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Abstract

Nowadays IoT (Internet of Things) technology has earned a wide usage in both home

and corporate networks and thus has led to the increase of botnet attacks due to wrong

misconfiguration of smart devices that are parts of deployed IoT networks. Therefore,

anomaly detection  systems are crucial  for timely  preventing  remaining IoT network

devices  from being exploited  by  botnet  and thus  reduce  financial  losses  caused by

recovering the network after  attack.  Machine learning and deep learning approaches

have found a wide application in network traffic data analysis dedicated to anomaly

detection.

The primary goal of this thesis is to demonstrate the importance of feature selection in

simplifying machine learning models (interpretability) and boosting their performance.

In the scope of  current research, feature selection models were applied in classifying

network data as normal or indicating being attacked by IoT botnet – Mirai or Gafgyt.

Reducing the training data by selecting most appropriate features leads to deploying less

complex machine learning models and to achieving results that are comparable with

deep learning approach results in terms of accuracy. Moreover, this thesis demonstrates

that it is possible to get optimal feature subsets using not only supervised learning based

models trained on network traffic data containing both normal and anomalous data, but

also using unsupervised learning algorithms being preliminarily fit on normal data only.

This thesis is written in English and is 75 pages long, including 13 chapters, 28 figures

and 14 tables.
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Annotatsioon

Tunnuste analüüs masinõppel baseeruvas IoT botnet rünnakute

tuvastamises

Tänapäeval  asjade  Interneti  tehnoloogia  on  laialdaselt  kasutatav  nii  kodu  kui  ka

korporatiivsetes  võrgustikudes  ja  niiviisi  mõjutab  botneti  rünnakute  kasvu,  mis  on

tingitud  asjade  Interneti  võrgustikku  kuuluvate  nutikate  seadmete  vale

konfiguratsiooniga.  Seetõttu  anomaalia  tuvastamise  süsteemid  on  olulised  ülejäänud

nutikate seadmete õigeagsel kaitsmisel botneti poolt ekspluateerimise vastu ja niiviisi

vähendavad rahalist kahjumi mis on omapoolt tingitud võrgustiku taastamisega pärast

rünnakut. Masin- ja sügavõppe  lähenemisviisid on laialt rakendatavad võrgu liikluse

analüüsis mis on anomaaliate tuvastamise osa.

Selle  lõputöö esmane  eesmärk  on demonstreerida  andmete  tunnuste  valiku  olulisust

masinõppe mudelite  lihtsustamisel  (tulemuste  interpreteerimine)  ja  mudelite  jõudluse

tõstmisel.  Käesoleva  uuringu  raames  tunnuste  valimise  mudelid  olid  rakendatud

võrguliikluse  klassifitseerimisel  kas  normaalseks  või  rünnatud  botnetiga  Mirai  või

Gafgyt’i  tüüpi.  Treenimisandmestiku  vähendamine sobivate  tunnuste  kasutamise abil

viib  vähima  keerukusega  masinõppe  mudelite  rakendamisele  ja  selliste  tulemuste

saavutamisele,  mis  on  võrreldatavad  sügavõppe  lähenemisviisi  tulemustega  täpsuse

suhtes. Peale selle, käesolev töö demonstreerib et see on võimalik valida optimaalseid

tunnuste rühmi kasutades mitte ainult valvega õppimisel põhinevaid algoritme mis olid

õpetatud  nii  normaalse  kui  ka anomaaliatega  võrguliikluse  andmetel,  kui  ka  valveta

õppivaid algoritme mis olid treenitud ainult normaalse võrguliikluse andmetel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 75 leheküljel,  13 peatükki, 28

joonist, 14 tabelit.
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1 Introduction

1.1 Overview

Nowadays IoT (Internet of Things) technology is part of people’s lives, though many

people  using IoT refuse  to  change default  credentials  for  smart  devices,  thus  smart

device default configuration became a vulnerability that is exploited by the malefactors

[15]. Devices with the default authorization settings can be compromised by the botnet

– group of the Internet-connected devices (hosts), where each of the host is running the

software  called  “bot”.  The  bot  turns  compromised  smart  devices  into  part  of  the

remotely controlled botnet [15].

IDS (Intrusion Detection System) is a part of cyber security system that helps to identify

unauthorized use, alteration, duplication, and destruction of information systems  [40].

Misuse based, anomaly based, and hybrid based detection systems are common types of

IDS. Misuse based detectors identify an attack based on its signature, whereas anomaly

based detector identifies the deviation of the observed system behavior from the normal

one. Analyzing network pattern of IoT devices is part of anomaly based cyber analytics

[46].  Although  vast  majority  of  deployed  detection  systems  use  signature  based

approach, their main drawback is high false positive and false negative rate [4]. Problem

of high false positive and negative rates might be solved using ML (Machine learning)

approach.

ML is a set of methods for automatically detecting patterns in existing data and making

predictions about future data [34]. There are two types of ML: supervised (predictive)

and unsupervised  (descriptive)  [34].  In  case  of  supervised  ML, building  ML model

consists of training the model on data containing set of observations and automatically

predicting target output based on previously collected knowledge. Target output can be

of  two types  – categorical  or  real-valued.  When dealing  with predicting  categorical

output, this kind of task is called classification or pattern recognition, whereas if we
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would like to find real-valued target output, this task is called regression. In case of

unsupervised ML, the goal is to discover patterns in data without having target patterns

to look for [34]. 

Scope of this thesis covers both supervised and unsupervised ML methods applied to

the IoT devices network data analysis.  Network pattern data in case of Mirai, Gafgyt,

and normal traffic will be used in development of ML models for solving supervised

classification  task:  the  predefined  set  of  parameters  and  their  values  captured  at

particular  time should be classified as malicious  (Mirai,  Gafgyt)  or normal  (benign)

with high accuracy [59]. In case of unsupervised ML approach, there are only two target

outputs (classes) for the observations – normal (benign) and anomalous (malicious).

The primary goal of this thesis is to extract sets of the most relevant and interpretable

features (also called  variables  or attributes) from already existing dataset containing

normal  and anomalous  network  traffic  parameters  values  by applying different  data

reduction techniques,  compare  results  achieved by several  feature  selection  methods

using classical ML models and statistical criteria and deep learning approach accuracies

in classifying network data as benign (non-malicious) and malicious (indicating that the

networked device is compromised by the IoT botnet of two types – Mirai and Gafgyt).

The  optimal  subsets  of  features  will  be  selected  using  filter,  wrapper,  hybrid

(combination of filter and wrapper), and ensemble models. Filter model is a features

selection method that  requires  statistical  evaluation criteria[18].  Wrapper  model  is  a

feature subset search that is wrapped around the learning classifier. Wrapper models can

be  combined  with  filter  and  thus  form  hybrid  models  [18].  Ensemble  models  use

combination of different feature selection models outputs (optimal subsets) [13].

Novelty  of  this  thesis  is  based  on combining  different  feature  selection  models  for

extracting not more than 10 features and demonstrate that the results that are achieved

by applying classical ML algorithms (learning algorithms for wrapper method and final

validation on previously unseen data) and statistical approach (data standardization and

irrelevant features elimination, selecting the most relevant features using filter methods)

are  trustworthy  and  comparable  with  the  deep  learning  approach  that  needs  more

computational resources. Moreover, this thesis demonstrates that it is possible to boost

classical ML models performance by selecting optimal attributes subsets using feature
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selection based on unsupervised learning approach applied to the data that contains no

contamination (benign records only).

This  thesis  is  organized  as  follows.  Chapter  1 consists  of  background  information,

problem  statement,  and  related  work.  Chapter  2  provides  feature  selection  models

implementation  overview.  Chapter  3  contains  detailed  description  of  data  pre-

processing for supervised learning based FSAs and filter models.  Chapter 4  contains

detailed  description  of  data  pre-processing  for  unsupervised  learning  based  FSAs.

Chapter 5 provides overview of all feature selection models that are used in the scope if

this thesis. Chapter 6 provides the training and validation strategy for supervised multi-

class  classification  models,  while  chapter  7  contains  description  of  training  and

validation  processes  for  unsupervised  binary  classification  models.  Chapters  8  – 10

provide results of FSAs.  Chapter 11  consists of LIME methodology description and

interpretation results. Chapters 12 – 13 provide results overview and possible future

work.

1.2 Network traffic anomaly detection background

1.2.1 Background on botnet attacks

DDoS (Distributed Denial-of-Service) – attack that consists of packet streams sent by

different sources to the target (victim). DDoS goal is to consume particular resource that

is critical for the victim and thus deny the service [19].

The botnet - the network of compromised Internet-connected  smart  devices  that  are

running  one  or  more  bot.  Aim  of  the  bot  is  to  propagate  the  infection  from  the

networked devices that are wrongly configured straightly to the target network after

receiving particular command from the malefactor [15].

There are four types of network architecture models that can be used to perpetrate a

DDoS attack [3]:

 Agent-Handler  Model –  composed  of  clients,  handlers  (masters),  and  agents

(daemons); attackers use clients when communicating with handlers – malicious

software packages located in the Internet;
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 Reflector Model – similar to the Agent-Handler, whereas uses additional group

of devices called  reflectors for sending a stream of packets against  a victim;

DDoS attacks using this model are also called DRDoS (Distributed Reflection

Denial of Service) with lower traceability [2],[6],[7],[11];

 Internet  Relay  Chat-Based  Model  – model  that  is  similar  to  Agent-Handler,

whereas the client connects to the agents via IRC (Internet-Relay Chat) commu-

nication channel;

 Web-Based Model – similar to IRC – model, but the communication protocol is

HTTP/HTTPS  based;  the  prevailing  amount  of  agents  are  fully  configured

through PHP scripts.

Mirai  –  one  of  the  most  prevalent  botnet  malware  with  agent-handler  architecture

model;  spreads by infecting such IoT devices as web cameras,  home routers,  DVRs

(Digital  Video Recorders)  and many other  smart  devices  that  run some versions  of

BusyBox – Unix executable software. Vulnerable devices are mainly manufactured by

XiongMai Technology [49]. Mirai launches a DDoS against multiple target servers by

propagating via misconfigured smart devices with default credentials, thus this malware

has been used in the largest botnet attacks  [52]. Mirai is used in perpetrating several

types of DDoS attacks exploiting such protocols as GRE, TCP, UDP, DNS and HTTP.

Gafgyt (also known as BASHLITE) – open-source botnet  malware with lightweight

IRC architecture model, but heavily modified thus Gafgyt botnet architecture becomes

totally non-dependent on IRC servers. Gafgyt botnet attacks are of type SYN, UDP, and

ACK flood [52].

1.2.2 Background on machine learning types

As mentioned in section 1.1, there are two main types of ML:

1. supervised (predictive) learning;

2. unsupervised  (descriptive)  learning  –  sometimes  called  knowledge  discovery

[34].
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There is third less commonly used type of ML called  reinforcement learning  that is

helpful when it is necessary to define behavior of software agents in an environment by

bringing in reward or punishment signals [34].

Depending on the output that needs to be predicted, problems that might be solved  by

supervised learning algorithms are usually divided into the following types:

1. classification –  ML  approach  of  mapping  a  set  of  unlabeled  inputs  (data

instances ) to the categorical output variable called class – corresponding group

membership for the single data instance  [1]; for example, the data set1 used in

this thesis includes samples containing 115 variables (features) with their values,

and each row of the data set file contains the class with its value– benign , Mirai,

and Gafgyt, that are converted to the corresponding numeric value for simplicity

– 0, 1, and 2; solving classification problem means predicting class labels to the

unlabeled data records [34];

2. regression  – predicting the target  value of continuous output variable  that is

real-valued (integer or floating number) [34], for example – weight, price of the

house, etc.

Classification tasks can be of the following types:

1. binary classification – there are two possible classes;

2. multiclass classification – there are more than two possible classes [34].

In the scope of this thesis two types of classification tasks are going to be solved:

1. anomaly  detection  as  a  binary  classification:  there  are  two  target  classes  –

benign  (normal)  and  anomalous  (malicious,  i.e.  compromised  by  Mirai  or

Gafgyt botnet);

2. multi-class  classification:  there  are  three  target  classes  –  benign,  Mirai,  and

Gafgyt.

1https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
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1.2.3 Background on ML models validation

If we would like to evaluate the quality of predictions made by  the algorithm, we will

use separate test set that might be created from the original data set: the most common

approach  is  to  use  80%  of  the  original  data  for  training  purposes  (train  set)  and

remaining 20% as test  set[34].When we are talking about  training a ML model,  we

mean that particular algorithm is trained on the train set. By saying that ML algorithm

makes  predictions, we mean that preliminarily trained ML model attempts to predict

outputs for test set records – in other words, ML model attempts to  classify particular

record (row of the test set) [34].

In case there is a lack of training observations, it might affect the model performance.

One of possible solutions is  cross-validation – randomly splitting the dataset into  K

folds, train a model on each of  K – 1 folds, then test on  Kth  fold  [34]. K-fold cross-

validation  helps  preventing  the  overfitting  of  the  model.  Cross-validation  method is

helpful in assessing the model quality when there is a lack of representative test data. 

Stratified cross-validation is the variant of cross-validation where all K folds are formed

by taking roughly equal proportions of each class, training the model K-1 times on all

splits except the last one (the Kth split), and evaluation the model performance on the

Kth split [34].

There are different metrics used for evaluating the performance of ML models, the most

commonly used ones are provided in the list below.

1. Accuracy score  (classification  accuracy) –  in  binary  and  multi-class

classification this term means the ratio of correctly classified samples in the test

set to total predictions amount; accuracy score often coincides with the Jaccard

index that measures similarity between two set samples (in case of ML – training

and test samples), and alternatively defined as the size of intersection divided by

the size of the union of the sample sets[43] and is calculated according to  the

formula (1):

J ( A ,B)=|A∩B|
|A∪B|

= |A∩B|
|A|+|B|−|A∪B|

(1)
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The  most  common  equation  used  for  calculating  classification  accuracy  as

follows (2):

Accuracy= correct predictions
all predictions

(2)

2. Confusion  matrix   -  visualization  of  the  predicted  and  actual  classification

results in the form of table with size n x n, where n is a number of classes [57].

The confusion matrix represents the way the model is confused when making

predictions  [57]. There are four different values that can be obtained from the

confusion matrix:

◦ TP (True Positive) – correct positive predictions,

◦ FP (False Positive) – incorrest positive predictions,

◦ TN (True Negative) – correct negative predictions,

◦ FN (False Negative) – incorrect negative predictions.

20
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3. Precision  (also called  confidence,  positive predicted value,  or  true positive

accuracy)  –  the  proportion  of  predicted  positive  cases  [45] that  follows  the

equation (3):

Precision= TP
Predicted Positives

= TP
TP+FP

(3)

4. Recall (also called  sensitivity) – TPR (True Positive Rate) that is calculated

according to the formula (4):

TPR=Recall= TP
Real Positives

= TP
TP+FN

(4)

5. PR (False Positive Rate) – also called type I error rate, calculated according to

the equation (5):

FPR= FP
Real Negatives

= FP
FP+TN

(5)

6. ROC (Receiver Operating Characteristic) curve – 2-dimensional plot, where x

axis (independent variable) is the FPR, y axis is the TPR; each point of the ROC

scape represents a pair of the data TP and corresponding FP rates. Perfect result

is achieved  in the point (FPR  = 0, TPR = 1) in case when system is able to

perfectly separate the positive values from the negative ones [60]. The quality of

ROC curve can be evaluated using AUC (the Area Under the Curve) value. The

higher AUC value is, the better model is; the maximum value of AUC is 1 [34].

7. F1-score - harmonic mean of precision and recall that can be found according to

the equation (6):

F1=
2

1
P

+ 1
R

= 2 PR
R+P

(6)

Applied to multiclass-classification, F1 score can be generalized in two ways:

a) macro-averaged F1 that is suitable for distinguishing one class among other

ones when dealing with balanced dataset  [34];  macro-averaged F1 score is

calculated according to the equation (7)  [61]:
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macro−averaged F 1=(∑
j=1

M 2 P j R j

P j+R j
)/M ,

(7)

where:

• M – number of classes,

• j – the individual class that belongs to the M set of classes,

• P – precision,

• R - recall

b) micro-averaged F1 – F1 score that is defined as pooled predictions across

classes [61] and is calculated according to the equation (8):

micro−averaged F 1=∑
j=1

M

μ jθ jj ,
(8)

where:

• M – number of classes,

• j – the individual class that belongs to the M set of classes,

• θij  – the probabilities  that  each of the test  samples  is  classified into different

classes, 

• μ = (μ1, …, μM) – the probabilities that each test record truly belongs to each

class.

1.2.4 Background on outlier and anomaly detection

Outlier  detection is  a  data  mining  task  with  aim  to  uncover  abnormal  knowledge

within all gathered observations related to a particular event [42]. Outlier detection main

goal is to find patterns in data or single data points (instances) that do not fit the ex-

pected normal behavior  [17]. Outlier detection has such application domains as intru-

sion detection in cyber security,  fault  detection in critical  systems and many others.
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Anomalous patterns are referred to as outliers, anomalies, novelties (new observations),

faults, exceptions.

Outlier is a pattern in data that does not fit the normal data pattern. Reason of the out-

lier in the network traffic data that is being discussed in the following paper is botnet

attack [18].

Outlier detection technique is a specific approach chosen for solving the task of detec-

ting the outliers in the certain data [44].

Outlier score is the degree to which the pattern is considered as outlier; outlier score

can be used in several outlier detection techniques [18].

There are two types of anomaly detection:

a) supervised  anomaly  detection –  anomaly  detection  with  classification  app-

roach that requires labeled training set that contains both anomalous an normal

samples,  and  unlabeled  test  set  for  assessing  a  trained  model;  classical  ML

algorithms that are commonly used for training are k-NN, decision trees, and

SVM [44];

b) unsupervised anomaly detection – anomaly detection that is based on assump-

tion that the minority  of the network traffic is  anomalous,  thus unsupervised

technique does not need the training set; the network data is grouped to the nor-

mal records (vast majority of samples) and to the anomalous records that differ

from the prevalent network traffic pattern [44].

1.2.5 Background on network-based anomaly detection

One of the methods for detecting IoT device that is connected to the corporate network

and compromised by a botnet is called autoencoder.  Autoencoder is a neural network

that is trained to reconstruct the input  [32].Autoencoder has a hidden layer  h that de-

scribes used for representing the output. Network of an autoencoder  consists of two

parts: an encoder function h=f(x) and a decoder function for reconstruction r=g(h) (see

Figure 1). Encoder function converts input data into another format, decoder function
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attempts  to  reconstruct  original  format  of the data  by decoding given representation

[32].

The autoencoder with more than one additional hidden layer is called deep autoencoder

[32].  Deep autoencoder as a deep learning technique can be used for finding compro-

mised smart device with the help of network traffic data analysis taking into account be-

nign, i.e. normal network traffic data pattern [59]. Deep autoencoder is trained to recon-

struct network traffic pattern [59], [58]. Previously trained on normal IoT network be-

havioural traffic, deep autoencoder captures observed snapshot, attempts to compress

and to reconstruct it. Failure in observed snapshot reconstruction indicates that IoT net-

work traffic of the particular device is anomalous.

Anomaly detection method proposed by [58] consists of the following steps and are de-

scribed further:

 data collection (normal and malicious network traffic data collection);

 features extraction;

 training an anomaly detector;

 continuous monitoring of the model
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Step 1. Data collection

The typical normal behavior and botnet attacks were simulated by [58] in lab for col-

lecting raw network traffic data on nine IoT devices in the most recent five time win-

dows – 100 ms, 500 ms, 1.5 sec, and 1 min. The data was collected by port mirroring.

For guaranteeing that the data is pure and contains no anomalous contamination, normal

traffic of each smart device was collected immediately after installation in the deployed

network. The data set created by [58] contains 502,605 normal, 2,835,371 BASHLITE,

and 2,935,131 Mirai records.

Step 2. Features extraction

115 traffic statistics features were extracted over five time windows by taking a snap-

shot after receiving each packet from particular host [58].

Each smart IoT device data set has 115 features related to the stream aggregation, such

as:

 the statistics extracted from the packet stream,

 the statistics summarizing channel jitter,

 time-frame  indicating how relevant the observation is,

 the statistics summarizing the recent traffic from the packet’s source IP, source

MAC-IP, socket, and from source IP to the destination host IP address.

Step 3. Training an anomaly detector

The autoencoder is trained on normal behaviour instances for further recompression of

its inputs – in case the recompression fails, it indicates that the input data is malicious as

it contains abnormal observations compared to the benign ones [58].

Step 4. Continuous monitoring of the model

The  optimized  model  was  applied  to  features  vectors  extracted  from  packets  for

labelling each instance as benign (normal) or anomalous (malicious).  Then observed

packets instances sequence was marked as normal or malicious, thus it is possible to use
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model  for  deciding  whether  the  particular  IoT  device  connected  to  the  network  is

sending malicious data stream or not [58].

1.3 Problem statement

1.3.1 Motivation

According to the study [38], the number of deployed IoT (Internet of Things) devices

dramatically increases worldwide. Interest towards IoT devices has led to the increase

of vulnerabilities  rate  and occurrence of huge botnet attacks.  Botnet  is  the group of

different compromised Internet-connected smart devices where each of these devices is

running special software called  bot.  The bot helps the outside attacker to keep comp-

romised devices (hosts) under the remote control. Due to exposing IoT devices environ-

ment infrastructure, such malwares as the Mirai, BASHLITE, their variants and many

other malware types are able to infect smart devices and launch distributed denial-of-

service (DDoS) attacks [15].

According to recent studies, ML and deep learning approaches have demonstrated high

prediction accuracies in classifying network traffic data as benign or malicious  [30],

[54]. Although nowadays there is a lack of solutions that are adopted to the bigger IoT

environments, such as corporate networks, device-based network traffic anomaly detec-

tion using ML approach is a promising field  due to  its capability of learning complex

network traffic patterns and detecting anomalies. Challenges of ML based botnet attacks

detection that need solving are scalability to the bigger size of network traffic, reducing

computational  power  consumption,  encompassing  various  attack  types,  multi-class

classifying traffic aggregation as benign or malicious, achieving ML model outcomes

high interpretability by simplifying the fitted model in order to avoid further invest-

ments when deploying anomaly detection model in real IoT operational environments.

One  of  recent  studies  [54] was  dedicated  to  comparing  deep  learning  and  ML  al-

horithms performances after selecting 2, 3, and 10 best features based on Fisher score

ranking (filter method), and the results have demonstrated that it is possible to achieve

even  better  performance  with  applying  feature  selection  methods  combined  with
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classical  ML algorithms  and  without  applying  deep  learning  models  that  are  more

complex for deployment in the future.

Present thesis is a part of research series related to botnet attacks detection based on

network traffic pattern analysis [58],[54]. The main focus of this thesis compared to the

previous studies is boosting classical ML models performances using different feature

selection algorithms.

1.3.2 Focus of the thesis

The main goals of  this thesis are as follows:

• analyze network traffic behavioural patterns and select the most relevant features

to reduce dimensionality,  boost the performance of classifiers and anomaly de-

tection algorithms, and achieve higher interpretability of the results;

• compare classical ML models performances in ability to classify network data as

benign (normal), Mirai, or BASHLITE botnet attack; classifiers that are going to

be  compared  are  random  forest,  extra  trees  classifier,  and  k-NN  (k-nearest

neighbors);

• compare the results achieved by supervised ML approach combined with diffe-

rent features selection algorithms with the results achieved by unsupervised lear-

ning  approach,  evaluate  chosen  models  quality  using  precision  and  recall

metrics adjusted to multi-class classification [34], and interpret predictions using

LIME (Local Interpretable Model-Agnostic Explanations) technique [8];

• novelty of the ML model should be achieved by at least one of the factors listed

below:

- spending less computational resources while training the model on large da-

tasets;

- reduce dimensionality and achieve better results interpretability by extracting

the most relevant features  [34]; total amount of features is 115, whereas it is

necessary to select not more than 10 features by reducing redundant attributes in
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order to spend less computational resources while training the models in the fu-

ture when anomaly detection system will be adopted to the bigger environments,

get the higher prediction accuracy compared to predicting accuracy on the whole

data set (or at least nearly the same in case of high accuracy for training on the

whole  dataset  containing  all  features;  agreed  expectation  for  predictions

accuracy is at least 0.90).

1.3.3 Methodology

Dataset consists of nine different IoT devices network traffic data files – each IoT de-

vice has dataset file containing benign, i.e. normal network traffic data, and dataset files

containing malicious traffic data related to the most common botnet attacks – Mirai and

Gafgyt (also known as BASHLITE) malware families  [58],[59].  Real network traffic

data was collected by infecting nine commercial smart applications related to different

kinds of devices, such as doorbell, security cameras, and thermostats.

The data set created by [58] provides opportunity to model multiclass classificator – be-

sides classifying a sample as benign, Mirai, or Gafgyt, it is possibly to detect more spe-

cific attack. There are 10 types of botnet attacks that can be detected using network traf-

fic data:

 Gafgyt attacks – scanning the network for device vulnerabilities, sending spam

data, UDP and TCP flooding, sending spam data to a particular IP address;

 Mirai attacks – automatic device vulnerabilities scanning, Ack, Syn,  and UDP

flooding, UDP flooding optimized for higher packets delivery rate [58].

Labeled training and test datasets will be combined from initial datasets related to be-

nign, Mirai, and Gafgyt using the following approaches:

• train / test split – splitting the dataset to train (80%) and test (20%) subsets using

random permutation;  train  split  is  further  used  for  features  selection  models

training, while the test split will be used for final assessment of the models qual-

ity;
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• stratified k-fold with 3 folds  (k=3) on the train set used for evaluating perfor-

mance of ML algorithms on different features subsets when constructing feature

selection models, 2 folds are used as training set, third one used as validation

fold for choosing candidate subset of attributes;

• stratified k-fold with 3 folds on the test set - 2 folds taken from the test set will

be used as the train set, and the 3th fold will be used for final evaluation of the

models quality based on cross-validation accuracy

Features selection applied to supervised learning (3-class classification) will be done

based on the following techniques and their combinations:

• filter method using Pearson’s linear correlation coefficient and Fisher score that

expresses feature discriminatory power;

• wrapper  method  –  features  extraction  using  greedy  sequantial  forward  and

greedy sequential backward features elimination algorithms;

• hybrid method – combination of filter and wrapper methods for selecting opti-

mal features subsets;

• ensemble method – combination of all previous models outputs (found subsets

of features).

Multiclass classification problem will be solved using classical ML algorithms, such as

random forest, extra trees classifier, and k-NN (k-nearest neighbors).

Unsupervised anomaly detection will be done using LOF (Local Outlier Factor).

Feature  selection  models  performance  will  be  evaluated  using  precision  and recall

metrics:  precision  is  a  fraction  of  relevant  instances  among the  retrieved  instances,

recall is the fraction of relevant instances among total amout of relevant instances. The

classification outcomes may be further interpreted as true positive, true negative, false

positive, and false negative. Precision-recall approach is suitable for current task due to

a large skewness in class distribution of dataset  [21]. Moreover, it is crucial to assess

trustworthiness of results when reducing dataset and thus lowen the risk of  classifiers to

be confused in distinguishing one class from other ones.
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1.4 Related work

High dimensional data consists of attributes that can be irrelevant or containing the sim-

ilar information that other attributes already have, which leads to problems in making

trustworthy predictions. When training the model on data set for classification or anom-

aly detection purposes, it is essential to take into account dimension of data (features

amount) for gaining the efficiency in training the model, boosting the classifier or out-

lier detector performance, and correctly interpreting results. FSA (Feature Selection Al-

gorithm) is a model for selecting attributes based on their relevance [16]. Related stud-

ies [24] have shown that traditional detection techniques often fail on the multi-dimen-

sional data due to the curse of dimensionality, thus it leads to the question: how to select

optimal set of the most relevant features and choose the most appropriate FSA when

solving classification and anomaly detection tasks in case of high-dimensional data?

The majority of studies have shown that the most of anomaly detection systems are

based on particular ML methods for distinguishing between a normal and anomalous

patterns of observed traffic [35]. Although these methods vary in subsets of extracted at-

tributes, they are still based on the same concept of using particular criteria for finding

dissimilarities between normal and anomalous patterns [47]. In most cases it is difficult

to select optimal and at the same time trustworthy set of relevant features for improving

performance of ML model in solving anomaly detection task.

FSAs can be characterized as follows [41]:

1. by search organization (exponential, sequential, random);

2. by features generation (forward, backward, compound, weighting, random);

3. by evaluation measure (divergence, accuracy, consistency, information, depen-

dence, distance metric).

One of possible solutions is to have a learning algorithm itself for selecting relevant fea-

tures automatically [35]. The problem of automatic features selection has been studied

in the context of classification problem (assigning correct label to the particular obser-

vation of possible 2, 3, or more labels) by [1], [27], [28], and [29]. However, the classi-

fication setup is hardly appropriate for selecting features in anomaly detection problem.
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When dealing with anomaly detection, we are dealing with one-class-classification, kind

of anomaly detection using SVDD (Support Vector Data Description) when only single

feature mapping is given [20]. The solution proposed by [35] offers extended version of

SVDD when several feature mappings are given, and the objective is to learn a linear

combination of  attributes mappings from a particular subset.

Other studies have demonstrated that a lot of effort have been performed for features se-

lection and extraction using mRmR (Minimal Redundancy and Maximal Relevance),

RELIEF, CMIM (Conditional Mutual Information Maximization), Correlation Coeffi-

cient, BW-ratio (Between-Within Ratio), INTERACT,  GA (Genetic Algorithm), SVM-

RFE (Recursive Feature Elimination), PCA (Principal Component Analysis), Non-Lin-

ear Principal Component Analysis, Independent Component Analysis, and Correlation

based feature selection [41]. L. Ladha et al [37] have presented an empirical comparison

of different feature selection algorithms.

PCA is a non-parametric method that is used for transofrming the data by reducing the

dimensional space and constructing the features that better represent the pattern and the

observed variability  in data  [53].  PCA techniques  fit  better  for approaches that  are

noise-tolerate when the data has a linear correlation [41]. 

CMIM selects featu0res subset based on the maximum relevance to the target class, thus

applying CMIM is relevant when having both the features values and binary classes

[41].  Correlation  Coefficient  method  evaluates  how  well  an  individual  feature  inf-

luences the classes separation [41]. BW-ratio uses the ratio of between group to within

group sums of squares for each feature, and allows to select the feature wih the maxi-

mum value of BW-ratio [41].

INTERACT methods take into account feature interaction with measurement of con-

sistency contribution [41].

Genetic  algorithm is  a  randomized approach that  contains  particular  class  of  evolu-

tionary algorithms and inspired by evolutionary biology (inheritance, mutation, selec-

tiong,  crossingover,  etc.).  This  approach is  suitable  for  features  selection  in  pattern

recognition, combinatorial optimization, and neural networks application [48].
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SVM-RFE is a wrapper method performing backward elimination; applied in microar-

ray gene expressions [33].

The mRmR method uses mutual information (MI) of two randomly selected features.

MI is the quantity that measures the mutual dependency of two features [41].
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2 Implementation

2.1 Implementation overview

Implementation consists of several stages that are listed below:

1) Data pre-processing for supervised classification

1) Input dataset description

2) Data cleaning:

• cleaning original dataset from duplicated records

• resolving class imbalance problem

• undersampling

• data standardization

2) Data pre-processing for unsupervised anomaly detection

◦ sample preparation

3)  Feature selection

a) Filter models:

• Fisher score

• Pearson’s linear correlation coefficient

b) Wrapper models:
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• forward feature selection

• backward feature selection

c) Hybrid models:

• combination of wrapper models and filter models

d) Ensemble models:

• intersection of optimal subsets found by wrapper models with 20 best

features from Fisher score ranking;

• intersection of optimal subsets found by wrapper models with  features

that  have  remained  after  applying  data  reduction  method  based  on

Pearson’s linear correlation.

4) Classifiers training for supervised learning

a) Methodology overview:

• classifier algorithms

• classifiers training process

• results validation

5) Anomaly detection algorithms training for unsupervised learning

a) Methodology overview:

• anomaly detection algorithms

• algorithm training process

• results validation
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6) Supervised learning based feature selection results analysis

7) Unsupervised learning based feature selection results analysis

8) Results interpretation using LIME technique [8]

Data cleaning phase of data pre-processing stage includes solving the class imbalance

problem by removing duplicated  records  per each existing class,  taking roughly the

same amount of samples per each of three classes (benign, Mirai,  and Gafgyt)  with

under-sampling, and then randomly undersampling the whole subsample by taking the

30% of  the  balanced  random subsample.  Data  pre-processing  is  necessary  because

original  subset  is  extremely  skewed towards anomalous data,  especially  Mirai class.

Class imbalance may lead to the unwanted peformance of ML models – this can appear

as trained ML model tendence to be confused when classifying one or more classes and

tend to predict accurately only particular class(es).

The  randomly  formed  balanced  subsample  is  then  standardized  based  on  IQR

(Interquartile  Range)  robust  scaling  measure  for  supervised  learning part.  IQR is  a

measure of statistical dispersion that is equal to the difference between the upper and

lower quartiles [56]. Data standardization step is essential, because some classifiers that

are going to be used as training models in feature selection stage are very sensitive to

the data pattern, thus fitting the unscaled data may lead to the overfitting or underfitting

performance. Moreover, as the dataset chosen for the current research contains normal

and anomalous network traffic data, it is significant to select the scaling approach that is

robust to anomalous data. According to the study [55], robust scaling with IQR measure

is suitable for normalizing the data that contains outliers and extreme values.

Test set for unsupervised learning will be prepared from normalized balanced subset

that already contains all three classes. Training set for unsupervised anomaly detection

will be prepared using undersampling technique and further normalized with IQR robust

scaling from all benign records that were generated from the original dataset.

From the supervised learning perspective, the standardized subsample is later used for

creating 2 separate sets: one for training the feature selection models, another one for
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final assessment of trained models quality. Splitting the subsample to two separate sets

is necessary for evaluating performance of trained ML models on the previously unseen

data.

After  pre-processing the initial  dataset, training set will be used for training the ML

models that will be able to select the optimal sets of not more than 10 features amongst

115 attributes. Feature selection is essential for boosting the ML models performance

and avoid misleading results. The motivation for reducing set of attributes is based on

the following factors:

• preventing the model overfitting – the situation when the parameters learned on

a training sample are  not reflective  and contain noise  [12];  high-dimensional

data that contains a lot of features leads to the model overfitting, thus effectively

reducing amount of features in the training phase reduces the model complexity

and leads to more accurate and trustworthy results in the final validation phase

[12];

• create  more  simple  model  that  is  easier  to  interpret  –  this  factor  is  crucial

especially when dealing with features that are linearly correlated to each other;

even when the trained model gives good accuracy results, it is crucial to interpret

the results by evaluating their trustworthiness [8];

• computational efficiency – training the model on the set with less features takes

less time.

First  step  is  applying  two  filter  methods  on  the  normalized  sample  in  parallel  for

comparison:

1) removing redundant features based on Pearson’s linear correlation coefficient

value;

2) keeping only 20 attributes amongst 115 ones based on Fisher scoring rank.

Elimination of all features that are linearly correlated according to Pearson’s correlation

coefficient  value and  keep only those features  that  are  significant  are  necessary for
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reducing the data sparsity  [22]. The linear correlation is a similarity measure between

two random features  [22]. For example, if one random feature is linearly correlated to

another one, it already contains enough information about another one, thus it will be

enough to provide the ML algorithm the set without redundant features, because the

features existing in the reduced set  already include the knowledge about the eliminated

ones [22].

Fisher  scoring  method  is  designed  for  selecting  the  features  with  the  highest

discriminatory  power.  Fisher  score  is  defined  as  the  ratio  of  the  average  interclass

separation  to  the  average  intraclass  separation.  Larger  values  indicate  higher

discriminatory power of numeric attributes [18].

After that, wrapper models will be trained in parallel on:

1) train split that contains all features,

2) train split after applying filter method based on Pearson’s coefficient,

3) train split after applying filter method based on Fisher scoring.

 Wrapper model goal is to find the subset of the most discriminative features by running

classification algorithm in iterative way by forward addition and backward subtraction

of features using classification accuracy or another measure as internal cluster validity

criterion [18].

Hybrid method is a combination of wrapper and filter methods  [18]: first step will be

selecting the most suitable features set based on filter methods and then apply wrapper

method to the filtered subset.

When the most optimal subsets of features are selected, classifiers are  further trained

and cross-validated on the separate test split on the selected features only and on all 115

attributes  for  comparison.  Training  data  contains  samples  for  all  of  three  classes  –

benign, Mirai, and Gafgyt.

Anomaly detection algorithm used in solving unsupervised binary classification task is
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preliminarily fitted on data without anomalous contamination and cross-validated on the

sample with instances belonging to three classes. Unsupervised learning based wrapper

feature selection will be done on the data that contains benign samples only – this is the

main  difference  compared  with  supervised  approach;  final  assessment  of  selected

features  subset  generated  by  unsupervised  wrapper  model  will  be  performed  using

classical ML models on a separate test set by cross-validation.

The  final  stage  is  results  interpretation.  LIME  technique  [8] will  be  applied  in

predictions  explanation  for  evaluating  importance  values  of  all  115  features  and

comparing  attributes  subsets  generated  by  FSAs  with  the  most  important  attributes

based on LIME ranking.  Evaluation  of prediction results  trustworthiness  is  essential

stage before making a decision whether to deploy particular model in the future or not.

2.2 Tools and technologies

All research stages were done using Python 3.7 programming language due to the wide

choice  of  open-source  libraries  that  were  implemented  for  solving  ML  tasks.  All

experiments were done using the PyCharm IDE1. The following open-source libraries

were used:

• NumPy2, pandas3– data manipulating

• Scikit-learn4 – data analysis, dimensionality reduction, features selection, cross-

validation, classification, accuracy evaluation metrics, exceptions handling

• Scikit-feature5 – Fisher score calculation

1https://www.jetbrains.com/pycharm/

2https://www.numpy.org/

3https://pandas.pydata.org/

4http://scikit-learn.org/

5http://featureselection.asu.edu/
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• matplotlib1, Seaborn2, graphviz3 – data visualization

• logging4 – generating log files

• LIME library5 – predictions trustworthiness interpretation

• Mlxtend6 – plots drawing.

1https://matplotlib.org/

2https://seaborn.pydata.org/

3https://www.graphviz.org/

4https://docs.python.org/3/library/logging.html#module-logging

5https://github.com/marcotcr/lime

6http://rasbt.github.io/mlxtend/
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3 Data pre-processing for supervised classification based 

and filter FSAs

3.1 Input dataset description

3.1.1 Original data set

Original input data set mentioned in sections 1.2.5 and 1.2.6 is a group of files that

contain network traffic data collected from nine IoT devices.

Class Samples amount Ratio of records to the total, %

Benign 555 932 ~10.6

Mirai 3 668 402 ~69.8

Gafgyt 1 032 056 ~19.6

Total 5 256 390 100

Table 1: Original dataset overview

Sample was extracted from the initial group of sub-datasets. The original dataset was

created for separate devices and for additional types of attacks, the data had no labels

and was stored in different subfolders to keep benign, Mirai, and Gafgyt attack data

separately for each devce, thus numerical values were added as class labels to all the

files in sub-datasets (also see the Table 2):

• benign class – 0,

• Mirai class – 1,

• Gafgyt class – 2.
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HpHp_L0.01_radius HpHp_L0.01_covariance HpHp_L0.01_pcc Class

268.709047342919 -0.292602111483136 -0.012345266908117 0

0.000000002270098775 0 0 1

0 0 0 2

Table 2: Sample dataset with class labels to represent the dataset structure

3.2 Data cleaning

3.2.1 Class imbalance problem

As it  may be seen in the  Table 1, Mirai records are prevailing from the first  sight.

However, after observing the data, it is seen that there are duplicated records for Mirai

and Gafgyt classes.

In order to avoid models overfitting, first of all  it is necessary to clean data from the

duplicated samples that may become a noise for training the ML models.

As  classification  and anomaly  detection  algorithms  used in  this  thesis  are  accuracy

driven, it is necessary to resolve class imbalance problem in order to avoid misleading

predictions  [23] and avoid models overfitting on the training sets. Class imbalance in

the  set  may  lead  to  one  or  more  classes  misclassification,  thus  the  model  may  be

confused in predicting one or more classes and tend to classify single class [9].

Class imbalance problem was solved in the steps described below.

Step 1.  Original raw dataset was separated to 3 groups – benign, Mirai, and Gafgyt.

While creating 3 samples, duplicates were removed from each separate file. After that,

the data was stell skewed towards anomalous data.

Step  2.  In  order  to  resolve  class  imbalance  problem,  it  is  necessary  to  follow the

undersampling  technique called RUS (Random Majority Undersampling), i.e. proceed

the  random  underrepresentation  of  particular  classes  to  make  the  dataset  roughly

balanced with respect to the minority class [55].
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The undersampling should be done for majority classes in regard to the minority class

according to the formula (9):

Majority class fraction=1−majority class samples−minority class samples
majority class samples

(9)

At this step, majority classes are Mirai and Gafgyt, so the fractions were calculated in

respect with benign records amount (see Figure 3).
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Class Unique samples amount Fraction to keep, %

Benign 502596 ~4.4

Mirai 544326 ~4.1

Gafgyt 22233 100

Table 3: Dataset overview after removing duplicated records

Step  3.  After  applying  RUS  technique  in  the  step  2,  Mirai,  benign,  and  Gafgyt

subsamples were checked again for the duplicated records. After removing duplicates,

the cleaned dataset is now skewed towards benign and Mirai data, while Gafgyt class is

insufficiently represented (see  Table 3). Majority classes (benign and Mirai) are now

undersampled again following the same equation that was used for RUS technique in

the previous stage.

3.2.2 Sample preparation

Sample used for standardization, training, and final assessment of ML models quality

was done by randomly extracting 30% of the balanced dataset described in the section

3.2.1.

Balanced subsample will be used as an input in all the following stages:

• standardization,

• the most relevant  features subsets selection using wrapper,  filter,  hybrid,  and

ensemle methods;

• validation of trained classification models on the separate test split;

• validation of features subset generated by wrapper model  based on unsuper-

vised anomaly detection.
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3.2.3 Data standardization

Before applying feature selection techniques, it is important to take into account the data

pattern and classifiers sensitivity towards extreme values of the data.

As the dataset chosen for current research is a network traffic data that contains both

normal and anomalous behavior patterns, it is crucial to select such a normalization ap-

proach that is robust to the outliers.

Balanced subsample is scaled with IQR, that is also called the midspread or middle 50%

- a measure of statistical dispersion that is calculated according to the equation (10):

IQR=Q3−Q1 , (10)

where Q1 – first quartile, Q3 – third quartile [56]. 

IQR is applied as a robust measure of scale – statistics measure that is optimal scaling

approach for the data that has distribution differing from normal and at the same time

has outliers1.

The RobustScaler1 algorithm of the Scikit-learn library with default parameters was ap-

plied to the balanced subsample.

As it may be  noticed in the  Figure 4, classes distribution for two features that are the

most  important  according  to  Fisher  score  values  (H_L0.01_weight  and

MI_dir_L0.01_weight, will be discussed in section 5) in the balanced subsample is ex-

tremely skewed towards Mirai class, whereas benign class seems to be missing for the

pair of this features.

After applying IQR scaling, the data pattern looks different:  Mirai class is now less

skewed, while the benign class records values are performing here as outliers and have

left unscaled.

For comparison, the StandardScaler algorithm of  the Scikit-learn library was applied to

the same pair of features in the same balanced subsample to compare classes distribu-

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
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tion after normalization. As it is seen, classes distribution is still skewed towards Mirai,

but this time the benign class distribution is ignored as an outlier. The StandardScaler1

scales the attributes according to the equation (11):

z= x−u
s

,
(11)

where u is the mean value of data samples, and s is the standard deviation of samples.

As the feature selection leads to the data reduction, it is crucial to get the scaled data

with keeping the outliers unscaled. For this reason, the robust scaling approach has been

chosen.

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Figure 4: Classes distribution before and after applying standardization



4 Data pre-processing for unsupervised anomaly detection

When  solving  unsupervised  anomaly  detection  as  binary  classification  problem,

anomaly detection  algorithm attempts  to  classify sample as  normal or  benign after

preliminarily being fitted on the data containing normal data only. Anomaly algorithms

will be fitted on the data containing no contamination (benign records only) that was

generated using undersampling approach from all benign samples existing in original

dataset. Benign sample is extracted as a random 80% - fraction from all unique benign

samples, and further standardized using IQR robust scaling.

After fitting benign data to the anomaly detection algorithms, it is necessary to fit test

sample that contains both normal and anomalous data. Test data was extracted from the

balanced dataset already mentioned in the section  3.2.2 that contains all three classes.

After  applying  random undersampling  and  taking  2,4% fraction  from the  balanced

dataset, IQR robust  scaling was applied. Class labels for records belonging to benign

group  (inliers)  were  changed  to  label  ’1’,  while  class  labels  for  Mirai  and  Gafgyt

families were renamed to ’-1’ (outliers). Benign and test samples ratios are roughly 80%

and 20% accordingly.
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Figure 5: Samples preparation flow for unsupervised
anomaly detection



5 Feature selection

5.1 Filter model

As  proposed  by  John  and  Kohavi  in  1997,  there  are  two  basic  feature  selection

approaches – wrapper (described further in section 5.2) and filter method. Filter method

is variable ranking based on specific criteria [36].

Threshold method was applied in the scope of this thesis for both filters – Fisher score

and Pearson coefficient rankers. Applying threshold will be done in the following ways

(see the Figure 6):

1) form the subset of features with dropping out attributes that are irrelevant (filter

based on Pearson’s coefficient) and later use this subset for hybrid and ensemble

selection;

2) form the subset with fixed size of 20 attributes based on Fisher score rank and

use this subset in wrapper method forming the hybrid; running wrapper models

on the reduced datasets is for taking advantage of lowering the greedy wrapper

selection algorithms complexity;

3) form the subset of 10 best features from Fisher score ranking and use as input in

ensemle feature selection – find the intersection between this subset and hybrid

models output subsets;

4) form the subset based on Fisher score ranking with keeping only those features

that have score value greater or equal than 1, evaluate performance and compare

with other filter,  hybrid,  and ensemble models outputs at  the final validation

stage on the disjoint test set.
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5.1.1 Removing features based on Pearson’s coefficient

One of the essential phases in data pre-processing is removing features that are related

to each other. Current approach proposes the filter method based on Pearson’s linear

correlation coefficient.

The Pearson’s linear correlation coefficient measures the strength of linear association

between features [50]. The bigger linear correlation value is, the more similar values of

adjacent features are [18]. In other words, linear correlation coefficient value expresses

the features relationship strength. 

The Pearson’s linear correlation coefficient is calculated according to the equation (12):

ρ= E [ X⋅Y ]−E [X ]⋅E [Y ]
σ (X )⋅σ (Y )

,
(12)
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Figure 6: Filter models workflow



where:

X, Y – randomly selected variables (features), 

E [ X ] - the expectation of X,

σ ( X) - the standard deviation of X [18].

If  supp(i) and  supp(j) are the relative supports of individual  items,  supp({i,j}) –  the

relative support of the itemset {i,j}, then the overall correlation for the whole dataset is

calculated according to the formula (13) [18]:

ρ i , j=
supp ({i , j})−supp(i)⋅supp( j)

√supp (i)⋅supp ( j)⋅(1−supp(i))⋅(1−supp ( j))

(13)

Pearson’s linear correlation coefficient value always lies in range [-1,1], so there are the

following boundary values with interpretations:

• if coefficient value is  -1 (strongly negative) between two variables, it indicates

that variables linear relationship is perfectly negative, i.e. features are absolutely

not related to each other;

• if coefficient value is 0, it indicates that there is no linear relationship between

variables X and Y, however, it  does  not yet mean that features X and Y are

independent [34]

• if coefficient value is  1 (strongly positive), it indicates that linear relationship

between  such  variables  is  perfectly  positive;  as  an  example,  Pearson’s

coefficient value for a feature itself (i.e. between variables X and X, or Y and Y)

is 1.

Linear  correlation  of  115  features  of  the  dataset is calculated  based  on  Pearson

coefficient  of  correlation  between  a  pair  of  features.  Optimal  features  subset  will

contain only those attributes that have linear correlation value in range [0, 0.8] – such

features will have no strongly positive nor strongly negative relationship.
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5.1.2 Selecting features based on Fisher score ranking

Fisher score is a measure of the features discriminatory power – the higher the score is,

the greated discriminatory power of particular feature is.

Fisher score is  defined as the ratio of the interclass separation to intraclass separation

[18] and calculated according to the formula (14):

F=
∑
j=1

k

ρ j(μ j−μ)2

∑
j=1

k

ρ jσ j
2

,

(14)

where:

• ρj  - fraction of data points belonging to class j,

• μj  – the mean deviation of data points belonging to class j,

• σj -  the standard deviation of data points belonging to class j.

Alternatively,  Fisher score can be derived from the Laplacian score according to the

equation (15):

Fr=
1
L
−1 ,

(15)

where Fr is the Fisher score of the r-th feature.

Laplacian score is based on Laplacian Eigenmaps and Locality Preserving Projection.

Calculation algorithm is based on the assumption that the dataset can be represented as a

weighted graph with edges connected to the nearby points. Laplacian score evaluates

features according to their locality preserving power [31] and is calculated according to

the formula (16):
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Lr=
∑

ij

(f ri−f rj)
2 Sij

Var (f r)
,

(16)

where:

• fri - the i-th sample of the r-th feature,

• Sij – similarity between the i-th and j-th nodes in weighted graph,

• Var(fr) – estimated variance of the r-th feature.

Fisher score can be used as a filter method for keeping attributes with the higher values.

5.2 Wrapper models

5.2.1 Wrapper model approach

Wrapper model is a feature subset selection model that „uses the performance of the

learning algorithm as heuristics” [14] when comparing set of models.

Learning  algorithms  used  for  the  wrapper  models  in  this  thesis  are  classification

algorithms. Chosen algorithms and their parameters will be discussed in chapter  6 of

this thesis.

Current  solution  proposes  cross-validating  learning  algorithms  based  on  macro-

averaged F1 score heuristic. This approach can also be called cross-validation based as

proposed  in  [51],  but  the  difference  in  current  solution  is  that  heuristic  chosen  for

evaluating  a  candidate  subset  of  attributes  is  the  average  of  all  macro-averaged  F1

scores  calculated  on  k  –  1  iterations  instead  of  cross-validation  accuracy.  Cross-

validation  average accuracy will be calculated in the final assessment stage when all

optimal feature subsets will be evaluated on a separate  disjoint  test set by the same

classification  algorithms that  were used in wrapper  models  for  lowering the risk of

overfitting ML models on reduced and previously unseen data.
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Sequential  forward  and  backward  feature  selection  algorithms  implemented  for  this

thesis are extending open-source project authored by S. Shinde1 (current implementation

of sequential  forward and sequential  backward feature selection is adapted from the

code implemented by S. Shinde,  see examples of adapted methods code in  Figure 26,

Figure 27, and Figure 28).

5.2.2 Sequential forward feature selection

Forward feature selection  is  greedy search algorithm that  starts  with empty features

subset,  adds  new feature  to  the  optimal  subset  at  each  of  the iterations  in  case the

candidate feature leads to the maximum accuracy or another heuristic [51].

Current solution is sequential forward feature selection with maximum allowed number

of elements  in  optimal  features  subset is  5,  each candidate  subset  is  cross-validated

based on the macro-averaged F1 score (see Figure 7 A)).

Implemented greedy sequential forward selection algorithm:

1) create empty set of features, best macro-averaged F1 score = 0;

2) split the input dataset based on stratified k-fold to 3 folds: 2 folds are used for

training, third one for calculating the average of macro-averaged F1 scores got

on 2 splits;

3) add  the most promising feature from the input dataset  until the threshold of 5

features is reached, recalculate F1 score, best F1 score = temporary F1 score;

4) go to 3.

5.2.3 Sequential backward feature selection

Sequential  backward  feature selection  (sequential  backward feature elimination) is  a

feature  selection  algorithm that  is  similar  to  the  forward  feature  selection  with  the

1https://github.com/sachin1092/Feature-Selection
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difference that in the first iteration candidate subset contains all the features and then at

each iteration the less promising features are eliminated [27].

Current implementation proposes the sequential backward elimination with maximum

allowed number of features 5  (the same threshold as in sequential forward selection),

estimation criteria is the same as in sequential forward feature selection –  average of

macro-averaged F1 cross-validation scores (see Figure 7 B)).

Implemented greedy sequential backward feature elimination algorithm:

1) create set of all input dataset attributes, best macro-averaged F1 score = 0;

2) split the input dataset based on stratified k-fold to 3 folds: 2 folds are used for

training, third one for calculating the average of macro-averaged F1 scores got

on 2 splits;

3) eliminate less promising feature from the input dataset based on recalculated F1

score until the threshold of 5 features is reached, best F1 score = temporary F1

score;

4) go to 3.
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Figure 7: Wrapper feature selection algorithms



5.3 Hybrid models

Hybrid model is combination of wrapper and filter models for gaining better ML model

performance [18]. Applying classification algorithms combined with filter models based

on Fisher score ranking and filtering based on Pearson’s coefficient values range, hybrid

model consists of two phases:

1. selecting candidate subset according to filter model,

2. evaluating candidate features subset with learning algorithm using  the average

macro-averaged F1 score as heuristic.

Proposed solution for applying hybrid method in this thesis is combination of wrapper

methods  (greedy forward  and  backward  features  subsets  selection)  and  the  reduced

subsets based on filter methods (see the Figure 8).
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Figure 8: Classifiers training procedure for hybrid feature selection



5.4 Ensemble models

Ensemble  feature  selection  model  is  combining  the  outputs  (optimal  subsets  of

attributes) found by several feature selection models. Ensemble approach developed in

the  scope  of  current  research  includes  finding  the  intersections  of  optimal  feature

subsets that are previously found by filter, wrapper, and hybrid models.
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Figure 9: Ensemble models workflow



The whole workflow of getting feature subsets intersections is shown in the Figure 9.

Procedure of finding features subsets using ensemble model consists of the following

steps:

1) reduce  the  same  features  selection  set  to 20  features  based  on  Fisher  score

ranking;

2) run greedy forward and backward feature selection with threshold of 5 features

on  set  using  cross-validation  based  approach  using  each  of  3 classifiers

(combination of filter and wrapper approach – 2 hybrid models);

3) outputs that were produced by 2 hybrid models trained in the previous step are 3

subsets x 2 hybrid models = 6 optimal subsets;

4) extract  10 best  features  based  on  Fisher  score  rank  from the  same features

selection sample;

5) for each subset described in step 3 find the elements that are in common with

features found in the subset generated at step 4; as a result, there will be 6 or less

intersections.

58



6 Classifiers training for supervised learning

6.1 Methodology

After the data pre-processing phase, running feature selection models with classifiers as

learning  algorithms  for  solving  supervised  classification  problem  will  be  done  in

parallel on one balanced subsample in three ways:

a)  whole balanced subsample that contains all 115 features,

b) reduced balanced subsample that contains only  18  features that have remained

according to the Pearson’s linear coefficient threshold,

c) reduced balanced subsample that contains only 20 best features based on Fisher

scoring rank.

Balanced subsample contains records for all three classes, thus the problem to be solved

as a part of feature selection models is supervised multi-class classification.

Classifiers are going to be trained on the 80% split extracted from the balanced dataset.

Each model selection method has its own specific training procedure.

6.1.1 Classifier algorithms

Three-class  supervised  classification  performance  of  the  following  classical  ML

algorithms is going to be boosted by applying several feature selection methods..

1. Random forest – tree-based ensemble method that constructs each decision tree

using  a  separate  bootstrap  sample,  grows  unpruned  tree,  randomly  samples

subset of the predictors, choses the best split, and makes prediction about new

data  based  on  the  aggregation  of  the  estimators  predictions  [39].
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RandomForestClassifier of  the  Scikit-learn  library  was  used  for  current

implementation with 50 estimators, maximum depth of value 5 for lowering the

risk of overfitting.

2. Extremely  randomized  trees –  tree-based  ensemble  method  that  randomizes

„attribute and cut-point while splitting tree node” [25]; main advantages of this

algorithm are accuracy and computational efficiency. The Extra-Trees algorithm

builds ensemble of unpruned decision trees and, compared with other tree-based

algorithms, uses the whole learning sample instead of the bootstrap for building

the tree in order to minimize the bias.  ExtraTreesClassifier  of the Scikit-learn

library was used for current implementation with 50 estimators, maximum depth

of value 5 for lowering the risk of model overfit.

3. K-NN (k nearest neighbors) – non-parametric classification method based on the

majority voting of the retrieved k nearest neighbors of the data among the data

records in neighborhood  [26].  KNeighborsClassifier of the Scikit-learn library

was used for current implementation with default parameters (k = 5).

6.1.2 Validation of the classifiers

Classifiers will be validated at two different stages (see the Figure 10):

a) hybrid  models  learning  algorithms  training  stage:  each  of  four classifiers

described in section 6.1.1 will be trained and tested iteratively using stratified k-

fold approach (k = 3), 2 splits will be used for training, last one for validating

the candidate features subset based on macro-averaged F1-score;

b) final  assessment  stage:  each  optimal  feature  subset  that  was  generated  by

different will  be  evaluated with 3 classifiers  described in  section  6.1.1 using

stratified k-fold  cross-validation accuracy (k  = 3) on the separate test set for

evaluating models quality on previously unseen data  using the same classifiers

that were used in the training stage; 2 splits will be used as training set, and the

last one for validation; for example, if subset X was generated by hybrid model

using random forest classifier as learning algorithm that was wrapped around the
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fitered dataset, subset X will be tested on the disjoint set using the same ML

algorithm – random forest (see the Figure 11);

Cross-validation is  ML  models  performance  technique  where  the  labeled  dataset

divided to  k  separate  equal-sized  parts,  ML models  are  iteratively  trained  on  k  -  1

disjoint subsets and tested on the separate k-th subset. The procedure is done in k – 1

iterations. Finally,  cross-validation accuracy is calculated as the average of all  k -  1

accuracies [18]. The main advantage of applying cross-validation is lowering the risk of

ML models overfitting on the test set.
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Figure 10: Train, validation, and test samples extraction overview
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Figure 11: Hybrid models cross-validation flow
on the test set



6.1.3 Classifiers training process

At features  selection stage,  all  three classifiers  will  be trained in parallel  for hybrid

models in two ways (also see the Figure 8 from previous chapter):

1) on the train folds containing best 20 features according to Fisher score ranking,

2) on the train folds containing 18 features after removing linearly uncorrelated

features based on Pearson’s coefficient value.

At optimal attributes subsets final validation stage,  the same classifiers will be trained

on train folds substracted from the test subsample in parallel following five approaches

(see the Figure 12):

1) the whole dataset containing 115 features,

2) 4 best  features  based on Fisher  score ranking (Fisher  score value  ≥ 1,  filter

model),

3) 12 optimal features subsets that were chosen by hybrid models shown in the

Figure 8,

4) 18  features  remained  after  dropping  irrelevant  features  based  on  Pearson’s

coefficient value (filter model),

5) hybrid models (see the Figure 8) outputs (optimal features subsets) intersection

with the best 10 features according to Fisher scoring rank – ensemble model, ≤6

subsets.
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Figure 12: Classifiers cross-validation with and without applying feature selection techniques



7 Anomaly detection algorithms training for unsupervised 

learning

7.1 Methodology

Feature selection wrapper algorithms are going to be applied for solving unsupervised

anomaly detection as binary classification task with two classes – normal (benign) and

anomalous (Mirai and Gafgyt). Goal of this phase is to demonsrate that it is possible to

select optimal features subsets from the data that contains normal traffic pattern and not

contaminated by anomalous instances. Optimal subsets will be compared with sets of

attributes  that  were  generated  during  supervised  learning  when the  training  data  in

contrast contained samples belonging to all three classes – benign,, Mirai, and Gafgyt.

7.1.1 Anomaly detection algorithms

For comparison purposes, wrapper feature selection models based on greedy forward

feature selection are going to be applied to unsupervised anomaly detection without

preliminarily reducing normal and mixed test sets with any filter method. LOF (Local

Outlier Factor) algorithm will be used as training algorithm for wrapper model.

LOF is  an outlier detection algorithm that is based on the concept of a local outlier

capturing the degree of a certain object being an outlier based on the density of its local

neighborhood  [5].  LOF  is  a  value  that  can  be  used  for  evaluating  any  object’s

likelihood: higher values indicate that observable object is outlier, while lower values

indicate  that  object  is  normal.  The  LOF  value  is  based  on  the  number  of  nearest

neighbors used assigning the local neighborhood value to particular object  [5],  [10].

Implementation  utilizes  LocalOutlierFactor class  of  the  Scikit-learn  library  with

parameters novelty=True, contamination='auto'.
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7.1.2 Anomaly detection algorithms training at wrapper feature selection stage

Wrapper feature selection algorithm (greedy forward feature selection with attributes

subset  upper  threshold  -  5  features)  based  on LOF anomaly  detection  algorithm as

learning estimator will be preliminarily fit on unlabeled normal data containing benign

instances; best features are selected from all candidate subsets based on micro-averaged

F1-score  calculated  for  the  predictions  made  on  labeled  validation  set  containing

benign,  Mirai,  and Gafgyt  class  instances  (see  the  Figure 13),  i.e.  LOF as  wrapper

learning estimator trained in unsupervised manned on benign data and cross-validated

on mixed labeled data. Wrapper method output is a subset of most optimal attributes

based on wrapper sequential forward selection with LOF.

7.1.3 Validation of unsupervised feature selection wrapper models

Optimal subset generated by unsupervised wrapper model described in the section 7.1.2

is cross-validated by classifiers that were used in supervised hybrid feature selection

models (see the Figure 14). The test set used at this stage for stratified cross-validation

is the same that was previously used for validating outputs generated by models based
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Figure 13: Training process for unsupervised
anomaly detection algorithms

Figure 14: Validation process for optimal subsets
generated by unsupervised wrapper models



on supervised feature selection and filter models (see the section  6.1.2) and contains

instances belonging to all three classes.
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8 Feature selection results based on filter models

8.1 Filter method based on Pearson’s linear correlation coefficient

After  constructing  linear  correlation  matrix  for  all  features  pairwise in the balanced

input data set and filtering out the features with Pearson’s coefficient value in range [0,

0.80], only 18 attributes were selected (see the Table 4). The aim of selecting features

with coefficients values in the predefined range is to drop out all irrelevant attributes –

the  features  with  very  high  relationship,  and  the  features  with  strongly  negative

relationship.
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Nr. Feature name Time-frame Feature group

1 MI_dir_L5_weight L5 Source  MAC-IP –  stats  summarizing  the  recent
traffic from this packet's host (IP + MAC) [58].

2 MI_dir_L5_mean

3 MI_dir_L5_variance

4 HH_L5_weight L5 Channel  - stats summarizing the recent traffic go-
ing from this packet's host (IP) to the packet's des-
tination host [58].5 HH_L5_std

6 HH_L5_radius

7 HH_L5_covariance

8 HH_L5_pcc

9 HH_L0.1_covariance L0.1

10 HH_L0.1_pcc

11 HH_L0.01_covariance L0.01

12 HH_L0.01_pcc

13 HH_jit_L5_mean L5 Channel jitter - stats summarizing the jitter of the
traffic  going  from  this  packet's  host  (IP)  to  the
packet's destination host [58].14 HH_jit_L5_variance

15 HH_jit_L1_variance L1

16 HpHp_L5_weight L5 Socket - stats summarizing the recent traffic going
from this packet's host+port (IP) to the packet's des-
tination host+port [58].17 HpHp_L5_radius

18 HpHp_L5_covariance

Table 4: Features with linear correlation in range [0, 0.80]

69



The Figure 15 illustrates the linear correlation between 18 features that have remained

in the balanced dataset after applying filter model based on Pearson’s linear correlation

coefficient values range. Features with correlation coefficient values in range [0, 0.80]

have left, all remaining features were dropped out. As it might be seen, there is a strong

positive  linear  correlation  between  the  features  and  themselves  (for  example,

MI_dir_L5_weight  and MI_dir_L5_weight)  marked in yellow color, while dark blue

color  indicates  weak linear  correlation  between  features  (see  HH_L5_covariance  in

horizontal axis and HH_L5_std).
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Figure 15: Pearson's linear correlation heatmap for features that have remained after applying model with
coefficient values threshold [0, 0.80]



It is seen in the heatmap that the vast majority of features have weak linear correlation

or have no linear relationship at all (except with themselves), it indicates that the set

mostly  contains  the  features  that  are  not  highly  correlated  to  each  other  nor  have

perfectly  negative  linear  relationship  with  value  -1.  Pairs  of  attributes  with  linear

correlation coefficient value above 0.50 can be found in the Table 5:

Feature 1 Feature 2 Pearson’s correlation
coefficient value

HH_L5_radius HpHp_L5_radius 0.7627915044103211

MI_dir_L5_weight HH_L5_weight 0.7590947141618555

HH_L5_std HH_L5_radius 0.7048698823607285

HpHp_L5_radius HpHp_L5_covariance 0.6620891391573257

HH_L0.1_pcc HH_L0.01_pcc 0.6442478620130772

HH_L5_covariance HH_L5_pcc 0.6340942024422493

MI_dir_L5_mean MI_dir_L5_variance 0.5839561591801016

HH_L0.1_covariance HH_L0.01_covariance 0.5515356706185149

HH_L5_std HpHp_L5_covariance 0.5352915587282823

HH_L5_std HpHp_L5_radius 0.5308023795986179

HH_L5_radius HpHp_L5_covariance 0.5234339063603991

Table 5: Features with linear correlation above 0.50 from the filtered set

Feature 1 Feature 2 Pearson’s correlation
coefficient value

HH_L0.1_covariance HpHp_L5_weight 0.0007215915421614352

HH_L0.1_pcc HH_jit_L1_variance 0.0009630960392771497

Table 6: Features with linear correlation in range [0, 0.001)

Attributes pairs that have no  evident  linear correlation can be found in the  Table 6 -

those features Pearson’s correlation coefficient values are very close to 0 and less than

0.001.
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8.2 Filter method based on Fisher score

Only 20 features were selected with higher Fisher score values among 150 ones:

Feature nr.
in the rank

Feature name Fisher score

1 MI_dir_L0.01_weight 1.535444

2 H_L0.01_weight 1.535444

3 MI_dir_L0.1_weight 1.231247

4 H_L0.1_weight 1.231247

5 MI_dir_L1_weight 0.904455

6 H_L1_weight 0.904455

7 MI_dir_L5_weight 0.840989

8 H_L5_weight 0.840989

9 MI_dir_L3_weight 0.835061

10 H_L3_weight 0.835061

11 MI_dir_L0.01_mean 0.689287

12 H_L0.01_mean 0.689254

13 MI_dir_L0.1_mean 0.645926

14 H_L0.1_mean 0.645915

15 MI_dir_L1_variance 0.619762

16 H_L1_variance 0.619762

17 MI_dir_L1_mean 0.577434

18 H_L1_mean 0.577434

19 H_L3_mean 0.528538

20 MI_dir_L3_mean 0.528538

Table 7: Twenty features with the highest Fisher score in descending order

It can be noticed from the  Table 7 that four variables with the highest Fisher score

values are related to each other, those are:

• MI_dir_L0.01_weight and MI_dir_L0.1_weight – stats summarizing the recent

traffic from the packet’s host (source MAC-IP);
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• H_L0.01_weight and H_L0.1_weight – stats summarizing the recent traffic from

the packet’s host (source IP).

Interestingly, selected features are token from the same time-frames – L0.01 and  L0.1.

As previously mentioned in the section 3.2.3, robust IQR scaling affected the pattern of

classes  distribution  for  the  pair  of  features  having  the  highest  Fisher  score  values

(MI_dir_L0.01_weight and H_L0.01_weight - see the  Figure 4). It comes to evidence

that keeping outlier values in the features that were selected as the most important ones

may have crucial impact on the training process of the data, especially for lowering the

risk of models overfitting and tendency to misclassify one of the classes (in particular

case – benign). The classes distribution for two features selected based on Fisher score

ranking is strongly skewed towards attack data.
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Figure 16: Classes distribution plot for 3 best features from Fisher scoring
rank - MI_dir_L0.1_weight, MI_dir_L0.01_weight, and H_L0.01_weight



As it  seen in  the  Figure  16,  classes  distribution  for  three  best  features  from Fisher

scoring rank is skewed towards attack data. In contrast, if we would like to explore three

features that have not been selected by any of filter methods (based both on Pearson’s

coefficient  values  range and Fisher  scoring rank),  it  comes  to  evidence  that  classes

distribution is now skewed towards normal data (see the Figure 17), this results will be

discussed later in chapter 10.

Comparison of  classifiers  performance  can  be  found in  the  Table  8.  The same test

sample was used for stratified k-fold cross-validation with four classifiers. Interestingly,

running data  set  reduced to the 10 best features  based on Fisher ranking and to 20

features  based  on  Pearson  range  with  random  forest  classifier  outperforms  other

classifiers applied to filter models.
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Figure 17: Classes distribution plot for features that have not been selected by filter methods



Classifier 115 features 4 best
features
(Fisher rank)

10 best
features
(Fisher rank)

20 features
(Pearson)

K-NN,
k = 5

Accuracy 0.9434 0.98601 0.9874 0.9134

FP 143 28 24 170

FN 121 31 27 205

Random
forest

Accuracy 0.9984 0.9782 0.9840 0.9878

FP 2 76 33 18

FN 0 25 40 16

Extra
trees

Accuracy 0.9978 0.9674 0.7945 0.9676

FP 0 117 56 3

FN 0 22 23 97

Table 8: Comparison of cross-validation scores for algorithms performing on the whole data and the data
reduced after applying filters
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9 Feature selection results based on supervised learning

9.1 Feature selection with hybrid models

The Table 9 contains comparison of predictions accuracy values for hybrid models that

were evaluated on a separate test set using stratified k-fold cross-validation (k = 3). All

subsets with length not more than 5 attributes perform well and lead to accuracy values

in range 0.97 .. 0.99. 

Wrapper
model

Filter model
Cross-validation accuracy

K-NN,
k = 5

Random
forest

Extra Trees

Sequential
forward
feature
selection

20 features (Fisher ranking) 0.9964 0.9990
(see Figure 18)

0.9974

18 features (Pearson
ranking)

0.9878 0.9954 0.9770

Sequential
backward
elimination

20 features (Fisher ranking) 0.9970 0.9990
(see Figure 19)

0.9980

18 features (Pearson
ranking)

0.9870 0.9970 0.9792

Table 9: Comparison of predictions accuracies made by hybrid models
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Figure 18: Confusion matrix for subsets generated by hybrid model based on combination
of sequential forward feature selection and Fisher score ranking threshold,  random forest

classifier accuracy 0.9990

Figure 19: Confusion matrix for subsets generated by hybrid model based on combination
of sequential backward feature selection and Fisher score ranking threshold,  random forest

classifier accuracy 0.9990



9.2 Features selection with ensemble models

Features subsets intersections found for hybrid models ant 10 best features from Fisher

score ranking lead to optimal subsets that perform well on test sample using stratified k-

fold  cross-validation  (k  =  3).  Curiously  enough,  all  these  subsets  contain  the  same

feature – H_L0.1_weight.

Hybrid model Classifier
used in
wrapper model
& in validation

Intersection with 10 best
features from Fisher score ranking

Cross-valida-
tion  accuracy
on the test set

Forward
selection &
20  best  features
from  Fisher  score
ranking

K-NN,
k = 5

No intersection found -

Random forest MI_dir_L3_weight, H_L0.1_weight 0.9626

ExtraTrees MI_dir_L0.01_weight,  H_L3_weight,
H_L0.1_weight

0.7663

Backward
selection &
20  best  features
from  Fisher  score
ranking

K-NN,
k = 5

No intersection found -

Random forest H_L3_weight, H_L0.1_weight 0.9616

ExtraTrees MI_dir_L1_weight, H_L0.1_weight 0.7811

Table 10: Comparison of predictions accuracies made by ensemble models

Results proof that it is possible to select features optimal subset with length even less

than 5 that lead to high accuracy values, the following subsets with length 2 lead to

accuracy about 0.96:

1) MI_dir_L3_weight,  H_L0.1_weight  (see  ROC  curve  in  the  Figure  20 and

decision boundary in the Figure 22);

2) H_L3_weight, H_L0.1_weight (see ROC curve in the  Figure 21 and decision

boundary in the Figure 23).

Both these subsets of attributes perform well with AUC values in range 0.95 – 1.00 for

all  classes indicating almost  perfect results  for distinguishing three different  classes.

ROC curves were calculated using class OneVsRestClassifier of Scikit-learn library.
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Figure 20: ROC curve for classification on MI_dir_L3_weight and H_L0.1_weight features
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Figure 21: ROC curve for classification on H_L3_weight and H_L0.1_weight features
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Figure 22: Decision boundary for random forest on the  subset generated by ensemble model

Figure 23: Decision boundary for random forest on the subset generated by ensemble model



10 Feature selection results based on unsupervised learning

Comparison of unsupervised wrapper model output subset performance on the separate

test  subset with 3 classifiers is  shown in the  Table 11. Stratified cross-validation of

generated subset with length 5 has proven that it is possible to select optimal feature

subset  from  the  training  data  that  contains  benign  instances  only.  Optimal  subset

outperforms on test set with k-NN (k = 5) and random forest classifiers. Surprisingly,

classes distribution for features belonging to this subset is now skewed towards benign

data (see the Figure 17 In chapter  8.2). What is more interesting, this subset does not

overlap with subsets generated earlier by filter, supervised learning based hybrid, and

ensemble model outputs.

Wrapper model Features subset Classifier
used in
wrapper model

Cross-validation
accuracy on the test set

Greedy forward
selection + LOF

HH_L1_mean,
HH_L0.1_std,
HH_L0.1_pcc,
HH_jit_L5_mean,
HpHp_L0.1_mean

K-NN,
k = 5

0.9608 (see the Figure 24)

Random forest 0.9442 (see the Figure 25)

Extra Trees 0.8369

Table 11: Comparison of predictions for optimal subset generated by unsupervised wrapper model
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Figure 24: Confusion matrix for k-NN classifier on
unsupervised wrapper model output subset

Figure 25: Confusion matrix for random forest on
unsupervised wrapper model output subset



11 Predictions interpretation with LIME

11.1 Methodology

Final  stage  of  the  research  represents  interpretation  of  classification  results.  The

motivation is to check whether optimal feature subsets contain those attributes that have

the  stronger  impact  on  predicting  whether  a  single  data  point  can  be  mapped  to  a

particular class or not. Attribute importance weights calculation strategy is specific for

each ML model and strongly affected by the data bias, thus it is significant to check

what features are having stronger impact in making predictions treating classifier as a

black  box.  Predictions  interpretation  stage  is  crucial  before  making  a  decision  on

choosing the most appropriate and trustworthy model for the future deployment.

11.2 LIME technique

LIME  is  predictions  interpretation  technique  that  can  be  applied  to  any  model  in

agnostic  manner,  i.e.  treating  it  as  a  black  box.  Features  importance  values  are

calculated  based  on   explanation  matrix  that  is  constructed  for  the  interpretable

components  of  each  instance.  Attributes  with  higher  representativeness value  have

stronger  impact  on  predicting  all  instances,  i.e.  LIME algorithm picks  features  that

cover  most  important  components  and  avoids  selecting  features  with  analogous

explanations [8].

11.3 LIME interpretation results

Random instance was taken from the same set that was earlier used for filter models and

for supervised classification based feature selection models. The set was splitted into

train (80%) and test (20%) splits using random sub-sampling.  LimeTabularExplainer

class of LIME library was used here in solving 3-class classification task for all 115
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features using random forest classifier as estimator. In the Table 12, Table 13, and Table

14 are 10 most important  features from significance rank that have the most strong

impact  compared  with  remaining  features  on  predicting  whether  a  random  sample

belongs to particular class or not. According to LIME interpretation, classifier is 100%

certain that an instance belongs to Mirai class (prediction probability value 1.00).

Number in
importance
rank

Feature Weight value Importance
value

Mirai?

1 H_L0.01_weight 1.54 0.07 Yes

2 MI_dir_L0.01_weight 1.54 0.06 Yes

3 H_L0.1_weight 0.72 0.05 Yes

4 MI_dir_L0.1_weight 0.72 0.04 Yes

5 HH_jit_L1_mean 1.00 0.03 Yes

6 MI_dir_L5_weight 0.76 0.03 Yes

7 H_L1_weight 0.66 0.02 Yes

8 HH_jit_L0.1_mean 1.00 0.02 Yes

9 HpHp_L3_covariance 0.00 0.02 Yes

10 MI_dir_L1_weight 0.66 0.02 Yes

Table 12: LIME explanation for predicting random instance belonging to Mirai class  with random forest
classifier

Number in
importance
rank

Feature Weight value Importance
value

Benign?

1 H_L0.01_weight 1.54 0.03 Yes

2 MI_dir_L0.01_weight 1.54 0.02 Yes

3 H_L0.01_variance 1.80 0.02 No

4 HH_jit_L0.1_mean 1.00 0.02 Yes

5 H_L0.1_mean 1.18 0.02 No

6 MI_dir_L0.01_mean 1.52 0.02 No

7 MI_dir_L0.1_variance 2.01 0.02 No

8 HH_L5_magnitude -0.42 0.02 No

9 H_L0.1_variance 2.01 0.01 No

10 HH_jit_L5_mean 1.00 0.01 Yes

Table 13: LIME explanation for predicting random instance belonging to benign class  with random forest
classifier
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Number in
importance
rank

Feature Weight value Importance
value

Gafgyt?

1 H_L0.01_weight 1.54 0.10 No

2 MI_dir_L0.01_weight 1.54 0.08 No

3 H_L0.1_weight 0.72 0.05 No

4 MI_dir_L0.1_weight 0.72 0.05 No

5 HH_jit_L1_mean 1.00 0.04 No

6 HpHp_L3_covariance 0.00 0.03 No

7 HH_jit_L0.01_mean 1.00 0.03 No

8 HH_jit_L0.1_mean 1.00 0.03 No

9 H_L0.1_mean 1.18 0.03 Yes

10 HH_jit_L5_mean 1.00 0.02 Yes

Table 14: LIME explanation for predicting random instance belonging to Gafgyt class  with random
forest classifier

LIME interpretation results for predicting a random instance belonging to Mirai class

with probability value 1.00 have shown that there are several features that were also

found by filter models, such as 20 best features from Fisher score ranking. What is more

interesting, first four features that have the strongest influence on correctly classifying

random instance as Mirai are the same as 4 best features from Fisher score ranking:

1) H_L0.01_weight,

2) MI_dir_L0.01_weight,

3) MI_dir_L0.1_weight,

4) H_L0.1_weight.

This subset has been earlier  cross-validated on a separate test set and gave accuracy

0.9782 for the random forest estimator with low false positive and false negative rates

(see the Table 8 in section 8.2).
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12 Discussion and future work

To conclude, primary goals of this thesis have been achieved – optimal attribute subsets

that were found by several FSAs have shown good performance on validation set that is

comparable with deep learning approach accuracy values for the same dataset. Classical

ML algorithms performances boosting deduce consectary that it  is possible to select

optimal sets of attributes with consuming less computational resources.

Filter,  ensemble,  supervised learning based hybrid,  and unsupervised learning based

wrapper models were constructed for selecting most optimal subsets with number of

attributes not more than 10 elements. Optimal subsets generated by mentioned models

provided prediction performance with best accuracy values in range 0.94 – 0.99.

Surprisingly,  feature  selection  designed  for  unsupervised  anomaly  detection  also

boosted classifiers performances - wrapper model based on LOF estimator and greedy

forward  feature  selection  has  generated  output  subset  that  has  demonstrated  cross-

validation accuracy 0.96 with k-NN classifier. Generated subset differs from those sets

of attributes that were chosen based on data set containing all three classes instances, so

it  may  be  helpful  to  explore  the  impact  of  hybrid  models  on  classical  ML models

performance when selecting most promising features from normal traffic data.

Cross-validation  of  all  FSAs  have  shown  that  random  forest  and  k-NN  classifiers

performances  were  boosted  by  data  reduction,  whereas  Extra  Trees  classifier

performance was reduced by certain methods – this also needs more investigation.

Final interpretation of results based on LIME algorithm applied to random forest 3-class

classification have demonstrated that 10 features with stronger impact mostly coincide

with features  selected by filter  model  based on Fisher  score,  especially  first  4 most

significant features that coincide with 4 best features from Fisher scoring rank. This

research outcome leads to the conclusion that current filter model implementation is

trustworthy to some degree and may be used in further series of research related to

anomaly detection.
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13 Summary

Primary goal of this thesis was to find optimal subsets of not more than 10 attributes

from  the  data  set  containing  115  features  describing  network  traffic  data  and  to

demonstrate  that  data  reduction  based on several  feature  selection  algorithms  boost

performance of classical ML models, thus it is possible in future to deploy less complex

ML models with consuming less computational resources on algorithms training.

Research  is  based  on  network  traffic  data  with  benign  instances  and  anomalous

instances belonging to two families of botnet attacks – Mirai and Gafgyt.

Novel combination of feature selection methods was applied for selecting optimal sets

of attributes for boosting performances of classical ML models. Proposed solution is

filter model, hybrid model (combination of filter and wrapper models), ensemble model

based on several output subsets intersection.

Novelty of this research is provided by applying wrapper feature selection model on

unsupervised anomaly detection, where LOF algorithm is preliminarily fit on normal

data that contains no anomalous contamination.

Cross-validation  accuracy  values  for  outperforming  feature  selection  models  are  in

range 0.94 – 0.99. Optimal subsets with minimal number of features contain 2 attributes

and provide cross-validation accuracy 0.96 with random forest classifier.

Interpretation  of  3-class  classification  predictions  based  on  LIME  algorithm  have

demonstrated  that  optimal  subsets  generated  by  models  that  contain  filter  approach

based on Fisher score ranking have some degree of trust.

Achieved results indicate that main tasks have been successfully completed, those are:

• select optimal subsets containing not more than 10 attributes;
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• boost performances  of classical  ML algorithms by achieving trustworthy and

interpretable results (high AUC area, low FN and FP rates, prediction accuracy

with value higher than running on all 115 features or at least 0.90 in case of high

prediction accuracy with running on the whole data set);

• compare several FSAs, such as filter, wrapper, hybrid, ensemble models;

• apply  wrapper  model  to  unsupervised  classification  and  compare  achieved

results with FSAs that are based on supervised learning (hybrid, ensemble);

• interpret  classifier  predictions  using  LIME  algorithm  and  compare  earlier

generated attributes subsets (wrapper, filter, hybrid, ensemble models outputs)

with those that were selected based on model agnostic approach.

Present research can be dedicated to applying feature selection methods with training on

pure benign data and to developing other combinations of feature selection models with

other estimators.
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Appendix 1 – Sequential Forward Feature Selection

Greedy sequential forward feature selection method.
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def select_forward(self, log_dir, features_subset_dir,
                   clf_name, save_output=False):
    current_set_of_features = []
    best_subset = (0, [])
    for i in range(0, len(self.X.columns)):
        feature_to_add = -1
        best_score = 0
        for kth_feature in range(0, len(self.X.columns)):
            if kth_feature not in current_set_of_features and

\len(current_set_of_features) < 5:
                score = self.calculate_cross_val_f1_score\
                    (current_set_of_features[:], kth_feature)
                set_of_features = current_set_of_features[:]
                set_of_features.append(kth_feature)
                # score upper bound
                if score >= best_score and

\len(current_set_of_features) < 5:
                    best_score = score
                    feature_to_add = kth_feature
        current_set_of_features.append(feature_to_add)
        if best_subset[0] >= best_score:
            pass
        else:
            best_subset = (best_score,\ 

current_set_of_features[:])

Figure 26: Sequential forward feature selection



Appendix 2 – Sequential Backward Feature Selection

Greedy sequential backward feature selection method.
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def select_backward(self, log_dir, features_subset_dir,
                    clf_name, save_output=False):
    current_set_of_features = []
    for i in range(0, len(self.X.columns)):
        current_set_of_features.append(i)
    best_subset = (self.calculate_cross_val_f1_score
                   (current_set_of_features[:]),
                   current_set_of_features[:])
    for i in range(0, len(self.X.columns)):
        feature_to_remove = -1
        best_score = 0
        if len(current_set_of_features) > 5:
            for kth_feature in range(0, len(self.X.columns)):
                if kth_feature in current_set_of_features:
                    temp_features = current_set_of_features[:]
                    temp_features.remove(kth_feature)
                    score = self.calculate_cross_val_f1_score\
                        (temp_features)
                    if score > best_score and \
                            len(current_set_of_features) > 5:
                        best_score = score
                        feature_to_remove = kth_feature
            current_set_of_features.remove(feature_to_remove)
        if best_subset[0] <= best_score and \
                len(current_set_of_features) <= 5:
            best_subset = (best_score,
                           current_set_of_features[:])

Figure 27: Sequential backward feature selection



Appendix 3 – Heuristics Calculation For Wrapper Method

Heuristic calculation based on stratified k-fold cross-validation F1-score.

98

def calculate_cross_val_f1_score(self, current_set, 
feature_to_add=None):
    if feature_to_add is not None:
        current_set.append(feature_to_add)
    X_reduced = self.X.iloc[range(0, len(self.X)), 

current_set]
    score = cross_val_score(self.estimator, X=X_reduced, 

y=self.Y, cv=self.skf,
      scoring=make_scorer(f1_score, average='macro'))
    return np.average(score)

Figure 28: Heuristic calculation based on stratified k-fold cross-validation F1-score
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