
j (−1)p and

changing the summation index, i.e. taking p = i − 1, we
have 0 =

∑j+1
i=1 C

i−1
j (−1)i−1. Finally, separating the last

addend of the sum, putting it into the left side of the
equation and multiplying both sides by −1 yields (−1)j =∑j

i=1(−1)iCi−1
j . Consequently, (29) is true and therefore

(12) is true, too.

B. Proof of Lemma 2

Proof: (i) To prove the first part of Lemma 2, we denote
the left hand side of (i) by B and rewrite it in the following
way:

B :=

k∑

s=1

s∑

j=1

k−s∑

m=0

(−1)s−jCs−j
n−j

j−1∑

p=0

(−1)p·

· Cn−j+pC
n−k
n−sC

m
k−sλ

(k−j−m)·

·
((

∂P

∂y(n−j+p)

)(p+m)

dy +

(
∂P

∂u(n−j+p)

)(p+m)

du

)
.

After changing the summation order

k∑

s=1

s∑

j=1

k−s∑

m=0

as,j,m =

k∑

s=1

s∑

j=1

k−s∑

m=0

am+j,j,s−j ,

we obtain:

B =

k∑

s=1

s∑

j=1

k−s∑

m=0

(−1)mCm
n−j

j−1∑

p=0

(−1)pCn−j+pC
n−k
n−m−j ·

· Cs−j
k−m−jλ

(k−s)

((
∂P

∂y(n−j+p)

)(p+s−j)

dy +

+

(
∂P

∂u(n−j+p)

)(p+s−j)

du

)
=

k∑

s=1

λ(k−s)·

·
s∑

j=1

j−1∑

p=0

(−1)pCn−j+p

((
∂P

∂y(n−j+p)

)(p+s−j)

dy +

+

(
∂P

∂u(n−j+p)

)(p+s−j)

du

)
·

·
k−s∑

m=0

(−1)mCm
n−jC

n−k
n−m−jC

s−j
k−m−j .
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Separating from B the last addend,

B =

k−1∑

s=1

λ(k−s)
s∑

j=1

j−1∑

p=0

(−1)pCn−j+p·

·
((

∂P

∂y(n−j+p)

)(p+s−j)

dy +

+

(
∂P

∂u(n−j+p)

)(p+s−j)

du

)
k−s∑

m=0

(−1)mCm
n−j ·

· Cn−k
n−m−jC

s−j
k−m−j + λ

k∑

j=1

j−1∑

p=0

(−1)pCp
n−j+pC

n−k
n−j ·

·
((

∂P

∂y(n−j+p)

)(p+k−j)

dy+

(
∂P

∂u(n−j+p)

)(p+k−j)

du

)
.

It is easy to check by direct computations that
Cm

n−jC
n−k
n−m−jC

s−j
k−m−j = Cn−s

n−jC
k−s
n−sC

m
k−s, which yields:

B =

k−1∑

s=1

λ(k−s)
s∑

j=1

j−1∑

p=0

(−1)pCn−j+p·

·
((

∂P

∂y(n−j+p)

)(p+s−j)

dy +

(
∂P

∂u(n−j+p)

)(p+s−j)

du

)
·

· Cn−s
n−jC

k−s
n−s

k−s∑

m=0

Cm
k−s(−1)m + λ

k∑

j=1

j−1∑

p=0

(−1)p·

· Cp
n−j+pC

n−k
n−j

((
∂P

∂y(n−j+p)

)(p+k−j)

dy +

+

(
∂P

∂u(n−j+p)

)(p+k−j)

du

)
,

and taking into account (28)

B = λ
k∑

j=1

j−1∑

p=0

(−1)pCp
n−j+pC

n−k
n−j ·

·
((

∂P

∂y(n−j+p)

)(p+k−j)

dy+

(
∂P

∂u(n−j+p)

)(p+k−j)

du

)
.

Changing the summation order

k∑

j=1

j−1∑

p=0

aj,p =

k−1∑

p=0

p∑

j=0

ak−p+j,j ,

we have:

B = λ

k−1∑

p=0

p∑

j=0

(−1)jCj
n−k+pC

n−k
n−k+p−j ·

·
((

∂P

∂y(n−k+p)

)(p)

dy +

(
∂P

∂u(n−k+p)

)(p)

du

)
.

By definition (6), one can easily verify that the first addend
of B is λθk, thus we can rewrite B as follows:

B = λθk + λ

k−1∑

p=1

p∑

j=0

(−1)jCj
n−k+pC

n−k
n−k+p−j ·

·
((

∂P

∂y(n−k+p)

)(p)

dy +

(
∂P

∂u(n−k+p)

)(p)

du

)
.

It is easy to check by direct computations that
Cj

n−k+pC
n−k
n−k+p−j = Cj

pC
p
n−k+p, which allows us to

rewrite B as follows:

B = λθk + λ
k−1∑

p=1

Cp
n−k+p

p∑

j=0

Cj
p(−1)j ·

·
((

∂P

∂y(n−k+p)

)(p)

dy +

(
∂P

∂u(n−k+p)

)(p)

du

)
.

By (28), the second addend in B is zero, therefore B = λθk.
(ii) To prove the second part of Lemma 2, we mul-

tiply both sides of (28) by Ck
n
(n−s)!
(n−s)! which yields 0 =∑k

s=0(−1)sCs
nC

n−k
n−s . If we separate the last and the first

addends of the sum and put the last addend into the left
hand side of the equation, we get −(−1)kCk

n = Cn−k
n +∑k−1

s=1 (−1)sCs
nC

n−k
n−s . Finally, using Cn−k

n = Ck
n and

−(−1)k = (−1)k−1, we prove (ii).
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1. INTRODUCTION

The paper addresses the problem of transforming the continuous-
time single-input single-output nonlinear control system into
the nonlinear observer form using both the state and output
transformations. Unlike the traditional methods as in Conte
et al. [2007] or Isidori [1985], where only the state transforma-
tion is used, the approach, where in addition the output trans-
formation is applied, enlarges the class of systems for which
the observer with linear error dynamic can be constructed. This
problem has been addressed before in papers by Glumineau
et al. [1996], Mullari et al. [2008] and Kaparin et al. [2009].
In Glumineau et al. [1996] the necessary solvability condition
is formulated in terms of the differential forms. This condition
yields to a partial differential equation, the solution of which
provides a candidate output transformation function. The nec-
essary condition is very mild and far from being sufficient.
Obviously, its existence does not guarantee the solvability of
the problem. To check whether the problem is solvable, one
has to apply the output transformation and check if in the new
output coordinates the system is transformable into the observer
form by the state coordinate transformation only. In Mullari
et al. [2008] the new necessary solvability conditions have
been found for the systems up to the order 4. The latter con-
ditions were expressed directly in terms of the original system
equations and do not require to apply the intermediate output
transformation to check the problem solvability. In Kaparin
et al. [2009], in order to simplify the necessary conditions from
Mullari et al. [2008], a different set of one-forms, associated
with a control system, is suggested to use. Moreover, the closed
formulas that show the relationship between the two sets of one-
forms, is given. However, since the results of Kaparin et al.
[2009] rely on the relationship between the two sets of one-
forms, the results are also valid for systems up to the order 4.

The purpose of this paper is to present the necessary and suffi-
cient conditions in terms of the one-form, introduced in Kaparin
et al. [2009] for the systems of arbitrary order. Of course, our
� This work was partially supported by the Estonian Science Foundation
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approach, as well as those in Glumineau et al. [1996], Mullari
et al. [2008] and Kaparin et al. [2009] assumes the knowledge
of the input-output equation corresponding to the state space
description. Under the observability assumption, using the state
elimination algorithm, one can, at least locally, always find for
the state equation a corresponding input-output equation, see
for example Conte et al. [2007]. However, globally elimination
of the state is a difficult problem, that results, in general, an
implicit input-output equation accompanied to a number of
inequations, see for example Diop [1991]. Alternative result,
formulated in terms of vector fields is suggested in Boutat
et al. [2009] for systems without inputs. Extension for systems
depending on inputs was also discussed, but then the conditions
are only sufficient and the assumed observer form is more
general. Namely, the coefficients of the linear part also depend
on control. The different kind of generalized observer form was
also assumed in Besançon [1999].

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a single-input single-output nonlinear continuous-
time system, described by the state equations

ẋ = f(x, u)
y = h(x),

(1)

where x ∈ Rn is the state, u ∈ R is the input and y ∈ R is
the output. Our purpose is to find the conditions under which
system (1) can be transformed into the observer form

ż1 = z2 + ϕ1(Y, u)
...

żn−1 = zn + ϕn−1(Y, u)
żn = ϕn(Y, u)
Y = z1,

(2)

using the state transformation
z = ψ(x) (3)

and the output transformation
Y = F (y). (4)



Control system (1) can be transformed into the observer form
(2) if the input-output (i/o) equation

y(n) = P (y, ẏ, . . . , y(n−1), u, u̇, . . . , u(n−1)), (5)
corresponding to (1), can be written in the form

Y (n) = ϕ
(n−1)
1 + ϕ

(n−2)
2 + . . . + ϕn, (6)

where all functions ϕi depend only on the new output Y and
the input u:

ϕi : (Y, u) → R ∀i = 1, . . . , n.

If this holds, one can define the new state variables as follows:
z1 = Y,

z2 = Ẏ − ϕ1,

z3 = Ÿ − ϕ̇1 − ϕ2,
...

zn = Y (n−1) − ϕ
(n−2)
1 − ϕ

(n−3)
2 − . . . − ϕn−1,

(7)

leading to system (2).

For the further search of the necessary and sufficient conditions
we define the differential one-forms by means of the following
algorithm which is the extension of the algorithm described by
Conte et al. [2007]:

P1 := P, dPi+1 := dPi − ω
(n−i)
i , i = 1, . . . , n − 1,

where by ω
(n−i)
i is denoted the (n− i)th order derivative of the

one-form ωi, defined by

ωi =
∂Pi

∂y(n−i)
dy +

∂Pi

∂u(n−i)
du.

According to Kaparin et al. [2009], the closed form of the one-
forms ωi for i = 1, . . . , n is the following:

ωi =

i−1∑

j=0

(−1)jCj
n−i+j

[ (
∂P

∂y(n−i+j)

)(j)

dy+

+

(
∂P

∂u(n−i+j)

)(j)

du

]
. (8)

Moreover, define the composite functions ϕ̄i(y, u) :=
ϕi(F (y), u).

3. NECESSARY AND SUFFICIENT CONDITIONS

The theorem proved in this section provides the necessary
and sufficient conditions, which allow us to transform the i/o
equation (5) into the form (6) and, as a consequence, the state
equations (1) into the observer form (2). In order to prove
Theorem 1, we need the following proposition and lemma.
Proposition 1. (Kaparin et al. [2010]). Assume that f(ξ1(t),
ξ2(t), . . . , ξr(t)) is a composite function for which derivatives
up to order a + b are defined; then

∂ (f(ξ1(t), ξ2(t), . . . , ξr(t)))
(a+b)

∂ξ
(a)
l (t)

=

= Cb
a+b

(
∂f(ξ1(t), ξ2(t), . . . , ξr(t))

∂ξl(t)

)(b)

,

where l = 1, 2, . . . , r, Cb
a+b is the binomial coefficient and a, b

are nonnegative integers.
Lemma 1.

(i)
i∑

j=1

(−1)j−1Cj−1
i = (−1)i−1.

(ii)
i−s+1∑

j=1

(−1)j−1Cj−1
i−s = 0, for s = 1, . . . , i − 1 and i > 1.

Proof. For the proof we use the binomial formula (a + b)k =∑k
m=0 Cm

k ambk−m, which for a = −1, b = 1 and k > 0 gives
k∑

m=0

Cm
k (−1)m = 0. (9)

(i) Using (9) for k = i we get
i∑

m=0

Cm
i (−1)m = 0.

Separating the last addend of the sum and putting it into the
right-hand side yields:

i−1∑

m=0

Cm
i (−1)m = −(−1)i.

Finally, if we change the summation index, taking m = j − 1,
and take into account that −(−1)i = (−1)i−1, we obtain (i).

(ii) Since s = 1, . . . , i − 1 and i > 1, then i − s > 0 and one
can apply (9) for k = i − s:

i−s∑

m=0

Cm
i−s(−1)m = 0.

Changing the summation index, taking m = j − 1, we obtain
(ii).

�
Now we are ready to prove our main result.
Theorem 1. The system (1) can be transformed by the state
transformation (3) and the output transformation (4) into the
observer form (2) if and only if there exists a function λ(y),
such that the one-forms

(−1)i−1Ci
nλ(i)dy +

i∑

p=1

(−1)i−pCi−p
n−pλ

(i−p)ωp,

i = 1, . . . , n, (10)
where ωp’s are defined by (8), are exact.

Proof. Necessity: Assume that system (1) is transformable into
the observer form (2). Consequently, the i/o equation (5) can be
rewritten in the form (6). Complete the following steps:

• Take the partial derivatives of both sides of the i/o equation
(6) with respect to y(n−i+j−1), for j = 1, . . . , i.

• Next, take the (j − 1)-th order time-derivative of each
expression, obtained in the previous step.

• Denote
αj := (−1)j−1Cj−1

n−i+j−1 (11)
and multiply both sides of the equation by αj .

• Add the obtained equations for j = 1, . . . , i.

As a result, the following equations are obtained:
i∑

j=1

αj

(
∂F (n)

∂y(n−i+j−1)

)(j−1)

=

=

i∑

j=1

n∑

s=1

αj

(
∂ϕ̄

(n−s)
s

∂y(n−i+j−1)

)(j−1)

. (12)



Repeating the same with respect to control variable u, one
obtains

i∑

j=1

αj

(
∂F (n)

∂u(n−i+j−1)

)(j−1)

=

=

i∑

j=1

n∑

s=1

αj

(
∂ϕ̄

(n−s)
s

∂u(n−i+j−1)

)(j−1)

. (13)

Consider separately each side of equations (12) and (13). De-
note

LY :=

i∑

j=1

αj

(
∂F (n)

∂y(n−i+j−1)

)(j−1)

,

LU :=
i∑

j=1

αj

(
∂F (n)

∂u(n−i+j−1)

)(j−1)

,

RY :=

i∑

j=1

n∑

s=1

αj

(
∂ϕ̄

(n−s)
s

∂y(n−i+j−1)

)(j−1)

,

RU :=

i∑

j=1

n∑

s=1

αj

(
∂ϕ̄

(n−s)
s

∂u(n−i+j−1)

)(j−1)

.

According to Faà di Bruno’s Formula (Johnson [2002]), the n-
th order time derivative of output transformation F reads as
follows:

F (n) =
∑ n!

k1! . . . kn!
FK

n∏

p=1

(
y(p)

p!

)kp

,

where K is the order of derivative with respect to y and is
defined as K = k1 + . . . + kn where the sum is taken over
all possible partitions of n, i.e., over the values of k1, ..., kn
such that k1 + 2k2 + . . . + nkn = n.

Obviously, the addend of F (n) corresponding to kn = 1 and
k1, . . . , kn−1 = 0, equals F ′y(n). According to (5), y(n) must
be replaced by the function P . To take this replacement into ac-
count and avoid the complication in the further transformations
of F (n) we add to LY a zero term, such that LY now reads as

LY =
i∑

j=1

(αj

((
∂F (n)

∂y(n−i+j−1)

)(j−1)

+

+

(
∂

(
F ′P − F ′y(n)

)

∂y(n−i+j−1)

)(j−1))
,

where in F (n) we consider y(n) as symbol which we do
not need to replace. This trick simplifies the proof below by
allowing to use Proposition 1.

By Proposition 1 for r = 1, a = n− i+j −1 and b = i−j +1,

∂F (n)

∂y(n−i+j−1)
= Ci−j+1

n (F ′)(i−j+1),

yielding

LY =

i∑

j=1

αj

(
Ci−j+1

n (F ′)(i)+

+

(
∂

(
F ′P − F ′y(n)

)

∂y(n−i+j−1)

)(j−1))
.

Using product rule for finding the derivative one can write:

∂
(
F ′P − F ′y(n)

)

∂y(n−i+j−1)
= F ′ ∂P

∂y(n−i+j−1)
+ P

∂F ′

∂y(n−i+j−1)
−

− y(n) ∂F ′

∂y(n−i+j−1)
− F ′ ∂y(n)

∂y(n−i+j−1)
.

Since n − i + j − 1 < n for i = 1, . . . , n and j = 1, . . . , i
then ∂y(n)/∂y(n−i+j−1) = 0. Also taking into account that
y(n) = P one obtains

∂
(
F ′P − F ′y(n)

)

∂y(n−i+j−1)
= F ′ ∂P

∂y(n−i+j−1)
.

Thus LY can be rewritten as follows:

LY =
i∑

j=1

αj

(
Ci−j+1

n (F ′)(i) +

(
F ′ ∂P

∂y(n−i+j−1)

)(j−1)
)

.

By direct computation Cj−1
n−i+j−1C

i−j+1
n = Ci

nCj−1
i and

taking into account (11), we obtain:

LY = Ci
n(F ′)(i)

i∑

j=1

(−1)j−1Cj−1
i +

+

i∑

j=1

αj

(
F ′ ∂P

∂y(n−i+j−1)

)(j−1)

.

By (i) of Lemma 1 we obtain:

LY = (−1)i−1Ci
n(F ′)(i) +

i∑

j=1

αj

(
F ′ ∂P

∂y(n−i+j−1)

)(j−1)

.

To rewrite the obtained expression in a more compact form
denote

β := (−1)i−1Ci
n(F ′)(i). (14)

After the application of the Leibnitz Formula for the higher
order derivative of the product, we have:

LY = β +
i∑

j=1

αj

j−1∑

p=0

Cp
j−1(F

′)(j−1−p)·

·
(

∂P

∂y(n−i+j−1)

)(p)

= β +

i∑

j=1

j−1∑

p=0

αj ·

· Cp
j−1(F

′)(j−1−p)

(
∂P

∂y(n−i+j−1)

)(p)

.

Usind (11) and changing the summation order
∑i

j=1

∑j−1
p=0 aj,p =∑i

p=1

∑p−1
j=0 ai−p+j+1,j , rewrite LY as follows:

LY = β +
i∑

p=1

p−1∑

j=0

(−1)i−p+jCi−p+j
n−p+j ·

· Cj
i−p+j(F

′)(i−p)

(
∂P

∂y(n−p+j)

)(j)

.

By direct computation Ci−p+j
n−p+jC

j
i−p+j = Ci−p

n−pC
j
n−p+j , and

taking also into account that (−1)i−p+j = (−1)i−p(−1)j , we
finally obtain:



LY = β +

i∑

p=1

(−1)i−pCi−p
n−p(F

′)(i−p)·

·
p−1∑

j=0

(−1)jCj
n−p+j

(
∂P

∂y(n−p+j)

)(j)

.

Since LY and LU have a similar structure, the transformations
made with LY can be made also with LU , yielding

LU = (−1)i−1Ci
n

(
∂F

∂u

)(i)

+

i∑

p=1

(−1)i−pCi−p
n−p(F

′)(i−p)·

·
p−1∑

j=0

(−1)jCj
n−p+j

(
∂P

∂u(n−p+j)

)(j)

.

Since ∂F/∂u = 0,

LU =

i∑

p=1

(−1)i−pCi−p
n−p(F

′)(i−p)·

·
p−1∑

j=0

(−1)jCj
n−p+j

(
∂P

∂u(n−p+j)

)(j)

.

Next consider RY . Note, that if s > i− j +1 then n−s < n−
i+j−1 and so [∂ϕ̄

(n−s)
s /∂y(n−i+j−1)] = 0. Therefore, instead

of taking s = 1, . . . , n we can take s = 1, . . . , i − j + 1 and
rewrite RY as follows:

RY :=

i∑

j=1

i−j+1∑

s=1

αj

(
∂ϕ̄

(n−s)
s

∂y(n−i+j−1)

)(j−1)

,

By Proposition 1 for r = 2, a = n−i+j−1 and b = i−s−j+1

∂ϕ̄
(n−s)
s

∂y(n−i+j−1)
= Ci−s−j+1

n−s

(
∂ϕ̄s

∂y

)(i−s−j+1)

,

and therefore,

RY :=
i∑

j=1

i−j+1∑

s=1

αjC
i−s−j+1
n−s

(
∂ϕ̄s

∂y

)(i−s)

,

Changing the summation order
∑i

j=1

∑i−j+1
s=1 aj,s =∑i

s=1

∑i−s+1
j=1 aj,s, we obtain:

RY :=

i∑

s=1

i−s+1∑

j=1

αjC
i−s−j+1
n−s

(
∂ϕ̄s

∂y

)(i−s)

.

By direct computation Cj−1
n−i+j−1C

i−s−j+1
n−s = Ci−s

n−sC
j−1
i−s and

taking into account (11), we have

RY :=

i∑

s=1

Ci−s
n−s

(
∂ϕ̄s

∂y

)(i−s) i−s+1∑

j=1

(−1)j−1Cj−1
i−s .

Note that for i = 1 RY := [∂ϕ̄1/∂y]. In case i > 1, one can
separate the last addend of the sum RY , yielding

RY :=
∂ϕ̄i

∂y
+

i−1∑

s=1

Ci−s
n−s

(
∂ϕ̄s

∂y

)(i−s) i−s+1∑

j=1

(−1)j−1Cj−1
i−s .

By (ii) of Lemma 1, RY := [∂ϕ̄i/∂y]. Analogously we get
RU := [∂ϕ̄i/∂u], for i = 1, . . . , n. Thus, taking into account
(14), one can rewrite (12) and (13) as follows

∂ϕ̄i

∂y
= (−1)i−1Ci

n(F ′)(i) +

i∑

p=1

(−1)i−pCi−p
n−p(F

′)i−p·

·
p−1∑

j=0

(−1)jCj
n−p+j

(
∂P

∂y(n−p+j)

)(j)

,

∂ϕ̄i

∂u
=

i∑

p=1

(−1)i−pCi−p
n−p(F

′)i−p·

·
p−1∑

j=0

(−1)jCj
n−p+j

(
∂P

∂u(n−p+j)

)(j)

.

If we add together the above equations, taking into account (8)
and notation λ := F ′, we finally obtain the exact differential
one-forms

dϕ̄i := (−1)i−1Ci
nλ(i)dy+

i∑

p=1

(−1)i−pCi−p
n−pλ

(i−p)ωp. (15)

Obviously the right-hand side of equations (15) equals (10).

Sufficiency: If there exists a function λ(y), such that the one-
forms (10), where ωp’s are defined by (8), are exact, then
the function F (y) for the output transformation (4) can be
calculated as an integral

F (y) =

∫
λ(y)dy. (16)

Integrating the exact one-forms (15) one can find functions ϕ̄i

for i = 1, . . . , n. By means of functions F (y) and ϕ̄i the system
equations in the observer form (2) can be easily constructed.

�

4. ALGORITHM

In this section we represent the algorithm for transformation the
system (1) into the observer form (2). First, one has to find the
i/o representation (5) of the system (1) and then perform the
following steps:

Step 1. Using (8), compute the one-forms ωi for i = 1, . . . , n.

Step 2. Take the exterior derivative of the one-form (10) for
i = 1. For this one-form to be exact the exterior derivative
has to equal zero. Taking into account that λ̇ = λ′ẏ where the
prime means the derivative with respect to y, this yields the
differential equation C1

nλ′dẏ ∧ dy + λ′dy ∧ ω1 + λdω1 = 0
which we have to solve with respect to λ(y). If the solution does
not exist, the problem is not solvable; stop.

Step 3. Using ωi’s and λ(y) compute the one-forms (10), for
i = 2, . . . , n.

Step 4. Check whether the one-forms (10) are exact or not. If at
least one of them is not exact, the problem is not solvable; stop.

Step 5. Rewrite the (exact) one-forms (10) as dϕ̄i (see (15)).
Integrate the one-forms dϕ̄i, yielding ϕ̄i for i = 1, . . . , n.
Using λ(y) and (16) one can find ϕi and F (y) in terms of which
the system in the observer form (2) can be easily constructed.

5. EXAMPLE

Examine the following example, where we suppose x1 > 0 and
x2 �= 0:



ẋ1 = x1(u
2 + x2)

ẋ2 =
u

x1
− u2x2 + x2x3

ẋ3 = 1 − 2u

x1
+

u2

x2
+

u lnx1

x1x2
+ u2x2 − x2

2−

− ux3

x1x2
− 3x2x3 − x2

3

y = lnx1.

(17)

The input-output equation, corresponding to (17), is

y(3) = u̇
(
e−y + 2u̇

)
+ u

(
e−yy + 4u̇ẏ + 2ü

)
+

+ u2
(
ẏ2 + ÿ

)
− ẏ

(
ẏ2 + 3ÿ − 1

)
.

To check, whether it is possible to transform system (17) via the
state and output coordinate transformations into the observer
form (2), one has to check the validity of conditions from
Theorem 1, which for the case n = 3 require that the one-forms

3λ̇dy + λω1,

−3λ̈dy − 2λ̇ω1 + λω2,...
λdy + λ̈ω1 − λ̇ω2 + λω3

(18)

are exact, for some function λ(y). We will follow the algorithm,
described in the previous section:

Step 1. Compute, according to (8),

ω1 =
(
u2 − 3ẏ

)
dy + 2udu,

ω2 =
(
1 + 2u2ẏ − 3ẏ2 + 2ÿ

)
dy +

(
e−y + 4uẏ

)
du,

ω3 =
(
e−y (u − uy − u̇) − 2u (2u̇ẏ + ü + uÿ)+

−2u̇2 + 6ẏÿ
)
dy +

(
e−y (y + ẏ)+

+2u
(
ẏ2 − ÿ

))
du.

(19)

Step 2. To find whether there exists λ(y), consider the differen-
tial equation 3λ′dẏ ∧ dy + λ′dy ∧ ω1 + λdω1 = 0 which we
have to solve with respect to λ(y). Doing this we get

λ(y) = ey, (20)
yielding by (16)

F (y) = ey. (21)

Step 3. Using (19) and (20), compute according to (18)

eyu2dy + 2eyudu,
eydy + du,
udy + ydu.

(22)

Step 4. All three expressions are total differentials, which
means that the necessary conditions for transformation of the
system (17) into the observer form (2) are satisfied.

Step 5. Since the necessary and sufficient conditions are satis-
fied one can define

dϕ̄1 := eyu2dy + 2eyudu,
dϕ̄2 := eydy + du,
dϕ̄3 := udy + ydu.

(23)

Integration of (23) yields

ϕ̄1 := eyu2,
ϕ̄2 := ey + u,
ϕ̄3 := uy.

Due to the output transformation (21), Y = F (y) = ey , and
therefore,

ϕ1 := Y u2,
ϕ2 := Y + u,
ϕ3 := u lnY.

From (7) one can define the new state variables as follows:

z1 = x1,
z2 = x1x2,
z3 = x1 (x2 (x2 + x3) − 1) ,

that leads to the new state equations in the observer form:
ż1 = z2 + z1u

2

ż2 = z3 + z1 + u
ż3 = u ln z1
Y = z1.

6. CONCLUSIONS

The simple necessary and sufficient conditions were derived
for the existence of the state and output transformations that
allow to transform the state equations into the observer form.
Since the conditions are formulated in terms of the one-forms,
computed from the i/o equation of the system, the conditions
are applicable in case when the i/o equation can be (easily)
found from the state equations. The conditions are simple and
require to check whether certain one-forms, associated with the
i/o equation are closed or not. However, note that these one-
forms depend on an unknown single-variable output function,
and the most difficult part of the transformation procedure
is to solve a certain differential equation with respect to this
unknown function.
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Abstract. The paper provides a theorem on the differentiation of a composite function with a vector argument. The theorem shows
how the partial derivative of the total derivative of the composite function can be expressed through the total derivative of the partial
derivative of the composite function. The proof of the theorem is based on Mishkov’s formula, which is the generalization of the
well-known Faà di Bruno’s formula for a composite function with a vector argument.

Key words: differential calculus, partial derivative, total derivative, composite function.

1. INTRODUCTION

The theorem proved in this paper was required as an intermediate result in solving the problem of the
transformation of the nonlinear control system, described by state equations, into the observer form and
finding the necessary conditions for the possibility of such transformation [2]. The deduction of the
necessary conditions involves frequent application of the differentiation of the composite functions with
respect to time argument and taking the partial derivatives of the differentiated composite function with
respect to one of the variables or its derivatives. The goal of this paper is to present and prove a formula
(commutation rule) which allows changing the order of taking the total higher-order derivatives of the
composite function and their partial derivatives with respect to one of the variables or its derivative. Since
this result may be useful in the solution of other nonlinear control problems, we propose it as a separate
contribution. For example, probably the main result, provided in the paper, can be applied for observer
design in [4].

The main tool for proving the theorem (commutation rule) is Mishkov’s theorem [3] which provides the
explicit formula for the nth derivative of a composite function with a vector argument. Mishkov’s formula
is a straightforward generalization of the well-known Faà di Bruno’s formula [1] which gives an explicit
equation for the nth-order derivative of the composite function with a scalar argument.

∗ Corresponding author, vkaparin@cc.ioc.ee
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2. MAIN RESULT

The following theorem shows how the partial derivative of the total derivative of the composite function can
be expressed through the total derivative of the partial derivative of this function. The composite function
with the vector argument with an arbitrary number of components is considered.

Theorem 1. Assume that f (ξ1(t),ξ2(t), . . . ,ξr(t)) is a composite function for which derivatives up to order
a + b are defined; then

∂ ( f (ξ1(t),ξ2(t), . . . ,ξr(t)))
(a+b)

∂ξ (a)
l (t)

= Cb
a+b

(
∂ f (ξ1(t),ξ2(t), . . . ,ξr(t))

∂ξl(t)

)(b)

,

where l = 1,2, . . . ,r, Cb
a+b is the binomial coefficient and a,b are nonnegative integers.

Proof. In the proof we omit the variable t of ξi(t), i.e. use instead of ξi(t) a shorter notation ξi, which allows
the bulky formulas to be written in a more compact form. According to Mishkov’s formula [3], the (a+b)th
derivative of the composite function with a vector argument can be computed by the formula

( f (ξ1,ξ2, . . . ,ξr))
(a+b) = ∑

0
∑
1

∑
2
· · · ∑

a+b

(a + b)!
a+b

∏
i=1

(i!)ki
a+b

∏
i=1

r

∏
j=1

qi, j!

∂ k f
∂ξ p1

1 ∂ξ p2
2 · · ·∂ξ pr

r

a+b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
, (1)

where the respective sums are taken over all nonnegative integer solutions of the Diophantine equations as
follows:

∑
0
→ k1 + 2k2 + · · ·+(a + b)ka+b = a + b, (2)

∑
i
→ qi,1 + qi,2 + · · ·+ qi,r = ki, (3)

for i = 1, . . . ,a + b, and p j and k on the right-hand side of (1) satisfy the relations

p j = q1, j + q2, j + · · ·+ qa+b, j, j = 1,2, . . . ,r,

k = p1 + p2 + · · ·+ pr = k1 + k2 + · · ·+ ka+b.
(4)

In taking the partial derivative of sum (1) with respect to ξ (a)
l , only addends of sum (1) with qa,l 6= 0

will matter. Denote by h(·) and g(·) the parts of sum (1) corresponding to qa,l 6= 0 and qa,l = 0, respectively;
then

( f (ξ1,ξ2, . . . ,ξr))
(a+b) = h(·)+ g(·). (5)

Note that it is possible to state that h(·) equals the expression in the right-hand side of (1) where, in addition
to the restrictions expressed by (2), (3), and (4), the condition qa,l 6= 0 has to be satisfied. Note also that if
qa,l 6= 0, then ka 6= 0. We prove the formula separately for the cases a> b and a ≤ b.

First, consider the case when a > b. Since ka 6= 0 and qa,l 6= 0, in order to satisfy (2) and (3), the
following must hold

ka = 1, ki = 0, b< i ≤ a + b, i 6= a,

qa,l = 1, qa, j = 0, j = 1,2, . . . ,r, j 6= l,

qi, j = 0, b< i ≤ a + b, i 6= a, j = 1,2, . . . ,r.

(6)

As a result, under the condition qa,l 6= 0, one can rewrite (2) as follows:

∑
0

→ k1 + 2k2 + · · ·+ bkb = b, (7)

and in (3), now i = 1, . . . ,b.
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Using (6) and changing the notations, taking p̄ j = p j for j = 1,2, . . . ,r, j 6= l, p̄l = pl −1 and k̄ = k−1,
equations (4) may be rewritten as

p̄ j = q1, j + q2, j + · · ·+ qb, j, j = 1,2, . . . ,r,

k̄ = p̄1 + p̄2 + · · ·+ p̄r = k1 + k2 + · · ·+ kb.
(8)

Note also that under conditions (6)

a+b

∏
i=1

(i!)ki = a!
b

∏
i=1

(i!)ki ,
a+b

∏
i=1

r

∏
j=1

qi, j! =
b

∏
i=1

r

∏
j=1

qi, j!,

and
a+b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
= ξ (a)

l

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
.

Taking into account the above equations and the fact that the partial derivative of g(·) in (5) with respect to
ξ (a)

l equals 0, we obtain, in new variables p̄ j and k̄:

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= ∑
0

∑
1

∑
2
· · ·∑

b

(a + b)!

a!
b

∏
i=1

(i!)ki
b

∏
i=1

r

∏
j=1

qi, j!

× ∂ k̄+1 f

∂ξ p̄1
1 · · ·∂ξ p̄l−1

l−1 ∂ξ p̄l+1
l ∂ξ p̄l+1

l+1 · · ·∂ξ p̄r
r

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
. (9)

Note that in (9) all the partial derivatives with respect to ξ j are of order p̄ j except with respect to ξl when
the order of the partial derivative is p̄l + 1. In order to unify the orders, denote f̄ := ∂ f

∂ξl
. We also multiply

the right-hand side of equation (9) by b!
b! to obtain

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= Cb
a+b ∑

0
∑
1

∑
2
· · ·∑

b

b!
b

∏
i=1

(i!)ki
b

∏
i=1

r

∏
j=1

qi, j!

× ∂ k̄ f̄

∂ξ p̄1
1 ∂ξ p̄2

2 · · ·∂ξ p̄r
r

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j
. (10)

It is easy to observe now that, according to Mishkov’s formula, the sum on the right-hand side of (10)
together with the conditions (3) for i = 1, . . . ,b, (7) and (8), is the bth-order total derivative of the function f̄ .
Consequently,

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= Cb
a+b f̄ (b) = Cb

a+b

(
∂ f (ξ1,ξ2, . . . ,ξr)

∂ξl

)(b)

. (11)

Second, consider the case a ≤ b. Since ka 6= 0, in order to satisfy (2) and (3), the following must hold:

ki = 0, b< i ≤ a + b,

qi, j = 0, b< i ≤ a + b, j = 1,2, . . . ,r.
(12)
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Therefore, it is possible to rewrite condition (2) as

∑
0

→ k1 + · · ·+(a−1)ka−1 + a(ka −1)+ (a + 1)ka+1 + · · ·+ bkb = b, (13)

and in (3), now i = 1, . . . ,b.
Again, in order to unify the notation in (13), one can take k̄i = ki for i = 1,2, . . . ,b, i 6= a and k̄a = ka−1.

This allows (13) to be rewritten as follows:

∑
0

→ k̄1 + 2k̄2 + · · ·+ bk̄b = b, (14)

and (3) as

∑
i

→ qi,1 + qi,2 + · · ·+ qi,r = k̄i, i = 1, . . . ,b, i 6= a,

∑
a

→ qa,1 + qa,2 + · · ·+ qa,r = k̄a + 1.
(15)

Since qa,l ≥ 1, we can denote q̄a,l := qa,l − 1 and the remaining q’s as q̄i, j := qi, j. Thereby (15) can be
rewritten in unified notation as

∑
i

→ q̄i,1 + q̄i,2 + · · ·+ q̄i,r = k̄i, (16)

for i = 1, . . . ,b. Changing notations, taking p̄ j = p j for j = 1,2, . . . ,r, j 6= l, p̄l = pl − 1 and k̄ = k− 1,
equations (4) may be rewritten as

p̄ j = q̄1, j + q̄2, j + · · ·+ q̄b, j, j = 1,2, . . . ,r,

k̄ = p̄1 + p̄2 + · · ·+ p̄r = k̄1 + k̄2 + · · ·+ k̄b.
(17)

Taking (12) into account and using variables k̄i and q̄i, j, we have

a+b

∏
i=1

(i!)ki = a!
b

∏
i=1

(i!)k̄i ,
a+b

∏
i=1

r

∏
j=1

qi, j! = (q̄a,l + 1)
b

∏
i=1

r

∏
j=1

q̄i, j!,

a+b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)qi, j

=
(

ξ (1)
l

)q̄1,l · · ·
(

ξ (a−1)
l

)q̄a−1,l
(

ξ (a)
l

)q̄a,l+1(
ξ (a+1)

l

)q̄a+1,l · · ·
(

ξ (b)
l

)q̄b,l b

∏
i=1

r

∏
j=1
j 6=l

(
ξ (i)

j

)q̄i, j
.

(18)

Furthermore, on the basis of (18) and the fact that the partial derivative of g(·) in (5) with respect to ξ (a)
l

equals 0, we obtain, in new variables p̄ j and k̄

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= ∑
0

∑
1

∑
2
· · ·∑

b

(a + b)!

a!
b

∏
i=1

(i!)k̄i
b

∏
i=1

r

∏
j=1

q̄i, j!

× ∂ k̄+1 f

∂ξ p̄1
1 · · ·∂ξ p̄l−1

l−1 ∂ξ p̄l+1
l ∂ξ p̄l+1

l+1 · · ·∂ξ p̄r
r

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)q̄i, j
.
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Like in case a > b we denote f̄ = ∂ f
∂ξl

and multiply the right-hand side of the equality given above by b!
b! to

obtain

∂ ( f (ξ1,ξ2, . . . ,ξr))
(a+b)

∂ξ (a)
l

= Cb
a+b ∑

0
∑
1

∑
2
· · ·∑

b

b!
b

∏
i=1

(i!)k̄i
b

∏
i=1

r

∏
j=1

q̄i, j!

× ∂ k̄ f̄

∂ξ p̄1
1 ,∂ξ p̄2

2 · · ·∂ξ p̄r
r

b

∏
i=1

r

∏
j=1

(
ξ (i)

j

)q̄i, j
. (19)

Again it is not difficult to observe that according to Mishkov’s formula, the sum on the right-hand side
of equation (19), together with the conditions (14), (16), and (17), is the bth-order total derivative of the
function f̄ . Consequently, (11) holds again, and this completes the proof.

Some useful corollaries of the theorem are given below.

Corollary 1. Under the assumptions of Theorem 1

∂ ( f (ξ1(t),ξ2(t), . . . ,ξr(t)))
(m+n)

∂ξl(t)
=

(
∂ ( f (ξ1(t),ξ2(t), . . . ,ξr(t)))

(m)

∂ξl(t)

)(n)

,

where m and n are nonnegative integers.

Corollary 2. Under the assumptions of Theorem 1

∂ ( f (ξ1(t),ξ2(t), . . . ,ξr(t)))
(n)

∂ξl(t)
=

(
∂ f (ξ1(t),ξ2(t), . . . ,ξr(t))

∂ξl(t)

)(n)

,

where n is a nonnegative integer.

3. EXAMPLE

The example in this section illustrates the statement of Theorem 1. Consider the composite function
f (x(t),y(t)) and assume that we need to take the partial derivative with respect to ÿ(t) of the 3rd-order
total derivative of the function. Direct computations yield

∂ ( f (x(t),y(t)))(3)

∂ ÿ(t)
= 3

∂ 2 f (x(t),y(t))
∂y(t)2 ẏ(t)+ 3

∂ 2 f (x(t),y(t))
∂x(t)∂y(t)

ẋ(t).

On the other hand, taking the partial derivative of f (x(t),y(t)) with respect to y(t) and the total derivative of
the obtained result, one gets

(
∂ f (x(t),y(t))

∂y(t)

)(1)

=
∂ 2 f (x(t),y(t))

∂y(t)2 ẏ(t)+
∂ 2 f (x(t),y(t))

∂x(t)∂y(t)
ẋ(t).

Multiplying both sides of the above equality by C1
3 , we have

C1
3

(
∂ f (x(t),y(t))

∂y(t)

)(1)

= 3
∂ 2 f (x(t),y(t))

∂y(t)2 ẏ(t)+ 3
∂ 2 f (x(t),y(t))

∂x(t)∂y(t)
ẋ(t).

It is not difficult to check that

∂ ( f (x(t),y(t)))(3)

∂ ÿ(t)
= C1

3

(
∂ f (x(t),y(t))

∂y(t)

)(1)

.
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4. CONCLUSIONS

The paper shows how to commute the operations of taking higher-order total and partial derivatives of
composite functions with vector arguments. The formula, provided in the paper, may be applicable not only
in differential calculus. As already mentioned in the introduction, the theorem was a useful tool in deriving
solvability conditions of a certain problem in nonlinear control theory. With high probability it may be
useful in dealing with other nonlinear control problems where the derivatives of the composite functions
with a vector argument often show up.
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Teoreem vektorargumendiga liitfunktsiooni diferentseerimisest

Vadim Kaparin ja Ülle Kotta

On tõestatud teoreem vektorargumendiga liitfunktsiooni diferentseerimise kohta. Teoreemis esitatud valem
näitab, kuidas liitfunktsiooni täistuletise osatuletist saab väljendada tema osatuletise täistuletise kaudu.
Teoreemi tõestus põhineb Mishkovi valemil, mis omakorda kujutab endast tuntud Faà di Bruno valemi
üldistust vektorargumendiga liitfunktsiooni jaoks. Näide illustreerib teoreetilist tulemust.
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Extended Observer Form for Discrete-Time Nonlinear Control Systems

Vadim Kaparin and Ülle Kotta

Abstract— The paper addresses the problem of transform-
ing the discrete-time single-input single-output nonlinear state
equations into the extended observer form, which, besides the
input and output, also depends on a finite number of their
past values. The simple necessary and sufficient conditions for
the existence of the extended coordinate change and the output
transformation, allowing to solve the problem, are formulated
in terms of differential one-forms, associated with the input-
output equation, corresponding to the state equations.

I. INTRODUCTION
The design of nonlinear observer with linearizable error

dynamics is relatively easy if the state equations are in the
observer form. Conditions for the existence of the observer
form for nonlinear control system using the state coordinate
transformation are known to be quite restrictive, motivating
various extensions to enlarge the class of systems for which
observers with linear error dynamics can be constructed [1],
[2], [3], [4], [5]. In [1], [4], [5], for instance, the matrix A in
the observer form is allowed to depend on control variable
u. In [4] both the state and the output transformations are
allowed and [5] extends the results of [4] into the multi-input
multi-output case. In [2], [3] and [6] the past measurements
of the system output are used in the extended observer form.
In [3] and [6] the problem of transforming the discrete-
time system without inputs into the extended observer form
was studied, which consists of an observable linear system
interconnected with a nonlinearity, which, besides the output
of the system, also depends on a finite number of its
past values. The paper [3] provides the conditions under
which a given single-output discrete-time system may be
transformed into the extended observer form by means of an
extended coordinate change (i.e. a coordinate transformation
that depends on the state of the system and a finite number of
past output values) and an output transformation. A corollary
of the results considered in [7] is that when the number
of past output values equals n − 1 (where n is the dimen-
sion of the state space of the system under consideration),
the system can be always transformed into the extended
observer form, provided the system under consideration is
strongly observable. The necessary and sufficient conditions
for transformation of the input dependent system into the
extended observer form were presented in [8], where certain
partial derivatives related to the input-output equation have
been computed, and the function, necessary for the output
transformation, is easy to find from the conditions.

This work was supported by the Estonian Governmental funding project
no. SF0140018s08.

V. Kaparin and Ü. Kotta is with the Institute of Cybernetics at Tallinn
University of Technology, Akadeemia tee 21, 12618, Tallinn, Estonia
vkaparin@cc.ioc.ee, kotta@cc.ioc.ee

The purpose of this paper is to present the simple intrinsic
necessary and sufficient conditions for the existence of
the extended coordinate change and output transformation,
allowing to transform the discrete-time single-input single-
output nonlinear state equations into the extended observer
form. The conditions are formulated in terms of differential
one-forms, associated with the input-output equation, corre-
sponding to the state equations. The results generalize and
simplify those stated in [3].

The advantages of the new conditions are the following.
First, unlike those in [3], our conditions do not require
the calculation of the Lie derivatives of the dual vector
fields, corresponding to certain one-forms, as well as the
interior products of the one-forms and the vector fields.
Moreover, in order to simplify the result, we suggest to use
the different set of one-forms, which contain less terms than
those in [3]. As a consequence, our conditions are easier to
check and implement. Second, the conditions given in [3]
are applicable only for the systems without inputs, but the
conditions given in the present paper work also in the case
of input dependent system. Although the input dependent
system was considered in [2], the extended observer form
presented in [2] differs from the one, addressed in this
paper. In contrast with [2] our approach does not require,
in general, the maximal buffer of past measurements of
the system output. Finally, likewise [3], we investigate the
problem through the sophisticated language of differential
geometry, and therefore, in comparison with [8], our results
are intrinsic, not equation dependent.

II. PROBLEM STATEMENT AND PRELIMINARIES
Consider a single-input single-output nonlinear discrete-

time system, described by the state equations

x+ = F (x, u)
y = h(x), (1)

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ R is the input, y ∈
Y ⊂ R is the output, F : X × U → X and h : X → Y are
assumed to be real meromorphic functions. Notice that in this
paper we use symbols +, − and [i] instead of the arguments
t+1, t−1 and t+i, respectively, to simplify the exposition, so
x+ := x(t+1), x− := x(t−1), x := x(t) and x[i] = x(t+i).
Our purpose is to find the conditions under which there exist
the extended coordinate change Φ(·, ξ1, . . . , ξ2N+1) : X →
X , parameterized by (ξ1, . . . , ξ2N+1) and defined by

z = Φ(x, y−, . . . , y[−N ], u, u−, . . . , u[−N ]) (2)

and the output transformation p : Y → Y , defined by

Y = p(y) (3)

2011 9th IEEE International Conference on
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TueB2.6
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such that in the new state and output coordinates the state
equations (1) are in the following extended observer form1

with buffer N ∈ {1, . . . , n− 2}

z+
1 = z2 + ϕ1(Y, . . . , Y [−N ], u, . . . , u[−N ])

...
z+
n−N = zn−N+1+

+ϕn−N (Y, . . . , Y [−N ], u, . . . , u[−N ])
z+
n−N+1 = zn−N+2

...
z+
n−1 = zn

z+
n = 0
Y = z1,

(4)

where the forward shift of the coordinates z depends besides
the input u and the output y also on their past values
u−, . . . , u[−N ], and y−, . . . , y[−N ].

Note that the state equations (1) can be transformed into
the extended observer form (4) with the extended coordinate
change (2) and output transformation (3), if the input-output
(i/o) equation

y[n] = f(y, . . . , y[n−1], u, . . . , u[n−1]), (5)

corresponding to (1), can be written in the form [8]

p ◦ f =
n−N∑
l=1

ϕl(Y [n−l], . . . , Y [n−l−N ],

u[n−l], . . . , u[n−l−N ]). (6)

If (6) holds, one can define the new state variables as follows:

z1 = Y,

zi = Y [i−1] −
k∑

j=1

ϕj(Y [i−1−j], . . . , Y [i−1−j−N ],

u[i−1−j], . . . , u[i−1−j−N ]), i = 2, . . . , n,

(7)

where

k =

{
i− 1, for i = 2, . . . , n−N + 1,
n−N, for i = n−N + 2, . . . , n,

that leads to the new state equations in the extended observer
form (4).

III. NECESSARY AND SUFFICIENT CONDITIONS

Define for i = 0, . . . , n− 1 the differential one-forms

ωi =
∂f

∂y[i]
dy[i] +

∂f

∂u[i]
du[i] (8)

and codistributions

Ωi = span
{
ωk,du[k] | k 6= i,

k = max(0, i−N), . . . ,min(i+N,n− 1)
}
. (9)

1The extended observer form without inputs was considered earlier in
[3].

For example, if N = 1 and n = 5, then

Ω0 = span {ω1,du+} ,
Ω1 = span {ω0,du, ω2,du++} ,
Ω2 = span

{
ω1,du+, ω3,du[3]

}
,

Ω3 = span
{
ω2,du++, ω4,du[4]

}
,

Ω4 = span
{
ω3,du[3]

}
.

The minimal number of independent generators of a codis-
tribution is called its dimension. For a one form ω and a
r-dimensional codistribution Ω = span{υ1, . . . , υr}, we will
say that

dω ≡ 0 mod Ω

if and only if

dω ∧ υ1 ∧ · · · ∧ υr = 0.

Moreover, define the composite functions of ϕl and p

ϕ̄l(y, . . . , y[−N ], u, . . . , u[−N ]) :=

ϕl(Y, . . . , Y [−N ], u, . . . , u[−N ])

and the vector argument

νl :=
[
y[n−l], . . . , y[n−l−N ], u[n−l], . . . , u[n−l−N ]

]
(10)

for l = 1, . . . , n−N . In order to prove our main result, that
is Theorem 1 below, we need the following lemma, the proof
of which is given in the Appendix.

Lemma 1: For functions ϕ̄1(ν1), . . . , ϕ̄n−N (νn−N ) the
following holds

n−N∑
l=1

dϕ̄l(νl) =
n−1∑
i=0

Ai (ϕ̄n−N−l(νn−N−l)) , (11)

where

Ai (ϕ̄n−N−l(νn−N−l)) =

=
min(i,n−1−N)∑
l=max(0,i−N)

(
∂ϕ̄n−N−l(νn−N−l)

∂y[i]
dy[i]+

+
∂ϕ̄n−N−l(νn−N−l)

∂u[i]
du[i]

)
. (12)

Now we are ready to prove our main result.
Theorem 1: The system (1) can be transformed by the

extended coordinate change (2) and the output transformation
(3) into the extended observer form (4) with buffer N ∈
{1, . . . , n− 2} if and only if for all 0 ≤ i, j ≤ n− 1

dωi ∧ ωj + dωj ∧ ωi ≡
≡ 0 mod ((Ωi + Ωj) \ span {ωi, ωj}) . (13)

Proof: Necessity. Assume that system (1) is trans-
formable into the extended observer form (4). Consequently,
the i/o equation (5), corresponding to (1), can be rewritten
in the form (6), the total differential of which reads as

(p′ ◦ f)df = (p′ ◦ f)
n−1∑
i=0

ωi =
n−N∑
l=1

dϕ̄l(νl),
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where p′ ◦f means the derivative of the function p evaluated
at f . According to Lemma 1,

(p′ ◦ f)
n−1∑
i=0

ωi =
n−1∑
i=0

Ai (ϕn−N−l(νn−N−l)) . (14)

From (14) we have for i = 0, . . . , n− 1

(p′ ◦ f)ωi = Ai (ϕ̄n−N−l(νn−N−l)) . (15)

Consider the functions ϕ̄n−N−l (νn−N−l) for l = max(0, i−
N), . . . ,min(i, n−1−N). Taking into account (10) for new
index n−N − l, one can write

dϕ̄n−N−l (νn−N−l) =
N∑

s=0

(
∂ϕ̄n−N−l(νn−N−l)

∂y[l+s]
dy[l+s]+

+
∂ϕ̄n−N−l(νn−N−l)

∂u[l+s]
du[l+s]

)
. (16)

Note, that the codistribution Ωi, defined by (9), can be
rewritten as

Ωi = span{dy[k+s],du[k+s] |
k = max(0, i−N), . . . ,min(i, n− 1−N),

s = 0, . . . , N} \ span{dy[i],du[i]}. (17)

As a consequence, taking into account that the indices l in
(16) and k in (17) have the same ranges, from (16) one
obtains

dϕ̄n−N−l(νn−N−l) ≡
(
∂ϕ̄n−N−l(νn−N−l)

∂y[i]
dy[i]+

+
∂ϕ̄n−N−l(νn−N−l)

∂u[i]
du[i]

)
mod Ωi, (18)

which, by (15) and (12), leads to

(p′ ◦ f)ωi ≡
min(i,n−1−N)∑
l=max(0,i−N)

dϕ̄n−N−l(νn−N−l) mod Ωi.

Applying the exterior derivative to the above equality yields

d(p′ ◦ f) ∧ ωi + (p′ ◦ f)dωi ≡ 0 mod Ωi.

From the above relationship we obtain

dωi ≡ −d ln |p′ ◦ f | ∧ ωi mod Ωi

for i = 0, . . . , n− 1. Obviously,

dωi ∧ ωj ≡ −d ln |p′ ◦ f |∧
∧ ωi ∧ ωj mod ((Ωi + Ωj) \ span {ωi, ωj}) ,

using which, one gets for i, j = 0, . . . , n− 1

dωi ∧ ωj + dωj ∧ ωi ≡ −d ln |p′ ◦ f | ∧ (ωi ∧ ωj+
+ ωj ∧ ωi) mod ((Ωi + Ωj) \ span {ωi, ωj}) . (19)

Since the wedge product is anticommutative, the expression
in the parentheses on the right-hand side of (19) is always
zero, which yields (13).

Sufficiency. The proof consists of three steps. On the first
step (i) we will show that under the conditions (13) there
exist functions ψl(νl) for l = 1, . . . , n−N , such that

ωi ≡ λi

min(i,n−1−N)∑
l=max(0,i−N)

dψn−N−l(νn−N−l) mod Ωi (20)

for i = 0, . . . , n − 1. On the second step (ii) we will prove
that for all ωi there exists the common integrating factor λ,
and finally, on the last step (iii) we will show that from steps
(i) and (ii) follows the existence of output transformation p
such that its composition with f yields (6).

(i) Note that in case i = j (13) yields

dωi ∧ ωi ≡ 0 mod Ωi, (21)

from which follows the existence of the integrating factor
λi(y, . . . , y[n−1], u, . . . , u[n−1]) such that

ωi ≡ λidψ̄i(ν̄i) mod Ωi (22)

for some functions2 ψ̄i(ν̄i), where ν̄i is the vector argument
which consists of the elements of the set

{
y[k], u[k] | k =

max(0, i − N), . . . ,min(i + N,n − 1)
}

. Note that, taking
into account (8) and (9), according to (22),

1
λi
ωi =

(
∂ψ̄i(ν̄i)
∂y[i]

dy[i] +
∂ψ̄i(ν̄i)
∂u[i]

du[i]

)
. (23)

Choose the function ζ(y, . . . , y[n−1], u, . . . , u[n−1]) such that

∂ζ

∂y[i]
dy[i]+

∂ζ

∂u[i]
du[i] =

∂ψ̄i(ν̄i)
∂y[i]

dy[i]+
∂ψ̄i(ν̄i)
∂u[i]

du[i] (24)

for i = 1, . . . , n− 1, and consequently
n−1∑
i=0

1
λi
ωi = dζ.

As we will show in the sequel, the function ζ really exist
and can be represented in the form

ζ =
n−N∑
l=1

ψl(νl) (25)

for some functions ψ1(ν1), . . . , ψn−N (νn−N ). Note that (25)
holds, if the following second order partial derivatives of ζ
equal zero,

∂2ζ

∂y[i]∂y[j]
= 0,

∂2ζ

∂u[i]∂u[j]
= 0,

∂2ζ

∂u[i]∂y[j]
= 0,

∂2ζ

∂y[i]∂u[j]
= 0

(26)

for i, j = 0, . . . , n − 1, except for j 6= max(0, i −
N), . . . ,min(i + N,n − 1). Our next purpose is to prove

2The functions ψ̄i(ν̄i) should not be confused with the functions ψl(νl)
in (20). The number of functions ψ̄i(ν̄i) is n, but the number of functions
ψl(νl) is n−N . Moreover, the vector arguments ν̄i and νl have different
number of elements.
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that (26) holds. Denoting αi = 1/λi and taking into account
(23), (24) and (8), one can rewrite (26) as follows

∂αi

∂y[j]

∂f

∂y[i]
+ αi

∂2f

∂y[i]∂y[j]
= 0,

∂αi

∂u[j]

∂f

∂u[i]
+ αi

∂2f

∂u[i]∂u[j]
= 0,

∂αi

∂y[j]

∂f

∂u[i]
+ αi

∂2f

∂u[i]∂y[j]
= 0,

∂αi

∂u[j]

∂f

∂y[i]
+ αi

∂2f

∂y[i]∂u[j]
= 0.

(27)

Expressing ∂αi/∂y
[j] from the first equation of (27) and

substituting it into the third equation, and also expressing
∂αi/∂u

[j] from the second equation and substituting it into
the fourth equation, one obtains

∂f

∂y[i]

∂2f

∂u[i]∂y[j]
− ∂f

∂u[i]

∂2f

∂y[i]∂y[j]
= 0,

∂f

∂u[i]

∂2f

∂y[i]∂u[j]
− ∂f

∂y[i]

∂2f

∂u[i]∂u[j]
= 0.

It is easy to verify that under the conditions (21) the above
equalities are satisfied and, as a consequence, the function ζ
really exists, satisfying (25), which yields

n−1∑
i=0

1
λi
ωi =

n−N∑
l=1

dψl(νl), (28)

from which, using Lemma 1 and (18) for functions ψl(νl),
one obtains (20).

(ii) Take the exterior derivative of (20) and then apply (20)
as follows:

min(i,n−1−N)∑
l=max(0,i−N)

dψn−N−l(νn−N−l) ≡
1
λi
ωi mod Ωi.

This yields

dωi ≡ dλi ∧
min(i,n−1−N)∑
l=max(0,i−N)

dψn−N−l(νn−N−l) ≡

≡ d ln |λi| ∧ ωi mod Ωi.

By the conditions (13):

(d ln |λi| − d ln |λj |) ∧ ωi ∧ ωj ≡
≡ 0 mod ((Ωi + Ωj) \ span {ωi, ωj}) ,

from which follows

λi = λj = λ

for i, j = 0, . . . , n− 1.
(iii) From (i) and (ii) follows that one can find functions

ϕ̄1(ν1), . . . , ϕ̄n−N (νn−N ), for which there exists the com-
mon integrating factor λ such that (28) can be rewritten as

n−1∑
i=0

ωi = λ

n−N∑
l=1

dϕ̄l(νl). (29)

Since df is a total differential, its exterior derivative

d2f =
n−1∑
i=0

dωi = dλ ∧
n−N∑
l=1

dϕ̄l(νl) = d ln |λ|
n−1∑
i=0

ωi =

= d ln |λ| ∧ df

equals zero and by Cartan’s Lemma d ln |λ| ∈ span {df}.
Therefore, λ can be represented as a composite function of f
and some other function. We will show below that the choice
λ = 1/(p′ ◦ f) guarantees, that the composite function p ◦ f
has the form (6). First, we prove that p′ ◦ f is the common
integrating factor for all one-forms ωi, that is

(p′ ◦ f)ωi ≡
min(i,n−1−N)∑
l=max(0,i−N)

dϕ̄n−N−l(νn−N−l) mod Ωi.

Taking the exterior derivative of (p′ ◦ f)ωi, one obtains

d [(p′ ◦ f)ωi] ≡ (p′′ ◦ f)df ∧ ωi+
+ (p′ ◦ f)dωi ≡ (p′′ ◦ f)df ∧ ωi+

+ (p′ ◦ f)d ln |λ| ∧ ωi ≡ (p′′ ◦ f)df ∧ ωi−
− d (ln |p′ ◦ f |) (p′ ◦ f) ∧ ωi ≡ 0 mod Ωi,

meaning the functions ϕ̄l(νl) really exist. Finally, multiply-
ing df by p′ ◦ f and taking into account (29), one obtains

d(p ◦ f) = (p′ ◦ f)df = (p′ ◦ f)
n−1∑
i=0

ωi =
n−N∑
l=1

dϕ̄l(νl),

yielding (6).

IV. EXAMPLE

Examine the following state equations:

x+
1 = x2u
x+

2 = x3

x+
3 = (x1 + x2u+ u) (x2u+ x3) (x1u+ x4)
x+

4 = x1 + u
y = x1.

(30)

The i/o equation, corresponding to (30), is

y[4] =
(
y + u+ y+u+

) (
y+ + u+ + y++

)
u[3]·

·
(
y++ +

y[3]

u++

)
. (31)

Note, that once the system is transformable into the extended
observer form with some arbitrary buffer N it is also trans-
formable into the extended observer forms with the buffers
that are greater than N . Therefore, our goal is to find the least
buffer N , for which the system (30) is transformable into the
extended observer form (4). Consequently, it is reasonable to
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start with N = 1. Compute, according to (8),

ω0 =
(
y+ + u+ + y++

)
u[3]

(
y++ +

y[3]

u++

)
·

· (dy + du) ,

ω1 = u[3]

(
y++ +

y[3]

u++

)
·

·
((
y + u+ u+

(
u+ + 2y+ + y++

))
dy++

+
(
y + u+ y+

(
y+ + 2u+ + y++

))
du+

)
,

ω2 = u[3]
(
y + u+ u+y+

)
·

·

((
y+ + u+ + 2y++ +

y[3]

u++

)
dy++−

−

((
y+ + u+ + y++

) y[3]

(u++)2

)
du++

)
,

ω3 =
(y + u+ y+u+) (u+ + y+ + y++)

u++
·

·
(
u[3]dy[3] +

(
y++u++ + y[3]

)
du[3]

)
and, according to (9),

Ω0 = span{ω1, u
+},

Ω1 = span{ω0, u, ω2, u
++},

Ω2 = span{ω1, u
+, ω3, u

[3]},
Ω3 = span{ω2, u

++}.

To verify whether the system (30) is transformable into the
extended observer form (4), one has to check the validity of
conditions (13), which in case n = 4 and N = 1 are the
following:

dω0 ∧ ω0 ≡ 0 mod Ω0,
dω1 ∧ ω1 ≡ 0 mod Ω1,
dω2 ∧ ω2 ≡ 0 mod Ω2,
dω3 ∧ ω3 ≡ 0 mod Ω3,
dω0 ∧ ω1 + dω1 ∧ ω0 ≡

≡ 0 mod span {du,du+, ω2,du++} ,
dω0 ∧ ω2 + dω2 ∧ ω0 ≡

≡ 0 mod span
{
ω1,du+, ω3,du[3]

}
,

dω0 ∧ ω3 + dω3 ∧ ω0 ≡
≡ 0 mod span {ω1,du+, ω2,du++} ,

dω1 ∧ ω2 + dω2 ∧ ω1 ≡
≡ 0 mod span

{
ω0,du,du+,du++, ω3,du[3]

}
,

dω1 ∧ ω3 + dω3 ∧ ω1 ≡
≡ 0 mod span {ω0,du, ω2,du++} ,

dω2 ∧ ω3 + dω3 ∧ ω2 ≡
≡ 0 mod span

{
ω1,du+,du++,du[3]

}
.

By direct computations one can confirm that all above
conditions are satisfied, which means that system (30) is
transformable via the extended coordinate change and output
transformation into the extended observer form with buffer
N = 1. In this paper we do not provide the precise algorithm
for computation of the output transformation p(y) and the
functions ϕ1, . . . , ϕn−N . However, in [9] such procedure
was given for the case N = 0 and we conjecture that it
can be extended for the case N > 0. Due to simplicity of
this academic example one can intuitively choose the output
transformation Y = p(y) = ln |y|, applying which to (31),

one obtains the i/o equation in the form (6):

Y [4] = ln
∣∣∣eY + u+ eY +

u+
∣∣∣+ ln

∣∣∣eY +
+ u+ + eY ++

∣∣∣+
+ ln

∣∣∣u[3]
∣∣∣+ ln

∣∣∣∣∣eY ++
+
eY [3]

u++

∣∣∣∣∣ ,
from which we have by simple inspection

ϕ1(ν1) = ln
∣∣∣u[3]

∣∣∣+ ln

∣∣∣∣∣eY ++
+
eY [3]

u++

∣∣∣∣∣ ,
ϕ2(ν2) = ln

∣∣∣eY +
+ u+ + eY ++

∣∣∣ ,
ϕ3(ν3) = ln

∣∣∣eY + u+ eY +
u+
∣∣∣ .

Using (7) one can define the new state variables as follows:

z1 = Y,

z2 = Y + − ln |u| − ln
∣∣∣∣eY − +

eY

u−

∣∣∣∣ ,
z3 = Y ++ − ln

∣∣u+
∣∣− ln

∣∣∣∣∣eY +
eY +

u

∣∣∣∣∣−
− ln

∣∣∣eY − + u− + eY
∣∣∣ ,

z4 = Y [3] − ln
∣∣u++

∣∣− ln

∣∣∣∣∣eY +
+
eY ++

u+

∣∣∣∣∣−
− ln

∣∣∣eY + u+ eY +
∣∣∣− ln

∣∣∣eY − + u− + eY u
∣∣∣ ,

which, due to the output transformation Y = ln |y| and state
equations (30), can be rewritten as

z1 = ln |x1| ,
z2 = ln |x2| − ln

∣∣∣x−1 +
x1

u−

∣∣∣ ,
z3 = ln |x3| − ln |x1 + x2| − ln

∣∣x−1 + u− + x1

∣∣ ,
z4 = ln |x1u+ x4| − ln

∣∣x−1 + u− + x1u
∣∣ ,

that leads to the new state equations in the extended observer
form

z+
1 = z2 + ln |u|+ ln

∣∣∣∣ez−1 +
ez1

u−

∣∣∣∣
z+
2 = z3 + ln

∣∣∣ez−1 + u− + ez1

∣∣∣
z+
3 = z4 + ln

∣∣∣ez−1 + u− + ez1u
∣∣∣

z+
4 = 0
Y = z1.

V. CONCLUSIONS

A. Conclusions

Alternative necessary and sufficient conditions were de-
rived for the existence of the extended coordinate change and
output transformation that allow to transform the discrete-
time single-input single-output nonlinear state equations into
the extended observer form. The conditions are expressed in
terms of the exterior derivatives and the exterior products
of the one-forms, associated with the input-output equation,
corresponding to the state equations, and, consequently, are
directly computable whenever the input-output equation is
easily computable from the state equations. Moreover, in
case when the buffer N = 0, our conditions coincide with
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those in [9]. Thus, our result can be considered as the direct
generalization of the conditions derived in [9], not depending
on the past values of input and output.

B. Future Works

Although the paper suggests the solvability conditions, that
do not depend on the existence of unknown functions, and
are therefore easily checkable, likewise in [3], in this paper
no procedure is given to compute the extended coordinate
change and the output transformation. The development of
the constructive algorithm for transformation the system
into the extended observer form remains a topic for future
research. Another future goal is to compare our results
with the method developed in [10], where in order to
transform the system into the generalized observer form,
it is suggested to extend the system by means of the so-
called dynamic auxiliary system of the specific linear form.
It is our conjecture that the two approaches are closely
related, since, in principle, the past values of input and output
may be possibly expressed in terms of system extensions.
Moreover, we intend to find also the relationship between
the results of our approach and the conditions developed
in [11] for transformation of the system into the output-
scaled observer form. Both apply certain output functions,
though in different purposes. Whereas we use the output
function to transform the original output into a new output,
the paper [11] multiplies the right-hand side of equations of
the observer form by this output function. However, note that
both [10] and [11] address systems without control variable.

APPENDIX

A. Proof of Lemma 1

Proof: It is easy to observe that

n−N∑
l=1

dϕ̄l(νl) =
n−N∑
l=1

N∑
s=0

(
∂ϕ̄l(νl)
∂y[n−l−s]

dy[n−l−s]+

+
∂ϕ̄l(νl)
∂u[n−l−s]

du[n−l−s]

)
.

Replace on the right-hand side of the above relationship the
summation index l by l+1. In this case l = 0, . . . , n−N−1
and one can change the summation order

n−N∑
l=1

N∑
s=0

al,s =
n−N−1∑

l=0

N∑
s=0

an−N−l,N−s,

which yields

n−N∑
l=1

dϕ̄l(νl) =

=
n−N−1∑

l=0

N∑
s=0

(
∂ϕ̄n−N−l(νn−N−l)

∂y[l+s]
dy[l+s]+

+
∂ϕ̄n−N−l(νn−N−l)

∂u[l+s]
du[l+s]

)
.

Change the summation indices l and s for i = l + s and
l. It is easy to see, that in this case i changes from 0 to

n − 1 and l = i − s. Since s = 0, . . . , N , the minimal and
maximal values of i − s are i − N and i, respectively. On
the other hand, l changes from 0 to n − N − 1. Thus, we
take l = max(0, i−N), . . . ,min(i, n− 1−N). As a result,
one can use the following relation:

n−N−1∑
l=0

N∑
s=0

al,l+s =
n−1∑
i=0

min(i,n−1−N)∑
l=max(0,i−N)

al,i,

which leads to (11).
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The paper focuses on the problem of transforming the discrete-time single-input single-output nonlinear state equations into
the extended observer form, which, besides the input and output, also depends on a finite number of their past values. The
simple necessary and sufficient conditions for the existence of the extended coordinate change and the output transformation,
allowing to solve the problem, are formulated in terms of certain partial derivatives, related to the input–output equation,
corresponding to the state equations. Moreover, a certain algorithm for transforming the state equations into the observer
form is proposed.

Keywords: nonlinear control system; discrete-time system; extended coordinate change; output transformation; extended
observer form

1. Introduction

Conditions for transformability of the discrete-time nonlin-
ear state equations by state coordinate transformation into
the observer (input–output injection) form are known to be
very restrictive, see Lee and Nam (1991). This has moti-
vated to generalise the observer form in such a manner that
one may still construct the observers with linear error dy-
namics (Besançon and Bornard, 1995; Califano, Monaco,
and Normand-Cyrot, 2003, 2009; Lee and Hong, 2011;
Lin and Wei, 2009; Zhang, Feng, and Xu, 2010) and/or
to allow additionally output transformation. For example,
in Besançon and Bornard (1995), Califano et al. (2003),
Califano et al. (2009) and Lee and Hong (2011), the matrix
A in the observer form is allowed to depend on control vari-
able u. In Besançon and Bornard (1995), only state transfor-
mation was allowed whereas Califano et al. (2003) and Lee
and Hong (2011) allow the output transformation also. The
paper by Califano et al. (2009) extends the results to multi-
input multi-output case. The paper by Lin and Wei (2009)
relies on the time-scaling technique, which means that the
right-hand side of the standard observer form is multiplied
by a single-variable function, depending on the output vari-
able, and the paper only allows the state transformation.
A method called dynamic observer error linearisation was
provided in Zhang, Feng, and Xu (2010), where in order to
transform the system into the generalised observer form,
it is suggested to augment the system by means of the so-
called dynamic auxiliary system of the specific linear form.
In some other papers, the output injection term is allowed
to depend, besides the current output value, also on a finite
number of its past values, reducing that way the restrictions

∗Corresponding author. Email: vkaparin@cc.ioc.ee

on possibility to construct such transformations (Huijberts,
1999; Huijberts, Lilge, and Nijmeijer, 1999). A corollary
of the results, obtained in Huijberts et al. (1999), is that
when the number of past output values equals n − 1 (where
n is denoted the state dimension), the system can always be
transformed into the extended observer form, provided the
system under consideration is strongly observable.

We build up from this result and are looking for neces-
sary and sufficient conditions for transformability the state
equations into the extended observer form with buffer N

less than n − 1. In the problem addressed, we allow both
the state and output transformations. The paper may be un-
derstood as an extension of the paper by Huijberts (1999)
where the systems without control were considered. How-
ever, our conditions do not mimic those in Huijberts (1999),
relying on the sophisticated language of differential geom-
etry. Checking the conditions of Huijberts (1999) requires
calculation of the exterior derivatives and wedge products
of certain one forms, associated with the system, as well as
the Lie derivatives of the corresponding dual vector fields,
which leads to complicated computations. In comparison,
our conditions are extremely easy to check. Once certain
partial derivatives, related to the input–output (i/o) equation
are found, the conditions may be checked practically by di-
rect inspection. That way, our conditions are similar in spirit
to those in Lee and Hong (2011) except that they consider
the buffer-free case and instead of relying on the input–
output equation of system, transform the state equations
into the specific canonical form. Nevertheless, the com-
putation of the state transformation, leading to the above-
mentioned canonical form, is not easier than finding the

C© 2013 Taylor & Francis
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corresponding i/o equation. Furthermore, the output trans-
formation may also be found from our conditions, unlike in
the paper by Kaparin and Kotta (2011), where the simple in-
trinsic necessary and sufficient solvability conditions were
formulated in terms of differential one-forms, associated
with the i/o equation, corresponding to the state equations.
Though very simple, the results of this paper have the disad-
vantages of not being intrinsic. Another point to mention is
that our results assume (but so do those in Huijberts (1999)
and Huijberts et al. (1999)) that the i/o equation, corre-
sponding to the state equations, can be easily found from the
state equations. Under observability assumption, one may
always find the i/o equations, at least locally, using the state
elimination algorithm. For example, The Nonlinear Control
Webpage (a webMathematica-based application developed
in the Institute of Cybernetics at Tallinn University of Tech-
nology) provides the tool which, using the state elimination
algorithm, finds the i/o equations starting from the state
equations. The site is available at www.nlcontrol.ioc.ee and
does not require Mathematica software to be installed in a
computer. However, the global state elimination problem is
a difficult task that results, in general, an implicit i/o equa-
tion accompanied with the number of inequations, see Diop
(1991).

Preliminary results of the paper were published in con-
ference article Mullari and Kotta (2011), where the condi-
tions were proved only for the special case N = 1. More-
over, the sufficient conditions presented in Mullari and
Kotta (2011) are valid only for N satisfying certain re-
lation regarding the system order and/or the highest and the
lowest shifts of input and output in system i/o equation. In
this paper, by means of the additional conditions, the nec-
essary and sufficient conditions are given and proved for an
arbitrary buffer N . Finally, this paper presents the algorithm
for computation of the extended coordinate change and the
output transformation, necessary for transformation of the
state equations into the extended observer form.

2. Preliminaries and problem statement

Consider a single-input single-output nonlinear discrete-
time system, described by the state equations

x[1] = F (x, u)

y = h(x), (1)

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ R is the input,
y ∈ Y ⊂ R is the output, F : X × U → X and h : X → Y
are assumed to be real meromorphic functions. To simplify
the exposition of the paper, we use symbol [i] instead of
the argument t + i for i ∈ Z, except for i = 0 when we
omit symbol [0], so x := x(t) and x[i] = x(t + i). Our pur-
pose is to find the conditions under which there exists the
extended coordinate change �(·, ξ1, . . . , ξ2N+1) : X → X ,

parameterised by (ξ1, . . . , ξ2N+1) and defined by

z = �
(
x, y[−1], . . . , y[−N], u, u[−1], . . . , u[−N]

)
(2)

and the output transformation p : Y → Y , defined by

Y = p(y), (3)

such that in the new state and output coordinates the state
equations (1) are in the following extended observer form
with buffer N ∈ {1, . . . , n − 2}:

z
[1]
1 = z2 + ϕ1

(
Y, . . . , Y [−N], u, . . . , u[−N]

)
...

z
[1]
n−N = zn−N+1 + ϕn−N

(
Y, . . . , Y [−N], u, . . . , u[−N]

)
z

[1]
n−N+1 = zn−N+2

...

z
[1]
n−1 = zn

z[1]
n = 0

Y = z1, (4)

where the forward shift of the coordinates z depends be-
sides the input u and the output y also on their past values
u[−1], . . . , u[−N], and y[−1], . . . , y[−N]. This form without
inputs was considered earlier in Huijberts (1999). We do
not address the case when the buffer N = n − 1 since, as
shown by Huijberts, the system can always be transformed
into such form (even without the output transformation),
whenever the system under consideration is strongly ob-
servable. The proof of Huijberts carries over to systems
depending on control too. Therefore, it is obvious that the
results of this paper address only the case n ≥ 3.

Note that the state equations (1) can be transformed into
the extended observer form (4) with the extended coordi-
nate change (2) and the output transformation (3), if the
input–output (i/o) equation,

y[n] = f
(
y, . . . , y[n−1], u, . . . , u[n−1]

)
, (5)

corresponding to Equation (1), can be written in the form,

p ◦ f =
n−N∑
l=1

ϕl

(
Y [n−l], . . . , Y [n−l−N],

u[n−l], . . . , u[n−l−N]
)
. (6)

If Equation (6) holds, one can define the new state variables
as follows:

z1 = Y,

zi = Y [i−1] −
min(i−1,n−N)∑

j=1

ϕj

(
Y [i−1−j ], . . . , Y [i−1−j−N],

u[i−1−j ], . . . , u[i−1−j−N]
)
, i = 2, . . . , n, (7)
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796 V. Kaparin et al.

that leads to the new state equations in the extended ob-
server form (4).

3. Necessary and sufficient conditions

To present the theorem and the proof in a more compact
form, denote by α the variable, which can be either u or y.
Then by β is denoted u, if α is y and y if α is u. Moreover,
denote by jα and jα , respectively, the highest and the lowest
shifts of α the function f depends on. For example, if
f
(
y, y[2], y[3], u[1], u[2], u[4]

)
, then jy = 0, ju = 1, jy = 3

and ju = 4.

Theorem 3.1: The system (1) can be transformed by the
extended coordinate change (2) and the output transforma-
tion (3) into the extended observer form (4) with buffer
N ∈ {1, . . . , n − 2} if and only if there exists a func-
tion S

(
y, . . . , y[n−1], u, . . . , u[n−1]

)
such that for i, j =

0, . . . , n − 1, j 	= i − N, . . . , i + N ,

∂

∂α[j ]

(
ln

∣∣∣∣ ∂f

∂α[i]

∣∣∣∣
)

= ∂

∂α[j ]

(
ln

∣∣∣∣ ∂f

∂β[i]

∣∣∣∣
)

=:
∂S

∂α[j ]
, (8)

and in case 2N ≥ jα − jα the function S satisfies for r =
jα − N, . . . , jα + N and an arbitrary j 	= r the following
additional conditions

∂S

∂α[j ]

∂f

∂α[r]

(
∂f

∂α[j ]

)−1

= ∂S

∂β[j ]

∂f

∂α[r]

(
∂f

∂β[j ]

)−1

=:
∂S

∂α[r]
. (9)

Remark 1: Note that in the case 2N < jα − jα the condi-
tions (8) are both necessary and sufficient, but in the case
2N ≥ jα − jα they are only necessary, and for sufficiency1

one needs the additional conditions (9) (which in the case
2N < jα − jα hold by (8)).

Remark 2: Suppose that for some q = 0, . . . , n − 1 the
function f (and S, as a consequence) does not depend on
the variable y[q] (or u[q]). In this case either the left-hand
side or the middle part in the corresponding condition of
Equation (8) should be omitted, depending on whether the
α[i] or β[i] stands for y[q] (or u[q]). Thus, for instance, in the
case of system without input one obtains the conditions (8)
where α = y and middle part is excluded.

Remark 3: If the conditions (8) are satisfied it is enough to
check the conditions (9) only for one j 	= r . However, one
has to choose (if possible) j such that the function f (and
S, as a consequence) depends on both y[j ] and u[j ]. If such
a choice is not possible, then either the left-hand side or the
middle part of Equation (9) should be omitted, depending
on whether α[j ] or β[j ] stands for the variable, the function
f does not depend on. Thus, for instance, in the case of

system without input, one obtains the conditions (9) where
α = y and the middle part is excluded.

Remark 4: Taking N = 0, the conditions (8) (and
Equation (9) for the special case jα = jα) can be used
to check whether the system is transformable into the
observer form without the buffer (see the different results
in Huijberts (1999) for systems without input and Mullari
and Kotta (2009) for input dependent systems).

To prove Theorem 3.1, we need the following lemma,
the proof of which is given in Appendix.

Lemma 3.2: From conditions (8) (and in the case 2N ≥
jα − jα (9)) follows

dS ∧ df = 0. (10)

Now we are ready to prove the main result.

Proof:
Necessity. Assume that system (1) is transformable

into the extended observer form (4). Consequently, the i/o
Equation (5), corresponding to Equation (1), can be rewrit-
ten in the form (6), yielding that the following second-order
partial derivatives of the composition p ◦ f equal to zero
for i, j = 0, . . . , n − 1, j 	= i − N, . . . , i + N ,

∂2 (p ◦ f )

∂α[i]∂α[j ]
= ∂ (p′ ◦ f )

∂α[j ]

∂f

∂α[i]
+ (

p′ ◦ f
) ∂2f

∂α[i]∂α[j ]
= 0,

∂2 (p ◦ f )

∂β[i]∂α[j ]
= ∂ (p′ ◦ f )

∂α[j ]

∂f

∂β[i]

+ (p′ ◦ f
) ∂2f

∂β[i]∂α[j ]
= 0, (11)

where p′ ◦ f means the derivative of the function p

evaluated at f . Dividing the first equation of Equation
(11) by (p′ ◦ f )

(
∂f /∂α[i]

)
and the second equation by

(p′ ◦ f )
(
∂f /∂β[i]

)
yields

1

p′ ◦ f

∂ (p′ ◦ f )

∂α[j ]
+ ∂2f

∂α[i]∂α[j ]

(
∂f

∂α[i]

)−1

= ∂ ln
∣∣p′ ◦ f

∣∣
∂α[j ]

+ ∂

∂α[j ]

(
ln

∣∣∣∣ ∂f

∂α[i]

∣∣∣∣
)

= 0,

1

p′ ◦ f

∂ (p′ ◦ f )

∂α[j ]
+ ∂2f

∂β[i]∂α[j ]

(
∂f

∂β[i]

)−1

= ∂ ln
∣∣p′ ◦ f

∣∣
∂α[j ]

+ ∂

∂α[j ]

(
ln

∣∣∣∣ ∂f

∂β[i]

∣∣∣∣
)

= 0.

The above equalities suggest that the function

S = − ln |p′ ◦ f | (12)

will make the conditions (8) and (9) to hold.
Sufficiency. Suppose the conditions (8) and (9) are sat-

isfied. Then, according to Lemma 3.2, dS ∧ df = 0, which
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International Journal of Control 797

by Cartan’s Lemma yields dS ∈ span {df }. Therefore, the
function S can be represented as a composition of some
function � with f , i.e. S = � ◦ f . We will show below
that the choice S = − ln |p′ ◦ f | guarantees that the equal-
ities (11) are satisfied, meaning that the composition p ◦ f

has the form (6). Replacing the function S in Equation (8)
by the expression − ln

∣∣p′ ◦ f
∣∣, one obtains

∂

∂α[j ]

(
ln

∣∣∣∣ ∂f

∂α[i]

∣∣∣∣
)

= −∂ ln
∣∣p′ ◦ f

∣∣
∂α[j ]

,

∂

∂α[j ]

(
ln

∣∣∣∣ ∂f

∂β[i]

∣∣∣∣
)

= −∂ ln
∣∣p′ ◦ f

∣∣
∂α[j ]

.

By the derivative of the logarithmic function, one can
rewrite the above equalities as(

∂f

∂α[i]

)−1
∂2f

∂α[i]∂α[j ]
+ 1

p′ ◦ f

∂ (p′ ◦ f )

∂α[j ]
= 0,

(
∂f

∂β[i]

)−1
∂2f

∂α[i]∂β[j ]
+ 1

p′ ◦ f

∂ (p′ ◦ f )

∂α[j ]
= 0.

Multiplying the first equality by (p′ ◦ f )
(
∂f /∂α[i]

)
and the

second by (p′ ◦ f )
(
∂f /∂β[i]

)
yields (11). This completes

the proof. �

4. Matrix representation of the conditions

In this section, we represent the conditions (8) and (9) in the
matrix form, which makes them easier to check by direct
inspection.

Denote by Aα,α and Aα,β the n × n matrices, whose
elements are defined by (i = 0, . . . , n − 1 pointing to the
row and j = 0, . . . , n − 1 to the column)

a
α,α
i,j =

⎧⎪⎪⎨
⎪⎪⎩

0, j = i − N, . . . , i + N, or
f does not depend on α[i],

∂

∂α[j ]

(
ln

∣∣∣∣ ∂f

∂α[i]

∣∣∣∣
)

, otherwise,

and

a
α,β

i,j =

⎧⎪⎪⎨
⎪⎪⎩

0, j = i − N, . . . , i + N, or
f does not depend on β[i],

∂

∂α[j ]

(
ln

∣∣∣∣ ∂f

∂β[i]

∣∣∣∣
)

, otherwise,

respectively. Thus, the matrices contain zeros on the main
diagonal and N diagonals above and below it. Moreover, if
for some i = 0, . . . , n − 1 the function f does not depend
on the variable y[i] or u[i], then the corresponding elements
of the matrices are zeros too. Also denote the 2n × 2n

matrix as

A =
(

Ay,y Au,y

Ay,u Au,u

)
. (13)

Proposition 4.1: If the conditions (8) hold, then in every
column of the matrix A all non-zero elements are equal.

Remark 5: Note that if the function f depends on the
variables y[q] or u[q] for all q = 0, . . . , n − 1, then Aα,α =
Aα,β .

If in every column of the matrix A all non-zero ele-
ments are equal, one needs to check whether there exists a
function S such that for j = 0, . . . , n − 1 the non-zero ele-
ments of the (j + 1)th and (j + 1 + n)th columns are equal
to ∂S/∂y[j ] and ∂S/∂u[j ], respectively. In the case 2N ≥
j − j (where j := max(jy, ju) and j := min(jy, ju)), the
matrix A does not contain non-zero elements in the
(j − N + 1)th up to (j + N + 1)th and (j − N + n + 1)th
up to (j + N + n + 1)th columns. As a consequence, the
conditions for corresponding partial derivatives of S are ab-
sent. The additional conditions (9) compensate this aspect.
To represent the conditions (9) in the matrix form, denote by
Bα,α and Bα,β the (2N + jα − jα + 1) × 1 vectors whose
elements are defined by

bα,α
r = ∂S

∂α[j ]

∂f

∂α[r]

(
∂f

∂α[j ]

)−1

, r = jα − N, . . . , jα + N,

bα,β
r = ∂S

∂β[j ]

∂f

∂α[r]

(
∂f

∂β[j ]

)−1

, r = jα − N, . . . , jα + N,

respectively, where j should be chosen according to
Remark 3 and ∂S/∂α[j ], ∂S/∂β[j ] can be calculated from
Equation (8).

Proposition 4.2: If the conditions (9) hold, then Bα,α =
Bα,β .

If Bα,α = Bα,β and the function S satisfying the condi-
tions (8) exists, additionally one needs to check whether S

is such that ∂S/∂α[r] is equal to bα,α
r (and b

α,β
r ).

5. Algorithm

Denote the composite functions of ϕl(Y, . . . , Y [−N],

u, . . . , u[−N]) and p as

ϕ̄l

(
y, . . . , y[−N], u, . . . , u[−N]

)
:= ϕl

(
p(y), . . . , (p(y))[−N] , u, . . . , u[−N]

)
. (14)

To present the algorithm for transformation the system
(1) into the extended observer form (4), we need the follow-
ing proposition, the proof of which is given in Appendix.

Proposition 5.1: If the i/o Equation (5) can be rewritten in
the form (6), then

(
p′ ◦ f

) ∂f

∂α[i]
=

min(i,n−1−N)∑
l=max(0,i−N)

∂ϕ̄n−N−l

(
y[l+N], . . . , y[l], u[l+N], . . . , u[l]

)
∂α[i]

(15)

for i = 0, . . . , n − 1.
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798 V. Kaparin et al.

The algorithm is applied to the i/o representation (5) of
the system (1).

Algorithm 1.

Step 1: Check for every column of the matrix A

whether the non-zero elements are equal. For 2N ≥
jα − jα also check whether Bα,α = Bα,β (if both
matrices can be constructed, see Remark 3). If the
above conditions are not satisfied, the problem is not
solvable; stop.

Step 2: From Equations (8) and (9) construct the par-
tial differential equation and solve it with respect to
S. If the solution does not exist, the problem is not
solvable; stop.

Step 3: Using Equation (12), find p′ ◦ f = e−S . Then,
to find the replacement rule y[−1] = φ(·), shift back-
wards both sides of the i/o equation (5) a sufficient
number of times until the variable y[−1] will ap-
pear and solve the obtained equation with respect
to y[−1] (If the function f in Equation (5) does not
depend on y and its time shifts, then the replace-
ment rule should be found for u[−1] in the similar
manner). Next, shift backwards p′ ◦ f and apply the
replacement rule to the obtained expression. Iterat-
ing this procedure n − 1 times, we obtain p′ ◦ y,
from which the output transformation can be com-
puted as Y = p ◦ y = ∫

(p′ ◦ y) dy.
Step 4: Solve, if possible, the system of par-

tial differential equations (15) to find the func-
tions ϕ̄1, . . . , ϕ̄n−N , from which the functions
ϕ1, . . . , ϕn−N can be obtained applying the output
transformation.

Step 5: Using the output transformation (3) and the
functions ϕ1, . . . , ϕn−N , construct the system in the
extended observer form (4).

6. Example

To illustrate the above theory, examine the following
example:

x
[1]
1 = x1 + x2 − x3

x
[1]
2 = −x1 − x2

x
[1]
3 = − x1x2

ux3 + x1x2x4

x
[1]
4 = − u (x2)2

(x1 + x2) (x1 + x2 − x3)
− x5

u
(16)

x
[1]
5 = x2 − u (x1 + x2)

x3

y = x2.

The i/o equation, corresponding to Equation (16), is

y[5] = u[1]y[2]
(
y[2] + y[3]

)
λ

, (17)

where to simplify the exposition we denoted λ :=
(u[1])2(y[1])2 + (y + uy[1])(y[2] + y[3]) + u[1]u[2]y[4]. Note
that we are interested in the least buffer N , for which the
system (16) is transformable into the extended observer
form (4). Constructing the matrix A for N = 0 and N = 1,
one can verify that in both cases the non-zero elements of
every column of the matrix are not equal. First, this means
that the system (16) is not transformable into the standard
observer form (this fact can also be checked by means
of the conditions presented in Mullari and Kotta (2009)).
Second, the system is not transformable into the extended
observer form with buffer N = 1. Next, take N = 2 and
follow algorithm.

Step 1. Using Equation (13), one obtains

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 sy3 sy4 0 0 0 0 0
0 0 0 0 sy4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

sy0 0 0 0 0 su0 0 0 0 0
sy0 sy1 0 0 0 su0 su1 0 0 0
0 0 0 sy3 sy4 0 0 0 0 0
0 0 0 0 sy4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we use the notations

sy0 := −2(y[2] + y[3])

λ
,

sy1 := −2
(
2
(
u[1]

)2
y[1] + u

(
y[2] + y[3]

) )
λ

,

sy3 := 2u[1]
(
u[1]

(
y[1]

)2 + u[2]y[4]
)

(
y[2] + y[3]

)
λ

,

sy4 := −2u[1]u[2]

λ
,

su0 := −2y[1]
(
y[2] + y[3]

)
λ

,

su1 := −2
( (

y + uy[1]
) (

y[2] + y[3]
)− (

u[1]
)2 (

y[1]
)2 )

u[1]λ
.

Since jy = 0, jy = 4, ju = 0, ju = 2 and N = 2, both in-

equalities 2N ≥ jy − jy and 2N ≥ ju − ju are satisfied
and, as a consequence, one has to check the additional
conditions. Choosing j according to Remark 3, one obtains
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the following matrices:

By,y = By,u = ( sy2 ), Bu,u = Bu,y =
⎛
⎝ su0

su1

su2

⎞
⎠, (18)

where

sy2 := 2

(
1

y[2] + y[3]
+ 1

y[2]
− y + uy[1]

λ

)
,

su2 := −2u[1]y[4]

λ
.

Taking into consideration Equation (18) and the fact that
all the non-zero elements of every column of the matrix A

are equal, one may conclude that the necessary conditions
for transformation of the system (16) into the extended
observer form with buffer N = 2 are satisfied.

Step 2. The differential equation

4∑
j=0

∂S

∂y[j ]
+

2∑
j=0

∂S

∂u[j ]
=

4∑
j=0

syj +
2∑

j=0

suj

yields

S = 2
(
ln u[1] + ln y[2] + ln

(
y[2] + y[3]

)− ln λ
)
. (19)

Step 3. Using Equation (19), compute

p′ ◦ f = e−S = λ2

(u[1])2(y[2])2(y[2] + y[3])2
.

Shifting both sides of the i/o equation (17) backwards the
following replacement rule can be obtained for y[−1]:

y[−1] = uy[1]

y[4]
− u2y2 + uu[1]y[3]

y[1] + y[2]
− u[−1]y,

applying which to (p′ ◦ f )[−1] one obtains

(p′ ◦ f )[−1] = 1

(y[4])2
. (20)

Shifting the equality (20) backwards four times leads to
p′ ◦ y = 1/y2 yielding the output transformation,

Y = p ◦ y =
∫

(p′ ◦ y)dy = − 1

y
. (21)

Step 4. The system of partial differential equations (15)
for n = 5, N = 2 and α being both y and u reads as

− 1

u[1]y[2]
= ∂ϕ̄3

∂y

−2
(
u[1]

)2
y[1] + u

(
y[2] + y[3]

)
u[1]y[2]

(
y[2] + y[3]

) = ∂ϕ̄3

∂y[1]
+ ∂ϕ̄2

∂y[1]

y + uy[1]

u[1]
(
y[2]

)2
+
(
2y[2] + y[3]

) (
u[1]

(
y[1]

)2 + u[2]y[4]
)

(
y[2]

)2 (
y[2] + y[3]

)2

= ∂ϕ̄3

∂y[2]
+ ∂ϕ̄2

∂y[2]
+ ∂ϕ̄1

∂y[2]

u[1]
(
y[1]

)2 + u[2]y[4]

y[2]
(
y[2] + y[3]

)2
= ∂ϕ̄2

∂y[3]
+ ∂ϕ̄1

∂y[3]

− u[2]

y[2]
(
y[2] + y[3]

) = ∂ϕ̄1

∂y[4]

− y[1]

u[1]y[2]
= ∂ϕ̄3

∂u

y + uy[1](
u[1]

)2
y[2]

−
(
y[1]

)2

y[2]
(
y[2] + y[3]

) = ∂ϕ̄3

∂u[1]
+ ∂ϕ̄2

∂u[1]

− y[4]

y[2]
(
y[2] + y[3]

) = ∂ϕ̄3

∂u[2]
+ ∂ϕ̄2

∂u[2]
+ ∂ϕ̄1

∂u[2]
,

leading to

ϕ̄1 = − y[4]u[2](
y[3] + y[2]

)
y[2]

, ϕ̄2 = −
(
y[1]

)2
u[1](

y[3] + y[2]
)
y[2]

,

ϕ̄3 = −y + y[1]u

y[2]u[1]
,

which, due to the output transformation (21), yields

ϕ1 =
(
Y [2]

)2
Y [3]u[2](

Y [2] + Y [3]
)
Y [4]

, ϕ2 = −
(
Y [2]

)2
Y [3]u[1](

Y [1]
)2 (

Y [2] + Y [3]
) ,

ϕ3 = −
(
Yu + Y [1]

)
Y [2]

YY [1]u[1]
.

Step 5. Using Equation (7), one can define the new state
variables

z1 = Y,

z2 = Y [1] −
(
Y [−2]

)2
Y [−1]u[−2](

Y [−2] + Y [−1]
)
Y

,

z3 = Y [2] −
(
Y [−1]

)2
Yu[−1](

Y [−1] + Y
)
Y [1]

+
(
Y [−1]

)2
Yu[−2](

Y [−2]
)2 (

Y [−1] + Y
) ,

z4 = Y [3] − (Y )2 Y [1]u(
Y + Y [1]

)
Y [2]

+ (Y )2 Y [1]u[−1](
Y [−1]

)2 (
Y + Y [1]

)
+
(
Y [−2]u[−2] + Y [−1]

)
Y

Y [−2]Y [−1]u[−1]
,
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z5 = Y [4] −
(
Y [1]

)2
Y [2]u[1](

Y [1] + Y [2]
)
Y [3]

+
(
Y [1]

)2
Y [2]u

(Y )2 (Y [1] + Y [2]
)

+
(
Y [−1]u[−1] + Y

)
Y [1]

Y [−1]Yu
,

which, due to the output transformation (21) and state equa-
tions (16), can be rewritten as

z1 = − 1

x2
,

z2 = x2u
[−2](

x
[−2]
2

)2 + x
[−2]
2 x

[−1]
2

+ 1

x1 + x2
,

z3 = − 1

x3
+
(
x

[−2]
2

)2
u[−2] − u[−1] (x1 + x2)

x
[−1]
2

(
x

[−1]
2 + x2

) ,

z4 = x4 −
(
x

[−1]
2

)2
u[−1]

x1x2
+ x

[−2]
2 + x

[−1]
2 u[−2]

x2u[−1]
,

z5 = −x
[−1]
2 − x2u

[−1] − x1x5 − x2x5

u (x1 + x2)
,

that leads to the state equations in the extended observer
form

z
[1]
1 = z2 +

(
z

[−2]
1

)2
z

[−1]
1 u[−2](

z
[−2]
1 + z

[−1]
1

)
z1

z
[1]
2 = z3 −

(
z

[−1]
1

)2
z1u

[−2](
z

[−2]
1

)2(
z

[−1]
1 + z1

)
z

[1]
3 = z4 − z1

(
z

[−1]
1 + z

[−2]
1 u[−2]

)
z

[−1]
1 z

[−2]
1 u[−1]

z
[1]
4 = z5

z
[1]
5 = 0

Y = z1.

7. Conclusions

The paper provides simple necessary and sufficient condi-
tions for the existence of the extended coordinate change
and the output transformation that allow to transform
the discrete-time single-input single-output nonlinear state
equations into the extended observer form with buffer. The
conditions are expressed in terms of certain partial deriva-
tives and due to the matrix representation can be checked
almost by direct inspection. Moreover, the matrix represen-
tation simplifies the determination of the minimal value of
the buffer (i.e. the minimal number of past values of the
input and output), necessary for transformation. The algo-
rithm is also given for transformation of the state equations

into the extended observer form that requires the solution
of certain partial differential equations for the computation
of the output transformation and the extended coordinate
change. Although the proposed approach is beneficial for
discrete-time systems, it cannot be applied in the case of
continuous-time systems, due to the structural differences
between the shift operator and the time derivative.
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Note

1. Without going into details, one can say that in order to prove
sufficiency we need ∂S

∂α[j ] for all j = jα, . . . , jα . However,
we should take into account that in conditions (8) index j
depends on index i and buffer N . This dependency implies
that j = jα, . . . , jα − N − 1, jα + N + 1, . . . , jα , which in

the case 2N < jα − jα yields that j runs from jα to jα without

interruption, whereas in the case 2N ≥ jα − jα there is a gap

between jα − N − 1 and jα + N + 1. To compensate this gap
we use Equation (9) in addition to Equation (8) (in other
words, index r complements j ).
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Mullari, T., & Kotta, Ü. (2011). Simple conditions for the
existence of an extended observer form. In M. Hamza
(Ed.), Proceedings of the 31st IASTED International Con-
ference on Modelling, Identification, and Control (pp.
348–355). Innsbruck, Austria, 14–16 February. ACTA
Press.

Zhang, J., Feng, G., & Xu, H. (2010), Observer design for non-
linear discrete-time systems: Immersion and dynamic ob-
server error linearization techniques. International Journal of
Robust Nonlinear Control, 20(5), 504–514.

Appendix 1: Proof of Lemma 3.2

The proof of lemma, though in principle not very difficult,
is technically rather demanding. Figure A1 helps to follow
the separate steps of the proof. First, let us mention that the
cases 2N < jα − jα and 2N ≥ jα − jα are treated separately.
The reason is that conditions (9) are unnecessary for the first
case.

Second, in the proof we will use the matrices (tables) with
elements �k,l (k pointing to the column and l to the row), where k
and l may take values from different sets of non-negative integer
numbers at different steps of the proof. However, unlike the typical
case when the matrix element is a number or expression, here its
content is two relations (equalities). We do not manipulate with
those relations, the role of the matrix is just to keep the track of
the steps in the proof.

Evaluating the total differentials dS and df as well as their
wedge product dS ∧ df in Equation (10), it is easy to observe
by direct inspection, after tedious calculations, that the condition
(10) is equivalent to the equalities (A1),

∂S

∂α[k]

∂f

∂α[l]
= ∂S

∂α[l]

∂f

∂α[k]
,

∂S

∂α[k]

∂f

∂β [l]
= ∂S

∂β [l]

∂f

∂α[k]
, (A1)

where k, l = jα, . . . , jα . Recall that here, like in the assumptions
(8) and (9) of the lemma, the variable α denotes either input
u or output y, and by β is denoted the other variable; i.e.
if α = y, then β = u and vice versa, if α = u, then β = y.
These notations help to make the presentation more compact2.
Now, the content of �k,l is two respective equalities in
Equation (A1).

Before turning to separate steps of the proof, we rewrite
the assumptions (8) and (9) into the form, suitable for proof.
Namely, the conditions (8) may be given as Equation (A2)
by evaluation of the derivative of the logarithmic function and
rewriting the conditions separately for α alone as well as for α
and β,

∂S

∂α[j ]
=
(

∂f

∂α[i]

)−1
∂2f

∂α[i]∂α[j ]
, (A2a)

∂S

∂α[j ]
=
(

∂f

∂β[i]

)−1
∂2f

∂β[i]∂α[j ]
, (A2b)

where i, j = jα, . . . , jα , j 	= i − N, . . . , i + N . Taking into ac-
count that α and β can be mutually interchanged, rewrite the
conditions (9) as

∂S

∂α[j ]
= ∂S

∂α[r]

∂f

∂α[j ]

(
∂f

∂α[r]

)−1

, (A3a)

∂S

∂α[j ]
= ∂S

∂β[r]

∂f

∂α[j ]

(
∂f

∂β[r]

)−1

, (A3b)

where r = jα − N, . . . , jα + N .
Now we turn to the separate steps of the proof. The sepa-

rate steps (i)–(ix) prove the relations in �k,l for different sets
of k and l values so that jointly the steps cover all necessary
k, l values in Equation (A1). In steps (i)–(iv), we will focus
on the conditions (8) and prove that in the case 2N < jα − jα

they yield �k,l for k, l = jα, . . . , jα . In steps (v)–(ix), we will
prove that using the conditions (9), the outcome of the previous
four steps can be complemented to obtain the same result for
the case 2N ≥ jα − jα (see the boxes on the middle part of the
Figure A1).

(i) Consider first (A2) for j = jα . Since j 	= i − N, . . . , i +
N , now i 	= jα − N, . . . , jα + N and consequently i ≤ jα −
N − 1. In Equation (A2a), denote index i by index k
and compare successively the obtained equality first, with
Equation (A2a) and second with Equation (A2b), where in both
equalities index i is replaced by index l. This yields

(
∂f

∂α[k]

)−1
∂2f

∂α[k]∂α[jα]
=
(

∂f

∂α[l]

)−1
∂2f

∂α[l]∂α[jα]
,

(
∂f

∂α[k]

)−1
∂2f

∂α[k]∂α[jα]
=
(

∂f

∂β [l]

)−1
∂2f

∂β [l]∂α[jα]
.

Divide both sides of both obtained equalities by (∂f/∂α[jα]) to get

(
∂f

∂α[jα]

)−1
∂2f

∂α[k]∂α[jα]
∂f

∂α[l]
=
(

∂f

∂α[jα]

)−1
∂2f

∂α[l]∂α[jα]
∂f

∂α[k]
,

(
∂f

∂α[jα]

)−1
∂2f

∂α[k]∂α[jα]
∂f

∂β [l]
=
(

∂f

∂α[jα]

)−1
∂2f

∂β [l]∂α[jα]
∂f

∂α[k]
.

Take the conditions (A2) for i = jα and in Equation (A2b) inter-
change variables α and β mutually, which is eligible by the defi-
nition of α and β. In this case, j ≤ jα − N − 1. Since j changes
in the same range as indices k and l, one can apply Equation
(A2a) for j := k to the left-hand sides of the above equalities, as
well as Equations (A2a) and (A2b) for j := l to the right-hand
sides of the first and second above equalities, respectively. This
yields

�k,l, k, l = jα, . . . , jα − N − 1. (A4)

(ii) Using Equation (A2a), rewrite the elements of
Equation (A4) for k = jα as follows:

(
∂f

∂α[i]

)−1
∂2f

∂α[i]∂α[jα]
∂f

∂α[l]
= ∂S

∂α[l]

(
∂S

∂α[j ]

)−1
∂2f

∂α[jα]∂α[j ]
,

(
∂f

∂α[i]

)−1
∂2f

∂α[i]∂α[jα]
∂f

∂β [l]
= ∂S

∂β [l]

(
∂S

∂α[j ]

)−1
∂2f

∂α[jα]∂α[j ]
,
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Figure A1. The main steps of the proof of Lemma 3.2.

where i, j = jα + N + 1, . . . , jα and l = jα, . . . , jα − N − 1.
Denoting k := i = j , after simplification, we obtain

�k,l,
k = jα + N + 1, . . . , jα,

l = jα, . . . , jα − N − 1.
(A5)

(iii) Next, consider Equation (A2) for j = jα . Since j 	= i −
N, . . . , i + N , now i 	= jα − N, . . . , jα + N and consequently
i ≥ jα + N + 1. Performing the analogical steps as in step (i),
we obtain

�k,l, k, l = jα + N + 1, . . . , jα. (A6)
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(iv) Using Equation (A2a), rewrite the elements of
Equation (A6) for k = jα as follows:(

∂f

∂α[i]

)−1
∂2f

∂α[i]∂α[jα]
∂f

∂α[l]
= ∂S

∂α[l]

(
∂S

∂α[j ]

)−1
∂2f

∂α[jα]∂α[j ]
,

(
∂f

∂α[i]

)−1
∂2f

∂α[i]∂α[jα]
∂f

∂β [l]
= ∂S

∂β [l]

(
∂S

∂α[j ]

)−1
∂2f

∂α[jα]∂α[j ]
,

where i, j = jα, . . . , jα − N − 1 and l = jα + N + 1, . . . , jα .
Denotation k := i = j and simplification yield

�k,l,
k = jα, . . . , jα − N − 1,

l = jα + N + 1, . . . , jα.
(A7)

It is not hard to verify (see Figure A1) that joining together
tables (A4)–(A7) yields

�k,l,

⎧⎨
⎩

k, l = jα, . . . , jα, if 2N < jα − jα,

k, l = jα, . . . , jα − N − 1,

jα + N + 1, . . . , jα, if 2N ≥ jα − jα.

(A8)

(v) Consider the case 2N ≥ jα − jα . In Equation (A3a) re-
place index r by index k and compare successively the ob-
tained equality first, with Equation (A3a) and second with
Equation (A3b), where in both equalities index r is replaced by
index l. After simplification, we obtain

�k,l, k, l = jα − N, . . . , jα + N. (A9)

(vi) Next take Equation (A3) for r = k, j = jα and perform the
similar operations as in step (ii) to get

�k,l,
k = jα − N, . . . , jα + N,

l = jα + N + 1, . . . , jα.
(A10)

(vii) Taking the elements of (A10) for l = jα by analogy with step
(iv), one obtains

�k,l,
k = jα − N, . . . , jα + N,

l = jα, . . . , jα − N − 1.
(A11)

(viii) Next, take Equation (A3) for r = l and perform the similar
operations as in step (ii) to get

�k,l,
k = jα + N + 1, . . . , jα,

l = jα − N, . . . , jα + N.
(A12)

(ix) Taking the elements of Equation (A12) for k = jα by analogy
with step (iv), one obtains

�k,l,
k = jα, . . . , jα − N − 1,

l = jα − N, . . . , jα + N.
(A13)

As a result, complementary tables (A9)–(A13) allow to rewrite
Equation (A8) as

�k,l, k, l = jα, . . . , jα

for arbitrary N , which means that under conditions (8) and (9) the
equalities (A1) are satisfied for k, l = jα, . . . , jα . This completes
the proof. �

Appendix 2: Proof of Proposition 5.1

To make the exposition of the proof more compact, define for
i = 0, . . . , n − 1 the differential one-forms

ωi = ∂f

∂y[i]
dy[i] + ∂f

∂u[i]
du[i], (B1)

and the vector argument

νl := [
y[n−l], . . . , y[n−l−N], u[n−l], . . . , u[n−l−N]

]
(B2)

for l = 1, . . . , n − N . The proof of Proposition 5.1 relies on the
following lemma.

Lemma A.1 (Kaparin and Kotta, 2011): For functions
ϕ̄1(ν1), . . . , ϕ̄n−N (νn−N ) the following holds

n−N∑
l=1

dϕ̄l(νl) =
n−1∑
i=0

ϒi (ϕ̄n−N−l(νn−N−l)) ,

where

ϒi (ϕ̄n−N−l (νn−N−l)) =
min(i,n−1−N)∑
l=max(0,i−N)

(
∂ϕ̄n−N−l (νn−N−l)

∂y[i]
dy[i]

+∂ϕ̄n−N−l (νn−N−l)

∂u[i]
du[i]

)
. (A16)

Now we are ready to prove Proposition 5.1.

Proof: The total differential of Equation (6) reads as

(p′ ◦ f )df = (p′ ◦ f )
n−1∑
i=0

ωi =
n−N∑
l=1

dϕ̄l(νl),

which, according to Lemma B.1, can be rewritten as

(p′ ◦ f )
n−1∑
i=0

ωi =
n−1∑
i=0

ϒi (ϕ̄n−N−l(νn−N−l)) . (A17)

From Equation (A17) we have for i = 0, . . . , n − 1,

(p′ ◦ f )ωi = ϒi (ϕ̄n−N−l(νn−N−l)) . (A18)

Taking into account Equations (A14)–(A16), compare the coeffi-
cients of dy[i] and du[i] at both sides of equality (A18), to obtain
Equation (A15). This completes the proof. �
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V. Kaparin, Ü. Kotta, and M. Wyrwas, Observable Space of Nonlinear
Control System on Homogeneous Time Scale. Proceedings of the Estonian
Academy of Sciences, Accepted for publication.

179





Observable Space of Nonlinear Control System on
Homogeneous Time Scale

Vadim Kaparin∗†, Ülle Kotta†, and Małgorzata Wyrwas‡

Abstract

The observability property of the nonlinear system, defined on homogeneous
time scale, is studied in the paper. The observability condition is provided through
the notion of the observable space. Moreover, the observability filtration and ob-
servability indices are defined and the decomposition of the system into the observ-
able/unobservable subsystems is considered.
Keywords: nonlinear control system, time scale, observability, observable space

1 INTRODUCTION

The theory of dynamical systems on time scales is a new and popular research area.
From a modeling point of view, dynamical systems on time scales incorporate both the
continuous- and discrete-time systems as the special cases, allowing that way to unify the
study and consider the classical results as the special cases from the new theory. However,
it is important to note that the discrete-time model in the time scale formalism is given
in terms of the difference operator, and not in terms of the more conventional shift op-
erator as, for example, in [1], [2], [3], [13]. The difference-based models, often referred
to as delta-domain models, are not completely new for description of the discrete-time
systems. They have been promoted during the last 20 years as the models closely linked
to the continuous-time systems, being less sensitive to round-off errors at higher sampling
rates [12], [20].

The properties (including observability) of linear systems, defined on time scales, were
studied, for instance, in [5] and [11]. In [4] the algebraic formalism in terms of differen-
tial one-forms has been developed for the study of nonlinear control systems defined on
homogeneous time scales and used later to study different problems like transfer equiv-
alence, irreducibility, reduction and realization of nonlinear input-output equations [7],
[17], [18]. The formalism constructs the vector space of differential one-forms, defined
over the differential field of meromorphic functions, associated with the control system.

∗Corresponding author, vkaparin@cc.ioc.ee
†Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618, Tallinn, Esto-

nia; kotta@cc.ioc.ee
‡Faculty of Computer Science, Department of Mathematics, Bialystok University of Technology,

Wiejska 45A, 15-351 Białystok, Poland; m.wyrwas@pb.edu.pl



In this paper we apply this formalism to define and construct the observable space for
nonlinear control system on homogeneous time scale and define the observability indices
of the system. Moreover, we provide the necessary and sufficient condition to check the
single-experiment observability1 of the system using the notion of the observable space.
Finally, we discuss the possibility to decompose the system into observable/unobservable
subsystems.

The paper is organized as follows. The preliminary information about the time scale
calculus and algebraic framework is given in Section 2. The notions of observability,
observability filtration, observable space and observability indices are provided in Sec-
tion 3. In Section 4 the decomposition of the system into the observable/unobservable
subsystems is studied. Section 5 provides the brief conclusions.

2 PRELIMINARIES

2.1 Time Scale Calculus

For a general introduction to the time scale calculus, see [6]. Here we recall only those
notions and facts that we need in this paper, in particular, the concept of delta derivative
for real function defined on homogeneous time scale.

A time scale T is an arbitrary nonempty closed subset of the set R of real numbers. The
standard cases comprise the continuous time case, T = R, and the discrete time cases,
T = Z and T = τZ for τ > 0. We assume that T is a topological space with the topology
induced by R. In the definition of the delta derivative, the so-called forward jump operator
plays an important role. For t ∈ T the forward jump operator σ : T→ T is defined by

σ(t) := inf {s ∈ T | s > t} ,

while the backward jump operator ρ : T→ T is defined by

ρ(t) := sup {s ∈ T | s < t} .

In this definition we set in addition σ(maxT) = maxT if there exists a finite maxT.
Obviously σ(t) is in T when t ∈ T. This is because of our assumption that T is a closed
subset of R. The graininess functions µ : T→ [0,∞) and ν : T→ [0,∞) are defined by
µ(t) := σ(t)−t and ν(t) := t−ρ(t), respectively. A time scale T is called homogeneous2

if µ = ν ≡ const. Let Tκ denote truncated set consisting of T except for a possible
maximal point such that ρ(maxT) < maxT.

Definition 2.1. Let f : T→ R and t ∈ Tκ. Delta derivative of f at t, denoted by f∆(t),
is the real number (provided it exists) with the property that given any ε > 0 there is a
neighborhood U = (t− δ, t+ δ) ∩ T (for some δ > 0) such that

|(f(σ(t))− f(s))− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|
1The multi-experiment observability of nonlinear control systems, defined on time scales, was studied

in [22].
2Though the closed interval [a, b] is also an example of homogeneous time scale, we restrict our consid-

eration to infinite homogeneous time scales T = R and T = τZ for τ > 0.
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for all s ∈ U . Moreover, we say that f is delta differentiable on Tκ provided f∆(t) exists
for all t ∈ Tκ.

Example 2.2.

• If T = R, then µ(t) ≡ 0 and delta derivative is the ordinary time derivative.

• If T = τZ, τ > 0, then µ(t) = τ and f∆(t) = f(σ(t))−f(t)
µ(t)

= f(t+τ)−f(t)
τ

is the
difference operator.

For a function f : T → R one can define the 2nd delta derivative f [2] :=
(
f∆
)∆

:

Tκ2 → R provided that f∆ is delta differentiable on Tκ2 := (Tκ)κ. In a similar manner
one defines higher order delta derivatives f [n] :=

(
f [n−1]

)∆
: Tκn → R, where Tκn =(

Tκn−1
)κ

, n ≥ 1. For notational convenience, denote f [i...n] :=
(
f [i], . . . , f [n]

)
, for

0 ≤ i ≤ n and f [0] := f .

2.2 Algebraic Framework

In this subsection we recall some notions and facts from [4], necessary for our study.

Consider a multi-input multi-output (MIMO) nonlinear control system, defined on homo-
geneous time scale T, and described by the state equations

x∆ = f(x, u)

y = h(x)
(1)

where x(t) : T → X ⊂ Rn is an n-dimensional state vector, u(t) : T → U ⊂ Rm is an
m-dimensional input vector and y(t) : T → Y ⊂ Rp is a p-dimensional output vector.
Moreover, f : X× U→ X and h : X→ Y are assumed to be real analytic functions.

Remark 2.3. Note that we are focusing neither on local nor global, but on the generic
properties of the system, i.e. the properties that hold almost everywhere, except on a
set of measure zero. Though the notion of generic property does not make sense, in
general, for systems defined by C∞ functions, the choice of analytic functions allows to
employ the generic approach. Moreover, unlike the ring of C∞ functions, the ring of
analytic functions is integral domain, meaning that it can be embedded into its quotient
field whose elements are meromorphic functions.

Assume that the map (x, u) 7→ f̃(x, u) := x+µf(x, u) generically defines a submersion,
that is generically

rank
∂f̃(x, u)

∂ (x, u)
= n (2)

holds. Assumption (2) is not restrictive since it is a necessary condition for system acces-
sibility [13] and always satisfied in case µ ≡ 0. Consider the infinite set of (independent)
real indeterminates C :=

{
xi, i = 1, . . . , n; u

[k]
υ , υ = 1, . . . ,m, k ≥ 0

}
. Let K denote

the field of meromorphic functions in a finite number of variables from the set C . Thus

3



for each F ∈ K there is k ≥ 0 such that F depends on x and u[0...k]. Let σf : K → K
be the forward shift operator defined by

F σf
(
x, u[0...k+1]

)
:= F

(
x+ µf(x, u), u[0...k] + µu[1...k+1]

)
.

Under the submersivity assumption, σf is injective endomorphism and so the operator σf
is well defined on K (see [4]). Furthermore, define the operator ∆f : K → K by

F∆f
(
x, u[0...k+1]

)
:=

=





F σf
(
x, u[0...k+1]

)
− F

(
x, u[0...k]

)

τ
if T = τZ, τ > 0,

∂F

∂x

(
x, u[0...k]

)
f(x, u) +

∑

k≥0

∂F

∂u[0...k]

(
x, u[0...k]

)
u[1...k+1] if T = R.

Proposition 2.4. Let F : K → K , G : K → K . The delta derivative satisfies the
following properties

(i) F σf = F + µF∆f ,

(ii) (αF + βG)∆f = αF∆f + βG∆f , for α, β ∈ R,

(iii) (FG)∆f = F σfG∆f + F∆fG (generalization of Leibniz rule),

(iv) On homogeneous time scale operators ∆f and σf commute, i.e

(F σf )∆f =
(
F∆f

)σf .

An operator ∆f satisfying the rule (iii) of Proposition 2.4 is called a “σf -derivation” [9].
A commutative field endowed with a σf -derivation is called a differential field. The field
K is endowed with a σf -differential structure, determined by system (1), and there exists
the differential overfield K ∗, called the inversive closure of K . In [4] the construction
of the inversive closure K ∗ for system (1) is given. The extension of σf to K ∗ is an
automorphism [9].

Consider the infinite set of symbols dC =
{

dxi, i = 1, . . . , n; du
[k]
υ , υ = 1, . . . ,m,

k ≥ 0
}

and denote by E the vector space over the field K ∗ spanned by the elements of
dC , namely

E = spanK ∗dC .

Any element of E has the form

ω =
n∑

i=1

Aidxi +
∑

k≥0

m∑

υ=1

Bυkdu
[k]
υ ,

where only a finite number of coefficientsBυk are nonzero elements of K ∗. The elements
of E will be called the differential one-forms.

Let us define the operator d : K ∗ → E as follows

dF
(
x, u[0...k]

)
:=

n∑

i=1

∂F

∂xi

(
x, u[0...k]

)
dxi +

k∑

l=0

m∑

υ=1

∂F

∂u
[l]
υ

(
x, u[0...k]

)
du[l]

υ . (3)
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Let ω =
∑

iAidζi be a one-form, where Ai ∈ K ∗ and ζi ∈ C . We define the operators
∆f : E → E and σf : E → E by

ω∆f :=
∑

i

(
A

∆f

i dζi + A
σf
i d
(
ζ

∆f

i

))
(4)

and
ωσf :=

∑

i

A
σf
i d
(
ζ
σf
i

)
.

Since Aσfi = Ai + µA
∆f

i ,

ω∆f =
∑

i

(
A

∆f

i dζi +
(
Ai + µA

∆f

i

)
d
(
ζ

∆f

i

))
.

One says that ω ∈ E is an exact one-form if ω = dF for some F ∈ K ∗. A one-form
ω for which dω = 0 is said to be closed. It is well known that exact forms are closed,
while closed forms are only locally exact. Integrability of the subspace of one-forms may
be checked by the Frobenius theorem below, where the symbol dωi means the exterior
derivative of one-form ωi and ∧ means the exterior or wedge product (for details see [8]).

Theorem 2.5 ([8]). Let V = spanK ∗{ω1, . . . , ωr} be a subspace of E . V is integrable if
and only if

dωi ∧ ω1 ∧ · · · ∧ ωr = 0

for any i = 1, . . . , r.

3 OBSERVABILITY AND OBSERVABLE SPACE

Frequently the observability rank condition is used to check whether the continuous-time
nonlinear system is locally weakly observable [10], [14]. This condition is sufficient for
arbitrary initial state and necessary for almost all initial states. Thus, we introduce the
definition of observability for nonlinear systems, defined on homogeneous time scales,
through the observability rank condition.

Definition 3.1. System (1) is called generically (single-experiment) observable if the rank
of the observability matrix is generically equal to n, i.e. if

rankK ∗



∂
(
h1, h

∆f

1 , . . . , h
[n−1]
1 , . . . , hp, h

∆f
p , . . . , h

[n−1]
p

)

∂x


 = n. (5)

Observe that h
σkf
ν :=

(
h
σk−1
f
ν

)σf
for k ≥ 2 and take into account, that for T = τZ, τ > 0

the higher order delta derivative can be computed explicitly as

h[i]
ν =

1

τ i

i∑

k=0

(−1)kCk
i h

σi−kf
ν , (6)

where Ck
i is the binomial coefficient, i.e. Ck

i = i!
(i−k)!k!

.
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Proposition 3.2. For T = τZ, τ > 0, the following holds

rankK ∗



∂
(
h1, h

∆f

1 , . . . , h
[n−1]
1 , . . . , hp, h

∆f
p , . . . , h

[n−1]
p

)T

∂x


 =

= rankK ∗




∂

(
h1, h

σf
1 , . . . , h

σn−1
f

1 , . . . , hp, h
σf
p , . . . , h

σn−1
f
p

)T

∂x


 . (7)

Proof. Using (6), the arbitrary row of the left-hand side matrix in (7) may be rewritten as

∂h
[i]
ν

∂x
=

1

τ i

i∑

k=0

(−1)kCk
i ·

∂h
σi−kf
ν

∂x

for ν = 1, . . . , p and i = 1, . . . , n−1. Separating the first addend of the above sum yields

∂h
[i]
ν

∂x
=

1

τ i


∂h

σif
ν

∂x
+

i∑

k=1

(−1)kCk
i ·

∂h
σi−kf
ν

∂x


 .

Now the sum
∑i

k=1 in the above equality is the linear combination of the previous rows of
the matrix and therefore, can be removed without changing the rank of the matrix. Since

∂h
σif
ν /∂x is the row of the right-hand side matrix of (7) for i = 1, . . . , n−1, the statement

of the proposition holds.

Remark 3.3. Since for T = R the delta derivative coincides with the classical time
derivative, the condition (5) is equivalent to observability rank condition in [10]. By
Proposition 3.2 in the discrete-time case the condition (5) is equivalent to the observability
rank condition given in [16].

Though Definition 3.1 may be applied to check observability, it is easier to be done
using a concept of observable space like in the continuous-time case [10]. Moreover,
the observable space, if integrable, allows to decompose the system into the observ-
able/unobservable subsystems. In the remaining part of this section we extend the concept
of observable space to the case of (MIMO) systems, defined on homogeneous time scales,
and, using the notion of observable space, provide the necessary and sufficient observabil-
ity condition.

Given system (1), denote by X , Y k, Y and U the following subspaces of the differential
one-forms:

X := spanK ∗{dx},
Y k := spanK ∗

{
dh[j]

ν , ν = 0, . . . , p, 0 ≤ j ≤ k
}
,

Y := spanK ∗
{

dh[j]
ν , ν = 0, . . . , p, j ≥ 0

}
,

U := spanK ∗
{

du[l]
υ , υ = 1, . . . ,m, l ≥ 0

}
.

(8)

By analogy with [10], the finite chain of subspaces

0 ⊂ O0 ⊂ O1 ⊂ · · · ⊂ Ok ⊂ · · · ⊂ Ok∗−1 = Ok∗ =: O∞, (9)

6



where
Ok := X ∩

(
Y k + U

)
(10)

is called the observability filtration. Denote by O∞ the limit of the observability filtration;
it is easy to see that

O∞ = X ∩ (Y + U )

and analogously with [10] we call the subspace O∞ of X the observable space3 of the
system (1). The unobservable space of system (1), denoted by XŌ, is defined as a sub-
space of X , which satisfies

XŌ
∼= X /O∞, XŌ ⊕ O∞ = X ,

where X /O∞ denotes the factor-space.

From (8), taking into account (3) and using the linear transformations, one obtains

Y k + U = spanK ∗

{
∂h

[j]
ν

∂x
dx, ν = 1, . . . , p, 0 ≤ j ≤ k; du[l]

υ , υ = 1, . . . ,m, l ≥ 0

}
.

Consequently, according to (10)

Ok = spanK ∗

{
∂h

[j]
ν

∂x
dx, ν = 1, . . . , p, 0 ≤ j ≤ k

}
, (11)

yielding

O∞ = spanK ∗

{
∂h

[j]
ν

∂x
dx, ν = 1, . . . , p, j ≥ 0

}
.

Before studying the properties of the observable space we provide Lemma 3.4. De-
note the one-forms which generate the observable space O∞ as ων,j := ∂h

[j]
ν

∂x
dx for

ν = 1, . . . , p, j ≥ 0 and arrange them in the form of the following matrix:

Ω =




ω1,0 ω1,1 ω1,2 · · ·
ω2,0 ω2,1 ω2,2 · · ·

...
...

...
ωp,0 ωp,1 ωp,2 · · ·


 .

Also denote the arbitrary row of the above matrix by Ων .

Lemma 3.4. If Ων contains the one-form ων,i, being a linear combination of the former
one-forms ων,0, . . . , ων,i−1 from Ων , then the next one-forms ων,j’s for j > i can also be
represented as a linear combination of the one-forms ων,0, . . . , ων,i−1.

The proof of Lemma 3.4 is given in the Appendix.

The proposition below describes the property of the subspace O∞.

3Note that O∞ is in general not the observation space as in [23], associated with the concept of the
multi-experiment observability

7



Proposition 3.5.

dimK ∗ O∞ = rankK ∗



∂
(
h1, h

∆f

1 , . . . , h
[n−1]
1 , . . . , hp, h

∆f
p , . . . , h

[n−1]
p

)

∂x


 .

Proof. Represent the observable space as

O∞ = O1
∞ + O2

∞ + · · ·+ Op
∞,

where Oν
∞ is generated by the elements of Ων . Since Oν

∞ ⊆ O∞ ⊆ X and, as a conse-
quence, dim Oν

∞ ≤ dim O∞ ≤ dim X = n, it is enough to use n independent differential
one-forms ων,j to generate Oν

∞. Lemma 3.4 guarantees that the first n one-forms ων,j ,
0 ≤ j ≤ n− 1, span the subspace Oν

∞. Consequently,

spanK ∗

{
∂h

[j]
ν

∂x
dx, ν = 1, . . . , p, j ≥ 0

}
=

= spanK ∗

{
∂h

[j]
ν

∂x
dx, ν = 1, . . . , p, 0 ≤ j ≤ n− 1

}
.

Thus, the rows of the observability matrix


∂
(
h1, h

∆f

1 , . . . , h
[n−1]
1 , . . . , hp, h

∆f
p , . . . , h

[n−1]
p

)

∂x


 (12)

with n columns can be regarded as the representation of the elements of the codistribution
O∞. Therefore, the number of linearly independent vectors of O∞, i.e. dimK ∗ O∞, can
be found as the rank of the matrix (12).

The following theorem is the direct consequence of Definition 3.1 and Proposition 3.5
and provides the characterization of the observability of the system.

Theorem 3.6. A system (1) is (single-experiment) observable if and only if O∞ = X .

Example 3.7. Consider the continuous-time model of unicycle [10] and its discrete-time
approximation, based on Euler sampling scheme, as a single model defined on the homo-
geneous time scale T

x∆
1 = u1 cosx3

x∆
2 = u1 sinx3

x∆
3 = u2

y1 = x1

y2 = x2.

(13)

Using (11), the observability filtration (9) of the system (13) may be computed as follows

O0 = spanK ∗ {dx1, dx2} ,
O∞ = O1 = spanK ∗ {dx1, dx2, dx3} .
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Since the observable space O∞ = X , the system is observable. Alternatively, one may
check that direct application of Definition 3.1 yields the same result though requires more
computations:

rankK ∗



∂
(
h1, h

∆f

1 , h
[2]
1 , h2, h

∆f

2 , h
[2]
2

)

∂x


 = rankK ∗




1 0 0
0 0 −u1 sinx3

0 0 a
0 1 0
0 0 u1 cosx3

0 0 b




= 3,

where

a :=




u1 sinx3 −

(
u1 + τu∆

1

)
sin (τu2 + x3)

τ
if T = τZ, τ > 0,

−u1u2 cosx3 − u̇1 sinx3 if T = R,

b :=




−u1 cosx3 +

(
u1 + τu∆

1

)
cos (τu2 + x3)

τ
if T = τZ, τ > 0,

−u1u2 sinx3 + u̇1 cosx3 if T = R.

Given a system of the form (1), its observability filtration (9), like in the continuous-time
case [10], defines a set of structural indices σj for j = 1, . . . , k∗ by

σ1 = dimK ∗ O0,

σj = dimK ∗ (Oj−1/Oj−2) , j = 2, . . . , k∗.
(14)

Another set of indices si, for i = 1, . . . , p, being dual to the set {σj, j = 1, . . . , k∗}, is
defined by

si = card {σj | σj ≥ i}
and called the set of observability indices of system (1). The integer σj represents the
number of observability indices si which are greater than or equal to j, and duality implies
that σj = card {si | si ≥ j}.
Observability indices determine how many delta derivatives of the respective output com-
ponents one needs to use for computation of the initial state x on the basis of the inputs and
outputs and their delta derivatives. The following proposition describes the key property
of the observability indices.

Proposition 3.8. Given a system of the form (1), one has

dimK ∗ O∞ = s1 + · · ·+ sp.

Proof. Note, that dimK ∗ (Oj−1/Oj−2) = dimK ∗ Oj−1 − dimK ∗ Oj−2. Using (14) one
can write

k∗∑

j=1

σj =
k∗∑

j=1

dimK ∗ Oj−1 −
k∗∑

j=2

dimK ∗ Oj−2. (15)

Separating the last addend of the first sum in the right-hand side of (15), replacing in this
sum index j by j − 1 and taking into account that Ok∗−1 = O∞, we obtain

k∗∑

j=1

σj = dimK ∗ O∞ +
k∗∑

j=2

dimK ∗ Oj−2 −
k∗∑

j=2

dimK ∗ Oj−2 = dimK ∗ O∞. (16)
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The relation between indices σj and si can be expressed by means of a k∗×p table, whose
(j, i)th element is defined by (j = 1, . . . , k∗ pointing to the row and i = 1, . . . , p to the
column)

aj,i =

{
1, 1 ≤ i ≤ σj,

0, (σj + 1) ≤ i ≤ p,
=

{
1, 1 ≤ j ≤ si,

0, (si + 1) ≤ j ≤ k∗.

Thus, the indices σj and si are the sums of elements in the jth row and ith column,
respectively, i.e.

σj =

p∑

i=1

aj,i, si =
k∗∑

j=1

aj,i. (17)

Taking into account (16) and (17), one obtains

p∑

i=1

si =

p∑

i=1

k∗∑

j=1

aj,i =
k∗∑

j=1

σj = dimK ∗ O∞,

which completes the proof.

Example 3.9. (Continuation of Example 3.7). One has σ1 = 2, σ2 = 1 and so, the
observability indices are s1 = 2, s2 = 1. Taking delta derivatives of y1 and y2 up to the
orders s1 − 1 and s2 − 1, respectively, we obtain y1 = x1, y∆

1 = u1 cosx3, y2 = x2,
yielding

x1 = y1

x2 = y2

x3 = arccos
y∆

1

u2

.

4 DECOMPOSITION

For certain applications it will be useful to have system representations in which the ob-
servable and unobservable state variables can be explicitly distinguished. For a continuous-
time nonlinear control system the decomposition into observable/unobservable subsys-
tems has been carried out both via differential geometric [15], [21] and linear algebraic
methods [10] and is proved to be always doable. For example, in [10] the decomposition
was first carried out for linearized system defined in terms of one-forms, and then, it was
proved that the observable subspace of differential one-forms is always (generically) inte-
grable. Therefore, the observable subspace of one-forms can be (at least locally) spanned
by exact one-forms whose integrals define the observable state coordinates. As demon-
strated in [16], for the discrete-time nonlinear control systems described in terms of the
shift operator σf the decomposition at the level of equations (state variables) is not always
possible since the observable space of one-forms is not necessarily completely integrable.
Moreover, the paper [19] provides a general subclass of systems with non-integrable ob-
servable subspace.

The purpose of this section is to study the possibility to decompose the nonlinear con-
trol system defined on the homogeneous time scale into the observable and unobservable

10



subsystems. Since the delta-domain model obtained via sampling [12] behaves similarly
to the continuous-time system and at the limit, when the sampling frequency increases
infinitely, approaches the continuous-time system, it was our working hypotheses that the
delta-domain models are, in general, decomposable into observable/unobservable parts.

The latter would mean that the respective observable space O∞, as a space of differential
one-forms, is completely integrable. In the case µ ≡ 0 (T = R), the observable space
O∞ is proved to be integrable in [10]. Unfortunately, unlike the case T = R for the case
T = τZ, τ > 0, O∞ is not necessarily integrable. We give a number of counterexamples.

Example 4.1. Consider the control system, defined on homogeneous time scale

x∆
1 = x3 + ux3 − x1

x∆
2 = u− x2

x∆
3 = ux1 − x3 − x2

y = x3.

(18)

By (9), for this system, O∞ = O2 = spanK ∗
{

dx3, 2dx2 +
(
u∆ − µu∆ − 2u

)
dx1, dx2−

−udx1

}
. If T = R, then µ ≡ 0 and obviously4, O∞ = X . If T = τZ, τ > 0, then

O∞ = X , except for the case µ = τ = 1 when O∞ = spanK ∗ {dx3, dx2 − udx1}, being
non-integrable subspace by Theorem 2.5, since d(dx2 − udx1) ∧ dx3 ∧ (dx2 − udx1) =
du ∧ dx1 ∧ dx2 ∧ dx3 6= 0.

Next example demonstrates that the loss of integrability does not necessarily occur only
at µ = 1.

Example 4.2. Consider the system

x∆
1 = x2 −

x1

3
x∆

2 = ux1 + x3 − x2

x∆
3 = eu

2x1+ux3 − x3

3
y = x2.

(19)

The observable space of the system

O∞ = O2 = spanK ∗

{
dx2, udx1 + dx3,

(
u∆ − µu∆

3

)
dx1

}
.

Like in the previous example, if T = R, then µ ≡ 0 and O∞ = X . If T = τZ, τ > 0,
then O∞ = X , except for the case µ = τ = 3 when O∞ = spanK ∗ {dx2, udx1 + dx3},
again non-integrable by the Frobenius theorem.

Finally, we provide an example of the system for which the observable space O∞ is inte-
grable for every choice of the value of µ.

4Of course, for µ ≡ 0 the result also follows from continuous-time theory [10]
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Example 4.3. Consider the system

x∆
1 = tan(x1 − x2)u1

x∆
2 = u1 tan(x1 − x2)− u2 cos2(x1 − x2)

x∆
3 = u1

y1 = x3

y2 = x1 − x2.

(20)

The observable space O∞ = O0 = spanK ∗ {dx1 − dx2, dx3} is obviously integrable by
direct inspection.

To conclude, we conjecture that the observable space O∞ is in general integrable except
for a few possible µ values where these values correspond to the sampling frequencies
at which the state transition map of the sampled system is not reversible. The following
example illustrates this conjecture.

Example 4.4. (Continuation of Examples 4.1 – 4.3). The state transition map of system
(18) is

x+
1 = µ (x3 + ux3 − x1) + x1

x+
2 = µ (u− x2) + x2

x+
3 = µ (ux1 − x3 − x2) + x3,

(21)

where we use the notation x+ := x(t + µ). In order to check the reversibility of the
system, one needs to verify whether the Jacobian matrix ∂f̃(x, u)/∂x is nonsingular. The
Jacobian matrix of system (21) is

∂f̃(x, u)

∂x
=




1− µ 0 µ(1 + u)
0 1− µ 0
µu −µ 1− µ


 .

One can verify that the above matrix is singular for µ = 1, implying that the state transi-
tion map (21) is not reversible at the sampling frequency equal 1. Next, consider the state
transition map of system (19), which reads as

x+
1 = µ

(
x2 −

x1

3

)
+ x1

x+
2 = µ (ux1 + x3 − x2) + x2

x+
3 = µ

(
eu

2x1+ux3 − x3

3

)
+ x3.

(22)

The Jacobian matrix of system (22), i.e.

∂f̃(x, u)

∂x
=




1− µ
3

µ 0
µu 1− µ µ

eu(ux1+x3)µu2 0 1− µ
3

+ eu(ux1+x3)µu




is singular for µ = 3. Consequently, the state transition map (22) is not reversible at the
sampling frequency equal 3. Finally, the state transition map of system (20) is

x+
1 = µ tan(x1 − x2)u1 + x1

x+
2 = µ

(
u1 tan(x1 − x2)− u2 cos2(x1 − x2)

)
+ x2

x+
3 = µu1 + x3

(23)
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and its Jacobian matrix reads as

∂f̃(x, u)

∂x
=




1 + µu1
cos2(x1−x2)

−µu1
cos2(x1−x2)

0

a 1− a 0
0 0 1


 ,

where a := µ
(

u1
cos2(x1−x2)

+ u2 sin (2 (x1 − x2))
)

. One can verify that the above matrix is
nonsingular for any µ ≡ const, meaning that the state transition map (23) is reversible at
any sampling frequency. To conclude, comparing the above result with those presented in
Examples 4.1 – 4.3, one can observe the consistency of the sampling frequencies at which
the state transition maps are not reversible and the values of µ for which the observable
spaces O∞ are not integrable. These examples support our conjecture.

If O∞ is integrable, and therefore, has locally an exact basis {dζ1, . . . , dζr}, one can
complete the set {dζ1, . . . , dζr} to a basis {dζ1, . . . , dζr, dζr+1, . . . , dζn} of X . Then,
in the coordinates {ζ1, . . . , ζn}, the system can be decomposed into an observable and
unobservable subsystems

ζ∆
1 = f1 (ζ1, . . . , ζr, u) ,

...

ζ∆
r = fr (ζ1, . . . , ζr, u) ,

y = h (ζ1, . . . , ζr)

and

ζ∆
r+1 = fr+1 (ζ, u) ,

...

ζ∆
n = fn (ζ, u) ,

respectively.

Example 4.5. (Continuation of Example 4.3). Integrating the observable space O∞ of the
system, we get the set of the observable state variables ζ1 = x1 − x2 and ζ2 = x3. Next
we complete this set to a basis {ζ1, ζ2, ζ3} of R3, taking, for example, ζ3 = x1. In these
coordinates the system equations read as

ζ∆
1 = u1

ζ∆
2 = u2 cos2 ζ2

ζ∆
3 = u1 tan ζ2

y1 = ζ1

y2 = ζ2,

where the first two equations (together with the output equations) define the observable
subsystem. The state ζ3 is unobservable.
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5 CONCLUSIONS

Though the theory of continuous- and discrete-time dynamical systems as presented in
the literature is different, the analysis on time scales is nowadays recognized as the right
tool to unify the seemingly separate fields of discrete dynamical systems (i.e. difference
equations) and continuous dynamical systems (i.e. differential equations). In the paper
we studied the observability of multi-input multi-output control systems on homogeneous
time scale, which allows us to unify continuous- and discrete-time theories, presenting
both of them simultaneously under the same language. The presented approach covers the
continuous- and discrete-time cases in such a manner that those are the special cases of the
formalism. Since delta derivative (used in our paper to describe the dynamical systems)
coincides with the time derivative for the continuous-time case, the results available in
the literature can be obtained from our results as a special case, namely the case in which
the time scale is the set of real numbers. On the other hand, our formalism includes the
description of a discrete-time system based on the difference operator description (delta-
domain approach), for which the results shown in the paper are new, since previous results
have been obtained for discrete-time systems considered on the basis of the shift-operator
formalism. Therefore, in our paper the discrete-time systems are described in terms of the
difference operator unlike in the majority of papers where the system is described via the
shift-operator. To conclude, though the computation of the delta-derivative is different in
the continuous- and discrete-time cases, the results obtained by means of it are the same
for both time domains.

In the paper the notion of the observable space was used to provide the observability
condition that can be easily checked. However, note that the definition of the observ-
ability was introduced through the observability rank condition, commonly used both
in continuous- and discrete-time cases. One of the future goals is to define the ob-
servability of the nonlinear system on homogeneous time scale using the concept of
(in)distinguishable states. Another goal is to find the conditions under which the nonlin-
ear system defined on homogeneous time scale is transformable into the observer form,
which allows to construct an observer with linearizable error dynamics.
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APPENDIX. PROOF OF LEMMA 3.4

In order to prove Lemma 3.4, we need Lemma 5.1 below.
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Lemma 5.1. For the homogeneous time scale T one has

∂h
[i+1]
ν

∂x
=
∂h

[i]
ν

∂x

∂f(x, u)

∂x
+

(
∂h

[i]
ν

∂x

)∆f (
In + µ

∂f(x, u)

∂x

)
,

ν = 1, . . . p, i = 0, 1, . . . , (24)

where In is n× n identity matrix.

Proof. By commutativity of operators d and ∆f [4],

d
(
h[i+1]
ν

)
=
(
dh[i]

ν

)∆f
. (25)

In what follows, we omit in (25) the parts involving the terms du
[l]
υ in the expressions of

total differentials, therefore we have

∂h
[i+1]
ν

∂x
dx+ · · · =

(
∂h

[i]
ν

∂x
dx

)∆f

+ · · · . (26)

We compute the delta derivative of the one-form at the right-hand side of (26), using (4).
Since (dx)∆f = df(x, u), and again, omitting the parts involving the terms duυ, we get

(
∂h

[i]
ν

∂x
dx

)∆f

=

(
∂h

[i]
ν

∂x

)∆f

dx+

(
∂h

[i]
ν

∂x

)σf
∂f(x, u)

∂x
dx+ · · · .

Since the vectors dx, duυ,. . . , du
[i−1]
υ are independent over the field K ∗, by comparing

the coefficients of dx at both sides of equality (26) we get

∂h
[i+1]
ν

∂x
=

(
∂h

[i]
ν

∂x

)∆f

+

(
∂h

[i]
ν

∂x

)σf
∂f(x, u)

∂x
.

Finally, applying (i) of Proposition 2.4 to
(
∂h

[i]
ν

∂x

)σf
we obtain (24).

Now we are ready to prove Lemma 3.4.

Proof. According to the condition of the lemma

ων,i :=
∂h

[i]
ν

∂x
dx =

i−1∑

k=0

αk
∂h

[k]
ν

∂x
dx. (27)

We first prove that the statement of the lemma holds for j = i+ 1, i.e.

ων,i+1 =
i−1∑

k=0

βk
∂h

[k]
ν

∂x
dx =

i−1∑

k=0

βkων,k (28)

for some βk’s. By Lemma 5.1 and (27)

ων,i+1 =
i−1∑

k=0


αk

∂h
[k]
ν

∂x

∂f(x, u)

∂x
+

(
αk
∂h

[k]
ν

∂x

)∆f (
In + µ

∂f(x, u)

∂x

)
 dx.

15



Using (iii) of Proposition 2.4 for
(
αk

∂h
[k]
ν

∂x

)∆f

and then (i) of Proposition 2.4 for αk, we
get

ων,i+1 =
i−1∑

k=0


 ∂h

[k]
ν

∂x

(
∂f(x, u)

∂x
α
σf
k + α

∆f

k

)
+

+ α
σf
k

(
∂h

[k]
ν

∂x

)∆f (
In + µ

∂f(x, u)

∂x

) 
 dx.

By Lemma 5.1

(
∂h

[k]
ν

∂x

)∆f (
In + µ

∂f(x, u)

∂x

)
=
∂h

[k+1]
ν

∂x
− ∂h

[k]
ν

∂x

∂f(x, u)

∂x
,

yielding

ων,i+1 =
i−1∑

k=0

α
∆f

k

∂h
[k]
ν

∂x
dx+

i−1∑

k=0

α
σf
k

∂h
[k+1]
ν

∂x
dx.

Changing the summation index of the second sum for s = k+1, separating the last addend
of the second sum, and applying (27) to it, we obtain

ων,i+1 =
i−1∑

k=0

(
α

∆f

k + α
σf
i−1αk

) ∂h[k]
ν

∂x
dx+

i−1∑

s=1

α
σf
s−1

∂h
[s]
ν

∂x
dx.

Separating the first addend of the first sum yields

ων,i+1 =
i−1∑

k=1

(
α

∆f

k + α
σf
i−1αk + α

σf
k−1

) ∂h[k]
ν

∂x
dx+

(
α

∆f

0 + α
σf
i−1α0

) ∂hν
∂x

dx.

Denoting β0 := α
∆f

0 + α
σf
i−1α0 and βk := α

∆f

k + α
σf
i−1αk + α

σf
k−1 we get (28). The similar

arguments can be applied for the case j > i+ 1.
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[3] E. Aranda-Bricaire, Ü. Kotta, and C. H. Moog. Linearization of discrete-time sys-
tems. SIAM Journal on Control and Optimization, 34(6):1999–2023, 1996.

16
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Homogeensel ajaskaalal defineeritud mittelineaarse
juhtimissüsteemi vaadeldav ruum
Vadim Kaparin, Ülle Kotta ja Małgorzata Wyrwas

Uuriti homogeensel ajaskaalal defineeritud mittelineaarse juhtimissüsteemi vaadeldavust.
Vaadeldavus tähendab võimalust määrata (leida) süsteemi mittemõõdetav algolek mõõde-
tavate juhttoimete ja väljundite abil. Vaadeldavuse tingimus on esitatud vaadeldava ruumi
mõiste kaudu. Juhul kui süsteem ei ole vaadeldav, aga vaadeldav ruum, mille elementi-
deks on diferentsiaalsed üks-vormid, on täielikult integreeruv, on süsteem dekomponeeri-
tav vaadeldavaks ja mittevaadeldavaks alamsüsteemiks.
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2. Kalle Tammemäe. Control Intensive Digital System Synthesis.
1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based
on the Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with
Mobility Impairments - Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-
to-Business. 1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications.
2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verifica-
tion of Cost Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Rep-
resented by Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation
Methods for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled
Data Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for
Analysis and Reproduction of Periodic Components of Band-Limited
Discrete-Time Signals. 2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Ori-
ented Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.
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