
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Enrico Vompa 221350 IABM

Data Lakehouse Architecture for Big Data with

Apache Hudi

Master's thesis

Supervisors: Tauno Treier

 MSc

 Raido Ivalo

 MSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Enrico Vompa 221350 IABM

Andmejärvemaja arhitektuur Apache Hudiga

suurandmete jaoks

Magistritöö

Juhendajad: Tauno Treier

 MSc

 Raido Ivalo

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to the

literature and the work of others have been referred to. This thesis has not been presented for

examination anywhere else.

Author: Enrico Vompa

08.05.2023

4

Abstract

The Messaging Data Platform (MDP) of Twilio, a cloud communication platform, is the source

of truth for all data related to messaging. The MDP platform is designed to facilitate interactive

queries and Extract, Transform, and Load (ETL) jobs but has limitations that impede the

effective utilization of both the data lake and its associated data warehouse. These challenges

include high data latency, missing data, and poor data discovery.

The objective of this thesis is to propose a novel design that addresses the limitations of the

existing MDP system and implement a fully functional data lakehouse utilizing Apache Hudi,

capable of managing production traffic of hundreds of thousands of updates per second. The

proposed data lakehouse design is expected to store, process, and expose data efficiently while

adhering to ACID properties, thereby ensuring effective and dependable data management for

the organization.

This document presents an in-depth examination of the current design, the proposed design,

and the outcomes of a proof of concept (PoC) implementation. The proposed data lakehouse

design serves as a reusable and scalable solution for other organizations and companies seeking

for an efficient and dependable data management system for large volumes of data.

This thesis is written in English and is 59 pages long, including 5 chapters, 16 figures and 11

tables.

5

Annotatsioon

Andmejärvemaja arhitektuur Apache Hudiga suurandmete jaoks

Twilio on pilvekommunikatsiooni platvorm, mis võimaldab arendajatel programmaatiliselt

teha telefonikõnesid, saata ja vastu võtta tekstisõnumeid ning teha muid suhtlusfunktsioone,

kasutades selle veebiteenuse programmiliidest (API).

Sõnumside andmeplatvorm (MDP) on tõeallikas kõigile sõnumsidega seotud andmetele. See

platvorm on loodud, et pääseda ligi andmetele läbi erinevate meetodite, keskendudes Hadoopi

ökosüsteemile, mis hõlbustab interaktiivseid päringuid ja ETL-töid. Hetkel paljastab MDP

teatud disainipiirangud, mis takistavad nii andmejärve kuid ka sellega seotud andmelao tõhusat

kasutust.

Mõned peamised väljakutsed, millega kokku puututakse, hõlmavad kõrget andmelatentsust,

puuduvaid andmeid, päringute ebaõnnestumist ajutiste probleemide tõttu ning kehva andmete

avastust. Need probleemid tõstavad esile vajadust platvormi edasiarenduse järele, et tagada

selle vastavus organisatsiooni ja platformi sidusrühmade nõuetele.

Lõputöö eesmärk on välja pakkuda ja implementeerida uus andmejärvemaja disain, mis

adresseerib olemasoleva süsteemi piiranguid, kasutades Apache Hudit, mis suudab hallata sadu

tuhandeid uuendusi sekundis. Uus disain peab olema võimeline andmeid tõhusalt salvestama,

töötlema ja esitama, järgides ACID-i omadusi, tagades seeläbi usaldusväärse andmehalduse

organisatsioonile.

Käesolev lõputöö esitab põhjaliku ülevaate praegusest disainist, uuest disainist ja eduka

implementatsiooni valideerimisest. Pakutud andmejärvemaja arhitektuur on taaskasutatav ja

skaleeruv lahendus ka teistele organisatsioonidele ja ettevõtetele, kes otsivad tõhusat ja

usaldusväärset andmehaldussüsteemi suurte andmehulkade jaoks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 59 leheküljel, 5 peatükki, 16 joonist,

11 tabelit.

6

List of abbreviations and terms

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

AWS Amazon Web Services

BE Business Event

CDC Change Data Capture

DaaS Delivery as a Service

DAG Directed Acyclic Graph

DB Database

ETL Extract Transform Load

HDFS Hadoop Distributed File System

IaaS Infrastructure as a Service

MDP Messaging Data Platform

MDR Message Detail Record

MSE Message State Event

PII Personal Identifiable Information

PaaS Platform as a Service

PoC Proof of Concept

RDBMS Relational Database Management System

RPS Requests per Second

SaaS Software as a Service

SQL Structured Query Language

7

Table of Contents

1 Introduction .. 11

2 Background ... 12

2.1 Current technologies ... 13

2.2 Current design ... 14

2.3 Functional requirements .. 19

2.4 Novelty .. 20

3 Planning .. 21

3.1 Deployment model .. 22

3.2 Technologies chosen ... 23

3.3 Hudi configurations ... 26

3.3.1 Table types ... 26

3.3.2 Operation types .. 27

3.3.3 Index types ... 28

3.4 First iteration ... 29

3.5 Spark configurations ... 32

3.6 Second iteration ... 33

3.7 Orchestrating Hudi application ... 35

3.8 AWS Glue Data Catalog ... 37

4 Results .. 38

4.1 Can handle petabyte scale ... 38

4.2 Late arriving updates ... 39

4.3 CDC log deduplication .. 40

4.4 All use-case related peculiarities are customizable ... 41

4.5 Solution is robust ... 42

4.6 Solution avoids the small file issue ... 43

4.7 Snapshot isolation between writers and readers .. 44

4.8 Data discovery is simple ... 45

4.9 Data should be readable with low data and query latency .. 46

4.10 Support for various analytical procedures ... 47

4.11 Future works .. 49

5 Summary ... 50

References .. 51

8

Appendix 1 – Non-exclusive licence for reproduction and publication of graduation thesis .. 53

Appendix 2 – Two-week aggregation query from Looker running on Presto in 34 seconds .. 54

Appendix 3 – Hudi writer app durations.. 55

Appendix 4 – DataHub view of Glue Metastore ... 56

Appendix 5 – MDR Finalized app Executors page in Spark history service 57

Appendix 6 – MDR Finalized app Stages page in Spark history service 58

Appendix 7 – MDR Finalized app Jobs page in Spark history service 59

9

List of figures

Figure 1. Architecture of existing system .. 14

Figure 2. Architecture diagram of first iteration .. 29

Figure 3: Architecture diagram of second iteration ... 33

Figure 4. Example of predicate pushdown .. 37

Figure 5. S3 bucket size ... 38

Figure 6. Data consistency SQL query .. 39

Figure 7. Finalized layout deduplication ... 40

Figure 8. Runtime configuration .. 41

Figure 9. Rolling back changes .. 42

Figure 10. Files in S3 ... 43

Figure 11. Snapshot isolation logs ... 44

Figure 12. AWS Glue Data Catalog .. 45

Figure 13. App execution duration .. 46

Figure 14. Daily aggregation via Presto .. 47

Figure 15: Schema peculiarities are supported .. 48

Figure 16. Daily aggregation via Spark SQL... 48

https://d.docs.live.net/2fac68100a8dc697/final%20thesis%20-%20Enrico%20Vompa.docx#_Toc132881668
https://d.docs.live.net/2fac68100a8dc697/final%20thesis%20-%20Enrico%20Vompa.docx#_Toc132881670
https://d.docs.live.net/2fac68100a8dc697/final%20thesis%20-%20Enrico%20Vompa.docx#_Toc132881672
https://d.docs.live.net/2fac68100a8dc697/final%20thesis%20-%20Enrico%20Vompa.docx#_Toc132881674
https://d.docs.live.net/2fac68100a8dc697/final%20thesis%20-%20Enrico%20Vompa.docx#_Toc132881680

10

List of tables

Table 1. Description and details of Figure 1 .. 15

Table 2. MDR updates data layout properties ... 16

Table 3. BE updates data layout properties ... 16

Table 4: New functional requirements to address problems .. 19

Table 5. Data Warehouse, Data Lake and Data Lakehouse comparison [18] 20

Table 6. Comparison between Apache Hudi, Delta Lake, and Iceberg [23] 24

Table 7. Domains and descriptions of first iteration .. 30

Table 8. First iteration to solve the problems .. 31

Table 9. Domains and descriptions of second iteration ... 34

Table 10: Comparison between SQS-based solution and Spark Streaming 36

Table 11. List of technologies and frameworks used .. 50

11

1 Introduction

Twilio1 is a cloud communications platform that enables developers to programmatically make

and receive phone calls, send and receive text messages, and perform other communication

functions using its web service application programming interfaces (API).

The Messaging Data Platform (MDP) serves as the source of truth for all data related to

messaging. This platform has been engineered to offer a range of data access methods, with a

focus on the Hadoop ecosystem, facilitating interactive queries, and Extract, Transform and

Load (ETL) jobs. However, the present implementation of MDP reveals certain design

limitations that impede the effective utilization of both the data lake and its associated data

warehouse counterpart.

Some of the key challenges encountered include high data latency, missing data, frequent

failures of otherwise valid queries due to transient issues, and poor data discovery. These issues

highlight the need for further refinement and optimization of the platform to ensure that it aligns

with the evolving requirements of the organization and its stakeholders.

The objective of this thesis is to propose a novel design that addresses the limitations of the

existing system and implement a fully functional data lakehouse utilizing Apache Hudi2,

capable of managing production traffic of hundreds of thousands of updates per second. The

newly designed system is required to exhibit the ability to store, process, and expose data

efficiently while adhering to ACID (Atomicity, Consistency, Isolation, Durability) properties,

thereby ensuring effective and dependable data management for the organization. This

document presents an in-depth examination of the current design, the proposed design, and the

outcomes of a proof of concept (PoC) implementation, in which the results are thoroughly

validated.

The proposed data lakehouse design serves as a reusable and scalable solution for other

organizations and companies seeking for an efficient and dependable data management system

for large volumes of data.

The author of this thesis identified the existing challenges and translated them into new

functional requirements. Subsequently, the author engaged in the investigation of potential

solutions, participated in the development of the new system's design, and implemented a PoC

for the proposed solution. Upon completion of the implementation, the author validated the

system's functionality, documented the results and observations, and presented the finalized

project.

1 https://www.twilio.com
2 https://hudi.apache.org

12

2 Background

MDP serves as a centralized hub for all messaging-related data, effectively acting as the single

source of truth for all messaging across the organization. With numerous upstream sources

contributing data to MDP, the platform's primary function is to collect, consolidate, and

harmonize this information, making it accessible through various systems. A key area of focus

for the MDP team is the Hadoop ecosystem, which empowers data scientists, analysts, and

engineers to seamlessly run interactive queries and execute ETL jobs to facilitate further data

processing and analysis.

To accommodate the diverse analytical requirements of various stakeholders, MDP supports

an extensive range of procedures, encompassing data exploration, trend and pattern analysis,

ad-hoc analytics, complex analytics, reports, dashboards, and more [20]. In the past, data was

predominantly stored in a data lake, with concerted efforts to expose it through a data

warehouse system to enable more efficient analytics.

The MDP team's overarching goal is to streamline the process of setting up new integrations

and minimize operational burden, thereby enhancing the overall user experience for data

scientists, analysts, engineers, and other stakeholders. By emphasizing the centralization of

messaging data, the MDP team plays a critical role in promoting data-driven decision-making

across the organization. Their efforts contribute to fostering a culture of data literacy and

ensuring that insights derived from data analysis are effectively leveraged to drive

organizational growth and innovation.

This chapter outlines the existing architecture and main technologies used there, identifies its

problems, and highlights the need for a novel architectural approach, detailing the functional

requirements the system must fulfil.

13

2.1 Current technologies

The current technological landscape for data processing and management relies heavily on

several key components, which have become integral to modern data-driven applications.

Amazon DynamoDB1 (DDB) is a fully managed, serverless NoSQL database service from

AWS. It supports key-value and document data models and provides automatic scaling,

enabling seamless data management across various use cases. [36]

Apache Kafka is a distributed streaming platform used for building real-time data pipelines and

streaming applications. It is a durable message broker that enables applications to process, store

and forward data streams in a fault-tolerant, highly available and scalable manner. Kafka can

be used as a source or for real-time data streaming applications, offering seamless integration

between data producers and consumers. [7, 9]

Amazon Simple Storage System (S3)2 is a scalable, secure object storage service designed for

diverse data storage needs, from archiving to big data analytics. It provides high durability and

availability, allowing for easy storage and retrieval of data from anywhere on the internet. [31]

Amazon Elastic MapReduce (EMR) is a managed cloud service, designed to streamline the

deployment and management of big data processing frameworks, such as Apache Spark. This

service allows users to efficiently handle large-scale data processing tasks in a distributed

computing environment. [35]

Apache Spark is a powerful open-source data processing engine that enables rapid analysis and

processing of vast datasets by distributing the workload across multiple machines. It is widely

used for various data-intensive tasks, including data analytics, machine learning, and pattern

recognition. [33]

The Spark Java API is a specialized interface that allows developers proficient in the Java

programming language to create distributed data processing applications using Apache Spark.

By leveraging the capabilities of Amazon EMR, developers can efficiently allocate computing

resources and dynamically scale their applications to accommodate the demands of processing

large volumes of data. [33, 35]

Apache Presto3 is a distributed SQL query engine designed to perform interactive analytic

queries across various data sources. Its high-performance, in-memory processing capabilities

and support for different data formats make it a popular choice for unified big data analytics.

[34]

The Hadoop ecosystem is an extensive collection of open-source tools and frameworks aimed

at facilitating the storage, processing, and analysis of large-scale, distributed data sets. Key

components of the ecosystem include Hadoop Distributed File System (HDFS), which provides

reliable and scalable storage, and the MapReduce programming model, which enables efficient

distributed data processing. Additionally, the ecosystem integrates with other technologies

such as Presto, a high-performance SQL query engine for interactive analytics, and Amazon

S3, a scalable and secure object storage solution. [33]

1 https://aws.amazon.com/dynamodb/
2 https://aws.amazon.com/s3/
3 https://prestodb.io/

14

2.2 Current design

To summarize the functions of these aforementioned technologies, DDB serves as the

repository for record storage, while Apache Kafka is responsible for transmitting CDC logs for

every record updated in DDB. On Hadoop ecosystem, Amazon EMR executes Spark jobs,

which deduplicates CDC logs. Subsequently, the results are stored in Amazon S3, and Apache

Presto is utilized to run queries on these records. Current architecture with these technologies

is displayed on Figure 1.

With current design, EMR jobs operate on Spark Java API. The Spark Java API, while

powerful and capable of processing large amounts of data, lacks in providing utilities for

common tasks such as effective data manipulation through file-level updates. These utilities

can be implemented manually, but it is time-consuming and would be equivalent to recreating

the functionality for which there is an open-source counterpart already available. If possible, it

would be beneficial to utilize existing technologies to save time and reduce development costs.

Since Spark API only supports partition rewrites for data updating, multiple jobs must be

chained together, such as interactions 7, 9.a, and 9.b on Figure 1. This design has made the

infrastructure more difficult to maintain and has problematic side effects.

Figure 1. Architecture of existing system

15

Interactions on Figure 1 and problematic side effects that occur are discussed in Table 1.

Table 1. Description and details of Figure 1

Interaction Description and Details

1 Update state Upstream service updates message state by issuing a HTTP request to state

service. State service is a data access layer service on top of a DynamoDB

table for inflight data.

State service finds an existing data record in database (DB) and merges

upstream changes into it, saving data back to DB. If no record is found, a new

record is created. All specifics like hot partitioning, backoffs, retries are

handled by this service and auxiliary service, which are out of scope of this

thesis.

During peak hours, the system experiences a rate of approximately 300,000

updates per second, while maintaining an average rate of 100,000 updates per

second.

2 Publish state State service publishes a successful state update into Kafka topic. For each

successful update a message state event (MSE) is evaluated as well.

3 Consume

updates

Services consume a Kafka topic with update events and build logic around

received events and state changes.

4 Store state The primary use-case for this system involves simple key-value operations,

specifically the creation and updating of records. It employs an optimistic

locking mechanism and implements retries in case of conflicts or errors.

5 Event

evaluation

Event application translates MSE into a business event (BE) and publishes the

BE to a Kafka topic.

5.a Historical

event

evaluation

ETL applications designed for use with EMR analyse S3 buckets containing

historical data to extract BEs for further processing and analysis.

6 Event

publishing

Upstream services function as sole publishers of BEs. They have direct

publisher access to a specific Kafka topic.

16

Interaction Description and Details

7 History

storage    

Message History Service is responsible for storing batched Message Detail

Records (MDRs) in S3, which is further elaborated in Table 2.

Table 2. MDR updates data layout properties

Attribute Value

Format Apache ORC1

Path data/updates

Partitioning Each consumed batch is grouped by partitioning

function: ƒ: (accepted) → (year, month, day, hour)

Each group is transformed into ORC and stored in S3 with

an example path of: s3://data/updates
/year=2022/month=7/day=12/hour=4/batch-
{random}.orc

Notes Median file size is less than 100 kilobytes.

Size 2103 TiB

8 Event storage Different instance of Message History Service is responsible for storing

batched BEs in S3, which is further elaborated in Table 3.

Table 3. BE updates data layout properties

Attribute Value

File format Apache Parquet2

Path data/events

Partitioning Each consumed batch is grouped by partitioning function:

ƒ: (accepted) → (year, month, day, hour)

Each group is transformed into Parquet and stored in S3

with an example path of: s3://data/events
/year=2022/month=7/day=12/hour=4/batch-
{random}.parquet

Notes Median file size is less than 100 kilobytes.

Size 135 TiB

1 https://orc.apache.org/
2 https://parquet.apache.org/

17

Interaction Description and Details

8.a Finalizing

BEs

Problem #1. Poor data analysis performance of data/events storage due to a

big number of small-sized files in the folder.

In order to address this issue, EMR job has been implemented, which

repartitions the small files from the "data/events" S3 bucket and stores them

in a "data/events/repartitioned" subfolder.

Operations done, henceforth referred to as "finalization":

▪ Optimize for bigger file size

▪ Repartition by event type

▪ Deduplicate

The rationale behind this approach is to mitigate performance and consistency

challenges associated with conducting analysis on the "data/events" bucket.

Due to the current implementation of finalization, which rewrites the entire

partition when updating finalized records, this process gives rise to a problem

#2: the replacement of files in the "data/events/repartitioned" folder disrupts

concurrently running queries in upstream systems.

A demonstration of the aforementioned issue is provided below:

1. Consider a scenario where we have the following file:

"data/events/repartitioned/

eventtype=1/year/month/day/hour/batch-12345.orc".

2. A query is executed on "batch-12345.orc".

3. New data arrives at the location:

"data/events/eventtype=1/year/month/day/batch-

12345.orc".

4. An ETL job is required to replace "batch-12345.orc". However,

this action disrupts the query on the repartitioned data layout,

resulting in a FileNotFoundException.

Not all BEs necessitate partitioning by year, month, day, and hour, and some

events may require different types of optimizations. This gives rise to problem

#3: the same partitioning and optimization strategies are applied to all events,

which may not be universally effective. In other words, a one-size-fits-all

approach is not suitable for addressing the unique requirements of each event.

As rewriting the entire table is inefficient, a more targeted approach is

employed by focusing on a subset of data. However, this approach leads to

Problem #4: High data latency and potentially missing data.

9.a Optimizing

MDR updates

Same Problem #1. To overcome low performance on big number of small-

sized files in initial data/updates, EMR runs ETL job to optimize data for

analysis, which combines smaller files to larger files.

18

Interaction Description and Details

9.b Finalizing

updates

For each message, there is an eventual history of its states. Those states can be

represented as ordered cumulative change history (MDR1, MDR2, ..., MDRn),

where MDRn contains all the information the pervious states contained.

data/finalized is an S3 subfolder which is a target of ETL job that

transform all historical data into final data, skipping all intermediate states. It

is essentially a data layout where for each of existing messages only the last

state of it is stored.

Biggest peculiarity of finalization is that there is no such thing as final state,

i.e., there is no state after which there are no guaranteed updates to it. Updates

to the message state may occur over an extended period, potentially spanning

several months.

Because of that, data/finalized is prone to problems #2 and #4.

10 Performing

internal

analysis

Apache Zeppelin1 serves as an internal tool for conducting comprehensive

analysis on all existing data locations.

Zeppelin submits an ETL job to the EMR cluster that has access to all

mentioned S3 storage locations.

As mentioned above, it has flaws in form of problems #2 and #4 for all the

folders where optimization or finalization ETLs are working.

11 Working with

external data

warehouses

MDP plugs data to Presto and by so, also to Looker.2 Integration operates on

automated scripts; however, this solution is not scalable when applied to more

complex schemas containing nested fields, such as those found in MDRs.

Consequently, this gives rise to Problem #5: There is no scalable integration

with external data warehouses.

12 Publishing to

external

customers

BEs topics are consumed by consumer integration service that translates BEs

into specific customer-defined schemas.

MDR updates table will be referenced as updates layout. MDR finalized table and problematic

BE tables will be referenced as finalized layouts.

1 https://zeppelin.apache.org/
2 https://www.looker.com/

19

2.3 Functional requirements

The goal of this thesis is to construct a system that meets the functional requirements, some

of which have been recently introduced:

1. Can handle petabyte scale.

2. Is adaptable to different use-cases:

▪ Late arriving updates.

▪ CDC log deduplication.

3. Customizable to accommodate all use-case related peculiarities.

4. Solution is robust. System handles errors gracefully without side effects.

5. Solution avoids the small file issue, which is detrimental to query effectiveness.

6. Snapshot isolation between writers and readers.

7. Data discovery is simple.

8. Data should be readable with low data and query latency.

9. Support for various analytical procedures, such as exploring the data, trying to

understand various trends and patterns, ad-hoc analytics, complex analytics, reports,

dashboards, and more [20].

To address the existing problems, new functional requirements were established within the

design of the new system, as illustrated in Table 4.

Table 4: New functional requirements to address problems

Problem Functional requirement

Problem #1. Poor data analysis performance due to

a big number of small-sized files.

5. Solution avoids the small file issue

Problem #2: replacing files break concurrently

running queries in upstream systems.

6. Snapshot isolation between writers and

readers.

Problem #3: Same partitioning and optimizations

do not fit all use-cases.

3. Customizable to accommodate all use-

case related peculiarities.

Problem #4: High data latency and potentially

missing data.

8. Data should be readable with low data and

query latency.

Problem #5: There is no data warehouse. 7. Data discovery is simple.

The lack of utility in the Spark Java API suggests that an alternative needs to be sought out in

order to provide the necessary functionality. It is beneficial to explore alternative technologies

that offer similar capabilities to Spark Java API and determine which one is best suited to meet

the specific needs of the mentioned use-cases.

20

2.4 Novelty

The author of the paper was unable to find a comprehensive solution that adequately addressed

the problem they were attempting to solve. This highlights the need for further research and

innovation in the field to address the challenges associated with managing and analysing

complex and diverse datasets.

Historically, there has been a clear differentiation between Data Lakes and Data Warehouses;

however, Apache Hudi provides the means of connecting the two into a single entity called

Data Lakehouse. [18]

Comparison between Data Warehouse, Data Lake and Data Lakehouse is in Table 5.

Table 5. Data Warehouse, Data Lake and Data Lakehouse comparison [18]

Feature Data Warehouse Data Lake Data Lakehouse

Data Structured

Processed

Structured, semi-

structured, unstructured;

Raw

Structured, semi-structured

and unstructured.

Both processed and raw

Processing Schema-on-write Schema-on-read Schema-on-write,

Schema-on-read

Storage Expensive for large data

volumes

Designed for low-cost

storage

Designed for low-cost

storage

Agility Less agile, fixed

configuration

Highly agile, adjustable

configuration

Highly agile, adjustable

configuration

Security Mature Maturing Both mature and maturing

Users Business professionals Data Scientists et. al. Whole business environment

The system needs to be able to handle the production traffic of hundreds of thousands of records

per second, which many companies in general are now requiring. This work provides

guidelines on constructing a scalable system to manage an influx of data, as well as identifying

problems to avoid.

The author of this work identified the issues that needed to be addressed and converted them

into new functional requirements. Subsequently, they assisted in researching alternative

solutions, contributed to the design of the new system, and implemented the proposed solution.

Following the implementation, they verified the system's functionality, documented the results

and findings, and delivered the completed project.

21

3 Planning

To mitigate the problems with current design, we must look back and align the existing view

of modern data solutions and platforms to what has already been built. We need to

accommodate our existing product goals and requirements and figure out what could be

changed in existing design to reach and implement them. Because the change is fundamental,

then every viable alternative solution will be considered. [12]

Proposed design needs to mitigate mentioned problems by explicitly extracting concepts of

data lake, data warehouse and data catalogue into dedicated services which can fill the

functional requirements.

To formalize this new design, we need to create a detailed architecture that outlines the

functional and technical requirements, data flows, and the overall architecture of the new

design. This architecture includes diagrams and other helpful visualizations to explain how the

different components will interact with each other. Additionally, this architecture includes the

steps necessary for implementing the new design.

Twilio adheres to a policy of using as many managed solutions as possible to minimize

operational costs. As such, the company has chosen Amazon to host their systems. Amazon's

business model revolves around adapting open-source solutions into managed solutions.

Nevertheless, this approach does not detract from the adaptability of the solutions for use by

other organizations and companies, since the adapted open-source solutions remain open-

source and are available for use by anyone via Amazon or not.

22

3.1 Deployment model

Running an ETL job consists of multiple components:

▪ A coordinator which communicates with workers and tells them what to do.

▪ A worker which does the actual work that gets delegated to it.

▪ Underlying data storage where data gets read from and written to.

Any of the components can be either: [3]

▪ Completely on-premise, where company hosts their own hardware.

▪ Cloud instances, such as Amazon EC21, through infrastructure as a service (IaaS).

▪ Cloud service through software, platform or delivery as a service (SaaS, PaaS or DaaS).

However, since our company does not have any on-premise infrastructure and only uses cloud

instances or cloud services, on-premise deployment is not an option. Therefore, we must decide

whether to implement each component using cloud instances or cloud services.

Our company policy requires that all data storage and computational engines use cloud

services. Final option that remains is to choose whether the coordinator uses a cloud instance

or a cloud service.

Using a cloud instance provides much more flexibility in terms of customizing the instructions

which are sent to the workers making it the preferable option. Additionally, using a cloud

instance is also more cost-effective than using a licensed PaaS or SaaS on a petabyte level.2

Furthermore, cloud services widely rely on most successful open-source projects [28]. Using

these open-source projects themselves directly will accomplish the same result.

Considered options for cloud services:

▪ Google Snowflake3

▪ Amazon Redshift4

▪ Databricks Lakehouse Platform5

Given that the company is heavily dependent on Amazon's cloud stack, integrating cloud

services from another provider would likely result in significant complications. This could

include obtaining the necessary security approvals, setting up the required integrations with

existing infrastructure, and addressing compatibility issues. Therefore, with everything

considered, in the next section, only Amazon Redshift will be further considered.

1 https://aws.amazon.com/ec2/
2 https://askwonder.com/research/data-lake-warehousing-pricing-t1nu01wri
3 https://www.snowflake.com/en/
4 https://aws.amazon.com/redshift/
5 https://www.databricks.com/product/data-lakehouse

23

3.2 Technologies chosen

Currently, the data layouts are operating on the Hadoop ecosystem1; however, it would be

beneficial to take a step back and consider other fundamental alternatives:

▪ Cassandra and other key-value stores lack support for joining with external datasets and

performing aggregations, thereby rendering them unsuitable for fulfilling functional

requirement number nine. [1]

▪ Graph databases could potentially be useful, but because MDP data has little to no

relations and instead all information is already present in a single record, then it does

not make sense to use it even in conjunction with other technologies. [2]

▪ ElasicSearch2 is not meant to be used to store petabytes of data. However, they make

for a good store for aggregated results of ETL jobs. [24] Example is to run ETL jobs

on Hudi data lake and publish results to Kafka as business events, which are currently

implemented as Event Evaluation Applications seen on Figure 1. [25]

The two solutions here complement each other.

▪ Some query engines may have support for various relational database management

systems (RDBMS3) [26]. However, the query will be running RDBMS-side which

means that it will not be possible to join the dataset to external Hadoop based tables. It

will also mean that the server needs to be properly provisioned to handle the influx of

read requests and queries will be limited by server resources which results in most

solutions becoming unusable.

▪ Even though Redshift4 is built on PostgreSQL5, a RDBMS, it exceeds where others

failed. While it performs better and more cost-effectively on smaller workloads as

compared to Hadoop, the opposite can be said for large workloads where queries are

over billions of rows. For smaller workloads, Hadoop based solution remains to be

competitive and not far behind. Redshift also requires reshuffling data which slows

down the system and blocks other operations. Hadoop does not require any reshuffling.

Most of company’s data is already on Hadoop ecosystem, and in order to join Redshifts

data to it, Hadoop data needs to be loaded to Redshift. With everything considered, the

price for Redshift would be considerably higher in terms of cost and engineering work

once solution is up and running. [27, 32]

The two solutions here also complement each other. For solving the functional

requirements described in this paper, Hadoop based solution works best, but use-cases

with smaller volume, Redshift solution can be employed alongside with Hadoop.

It is safe to conclude that an alternative solution to Spark Java API on the Hadoop ecosystem

should be used. Next, a framework must be chosen which operates on Hadoop and can be

utilized by the orchestrator.

1 https://www.edureka.co/blog/hadoop-ecosystem
2 https://www.elastic.co/
3 https://www.oracle.com/database/what-is-a-relational-database/
4 https://aws.amazon.com/redshift/
5 https://www.postgresql.org/

24

There were 3 contenders when choosing the right technology for orchestrator, for which there

is comparison between Apache Hudi, Delta Lake and Iceberg is in Table 6.

Table 6. Comparison between Apache Hudi, Delta Lake, and Iceberg [23]

Feature Apache Hudi

(v0.12.2)

Delta Lake

(v2.2.0)

Iceberg

(v1.1.0)

ACID transactions + + +

File versioning

(Copy-on-Write)

+ + +

Amortized updates

(Merge-on-Read)

+ - +

Concurrency

(Optimistic-Concurrency-Control)

+ + +

Time travel

(Point-in-Time queries)

+ + +

Deduplication + + +

Record level indexes

(Efficient updates to data)

+ - -

Automated file sizing + - -

Compaction/Clustering

(Combining files)

+ - -

Automatic cleaning

(Old version deletion)

+ - -

Schema evolution + + +

Disaster recovery

(Savepoints)

+ + -

Automatic monitoring

(Publishes metrics)

+ - -

The feature support comparison presented in this table is limited and specifically tailored to the

needs of the author. It does not encompass all features of the frameworks and only focuses on

those that are relevant for the current work.

For orchestrator, Hudi was chosen because of its resiliency, transactionality, customizability,

record level indexing feature and in general, it had the potential to fill all the functional

requirements. [19]

25

Finally, a decision must be made on the computational engine on which to run Hudi and the

location in which to store the resulting data.

Considered query and analytics engines which operate on Hadoop:

▪ Apache Tez1 is partially supported by Hudi. It is possible to read though Tez, but not

incrementally load new data. [6] In addition, it has low performance. [22]

▪ Apache Storm2 is for streaming workloads where output source benefits from small

batches or record level writes, which is not the case with Hudi making it not the correct

tool for the job. [13]

▪ Impala3, DorisDB4, StarRocks5, Presto etc are great for running analytical queries, but

they are not made to write data. However, it is possible to query data via these systems

through Hudi or Hive connector. [19]

▪ Pivotal HWAQ6 is primarily meant for more computational workloads. [22] While

current workload is an I/O workload.

▪ Apache Hama7 is meant for processing graphs. [16]

▪ Spark is fully supported by Hudi [19]. Spark also has high performance [23].

For workers, a popular analytics engine, Spark, was chosen, because infrastructure for it was

already there and there were no better alternatives for which Hudi or equivalent alternative

already had write support for.

Technologies which were considered for storing tables:

▪ Apache Ignite8 is effective for small workloads, but since the solution needs to handle

petabyte scale, then storing all of it in RAM is not feasible. [17]

▪ Hadoop Distributed File System (HDFS) is a good option to achieve low latencies, so

it is used when spilling shuffle data to disk between Spark job stages, but it’s expensive

and hard to integrate with for table data storage. [4]

▪ Amazon S3 is cheap, robust, has excellent availability and is easy to set up, maintain

and integrate with. [31]

In terms of storage, Amazon S3 was selected as it was deemed superior to other options

available.

Having selected the appropriate technologies, the subsequent step is to identify configurations

that will enable the fulfilment of the functional requirements.

1 https://tez.apache.org/
2 https://storm.apache.org/
3 https://impala.apache.org/
4 https://doris.apache.org/
5 https://www.starrocks.io/
6 https://hawq.apache.org/
7 https://hama.apache.org/
8 https://ignite.apache.org/

26

3.3 Hudi configurations

Hudi offers a variety of configurations, which are taken from official Hudi homepage. [19]

Most impactful one being the table type configuration.

3.3.1 Table types

Copy-on-Write (CoW) table stores data exclusively in columnar file formats. Updates are

performed by versioning and rewriting the files, with a synchronous merge taking place during

write. File slices only contain the base/columnar file, and each commit produces new versions

of the base files. This means that only columnar data exists, leading to higher write

amplification (number of bytes written for 1 byte of incoming data) and zero read amplification.

This is a desirable property for analytical workloads, which are predominantly read-heavy.

The CoW table aims to improve how tables are managed by:

▪ Providing first-class support for atomically updating data at the file-level, instead of

rewriting whole table or partition.

▪ Offering the ability to incrementally consume changes, as opposed to scanning the

whole table or partition.

▪ Allowing tight control of file sizes to maintain excellent query performance.

Merge-on-Read (MoR) table stores data using a combination of columnar and row-based file

formats. Updates are logged to delta files, which are later compacted to produce new versions

of the base files, both synchronously and asynchronously.

MoR is a superset of CoW since it still supports read-optimized queries of the table by exposing

only the base/columnar files in the latest file slices. Additionally, it stores incoming upserts for

each file group in a row-based delta log, to support snapshot queries by applying the delta log

onto the latest version of each file ID on-the-fly during query time. Thus, this table type

attempts to balance read and write amplification intelligently, to provide near real-time data.

The compactor is especially important here, since it needs to carefully choose which delta log

files should be compacted onto their columnar base files, to keep query performance in check.

The intention of the MoR table is to enable near real-time processing directly on top of DFS,

rather than copying data out to specialized systems which may not be able to handle the data

volume. There are also a few secondary benefits such as reduced write amplification by

avoiding synchronous merge of data.

Given that enabling near real-time data is not currently a requirement, then all tables will be in

CoW table type as it is easier to set up and maintain. Since MoR is a superset of CoW, then

table type can always be upgraded from CoW to MoR when it becomes a requirement.

27

3.3.2 Operation types

Another impactful configuration is the operation type which is used when writing data.

For UPSERT operation, input records are first tagged as inserts or updates by looking up the

index. The records are ultimately written after heuristics are run to determine how best to pack

them on storage to optimize for things like file sizing. This operation is recommended for use-

cases like database change capture where the input almost certainly contains updates. The

target table will never show duplicates.

INSERT operation is very similar to upsert in terms of heuristics and file sizing but completely

skips the index lookup step. Thus, it can be a lot faster than upserts for use-cases like log de-

duplication. This is suitable for use-cases where the table can tolerate duplicates and just needs

the transactional writes/incremental pull/storage management capabilities of Hudi.

Both upsert and insert operations keep input records in memory to speed up storage heuristics

computations (among other things) and thus can be cumbersome for initial loading and

bootstrapping a Hudi table at first. BULK_INSERT operation provides the same semantics as

insert, while implementing a sort-based data writing algorithm, which can scale very well for

several hundred TBs of initial load. However, this just does a best-effort job at sizing files

rather than guaranteeing file sizes like inserts and upserts do.

Finalized layouts which have a functional requirement of only containing the latest version of

the record will use UPSERT operation. The updates layouts, which do not have a hard

requirement on containing duplicates, will use INSERT operation, which does not guarantee

record key uniqueness, but still delivers good results for much lower performance costs. When

backfilling the tables, BULK_INSERT operation can be used for fastest results.

28

3.3.3 Index types

Hudi provides efficient upserts by mapping a given hoodie key, which consists of a record key

and a partition path, consistently to a file identifier via an indexing mechanism. This mapping

between record key and file group/file id, never changes once the first version of a record has

been written to a file. This enables fast upsert and delete operations by avoiding the need to

join against the entire dataset to determine which files to rewrite.

Hudi exposes the following index types out of the box.

▪ Bloom Index employs bloom filters built out of the record keys, optionally also pruning

candidate files using record key ranges.

▪ Simple Index performs a lean join of the incoming update or delete records against

keys extracted from the table on storage.

▪ HBase Index manages the index mapping in an external Apache HBase1 table, which

is a key/value store. This will be prohibitively expensive for big volumes compared to

other index types.

Bloom index and Simple index can either be per partition or over the whole table. If the index

should span over the whole table, then the global variant of the index should be used.

Existing finalized tables will use Bloom indexing, as it is the most effective option given the

nature of the data where there are multiple updates to a single record over the span of weeks.

By default, bloom filters are stored in data files, but they can also be stored in metadata table,

which make lookups faster.

1 https://hbase.apache.org

29

3.4 First iteration

After evaluating various technologies and finalizing the functional requirements with

architects, author proceeded with the first iteration. In the first iteration of the solution, key

changes are made to address the issues with the existing design and to fulfil the technical

functional requirements, including poor analysis performance, high data latency, and missing

data. These requirements will be further elaborated in Table 8. The primary aim of the first

iteration is to maximize the use of the existing infrastructure while evaluating the feasibility of

the proposed technologies. The design for the first iteration is illustrated in Figure 2.

Figure 2. Architecture diagram of first iteration

30

Domains of the first iteration illustrated in Figure 2 are described in Table 7.

Table 7. Domains and descriptions of first iteration

Domain Description and Details

1 Ingress Ingress domain remains the same as described in Table 1.

2 Data Lake Publisher Raw bucket is partitioned by year, month, day and hour partitions like

the pervious updates bucket, but with the partitioning timestamp as

current timestamp. This approach prevents late updates from creating

small files that slow down Spark. [17]

Every time a new file is uploaded to S3, the bucket is configured to send

a notification to Simple Notification Service (SNS), which is a

messaging service that enables applications, end-users, and devices to

send and receive notifications. The notification is then fanned out to

Simple Queue Service (SQS), a fully managed message queuing service

that enables decoupling and scaling of microservices, distributed

systems, and serverless applications. [29]

The Hudi publisher periodically polls new files from SQS and then

processes them into a Hudi table based on the provided configurations.

SQS is a re-playable input source, so if Hudi application runs into an

exception, then it will not result in data loss. [5]

3 ETL Process Data is written to S3 using Hudi writer, which operates on EMR nodes

that use Spark. After which the Hudi reader can be used to read that

table through various query engines, making it into a fully functioning

data lake.

4 ETL Configuration Raw instructions for processing items in every SQS queue are stored in

GitHub1. GitHub is a web-based platform for version control and

collaboration that allows developers to store and manage their code

repositories. Any configuration changes go through a review process

and are automatically propagated to every environment by a pipeline

after being approved.

The Apache Hudi framework serves as an integral element within the overarching architecture.

It constitutes the core technology that facilitates the realization of the design objectives.

1 https://github.com/

31

The first iteration addressed majority of the challenges associated with the existing architecture,

as explicated in Table 8.

Table 8. First iteration to solve the problems

Problem Resolution

Problem #1. Poor data analysis

performance due to a big number of

small-sized files.

Hudi supports file clustering1 and compaction2, which

allow combining existing data and appending new data

to existing data respectively, resulting in larger files.

Problem #2: replacing files break

currently running queries in upstream

systems.

Whenever Hudi writes new data, it creates a new

version of the file and later cleans up the old files to

reclaim space using the cleaner service3 once the files

are no longer used.

Problem #3: Same partitioning and

optimizations do not fit all use-cases.

Here partitioning and general optimization scheme is

customizable and is stored in GitHub which eventually

makes it to the target Hudi table, allowing each table to

be configured differently.

Problem #4: High data latency and

potentially missing data.

Because raw bucket has unpartitioned data, then all data

gets handled with same priority, and so, lowering worst

case data latency. Hudi is also much more performant,

because it only updates required files not all files in a

partition.

And because items from SQS are deleted only after that

data made it to Hudi table, then no data will go missing.

Problem #5: There is no data warehouse. This will be fully resolved in second iteration with the

introduction of data catalogues, where Hudi allows

updating partition data straight from writer itself after

committing changes.4

The first iteration of the project has been a success, as it has shown that it is feasible to use

existing infrastructure and Hudi framework to build the proposed system. Proof of the

resolution will be provided in the results section of this paper.

However, it was necessary to fine-tune the Spark configurations to handle large volumes of

data, and the methodology for doing so is discussed in the next section of this paper.

1 https://hudi.apache.org/docs/clustering
2 https://hudi.apache.org/docs/compaction
3 https://hudi.apache.org/docs/hoodie_cleaner
4 https://hudi.apache.org/docs/syncing_aws_glue_data_catalog

32

3.5 Spark configurations

Spark operates on a batch processing principle, where batch jobs are organized into directed

acyclic graphs (DAGs). This enables Spark to efficiently process data in batches, by breaking

down a batch job into separate tasks and optimizing their execution accordingly. Tasks are

constructed in a way that all updates for a single file-group are grouped up into a single task.

The Bloom index filter is used to efficiently narrow down a large dataset by discarding files

that do not match the given criteria. The remaining files are then sorted and merged using a

Sort-Merge Join algorithm to return a single, sorted set of results. For upsert, merging consists

of updating the existing row with custom logic. For our use-cases the updates are cumulative

for now, so simply replacing the old version with new version is enough. In future, when

different merging logic is needed, then it can be implemented. This algorithm is particularly

useful when dealing with large datasets, as it can quickly narrow down the search and

efficiently return the desired result, which all Hudi tables use when upserting data. [14]

Due to the nature of our data, which involves multiple updates per record across significant

number of partitions, we benefit from using large batches. This is because it helps us reduce

the overhead associated with multiple overlapping jobs:

▪ Updates against the same record.

▪ Updates against the same file group.

When processing tasks, Spark tends to run out of memory, so it is important to ensure that

Spark has enough of memory to process the task by increasing the parallelism for different

stages of jobs. As mentioned before, Hudi framework itself already partitions incoming data

optimally to groups where updates to same file groups are grouped together, so increasing

parallelism works out of the box.

Spark executors are individual processes launched for an application on a given worker node,

and they are responsible for executing tasks. Executor configurations are computed based on

the task size, which is deterministic since input size and parallelism are known [11]. For

example, if we have 1 TB of files to process with parallelism of 1000, then each executor will

be assigned 1 GB chunk of data to be processed.

Spark reads task input from HDFS and writes task output to HDFS. It is essential to ensure that

HDFS is properly configured, which can be a lengthy process [8]. However, since we are using

Amazon EMR as our MapReduce cluster, configuring HDFS is drastically simplified. All that

is required is to ensure that there is sufficient disk space and IOPS available on the machines,

eliminating the need for lengthy HDFS configuration processes.

33

3.6 Second iteration

In the previous implementation, a significant limitation was the inability to query data from

external systems, such as Presto, Athena, and Looker. As a result, the majority of data analysts

and scientists within the company could not access the data for their use. The second iteration

of the solution does not introduce fundamental changes to the architecture. Instead, it aims to

enhance the visibility of the solution throughout the organization and broaden its capabilities

to accommodate a more diverse range of use cases. For instance, this iteration allows analysts

to execute queries on messaging data via existing Amazon offerings like Athena and data

platform team offerings, such as Presto. Consequently, this enables the creation of dashboards,

reports, and other metrics, which can inform business decisions. Additionally, it allows for the

results to be sent to external systems for further processing and the development of new systems

through ETL jobs. The architecture diagram for the second iteration can be found in Figure 3.

Figure 3: Architecture diagram of second iteration

34

Domains are further elaborated in Table 9.

Table 9. Domains and descriptions of second iteration

Domain Description and Details

Ingress System Ingress domain remains as is.

Publisher System Loading configurations remains as is. Alternative frameworks to orchestrate

Hudi publisher application were considered, but not used.

Transform System A new system where people can run custom ETL jobs to create new datasets

via AWS Glue1, which also has support for incrementally loading new data

and updating existing datasets using Hudi framework [21]. Specifics of this is

out of scope of this work.

Analysis System Analysis system now includes an integration with data catalog, for which

AWS Glue Data Catalog was chosen. Data catalog is required to integrate with

other systems. For analysis various tools can be used, such as Zeppelin, Presto,

AWS Glue, which discover datasets from data catalog.

“Bring Your Own

Data” System

We provide a way for teams who already have their data and are not interested

in migrating to our solution to expose their data to the rest of the company.

They can register tables which point to their data source in our data catalog

and run ETL jobs via provided tools such as AWS Glue. Specifics of this is

out of scope of this work.

Publisher orchestrator and data catalog choice will be explained in their respective chapters.

1 https://aws.amazon.com/glue/

35

3.7 Orchestrating Hudi application

To orchestrate the Hudi application, three frameworks are supported:

▪ Spark Streaming1

▪ Apache Flink2

▪ Native Spark writer

Both Flink and Spark Streaming are open-source stream processing frameworks that can

process near-real-time data from Apache Kafka.

Flink uses a streaming-first approach and processes data in a streaming fashion as it arrives,

while Spark Streaming uses a batching approach and stores intermediate results on HDFS. This

difference affects both the latency and the throughput of the system [15]. However, Flink can

also stream data in batches. Because Hudi was initially developed to be run on Spark, it uses

batch jobs by design and does not benefit much from the streaming capabilities offered by Flink

[30]. Moreover, Spark Streaming is more widely used within the company and thus will be

preferred.

In the Spark Streaming approach, the job polls batches of data from Kafka and submits them

as Spark jobs. The combination of Kafka's replayable input source and Hudi's transactional

batch writes ensures data consistency. Both systems are also configured to withstand hardware

and software failures, ensuring high availability and reliability [5]. Migrating from the SQS

solution to the Spark Streaming solution would be straightforward, as both solutions utilize

Apache Spark as the MapReduce engine.

1 https://spark.apache.org/docs/latest/streaming-programming-guide.html
2 https://flink.apache.org/

36

Comparison between SQS-based solution and Spark streaming is outlined in Table 10.

Table 10: Comparison between SQS-based solution and Spark Streaming

Comparison SQS-based solution Spark Streaming

Extra latency Up to 10 second extra latency

(I/O time of consuming Kafka micro-

batches and storing combined batch

in S3)

No extra latency

Backup system Built-in

(Raw layout in S3 acts as a long-term

backup system)

Another system needs to be used

(Kafka cannot cost-effectively store data

long term)

Dependencies MHS, SQS, SNS, Kafka Kafka

Scheduling Dynamic scheduling

(Next job waits for previous one

before scheduling)

Fixed scheduling

(Job is scheduled in a fixed interval)

Operational

complexity

Low

(Batch jobs do not need to finish in

certain amount of time)

High

(Every batch job needs to finish within set

time, so more fine tuning is required)

Autoscaling Possible

(Batch job configuration can be

calculated off input batch)

Not possible

(Once streaming app is running, there is no

configuring batch jobs at runtime)

Backfilling Easy

(Only file names need to be

republished to SQS)

Hard

(Full record needs to be published to Kafka)

Consistency Ensured Ensured

Availability High High

After comparing SQS-based solution to Spark Streaming solution, it was decided to keep using

SQS-based solution, as Spark Streaming did not provide any required benefits over the current

solution.

37

3.8 AWS Glue Data Catalog

The AWS Glue Data Catalog acts as a Hive metastore and is a metadata repository that stores

and organizes information about data sources, their structure, and their properties. It allows

data warehouses and data lakes to access and query data stored in different formats without the

need to manually manage these data sources or the data itself [21]. This addresses problem #5

as most leading query engines support tables in the Hudi format and Hive metastores [19].

Since the company has an initiative to use cloud services for databases, AWS Glue was chosen

as it was found to be easy to integrate with the existing infrastructure and no other alternatives

were considered.

Data discovery is improved through the use of indexes, which enable predicate pushdown on

the query side. This involves creating an index on a specific data field that can be used to filter

out records that do not match the given criteria. Indexes can be used to optimize query

execution times by reducing the amount of data that needs to be scanned [10].

For example, the query on Figure 4 filters by indexed fields.

Figure 4. Example of predicate pushdown

In this query:

▪ year, month, and day fields are indexed fields.

▪ messaging_data_platform is the database name in Hive metastore.

▪ finalized is the table name in database.

The same query can be executed from any query engine that is integrated with our Hive

metastore.

38

4 Results

This section provides proof of the successful implementation of PoC, with detailed evidence

demonstrating how the system fulfils each functional requirement.

4.1 Can handle petabyte scale

Figure 5 provides a diagram of the system's functional requirement to manage petabyte-scale

datasets. The histogram displays the growth of datasets over time, highlighting the system's

expanding capacity to handle large amounts of data. Purple lines represent MDR layouts, while

blue lines indicate BE layouts.

The lines' gradual upward movement demonstrates the system's steady progress towards

achieving petabyte levels, successfully addressing the functional requirement of handling

petabyte-scale datasets.

Figure 5. S3 bucket size

39

4.2 Late arriving updates

Figure 6 provides a screenshot of the system's functional requirement to handle late updates,

which previously went missing. The diagram presents SQL queries joining input data (raw

table) to output data (finalized table) using a left anti join. The left anti join operation

effectively signifies the inclusion of all elements found in the raw dataset that are not present

in the finalized table. The raw table contains all data partitioned by the current timestamp,

generated by the MHS as described in the first iteration. Demonstrating that all data from the

raw layout makes it to the finalized table also confirms that all late updates are successfully

included. This figure highlights the system's ability to manage late updates and ensure data

integrity, fulfilling the functional requirement.

Figure 6. Data consistency SQL query

For the finalized table, a Bloom Index is employed, which uses bloom filter to identify the files

requiring updates. Application logs indicate a false-positive rate of approximately 50%,

suggesting room for improvement through bloom filter configuration tuning. Increasing the

bloom filter size can reduce the false-positive rate while also increasing the filter size on disk.

To minimize lookup latency, bloom filters could be stored in a metadata table.

40

4.3 CDC log deduplication

Figure 7 provides a screenshot of the system's functional requirement to avoid duplicate

records, ensuring data accuracy and integrity. The diagram displays an SQL query that

compares the total number of records with the total number of distinct records identified by the

msgid field. The equality of these results signifies that the table is free of duplicates.

The system employs UPSERT when adding new data to the table, which facilitates updating

existing records or inserting new ones as necessary. This approach effectively eliminates

duplicate entries and contributes to the system's ability to maintain data accuracy.

Figure 7. Finalized layout deduplication

41

4.4 All use-case related peculiarities are customizable

Figure 8 presents a table of the system's functional requirement to be adaptable and

configurable for different use-cases, ensuring flexibility and versatility. The diagram

showcases some of the most impactful configurations for a table, with each table being able to

accommodate different values compared to each-other, which was not the case before, as all

BEs shared the same configurations.

Figure 8. Runtime configuration

In total, there are over 100 configurations that can be modified to suit specific needs. [19]

42

4.5 Solution is robust

Figure 9 provides a diagram of the system's functional requirement to be robust, demonstrating

its ability to handle transient exceptions and recover from them automatically. The diagram

features a bar histogram with rollbacks, where app continues to function normally after rolling

back changes made during a failed write. Both blue and purple bars are rollbacks which

happened to MDR finalized table. The lack of further rollbacks indicates that table was

recovered to stable state and continues to function normally.

Figure 9. Rolling back changes

Additionally, non-committed changes will not be visible on the query side at any point in time.

43

4.6 Solution avoids the small file issue

Figure 10 presents a sorted table of the system's functional requirement to circumvent small

file issue, ensuring that queries run as efficiently as possible. [17]

Figure 10. Files in S3

The diagram features a screenshot of the first few data files from a random partition, ordered

in increasing order by size. As can be observed from the data presented in Figure 10, all files

fall roughly within the 100MB range, with no data files smaller than 1MB.

44

4.7 Snapshot isolation between writers and readers

Figure 11 provides a representation of the system's functional requirement to maintain isolation

between writers and readers, achieved by employing snapshot isolation. The diagram includes

the first few rows listing the timestamp when the query finished, and the number of rows

queried from selected partitions. Additionally, the stack trace in Figure 11 indicates that the

old versions were successfully cleaned after 22 hours of running queries on same metadata.

Testing environment was modified to re-use the same table metadata between runs instead of

refreshing it.

Figure 11. Snapshot isolation logs

Hudi's versioning mechanism enables snapshot isolation by allowing specific versions of the

table to be queried as long as they are retained. During the test, which lasted approximately a

day, 20 versions were kept before they were cleaned where writer app execution time was

around an hour, resulting in the longest supported query time exceeding 20 hours. Each query

reads the latest version of the table when it is executed, ensuring that every query can run for

at least 20 hours with the given configuration. Moreover, the query returned the same result for

all these runs, reinforcing the isolation as the data for the given version remained unchanged.

45

4.8 Data discovery is simple

Figure 12 displays a screenshot showcasing the current tables constructed using Hudi. The

integration of the AWS Glue Data Catalog allows for seamless data discovery across various

query engines, enhancing the system's overall usability and accessibility.

Figure 12. AWS Glue Data Catalog

Additionally, Figures 14, 15, and 16 present examples of queries from different query engines

performed on these tables, demonstrating the versatility and interoperability of the system. By

leveraging the AWS Glue Data Catalog and Hudi, the system successfully fulfills the functional

requirement of being easily discoverable, thereby facilitating efficient and effective data

analysis and management for various use cases.

46

4.9 Data should be readable with low data and query latency

Figure 13 effectively demonstrates the system's functional requirement for low data latency.

In the past, data latency issues were significant, with some data being delayed by several days

or even missing indefinitely. However, the current system has successfully addressed these

issues, ensuring improved data latency that is now tied to the app execution time, as shown in

Figure 13, where MDR finalized execution time is highlighted, which is computationally the

most expensive job.

Although data latency can be further reduced by converting the table type to MoR, it is

currently not a requirement and thus falls beyond the scope of this work. Nevertheless, the

system has significantly improved its data latency, reducing it from multiple days to the

duration of the app execution time.

Furthermore, the subsequent Figures 14 and 16 in the following section will showcase the

system's low query latency, further solidifying its success in meeting the functional

requirement for enhanced efficiency and performance in data processing and analysis.

Figure 13. App execution duration

47

4.10 Support for various analytical procedures

There are various analytical procedures, such as exploring the data, trying to understand various

trends and patterns, ad-hoc analytics, complex analytics, reports, dashboards, and more [20].

In the end, however, they all boil down to SQL queries through various query engines. This

section covers example queries from two prominent query engines: Presto and Spark SQL.

Amazon offers a serverless Presto solution called Athena, which enables data querying via

SQL. Figure 14 features an example Presto query, which scanned one day's worth of data in

just 13 seconds.

Figure 14. Daily aggregation via Presto

The query performance demonstrated in these examples appears to satisfy the requirements of

the relevant stakeholders. It is crucial to note that query execution times should not be

compared directly, as the duration depends on the resources allocated for executing the query,

which is done automatically by Presto.

48

SQL syntax for operating on lists and maps, and other more complex analytical procedures

differ based on the query engine used, but in general, all data types are supported and can be

queried. The following figure shows example Presto queries for nested fields, filtering,

aggregation, ordering, and operating on lists and maps as shown on Figure 15.

Figure 15: Schema peculiarities are supported

Another popular query engine is Spark SQL, which also allows for data querying. Figure 16

includes an example Spark SQL query that scanned one day's worth of data in 30 seconds.

Figure 16. Daily aggregation via Spark SQL

In conclusion, data can be used for various analytical procedures and queries run fast enough.

49

4.11 Future works

The current solution is satisfactory and fulfils the functional requirements. However, more

functional requirements may appear in the future, such as:

▪ Less than 10-minute data latency, which require the following but not limited to:

- Converting table to MoR

- Bloom filter tuning

- Enabling metadata table

▪ Support for custom merging logic on table side

For these potential future requirements, there are solutions with the new design.

50

5 Summary

In summary, Twilio's adoption of the Apache Hudi framework provides a powerful tool for

managing and accessing its Data Lakehouse in an efficient manner. With Apache Hudi's

features, Twilio can perform incremental updates on its Data Lakehouse, making it easier to

maintain a reliable source of messaging data.

The Twilio's MDP team has implemented a modern design that addresses the shortcomings of

the previous design, meets the functional requirements needed for an efficient system and

better-prepares for more requirements to come down the line. This work has resulted in a fully

functioning data lakehouse capable of handling petabyte scale, adaptability to different use-

cases, and supports various analytical procedures. This design serves as a reusable asset for

other organizations and companies seeking an efficient and scalable data management system.

The Twilio MDP team leveraged the technologies and frameworks mentioned in Table 11 to

achieve the desired situation.

Table 11. List of technologies and frameworks used

System Technology

SQL query

engines

Amazon Athena (Amazon managed PrestoDB) and Spark SQL via Apache Zeppelin

Analytics

engine

Amazon Elastic MapReduce (Amazon managed Apache Spark cluster)

Hive

metastore

AWS Glue data catalog (Amazon managed Apache Hive metastore)

Output Amazon S3

Input Amazon S3 with file notifications to Amazon SNS which gets fanned out to Amazon SQS

or Apache Kafka through Apache Spark Structured Streaming framework

Incremental

processing

Apache Hudi

Apache Hudi is the epicentre of all systems, with every other system leveraging or being

utilized by it.

51

References

1. A. Chebotko, A. Kashlev and S. Lu, "A Big Data Modeling Methodology for Apache

Cassandra," 2015 IEEE International Congress on Big Data, 2015, pp. 238-245, doi:

10.1109/BigDataCongress.2015.41.

2. H. R. Vyawahare, P. P. Karde and V. M. Thakare, "A Hybrid Database Approach Using

Graph and Relational Database," 2018 International Conference on Research in Intelligent

and Computing in Engineering (RICE), 2018, pp. 1-4, doi: 10.1109/RICE.2018.8509057.

3. E. Zagan and M. Danubianu, "Cloud DATA LAKE: The new trend of data storage," 2021 3rd

International Congress on Human-Computer Interaction, Optimization and Robotic

Applications (HORA), 2021, pp. 1-4, doi: 10.1109/HORA52670.2021.9461293.

4. A. Jamal, R. Fleiner and E. Kail, "Performance Comparison between S3, HDFS and RDS

storage technologies for real-time big-data applications," 2021 IEEE 15th International

Symposium on Applied Computational Intelligence and Informatics (SACI), 2021, pp.

000491-000496, doi: 10.1109/SACI51354.2021.9465594.

5. G. van Dongen and D. V. D. Poel, "A Performance Analysis of Fault Recovery in Stream

Processing Frameworks," in IEEE Access, vol. 9, pp. 93745-93763, 2021, doi:

10.1109/ACCESS.2021.3093208.

6. K. Rattanaopas, "A performance comparison of Apache Tez and MapReduce with data

compression on Hadoop cluster," 2017 14th International Joint Conference on Computer

Science and Software Engineering (JCSSE), 2017, pp. 1-5, doi:

10.1109/JCSSE.2017.8025950.

7. P. Le Noac'h, A. Costan and L. Bougé, "A performance evaluation of Apache Kafka in

support of big data streaming applications," 2017 IEEE International Conference on Big Data

(Big Data), 2017, pp. 4803-4806, doi: 10.1109/BigData.2017.8258548.

8. D. Wu and A. Gokhale, "A self-tuning system based on application Profiling and

Performance Analysis for optimizing Hadoop MapReduce cluster configuration," 20th

Annual International Conference on High Performance Computing, 2013, pp. 89-98, doi:

10.1109/HiPC.2013.6799133.

9. B. R. Hiraman, C. Viresh M. and K. Abhijeet C., "A Study of Apache Kafka in Big Data

Stream Processing," 2018 International Conference on Information , Communication,

Engineering and Technology (ICICET), 2018, pp. 1-3, doi: 10.1109/ICICET.2018.8533771.

10. A. Bogatu, A. A. A. Fernandes, N. W. Paton and N. Konstantinou, "Dataset Discovery in

Data Lakes," 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas,

TX, USA, 2020, pp. 709-720, doi: 10.1109/ICDE48307.2020.00067.

11. N. Nguyen, M. M. H. Khan, Y. Albayram and K. Wang, "Understanding the Influence of

Configuration Settings: An Execution Model-Driven Framework for Apache Spark Platform,"

2017 IEEE 10th International Conference on Cloud Computing (CLOUD), 2017, pp. 802-

807, doi: 10.1109/CLOUD.2017.119.

12. J. Singh, G. Singh and B. S. Bhati, "The Implication of Data Lake in Enterprises: A Deeper

Analytics," 2022 8th International Conference on Advanced Computing and Communication

Systems (ICACCS), 2022, pp. 530-534, doi: 10.1109/ICACCS54159.2022.9784986.

13. J. Bang and M. -J. Choi, "Docker environment based Apache Storm and Spark Benchmark

Test," 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS),

Daegu, Korea (South), 2020, pp. 322-325, doi: 10.23919/APNOMS50412.2020.9237049.

14. Y. Tyryshkina, "Understanding join strategies in distributed systems," 2021 International

Seminar on Electron Devices Design and Production (SED), 2021, pp. 1-4, doi:

10.1109/SED51197.2021.9444489.

15. Katsifodimos, Asterios & Schelter, Sebastian. (2016). Apache Flink: Stream Analytics at

Scale. 193-193. doi: 10.1109/IC2EW.2016.56.

52

16. K. Siddique, Z. Akhtar, E. J. Yoon, Y. -S. Jeong, D. Dasgupta and Y. Kim, "Apache Hama:

An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications,"

in IEEE Access, vol. 4, pp. 8879-8887, 2016, doi: 10.1109/ACCESS.2016.2631549.

17. C. -S. Stan, A. -E. Pandelica, V. -A. Zamfir, R. -G. Stan and C. Negru, "Apache Spark and

Apache Ignite Performance Analysis," 2019 22nd International Conference on Control

Systems and Computer Science (CSCS), 2019, pp. 726-733, doi: 10.1109/CSCS.2019.00129.

18. D. Oreščanin and T. Hlupić, "Data Lakehouse - a Novel Step in Analytics Architecture," 2021

44th International Convention on Information, Communication and Electronic Technology

(MIPRO), 2021, pp. 1242-1246, doi: 10.23919/MIPRO52101.2021.9597091.

19. Apache Hudi Overview In: Hudi [Internet]. [cited 20 Nov 2022]. Available:

https://hudi.apache.org/docs/overview

20. A. Cuzzocrea, "Big Data Lakes: Models, Frameworks, and Techniques," 2021 IEEE

International Conference on Big Data and Smart Computing (BigComp), 2021, pp. 1-4, doi:

10.1109/BigComp51126.2021.00010.

21. Data Catalog and crawners in AWS Glue In: AWS Glue [Internet]. [cited 5 Mar 2023].

Available: https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html

22. X. Chen, L. Hu, L. Liu, J. Chang and D. L. Bone, "Breaking Down Hadoop Distributed File

Systems Data Analytics Tools: Apache Hive vs. Apache Pig vs. Pivotal HWAQ," 2017 IEEE

10th International Conference on Cloud Computing (CLOUD), 2017, pp. 794-797, doi:

10.1109/CLOUD.2017.117.

23. Apache Hudi vs Delta Lake vs Apache Iceberg - Lakehouse Feature Comparison In:

OneHouse [Internet]. [cited 20 Nov 2022]. Available: https://www.onehouse.ai/blog/apache-

hudi-vs-delta-lake-vs-apache-iceberg-lakehouse-feature-comparison

24. D. Chen et al., "Real-Time or Near Real-Time Persisting Daily Healthcare Data Into HDFS

and ElasticSearch Index Inside a Big Data Platform," in IEEE Transactions on Industrial

Informatics, vol. 13, no. 2, pp. 595-606, April 2017, doi: 10.1109/TII.2016.2645606.

25. Incremental Processing on the Data Lake [Internet]. [cited 11 Mar 2023]. Available:
https://hudi.apache.org/blog/2020/08/18/hudi-incremental-processing-on-data-lakes/

26. Athena data source connectors [Internet]. [cited 11 Mar 2023]. Available:

https://docs.aws.amazon.com/athena/latest/ug/connectors-prebuilt.html

27. Hadoop vs. Redshift [Internet]. [cited 11 Mar 2023]. Available:

https://www.integrate.io/blog/hadoop-vs-redshift/

28. N. Yang, I. Ferreira, A. Serebrenik and B. Adams, "Why do projects join the Apache

Software Foundation?," 2022 IEEE/ACM 44th International Conference on Software

Engineering: Software Engineering in Society (ICSE-SEIS), Pittsburgh, PA, USA, 2022, pp.

161-171, doi: 10.1145/3510458.3513006.

29. AWS SNS vs SQS: Key differences which to use [Internet]. [cited 17 Mar 2023]. Available:

https://ably.com/topic/aws-sns-vs-sqs

30. Apache Hudi meets Apache Flink [Internet]. [cited 17 Mar 2023]. Available:

https://hudi.apache.org/blog/2020/10/15/apache-hudi-meets-apache-flink/

31. Amazon S3 [Internet]. [cited 18 Mar 2023]. Available: https://aws.amazon.com/s3/

32. Amazon Redshift vs Hadoop [Internet]. [cited 30 Mar 2023]. Available:

https://hevodata.com/blog/amazon-redshift-versus-hadoop/

33. Hadoop ecosystem [Internet]. [cited 30 Mar 2023]. Available:

https://www.edureka.co/blog/hadoop-ecosystem

34. Introduction to Presto (PrestpDB). [Internet]. [cited 30 Mar 2023]. Available:

https://aws.amazon.com/big-data/what-is-presto/

35. Write A Spark Application. [Internet]. [cited 30 Mar 2023]. Available:

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-application.html

36. What is Amazon DynamoDB. [Internet]. [cited 30 Mar 2023]. Available:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

http://paperpile.com/b/a3uglR/WITN
https://hudi.apache.org/docs/overview
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
http://paperpile.com/b/a3uglR/WITN
http://paperpile.com/b/a3uglR/WITN
https://www.onehouse.ai/blog/apache-hudi-vs-delta-lake-vs-apache-iceberg-lakehouse-feature-comparison
https://www.onehouse.ai/blog/apache-hudi-vs-delta-lake-vs-apache-iceberg-lakehouse-feature-comparison
http://paperpile.com/b/a3uglR/WITN
https://hudi.apache.org/blog/2020/08/18/hudi-incremental-processing-on-data-lakes/
https://docs.aws.amazon.com/athena/latest/ug/connectors-prebuilt.html
https://www.integrate.io/blog/hadoop-vs-redshift/
https://ably.com/topic/aws-sns-vs-sqs
https://hudi.apache.org/blog/2020/10/15/apache-hudi-meets-apache-flink/
https://aws.amazon.com/s3/
https://hevodata.com/blog/amazon-redshift-versus-hadoop/
https://www.edureka.co/blog/hadoop-ecosystem
https://aws.amazon.com/big-data/what-is-presto/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-application.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

53

Appendix 1 – Non-exclusive licence for reproduction and

publication of graduation thesis1

I, Enrico Vompa

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis

"Data Lakehouse Architecture for Big Data with Apache Hudi", supervised by Tauno

Treier.

1.1. to be reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of Tallinn

University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be entered in

the digital collection of the library of Tallinn University of Technology until expiry of

the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-exclusive

licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

08.05.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis that has

been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based on the joint

creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to reproduce

and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be valid for the period.

54

Appendix 2 – Two-week aggregation query from Looker running on Presto in 34 seconds

55

Appendix 3 – Hudi writer app durations

56

Appendix 4 – DataHub view of Glue Metastore

57

Appendix 5 – MDR Finalized app Executors page in Spark history service

58

Appendix 6 – MDR Finalized app Stages page in Spark history service

59

Appendix 7 – MDR Finalized app Jobs page in Spark history service

