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netics, Tallinn University of Technology, Tallinn, Estonia

DSc, Directeur de Rechearche CNRS, Claude H. Moog,
IRCCyN, Ecole Centrale de Nantes, Nantes, France

Opponents: DSc, Professor Jean-Pierre Richard, CRISTAL, Ecole
Centrale de Lille, Lille, France

DSc, Professor Zbigniew Bartosiewicz, Department of
Mathematics, Faculty of Computer Science, Bialystok
University of Technology, Bialystok, Poland

Defence of the thesis: June 15, 2016, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology and Ecole Centrale de Nantes has not been submitted for doc-
toral or equivalent academic degree.

/Arvo Kaldmäe/
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5. A. Kaldmäe, C. Califano and C. H. Moog. Integrability for nonlinear
time-delay systems. IEEE Transactions on Automatic Control, DOI:
10.1109/TAC.2015.2482003.

7





Author’s Contribution to
the Publications

In all the publications the author of the thesis is the first author and main
contributor.

The results of first three publications were obtained under the supervi-
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Introduction

State of the Art

In this thesis two classes of nonlinear control systems are studied: the
discrete-time delay-free systems and the continuous-time systems with de-
lays. The mathematical approach used in the thesis fits well to both system
classes, since the delays can be handled similarly as the forward-shifts in
the discrete-time case. Nevertheless, the study of time-delay systems is
more complex, since besides the delay operator there is additionally the
time derivative operator acting on system variables.

Discrete-time Systems

The majority of dynamical systems are modeled by a set of differential equa-
tions rather than by difference equations. In the classical control theory it
is usually assumed that the model of a continuous-time control system is
given by a set of first order differential equations. This is the so-called state
space representation. The majority of research in control theory is done for
this kind of system descriptions. Since most of the control algorithms are
implemented digitally, one needs to construct digital controllers. There are
two main approaches for the design of digital controllers. The first (and
most often used) is to construct the controller for the continuous-time plant
and then discretize it. The second approach is to discretize the continuous-
time plant and construct the controller for the discrete-time model. See
[71] for an overview of nonlinear digital control.

There are several methods to find a discrete-time model of a continuous-
time system. The most known is the Euler forward discretization, which
gives the 1st order approximation of the continuous-time system. The
drawback of the Euler discretization is that there is no advantage compared
to the case, when the controller of a continuous-time plant is discretized.
Though the exact discrete-time models are, in general, impossible to obtain
for nonlinear systems, one may construct higher order approximations to
define ’good enough’ sampled-data models. See [98] for an overview on the
effects of sampling on system properties.
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Another reason for addressing discrete-time control systems is that in
some cases it is more natural to describe a system by a set of difference
equations. This is the case when, for example, some system variables have
discrete values. Such examples can be found in many fields, like computer
science [41], biology [74], economics [28] etc. Moreover, the models devel-
oped via identification are in majority of cases also discrete-time models,
see [65].

A lot of research has been done to study the properties or the control
methods for nonlinear discrete-time systems. Nevertheless, there are still
some missing pieces, that needs to be filled. When looking for solutions to
different synthesis problems, the majority of the contributions use the state
feedback. This choice is problematic when all the states are not measured.
Unfortunately, there are not a lot of contributions for discrete-time systems
when a measurement feedback is applied [52, 78, 56, 73]. Also, the study
of the flatness property (or the dynamic feedback linearization problem) of
discrete-time systems does not have a full computable solution.

Time-delay Systems

In some cases the ordinary differential equations do not describe all the
physical effects of dynamical systems in the best way. For example, trans-
porting information over long distances takes always some time and often
more precise models are necessary, that take such effects into account. This
gives rise to the so-called time-delay control systems, described by a set of
functional differential equations. In some other cases the delays can be
introduced by actuators and sensors. The time-delay systems are used
in many application areas, like telecommunications, control over networks,
medicine and biological systems (see [84] and the references therein). When
working with time-delay systems, the typical assumption made is that the
different delays are commensurable, i.e. multiples of some fixed minimal
delay.

Just like in the delay-free case, one can discretize continuous time-delay
systems by the Euler discretization scheme [26], or use more advanced meth-
ods [99]. However, exact discretization is much more difficult to perform
and if the states are delayed, not even always possible [90]. Under the
assumption that the delay is a multiple of the discretization step, the ap-
proximate discretization yields a discrete time-delay system, described by
the equations of the form

x(k+ 1) = F (x(k), x(k− 1), . . . , x(k− p), u(k), u(k− 1), . . . , u(k− q)). (1)

Observe that the above assumption results in a discrete-time model that
depends only on a single invertible shift operator (delays can be viewed as a
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result of applying backward-shift operator), whereas the continuous time-
delay system depends on two operators, acting on the system variables:
the time-derivative operator and the delay operator. Due to the form (1),
one can always eliminate the delay from the state variables. For that,
one just has to extend the state by defining the new state variables as
z(k) = (x(k), x(k − 1), . . . , x(k − p)) which yields a system of the form

z(k + 1) = F∗(z(k), u(k), u(k − 1), . . . , u(k − q)),

where there is no delay in the state variables. Moreover, often1 one can
eliminate all the delays from (1) and work instead with a higher dimensional
discrete-time system. For that reason, in this thesis the more challenging
case of continuous time-delay systems is studied instead of discrete time-
delay systems.

The study of time-delay systems has received much attention over the
past decades. However, most of the results are only valid for linear systems
and majority of work is devoted to stability issues. The structural con-
trol problems, like accessibility, observability, feedback linearization, are
not much studied, which makes the study of nonlinear time-delay systems
practically unexplored area.

Methodology and Background

In nonlinear control theory there are two successful mathematical approa-
ches to study the structural properties or address the structural design
problems for nonlinear systems. The first is based on differential geom-
etry (vector fields, their Lie derivatives and Lie brackets), see [89, 17],
and the second, used in this thesis, is based on differential/difference alge-
bra [24] and differential forms [23]. Both approaches have been applied to
continuous- [45, 76, 25] and discrete-time [6, 39, 49] systems to solve various
control problems. While the geometric approach assumes that the system
is described by the state equations, the algebraic method can handle also
the systems, defined by their input-output equations.

During the past 15 years, attempts have been made to generalize the
well-known geometric and algebraic methods to a more general class of sys-
tems - nonlinear time-delay systems. The problem one faces here is infinite
dimensionality of such systems, which does not suit well to neither of the
approaches mentioned above. In [18] the extended Lie bracket was intro-
duced and shown to be useful for analysis of nonlinear time-delay systems.
A different approach, based on modules over non-commutative polynomial
rings, is discussed in [94]. This method generalizes the differential alge-
braic approach to time-delay systems by looking the differential 1-forms

1When the equations (1) are realizable in the state space form.
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as elements of a module. The module is defined over a non-commutative
polynomial ring, and allows to describe nonlinear time-delay systems by a
finite number of equations. The main gap in application of the algebraic
methods for time-delay systems is integrability of a set of 1-forms.

The notion of involutive distribution or integrable codistribution is of
major importance both in geometric and algebraic methods. In the delay-
free case the property of integrability is checked by the Frobenius theorem,
which unfortunately is no more valid for the time-delay case. More pre-
cisely, the Frobenius theorem can still be used in the study of time-delay
systems, but often it does not yield meaningful results, because the ef-
fect of delays is not taken into account. Therefore, a more general notion
of integrability must be defined. The problem has been studied in [18]
using the extended Lie bracket and in [72, 69] using the modules over non-
commutative polynomial rings. The latter approach is more natural, when
studying integrability of the 1-forms, since they are defined as elements of
modules for which an exact basis is looked for. The papers [72] and [69] gave
necessary and sufficient integrability conditions for a single 1-form. Note
that the definitions of integrability in these papers are different. Namely,
in [69] a 1-form is said to be integrable if the module it generates has an
exact basis (i.e. the basis that is a differential of a vector function), but in
[72] an exact basis of a closure of the generated module is searched for. The
case where multiple 1-forms are considered seems to be much more difficult
and so far only sufficient conditions are given in [69].

In the difference algebraic approach, used in this thesis, one works with
global linearized system descriptions. It means that solutions to various
problems are found in terms of 1-forms and the integrability property al-
lows to transform the solutions back to the level of functions. This is also
true regarding the feedback linearization problem. Historically, linear con-
trol systems have been much more studied than nonlinear systems. This
is obvious, because linearity is just a special case of nonlinearity. More-
over, control methods for linear systems are more developed than those
for nonlinear systems. Unfortunately, in many applications, nonlinearities
are common and unavoidable. The feedback linearization problem stud-
ies possibilities to transform the nonlinear system equations into linear by
applying a feedback and a state coordinate transformation. A regular feed-
back defines, in some sense, an invertible transformation, which allows to
control the original system by finding the control law for the transformed
system. Therefore, if a nonlinear system can be linearized by a regular
feedback and a state transformation, then further one can control, instead
of the given nonlinear system, the corresponding linearized system, and
later transform the solutions back to the original nonlinear system.

Most often, a state feedback is used to linearize nonlinear systems. The
problem has received a lot of attention [37, 48, 47, 31, 8, 6, 32, 33, 77]. The
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complete solution exists when a static state feedback is looked for [37, 48, 6],
but the dynamic feedback case is still not completely solved. It is a well-
known fact that the dynamic state feedback linearization problem is closely
linked to the system property, called flatness, introduced in [31, 32]. In sim-
ple words, flatness means that all the system variables can be written in
terms of m functions (called flat outputs) and their derivatives/forward-
shifts, where m is the number of system inputs. Despite a great number of
publications on flatness (see for instance, [33, 88, 63, 64, 22] and the refer-
ences therein), a complete, computable solution is still missing. Recently an
algorithmic procedure was suggested in [64, 63] and implemented in [3] to
find flat outputs of continuous-time system and generalized for the discrete-
time case in [55, 53]. However, the procedure has two major flaws: it is not
finite, i.e. it stops only when a flat output is found, and it requires search-
ing for certain polynomial matrix, which may be a difficult task, because
the polynomial matrix one looks for must be unimodular (i.e. invertible
in the ring of given square matrices). Compared to the huge number of
publications on dynamic feedback linearization that address continuous-
time systems, there exist only a few which work with discrete-time systems
[6, 55, 77, 85, 19]. The paper [77] focused on the dynamic equivalence of
discrete-time systems and as an application, the results on feedback lin-
earization were obtained. In [6] a necessary and sufficient condition was
given for dynamic feedback linearization by an endogenous feedback, but
it depends on the existence of certain unimodular polynomial matrix and
thus is not constructive. Later, in [55], it was proved that the condition of
[6] is equivalent to flatness property. In [19] a partial feedback linearization
problem is studied. Finally, note that in the continuous-time case flat-
ness is equivalent to dynamic feedback linearizability, which is not true for
discrete-time case as shown in [7], where exogenous feedback solutions were
found.

The state feedback solutions are common in nonlinear control theory, but
this requires the knowledge of the states. If the states are not measurable,
then one can either construct an observer or use an output/measurement
feedback. Since an observer construction is in general not an easy task [96],
then the study of output feedback solutions is useful. An advantage of an
output feedback is also the fact that one does not need state equations of
a system to apply it. Since a realization of an input-output model does
not always exist, see for example [61], then in such a case, output feed-
back solutions are the only possibility. When searching an output feedback
to linearize nonlinear system equations, there is no point of considering
systems given by state equations, because one does not use the state vari-
ables. Thus, one usually linearizes the input-output (i/o) equations instead
of state equations. Because the output feedback linearization problem is
more restrictive (one uses only partial information on states to obtain the
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static dynamic
feedback feedback

SISO systems [50, 81, 83] [95, 52, 81]

MIMO systems [51] [2, 13]

Table 1: References to the DDP by measurement feedback.

feedback) than state feedback linearization, only few contributions can be
found for the i/o linearization problem by output feedback. The papers
[67, 82] solve the problem for continuous-time multi-input multi-output
(MIMO) systems and the paper [78] for discrete-time single-input single-
output (SISO) systems; both only look for static output feedback. The
dynamic feedback solution was also given in [25] for continuous-time SISO
case and in [52, 78] for discrete-time SISO systems, where sufficient con-
ditions were derived. As for MIMO case, there are no results on dynamic
output feedback linearization.

The i/o linearization is also useful in solving different decoupling prob-
lems by dynamic output or measurement feedback, as demonstrated in
[52, 95, 80]. In [95, 52] the solution of the i/o linearization problem was
applied to solve the disturbance decoupling problem (DDP) via dynamic
measurement feedback. The goal of the DDP is to find a feedback such that
in the closed-loop system, the system outputs do not depend (explicitly)
on the disturbances anymore. The derived conditions in [95, 52] were only
sufficient, since the solution of the i/o linearization problem, it relied on,
was sufficient. Due to the fact that disturbances are very common in real
applications, the DDP has received much attention, but most contributions
look for the state feedback solutions [45, 76, 25, 5, 4, 70, 38, 30]. The first
paper that applied measurement feedback to solve the DDP was [46], where
sufficient solvability conditions were given for continuous-time systems. In
[56], similar results as in [46] were given for the discrete-time case. The
feedback used in [46, 56] is slightly different (less general) than the one in
[95, 52], where the state of the compensator is not a function of the state
of the system, but can be chosen independently of it. Different approaches
(i.e. those not based on the i/o linearization) have been applied in [2] and
[13] to study the solvability of the DDP by dynamic output/measurement
feedback. A necessary condition is given in [2] and a sufficient condition in
[13] for solvability of the DDP. An overview of papers considering a mea-
surement feedback to solve the DDP and where the problem statement is
as in this thesis, is given by Table 1.

One may also apply the results of i/o linearization to solve the i/o de-
coupling problem by dynamic output or measurement feedback, see [80].
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Continuous-time Discrete-time
systems systems

Static feedback [12, 43, 79, 14, 44] [73]

Dynamic feedback [12, 80]

Table 2: Output/measurement feedback references for i/o decoupling problem.

The problem is to find a feedback, such that every output of a closed-loop
system depends exactly on a single distinct input of the closed-loop sys-
tem. In this case one can control every system output separately. The i/o
decoupling has many possible applications, see [66, 35, 20, 9]. In [66, 35]
the i/o decoupling was used to control induction motors. In [20] the decou-
pling approach was used to control the model of proton exchange membrane
fuel cells and in [9] to control the heating, ventilation and air-conditioning
(HVAC) system. Most of the contributions that address the i/o decoupling
problem use the state feedback (static or dynamic) to solve the problem,
see for example [75, 76, 45, 25, 57]. The output or measurement feedback
solutions, being more complicated than the state feedback solutions, are
not that much studied, see Table 2. The static output and measurement
feedback solutions are given in [12, 43, 79, 14, 44] for continuous-time case
and in [73] for discrete-time case, respectively. The more complicated dy-
namic output or measurement feedback cases have only been studied in
[12, 80] for continuous-time systems and provide only sufficient solvability
conditions. Because majority of papers solve the i/o decoupling problem by
state feedback, almost all of them, including the ones that consider output
or measurement feedback, assume that the system is described by state
equations. Only the papers [59, 73] address the case when the system is
given by the set of higher-order input-output difference or differential equa-
tions. The structure of the feedback in [59] is very different from those, that
consider output feedback. In particular, it depends on the values of past
inputs and outputs and as such is more close to state feedback. In [73] nec-
essary and sufficient solvability conditions by static output feedback were
developed.

For time-delay nonlinear systems, the decoupling problems are also not
much studied. Although the delay allows to use a more general feedback
(see [72]), it also adds complexity. Typically one prefers a causal feedback,
i.e. the feedback not depending on the future values of the system variables.
If one follows the standard delay-free state feedback disturbance decoupling
procedure, then it is possible to end up with non-causal solution. To avoid
this to happen, feedback is allowed to depend only on certain variables.
This makes the solution to the DDP of time-delay system by state feed-
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back similar to that of the measurement feedback solution for the delay-free
case, where the feedback is also allowed to depend only on some functions
of the states (measurements). For nonlinear time-delay systems, the distur-
bance decoupling problem has been studied in [93, 72, 36, 68, 97]. In [93]
the SISO case was considered and sufficient solvability condition via static
feedback was derived. The results were extended for MIMO case in [36]
when the number of inputs equals the number of outputs. The full solution
for nonlinear SISO systems by bicausal static feedback was given in [72] and
extended for MIMO systems in [68], where the concept of controlled invari-
ant submodule was used to give (non-computable) necessary and sufficient
solvability conditions of the DDP by a causal compatible compensator. In
this thesis the conditions from [68] have been shown to be only sufficient.
Except some sufficient conditions in [72] for SISO systems, there are no
results for solvability of the dynamic DDP.

Contributions and Outline of the Thesis

The thesis focuses on feedback linearization of nonlinear discrete-time con-
trol systems and some related problems. Three main problems to be solved
are:

(i) i/o linearization by dynamic output feedback

(ii) linearization of state equations by dynamic endogenous state feedback
(flatness problem)

(iii) integrability conditions for differential 1-forms in the case of contin-
uous time-delay systems.

Moreover, the solution of the i/o linearization problem is used to solve the
decoupling problems by output or measurement feedback, which are, in
turn, very similar to state feedback solutions in case of time-delay systems.

At this point it needs to be explained how the time-delay integrability
problem is linked to the solution of the feedback linearization problem of
discrete-time system. As said above, in the algebraic setting used in this
thesis, in case of time-delay systems the modules of 1-forms are defined
over certain polynomial ring, which allows to handle such systems as fi-
nite dimensional. More precisely, in such module the effect of delays in
system variables is taken into account, which is not the case when the de-
layed variables are looked as elements of a vector space over the field of
meromorphic functions (as in the delay-free case). In nonlinear discrete-
time setting, a similar polynomial ring is often used to solve various control
problems, see for example [6, 15]. The difference is that in the time-delay
case the polynomial variable acts as a delay operator on an 1-form, but
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in the discrete-time case as a forward-shift operator. Now, it is proved in
[6] that a nonlinear discrete-time system is dynamic endogenous feedback
linearizable if and only if there exists an unimodular polynomial matrix,
which transforms certain vector of 1-forms into a vector of exact 1-forms.
As it turns out, the time-delay integrability problem of a set of 1-forms re-
duces to a similar mathematical problem, i.e. one has to find a polynomial
matrix, which transforms a given vector of 1-forms into a vector of exact
1-forms. In that sense, the problem of integrability of the 1-forms in the
time-delay case is closely related to the works of [64, 63, 53], where similar
polynomial matrices were searched.

Next, the contributions of the thesis are highlighted. The work is di-
vided into chapters based on the three main problems considered, which
are listed above as: (i), (ii) and (iii), whereas the first chapter is devoted
to introduction of the methodology.

Chapter 1

The chapter is divided into three sections, which describe the objects of
the study, i.e. the classes of systems considered in the thesis, as well as the
mathematical tools. The first section introduces the systems and the second
describes the main tools for discrete-time systems, given by state equations.
For the other system descriptions, the methodology is similar and only
the main differences are commented. The difference field is constructed
from the system description and the vector spaces of differential forms over
the difference field are introduced. In the third section another algebraic
method is described for the study of nonlinear discrete-time control systems.
It is based on lattice theory and allows to consider non-smooth functions.
The method will be used in Chapter 3 to study the possibilities to linearize
non-smooth systems by static state feedback and a state transformation.

Chapter 2

In this chapter discrete-time systems are considered. The chapter is devoted
to the study of the i/o linearization problem via dynamic output feedback.
A complete solution is given, which generalizes the previous results. The
necessary and sufficient conditions for the existence of a linearizing feedback
are given in terms of certain functions, which are computed from the sys-
tem equations. The conditions guarantee the solvability of certain system
of algebraic equations, the solution of which gives the required feedback. In
the second and third sections, the i/o linearization problem is shown to be
useful in solving the i/o decoupling and disturbance decoupling problems
by dynamic measurement feedback, respectfully. For the i/o decoupling
problem necessary and sufficient solvability conditions are found for sys-
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tems, described either by state or i/o equations. The sufficient condition
for solvability of the disturbance decoupling problem generalizes the results
of [52] to the MIMO case.

Chapter 3

In Chapter 3 one works with nonlinear discrete-time systems described
by state equations. A state feedback and a state transformation are used
to linearize the system. First, the algebraic method, based on the lattice
theory, is used to study linearization of possibly non-smooth systems by the
state transformation and the static state feedback. Necessary and sufficient
solvability conditions are given and compared to the well-known results
from [6], when the system under consideration is analytic.

The second section is devoted for finding flat outputs. A different ap-
proach compared to [6, 64, 63, 55, 53] is used, which has some similarities
with the papers [86, 87], addressing the continuous-time case. Following
this approach the original system equations are transformed into certain
form by the state transformation and the static state feedback, which al-
lows to eliminate some of the system equations. Now, one can continue
with a lower dimensional system and repeat the process. It is proved that
a discrete-time system is flat if and only if one is able to eliminate step-
by-step all the system equations. Compared to the previous results, the
computations needed here to verify flatness are much easier.

Chapter 4

The last chapter is devoted to nonlinear time-delay systems. The integra-
bility definition of a set of 1-forms is generalized to time-delay case. Note
that in the delay-free case, if a set of 1-forms is integrable, there exists
an invertible matrix, which is defined over the field of functions, such that
the matrix transforms the vector of exact 1-forms into the given vector of
1-forms. Since in the time-delay case, the 1-forms are looked as elements
of a module, now that matrix is defined over a ring of polynomials. Thus,
there are two possibilities to generalize the integrability notion: either to
require that the matrix has a full rank or to require that it is invertible in
the ring of square polynomial matrices. The first case leads to the weak in-
tegrability and the second to the strong integrability, respectivly. For both
cases the necessary and sufficient conditions are found to check the prop-
erty. The new concepts of integrability are shown to be useful in studying
the accessibility property of time-delay systems. It has turned out that in
majority of cases weak integrability is enough to solve various problems.
The strong integrability is mostly used in verifying the weak integrability
property.
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Moreover, in the second and third sections the disturbance and i/o de-
coupling problems are considered, respectively, where the weak integrability
property is applied. A pure shift dynamic feedback is used to solve the dis-
turbance decoupling problem as well as the i/o decoupling problem. A
more general dynamic feedback is also used to decouple the disturbances
from the SISO time-delay system.
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Chapter 1

Preliminaries

The goal of this chapter is to introduce the objects of study as well as the
tools used to solve different problems in the following chapters. The first
section gives a short overview of system classes, considered in this thesis:
discrete-time systems described by state or input-output (i/o) equations
and time-delay systems. In the second section, the main algebraic setting,
used in the thesis, is described. In this approach, analysis of systems and
construction of feedback are based on the global linearized system descrip-
tion, which is expressed via differential 1-forms. First, a difference field,
defined by the system equations, is introduced. Second, the vector spaces of
differential forms over the field of meromorphic functions are defined and
the main concepts about integrability of differential 1-forms and system
invertibility are discussed.

A different algebraic setting, based on the lattice theory, is developed
in the last section. It will be used in Section 3.1 to study the static state
feedback linearization problem of non-smooth discrete-time systems.

In most part of this thesis, instead of smooth functions, a more restrictive
class of analytic functions, which define the system equations, is considered.
The reason is that the ring of smooth functions is not an integral domain,
i.e. it contains zero divisors, and thus, cannot be embedded into a field
of fractions, which is necessary in order to construct the difference field.
Therefore, the ring of analytic functions is considered instead, which is an
integral domain. The elements of the field of fractions of analytic functions,
are called meromorphic functions. The use of meromorphic functions is es-
sential for carrying out divisions in the computations. Additionally, the use
of analytic and meromorphic functions allows to study the generic prop-
erties of the systems. The latter means that the properties hold on some
open and dense subsets of suitable domains if they hold at some point of
this domain, see [25]. That is, generic properties hold in almost all situ-
ations. The study of such properties allows to express the solutions in a
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more compact way, since there is no need to specify the working point and
its neighborhood.

Note that throughout the thesis all the functions and transformations
are assumed to be meromorphic, if not stated otherwise.

1.1 System Descriptions

In this section systems, which will be studied in this thesis, are introduced.
The discrete-time systems can be described either by state equations or
by i/o equations. These systems are assumed to have certain properties,
which allow to build the algebraic approach to study them. Also, time-delay
systems are introduced, where the delays are commensurable.

1.1.1 Nonlinear Discrete-time Systems

The nonlinear discrete-time system is typically described by a set of first-
order difference equations, called the state space representation,

x(t+ 1) = f(x(t), u(t))
y(t) = h(x(t)),

(1.1)

where x(t) ∈ X ⊂ Rn is the state, u(t) ∈ U ⊂ Rm is the input, y(t) ∈
Y ⊂ Rp is the output of a system. It is assumed, that the system (1.1) is
submersive, that is it satisfies generically, i.e. on an open and dense subset
of X × U , condition

rank
[ ∂f(·)
∂(x(t), u(t))

]
= n. (1.2)

The condition (1.2) is specific for discrete-time systems and needed to con-
struct an inversive difference field (K, δ) below. In the case of continuous-
time systems, such condition (1.2) is not necessary, since the differential
field (K, d

dt) is already inversive.
An important notion in nonlinear control is the relative degree of the

output component yi, which is defined for system (1.1) as follows.

Definition 1.1. The relative degree ri of an output component yi(t) with
respect to the control input u(t) is defined as

ri := min{k ∈ N | ∂yi(t+ k)

∂uj(t)
6≡ 0 for some j ∈ {1, . . . ,m}}.

Alternatively, a nonlinear discrete-time system can be described by the
set of higher order difference equations, called input-output (i/o) equations,
that relate the system inputs, outputs and their forward-shifts:

yi(t+ ni) = Φi(yτ (t), . . . , yτ (t+ niτ ), uj(t), . . . , uj(t+ qi)) (1.3)
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for i, τ = 1, . . . , p, j = 1, . . . ,m. The indices in (1.3) are supposed to satisfy
the conditions

n1 ≤ n2 ≤ · · · ≤ np, niτ < nτ qi < ni
niτ < ni, τ ≤ i
niτ ≤ ni, τ > i.

(1.4)

The restrictions (1.4) mean that the equations (1.3) are assumed to be
in the Popov form [11]. This guarantees that the indices ni are unique
up to permutation [21]. Note that under mild conditions, one can always
transform an arbitrary set of i/o equations, at least locally, into the form
(1.3), see [60, 10]. The systems (1.3) are often obtained as the results of
identification process and thus are important objects of study.

Like in the case of state equations (1.1), the equations (1.3) are also as-
sumed to satisfy the submersivity condition, i.e. the map Φ = (Φ1, . . . ,Φp)

T

satisfies generically the condition

rank
[ ∂Φ(·)
∂(y(t), u(t))

]
= p,

where y(t) = (y1(t), . . . , yp(t)) and u(t) = (u1(t), . . . , um(t)).

1.1.2 Time-delay Systems

In this thesis the nonlinear continuous-time systems with commensurable
time-delays (i.e. all the delays are multiples of a fixed minimal delay) are
considered, described by the equations

ẋ(t) = f(x(t), x(t− 1), . . . , x(t−D), u(t), u(t− 1), . . . , u(t−D))
y(t) = h(x(t), . . . , x(t−D)),

(1.5)
where D > 0, x(t) ∈ X ⊂ Rn is the state, u(t) ∈ U ⊂ Rm is the control
input, y(t) ∈ Y ⊂ Rp is the output of the system.

The relative degrees of system outputs yi, i = 1, . . . , p, are defined sim-
ilarly as for the discrete-time systems.

Definition 1.2. [72] The relative degree ri of output yi(t) with respect to
the control input u(t) is defined as

ri = min{k ∈ N | ∃τ ∈ N and j ∈ {1, . . . ,m} s.t.
∂y

(k)
i (t)

∂uj(t− τ)
6≡ 0}.

It is also useful to characterize the minimal τ , that appears in the last
definition.

Definition 1.3. [72] The relative shift µi of yi(t) is defined as

µi = min{τ ∈ N | ∃j ∈ {1, . . . ,m} s.t.
∂y

(ri)
i (t)

∂uj(t− τ)
6≡ 0}.
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1.2 Algebraic Setting

In this section the algebraic methods and different tools, that will be used
in the thesis, are briefly described. In what follows, the notations x, x[k],
k ∈ Z are used, instead of x(t) and x(t+ k). Similar notations are used for
the other variables. The element x[k] must be understood as a variable of
the field K below, and not as a function of time t.

Introduce, for system (1.1), the set of independent (in the sense that
they are not functionally dependent) system variables C1 = {x, u[k]; k ≥ 0}.
For system (1.3), this set is C2 = {y[ni−1]

i , . . . , yi, u
[k]
j ; i = 1, . . . , p; j =

1, . . . ,m; k ≥ 0} and for the time-delay system (1.5), C3 = {x[−d], (u(k))[−d];
d, k ≥ 0}. To continue, one has to choose the appropriate set Ci, i = 1, 2, 3,
depending on the given system description. In this section, the set C1

is chosen, i.e. the algebraic setting is described for system (1.1). The
other two cases are similar and only the most important differences will be
commented below.

A more detailed description of the approach for system (1.1) can be
found, for instance, from [6].

1.2.1 Difference Field

In this subsection the difference field will be constructed, defined by the
equations (1.1). Consider the field K of meromorphic functions in the
variables from the set C1, i.e. the field of fractions of the ring of analytic
functions, depending on variables from C1. In the field K, the forward
shift operator δ : K → K is defined for the elements of C1 by the relations
δx = x[1] = f(x, u), δu[k] = u[k+1], for k ≥ 0. Applying the forward shift to
a function means shifting all the arguments of the function, i.e.

δ[ϕ(x, u, . . . , u[k])] = ϕ(f(x, u), u[1], . . . , u[k+1]).

Under the submersivity assumption (1.2) the operator δ is an injective
endomorphism and the pair (K, δ) a difference field [24]. In general, the
difference field (K, δ) is not inversive, i.e. the operator δ is not an automor-
phism. Nevertheless, one can always find an overfield K∗ of K, such that
if δ is extended to K∗, it becomes an automorphism [24]. The extension is
made by adding variables z = χ(x, u) to K, such that the map f̄ = (f, χ)T

becomes generically invertible. The difference field (K∗, δ) is called an in-
versive difference field. In this thesis, the inverse of δ is denoted by δ−1,
and defined analogously to δ. For more information on difference algebra,
see [24], and on construction of the field K∗, see [6]. With slight abuse of
notation, in the thesis, the inversive difference field (K∗, δ) is often denoted
simply by K.
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Remark 1.1. In the case of time-delay systems (1.5), the operator δ, called
delay operator, does not shift a function forward, but backward, and is
defined as δξ[−k] = ξ[−k−1] for any ξ ∈ C3 and k ≥ 0. Moreover, a differential
field (K, d

dt , δ) is constructed, which depends on two operators - the time-
derivative operator and the delay operator. For simplicity, the difference
field (K, d

dt , δ) is denoted simply by K.

The difference field K and the operator δ induce a non-commutative
polynomial ring, denoted by K[ϑ]. A element of K[ϑ] is a polynomial p(ϑ)
of the form

p(ϑ) =

γ∑
i=0

aiϑ
i,

where ai ∈ K, i = 0, . . . , γ, and by ϑ is denoted the polynomial indetermi-
nate. The multiplication in K[ϑ] is defined by the rule:

ϑϕ = δ(ϕ)ϑ

for a function ϕ ∈ K. In K[ϑ] addition is defined in a usual way. Let us
recall some important properties of the ring K[ϑ]:

� K[ϑ] is an integral domain;

� K[ϑ] satisfies the left Ore condition (see [27] for discrete-time case
and [94] for time-delay case).

The set of s × q matrices over K[ϑ] is denoted by K[ϑ]s×q. A special
subset of K[ϑ]q×q is the set of unimodular matrices, denoted by Uq[ϑ]. A
unimodular matrix is defined as follows.

Definition 1.4. A matrix U ∈ K[ϑ]q×q is called unimodular if there exists
a matrix U−1 ∈ K[ϑ]q×q such that UU−1 = U−1U = Iq.

A useful property for polynomial matrices in K[ϑ]s×q is the Jacobson
decomposition, see [24].

Theorem 1.1. [24] For every M(ϑ) ∈ K[ϑ]s×q, there exist matrices V (ϑ) ∈
Us[ϑ] and U(ϑ) ∈ Uq[ϑ] such that

V (ϑ)M(ϑ)U(ϑ) =


(∆s, 0s,q−s) , if s ≤ q;(

∆q

0s−q,q

)
, if s ≥ q,

(1.6)

where 0s,q−s and 0s−q,q are the matrices with zero entries, ∆s and ∆q are
square diagonal matrices with elements (σ1, . . . , σk, 0, . . . , 0) such that σi ∈
K[ϑ], for i = 1, . . . , k, and σi is a divisor of σi+1 for all i = 1, . . . , k − 1,
i.e. σi+1 = ασi for some α ∈ K[ϑ].

27



Note that the matrices U(ϑ) and V (ϑ) in Theorem 1.1 are not unique
whereas ∆s (respectively ∆q) is. The matrix (∆s, 0s,q−s) (respectively
(∆q, 0s−q,q)

T ) is called the Jacobson form of the matrix M(ϑ).

1.2.2 Differential Forms

In this subsection a brief overview of differential forms is given. For a more
complete description, see [23].

Consider the set of symbols

dC1 = {dx, du[k]; k ≥ 0}.

A differential q-form α is an object of the form

α =
∑
ξi∈dC

aξ1,...,ξqξ1 ∧ · · · ∧ ξq,

where a finite number of functions aξ1,...,ξq ∈ K are non-zero. Let Eq denote
the set of q-forms, which has the structure of a vector field. Also, denote
the field (of functions) K as the set of 0-forms E0. Next, two operations,
the exterior product and exterior differential, are defined for the differential
forms.

The exterior (or wedge) product ∧ : Eq × Es → Eq+s is a bilinear and
associative map, which has the properties

� α ∧ β = (−1)qsβ ∧ α, where α ∈ Eq and β ∈ Es;

� α ∧ α = 0, if q = s is odd number.

The exterior differential d : Eq → Eq+1 is an operator, satisfying the
following properties:

� d(α ∧ β) = dα ∧ β + (−1)sα ∧ dβ, where α ∈ Es;

� dα coincides with the ordinary differential if α is a 0-form, i.e. α ∈ K;

� d2 = 0.

The vector space of 1-forms can be now defined as E1 = spanKdC1 and
a 1-form has the form

ω =

n∑
i=1

aidxi +
∑
k≥0

m∑
j=1

bj,kdu
[k]
j , (1.7)

where only a finite number of coefficients bj,k are non-zero. Often, the
vector space of 1-forms is simply denoted by E .
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The shift operator δ can be extended to E in the following way. For a
1-form ω, given by (1.7), its forward shift is defined by the rule

δω =

n∑
i=1

δ(ai)d
(
δ(xi)

)
+
∑
k≥0

m∑
j=1

δ(bj,k)d
(
δ(u

[k]
j )
)
.

The backward shift δ−1 may be extended to E in a similar manner.
The set E of 1-forms is a vector space, but it can also be given a structure

of a module. Roughly speaking, a module is a vector space, defined over
a ring, not a field. Unlike a vector space, not every module has a basis.
The modules, that do have a basis, are called free modules. Since K[ϑ]
satisfies the left Ore condition, any two basis of a free module have the
same cardinality, which is called the rank of the free module. See [1] for
overview of module theory.

Now, the set of 1-forms has also the structure of a module, since every
element of E is also an element of

M = spanK[ϑ]{dx,du}

and vice-versa, every element of M is an element of a vector space E .

Definition 1.5. [94] The closure of a free submodule A ofM, denoted by
clK[ϑ](A), is defined as

clK[ϑ](A) = {ω ∈M | ∃p(ϑ) ∈ K[ϑ], s.t. p(ϑ)ω ∈ A}.

By definition, the closure of the free submodule A is the largest free
submodule, containing A, and having the same rank as A.

1.2.3 Integrability of 1-forms

In the thesis one usually works with the generically (globally) linearized
system description, i.e. with the 1-forms, and not with the system equations
themselves. In the final step of solution (regarding any problem) one should
go back to the level of functions. For that, one has to integrate the 1-
forms. Unfortunately, since the differential operator d : K → E is not
one-to-one, one can not just inverse d to go from E to K. The elements ω
of E for which the inverse exists (at least locally) are called exact and can
be written as ω = dϕ for some function ϕ ∈ K. Note that the result is
not unique, since ω = dϕ = d(ϕ + c), where c ∈ R. An integrable 1-form
is exact up to multiplication by a function λ ∈ K, called the integrating
coefficient. Therefore, integrable 1-form ω can be written as ω = λdϕ
for some functions λ, ϕ ∈ K. A vector space spanK{ω1, . . . , ωk} is said to
be integrable if it has a basis consisting of exact 1-forms. A condition to
check whether a vector space spanK{ω1, . . . , ωk} is integrable is given by
the Frobenius theorem.
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Theorem 1.2. [25] A subspace spanK{ω1, . . . , ωk}, where ωi, i = 1, . . . , k
are independent, is integrable if and only if

dωi ∧ ω1 ∧ · · · ∧ ωk = 0

for i = 1, . . . , k.

Note that by this theorem, a 1-form ω is integrable if and only if
dω ∧ ω = 0. Sometimes the following notation is also used: dω = 0 mod
spanK{ω̄1, . . . , ω̄k}, which means that dω ∧ ω̄1 ∧ · · · ∧ ω̄k = 0.

A concept which generalizes the notion of integrability, is the rank of a
1-form.

Definition 1.6. The rank of a 1-form ω, denoted by rank ω, is the minimal
number γ ∈ N such that

ω ∧ (dω)γ = 0

where (dω)γ denotes the γ-fold wedge product of dω with itself.

According to this definition, a 1-form is integrable if and only if its rank
is 1. If γ ∈ N is the rank of a 1-form ω, then there exist functions ϕi,
i = 1, . . . , γ such that

ω =

γ∑
i=1

aidϕi

for some functions ai ∈ K. Moreover, γ is equal to the minimal number of
exact 1-forms whose linear combination gives ω. Thus, the rank of a 1-form
is equal to the dimension of a minimal integrable subspace that contains
ω. Based on this meaning, the next lemma is given.

Lemma 1.1. A minimal integrable subspace that contains the vector space
A = spanK{ω1, . . . , ωk} has the dimension

γ := max
αi∈K

[rank(α1ω1 + · · ·+ αkωk)]. (1.8)

Proof. The integrable subspace Ā that contains the vector space A has to
contain every element of A, i.e. α1ω1 + · · ·+ αkωk. Thus, the dimension γ
of Ā satisfies

γ ≥ max
αi∈K

[rank(α1ω1 + · · ·+ αkωk)].

Let α1ω1 + · · · + αkωk be a 1-form that has rank γ. Then, there exist γ
functions ϕi, i = 1, . . . , γ, such that

α1ω1 + · · ·+ αkωk ∈ spanK{dϕ1, . . . ,dϕγ}.
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Note that αi 6≡ 0, i = 1, . . . , k, since otherwise the 1-forms ωi, i = 1, . . . , k,
are not independent, and thus for i = 1, . . . , k,

ωi ∈ spanK{dϕ1, . . . ,dϕγ}. (1.9)

Really, if for example, (1.9) is not true for ω1, then the 1-form

(1 + α1)ω1 + α2ω2 + · · ·+ αkωk

should have a bigger rank than γ. This is not possible and therefore, (1.9)
is true and Ā = spanK{dϕ1, . . . ,dϕγ}.

1.2.4 Inversion Algorithm and Invertibility

The inversion algorithm for system (1.1), where the output y = h(x, u) is
also allowed to depend on the input u and dim y = dimu = m, is recalled
in this subsection. Based on this algorithm the conditions for invertiblity
of the system (1.1) are given. In the case of systems of the form (1.3), the
right-invertibility is defined, since in this case one does not require that
m = p. For more about inversion algorithm and invertibility, see [57] for
the case when the system is described by the state equations and [58] when
it is given by the i/o equations.

Inversion Algorithm:
Step 0. Let ξ0 := rankK

∂y
∂u . Decompose the output y into two parts

y = (ỹ0, ȳ0) such that dim ỹ0 = ξ0 and

rankK
∂ỹ0

∂u
= ξ0.

Step i. Let ξi := rankK
∂(ỹ0,...,ỹ

[i−1]
i−1 ,ȳ

[i]
i−1)

∂u . Decompose ȳ
[i]
i−1 into two parts

ȳ
[i]
i−1 = (ỹ

[i]
i , ȳ

[i]
i ) such that dim ỹ

[i]
i = ξi − ξi−1 and

rankK
∂(ỹ0, . . . , ỹ

[i]
i )

∂u
= ξi.

The algorithm stops when

rankK
∂(ȳ0, . . . , ȳ

[ρ]
ρ )

∂x
= rankK

∂(ȳ0, . . . , ȳ
[ρ−1]
ρ−1 )

∂x

for some ρ ≥ 0.
Next, the definition of invertibility of system (1.1) with the (extended)

output y = h(x, u, . . . , u[l]), y ∈ Y ⊂ Rm, is given. Such invertibility has
an important role in the study of flatness property in Section 3.2. Namely,
a system (1.1) with a flat output y = h(x, u, . . . , u[l]), y ∈ Y ⊂ Rm is
invertible.
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Definition 1.7. The system (1.1) with an output y = h(x, u, . . . , u[l]) is
said to be invertible if one can write the system input u as a function of
the state variable x, the output variable y and a finite number of its shifts
y[i], i = 1, . . . , s.

Lemma 1.2. The system (1.1) with the output y = h(x, u) is invertible if
and only if

rankK
∂(ỹ0, . . . , ỹ

[ρ]
ρ )

∂u
= m,

where ỹ
[i]
i , i = 0, . . . , ρ, are defined by the inversion algorithm.

For systems of the form (1.3) the right-invertibility is defined as follows.
Note that here one does not require that m = p.

Definition 1.8. The system (1.3) is said to be right-invertible if the poly-
nomial matrix

max{qi}∑
j=0

∂(Φ1, . . . ,Φp)

∂u[j]
ϑj

has rank p. Recall that qi is defined by equations (1.3) as the highest shift
of input u the function Φi depends on. When m = p, then one says that
system (1.3) is invertible.

1.3 Functions’ Algebra

In this section another algebraic approach, called functions’ algebra [62,
100], is described, which is developed in analogy of the algebra of par-
titions [40]. The advantage of this method over difference algebraic and
differential geometric methods is that it allows to handle also certain types
of non-smooth functions. It will be used later, in Section 3.1, to develop
conditions for static state feedback linearization of possibly non-smooth
nonlinear discrete-time systems, described by the state equations. In this
setting, one does not work with 1-forms, but directly with functions.

Consider the discrete-time system

x(t+ 1) = f(x(t), u(t)), (1.10)

where x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm and f is possibly non-smooth.
Denote by SX×U the set of vector functions with the domain X × U .

The elements of SX×U are vectors with finite dimension, whose elements
are (possibly non-smooth) functions depending on the variables x and u.
Note that in some cases the knowledge of one vector function yields the
knowledge of another vector function. For example, if one knows the value
of the vector function α = [x1, x2x3]T =: [α1, α2]T one knows also the value
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of the vector function β = x1x2x3, since β = α1α2. Based on this, the
relation of preorder ≤ is defined on the set SX×U .

Definition 1.9. Given α, β ∈ SX×U , one says that α ≤ β if for all x ∈ X,
u ∈ U there exists a vector function γ such that β(x, u) = γ(α(x, u)).

Note that there exist non-equal vector functions α, β ∈ SX×U such that
α ≤ β and β ≤ α, which means that the relation ≤ is not a partial order.
For example, the vector functions α = [x1, x2]T and β = [x1 + x2, x2]T are
not equal, but they satisfy the conditions α ≤ β and β ≤ α. To be able to
build an algebraic structure for the study of nonlinear systems (1.10), such
functions are defined to be equivalent.

Definition 1.10. If α ≤ β and β ≤ α, then α and β are called equivalent,
denoted by α ∼= β.

The relation ∼= is reflexive (α ∼= α for all α ∈ SX×U ), symmetric (α ∼=
β ⇒ β ∼= α) and transitive (α ∼= β and β ∼= θ yield α ∼= θ) and thus an
equivalence relation. The equivalence relation divides the set SX×U into the
equivalence classes, containing the equivalent functions. If SX×U/ ∼= is the
set of all equivalence classes, then the relation ≤ becomes a partial order
on this set. In this algebraic setting, one works with the set of equivalence
classes SX×U/ ∼= (or rather with their simplest representatives). This also
means that in this setting the symbol ”=” should be understood as ”∼=”.

There exist two special equivalence classes. The equivalence class 1
contains all the constant functions and satisfies α ≤ 1 for all α ∈ SX×U .
On the other hand, the equivalence class 0 := [x, u]T satisfies 0 ≤ α for
all α ∈ SX×U . Therefore, for any two equivalence classes α, β ∈ SX×U/ ∼=,
there exist a minimal equivalence class γ, satisfying α ≤ γ, β ≤ γ and a
maximal equivalence class ζ, satisfying ζ ≤ α, ζ ≤ β. Thus, (SX×U/ ∼=,≤)
has a structure of a lattice1.

A lattice can be viewed as an algebraic structure with two binary oper-
ations × and ⊕, such that for every two elements α, β both operations are
commutative and associative and moreover, α×(α⊕β) = α, α⊕(α×β) = α.
The binary operations × and ⊕ are defined as

α× β = inf(α, β) (1.11)

α⊕ β = sup(α, β),

where the ordering is with respect to relation ≤. Therefore, the triple
(SX×U/ ∼=,×,⊕) can also be viewed as a lattice. With a slight abuse of
notation, the notation SX×U is used in this thesis instead of SX×U/ ∼=.

1Recall that a lattice is a set with a partial order where every two elements α and β
have a unique supremum (least upper bound) sup(α, β) and a unique infimum (greatest
lower bound) inf(α, β).
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To compute ⊕, in the simple cases, the definition (1.11) may be used.
Computation of × is much more simple: α × β = [α, β]T . However, the
product may contain functionally dependent components that have to be
found and removed, which just means finding the simplest representative
in the equivalence class for α× β.

Next, the lattice (SX×U/ ∼=,×,⊕) is connected with the system dy-
namics (1.10) through the following definition of binary relation ∆. Since
(1.10) defines only the forward shift of x, but not that of u, in the following
definitions the vector functions must belong to SX .

Definition 1.11. Given α, β ∈ SX , one says that (α, β) satisfy binary
relation ∆, denoted as α∆β, if for all x ∈ X and u ∈ U , there exists a
function f∗ such that

β(f(x, u)) = f∗(α(x), u).

The binary relation ∆ is mostly used for definition of the operators m
and M.

Definition 1.12. (i) m(α) is a minimal vector function β ∈ SX that
satisfies α∆β;

(ii) M(β) is a maximal vector function α ∈ SX that satisfies α∆β.

Computation of the operator m. Note that by the definition of ∆, the
condition

m(α)(f) ≥ α× u

must be satisfied for the vector function α(x). Obviously, m(α)(f) ≥ f .
Therefore, by the definition of operator ⊕

m(α)(f) = (α× u)⊕ f.

Finally, observe that m(α)(x) can be computed by shifting the function
(α× u)⊕ f back once:

m(α)(x) = [(α× u)⊕ f ][−1]. (1.12)

Computation of the operator M. To compute M, there is no general
formula. In the special case when β(f(x, u)) can be represented in the
form

β(f(x, u)) =

d∑
i=1

ai(x)bi(u)

where a1, a2, . . ., ad are arbitrary functions and all the non-constant func-
tions b1, b2, . . ., bd are functionally independent, then M(β) := a1 × a2 ×
· · · × ad.
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Example 1.1. Consider the system

x
[1]
1 = x2u

x
[1]
2 = x1 + x3

x
[1]
3 = x3 + u

and the vector function α = [x1, x2]T . First, compute m(α) by (1.12):

α× u = [x1, x2, u]T

(α× u)⊕ f = [x1, x2, u]T ⊕ [x2u, x1 + x3, x3 + u]T

= [x2u, x1 − u]T = [x
[1]
1 , x

[1]
2 − x

[1]
3 ]T

m(α) = [(α× u)⊕ f ][−1] = [x1, x2 − x3]T .

Now, compute M(α) using the discussion above. Since α(f(x, u)) = [x2u,
x1 + x3]T , then a1(x) = x2, b1(u) = u, a2(x) = x1 + x3, b2(u) = 1 and thus

M(α) = a1 × a2 = x2 × (x1 + x3) = [x2, x1 + x3]T .

1.4 Conclusions

In this chapter different classes of systems were described and overview
of algebraic approaches, used in this thesis, was given. In most parts of
the thesis the difference algebraic approach, described in Section 1.2, will
be used. Only in Section 3.1 the functions’ algebra (see Section 1.3) will
be applied. The difference algebraic approach was characterized in detail
for discrete-time system, given by the state representation. For systems
described by the i/o difference equations and for time-delay systems all the
algebraic objects can be built similarly and thus these descriptions were
omitted.

An important concept in the given algebraic approach is the rank of an
1-form. It can be used to compute the dimension of the minimal integrable
vector space, that contains a given vector space of 1-forms, see Lemma 1.1.
The latter plays an essential role in the solutions of the flatness problem
(see Section 3.2) and the i/o linearization problem (see Section 2.1).
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Chapter 2

Input-Output Linearization

Given the system description in the form (1.3), the main goal of this chapter
is to find necessary and sufficient conditions, under which there exists a dy-
namic output feedback, which linearizes the equations (1.3). This problem
is called input-output (i/o) linearization problem.

In the first section, the i/o linearization problem is solved. The neces-
sary and sufficient conditions are expressed in terms of certain functions,
computed from the system equations (1.3). The remaining two sections
apply the results on i/o linearization to solve two decoupling problems.
In Section 2.2, the i/o decoupling problem is considered. The goal is to
transform a system into a form, where every system output depends on
exactly one different system input, using dynamic measurement feedback.
The problem is solved, i.e. necessary and sufficient solvability conditions
are found and feedback constructed, for systems, described either by state
equations or by i/o equations. In Section 2.3, sufficient conditions are given
to eliminate the effects of disturbances from the system outputs by dynamic
measurement feedback.

2.1 Input-Output Linearization by Dynamic Out-
put Feedback

In this section, the necessary and sufficient conditions are found for solv-
ability of the i/o linearization problem via dynamic output feedback for
multi-input multi-output (MIMO) discrete-time systems of the form (1.3).
The results generalize those from [52] to MIMO case and additionally, com-
pared to [52], necessity of the conditions is proved.

To simplify the presentation, the following notation is used in this sec-

tion: Ek := spanK{dyi, . . . ,dy
[k−1]
i , duj , . . . ,du

[k−1]
j ; i = 1, . . . , p; j = 1, . . . ,

m} for any k ∈ N.
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2.1.1 Necessary and Sufficient Condition

Problem statement. Given a discrete-time system of the form (1.3), the
goal is to find a dynamic output feedback of the form

η(t+ 1) = F (η(t), y(t), v(t))
u(t) = H(η(t), y(t), v(t)),

(2.1)

where η(t) ∈ ∆ ⊂ Rρ and v(t) ∈ V ⊂ Rm are the state and the input of
the compensator (2.1) respectively, such that the equations of the closed-
loop system (1.3),(2.1) are linear. More precisely, one requires that for
i, τ = 1, . . . , p and j = 1, . . . ,m

dy
[ni]
i ∈ spanR{dy

[niτ ]
τ , . . . ,dyτ , dv}

dy
[ni]
i 6∈ spanR{dy

[niτ ]
τ , . . . ,dyτ}.

(2.2)

If such feedback exists, then one says that system (1.3) is i/o linearizable by
dynamic output feedback. Additionally, it is required that the compensator
(2.1) is regular, i.e. it is invertible.

The Theorem 2.1 below, that gives the necessary and sufficient solvabil-
ity conditions, is expressed in terms of certain functions. These functions
can be computed from the functions Φi, i = 1, . . . , p, that define the system
(1.3).

Note that there may be some terms on the right-hand side of (1.3), that
depend already linearly on outputs and their forward shifts. Since one does
not need to do anything with these terms, the first task is to eliminate such
terms by defining the 1-forms ω̃i, i = 1, . . . , p, as

ω̃i := dΦi mod spanR{dy[niτ ]
τ , . . . ,dyτ ; τ = 1, . . . , p}.

For solvability of the i/o linearization problem, it is necessary that1 for
i = 1, . . . , p

ω̃i ∈ Eni−ri+1, (2.3)

where ri is defined as ri := ni − qi, since otherwise nonlinearities in (1.3)
appear before the input u starts to affect the output y. The goal is to find a
feedback of the form (2.1), such that in the closed-loop system spanR{ω̃i} ⊆
spanR{dv}. To continue, only p1 independent (over R) 1-forms ω̃i, i =
1, . . . , p, are kept. Therefore, let ωi, i = 1, . . . , p1, be the basis elements2

of spanR{ω̃i}. To simplify the presentation, in the rest of this subsection
assume that i, τ = 1, . . . , p1 and j = 1, . . . ,m.

Let σi be such that
ωi ∈ Eσi .

1Observe that for ri = 1, the condition (2.3) is always satisfied.
2These basis elements are exact, since 1-forms ω̃i are exact.
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Next, define the 1-forms

ω̄i,l ∈ spanK{dy[σi−l], . . . ,dy[σi−1], du[σi−l], . . . ,du[σi−1]},

where l = 1, . . . , σi − 1, such that

ωi − ω̄i,l ∈ Eσi−l (2.4)

and
ω̄i,σi := ωi. (2.5)

Let γi,l be the rank of a 1-form ω̄i,l for l = 1, . . . , σi. Then there exist
γi,l functions φ̃ki,l(y

[σi−l], . . . , y[σi−1], u[σi−l], . . . , u[σi−1]) such that

ω̄i,l ∈ spanK{dφ̃1
i,l, . . . ,dφ̃

γi,l
i,l }.

Finally, define the function φki,l as the (σi − l) step backward shift of the

function φ̃ki,l, i.e.

φki,l := (δ−1)σi−lφ̃ki,l = δl−σi φ̃ki,l

for l = 1, . . . , σi and k = 1, . . . , γi,l.

Theorem 2.1. Under the assumption (2.3) the system (1.3) is i/o lin-
earizable by dynamic output feedback of the form (2.1) if and only if

dim(spanK{dφki,l}) = rankK
∂φki,l

∂(u, δφki,l∗)
, (2.6)

for l = 1, . . . , σi, l
∗ = 1, . . . , σi − 1, k = 1, . . . , γi,l and functions φ1

i,σi
are

independent from φki,l∗.

Proof. Sufficiency. Construct the feedback that solves the input-output
linearization problem in the following way. Take all the independent func-
tions φki,l∗ , as the states of the compensator (2.1), i.e.

ηi,l,k := φki,l∗ . (2.7)

Also, let
vi := φ1

i,σi . (2.8)

By (2.6) the system of equations (2.7), (2.8) is solvable with respect to

the variables {u, η[1]
i,l,k}. Note that if p1 < m, the number of equations is

less than that of variables, and so m − p1 variables are free. Take these
free variables equal to the new input vπ, π = p1 + 1, . . . ,m. Solution of

the equations (2.7), (2.8), with respect to the variables {u, η[1]
i,l,k}, results

in a feedback of the form (2.1). This feedback yields, because of (2.5) and
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(2.8), ωi = dvi. From the definition of the 1-forms ωi and ω̃i, one concludes

dy
[ni]
i ∈ spanR{dy

[niτ ]
τ , . . . ,dyτ ,dv}, i.e. the system (1.3) is input-output

linearized.

Necessity. To prove the necessity of condition (2.6), the following 1-forms
are used: ψi,l := δl−σiω̄i,l, l = 1, . . . , σi. These 1-forms can be recursively
computed as

ψi,1 = ψ̄i,1

ψi,2 = δψi,1 + ψ̄i,2
... (2.9)

ψi,σi−1 = δψi,σi−2 + ψ̄i,σi−1

ψi,σi = δψi,σi−1 + ψ̄i,σi ,

where ψ̄i,l ∈ spanK{du,dy}, l = 1, . . . , σi. Also, it is obvious from the
definition of 1-forms ψi,l that ψi,l ∈ spanK{dφki,l}, where l = 1, . . . , σi and
k = 1, . . . , γi,l.

Because of (2.2), in the closed-loop system, one has ωi = dvi. Since
ωi = ω̄i,σi = ψi,σi , one gets that ψi,σi = dvi. Thus, to find a feedback, that
guarantees ωi = dvi, one has to take ψi,σi = dvi in (2.9) and solve the set
of equations in du and δψi,l, l = 1, . . . , σi−1. Now, use the concept of rank
of a 1-form. Choose the state coordinates η of a feedback as the integrals
of the basis elements of a 1-forms ψi,l, i.e. ψi,l ∈ spanK{dη} like in (2.7).
Since the given system is feedback linearizable, the system of equations

(2.7)-(2.8) must be solvable with respect to the variables {u, η[1]
i,l,l}. This

means that (2.6) must be satisfied. Finally, the regularity of the feedback
(2.1) guarantees that the functions φ1

i,σi
are independent from φki,l∗ , l

∗ =
1, . . . , σi − 1, k = 1, . . . , γi,l.

Example 2.1. Consider the system

y
[4]
1 = y

[3]
1 + u

[1]
1 y

[2]
1 u

[2]
1 + y2u

[1]
2 + y2u1

y
[2]
2 = y

[1]
1 u

[1]
1 + u3y2.

(2.10)

Observe that r1 = 2 and r2 = 1. Check the condition (2.6) for system
(2.10). First, compute the functions φki,l. For that, define the 1-forms

ω̃1 = d(u
[1]
1 y

[2]
1 u

[2]
1 + y2u

[1]
2 + y2u1) and ω̃2 = dy

[2]
2 . It is easy to see that

the condition (2.3) is satisfied in both cases. Note that for this example
ωi = ω̃i, i = 1, 2, and σ1 = 3, σ2 = 2. Next compute the 1-forms ω̄i,l,
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i = 1, 2, l = 1, . . . , σi:

ω̄1,1 = u
[1]
1 d(y

[2]
1 u

[2]
1 )

ω̄1,2 = d(u
[1]
1 y

[2]
1 u

[2]
1 ) + y2du

[1]
2

ω̄1,3 = d(u
[1]
1 y

[2]
1 u

[2]
1 + y2u

[1]
2 + y2u1)

ω̄2,1 = d(y
[1]
1 u

[1]
1 )

ω̄2,2 = d(y
[1]
1 u

[1]
1 + u3y2).

(2.11)

From (2.11) it is easy to see that γ1,2 = 2 and γ1,1 = γ1,3 = γ2,1 = γ2,2 =
1. Finally, one can define the functions φki,l, i = 1, 2, l = 1, . . . , σi, k =
1, . . . , γi,l as follows:

φ1
1,1 = y1u1

φ1
1,2 = u1y

[1]
1 u

[1]
1 φ2

1,2 = u2

φ1
1,3 = u

[1]
1 y

[2]
1 u

[2]
1 + y2u

[1]
2 + y2u1

φ1
2,1 = y1u1

φ1
2,2 = y

[1]
1 u

[1]
1 + u3y2.

Now, since φ1
1,1 = φ1

2,1 and all the other functions depend on some different
independent variables,

dim(spanK{dφ1
1,1,dφ

1
1,2, dφ

2
1,2, dφ

3
1,3, dφ

1
2,1, dφ

1
2,2}) = 5.

Also,

rankK
∂(φ1

1,1, φ
1
2,1, φ

1
1,2, φ

2
1,2, φ

1
2,2, φ

1
1,3)T

∂(u, δφ1
1,1, δφ

1
2,1, δφ

1
1,2, δφ

2
1,2)

= rankK



y1 0 0 0 0 0 0
y1 0 0 0 0 0 0
δφ1

1,1 0 0 u1 u1 0 0

0 1 0 0 0 0 0
0 0 y2 1 1 0 0
y2 0 0 0 0 1 y2

 = 5.

Thus, the condition (2.6) is satisfied. The feedback of the form (2.1) can
be found by taking ηi,l,k and new input v as follows

η1,1,1 = φ1
1,1 = y1u1

η1,2,1 = φ1
1,2 = u1y

[1]
1 u

[1]
1

η1,2,2 = φ2
1,2 = u2

v1 = φ1
1,3 = u

[1]
1 y

[2]
1 u

[2]
1 + y2u

[1]
2 + y2u1

v2 = φ1
2,2 = y

[1]
1 u

[1]
1 + u3y2.
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This set of equations has to be solved with respect to variables {η[1]
1,1,1, η

[1]
1,2,1,

η
[1]
1,2,2, u1, u2, u3}. Since there are five equations, but six unknowns, then one

unknown, for example η
[1]
1,2,2, will remain free. This variable will be taken

equal to the new input v3. To conclude, the feedback

η
[1]
1,1,1 =

y1η1,2,1

η1,1,1

η
[1]
1,2,1 = v1 − y2v3 −

y2η1,1,1

y1

η
[1]
1,2,2 = v3

u1 =
η1,1,1

y1
u2 = η1,2,2

u3 =
v2η1,1,1 − y1η1,2,1

y2η1,1,1

solves the input-output linearization problem for system (2.10).

Example 2.2. Consider the model of the liquid level system of intercon-
nected tanks [16], defined by the i/o equation

y[3] = 0.43y[2] + 0.681y[1] − 0.149y + 0.396u[2] + 0.014u[1] − 0.071u

− 0.351y[2]u[2] − 0.03(y[1])2 − 0.135y[1]u[1] − 0.027(y[1])3

− 0.108(y[1])2u[1] − 0.099(u[1])3.
(2.12)

Since the system (2.12) is a SISO system, the indices, that are not needed,
are omitted. It is straightforward to define

ω = ω̃ = d
(
0.396u[2] + 0.014u[1] − 0.071u− 0.351y[2]u[2] − 0.03(y[1])2

− 0.135y[1]u[1] − 0.027(y[1])3 − 0.108(y[1])2u[1] − 0.099(u[1])3
)

and since ω ∈ E3

ω̄1 = d
(
0.396u[2] − 0.351y[2]u[2]

)
ω̄2 = d

(
0.396u[2] + 0.014u[1] − 0.351y[2]u[2] − 0.03(y[1])2 − 0.135y[1]u[1]

− 0.027(y[1])3 − 0.108(y[1])2u[1] − 0.099(u[1])3
)
.

Now,

φ1 = 0.396u− 0.351yu

φ2 = 0.396φ
[1]
1 + 0.014u− 0.03y2 − 0.135yu− 0.027y3

− 0.108y2u− 0.099u3

φ3 = φ
[1]
2 − 0.071u.
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Clearly, the condition (2.6) is satisfied and the feedback

η
[1]
1 = η2 + 0.03y2 + 0.027y3

− (0.014− 0.135y − 0.108y2)
η1

0.396− 0.351y
+
( 0.463η1

0.183− 0.163y

)3

η
[1]
2 = v +

0.071η1

0.028− 0.025y

u =
η1

0.396− 0.351y

linearizes the system (2.12), yielding the closed-loop system equation y[3] =
0.43y[2] + 0.681y[1] − 0.149y + v.

2.1.2 Generalized Problem Statement

Next, the problem statement from the previous subsection, is generalized.
It is shown that under the assumption that system (1.3) is right-invertible
the conditions of Theorem 2.1 are also necessary and sufficient for solvability
of the generalized problem.

In the generalized problem statement the conditions (2.2) are replaced
by weaker conditions

dy
[ni]
i ∈ spanR{dy[niτ ]

τ , . . . ,dyτ ,dv
[ni−1]
j , . . . ,dvj} (2.13)

dy
[ni]
i /∈ spanR{dy[niτ ]

τ , . . . ,dyτ},

where i, τ = 1, . . . , p and j = 1, . . . ,m. Unlike the relations (2.2), y
[ni]
i in

the closed-loop system is now allowed to depend also on the forward-shifts
of the new control v.

Lemma 2.1. Assume that system (1.3) is right-invertible. Then there
exists a feedback of the form (2.1), such that (2.13) is satisfied for the
closed-loop system if and only if the conditions of Theorem 2.1 are satisfied.

Proof. Necessity. Assume that there exists a regular feedback such that
(2.13) is satisfied for the closed-loop system. It is shown that then there
exists another regular feedback, such that (2.2) is satisfied for the closed-
loop system. The latter means that the conditions of Theorem 2.1 are
satisfied. Clearly, since a regular feedback is applied and system (1.3) is
right-invertible, the closed-loop system is right-invertible. Next, it is shown
that every right-invertible system satisfying (2.13) satisfies the conditions
of Theorem 2.1. Since the closed-loop system is linear,

φi,1 = ψi,1(u)

φi,l = δφi,l−1 + ψi,l(u)
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for l = 2, . . . , σi, i = 1, . . . , p1 and some functions ψi,l(·)3. Therefore

dim(spanK{dφi,l}) = rankK
∂φi,l

∂(u, δφi,l∗)

for i = 1, . . . , p1, l = 1, . . . , σi and l∗ = 1, . . . , σi− 1. The right-invertibility
guarantees that the functions φi,σi are independent from all the other func-
tions φi,l, i.e. one can define the system of equations (2.7), (2.8). Thus, the
conditions of Theorem 2.1 are satisfied.

Sufficiency. This is obvious.

In the following sections, the notion of i/o linearizability of a set of
functions is used in the solutions of the decoupling problems. The functions
ϕi(y, . . . , y

[s−1], u, . . . , u[s−1]), i = 1, . . . , p, are said to be linearizable if
there exists a feedback of the form (2.1), such that the system

y
[s]
i = ϕi(y, . . . , y

[s−1], u, . . . , u[s−1]),

i = 1, . . . , p, is i/o linearizable. The functions ϕi, i = 1, . . . , p, are said to
be strictly linearizable, if the application of the linearizing feedback yields
dϕi ∈ spanR{dv}, for i = 1, . . . , p.

2.2 Input-Output Decoupling

In this section, the results on i/o linearization are applied to give a solu-
tion to the i/o decoupling problem by dynamic measurement feedback, i.e.
by a feedback that depends on outputs that are measured. Compared to
the majority of contributions, that address the i/o decoupling problem by
state feedback, here a measurement feedback is used. It allows to apply
the i/o decoupling techniques when all the states are not measurable and
construction of the observer is too complicated. Of course, the solvability
conditions are more restrictive.

The techniques similar to those in [44, 79, 73, 80] are applied. Two cases
are considered: when the system is described by 1) the state equations and
2) the i/o equations. Necessary and sufficient solvability conditions are
derived. The results of this section generalize the results of [73] from output
feedback (the case when exactly the controlled outputs are measurable) to
measurement feedback case and from the static feedback to the dynamic
feedback case.

3Note that here we write φi,l instead of φki,l since k is equal to 1 for all the functions.
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2.2.1 Systems Described by State Equations

First, the case when the nonlinear discrete-time system is given by state
equations, is considered. Compared to (1.1), here one has two types of
outputs: the measured output y∗(t) ∈ Y∗ ⊂ Rp and the output-to-be-
controlled y(t) ∈ Y ⊂ Rm. Thus, the system is described by the equations

x(t+ 1) = f(x(t), u(t))

y∗(t) = h∗(x(t)) (2.14)

y(t) = h(x(t)).

Assume that system (2.14) is invertible, i.e.

rankK
∂(h1(x[j1]), . . . , hm(x[jm]))T

∂u
= m,

for some ji ∈ N, i = 1, . . . ,m. Also, let jmax := max{j1, . . . , jm} and as-
sume that the relative degree ri of output yi is finite for every i = 1, . . . ,m.

Next, as in [80], for each output component yi a subspace Ωi of X :=
spanK{dx} is defined in the following way:

Ωi = {ω ∈ X | ∀k ∈ N :

δkω ∈ spanK{dx, dy
[ri]
i , . . . ,dy

[ri+k−1]
i }}.

(2.15)

The subspaces Ωi are essential to solve the i/o decoupling problem, since the
forward-shifts of the elements of Ωi do not depend on the input u explicitly.
Suppose Ωi = spanK{θ1, . . . , θl}. Define the forward-shift of subspace Ωi

element-wise by Ω
[1]
i = spanK{δθ1, . . . , δθl}. Let Ω

[0]
i := Ωi, and Ω

[k]
i :=

(Ω
[k−1]
i )[1]. The following lemma gives a procedure for computation of the

subspaces Ωi.

Lemma 2.2. The subspace Ωi may be computed as the limit of the following
algorithm:

Ω0
i = X (2.16)

Ωk+1
i = {ω ∈ Ωk

i | δω ∈ Ωk
i + spanK{dy

[ri]
i }}, k ≥ 0.

Proof. Clearly, the sequence Ωk
i converges, since it is decreasing sequence

of vector spaces. Let the limit be Ωk∗
i . Now, if ω ∈ Ωk∗

i , then

δkω ∈ Ωk∗
i + spanK{dy

[ri]
i , . . . ,dy

[ri+k−1]
i }

for ∀k. Since Ωk∗
i ⊂ X , one has that ω ∈ Ωi and Ωk∗

i ⊂ Ωi.
Now, let ω ∈ Ωi, then

δω = ω0 + ωy,
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where ω0 ∈ X and ωy ∈ spanK{dy
[ri]
i }. Since ω ∈ Ωi, then ω0 must also

belong to Ωi. Thus, Ω
[1]
i ⊂ Ωi + spanK{dy

[ri]
i }. Since, Ωk∗

i , as the limit of

(2.16), is maximal subspace of X satisfying (Ωk∗
i )[1] ⊂ Ωk∗

i + spanK{dy
[ri]
i },

then Ωi ⊂ Ωk∗
i . Therefore, Ωi = Ωk∗

i .

Problem statement. The goal is to find a regular dynamic measure-
ment feedback of the form

η(t+ 1) = F (η(t), y∗(t), v(t))
u(t) = H(η(t), y∗(t), v(t)),

(2.17)

where v(t) ⊂ V ∈ Rm is the new input, η(t) ⊂ Λ ∈ Rρ is the state of the
feedback and V,Λ are open and dense, such that the in closed-loop system
different outputs yi are affected by different inputs vi for every time instant,
i.e.

dy
[k]
i ∈ spanK{dx, dη,dvi, . . . ,dv

[k−r̄i]
i }

for k ≥ r̄i, where r̄i is the relative degree of output yi of the closed-loop
system.

To check whether the system (2.14) is already i/o decoupled, the follow-
ing Lemma can be used.

Lemma 2.3. Under the assumption ri < ∞, for i = 1, . . . ,m, the system
(2.14) is i/o decoupled if and only if for i = 1, . . . ,m

dy
[ri]
i ∈ Ωi + spanK{dui}. (2.18)

Proof. Necessity. Let throughout this proof i = 1, . . . ,m. If the system
(2.14) is i/o decoupled, then

dy
[ri]
i ∈ spanK{dx, dui}.

Thus, there exists ωi ∈ X and λi ∈ K, such that dy
[ri]
i = ωi + λidui. It will

be shown that ωi ∈ Ωi. Note that for every σ ∈ N,

δσωi ∈ spanK{dx,dui, . . . ,du
[σ−1]
i }. (2.19)

Since dy
[k]
i ∈ spanK{dx, dui, . . . ,du

[k−ri]
i } for k ≥ 0, then

spanK{dx, dui, . . . ,du
[σ−1]
i }

= spanK{dx,dy
[ri]
i , . . . ,dy

[ri+σ−1]
i }.

(2.20)

Thus, (2.19) and (2.20) give

δσωi ∈ spanK{dx,dy
[ri]
i , . . . ,dy

[ri+σ−1]
i }
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for every σ ∈ N, which, by definition of Ωi, means that ωi ∈ Ωi.

Sufficiency. By Lemma 2.2 and (2.18), one gets

Ω
[1]
i ⊆ Ωi + spanK{dy

[ri]
i } ⊆ Ωi + spanK{dui}.

Thus, Ω
[k]
i ⊆ Ωi + spanK{dui, . . . ,du

[k−1]
i } and therefore,

dy
[ri+k]
i ∈ Ω

[k]
i + spanK{du

[k]
i }

⊆ Ωi + spanK{dui, . . . ,du
[k]
i }

⊆ spanK{dx,dui, . . . ,du
[k]
i },

which means, that the system (2.14) is i/o decoupled.

In Theorem 2.2 below, the necessary and sufficient conditions for solv-
ability of the i/o decoupling problem by dynamic measurement feedback
are given.

Theorem 2.2. The invertible system (2.14) can be i/o decoupled by the
dynamic measurement feedback (2.17) if and only if the following conditions
are satisfied for i = 1, . . . ,m:

(i) there exists s ≥ jmax − ri + 1 such that4

dy
[ri+s−1]
i ∈ Ωi + · · ·+ Ω

[s−1]
i

+spanK{dy∗, . . . ,dy
[s−1]
∗ ,du, . . . ,du[s−1]};

(ii) there exist integrable 1-forms ωi ∈ spanK{dy∗, . . . ,dy
[s−1]
∗ ,du, . . . ,

du[s−1]} such that

dy
[ri+s−1]
i − ωi ∈ Ωi + · · ·+ Ω

[s−1]
i ;

(iii) for ωi = λidϕi, the functions ϕi(y∗, . . . , y
[s−1]
∗ , u, . . . , u[s−1]) are inde-

pendent and strictly linearizable by dynamic feedback (2.17).

Proof. Necessity. Let s ≥ 1 be such that in the closed-loop system the
relative degree r̄i of output yi is r̄i = ri + s − 1. By Lemma 2.3 and the
fact that the closed-loop system is i/o decoupled,

dy
[r̄i]
i ∈ Ω̄i + spanK{dvi}, (2.21)

4Note that, one can, in principle, search, instead of the joint index s, a separate si
that satisfies si ≥ jmax − ri + 1. Then s can be taken as s = maxi{si}.
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where by Ω̄i is denoted the subspace Ωi for the closed-loop system. Next,

it is shown that Ω̄i = Ωi + · · ·+ Ω
[s−1]
i . From the definition (2.15) of Ωi,

Ωi + · · ·+ Ω
[s−1]
i ⊆ spanK{dx,dy

[ri]
i , . . . ,dy

[ri+s−2]
i }.

Since r̄i = ri + s− 1, then in the closed-loop system

Ωi + · · ·+ Ω
[s−1]
i ⊆ spanK{dx, dη}. (2.22)

Thus,

Ωi + · · ·+ Ω
[s−1]
i = {ω̄ ∈ spanK{dx,dη} | ∀k ∈ N :

ω̄[k] ∈ spanK{dx,dη,dy
[ri+s−1]
i , . . . ,dy

[ri+s−k−2]
i }} = Ω̄i.

The last equality comes from the definition (2.15) of the subspace Ω̄i.
Therefore, (2.21) becomes

dy
[ri+s−1]
i ∈ Ωi + · · ·+ Ω

[s−1]
i + spanK{dvi}.

Then one can define the 1-forms ωi = λidvi such that dy
[ri+s−1]
i − ωi ∈

Ωi + · · ·+ Ω
[s−1]
i . Now, the conditions (i) and (ii) must be satisfied, since

otherwise the feedback would not be measurement feedback. Since the
conditions (i) and (ii) are satisfied, ωi = λidϕi(u, . . . , u

[s−1], y∗, . . . , y
[s−1]
∗ )

for some functions ϕi. Note that under the feedback ωi = λidvi, i.e. the
functions ϕi are strictly linearizable.

Sufficiency. It will be shown that the feedback that linearizes strictly
the functions ϕi in (iii), solves the i/o decoupling problem.

Because the functions ϕi, i = 1, . . . ,m, are independent and strictly
linearizable, for the closed-loop system one has dϕi = dvi, and the relative
degree of output yi is ri + s− 1. Thus

dy
[ri+j]
i ∈ spanK{dx,dη} (2.23)

for j = 0, . . . , s − 2. From the definition (2.15) of the subspace Ωi one

concludes Ωi + · · ·+ Ω
[s−1]
i ⊆ spanK{dx,dη}.

Now, like in the proof of necessity part, one can show that Ωi + · · · +
Ω

[s−1]
i = Ω̄i, where Ω̄i is the subspace Ωi for the closed-loop system. There-

fore, by (i), (ii) and (iii), dy
[ri+s−1]
i ∈ Ω̄i+spanK{dvi}. Finally, by Lemma

2.3, the system (2.14) is i/o decoupled.

Remark 2.1. The assumption of invertibility of system (2.14) in Theorem
2.2 is necessary for linearizability of independent functions ϕi, i = 1, . . . ,m,
defined in (iii) of Theorem 2.2.
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Remark 2.2. If s = 1 in (ii) and (iii) of Theorem 2.2, one gets the con-
ditions for solvability of the i/o decoupling problem by static measurement
feedback, that in the special case y = y∗ recover the result obtained in [73]
for output feedback case.

The drawback of the conditions in Theorem 2.2 is that in general the
1-forms ωi and the functions ϕi, i = 1, . . . ,m, are not unique, and as such
it is not completely constructive to check the conditions of Theorem 2.2.
Below a constructive way to check whether the system (2.14) can be i/o
decoupled by the feedback (2.17), is suggested.

First, find the minimal integer s such that s ≥ jmax − ri + 1 and

dy
[ri+s−1]
i ∈ Ωi + · · ·+ Ω

[s−1]
i

+spanK{dy∗, . . . ,dy
[s−1]
∗ , du, . . . , du[s−1]}.

for i = 1, . . . ,m.

In the following an assumption is made, that guarantees the uniqueness
of the 1-forms ωi, defined in (ii) of Theorem 2.2.

Assumption 1. The subspaces Ωi + · · · + Ω
[s−1]
i are integrable for

i = 1, . . . ,m.

From Assumption 1, Ωi + · · ·+ Ω
[s−1]
i = spanK{dβi1, . . . ,dβil} for some

functions βij ∈ K, j = 1, . . . , l. Then, define the 1-forms ωi, i = 1, . . . ,m,
as

ωi := dy
[ri+s−1]
i −

l∑
j=1

∂y
[ri+s−1]
i

∂βij
dβij .

Now, the condition (ii) of Theorem 2.2 is satisfied if and only if for i =
1, . . . ,m

ωi = aidϕ̃i +

li∑
j=1

bijω̄ij ,

where ai, bij ∈ K and

(Ωi + · · ·+ Ω
[s−1]
i ) ∩ spanK{dy∗, . . . ,dy

[s−1]
∗ ,du, . . . ,du[s−1]}

= spanK{ω̄i1, . . . , ω̄ili}.

So, under the Assumption 1 Theorem 2.2 can be rewritten in the follow-
ing form.

Corollary 2.1. An invertible system (2.14) can be i/o decoupled by the
dynamic measurement feedback (2.17) if and only if the functions ϕ̃i, i =
1, . . . ,m are strictly linearizable.
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Proof. Necessity. The beginning of the proof follows that of Theorem 2.2.
Now, since one has

dy
[ri+s−1]
i ∈ Ωi + · · ·+ Ω

[s−1]
i + spanK{dvi},

then one gets ϕ̃i = vi. This means that the feedback that solves the i/o
decoupling problem, linearizes strictly the functions ϕ̃i.

Sufficiency. By construction, the 1-forms

ωi −
li∑
j=1

bijω̄ij = aidϕ̃i

and the functions ϕ̃i satisfy the conditions (ii) and (iii) of Theorem 2.2.
Therefore, the i/o decoupling problem has a solution.

Remark 2.3. When one sets y∗ = y in Theorem 2.2, then one gets the
conditions under which the i/o decoupling problem is solvable by dynamic
output feedback. Moreover, when y∗ = x, then the state feedback solution
is obtained. In this case the conditions of Theorem 2.2 are always satisfied
under the assumption of invertibility.

Example 2.3. Consider the system described by the difference equations

x
[1]
1 = (x3 + x4)u1 − x2

x
[1]
2 = u1x5

x4
+ x1

x
[1]
3 = x1x3

x
[1]
4 = (x3 + x4)u1x5

x
[1]
5 = u2x5

x4
y1 = x1, y2 = x4

y∗1 = x3 + x4 y∗2 = x5
x4
.

(2.24)

Check whether the conditions of Theorem 2.2 are satisfied for system (2.24).
First, note that the relative degrees of outputs y1 and y2 are r1 = r2 = 1.
Since

y
[1]
1 = (x3 + x4)u1 − x2

y
[2]
2 =

(
y

[2]
1 + x1 +

u1x5

x4

)u2x5

x4
,

one gets rankK
∂(y

[1]
1 ,y

[2]
2 )T

∂u = 2. Therefore, the system (2.24) is invertible
and j1 = 1, j2 = 2. The subspaces Ωi are, according to Lemma 2.2,
Ω1 = spanK{dx1, dx3} and Ω2 = spanK{dx4}.
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Now, check whether the condition (i) of Theorem 2.2 is satisfied. Since
s has to satisfy the inequalities s ≥ jmax−ri+1 for i = 1, 2, the first choice
for s is s = 2. Compute

dy
[2]
1 = u

[1]
1 dy

[1]
∗1 + y

[1]
∗1 du

[1]
1 − y∗2du1 − u1dy∗2 − dx1

∈ Ω1 + Ω
[1]
1 + spanK{du,dy∗,du[1],dy

[1]
∗ }

dy
[2]
2 = u2y∗2y

[1]
∗1 du

[1]
1 + u2y∗2u

[1]
1 dy

[1]
∗1 + y∗2u

[1]
1 y

[1]
∗1 du2 + u2u

[1]
1 y

[1]
∗1 dy∗2

∈ Ω2 + Ω
[1]
2 + spanK{du,dy∗,du[1],dy

[1]
∗ }

and thus, condition (i) of Theorem 2.2 is satisfied. Next, the integrable
1-forms ωi, i = 1, 2, satisfying the condition (ii) of Theorem 2.2, are found:

ω1 = u
[1]
1 dy

[1]
∗1 + y

[1]
∗1 du

[1]
1 − y∗2du1 − u1dy∗2

= d(y
[1]
∗1u

[1]
1 − y∗2u1)

ω2 = u2y∗2y
[1]
∗1 du

[1]
1 + u2y∗2u

[1]
1 dy

[1]
∗1 + y∗2u

[1]
1 y

[1]
∗1 du2

+u2u
[1]
1 y

[1]
∗1 dy∗2 = d(u

[1]
1 y

[1]
∗1u2y∗2).

It remains to be checked whether the functions ϕ1 = y
[1]
∗1u

[1]
1 − y∗2u1 and

ϕ2 = u
[1]
1 y

[1]
∗1u2y∗2 are strictly linearizable. In fact, the feedback

η
[1]
1,1 = v1 +

η1,1y∗2
y∗1

u1 =
η1,1
y∗1

u2 = v2y∗1
y∗2(y∗1v1+η1,1y∗2)

(2.25)

linearizes the functions ϕ1, ϕ2 and solves the i/o decoupling problem for
system (2.24). For the closed-loop system one gets r̄1 = r̄2 = ri + s− 1 = 2
and

dy
[2]
1 = dv1 − dx1 ∈ Ω̄1 + spanK{dv1}

dy
[2]
2 = dv2 ∈ Ω̄2 + spanK{dv2},

which means that by Lemma 2.3, the closed-loop system is i/o decoupled.

2.2.2 Systems Described by Input-Output Equations

In this subsection, systems of the form (1.3), where p = m, i.e.

yi(t+ ni) = Φi(yj(t), . . . , yj(t+ nij), uj(t), . . . , uj(t+ qi)) (2.26)

for i, j = 1, . . . ,m, are considered.
The system (2.26) is said to be i/o decoupled if, after possibly reordering

the inputs, one has

dΦi ∈ spanK{dyi, . . . ,dy
[ni−1]
i ,dui, . . . ,du

[qi]
i }
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or equivalently,

dΦi ∈ ∆i + spanK[ϑ]{dui}, (2.27)

where

∆i := spanK{dyi, . . . ,dy
[ni−1]
i } (2.28)

for i = 1, . . . ,m.

Problem statement. A regular dynamic output feedback of the form

η(t+ 1) = F (η(t), y(t), v(t))
u(t) = G(η(t), y(t), v(t)),

(2.29)

where v(t) ⊂ V ∈ Rm and η(t) ⊂ Λ ∈ Rρ, is searched, such that the
closed-loop system (2.26), (2.29) is i/o decoupled.

Theorem 2.3. The invertible system (2.26) can be i/o decoupled by the
dynamic output feedback of the form (2.29) if and only if there exist strictly
linearizable functions ϕi ∈ K, such that

dΦi ∈ ∆i + spanK[ϑ]{dϕi} (2.30)

for i = 1, . . . ,m.

Proof. Necessity. If the invertible system (2.26) is i/o decoupled, then
the condition (2.27) must be satisfied. Take for instance ϕi = ui and the
condition (2.30) is satisfied.

Sufficiency. By assumption, the functions ϕi, i = 1, . . . ,m are strictly
linearizable via the dynamic output feedback. Thus, under this feedback
ϕi = vi for some new inputs vi. Therefore, (2.30) becomes (2.27) under the
feedback that linearizes the functions ϕi.

Typically there exist multiple possibilities to choose the functions ϕi
that satisfy the condition (2.30). If the system can be i/o decoupled, then
at least one set of the functions ϕi, i = 1, . . . ,m, is strictly linearizable. The
problem one faces is: how to choose the functions ϕi in the best manner?
Obviously, one can always take ϕi = Φi, i = 1, . . . ,m in Theorem 2.3, but
this yields only a sufficient solvability condition.

Corollary 2.2. The invertible system (2.26) can be i/o decoupled by the
dynamic output feedback if the functions Φi, i = 1, . . . ,m, are strictly lin-
earizable.

Next, certain unique 1-forms ωi, i = 1, . . . ,m, will be defined. From
these 1-forms, one can calculate, by integration, the functions ϕi, i =
1, . . . ,m, that satisfy the condition (2.30).
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Consider the 1-forms

ωi := dΦi −
ni−1∑
j=0

∂Φi

∂y
[j]
i

dy
[j]
i (2.31)

for i = 1, . . . ,m. Note that the ring K[ϑ] is defined such that one can inter-
pret a shift of variable as multiplication by the polynomial indeterminate
ϑ from left. Therefore, one can construct m modules Ai := spanK[ϑ]{ωi}.
Let for each i = 1, . . . ,m, the 1-form ω̄i be the basis element of the closure
of Ai.

Next, let ∆̄i be the smallest integrable subspace of ∆i such that

dω̄i ∧ ω̄i = 0 mod ∆̄i. (2.32)

The subspace ∆̄i is unique and always exists. In extreme cases ∆̄i = ∆i

(see (2.28)) or ∆̄i = 0. If the condition (2.32) is satisfied, then there exist
functions ϕ̄i ∈ K such that

ω̄i = aidϕ̄i +

li∑
j=1

bijdαij

for some ai, bij ∈ K, where ∆̄i = spanK{dαi1, . . . ,dαili}.

Corollary 2.3. The invertible system (2.26) can be i/o decoupled by the
dynamic output feedback (2.29) if and only if the functions ϕ̄i, i = 1, . . . ,m,
are strictly linearizable.

Proof. Necessity. If the system (2.26) is i/o decoupled, then the condition
(2.27) is satisfied. Thus, one gets ω̄i = dui and ∆̄i = ∅. Therefore, ϕ̄i = ui
and these functions are clearly strictly linear.

Sufficiency. By construction

dΦi =

ni−1∑
j=0

∂Φi

∂y
[j]
i

dy
[j]
i + pi(ϑ)ω̄i

=

ni−1∑
j=0

∂Φi

∂y
[j]
i

dy
[j]
i + pi(ϑ)

li∑
j=1

bijdαij + pi(ϑ)aidϕ̄i

for i = 1, . . . ,m and some pi(ϑ) ∈ K[ϑ]. Therefore, since

ni−1∑
j=0

∂Φi

∂y
[j]
i

dy
[j]
i + pi(ϑ)

li∑
j=1

bijdαij ∈ ∆i,

the functions ϕ̄i satisfy the condition (2.30). Since these functions are
strictly linearizable, the conditions of Theorem 2.3 are satisfied and thus
the system (2.26) can be i/o decoupled.
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Example 2.4. Consider an invertible system

y
[3]
1 = y

[2]
1 + y

[1]
1 y

[1]
2 u

[1]
1 + u2

y
[2]
2 = y

[1]
1 u

[1]
2 + y2.

(2.33)

Compute, by (2.31)

ω1 = y
[1]
1 u

[1]
1 dy

[1]
2 + y

[1]
1 y

[1]
2 du

[1]
1 + du2

ω2 = y
[1]
1 du

[1]
2 + u

[1]
2 dy

[1]
1

and

ω̄1 = ω1

ω̄2 = ϑω2.

Clearly, dω̄1 ∧ ω̄1 ∧ dy
[1]
1 = 0 and dω̄2 ∧ ω̄2 = 0, i.e. ∆̄1 = spanK{dy

[1]
1 } and

∆̄2 = 0. Thus,

ω̄1 = dϕ̄1 − u[1]
1 y

[1]
2 dy

[1]
1

ω̄2 = dϕ̄2,

where

ϕ̄1 = y
[1]
1 y

[1]
2 u

[1]
1 + u2

ϕ̄2 = y1u2.

These functions can be strictly linearized by a dynamic feedback

η[1] = v1 −
v2

y1

u1 =
η

y1y2

u2 =
v2

y1
,

which, by Corollary 2.3 also solves the i/o decoupling problem. After ap-
plying the feedback, the equations (2.33) become

y
[3]
1 = y

[2]
1 + v1

y
[2]
2 = v

[1]
2 + y2.
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2.3 Disturbance Decoupling

A problem similar to the i/o decoupling is the disturbance decoupling prob-
lem (DDP). Just like in the previous section, here the i/o linearization is
used to solve the DDP by measurement feedback. The results, presented
here, are direct extension of those from [52]. It is shown that a feed-
back, that strictly linearizes certain functions, also solves the disturbance
decoupling problem. In this section, the systems, described by the state
equations, are studied. Compared to the description (1.1), here the system
has two types of inputs - the control input u(t) ∈ U ⊂ Rm and the dis-
turbance input w(t) ∈ W ⊂ Rι - and two kinds of outputs - the controlled
output y(t) ⊂ Y ∈ Rp and the measured output y∗(t) ⊂ Y∗ ∈ Rq. Thus,
the systems of the form

x(t+ 1) = f(x(t), u(t), w(t))

y(t) = h(x(t)) (2.34)

y∗(t) = h∗(x(t))

are studied. Let ri be the relative degree of output yi, for i = 1, . . . , p, with
respect to the control input u.

Next, two subspaces Ω and Ωu of X := spanK{dx} are defined, which
play an important role in the solution of the problem:

Ω = {ω ∈ X | ∀k ∈ N :

δkω ∈ spanK{dx, dy
[ri]
i , . . . ,dy

[ri+k−1]
i ; i = 1, . . . , p}}

(2.35)

and

Ωu = {ω ∈ X | ∀k ∈ N : δkω ∈ spanK{dx, du,
. . . ,du[k−1],dy

[ri]
i , . . . ,dy

[ri+k−1]
i ; i = 1, . . . , p}}.

(2.36)

Obviously, by definitions, Ω ⊆ Ωu. Note that for SISO systems Ω = Ωu,
since du can be written as a linear combination of dx and dy[r]. The
subspaces Ω and Ωu can be computed using the following lemmas.

Lemma 2.4. The subspace Ω may be computed as the limit of the algo-
rithm:

Ω0 = X (2.37)

Ωk+1 = {ω ∈ Ωk | δω ∈ Ωk + spanK{dy
[ri]
i ; i = 1, . . . , p}}.

Lemma 2.5. The subspace Ωu may be computed as the limit of the algo-
rithm:

Ω0 = X (2.38)

Ωk+1 = {ω ∈ Ωk | δω ∈ Ωk + spanK{du,dy
[ri]
i ; i = 1, . . . , p}}.

55



The proofs of Lemmas 2.4 and 2.5 are similar to that of Lemma 2.2,
except the vector spaces one works with are different. The forward-shift of
Ω (or Ωu) is defined element-wise: Ω[k] = spanK{δkθ1, . . . , δ

kθs} for k ≥ 1,
where Ω = spanK{θ1, . . . , θs}.

Problem statement. The goal of this section is to find a measurement
feedback of the form

η(t+ 1) = F (η(t), y∗(t), v(t))
u(t) = H(η(t), y∗(t), v(t)),

(2.39)

where η(t) ∈ Rρ and v(t) ∈ Rm, such that the components yi (i = 1, . . . , p)
of the output-to-be-controlled y of the closed-loop system do not depend
on the disturbance w at any time instant, i.e.

dy
[k]
i ∈ spanK{dx,dη} k < r̃i

dy
[k]
i ∈ spanK{dx,dη,dv, . . . , dv[k−r̃i]} k ≥ r̃i,

where r̃i is the relative degree of yi of the closed loop system with respect
to v.

Assumption 2. The relative degree ri of yi with respect to the input
u is finite, for i = 1, . . . , p.

Given a system of the form (2.34), one can check whether it is distur-
bance decoupled or not by the lemma below.

Lemma 2.6. Under the Assumption 2, system (2.34) is disturbance decou-
pled if and only if for i = 1, . . . , p

dy
[ri]
i ∈ Ωu + spanK{du}. (2.40)

Proof. Necessity. Let throughout the proof i = 1, . . . , p. By the definition
of relative degree ri

dy
[ri]
i = ωi0 +

m∑
j=1

bi,jduj ,

where bi,j ∈ K and ωi0 ∈ spanK{dx}. Next, it is shown that ωi0 ∈ Ωu.
Assume, by contradiction, that ωi0 /∈ Ωu for some i. Then there exists
k ∈ N such that

δkωi0 /∈ spanK{dx,du, . . . ,du[k−1]}.

This means that the 1-form ωi0 is not disturbance decoupled and thus
yi is not disturbance decoupled either. This is a contradiction and thus,
ωi0 ∈ Ωu.

Sufficiency. If (2.40) is true, then by Lemma 2.5, Ω
[1]
u ⊆ Ωu+spanK{du}.

Thus, Ωu is invariant with respect to the system dynamics and since dyi ∈
Ωu, the system (2.34) is disturbance decoupled.
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2.3.1 Sufficient Solvability Conditions

The theorem below gives sufficient conditions for the existence of the feed-
back in the form (2.39), that solves the disturbance decoupling problem by
dynamic measurement feedback.

Theorem 2.4. Under Assumption 2, the DDP by dynamic measurement
feedback is solvable for system (2.34), if

(i) there exist 1-forms ωi ∈ spanK{dy∗, . . . ,dy
[s−1]
∗ , du, . . . ,du[s−1]}, such

that
dy

[ri+s−1]
i − ωi ∈ Ω + · · ·+ Ω[s−1]

for i = 1, . . . , p and some s ≥ 1;

(ii) if spanK{dα1, . . . ,dαl} is the minimal integrable subspace contain-

ing spanK{ω1, . . . , ωp}, the functions αj(y∗, . . . , y
[s−1]
∗ , u, . . . , u[s−1]),

j = 1, . . . , l, are strictly linearizable by dynamic measurement feed-
back (2.39).

Proof. It will be shown that the feedback that linearizes strictly the func-
tions αj , in (ii), solves the DDP. In the rest of the proof i = 1, . . . , p and
j = 1, . . . , l.

From the linearization process the relative degree of yi with respect to
v is r̄i = ri + s− 1. Since by (ii) the functions αj are strictly linearizable,
in the closed-loop system ωi ∈ spanK{dv}. Now, from (i)

dy
[r̄i]
i ∈ Ω + · · ·+ Ω[s−1] + spanK{dv}.

Next, it is shown that Ω̄ = Ω + · · · + Ω[s−1], where by Ω̄ is denoted
the subspace Ω for the closed-loop system. From the definition of Ω (see
(2.35)),

Ω + · · ·+ Ω[s−1] ⊆ spanK{dx, dy
[ri]
i , . . . ,dy

[ri+s−2]
i }.

Since r̄i = ri + s− 1, then in the closed-loop system

Ω + · · ·+ Ω[s−1] ⊆ spanK{dx,dη}.

Thus,

Ω + · · ·+ Ω[s−1] = {ω̄ ∈ spanK{dx, dη} | ∀k ∈ N :

δkω̄ ∈ spanK{dx,dη,dy
[ri+s−1]
i , . . . ,dy

[ri+s−k−2]
i }}

= Ω̄.

The last equality comes from the definition (2.35) of the subspace Ω̄.
Since Ω̄ ⊆ Ω̄u, then by Lemma 2.6, system (2.34) is disturbance decou-

pled.
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Since for SISO system, Ω = Ωu, the conditions of Theorem 2.4 are also
necessary.

Corollary 2.4. For SISO systems, the conditions of Theorem 2.4 are nec-
essary and sufficient.

Proof. It remains to prove the necessity. Since the closed-loop system is
disturbance decoupled, by Lemma 2.6

dy[r̄] ∈ Ω̄u + spanK{dv}, (2.41)

where by r̄ is denoted the relative degree of y with respect to v and by
Ω̄u the subspace Ωu for the closed-loop system, respectively. Choose s ≥ 1
such that r̄ = r + s− 1.

Next, since now Ω = Ωu, one can show, as in the proof of Theorem 2.4,
that Ω̄u = Ω + · · ·+ Ω[s−1]. Now, one can find the 1-form ω ∈ spanK{dv},
with rank 1, such that from (2.41) one gets

dy[r+s−1] − ω ∈ Ω + · · ·+ Ω[s−1].

Let ω = βdα for some functions β, α ∈ K. Clearly, the feedback that solves
the DDP, also linearizes strictly the function α, since ω ∈ spanK{dv}. Thus,
the conditions (i) and (ii) of Theorem 2.4 are satisfied.

Remark 2.4. Taking s = 1 in Theorem 2.4, one gets solvability conditions
for the DDP by static measurement feedback. In this case strict lineariz-
ability of functions αj , j = 1, . . . , l, means that the system of equations
αj(y∗, u) = vj , j = 1, . . . , l, is solvable for u.

Example 2.5. Consider the system

x
[1]
1 = u1

x
[1]
2 = x3u3 + x2x4u2 − x1

x
[1]
3 = u2

x
[1]
4 = x1w

x
[1]
5 = u1u2x4 + x2

y1 = x2

y2 = x5

y∗ = x4.

(2.42)

First, note that the relative degrees r1 and r2 of outputs y1 and y2 with re-
spect to u are both 1. One can also compute the subspaces Ω = spanK{dx2,

dx5} and Ωu = spanK{dx1, dx2, dx3,dx5}. Clearly, dy
[1]
i /∈ Ωu+spanK{du}

for i = 1, 2. Therefore, system (2.42) is not disturbance decoupled.

58



To find the 1-forms ωi, defined in (i) of Theorem 2.4, calculate dy
[ri+s−1]
i

for s = 1, 2, . . ., until

dy
[ri+s−1]
i ∈ Ω + · · ·+ Ω[s−1]

+ spanK{dy∗, . . . ,dy
[s−1]
∗ ,du, . . . ,du[s−1]}.

For system (2.42), one gets

dy
[1]
1 = u3dx3 − dx1 + y∗u2dx2 + x3du3 + x2d(y∗u2)

6∈ Ω + spanK{du,dy∗}
dy

[1]
2 = dx2 + d(u1u2y∗) ∈ Ω + spanK{du,dy∗}.

Thus, s 6= 1. Compute Ω + Ω[1] = spanK{dx2, dx5, dx
[1]
2 , dx

[1]
5 }. Now,

dy
[2]
1 = d(u

[1]
3 u2 − u1) + y

[1]
∗ u

[1]
2 dx

[1]
2 + x

[1]
2 d(y

[1]
∗ u

[1]
2 )

∈ Ω + Ω[1] + spanK{du,du[1],dy∗,dy
[1]
∗ }

dy
[2]
2 = dx

[1]
2 + d(u

[1]
1 u

[1]
2 y

[1]
∗ ) ∈ Ω + Ω[1] + spanK{du,du[1], dz, dz[1]}.

meaning that s = 2. Next, one can choose the 1-forms ωi as

ω1 = d(u
[1]
3 u2 − u1) + x

[1]
2 d(y

[1]
∗ u

[1]
2 )

ω2 = d(u
[1]
1 u

[1]
2 y

[1]
∗ ),

so that they satisfy condition (i) of Theorem 2.4. Obviously, rank ω1 = 2

and rank ω2 = 1. It remains to check whether the functions α1,1 = u
[1]
3 u2−

u1, α1,2 = y
[1]
∗ u

[1]
2 and α2,1 = u

[1]
1 u

[1]
2 y

[1]
∗ are strictly linearizable. One can

check, that the dynamic measurement feedback

η
[1]
1 = y∗(η2v1+η3)

η22

η
[1]
2 = v2

η
[1]
3 = v3

u1 = η3
η2

u2 = η2
y∗

u3 = η1,

(2.43)

linearizes the functions α1,1, α1,2, α2,1 and also decouples the disturbances
from the outputs y1 and y2. Really, in the closed-loop system

y
[2]
1 = v1 + x

[1]
2 v2

y
[2]
2 = v3 + x

[1]
2

and since Ω̄u = spanK{dx1,dx2,dx5,dx
[1]
2 ,dη2}, the conditions of Lemma

2.6 are satisfied. This means that the closed-loop system is disturbance
decoupled.
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2.4 Conclusions

In this chapter the problems of i/o linearization, i/o decoupling and DDP
were studied for discrete-time systems. The main result of this chapter is
Theorem 2.1, which gives the necessary and sufficient conditions for solv-
ability of the i/o linearization problem by dynamic output feedback. The
theorem depends on certain functions φki,l, which can be computed step-by-
step from the system equations (1.3). The main difficulties of the solution
are in computing the required functions φki,l. More precisely, one needs to
compute the minimal integrable vector space of 1-forms, which contains a
given 1-form, and this is in general a difficult task.

The results on the i/o decoupling problem and the DDP are general-
izations of previous results [73, 80, 52] and the novelty comes from the
improved i/o linearization procedure.
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Chapter 3

Input-State Linearization

In Chapter 2 the goal was to linearize the input-output (i/o) equations
of system (1.3) by a dynamic output feedback. In this Chapter, feedback
linearization of the state equations (1.1) is studied. For systems (1.3) which
are realizable in the state-space form (1.1), the results of this chapter relax
the linearizability conditions from Chapter 2, since the state feedback is
more general than output feedback. The dynamic state feedback and the
state transformation, which was not used in Chapter 2, are used here. For
instance, the state equations

x1(t+ 1) = x2(t) + u1(t)
x2(t+ 1) = x3(t)u1(t)
x3(t+ 1) = x3(t)u2(t)
x4(t+ 1) = x4(t) + u1(t)

y1(t) = x2(t)
y2(t) = x1(t)− x4(t)

(3.1)

can be linearized by state transformation and dynamic state feedback, see
[6], but the corresponding i/o equations

y1(t+ 2) = u1(t+1)y1(t+1)u2(t)
u1(t)

y2(t+ 2) = y1(t+ 1) + y2(t+ 1)− y1(t)− u1(t)
(3.2)

are not linearizable by dynamic output feedback, according to the results
of Section 2.1.

The traditional methods for studying discrete-time nonlinear control
systems assume that the functions, describing the system dynamics, are
smooth or even analytic. In Section 3.1 the static state feedback lineariza-
tion of possibly non-smooth systems is studied. The method called func-
tions’ algebra (see Section 1.3) is used to solve the problem. The Section
3.2 is devoted to the study of flatness property of discrete-time nonlin-
ear control systems. In particular, one looks for a constructive algorithm
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to compute the flat output of a given system, based on which a dynamic
endogenous state feedback and a state transformation can be found, that
linearize the system equations.

3.1 Static Solution for Non-Smooth Systems

The results of this section generalize the results of [62] to multi-input case.
The generalization is not direct, since multiple inputs create more complex-
ity. Like in [62], the necessary and sufficient conditions for the existence of
static state feedback and coordinate transformation are given in terms of
certain finite sequence of vector functions δi. Finally, it is shown that these
results are related to those from [6] on static feedback linearization when
systems are described by meromorphic functions.

The discrete-time systems of the following form

x(t+ 1) = f(x(t), u(t)), (3.3)

where x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm and f is possibly non-smooth, are
considered. It is assumed that the inputs influence the system equations
(3.3) independently.

3.1.1 Necessary and Sufficient Condition

Problem statement. One searches for a state transformation z = ϕ(x)
and a regular static state feedback u = G(x, v) that transform the system
equations (3.3) into the form

zi,j(t+ 1) = zi,j+1(t)
zi,ki(t+ 1) = vi(t),

(3.4)

where z(t) ∈ Z ⊆ Rn, i = 1, . . . ,m, j = 1, . . . , ki − 1 and Z is an open and
dense subset of the range of ϕ.

The solution of the feedback linearization problem will be expressed in
terms of a sequence

δ0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δi ≤ · · · (3.5)

of the vector functions δi, defined as follows, see [62]. Let δ0 = x and δ1

be the minimal vector function such that its forward shift (δ1)[1] does not
depend on the input u. For i ≥ 1 define

δi+1 = δi ⊕m(δi). (3.6)

The sequence δi, i ≥ 1, converges, see [62]. Denote the limit by δ and let k
be such that δk 6= δ, δk+1 = δ.
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Another possibility to compute the sequence δi is by using the following
Lemma below. Note that unlike (3.6), the relation (3.7) below is also true
for i = 0.

Lemma 3.1. The vector functions δi satisfy the relations

(δi+1)[1] = δi ⊕ (δi)[1] (3.7)

for i ≥ 0.

Proof. Since m(α) = ((α× u)⊕ f)[−1], then one gets from (3.6)

(δi+1)[1] = (δi)[1] ⊕ (m(δi))[1]

= (δi)[1] ⊕ (δi × u)⊕ f
= (δi)[1] ⊕ (δi × u).

The last equivalence comes from the facts that (δi)[1] = δi(f), δi(f) ≥ f
and thus (δi)[1] ⊕ f = (δi)[1]. Now,

(δi)[1] ⊕ (δi × u) = (δi)[1] ⊕ δi

by the properties of ⊕ and × and the fact that (δi)[1] does not depend on
u.

If i = 0, then δ0 ⊕ (δ0)[1] = x⊕ f , which is exactly the shift of δ1.

Definition 3.1. The relative degree of a vector function α = [α1, . . . , αk]
T

is defined as minimal number r such that α
[r]
j depends on system inputs for

some j ∈ {1, . . . , k}.

Another property of the sequence (3.5) is the following.

Lemma 3.2. The relative degree of δi is i+ 1, for i ≥ 0.

Proof. The proof is done by induction over i. For i = 0, the relative
degree of δ0 = x is clearly 1. Now, assume that the claim is also true for
δi, i = 0, . . . , p. Then, by Lemma 3.1, (δp+1)[1] = γ(δp) for some vector
function γ. Since the relative degree of δp is p + 1, therefore the relative
degree of δp+1 is p+ 2.

In the rest of this section, |α| denotes the number of independent non-
constant elements of the vector α.

Theorem 3.1. The system (3.3) can be transformed into the form (3.4)
by a state transformation z = ϕ(x) and static state feedback u = G(x, v) if
and only if δ = 1 and

k+1∑
r=1

(|δr−1| − |δr × (δr)[1]|) = m, (3.8)

where k is defined such that δk+1 = δ.
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Proof. Necessity. First, note that the sequence of functions δi, i ≥ 1, is
invariant with respect to the state transformation and static state feedback,
see [62].

Consider the ith subsystem of (3.4) and compute the vector functions
δri , r = 1, . . . , ki, defined by (3.6), for this subsystem:

δ1
i = [zi,j ; j = 1, . . . , ki − 1]T

...

δri = [zi,j ; j = 1, . . . , ki − r]T

...

δki−1
i = zi,1

δkii = 1.

Since

(δri )
[1] = [zi,j ; j = 2, . . . , ki − r + 1]T

one gets

δri × (δri )
[1] = [zi,j ; j = 1, . . . , ki − r + 1]T = δr−1

i if r < ki

δri × (δri )
[1] = 1 if r = ki.

Thus,

|δr−1
i | − |δri × (δri )

[1]| = 0, if r < ki

|δki−1
i | − |δkii × (δkii )[1]| = |zi,1| = 1.

Now, δr = δr1 × · · · × δrm and

k+1∑
r=1

(|δr−1| − |δr × (δr)[1]|) =

m∑
i=1

ki∑
r=1

(|δr−1
i | − |δri × (δri )

[1]|)

=

m∑
i=1

1 = m.

Sufficiency. Because δr−1 ≤ δr and by (3.7), δr−1 ≤ (δr)[1], one gets
δr−1 ≤ δr × (δr)[1]. Then for every r = 1, . . . , k + 1 there exists a vector
function ϕr (possibly equal to 1) such that

δr−1 = δr × (δr)[1] × ϕr, (3.9)

where

|ϕr| = |δr−1| − |δr × (δr)[1]|.
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Let |ϕr| = ρr for r = 1, . . . , k + 1 and

ϕr = [ϕr,1, . . . , ϕr,ρr ]
T .

Then, by (3.9)

δ0 = [δ1, (δ1)[1], ϕ1,1, . . . , ϕ1,ρ1 ]T

δ1 = [δ2, (δ2)[1], ϕ2,1, . . . , ϕ2,ρ2 ]T

...

δk = [δk+1, (δk+1)[1], ϕk+1]T = [ϕk+1,1, . . . , ϕk+1,ρk+1
]T .

Substituting step by step δr and (δr)[1] into δr−1 for r = 1, . . . , k, one gets

δ0 = [(ϕi,l(x))[j]; i = 1, . . . , k + 1; j = 0, . . . , i− 1; l = 1, . . . , ρi]
T . (3.10)

The elements (ϕi,l(x))[j] and (ϕi′ ,l′ (x))[j
′
], i 6= i

′
, are independent by def-

inition and since δ = 1, then the elements (ϕi,l(x))[j] and (ϕi,l(x))[j
′
],

j 6= j
′
, are also independent. Really, if (ϕi,l(x))[j] and (ϕi,l(x))[j

′
] were

dependent, then there would exist a function γ, such that (ϕi,l(x))[j] =

γ((ϕi,l(x))[j
′
]) (assume that j < j

′
). This would mean that the relative

degree of (ϕi,l(x))[j] is infinite and therefore δ 6= 1.

Because of (3.8),
∑k+1

r=1 |ϕr| = m, and there exist exactly m non-constant
functions ϕi,j , i = 1, . . . , k+ 1, j = 1, . . . , ρi. Let φi, i = 1, . . . ,m, be these
functions. Then (3.10) becomes

δ0 = [(φi(x))[j]; i = 1, . . . ,m; j = 0, . . . , ki − 1]T (3.11)

for some ki. Define the state transformation

zi,1 = φi(x)

... (3.12)

zi,ki = φi(x)[ki−1]

for i = 1, . . . ,m. Equations (3.12) really define a state transformation
(i.e. a one-to-one correspondence) since by (3.11), z = [zi,1, . . . , zi,ki ; i =
1, . . . ,m]T is equivalent to δ0, which is equivalent to x.

Now, in the new coordinates the system equations (3.3) become

z
[1]
i,j = zi,j+1

z
[1]
i,ki

= Ki(z, u),
(3.13)

for i = 1, . . . ,m, j = 1, . . . , ki − 1 and where Ki is the forward-shift of
zi,ki = φi(x)[ki−1], i.e. Ki = φi(x)[ki]. Finally, since the input variables are

65



independent, then v = K(z, u) = [K1(z, u), . . . ,Km(z, u)]T is solvable in
u. This gives a static state feedback which takes the system into the form
(3.4).

Example 3.1. Consider the discretized system of a simplified model of
the underwater vehicle moving on a vertical plane (see [29]):

x
[1]
1 = x1 + x2,

x
[1]
2 = x2 + 1

J (M0 sin(x1) + 1
2ρx3 abs(x3)(m1 sin(2(x1 − x4))

+ x2
x3
m2V

3/4)),

x
[1]
3 = x3 + 1

mx
(−1

2ρx3 abs(x3)(rx0 + rx1 cos(x1 − x4)

+ rx2 sin(2(x1 − x4))) + P sin(x4) + u1 cos(x1 − x4)
− u2 sin(x1 − x4)),

x
[1]
4 = x4 + 1

myx3
(1

2ρx3 abs(x3)(ry sin(2(x1 − x4)) + x2
x3
CV )

+ P cos(x4) + u2 cos(x1 − x4)− u1 sin(x1 − x4)),

x
[1]
5 = x5 + x3 sin(x4).

(3.14)

The model is developed under the assumption that the control moment
is insignificant. Here x1 and x2 are the trim angle of the vehicle and its
velocity, respectively, x3 is the linear speed of the vehicle, x4 is the the
bank angle, and x5 is the depth of plunge; J , M0, ρ, m1, m2, mx, my,
rx0, rx1, rx2, ry, V , P , and C are some constant coefficients, characterizing
construction of the vehicle.

By Lemma 3.2, it becomes clear that δ1 = ( x1 x2 x5)T , δ2 = x1,
δ3 = 1 for system (3.14). Then

(δ1)[1] =

 x1 + x2

x
[1]
2

x5 + x3 sin(x4)

 , (δ2)[1] = x1 + x2.

Therefore, ∑3
r=1(|δr−1| − |δr × (δr)[1]|) = (|δ0| − |δ1 × (δ1)[1]|)
+(|δ1| − |δ2 × (δ2)[1]|) + (|δ2| − |δ3 × (δ3)[1]|)
= (5− 5) + (3− 2) + (1− 0) = 2 = m.

Thus, by Theorem 3.1, the system (3.14) can be linearized by static state
feedback and a change of coordinates.

Set z1,1 := x1, z2,1 := x5, z1,2 := x1+x2, z1,3 := x1+2x2+ 1
J (M0 sin(x1)+

1
2ρx3 abs(x3)(m1 sin(2(x1 − x4)) + x2

x3
m2V

3/4)) and z2,2 := x5 + x3 sin(x4).
These relations define the change of coordinates and by solving the equa-
tions

v1 = z
[1]
1,3 =: K1(x, u)

v2 = z
[1]
2,2 =: K2(x, u)
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in u1 and u2, one gets the static state feedback. The expressions for K1 and
K2, as well as the feedback itself, are rather complex and are thus omitted.

3.1.2 Comparison

Next, it will be shown that the conditions of Theorem 3.1 are equivalent
to those in [6]. To make the comparison, assume that the vector function
f in (3.3) is meromorphic.

First, recall the conditions from [6]. Define the sequence H0 ⊃ H1 ⊃
H2 ⊃ · · · of subspaces of E as

H0 = spanK{dx,du}
Hk = spanK{ω ∈ Hk−1 | δω ∈ Hk−1}, k ≥ 1.

(3.15)

This is a non-increasing sequence and thus it converges. Let k∗ be such
that Hk∗ 6= Hk∗+1, but Hk∗+1 = Hk∗+2 and define H∞ := Hk∗+1.

Theorem 3.2. [6] The system (3.3), where f consists of meromorphic
functions, is transformable into the form (3.4) by a state transformation
and a static state feedback if and only if H∞ = 0 and subspaces Hi, i =
1, . . . , k∗, are integrable.

Note that it has been shown in [6], that if H∞ = 0 then

Hk∗ = spanK{ω1, . . . , ωρ1}
Hk∗−1 = spanK{ω1, . . . , ωρ1 , ω

[1]
1 , . . . , ω

[1]
ρ1 , ωρ1+1, . . . , ωρ2}

...

H1 = spanK{ω1, . . . , ωρ1 , . . . , ω
[k∗−1]
1 , . . . , ω

[k∗−1]
ρ1 , . . . , ωρk∗ , . . . , ωm},

(3.16)
where 1 ≤ ρ1 < ρ2 < · · · < ρk∗ ≤ m. Thus,

k∗∑
i=1

[
dimHi − dim(Hi+1 ∪H[1]

i+1)
]

= m. (3.17)

In [62] it has been shown that δi, defined by (3.6), corresponds to the max-
imal integrable subspace Ĥi+1 of Hi+1 for i ≥ 0, i.e. Ĥi+1 = spanK{dδi}.
Also, since H∞ is always integrable, see [6], then δ = 1 is equivalent to the
condition H∞ = 0.

Now, if subspaces Hi, i = 1, . . . , k∗, are integrable, then by (3.17), the
condition (3.8) is satisfied for δi, i ≥ 0. The opposite is also true: if the
condition (3.8) is satisfied, then by (3.17) the subspaces Hi, i = 1, . . . , k∗,
must be integrable.
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3.2 Flatness

In this Section the flatness property of discrete-time nonlinear control sys-
tems will be addressed. It is well-known that flatness property of continuous-
time nonlinear control system is equivalent to the existence of a dynamic
state feedback and a state transformation that linearize the system equa-
tions [31]. Similar equivalence was proved in [55] for the discrete-time case,
except in this case the flatness property is equivalent to the existence of
an endogenous dynamic state feedback and a state transformation that
linearize the system equations. Thus, one can study the two problems -
flatness and endogenous feedback linearization - as one.

The necessary and sufficient condition for the existence of a dynamic
endogenous state feedback, that linearizes the given discrete-time system,
was given already 20 years ago [6]. Unfortunately, the condition in [6]
depends on the existence of certain polynomial matrix and therefore, is not
constructive. Attempts have been made to construct the desired matrix,
but the procedures in [64, 63, 53] are not finite, since the upper bound for
the degree of the polynomial matrix is unknown.

Here, a different approach is used to find constructive necessary and suf-
ficient conditions to check whether a given nonlinear discrete-time system
is flat or not. The idea behind this approach is to transform the system
equations into a certain form, which allows to eliminate some of the state
equations. If one repeats the process, then at some point either one can
eliminate no more equations or one eliminates all the equations. It will be
proved that the latter case is necessary and sufficient for flatness.

Note that by the Definition 3.2 below, any system for which m ≥ n is
flat. Thus, from now on it is assumed that n > m. In this section, the
systems of the form (1.1) without the output are considered, and denoted
by Σ0:

x[1] = f(x, u). (3.18)

Additionally to the submersivity assumption (1.2), it is also assumed that

rankK

[∂f(x, u)

∂u

]
= m, (3.19)

which is not restrictive. If condition (3.19) is not true, then one can always
eliminate some of the input variables by an input transformation, such
that (3.19) becomes true for the transformed system. Consider also the
subspaces Hi, i = 0, . . . , k∗, defined by (3.15). As before, it is assumed
that H∞ = 0, which guarantees that system (3.18) is accessible, see [6].
Note that the accessibility is necessary condition for flatness and thus, not
restrictive.
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3.2.1 Definition

Next, the flatness property of system (3.18) is defined and some properties
of flat systems are proved. One possibility to define the property of flatness
for systems of the form (3.18) is the following.

Definition 3.2. [6] An output function

y = h(x, u, . . . , u[l]), l ≥ 0 (3.20)

(y ∈ Rm) is called a flat output1 of system (3.18) if it satisfies the following
properties:

(i) y defines an invertible system;

(ii) dimK(spanK{dx}
⋂

spanK{dy[k]; k ≥ 0}) = n.

When system (3.18) has a flat output, then it is said to be flat.

The condition (ii) of Definition 3.2 guarantees that the state x of a flat
system can be represented as a function of a flat output y and a finite
number of its forward shifts. The condition (i) of Definition 3.2 guarantees
the same for system input u and moreover, that the flat outputs and their
shifts are functionally independent.

Because of (3.19), one can write the inputs u in terms of x and x[1]. It
means that for finding flat outputs of system (3.18), it is enough to find m
independent functions ϕ such that the states x can be written in terms of
ϕ and a finite number of its forward-shifts.

When the state variables x can be written in terms of the flat output y
and its forward shifts, then there exists a matrix G ∈ K[ϑ]n×m such that
dx = Gdy. Now, if there exists a unimodular matrix L ∈ Um[ϑ] such that
dy = Ldŷ for some functions ŷ, then clearly ŷ is also a flat output of the
given system, since dx = GLdŷ, i.e. one can write the state x in terms
of ŷ and its forward-shifts. In particular, any exact basis of spanK[ϑ]{dy}
is a flat output of a given system. Since, there exist infinitely many such
exact bases, any flat system has infinitely many different flat outputs. Flat
systems are often grouped according to the highest shift of u one needs in
(3.20). So, when a system (3.18) has a flat output, depending only on x,
then the system is said to be 0-flat. When all the flat outputs depend on x
and u, then the system is said to be 1-flat etc.

Next, it is proved that unlike in the continuous-time case, a discrete-
time system (3.18) is flat if and only if it is 0-flat. To prove it, the following
lemma is used.

1In [6] the term linearizing output was used.
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Lemma 3.3. Whenever there exists a flat output of system (3.18) depend-
ing on x and u then there exists another flat output of system (3.18) de-
pending only on x.

Proof. Let y = (y1, . . . , ym) be a flat output of system (3.18) depending on
x and u. For simplicity, assume, that yk = h(x, uk) depends on uk for some
1 ≤ k ≤ m. The case when multiple outputs depend on u can be handled
similarly.

Because a flat system is invertible, one has from the inversion algorithm
ỹ0 = yk and by Lemma 1.2 that for some ρ ∈ N

rankK
∂(yk, ỹ

[1]
1 , . . . , ỹ

[ρ]
ρ )

∂u
= m.

Also, since for a flat system, one can represent the states x in terms of the
flat outputs y and their shifts, then

rankK
∂(ȳ0, . . . , ȳ

[ρ−1]
ρ−1 )

∂x
= n. (3.21)

In the following, the notations Ỹ = spanK{dỹ
[p+l]
p ; p ≥ 1; l ≥ 0} and

Ȳ = spanK{dȳ[p]; p ≥ 0} are used.

Because dȳ
[i]
i,λ ∈ spanK{dx, dỹ

[p+l]
p ; p ≥ 1; l ≥ 0} for i = 0, . . . , ρ − 1,

λ = 1, . . . ,dim ȳ
[i]
i , there exist 1-forms ωi,λ ∈ spanK{dx} and ω̃i,λ ∈ Ỹ

such that dȳ
[i]
i,λ = ωi,λ + ω̃i,λ. For the rest of this proof i = 0, . . . , ρ − 1,

λ = 1, . . . ,dim ȳ
[i]
i . Let γi,λ be the rank of the 1-form ωi,λ, then one can

write the 1-forms ωi,λ as

ωi,λ =

γi,λ∑
j=1

ai,λ,jdϕi,λ,j .

Now, one has

dȳ
[i]
i,λ =

γi,λ∑
j=1

ai,λ,jdϕi,λ,j + ω̃i,λ. (3.22)

By (3.21)

rankK
∂(ϕi,λ,j ; j = 1, . . . , γi,λ)

∂x
= n.

Choose n independent rows of
∂(ϕi,λ,j)

∂x and denote the corresponding 1-
forms as dϕi,λ. Note that one can do that, since y and its shifts are inde-

pendent,
∑ρ−1

i=0 dim ȳ
[i]
i = n. Now, (3.22) can be rewritten as

dȳ
[i]
i,λ =

n∑
j=1

dim ȳ
[j]
j∑

l=1

bi,λ,j,ldϕj,l + ω̃i,λ. (3.23)
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Since in (3.23) there are n equations and n exact 1-forms dϕj,l, then (3.23)
can be rewritten as

dȳ
[i]
i,λ = ei,λdϕi,λ + ω̄i,λ + ω̂i,λ, (3.24)

where ω̄i,λ ∈ Ȳ and ω̂i,λ ∈ Ỹ.

Let i∗ be minimal number such that ȳ
[i∗]
i∗,λ∗

depends on yk for some λ∗.
Such i∗ always exists, because of (3.19) and the fact that yk depends on uk.
Then define an output ŷ = (y1, . . . , yk−1, ϕi∗,λ∗ , yk+1, . . . , ym). Next, it is
shown that ŷ is also a flat output of system (3.18). It is enough to show that
all the states x can be written in terms of ŷ and the forward-shifts. Really,
the rank condition (3.21) is satisfied for the output ŷ, since, by (3.24) and

the construction of the inversion algorithm, when replacing ȳ
[i∗]
i∗,λ∗

and its
shifts by ϕi∗,λ∗ and its shifts in (3.21), the rank must remain full.

Now, the following theorem can be proved.

Theorem 3.3. A discrete-time system (3.18) is flat if and only if it is
0-flat.

Proof. One has to show that when there exists a flat output depending on
x, u, . . . , u[k], then there exists another flat output, which depends only on
x. The proof is by induction over k. For k = 1, the claim is true by Lemma
3.3. Now, assume that the claim is true for i = 1, . . . , k − 1. Next, it will
be shown that then it is also true for k.

Assume that (3.18) has flat output depending on the variables x, u, . . . ,
u[k]. Then, the system

x[1] = f(x, u)

u[1] = v
(3.25)

has flat output depending on the variables x, u, . . . , u[k−1]. By assumption,
there exists a flat output of system (3.25) depending only on x and u.
Clearly, this is also a flat output of system (3.18) and thus, by Lemma 3.3
a flat output of system (3.18) exists, which depends only on x. Therefore,
system (3.18) is 0-flat.

3.2.2 Construction of flat outputs

As said before, the essential part of checking flatness property for system
(3.18) is transforming it to certain form specified below by a state trans-
formation and a static state feedback. First, the existence of such transfor-
mations is studied. So, one looks for a state transformation z = ϕ(x) and
a static state feedback u = α(x, ũ) such that system (3.18) is transformed
into the form

z
[1]
1 = g1(z, ũ1)

z
[1]
2 = ũ2,

(3.26)
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where z = (z1, z2)T , ũ = (ũ1, ũ2)T and dim z2 = dimu2 =: q is as large as
possible2. Consider also the subsystem

Σ1 : z
[1]
1 = g1(z, ũ1) (3.27)

that has state variables z1 and input variables z2, ũ1. Observe that in
general rankK

∂g1
∂(z2,ũ1) ≤ m. If this is the case, one can always find a static

state feedback that eliminates some variables z2, ũ1 such that the rank
condition (3.19) is satisfied for system Σ1.

Theorem 3.4. System (3.18) can be transformed into the form (3.26),
where m ≥ q 6= 0, by a state transformation and a static state feedback if
and only if there exists a (n − q)-dimensional integrable subspace A that
satisfies the condition

H2 ⊆ A ⊂ spanK{dx}. (3.28)

Proof. Necessity. It will be shown that A = spanK{dz1} satisfies condition
(3.28). Clearly, A ⊂ spanK{dx} is true. It remains to show that A contains
H2. Note that H2 is invariant with respect to state transformations and
static state feedback and thus a 1-form ω = a1dz1 + a2dz2 is an element of
H2 if and only if δω ∈ spanK{dz}. Since

δω = a
[1]
1 dg1 + a

[1]
2 dũ2

the latter implies that a
[1]
2 = 0 and thus a2 is a zero vector. Therefore, the

elements of H2 are in the form ω = a1dz1, which yields that H2 ⊆ A.
Sufficiency. Let A = spanK{dz1}. Note that one can always extend

z1 by z2 such that (z1, z2)T = z = ϕ(x) defines a state transformation.
The subspace A has a dimension n − q and thus there exists a (m − q)-
dimensional subspace B such that A = H2⊕B. Therefore, denoting A[1] :=
spanK{δ(dz1)}, one has

dim(spanK{dz} ∩ A[1]) = n−m

and the subspace A1 := spanK{dz, δ(dz1)} has dimension n+ n− q− (n−
m) = n + m − q. Thus, spanK{dz} ⊆ A1 ⊂ spanK{dz,du} and one can
find ũ1 = α1(z, u) such that A1 = spanK{dz,dũ1}. Finally, one can take

ũ2 = z
[1]
2 .

The condition of Theorem 3.4 depends on the existence of an integrable
subspace A. For this reason, another condition is given under which one

2Note that there always exist a state transformation and a static state feedback, that
transform system (3.18) into the form (3.26), since one can always take z1 = x, ũ1 = u
and z2, ũ2 as empty vectors.
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can transform system (3.18) into the form (3.26), where q 6= 0. For this,
let γ be the dimension of a minimal integrable subspace, that contains H2

of system (3.18).

Theorem 3.5. System (3.18) can be transformed into the form (3.26),
where q 6= 0, by a state transformation and a static state feedback if and
only if γ < n.

Proof. This is a direct consequence of Theorem 3.4, when one takes A, in
Theorem 3.4, equal to the minimal integrable subspace containing H2.

Note that Theorem 3.5 allows to check whether a transformation to the
form (3.26) is possible, but it does not give a hint on how to find this
transformation. To the contrary, Theorem 3.4 depends on the existence
of an integrable subspace, but once this is known, one can compute the
necessary state and input transformations.

Next, some important properties of system Σ1 are proved.

Lemma 3.4. (i) If system Σ1 is flat, then system Σ0 is flat.

(ii) If system Σ0 is flat, then system Σ1 is flat.

(iii) If system Σ0 is flat, then one can transform Σ0 into the form (3.26),
where q 6= 0, by a state transformation and a static state feedback.

Proof. (i) Let the number of inputs in system Σ1 be m∗ ≤ m. Now, com-
plete the m∗ flat outputs of system Σ1 by m−m∗ variables z2, ũ1, which do
not occur in Σ1, to define the flat output of system Σ0. Clearly, the vari-
ables z1, z2, ũ1 can be written in terms of these flat outputs. Also, from the

last q equations of (3.26) one gets that ũ2 = z
[1]
2 and ũ2 can be represented

by the flat outputs of system Σ1 and m−m∗ variables z2, ũ1, which do not
occur in Σ1. Finally, one can inverse the state transformation z = ϕ(x) and
static state feedback u = α(x, ũ) and express the variables x, u by these flat
outputs.

(ii) Assume, by contradiction, that system Σ1 is not flat. Extending

system Σ1 by z
[1]
2 = ũ2 gives system (3.26), i.e. system Σ0. Adding z

[1]
2 = ũ2

to system Σ1 can not make the extended system flat (one only applies a
dynamic feedback), which means that Σ0 is not flat. This is a contradiction
and thus Σ1 must be flat.

(iii) Since system Σ0 is flat, then it is invertible with respect to the flat
output y3 and by Lemma 1.2 one has for some ρ ∈ N that

rankK
∂(ỹ

[1]
1 , . . . , ỹ

[ρ]
ρ )

∂u
= m.

3Which, by Theorem 3.3, can be chosen such that they depend only on x.
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Also, since for a flat system, one can represent the states x in terms of the
flat outputs y and their shifts, then

rankK
∂(ȳ0, . . . , ȳ

[ρ−1]
ρ−1 )

∂x
= n. (3.29)

In the following, the notations Ỹ = spanK{dỹ
[p+l]
p ; p ≥ 1; l ≥ 0} and

Ȳ = spanK{dȳ[p]; p ≥ 0} are used.

Because dȳ
[i]
i,λ ∈ spanK{dx, dỹ

[p+l]
p ; p ≥ 1; l ≥ 0} for i = 0, . . . , ρ − 1,

λ = 1, . . . ,dim ȳ
[i]
i

4, then there exist 1-forms ωi,λ ∈ spanK{dx} and ω̃i,λ ∈ Ỹ
such that dȳ

[i]
i,λ = ωi,λ + ω̃i,λ. Let γi,λ be the rank of the 1-form ωi,λ, then

one can write the 1-forms ωi,λ as

ωi,λ =

γi,λ∑
j=1

ai,λ,jdϕi,λ,j .

Now, one has

dȳ
[i]
i,λ =

γi,λ∑
j=1

ai,λ,jdϕi,λ,j + ω̃i,λ. (3.30)

By (3.29)

rankK
∂(ϕi,λ,j)

∂x
= n.

Choose n independent rows of
∂(ϕi,λ,j)

∂x and denote the corresponding 1-
forms as dϕi,λ. Note that one can do that, because, since y and its shifts

are independent,
∑ρ−1

i=0 dim ȳ
[i]
i = n. Now, (3.30) can be rewritten as

dȳ
[i]
i,λ =

n∑
j=1

dim ȳ
[j]
j∑

l=1

bi,λ,j,ldϕj,l + ω̃i,λ. (3.31)

Since in (3.31) there are n equations and n exact 1-forms dϕj,l, then (3.31)
can be rewritten as

dȳ
[i]
i,λ = ei,λdϕi,λ + ω̄i,λ + ω̂i,λ, (3.32)

where ω̄i,λ ∈ Ȳ and ω̂i,λ ∈ Ỹ. Then, ϕ(x) = (ϕi,λ(x)) defines the state
transformation.

Divide the input vector u into two parts ū and u∗ such that both matrices

∂(ỹ
[1]
1 , . . . , ỹ

[ρ−1]
ρ−1 )

∂ū
(3.33)

4For the rest of this proof i = 0, . . . , ρ− 1, λ = 1, . . . , dim ȳ
[i]
i
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and

∂ỹ
[ρ]
ρ

∂u∗
(3.34)

are of full rank over K. Let q := dim ỹ
[ρ]
ρ = dim ȳ

[ρ−1]
ρ−1 = dimu∗. By

(3.34) the forward-shifts of functions ϕρ−1,λ, λ = 1, . . . ,dim ȳ
[ρ−1]
ρ−1 , depend

on u∗. Next, it is shown that there exists an input transformation which
eliminates u∗ from the forward-shifts of ϕi,λ, i = 0, . . . , ρ− 2. Assume that

the forward-shift of ϕi,λ, i = 0, . . . , ρ − 2, depends on u∗. Note that ȳ
[i+1]
i,λ

can be part of either ỹ
[i+1]
i+1 or ȳ

[i+1]
i+1 , i = 0, . . . , ρ − 2. By construction

and (3.32), there must exist a static state feedback, which eliminates u∗
from the forward-shift of ϕi,λ. Otherwise the rank (3.33) would not be full.
Therefore, one can eliminate the input u∗ from the forward-shifts of ϕi,λ,
i = 0, . . . , ρ− 2.

Finally, one can transform a flat system Σ0 into the form (3.26), where
q 6= 0.

If one allows q to be zero, then it is always possible to transform system
Σ0 into the form (3.26) and define the system Σ1. Define a sequence of
systems

Σ0,Σ1,Σ2, . . . ,Σi, . . . , (3.35)

where every system Σi is subsystem Σ1 of previous system Σi−1, and where
every time q is chosen as large as possible. The sequence (3.35) converges,
since dim Σi = dim Σi+1 yields dim Σi = dim Σj for j ≥ i+ 1.

Theorem 3.6. System Σ0 is flat if and only if dim Σi∗ = 0 for some i∗ ∈ N.

Proof. Necessity. By (ii) of Lemma 3.4, every system Σi is flat. Now, by
(iii) of Lemma 3.4, one has dim Σi < dim Σi−1 for i ≥ 1, which yields that
dim Σi∗ = 0 for some i∗ ∈ N.

Sufficiency. Let i∗ be such that dim Σi∗−1 6= 0, but dim Σi∗ = 0. Then,
since for every transformation one eliminates q state variables and q ≤ mi,
where mi is the number of inputs of system Σi, then system Σi∗−1 has more
(or equal number) inputs than states. Thus, system Σi∗−1 is flat and by
(i) of Lemma 3.4 all the systems Σi, i ≥ 0, are flat.

To check whether the system (3.18) is flat, one must compute the se-
quence of subsystems Σi. In principle one could compute system Σi until
dim Σi = 0 or dim Σi = dim Σi+1. However, in practice there is no need to
continue when it becomes clear that the subsystem Σi is flat. In particular,
since it is easy to check whether the system (3.18) is static state feedback
linearizable, one can stop whenever Σi is such system.
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Example 3.2. Consider the nonlinear discrete-time system

x
[1]
1 = x2

x
[1]
2 = x3 + x2(u1 − x1u2)

x
[1]
3 = x4 + x1x2u2

x
[1]
4 = x1(u1 − x1u2)

x
[1]
5 = x2x4u3.

(3.36)

Compute the system Σ1 for (3.36). Note that since

H2 = spanK{dx1, x
[−1]
1 dx2 − x1dx4}

for system (3.36), H2 is not integrable. Clearly, the minimal integrable
subspace containing H2 is spanK{dx1,dx2,dx4}, which has dimension 3 <
5 = n. By Theorem 3.5, one can transform the system (3.36) into the form
(3.26), where q > 0. By the proof of Theorem 3.4, z1 = (x1, x2, x4) and
thus z2 = (x3, x5), which yield the state transformation

z1,1 = x1

z1,2 = x2

z1,3 = x4

z2,1 = x3

z2,2 = x5.

(3.37)

For the input transformation, take, like in the proof of Theorem 3.4, ũ2,1 =

x
[1]
3 = x4 + x1x2u2 and ũ2,2 = x

[1]
5 = x2x4u3, which can be solved for u2

and u3. To define ũ1, note that

spanK{dx, δ(dx1), δ(dx2), δ(dx4)} = spanK{dx} ⊕ spanK{dα1(x, u)},

where α1 = u1−x1u2. Take ũ1 = α1, which gives the input transformation

u1 = ũ1 +
ũ2,1 − x4

x2

u2 =
ũ2,1 − x4

x1x2
(3.38)

u3 =
ũ2,2

x2x4
.

The state transformation (3.37) and static state feedback (3.38) transform
the system (3.36) into the form

z
[1]
1,1 = z1,2

z
[1]
1,2 = z2,1 + z1,2ũ1

z
[1]
1,3 = z1,1ũ1

z
[1]
2,1 = ũ2,1

z
[1]
2,2 = ũ2,2.
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Therefore, system Σ1 is

z
[1]
1,1 = z1,2

z
[1]
1,2 = z2,1 + z1,2ũ1

z
[1]
1,3 = z1,1ũ1,

(3.39)

where z2,1 and ũ1 are the input variables. Obviously, system (3.39) is static
state feedback linearizable and thus flat. By (i) of Lemma 3.1, system
(3.36) is also flat. The flat outputs for system (3.39) are z1,1 and z1,3.
The flat outputs for system (3.36) are the flat outputs of system (3.39)5

and additionally z2,2, since this did not appear in system Σ1. In original
state variables the flat outputs of system (3.36) are y1 = x1, y2 = x4 and
y3 = x5.

3.3 Conclusions

In this chapter the feedback linearization problem of discrete-time nonlin-
ear systems described by state equations, was studied. First, a solution by
a static state feedback and a state transformation was given in terms of
the functions’ algebra. The advantage of this method over other existing
methods is that the functions’ algebra can also handle non-smooth func-
tions. The condition itself is a direct consequence of the condition in [6], but
stated in terms of tools of functions’ algebra. Although, in principle, one
can utilize the results of Section 3.1 for systems described by non-smooth
functions, at the moment no general formulas for computations exist for
such case.

Second, the flatness property of nonlinear discrete-time system was stud-
ied. More precisely, a method to compute a flat output of a given system
was proved. Note that based on the flat output, the dynamic endogenous
state feedback and the state transformation can be found, which linearize
the system. The method requires computing a sequence of systems, ini-
tialized by the given system, by transforming every previous system of the
sequence into the form (3.26), where the last q equations can be eliminated.
The original system is flat if and only if all the equations can be eliminated.
Computationally, this method is much easier than the one described in
[64, 63, 53, 3]. The only difficult part is finding a state transformation and
a static state feedback which transform a system into the form (3.26). This
requires computing the minimal integrable vector space that contains H2,
defined by (3.15), of the given system.

5One has to apply the inverse of the state transformation (3.37).
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Chapter 4

Time-Delay Systems

In this chapter continuous time-delay systems are considered. First, the
integrability of a set of 1-forms, defined as in Section 1.2, is extended to
this class of systems. Two different notions of integrability - weak and
strong - are defined, which reduce to the standard integrability, when there
are no delays. These concepts correspond to two possible generalizations
of the standard integrability notion. Also, conditions are found to check
whether a set of 1-forms is strongly or weakly integrable. It is shown that
the new notions are more natural than the one recalled in Section 1.2, for
studying time-delay systems.

Second, in Section 4.2 the disturbance decoupling problem is studied.
The problem is solved for the case when a pure shift dynamic feedback is
used. For single-input single-output (SISO) systems the dynamic feedback
solution is also given. Finally, in Section 4.3 necessary and sufficient con-
ditions are found to decouple system outputs and inputs by static state
feedback, which is causal, i.e. does not depend on future values of the
states and/or inputs.

4.1 Integrability of 1-forms

Although there exist a small number of papers addressing integrability
issues for the nonlinear time-delay systems [72, 69, 18], no general theory
exists. In [72] and [69] integrability problem was tackled for a single 1-form.
Necessary and sufficient conditions of integrability were given. However,
note that the definitions of integrability were different in [72] and [69]. The
one in [72] corresponds to weak integrability, as defined below, and the
definition of [69] corresponds to strong integrability below.

In this section, the notions of integrable 1-forms are developed for the
case when time-delay systems are studied. Although everything that is
written in Section 1.2 about integrability of 1-forms is true also for the
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time-delay case, it is not the best way for studying such systems, since the
action of the delay operator δ is not taken into account. For this reason,
in this section, two more general notions of integrability are defined and
characterized. In the case of no delays, these new notions of integrability
reduce to the standard integrability notion, defined in Section 1.2.

4.1.1 Definition of Integrability

In this section, a set of 1-forms {ω1, . . . , ωk}, independent over K[ϑ], is
considered. The latter means that, there is no non-zero linear combinations
over the ring K[ϑ] which vanish. That is, the 1-forms are looked as elements
of the module M rather than elements of the vector space E . For the 1-
forms, which are looked as elements of the vector space E , there exists
only one notion of integrability, defined in Section 1.2. However, as shown
hereafter, considering the 1-forms as elements of M naturally leads to two
different notions of integrability.

In the delay-free case, if the set of 1-forms {ω1 . . . , ωk} is considered over
K, then the set is said to be integrable if there exists an invertible matrix
A ∈ Kk×k and a vector function ϕ = (ϕ1, . . . , ϕk)

T , such that ω = Adϕ.
The invertibility of A is guaranteed by the full rank of A, since K is a field.
Instead, if the 1-forms {ω1 . . . , ωk} are viewed as elements of the module
M, then the matrix A has to belong to K[ϑ]k×k. Since A(ϑ) may be of
full rank but not unimodular (i.e. invertible in K[ϑ]k×k), it is necessary to
distinguish between the two cases.

Example 4.1. For example, the matrix

A(ϑ) =

(
1 x2(t− 1)ϑ
ϑ 1 + x2(t− 2)ϑ2

)
is unimodular, since the matrix

A(ϑ)−1 =

(
1 + x2(t− 1)ϑ2 −x2(t− 1)ϑ

−ϑ 1

)
is such that A(ϑ)A(ϑ)−1 = A(ϑ)−1A(ϑ) = I2. However, there is no poly-
nomial inverse for (1 + ϑ).

Therefore, one has two definitions of integrability.

Definition 4.1. � A set of 1-forms {ω1, . . . , ωk}, independent overK[ϑ],
is said to be strongly integrable if there exist k independent functions
{ϕ1, . . . , ϕk}, such that

spanK[ϑ]{ω1, . . . , ωk} = spanK[ϑ]{dϕ1, . . . ,dϕk}.
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� A set of 1-forms {ω1, . . . , ωk}, independent over K[ϑ], is said to be
weakly integrable if there exist k independent functions {ϕ1, . . . , ϕk},
such that

spanK[ϑ]{ω1, . . . , ωk} ⊆ spanK[ϑ]{dϕ1, . . . ,dϕk}.

If the set of 1-forms {ω1, . . . , ωk} is strongly (respectively weakly) in-
tegrable, then the submodule spanK[ϑ]{ω1, . . . , ωk} is said to be strongly
(respectively weakly) integrable.

Clearly, strong integrability yields weak integrability. Also, the set of 1-
forms expressed as a column vector ω = (ω1, . . . , ωk)

T is weakly integrable
if and only if there exists a matrix A(ϑ) ∈ K[ϑ]k×k with full rank and
functions ϕ = (ϕ1, . . . , ϕk)

T such that ω = A(ϑ)dϕ. If in addition the
matrix A(ϑ) can be chosen to be unimodular, then the 1-forms ω are also
strongly integrable.

Remark 4.1. By definition of the closure of a submodule, definitions
of weak and strong integrability are equivalent for a closed submodule
spanK[ϑ]{ω1, . . . , ωk}. As a consequence, since any submodule spanK[ϑ]{ω1,
. . . , ωk} is closed in the case of delay-free 1-forms ωi, i = 1, . . . , k, the
notions of strong and weak integrability coincide in such case.

4.1.2 Strong Integrability

The conditions that allow to check whether a set of k independent 1-forms
{ω1, . . . , ωk} is strongly integrable are given in terms of certain sequence of
integrable (in the sense of the definition in Section 1.2) vector spaces. To
compute these vector spaces, one uses the Derived Flag Algorithm (DFA).
Starting from a given vector space I0 in E , the DFA computes

Ii = spanK{ω ∈ Ii−1 | dω = 0 mod Ii−1}. (4.1)

The sequence (4.1) converges as it defines a strictly non-increasing sequence
of vector spaces Ii and by the Frobenius Theorem, the limit I∞ has an exact
basis, which represents the largest integrable vector space contained in I0.
The DFA will be used to compute the largest integrable subspaces of a
sequence of vector spaces:

Ip0 = spanK{ω1, . . . , ωk, . . . , δ
pω1, . . . , δ

pωk}, (4.2)

for p ≥ 0. Clearly, for every p ≥ 0, Ip0 ⊆ spanK[ϑ]{ω1, . . . , ωk}. By Def-
inition 4.1, if the set of 1-forms {ω1, . . . , ωk} is strongly integrable, then
there exist k linearly independent exact 1-forms dϕi, i = 1, . . . , k, that be-
long to spanK[ϑ]{ω1, . . . , ωk}. Here, the DFA is used to compute the exact
1-forms dϕi, i = 1, . . . , k, by computing the limit of (4.1), initialized by
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(4.2). More precisely, the sequence Ipi , defined by (4.1), converges to an
integrable vector space

Ip∞ = spanK{dϕ1,p, . . . ,dϕγp,p} (4.3)

for all p ≥ 0 and some γp ≥ 0. By definition, dϕi,p ∈ spanK[ϑ]{ω1, . . . , ωk}
for i = 1, . . . , γp and p ≥ 0.

The exact 1-forms dϕi,p, i = 1, . . . , γp, are independent over K, but
may not be independent over K[ϑ]. It remains to be checked whether
there exist k 1-forms among dϕi,p, i = 1, . . . , γp, that form a basis for
spanK[ϑ]{ω1, . . . , ωk}. Below, Theorem 4.1 gives necessary and sufficient
conditions whether such k 1-forms exist.

To simplify the presentation, let ωi ∈ spanK[ϑ]{dx} for i = 1, . . . , k. Let

ω = (ω1, . . . , ωk)
T and dϕp be the vector of independent (over K[ϑ]) basis

elements of Ip∞, such that spanK[ϑ]{dϕp} contains Ip∞. One can always find

matrices M(ϑ) and Np(ϑ), for every p ≥ 0, such that1

ω = M(ϑ)dx
dϕp = Np(ϑ)dx.

(4.4)

A necessary and sufficient condition for strong integrability of the set of
1-forms {ω1, . . . , ωk} is given by the following theorem expressed in terms
of the matrices M(ϑ) and Np(ϑ).

Theorem 4.1. A set of 1-forms {ω1, . . . , ωk}, independent over K[ϑ], is
strongly integrable if and only if the Jacobson forms of matrices M(ϑ) and
Np(ϑ), defined by (4.4), are equal for some p ≥ 0.

Proof. Necessity. Let Λ1 be the Jacobson form of the matrix M(ϑ). Since
the set of 1-forms ω = (ω1, . . . , ωk)

T is strongly integrable, there exist an
unimodular matrix A(ϑ) and a vector function ϕ = (ϕ1, . . . , ϕk)

T , such
that ω = A(ϑ)dϕ. Define matrix N̄(ϑ) such that dϕ = N̄(ϑ)dx. Now,
M(ϑ) = A(ϑ)N̄(ϑ) and

Λ1 = V (ϑ)M(ϑ)U(ϑ) = V (ϑ)A(ϑ)N̄(ϑ)U(ϑ)

for some unimodular matrices V (ϑ), U(ϑ). Since the product of unimodular
matrices V (ϑ)A(ϑ) is also unimodular, then Λ1 is also the Jacobson form
of matrix N̄(ϑ). Also, because dϕ = A−1(ϑ)ω, then dϕ = dϕp for some
p ≥ 0. Thus, N̄(ϑ) = Np(ϑ) and the condition of the theorem is satisfied.

Sufficiency. Let the condition of the theorem be satisfied for p = p∗
and denote dϕ := dϕp∗ , N(ϑ) := Np∗(ϑ). By construction, the set of 1-
forms dϕ = N(ϑ)dx belongs to spanK[ϑ]{ω1, . . . , ωk}. Next, it is shown that

1Note that matrices Np(ϑ) are not unique since dϕp are not unique.
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ωi ∈ spanK[ϑ]{dϕ} for i = 1, . . . , k. Since the Jacobson forms of M(ϑ) and
N(ϑ) are equal, there exist unimodular matrices V1(ϑ), V2(ϑ), U1(ϑ), U2(ϑ)
such that

V1(ϑ)M(ϑ)U1(ϑ) = V2(ϑ)N(ϑ)U2(ϑ). (4.5)

Because N(ϑ) = A(ϑ)M(ϑ) for some full rank matrix A(ϑ), then one
can take U1(ϑ) = U2(ϑ) in (4.5). Now, from (4.5) one gets M(ϑ) =
V −1

1 (ϑ)V2(ϑ)N(ϑ). The matrix V −1
1 (ϑ)V2(ϑ) =: A−1(ϑ) is unimodular and

ω = M(ϑ)dx = A−1(ϑ)N(ϑ)dx = A−1(ϑ)dϕ. Therefore ωi ∈ spanK[ϑ]{dϕ1,
. . . ,dϕk} for i = 1, . . . , k and by Definition 4.1, the set of 1-forms {ω1, . . . ,
ωk} is strongly integrable.

The condition of Theorem 4.1 can be checked step-by-step, increasing the
index p at every step. The sequence dϕp, p ≥ 0, converges, because there
can be only up to k independent 1-forms in spanK[ϑ]{ω1, . . . , ωk}, and the

limit dϕ defines the largest strongly integrable submodule, denoted by Ā
contained in A := spanK[ϑ]{ω1, . . . , ωk}. Unfortunately, one does not know
an upper bound for the index p in Theorem 4.1, which makes application
of the theorem, to verify strong integrability of a set of 1-forms, a difficult
task.

Remark 4.2. In general, a good choice for p in Theorem 4.1 is s(k − 1),
where s is the largest delay (in coefficients or differentials) that appears in
the given set of k 1-forms. Note that s(k− 1) reduces to correct bound for
p in case of no delays (s = 0) or when k = 1. In fact, up to the knowledge
of the author of the thesis, there are no examples, when bigger value of p
is needed.

Example 4.2. Given the set of 1-forms

ω1 = dx1 + x3dx
[−1]
2

ω2 = dx
[−2]
2

(4.6)

check its strong integrability. Compute by the DFA

I0
∞ = spanK{dx

[−2]
2 }

I1
∞ = spanK{dx

[−2]
2 ,dx

[−3]
2 , dx

[−1]
1 }

which yield dϕ0 = dx
[−2]
2 and dϕ1 = (dx

[−1]
1 ,dx

[−2]
2 )T . Next, compute the

matrices M(ϑ) and N1(ϑ):

ω =

(
1 x3ϑ 0
0 ϑ2 0

)
dx =: M(ϑ)dx

dϕ1 =

(
ϑ 0 0
0 ϑ2 0

)
dx =: N1(ϑ)dx.
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It is easy to find that the Jacobson forms of M(ϑ) and N1(ϑ) are(
1 0 0
0 ϑ2 0

)
,

(
ϑ 0 0
0 ϑ2 0

)
respectively. Thus, the condition of Theorem 4.1 is not satisfied and the set
of 1-forms (4.6) is not strongly integrable. The largest strongly integrable

submodule contained in spanK[ϑ]{ω1, ω2} is spanK[ϑ]{dx
[−1]
1 ,dx

[−2]
2 }.

Example 4.3. Check the strong integrability of the 1-forms

ω1 = dx2

ω2 = x3dx1 + dx
[−1]
2 (4.7)

ω3 = x
[−1]
3 dx

[−1]
1 + x5dx4.

Compute for p = 0, 1, 22 the subspaces Ip∞:

I0
∞ = spanK{dx2}
I1
∞ = spanK{dx2,dx

[−1]
2 , dx1}

I0
∞ = spanK{dx2,dx

[−1]
2 , dx

[−2]
2 ,dx1,dx

[−1]
1 , dx4}.

Clearly, dϕ2 = (dx1, dx2, dx4)T . Now,

ω =

 0 1 0 0 0
x3 ϑ 0 0 0

x
[−1]
3 ϑ 0 0 x5 0

dx =: M(ϑ)dx

dϕ2 =

 1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

dx =: N2(ϑ)dx.

One can check that the Jacobson form of both matrices M(ϑ) and N2(ϑ)
is (I3, 0). Thus, the set of 1-forms (4.7) is strongly integrable.

4.1.3 Weak Integrability

The conditions for weak integrability are expressed via strong integrability
of a set of independent 1-forms.

Lemma 4.1. A set of 1-forms {ω1, . . . , ωk} is weakly integrable if and only
if the closure of the submodule, generated by {ω1, . . . , ωk}, is (strongly)
integrable.

2Note that s(k − 1) = 2 in this example.
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Proof. Necessity. By definitions of weak integrability and closure, there
exist functions ϕ = (ϕ1, . . . , ϕk)

T and a matrix A(ϑ), such that dϕ =
A(ϑ)ω̄, where ω̄ is the basis of the closure of the submodule, generated by
{ω1, . . . , ωk}. Choose {dϕ1, . . . ,dϕk} such that for i = 1, . . . , k

dϕi 6= adφ+
k∑

j=1;j 6=i
bj(ϑ)dϕj (4.8)

for any φ ∈ K and bj(ϑ) ∈ K[ϑ]. It remains to show that one can choose ϕ
such that A(ϑ) is unimodular, i.e. ω̄i ∈ spanK[ϑ]{dϕ} for i = 1, . . . , k.

Assume, by contradiction, that no ϕ exist such that ω̄i ∈ spanK[ϑ]{dϕ}.
Then, for some q, ω̄q 6∈ spanK[ϑ]{dϕ} and also δjω̄q 6∈ spanK[ϑ]{dϕ} for
j ≥ 1 and any dϕ satisfying (4.8). In fact, if one assumes by contradiction
that

δjω̄q =
k∑
i=1

ci(ϑ)dϕi, (4.9)

then, since on the left-hand side of (4.9) everything is delayed at least
j times, everything that is delayed less than j times on the right-hand
side should vanish. Therefore, one is able to find functions φi, ψi ∈ K,
i = 1, . . . , k, such that dϕi = dφi + dψi and

ci(ϑ)dφi ∈ spanK[ϑ]{dx[−j]}
∑
i

ci(ϑ)dψi = 0.

Now, because of (4.8), ψi = 0, φi = ϕi for i = 1, . . . , k and thus δjω̄q =

δj
∑

i c̄i(ϑ)dϕ
[j]
i which yields ω̄q =

∑
i c̄i(ϑ)dϕ

[j]
i . Clearly, 1-forms dϕ

[j]
i

have to belong to spanK[ϑ]{ω̄}, because dϕi ∈ spanK[ϑ]{ω̄}. Now, one has

a contradiction and therefore δjω̄q 6∈ spanK[ϑ]{dϕ} for j ≥ 1.

By construction, spanK[ϑ]{dϕ} ⊂ spanK[ϑ]{ωi; i = 1, . . . , k; i 6= q}, which
is impossible. Thus, the assumption that no ϕ exists such that ω̄i ∈
spanK[ϑ]{dϕ} must be wrong.

Sufficiency. Follows directly from the definitions of strong and weak
integrability.

By Lemma 4.1, the algorithm below can be used to check whether a set
of 1-forms {ω1, . . . , ωk} is weakly integrable.

Algorithm 4.1 Let {ω1, . . . , ωk} be linearly independent over K[ϑ].

1. Compute the closure clK[ϑ](A) of A = spanK[ϑ]{ω1, . . . , ωk}.

2. Check whether clK[ϑ](A) is strongly integrable. If yes, then the 1-
forms {ω1, . . . , ωk} are weakly integrable, otherwise not.
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Example 4.4. (Continuation of Example 4.2) Check whether the 1-
forms (4.6) are weakly integrable. Compute first the closure of A :=
spanK[ϑ]{ω1, ω2}. This can be done by finding the right-kernel of matrix
M(ϑ), defined in Example 4.2, and then computing the left-kernel of that
kernel. The resulting matrix defines the basis elements of the closure. The
kernel of

M(ϑ) =

(
1 x3ϑ 0
0 ϑ2 0

)

is (0, 0, 1)T , which has a kernel

(
1 0 0
0 1 0

)
. Therefore, clK[ϑ](A) =

spanK[ϑ]{dx1, dx2}, which is clearly strongly integrable. Thus, the 1-forms
(4.6) are weakly integrable.

4.1.4 Applications of Strong and Weak Integrability

In this subsection, it is shown that accessibility of nonlinear time-delay sys-
tem (1.5) can be characterized through integrability of a certain submod-
ule. The accessibility property of system (1.5) is defined via the concept
of autonomous element, like in cases of delay-free systems [25] or linear
time-delay systems [34].

An autonomous element of system (1.5) is defined similarly to the delay-
free systems, see [25].

Definition 4.2. A nonzero function ϕ ∈ K is said to be an autonomous
element of system (1.5) if there exist an integer ν and a nonzero function
F ∈ K such that

F (ϕ, ϕ̇, . . . , ϕ(ν)) = 0. (4.10)

Definition 4.3. System (1.5) is said to be accessible if it does not admit
any autonomous element.

The autonomous elements are described through their relative degree,
which is defined similarly to the relative degree of an output function.

Definition 4.4. A 1-form ω ∈ spanK[ϑ]{dx} is said to have relative degree

r if r is the smallest integer such that ω(r) 6∈ spanK[ϑ]{dx}. A function
ϕ ∈ K is said to have relative degree r if the 1-form dϕ has relative degree
r.

Define a sequence of submodules H1 ⊃ H2 ⊃ . . . of the module M of
1-forms as follows:

H1 = spanK[ϑ]{dx}
Hi = spanK[ϑ]{ω ∈ Hi−1 | ω̇ ∈ Hi−1}.

(4.11)
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Since H1 has finite rank and all the submodules Hi are closed, sequence
(4.11) converges (see [94]). Let H∞ denote its limit. A submodule Hi
contains all the 1-forms with relative degree greater or equal to i. Thus,
the limit H∞ contains all the 1-forms with infinite relative degree.

Lemma 4.2. Function ϕ ∈ K is an autonomous element of system (1.5)
if and only if it has infinite relative degree.

Proof. Necessity. Let ϕ be an autonomous element of system (1.5) and
assume, by contradiction, that it has finite relative degree. Then,

dim(spanK[ϑ]{dϕ, . . . ,dϕ(k−1)}) = k

for all k ≥ 1. Because of (4.10), the equality above is not satisfied for
k = ν + 1, which is a contradiction. Thus, function ϕ has infinite relative
degree.

Sufficiency. Let ϕ be a nonzero function with infinite relative degree.
Then the 1-forms dϕ(j) ∈ spanK[ϑ]{dx} for j = 0, . . . , n. Since there are

n+1 1-forms dϕ(j), j = 0, . . . , n, but the rank of the module spanK[ϑ]{dx} is

n, then the 1-forms dϕ, . . . ,dϕ(n) are dependent over the ring K[ϑ]. Thus,
there exist ai ∈ K[ϑ], i = 0, . . . , n, and at least one of them is non-zero,
such that

ω := a0dϕ+ · · ·+ andϕ(n) = 0. (4.12)

Let γ be the smallest integer such that

ω = b1dα1(ϕ, . . . , ϕ(n)) + · · ·+ bγdαγ(ϕ, . . . , ϕ(n)), (4.13)

where 0 6= bi ∈ K[ϑ], αi ∈ K, i = 1, . . . , γ. Then, from (4.12) and (4.13) one
gets αi(ϕ, . . . , ϕ

(n)) = 0 for i = 1, . . . , γ. By Definition 4.2, the function ϕ
is an autonomous element of system (1.5).

One can characterize accessibility of system (1.5) by the next theorem.

Theorem 4.2. System (1.5) is accessible if and only if the largest integrable
submodule of H∞, denoted by H̄∞, is 0.

Proof. Necessity. If system (1.5) is accessible, then by Lemma 4.2 it does
not admit any non-constant function in K with infinite relative degree.
Therefore, there are no exact non-zero 1-forms in H∞ and thus H̄∞ = 0
must be true.

Sufficiency. The submodule H∞ contains all the 1-forms with infinite
relative degree. Since H̄∞ = 0, there is no non-constant exact 1-forms with
infinite relative degree and therefore, by Lemma 4.2, there is no autonomous
elements.
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Example 4.5. Consider the model of the JAK-STAT signaling pathway
in the cell [91]. The model describes certain signal transduction from mem-
brane receptors to gene activation in the nucleus and is described by the
equations

ẋ1 = −k1x1u+ 2k4x
[−1]
3

ẋ2 = k1x1u− k2x
2
2 + 2k5x3

ẋ3 = −k3x3 +
k2x22

2 − k5x3

ẋ4 = k3x3 − k4x
[−1]
3 ,

(4.14)

where

� u is the amount of activated EPO-receptors;

� x1 is the amount of unphosphorylated monomeric STAT-5 (a mem-
ber of the STAT (signal transduction and activator of transcription)
family of transcription factors);

� x2 is the amount of phosphorylated monomeric STAT-5;

� x3 is the amount of phosphorylated dimeric STAT-5 in the cytoplasm;

� x4 is the amount of phosphorylated dimeric STAT-5 in the nucleus

and k1, . . . , k5 are parameters belonging to R. For more information, see
[91].

To check whether the system (4.14) is accessible, one has to compute
the sequence Hi of submodules and examine whether the largest integrable
submodule contained in the limit H∞ is zero or not. Compute:

H2 = spanK[ϑ]{d(x1 + x2), dx3, dx4}
H3 = spanK[ϑ]{d(x1 + x2 + 2x3), dx4}
H4 = H∞ = {0}.

Therefore, the system (4.14) is accessible.
In the rest of this chapter, two control problems - the disturbance de-

coupling problem and input-output decoupling problem - will be solved,
where one makes use of the new integrability notions. More precisely, the
weak integrability of a single 1-form will be used.

4.2 Disturbance Decoupling

The disturbance decoupling problem (DDP) of system time-delay is con-
sidered in this section. More precisely, one looks for state feedback, which
eliminates the effects of disturbances from the system output. It is impor-
tant to stress that one is looking for a causal feedback, not depending on
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the future state values. Causality is not an issue in delay-free case and
that makes the time-delay disturbance decoupling more challenging prob-
lem. Necessary and sufficient conditions are derived for solvability of the
DDP by pure shift dynamic compensator. The results below fix the incor-
rect results from [68] and also generalize those for SISO systems [72] to the
MIMO case. Additionally, necessary and sufficient conditions are given for
the problem solvability via general dynamic compensator for SISO systems.

In this Section, systems of the form (1.5), where the function f also
depends on the disturbance input vector w and its delays, are considered.
More precisely, these systems are in the form

ẋ = f(x, . . . , x[−D], u, . . . , u[−D], w, . . . , w[−D])

y = h(x, . . . , x[−D]),
(4.15)

where w is the disturbance, i.e. uncontrollable input, of the system.

Since in the case of time-delay systems the 1-forms are looked as elements
of the moduleM, first, the definition of the rank of a 1-form is generalized
to this case.

Definition 4.5. [42] A one-form ω is said to have rank γ, if γ is the minimal
number, such that

ω = a1dϕ1 + · · ·+ aγdϕγ

for some ai ∈ K[ϑ] and ϕi ∈ K, i = 1, . . . , γ.

Clearly, a one-form ω is weakly integrable if and only if its rank is equal
to 1. Since a 1-form, which generates a closed submodule, is integrable if
and only if the Frobenius theorem is satisfied, then the following procedure
can be applied to compute the rank of a 1-form ω ∈ M. Find the basis
element ω̄ of the closure of the submodule, generated by ω, and compute
the rank of ω̄ by Definition 1.6. The result is also the rank of ω.

Another concept, which will be used in this section, is the invariant
submodule with respect to the dynamics (4.15). Given a submodule A =
spanK[ϑ]{ω1, . . . , ωk} of spanK[ϑ]{dx}, by Ȧ one means the submodule

Ȧ = spanK[ϑ]{ω̇1, . . . , ω̇k}.

Then, an invariant submodule can be defined as follows.

Definition 4.6. [68] A submodule A ⊆ spanK[ϑ]{dx} is said to be invariant
with respect to the dynamics (4.15) if

Ȧ ⊆ clK[ϑ](A) + spanK[ϑ]{du}. (4.16)
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4.2.1 Disturbance decoupling by pure shift dynamic feed-
back

Since in time-delay case two operators, the time differentiation and time
delay operators, act on system equations, one can construct several classes
of feedback for such systems. The pure shift dynamic feedback, introduced
in [72], is defined as feedback of the form

z[1] = M(x[−i], z[−i], v[−i]; i = 0, . . . , σ)

u = G(x[−i], z[−i], v[−i]; i = 0, . . . , σ),
(4.17)

for some delay σ > 0 and where z is a vector of new system variables.
The additional variable z allows to handle situations, when an inverse of a
polynomial is needed to construct a feedback. For example, v = u + u[−1]

is not a standard static feedback, since one can not state the input u in
terms of v and possibly its shifts. In this case a new variable z := u[−1] is
defined, which allows to write u in terms of new variables v and z.

It is also assumed that the compensator (4.17) is regular. By regularity
of (4.17) is meant that all the new system variables, i.e. z and v, can be
expressed as functions of old system variables. Thus, there exists G̃,K ∈
K such that v = G̃(x[−i], u[−i]; i = 0, . . . , D) and z = K(x[−i], u[−i]; i =
0, . . . , D). Another way to express a regular compensator (4.17) is the
following:

P (ϑ)du = Q(ϑ)dv +R(ϑ)dx, (4.18)

where the matrix Q(ϑ) is unimodular3 and P0 ∈ Km×m is of full rank,
where P0 is defined by P (ϑ) =

∑
j Pjϑ

j , Pj ∈ Km×m. If the matrix P (ϑ)
is also unimodular, then the compensator (4.18) is said to be compatible,
which means that dim z = l = 0.

Here, one looks for a compensator (4.17) (or equivalently (4.18)), such
that for the closed-loop system, y(k) does not depend on the disturbance
input w (nor its delays) for all k ∈ N, i.e. ∂y(k)/∂w[−i] ≡ 0 for all k, i ∈ N.

The following Lemma gives a condition, whether a system (4.15) is dis-
turbance decoupled or not.

Lemma 4.3. System (4.15) is disturbance decoupled if and only if there
exists an invariant submodule A ⊂ spanK[ϑ]{dx} with respect to system
dynamics, such that dyi ∈ A, i = 1, . . . , p.

Proof. Necessity. Since system (4.15) is disturbance decoupled, then

dy
(k)
i ∈ spanK[ϑ]{dx, du, . . . ,du(k−1)}

3This guarantees the regularity.
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for i = 1, . . . , p and all k ≥ 1. This means that there must exist a submodule
A ⊂ spanK[ϑ]{dx} such that

A(k) ⊂ spanK[ϑ]{dx, du, . . . ,du(k−1)}.

Clearly, A must be invariant with respect to the dynamics (4.15).
Sufficiency. The invariant submodule A, that contains dyi for i =

1, . . . , p, satisfies (4.16). Note that when A is invariant with respect to
dynamics (4.15), then so is its closure clK[ϑ](A). Thus, since dyi ∈ A for
i = 1, . . . , p, one has

dy
(k)
i ∈ clK[ϑ](A) + spanK[ϑ]{du, . . . ,du(k−1)}

for i = 1, . . . , p and all k ≥ 0. Since clK[ϑ](A) ⊂ spanK[ϑ]{dx}, then the
outputs yi do not depend on w nor its shifts.

In [68] necessary and sufficient solvability conditions were given for DDP
by feedback of the form (4.18).

Theorem 4.3. [68] The DDP admits a solution by compensator (4.18) if
and only if there exists an integrable submodule Ω such that

(i) dyi ∈ Ω for i = 1, . . . , p;

(ii) there exist functions ϕ1, . . . , ϕρ such that

clK[ϑ](Ω + Ω̇) = Ω⊕ spanK[ϑ]{dϕ1, . . . ,dϕρ}

(iii) rankK
∂(ϕ1,...,ϕρ)

∂u = ρ.

Next, it is shown on the counterexample that the conditions of Theorem
4.3 are only sufficient.
Example 4.6. Consider the system

ẋ1 = x1u
[−1]
1 + u

[−1]
2

ẋ2 = w + u2 (4.19)

y = x1,

being disturbance decoupled, since the submodule Ω := spanK[ϑ]{dx1} is
invariant, though the conditions of Theorem 4.3 are not satisfied. Really,

clK[ϑ](Ω + Ω̇) = Ω⊕ spanK[ϑ]{ω},

where ω = x1du
[−1]
1 + du

[−1]
2 . By condition (ii) of Theorem 4.3 the 1-form

ω should be weakly integrable, but it is not since its rank is clearly equal
to 2. Therefore, the conditions of Theorem 4.3 are not satisfied.

The theorem below gives necessary and sufficient solvability conditions
of the DDP by compensator (4.17). This theorem generalizes the results of
[72] to the MIMO case and also corrects the results of [68].
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Theorem 4.4. The DDP is solvable by compensator (4.17) if and only if
there exists a submodule Ω such that the following conditions are satisfied:

(i) dyi ∈ Ω for i = 1, . . . , p;

(ii) there exist 1-forms ωi ∈ spanK[ϑ]{dx, du}, i = 1, . . . , ρ, with rank γi
such that

clK[ϑ](Ω + Ω̇) = Ω⊕ spanK[ϑ]{ω1, . . . , ωρ}

and ωi = ai,1dϕi,1 + · · ·+ ai,γidϕi,γi, then

rankK
∂(ϕi,j)

∂u
= ξ (4.20)

where ξ is the number of independent (over K[ϑ]) exact 1-forms dϕi,j),
i = 1, . . . , ρ and j = 1, . . . , γi.

Proof. Sufficiency: Let dϕl, l = 1, . . . , ξ ≤ m, be the independent (over
K[ϑ]) exact 1-forms dϕi,j). By (4.20), the system of equations

ϕl(x(·), u(·)) = vl (4.21)

is solvable in u, which gives a feedback of the form (4.18). Under this
feedback spanK[ϑ]{dϕi,j} ⊆ spanK[ϑ]{dv} and thus the submodule Ω is in-
variant. Then, because of (i), the DDP is solved.

Necessity: If the disturbance decoupling problem is solved, then by
Lemma 4.3 there exists a closed submodule Ω, which is invariant in the
closed-loop system, such that dyi ∈ Ω for i = 1, . . . , p. Thus condition (i)
is satisfied. Since Ω is invariant, it satisfies

Ω̇ ⊆ Ω + spanK[ϑ]{dv}.

If the 1-forms ω1, . . . , ωρ are defined as in (ii), then clearly spanK[ϑ]{ω1, . . . ,
ωρ} ⊆ spanK[ϑ]{dv}. This means that (4.21) must be solvable in u and thus
(4.20) must be satisfied.

Remark 4.3. Note that one can find a compatible feedback (4.17), that
solves the DDP, if the functions ϕ = (ϕ1, . . . , ϕλ)T , in the proof of Theorem
4.4, satisfy the condition: the matrix

∑
i

∂ϕ
∂u[−i]

ϑi is unimodular.

In general, the choice of the 1-forms ωi and the functions ϕi,j (even if
ωi are fixed) is not unique and different choices may yield different results
regarding the solvability of the DDP.

The difficulty in application of Theorem 4.4 is finding the submodule Ω.
Clearly, since one wants that dyi ∈ Ω for i = 1, . . . , p, Ω should satisfy the
condition

clK[ϑ](spanK[ϑ]{dyi, . . . ,dy
(ri−1)
i ; i = 1, . . . , p}) ⊆ Ω
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where ri is the relative degree of the output yi.
Example 4.7. Consider the system

ẋ1 = x2(u
[−1]
1 + x

[−2]
3 − x1u

[−2]
1 − x1x

[−3]
3 )

ẋ2 = u
[−1]
2 + x

[−1]
1 u

[−2]
2 + x2(u

[−2]
3 − x[−2]

3 )

ẋ3 = x2w
[−2]

y1 = x1

y2 = x
[−1]
2 .

(4.22)

It is easy to see, that r1 = r2 = 1 and the relative shifts µ1 = 1, µ2 = 2 in

this example, since ẏ1 depends on u
[−1]
1 and ẏ2 depends on u

[−2]
2 . By the

discussion above, the subspace Ω one looks for, has to include

spanK[ϑ]{dx1, dx2}.

Therefore, one may start, by taking Ω = spanK[ϑ]{dx1,dx2}. To find the
1-forms ω1, . . . , ωs in condition (ii) of Theorem 4.4, compute

dẋ1 = (−x2(u
[−2]
1 + x

[−3]
3 ))dx1

+ (u
[−1]
1 + x

[−2]
3 − x1u

[−2]
1 − x1x

[−3]
3 )dx2 + x2du

[−1]
1

+ x2dx
[−2]
3 − x2x1du

[−2]
1 − x2x1dx

[−3]
3

dẋ2 = du
[−1]
2 + u

[−2]
2 dx

[−1]
1 + x

[−1]
1 du

[−2]
2 + x2du

[−2]
3

− x2dx
[−2]
3 + (u

[−2]
3 − x[−2]

3 )dx2.

One can choose, for example

ω1 = x2du
[−1]
1 + x2dx

[−2]
3 − x2x1du

[−2]
1 − x2x1dx

[−3]
3

ω2 = du
[−1]
2 + x

[−1]
1 du

[−2]
2 + x2du

[−2]
3 − x2dx

[−2]
3 .

These one-forms can be written as

ω1 =
(
x2ϑ− x1x2ϑ

2
)
d(u1 + x

[−1]
3 )

ω2 =
(
ϑ+ x

[−1]
1 ϑ2

)
du2 + x2ϑ

2d(u3 − x3),

meaning that the ranks of ω1 and ω2 are 1 and 2, respectively. Thus,

ϕ1,1 = u1 + x
[−1]
3 , ϕ2,1 = u2 and ϕ2,2 = u3 − x3. Now, clearly

dim
(
spanK[ϑ]{d(u1 + x

[−1]
3 ),du2, d(u3 − x3)}

)
= 3

and

rankK
∂(ϕ1,1, ϕ2,1, ϕ2,2)T

∂u
= rank

 1 0 0
0 1 0
0 0 1

 = 3
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and so the condition (4.20) is satisfied. The feedback can be obtained by
solving the equations

v1 = u1 + x
[−1]
3

v2 = u2

v3 = u3 − x3

in u:

u1 = v1 − x[−1]
3

u2 = v2

u3 = v3 + x3.

Observe that this feedback is compatible.

Next, consider the other choice of 1-forms, which satisfy condition (ii)
of Theorem 4.4:

ω1 = x2du
[−1]
1 + x2dx

[−2]
3 − x2x1du

[−2]
1 − x2x1dx

[−3]
3

ω2 = du
[−1]
2 + u

[−2]
2 dx

[−1]
1 + x

[−1]
1 du

[−2]
2 + x2du

[−2]
3 − x2dx

[−2]
3 ,

which can be written as

ω1 =
(
x2ϑ− x1x2ϑ

2
)
d(u1 + x

[−1]
3 )

ω2 = ϑd(u2 + x1u
[−1]
2 ) + x2ϑ

2d(u3 − x3).

Thus ϕ1,1 = u1 +x
[−1]
3 , ϕ2,1 = u2 +x1u

[−1]
2 and ϕ2,2 = u3−x3. Now, clearly

(4.20) is satisfied and the feedback is found by solving the equations

v1 = u1 + x
[−1]
3

v2 = u2 + x1u
[−1]
2

v3 = u3 − x3

in u. The obtained feedback

z[1] = v2 − x1z

u1 = v1 − x[−1]
3

u2 = v2 − x1z

u3 = v3 + x3.

is not compatible, since dim z 6= 0.
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4.2.2 Dynamic disturbance decoupling for SISO systems

Next, the DDP is solved for systems of the form (4.15), where m = p =
1, using the dynamic state feedback. The goal is to find a regular (i.e.
invertible) dynamic compensator of the form

η̇ = F (x[−i], η[−i], z[−i], v[−i]; i = 0, . . . , σ)

z[1] = M(x[−i], η[−i], z[−i], v[−i]; i = 0, . . . , σ) (4.23)

u = G(x[−i], η[−i], z[−i], v[−i]; i = 0, . . . , σ),

where η is the state of the compensator, such that for the closed-loop sys-
tem, y(k) does not depend on the disturbance input w for all k ∈ N, i.e.
∂y(k)/∂w[−q] ≡ 0 for all k, q ∈ N. Denote by r the relative degree and by µ
the relative shift of the output y, respectively.

To solve the dynamic disturbance decoupling problem (DDDP), a sub-
module4 Ω of M is defined as follows

Ω = clK[ϑ]({ω ∈ spanK[ϑ]{dx} | ∀k ∈ N
ω(k) ∈ spanK[ϑ]{dx, dy(r), . . . ,dy(r+k−1)}}). (4.24)

This definition also yields

spanK[ϑ]{dy, . . . , dy(r−1)} ⊆ Ω.

If a 1-form ω belongs to the submodule Ω, clearly ω̇ ∈ Ω + spanK[ϑ]{dy(r)}.
Thus, the submodule Ω can be computed as the limit of the algorithm:

Ω0 = spanK[ϑ]{dx}

Ωk+1 = {ω ∈ Ωk | ω̇ ∈ Ωk + spanK[ϑ]{dy(r)}}.

The latter also yields that Ω̇ ⊆ Ω + spanK[ϑ]{dy(r)}.
The following lemma gives a condition to check whether a SISO system

is disturbance decoupled or not.

Lemma 4.4. The SISO time-delay system (4.15) is disturbance decoupled
if and only if

dy(r) ∈ Ω + spanK[ϑ]{du}. (4.25)

Proof. Necessity. Since r is the relative degree of output y with respect to
the input u,

dy(r) = ω0 + b(ϑ)du,

where b(ϑ) ∈ K[ϑ] and ω0 ∈ spanK[ϑ]{dx}. Next, it is shown that ω0 ∈ Ω.
Assume, by contradiction, that ω0 /∈ Ω. Then there exists s ∈ N such that

ω
(s)
0 /∈ spanK[ϑ]{dx,du, . . . ,du(s−1)}.

4Note that this is also one possible choice of submodule Ω in Theorem 4.4.
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This means that the 1-form ω0 is not disturbance decoupled and thus dy(r)

also is not disturbance decoupled. This is a contradiction and therefore,
ω0 ∈ Ω, meaning that (4.25) is satisfied.

Sufficiency. If (4.25) is true, then Ω̇ ⊆ Ω + spanK[ϑ]{du}, since Ω̇ ⊆ Ω +

spanK[ϑ]{dy(r)}. Thus, Ω is invariant with respect to the system dynamics
and since dy ∈ Ω, the system is disturbance decoupled.

The Theorem 4.5 below is a generalization of Theorem 11 in [72], where
static solutions were considered.

Theorem 4.5. The DDDP is solvable for SISO time-delay systems (4.15)
if and only if there exist k+1 weakly integrable 1-forms ωi ∈ spanK[ϑ]{ω̇i−1,

dx[−τ ],du[−τ ]; τ ≥ µ}, i = 0, . . . , k, such that

dy(r+j) − ωj ∈ spanK[ϑ]{dx, dy(r), . . . ,dy(r+j−1)}

for j = 0, . . . , k − 1 and

dy(r+k) − ωk ∈ Ω + · · ·+ Ω(k).

Proof. Necessity: Since the closed-loop system is disturbance decoupled,

dy(r+k) ∈ Ωcl + spanK[ϑ]{dv},

by Lemma 4.4, where Ωc is the subspace Ω for the closed-loop system. Since
in the closed-loop system the relative degree of output y is r+ k, it can be
shown, similarly as in the proof of Theorem 2.2, that Ωc = Ω + · · ·+ Ω(k).
The weakly integrable 1-form ωk can always be taken as ωk = ak(ϑ)dv,
where ak(ϑ) ∈ K[ϑ] is such that

dy(r+k) − ak(ϑ)dv ∈ Ω + · · ·+ Ω(k).

Now, assume by contradiction that there are no integrable 1-forms ωj ,
j = 0, . . . , k − 1, satisfying the conditions of Theorem 4.5. Then either
some y(r+j) depend on the disturbance w (which is a contradiction) or
some 1-forms ωj are not weakly integrable. In the latter case

dy(r+j) 6∈ spanK[ϑ]{dx, dη},

which is also a contradiction. Thus, there exist integrable 1-forms ωj , j =
0, . . . , k − 1, that satisfy the conditions of Theorem 4.5. Finally, since the
feedback is causal ωi ∈ spanK[ϑ]{ω̇i−1,dx

[−τ ], du[−τ ]; τ ≥ µ}, i = 0, . . . , k.

Sufficiency: Let ωi = ai(ϑ)dϕi(ϕ̇i−1, x
[−j], u[−j]; j = 0, . . . , σ) for i =

0, . . . , k and construct the system of equations

ηj = ϕj

v = ϕk,
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where j = 0, . . . , k − 1. This system is solvable in variables {η̇j , u} j =
0, . . . , k − 1 yielding a feedback, such that ωk = ak(ϑ)dv in the closed-loop
system. Also, the relative degree of y of the closed-loop system is r + k.
Thus A := Ω + · · ·+ Ω(k) ⊆ Ωc. Really, since

Ȧ ⊆ A+ spanK[ϑ]{dy(r+k)},

A ⊆ Ωc must be true. Therefore dy(r+k) ∈ Ωc + spanK[ϑ]{dv} and by
Lemma 4.4 the SISO system (4.15) is disturbance decoupled.

Theorem 4.5 yields a solution by a pure shift dynamic feedback (4.17)
for SISO systems of the form (4.15), given already in [72].

Corollary 4.1. The DDP is solvable for SISO time-delay systems (4.15)
by compensator (4.17) if and only if there exist a weakly integrable 1-form
ω ∈ spanK[ϑ]{dx[−τ ],du[−τ ]; τ ≥ µ}, such that

dy(r) − ω ∈ Ω.

Example 4.8. This example demonstrates that unlike in delay-free case,
for time-delay systems the existence of dynamic feedback which solves the
DDP, does not yield that there also exists a static solution. Consider a
nonlinear time-delay system

ẋ1 = x
[−1]
2 u[−1] + x3

ẋ2 = w

ẋ3 = x
[−1]
2

y = x1.

(4.26)

Clearly, system (4.26) can not be disturbance decoupled by static feedback.
This happens because ẏ depends on x3, whose delay is smaller than the
relative shift µ = 1, and thus can not be compensated. But there exists
a dynamic feedback which solves the problem. For system (4.26) Ω =
spanK[ϑ]{dx1} and 1-forms ωi in Theorem 4.5 are

ω0 = d(x
[−1]
2 u[−1])

ω1 = dÿ = ω̇0 + dx
[−1]
2 .

A feedback can be found by solving the equations

η = x2u

v = η̇ + x2

in variables η̇, u:
η̇ = v − x2

u = η
x2
.

(4.27)
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In the closed-loop system

ẋ1 = η[−1] + x3

ẋ2 = w

ẋ3 = x
[−1]
2

η̇ = v − x2

y = x1,

ẏ = η[−1] + x3 and ÿ = v[−1]. Therefore, output y and its derivatives do
not depend on the disturbance explicitly.

4.3 Input-Output Decoupling

In this section systems of the form (1.5) with p = m are considered. The
goal is to find a feedback of the form (4.17), such that every output variable
of system (1.5) depends exactly on one distinct input variable for all time
instants. The problem is similar to the SISO DDP, except that here one
allows the feedback to depend also on the ”disturbance”, i.e. on the other
input variables.

One says that the system (1.5) is input/output (i/o) decoupled if possi-
bly after reordering the inputs, one has

dy
(k)
i ∈ spanK[ϑ]{dx,dui, du̇i, . . . ,du

(k−1)
i } (4.28)

for i = 1, . . . ,m and for all k ≥ 0. One looks for a regular feedback (4.17),
such that after applying (4.17) to the system (1.5), the closed-loop system
is i/o decoupled.

To solve the problem, define the submodules Ωi, i = 1, . . . ,m, as follows

Ωi = clK[ϑ]({ω ∈ spanK[ϑ]{dx} | ∀k ∈ N, ω(k) ∈ spanK[ϑ]{dx,

dy
(ri)
i , . . . ,dy

(ri+k−1)
i }}),

where ri is the relative degree of the output yi.
A lemma similar to Lemma 4.4, can be given, to check whether a given

system is already i/o decoupled.

Lemma 4.5. System (1.5) is i/o decoupled if and only if for i = 1, . . . ,m

dy
(ri)
i ∈ Ωi + spanK[ϑ]{dui}. (4.29)

Proof. Necessity. Since ri is the relative degree of the output yi,

dy
(ri)
i = ωi + bi(ϑ)dui,
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where bi(ϑ) ∈ K[ϑ] and ωi ∈ spanK[ϑ]{dx}. Next, it will be shown that
ωi ∈ Ωi. Assume, by contradiction, that ωi /∈ Ωi. Then there exists s ∈ N
such that

ω
(s)
i /∈ spanK[ϑ]{dx, dy

(ri)
i , . . . ,dy

(ri+s−1)
i }

and thus

ω
(s)
i /∈ spanK[ϑ]{dx, dui, . . . ,du

(s−1)
i }.

This means that (4.28) is not satisfied for k = ri + s and thus dy
(ri)
i is not

i/o decoupled. This is a contradiction and therefore ωi ∈ Ωi, meaning that
(4.29) is satisfied.

Sufficiency. It is shown that dy
(ri+j)
i satisfies (4.28) for all j ≥ 0. For

j = 0, condition (4.28) is satisfied by (4.29). Now, assume, that dy
(ri+j)
i

satisfies (4.28) for j = 0, . . . , s− 1, and show that then condition (4.28) is
also satisfied for j = s. By definition of Ωi

Ω
(j)
i ⊆ spanK[ϑ]{dx,dy

(ri)
i , . . . ,dy

(ri+j−1)
i }

for all j ≥ 0. Thus, one has

dy
(ri+s)
i ∈ Ωi + · · ·+ Ω

(s)
i + spanK[ϑ]{dui, . . . ,du

(s)
i }

∈ spanK[ϑ]{dx,dy
(ri)
i , . . . ,dy

(ri+s−1)
i }

+spanK[ϑ]{dui, . . . ,du
(s)
i }

and because dy
(ri+j)
i satisfies (4.28) for j = 0, . . . , s− 1,

dy
(ri+s)
i ∈ spanK[ϑ]{dx,dui, . . . ,du

(s)
i }.

Theorem 4.6. System (1.5) with p = m can be i/o decoupled by a feedback
(4.17) if and only if there exist 1-forms ωi, i = 1, . . . ,m, that satisfy the
following conditions for i = 1, . . . ,m:

(i)

dy
(ri)
i ∈ Ωi + spanK[ϑ]{ωi}

(ii) the 1-forms ωi are weakly integrable, i.e. ωi = pi(ϑ)dϕi for some
pi(ϑ) ∈ K[ϑ];

(iii) the matrix ∂(ϕ1,...,ϕm)
∂u has full rank.
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Proof. Necessity. By Lemma 4.5, ωi = dvi = dG̃(x[−i], u[−i]; i = 0, . . . , σ)
satisfies the conditions.

Sufficiency. Let ωi = pi(ϑ)dϕi satisfy condition (i). Define, vi = ϕi.
Denote v = (v1, . . . , vm)T and ϕ = (ϕ1, . . . , ϕm)T , then

dv = P (ϑ)du+R(ϑ)dx, (4.30)

where

P (ϑ) =
∑
j

∂ϕ

∂u[−j]ϑ
j .

By (iii), matrix ∂ϕ
∂u has full rank, and thus (4.30) defines the feedback of

the form (4.18). Under this feedback, by (i) the condition of Lemma 4.5 is
satisfied and thus the closed-loop system is i/o decoupled.

Remark 4.4. If one wants to solve the i/o decoupling problem by com-
patible feedback (4.17), then the condition (iii) in Theorem 4.6 should be
replaced by

(iii ’) the matrix P (ϑ) :=
∑

j
∂(ϕ1,...,ϕm)

∂u[−j]
ϑj is unimodular.

Note that, if ωi = pi(ϑ)ω̄i satisfies condition (i), then so does the 1-form
ω̄i. It means that ωi can be always chosen such that spanK[ϑ]{ωi} is closed,
and thus the condition (ii) can be substituted by

(ii′) dωi ∧ ωi = 0.

The most obvious choice for ωi is ωi = dy
(ri)
i . For this choice, conditions

(i) and (ii) are always satisfied and one only has to check the condition

(iii) for ϕi = y
(ri)
i . But, this is only sufficient, because, for example, when

ẏ = yu[−1], then condition (iii) is not satisfied. But, when there is no delay

in u, then one can always take ωi = dy
(ri)
i . Therefore, one has the corollary.

Corollary 4.2. If there is no delay in the input u, then system (1.5) with
p = m can be i/o decoupled by a feedback (4.17) if and only if

rankK
∂(y

(r1)
1 , . . . , y

(rm)
m )

∂u
= m. (4.31)

There is an another way to write the conditions for solvability of the i/o

decoupling problem. Let y(r) = (y
(r1)
1 , . . . , y

(rm)
m )T .

Theorem 4.7. System (1.5) with p = m can be i/o decoupled by a feedback
(4.17) if and only if

dy(r) = Q(ϑ)[P (ϑ)du+ L(ϑ)dx] +K(ϑ)dx,

where Q(ϑ) is a diagonal matrix, d[P (ϑ)du+L(ϑ)dx] = 0, (K(ϑ)dx)i ∈ Ωi

for i = 1, . . . ,m and matrix P0, where P (ϑ) =
∑

i Piϑ
i, has full rank.
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Proof. This is a direct consequence of Theorem 4.6, when one takes ωi, i =
1, . . . ,m, such that ω = Q(ϑ)[P (ϑ)du+L(ϑ)dx], where ω = (ω1, . . . , ωm)T .

4.4 Conclusions

In this chapter nonlinear continuous time-delay systems were considered.
For such systems the standard integrability notion for a set of 1-forms is
too restrictive, because it does not take into consideration the effects of
time-delays. Since the integrability of 1-forms is essential in the differential
algebraic method to solve various control problems, a more general notion
of integrability is needed. In the the first section of this chapter, such gen-
eralization is done. In fact two possible generalizations are considered and
named as weak and strong integrability. In the case of strong integrability,
certain matrix over a polynomial ring K[ϑ] has to be unimodular, while
in the case of weak integrability, this matrix has to have only full rank.
Therefore, the strong integrability property always yields the weak integra-
bility property. The main result of this chapter is Theorem 4.1, which gives
necessary and sufficient conditions to check strong integrability property of
a set of 1-forms. Unfortunately, this theorem depends on a sequence of
matrices Np(ϑ), p ≥ 0, and to check the strong integrability property, one
has to know a bound for index p. A suggestion for such bound is made in
Remark 4.2, but the proof of this seems to be rather difficult. The weak
integrability of a set of 1-forms can be checked by using the conditions for
strong integrability. More precisely, one has to check whether the closure
of a submodule, defined by the given 1-forms, is strongly integrable.

The study of different problems has shown that in most cases weak
integrability of a set of 1-forms is enough to get good solutions. In the
second part of the chapter, the weak integrability was used to characterize
the accessibility property of time-delay systems and to solve the DDP by
pure shift dynamic feedback or by dynamic state feedback for SISO systems.
Finally, the weak integrability notion was applied to prove some preliminary
results on i/o decoupling problem for time-delay systems.
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Conclusions

In the thesis algebraic methods are used to solve various design problems
for nonlinear discrete-time and continuous time-delay systems. There are
three main contributions: the full solution to the input-output (i/o) lin-
earization problem by dynamic output feedback for nonlinear discrete-time
systems, the necessary and sufficient conditions to check the flatness prop-
erty of nonlinear discrete-time control systems and the characterization of
integrable 1-forms in the case of nonlinear time-delay systems. Besides
these results, the thesis unifies the study of time-delay and delay-free sys-
tems. It is shown (in Chapter 1) how similar mathematical tools are used
in the study of different system classes.

First, the i/o linearization problem by dynamic output feedback is stud-
ied for the class of nonlinear discrete-time systems. Based on the system
equations, a set of functions is computed, which characterizes the nonlin-
earities of the system. The obtained necessary and sufficient condition for
the existence of the linearizing feedback is given in terms of the previously
computed set of functions. It guarantees that a certain set of algebraic
equations is solvable, after which the required feedback can be found by
solving the found equations. While in the previous results [52, 54], the suf-
ficient solvability conditions depended on the existence of certain functions,
here a different set of functions is computed first, and then the condition
is given in terms of these functions. Then, the i/o linearization is applied
to solve the i/o decoupling problem and to give a sufficient solvability con-
dition for the disturbance decoupling problem by a dynamic measurement
feedback. These results are extensions of previous works and the novelty
comes from the improved i/o linearization conditions.

Secondly, the state feedback linearization of nonlinear discrete-time sys-
tems is presented. It is known that the linearization by a dynamic en-
dogenous feedback is equivalent to the flatness property, see [55]. First, an
important result is proved, which makes the study of flatness property dif-
ferent for discrete- and continuous-time systems. Namely, it is proven that
a discrete-time system is flat if and only if it is 0-flat, i.e. the flat outputs
depend only on system’s states. For the study of flatness of discrete-time
systems, a sequence of systems is defined, which is initialized by a given
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system. It is proved that the original system is flat if and only if the se-
quence converges to a system which has dimension 0. The novelty of this
work is not exactly in the necessary and sufficient condition itself, but in
the procedure for checking flatness property and computing the flat output.
Compared to the results of [6, 64, 63, 55, 53], here the computations needed
to verify flatness property of a given system are much simpler. Another al-
gebraic approach is applied to address the feedback linearization problem
for systems, which are described by possibly non-smooth functions. A solu-
tion by static state feedback is given and compared to the existing results,
obtained for analytic systems.

The third main contribution is devoted to integrability problem of the
set of differential 1-forms in the case of time-delay systems. Two concepts
of integrability are defined, strong and weak integrability, which, in the
case of no delays, reduce both to the known integrability concept. The
characterization of integrability property is different in delay-free and time-
delay cases, since in the first case the 1-forms are looked as elements of a
vector space, while in the other as elements of a module. The different
properties of modules and vector spaces yield the need for more general
integrability notion for time-delay case. The strong and weak integrability
notions define two possible extensions. The conditions for checking the
strong or weak integrability of a given set of 1-forms are derived in the
thesis. It is also shown how the obtained results on integrability can be
applied to study the accessibility property of a time-delay system and to
solve decoupling problems.

There are three possible directions for future work. The first, and the
easiest to obtain, is the implementation of the results of the thesis in the
Mathematica environment, which can be included to the software package
NLControl [92]. The most important and possibly the most difficult task
is to implement the computations of the maximal integrable subspace, con-
tained in a given vector space of 1-forms and the minimal integrable vector
space that contains a given vector space of 1-forms. All solutions to the
main problems, considered in the thesis, require at least one of the men-
tioned computations. The second possible research direction is to extend
the results of Chapters 2 and 3 from discrete-time case to the continuous-
time case. The extensions are not direct. In the case of the i/o linearization
problem, the computation of the functions, in terms of which the necessary
and sufficient condition is formulated, is different in the continuous-time
case, since the derivative operator acts differently than the forward shift
operator. As for the flatness property, the continuous-time case is much
more complicated. The procedure, given in this thesis, can be generalized
for the continuous-time case, but this would yield only sufficient solvability
conditions. This is a consequence of the fact that not every continuous-
time flat system is 0-flat, which is the case for discrete-time systems. The
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third possible future research direction is the use of the obtained integra-
bility concepts to generalize the well known results from the delay-free case
to the time-delay case. The possible problems to be encountered include
causality, which is unavoidable when considering time-delay systems, but
also other difficulties show up. For instance, the construction of a state
transformation becomes more challenging. When in the delay-free case one
has n−k linearly independent functions, one can always add k functions, to
define the state transformation. In the time-delay case, this is not true any-
more, since invertibility of a state transformation is not guaranteed only
by the independence of the functions, but the module their differentials
generate, must also be closed.
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[4] E. Aranda-Bricaire and Ü. Kotta. Generalized controlled invariance
for discrete-time nonlinear systems with application to the dynamic
disturbance problem. IEEE Trans. Autom. Control, 46:165–171,
2001.
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approach to equivalence and flatness of nonlinear systems. IEEE
Trans. on Automatic Control, 44(5):922–937, 1999.

[34] M. Fliess and H. Mounier. Controllability and observability of linear
delay systems: an algebraic approach. ESAIM: Control, Optimization
& Calculus of Variations, 3:301–314, 1998.

109



[35] A. Frick, E. Von Westerholt, and B. De Fornel. Non-linear control
of induction motors via input-output decoupling. European Transac-
tions on Electrical Power, 4(4):261–268, 1994.

[36] Q. Gong, H. Zhang, C. Song, and D. Lin. Disturbance decoupling
control for a class of nonlinear time-delay systems. In Proceedings
of the 6th World Congress on Intelligent Control and Automation,
pages 878 – 882. Dalia, China, 2006.

[37] J. W. Grizzle. Feedback linearization of discrete-time systems. In
Analysis and Optimization of Systems, pages 273–281. Springer,
Berlin, 1986.

[38] J.W. Grizzle. Controlled invariance for discrete-time nonlinear sys-
tems with an application to the disturbance decoupling problem.
IEEE Trans. Autom. Control, 30:868–873, 1985.

[39] J.W. Grizzle. A linear algebraic framework for the analysis of discrete-
time nonlinear systems. SIAM Journal on Control and Optimization,
31:1026–1044, 1993.

[40] J. Hartmanis and R. Stearns. The Algebraic Structure Theory of
Sequential Machines. Prentice-Hall, New York, 1966.

[41] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback
Control of Computing Systems. Wiley-Interscience, New York, 2004.

[42] H. Hermes. Involutive subdistributions and canonical forms for dis-
tributions and control systems. Elsevier, North Holland, 1986.

[43] H.J.C. Huijberts, L. Colpier, and P. Moreau. Nonlinear input-output
decoupling by static output feedback. In Proceedings of the 3rd Eu-
ropean Control Conference, pages 1057–1062. Rome, Italy, 1995.

[44] H.J.C. Huijberts, C.H. Moog, and R. Pothin. Input-output decou-
pling of nonlinear systems by static measurement feedback. Systems
and Control Letters, 39:109–114, 2000.

[45] A. Isidori. Nonlinear control systems. Springer, London, 1995.

[46] A. Isidori, A.J. Krener, C. Gori-Giorgi, and S. Monaco. Nonlinear
decoupling via feedback: A differential geometric approach. IEEE
Trans. Autom. Control, 26:331–345, 1981.

[47] A. Isidori, C.H. Moog, and A. De Luca. A sufficient condition for full
linearization via dynamic state feedback. In Proceedings of the 25th
IEEE Conference on Decision and Control, pages 203–208. Athens,
Greece, 1986.

110



[48] B. Jakubczyk. Feedback linearization of discrete-time systems. Sys-
tems and Control Letters, 9:411–416, 1987.

[49] B. Jakubczyk and E. D. Sontag. Controllability of nonlinear discrete
time systems: a Lie-algebraic approach. SIAM Journal on Control
and Optimization, 28(1):1–38, 1990.
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Kokkuvõte

Diskreetsete ja hilistumistega mittelineaarsete juh-
timissüsteemide süntees

Käesolevas väitekirjas on lahendatud mitmeid mittelineaarsete diskreet-
sete ja hilistumistega juhtimissüsteemide struktuurse sünteesi ülesandeid,
rakendades laialt kasutatavat algebralist lähenemist, mis põhineb süsteemi
poolt defineeritud diferentskorpusel ning diferentsiaalvormidel. Töö kes-
kendub mittelineaarsete diskreetaja (muuhulgas mittesiledate) süsteemide
lineariseerimisele (dünaamilise) tagasisidega ning mõningatele viimastega
seotud probleemidele. Valitud metoodika ei põhine otseselt süsteemi kirjel-
davatel võrranditel, vaid nende diferentsiaalidel. See tähendab, et töötatakse
diferentsiaalvormide vektorruumidega (mõningatel juhtudel moodulitega),
mis on defineeritud üle meromorfsete funktsioonide korpuse, mitte funkt-
sioonidega. Oluline antud lähenemises on sõltumatute diferentsiaalsete
1-vormide hulga integreeruvuse mõiste, mis võimaldab 1-vormide abil saa-
dud lahendid esitada funktsioonide kaudu. Hilistumisteta süsteemide jaoks
saab integreeruvust kontrollida Frobeniuse teoreemi abil, aga hilistumis-
tega süsteemide jaoks ei ole 1-vormide integreeruvust palju uuritud. See
on peamine takistus üldistamaks antud algebralist lähenemist hilistumis-
tega süsteemidele.

Väitekirjas on üldistatud diferentsiaalsete 1-vormide integreeruvuse mõis-
te hilistumistega süsteemide jaoks ning leitud konstruktiivsed tingimused
integreeruvuse kontrollimiseks. Üldisemat definitsiooni on rakendatud mit-
mete probleemide uurimisel, muuhulgas häiringute kompenseerimise üles-
ande lahendamisel ja juhitavuse omaduse kontrollimisel.

Integreeruvuse probleemi lahendus hilistumistega süsteemide jaoks ja
diskreetaja süsteemide lineariseerimine dünaamilise olekutagasisidega taan-
duvad matemaatiliselt sarnasele ülesandele. Mõlemal juhul otsitakse tea-
tud 1-vormide mooduli eksaktset baasi, kusjuures moodul on defineeritud
üle mittekommutatiivsete polünoomide ringi. Olekutagasisidega lineari-
seerimise probleem on omakorda ekvivalentne süsteemi nn. lameduse oma-
dusega. Väitekirjas on leitud algoritm kontrollimaks, kas etteantud diskreet-
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aja juhtimissüsteem on lame. Lisaks võimaldab algoritm leida ka süsteemi
lamedad väljundid, mille kaudu on omakorda leitav nii tagasiside kui ka
olekuteisendus, mis lineariseerivad antud süsteemi.

On uuritud ka võimalusi diskreetaja süsteemi lineariseerimiseks dünaami-
lise väljundtagasisidega. Töös on leitud tarvilikud ning piisavad tingimused
probleemi lahenduvuseks. Antud lahendust on kasutatud ka häiringu kom-
penseerimiseks ning süsteemi dekomponeerimiseks ühe sisendi ja ühe väljun-
diga alamsüsteemideks dünaamilise mõõdetavatest väljunditest sõltuva taga-
siside abil.
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Abstract

Advanced Design of Nonlinear Discrete-time and
Delayed Systems

In this thesis a well-known algebraic approach is used to solve several struc-
tural design problems for nonlinear discrete-time and delayed control sys-
tems. In particular, the thesis focuses on (dynamic) feedback linearization
(including the case of non-smooth systems) and some of the related prob-
lems. In the chosen algebraic approach, the controller design is based on
the global linearized system description instead of difference/differential
equations, describing the system. This means that one works with the
vector spaces (or sometimes modules) of differential forms over the differ-
ence/differential field of meromorphic functions and not directly with the
functions themselves. The key factor of the approach is the integrability
property of a set of independent differential 1-forms, which allows to write
the obtained solutions again in terms of functions. For delay-free con-
trol systems, the conditions for integrability are well established and given
by the Frobenius theorem, but for the time-delay case, the integrability
problem is not much studied. This is the main obstacle in extending the
algebraic formalism for time-delay systems.

In the thesis, the concept of integrability of 1-forms is generalized for the
time-delay case and conditions to check this property are given. Moreover,
it is shown that the introduced concept is useful in solution of several
problems, including the decoupling problems and checking the accessibility
property.

Characterization of integrability property in the time-delay case is math-
ematically closely linked to the problem of dynamic feedback linearization
in case of discrete-time systems. In both cases, one searches for an exact
bases for some module of 1-forms, defined over a non-commutative polyno-
mial ring. The feedback linearization problem is equivalent to the system
property called flatness. In the thesis, an algorithm for checking flatness
property of the discrete-time system is developed, which allows also to find
the flat outputs. Based on flat outputs, the linearizing feedback and the
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state transformation can be computed.
A more restrictive dynamic output feedback linearization problem is

also studied to linearize the input-output (i/o) equations of a nonlinear
discrete-time system. A full solution to the i/o linearization problem is
given. Later, this solution is used to solve the decoupling problems via
dynamic measurement feedback for nonlinear discrete-time systems.
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The paper addresses the input–output linearization problem by dynamic output feedback for multi-input
multi-output nonlinear systems, described by a set of higher order difference equations. Necessary and
sufficient solvability conditions are given together with the constructive procedure to check the
conditions and compute the feedback.
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1. Introduction

The output feedback solutions to different control problems
like disturbance decoupling [1,7,18], I/O decoupling [6,14,16] and
I/O linearization [8,15,17], are much less studied than the state
feedback solutions, especially in the nonlinear case. Moreover,
output feedback solutions are much more difficult to obtain, and
in many cases (disturbance decoupling, input–output lineariza-
tion) full solutions are still missing, even in the single-input single-
output (SISO) case. However, not all systems, described by a set of
higher order I/O difference (or differential) equations, are realiz-
able in the state space form, and in such a case the use of output
feedback is the only choice. Even when the state equations are
given, it may happen that not all states are directly available for
measurement. In such a case one may rely on observers which are,
in general, not easy to construct [19] or use the output feedback.

For continuous-time nonlinear systems the I/O linearization
problem by static output feedback has been completely solved in
[13,17]. As for dynamic output feedback, sufficient conditions were
given in [5], but only for SISO systems. For discrete-time SISO
systems, the problem has been addressed in [7,15]. In the discrete-
time case, similar mathematical tools and concepts, as in [5,17]
were used, though the computations are different. In the
multi-input multi-output (MIMO) case, there are no results for
continuous-time systems (except static case) and only [8] for
discrete-time systems.

The goal of this paper1 is to obtain the necessary and sufficient
conditions of I/O linearizability by dynamic output feedback for
MIMO discrete-time systems, described by the set of higher order
I/O difference equations. This paper generalizes the results of [7]
into the MIMO case. Compared with earlier extension [8], the main
theorem of this paper is not algorithm-dependent as that of [8],
but depends on certain functions, which can be computed easily
for all systems. Moreover, the condition itself is now necessary and
sufficient.2 Under the additional assumption of right invertibility
of the system these conditions are also necessary and sufficient for
solvability of the most general problem statement. The same
algebraic approach of differential one-forms as in [7,15] is used
in this paper to obtain the results. The main difference between
the results of this paper and the results for SISO systems is that
instead of checking whether certain one-forms are integrable, we
find integrable spaces of minimal dimension where these one-
forms belong to. After that, it remains to check if one can construct
the feedback, that solves the problem, based on these integrable
spaces. Finally, the main result of this paper is specified for the
additive NARX (ANARX) systems.

While the I/O linearization problem is an important problem
itself, it plays also a key role in the solution of other control problems.
In particular, in [18,7], the I/O linearization is used to develop
sufficient conditions for the disturbance decoupling problem by
dynamic measurement feedback, for continuous- and discrete-time
cases, respectively. Moreover, I/O linearization is also used in the
solution of the I/O decoupling problem [16].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejcon

European Journal of Control

0947-3580/$ - see front matter & 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.
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1 Being the extension and improvement of the conference paper [8].
2 Only sufficient condition was given in [8].
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The paper is organized in the following manner. In Section 2,
mathematical tools and key definitions are given. The main results
are stated in Section 3, including the necessary and sufficient
condition for solvability of the I/O linearization problem. Three
examples are given in Section 4 to characterize the computations
of the feedback. Finally some conclusions are given in Section 5.

2. Preliminaries

Throughout the paper3 we assume that i; τ¼ 1;…; p and j¼1,…,m.
Also, we write y or y½0� for y(t) and y½k� for yðtþkÞ, kZ1. Similar
notations are used for the other variables. Consider a discrete-time
multi-input multi-output (MIMO) nonlinear system, described by the
set of difference equations:

y½ni �i ¼Φiðyτ ;…; y½niτ �
τ ;uj;…;u½qi �

j Þ ð1Þ

where the functionsΦi are supposed to be analytic and the indices in
(1) satisfy the relations

n1rn2r⋯rnp; niτonτ
niτoni; τr i
niτrni; τ4 i: ð2Þ
The conditions (2) mean that Eq. (1) are assumed to be in the
so-called doubly (row- and column) reduced form. Note that when-
ever the system is well-defined, one can always transform an arbitrary
set of I/O equations, at least locally, under mild rank conditions, into
the form (1), see [10]. The advantage of the form (1) is that the
forward-shift operator, associated with the control system, is explicitly
defined, see below.

Definition 1. The relative degree ri of the ith output component yi
of the system (1) is defined as ri≔ni�qi.

Also, we assume, like in the majority of papers addressing
discrete-time nonlinear systems, that the system (1) is submersive,
i.e. the map Φ¼ ðΦ1;…;ΦpÞT satisfies generically4 the condition

rank
∂Φ

∂ðy;uÞ

� �
¼ p;

where y¼ ðy1;…; ypÞ and u¼ ðu1;…;umÞ.
Recall the algebraic structures from [2] to be used in this paper.

Let K be the field of meromorphic functions in variables y, u and a
finite number of their independent forward shifts, i.e. variables

from the set C¼ fyi;…; y½ni �1�
i ;u½k�

j ; kZ0g. Next, we define the

forward-shift operator δ : K-K associated with system (1) as

follows. In particular, δy½ni �1�
i ¼Φið�Þ, meaning that y½ni �i as a

dependant variable has to be replaced by Φið�Þ from (1). For the
remaining elements of C the forward shift operator is defined in a

standard manner, i.e. δy½α�i ≔y½αþ1�
i , α¼ 0;…;ni�2, δu½β�

j ≔u½βþ1�
j ,

βZ0. Then the shift of an arbitrary function just requires applying
forward-shift to all its arguments. For example, if function ϕ

depends on variables fyi;…; y½ni �1�
i ;uj;…;u½k�

j g, then

δ½ϕðyi;…; y½ni �1�
i ;uj;…;u½k�

j Þ�≔ϕðy½1�i ;…;Φið�Þ;u½1�
j ;…;u½kþ1�

j Þ:

Under the assumption that the system (1) is submersive, the pair
ðK; δÞ is an algebraic object called difference field, which we
denote simply by K. In general, K is not inversive, i.e. there does
not exist inverse of operator δ, but there always exists an overfield
Kn of field K, called inversive closure of K. Because Kn is inversive,

there exists an operator δ�1, satisfying δδ�1 ¼ δ�1δ¼ id, which

will be interpreted as the backward-shift operator. By δk and δ�k

we denote the k-fold application of operators δ and δ�1, respec-
tively. The detailed explanation for the construction of Kn (the rule
for computation of δ�1) is given in [11] for the special case of SISO
systems. The MIMO case, though technically more involved, can be
handled in a similar manner. The crucial point is the choice of the
new independent variables of the field extension. These new
variables are advisable to be chosen in such a manner that the
further computations are as simple as possible. From now on, we
denote the field Kn simply by K.

Define the vector spaces U ¼ spanKfdu½k�
j ; kZ0g, Y ¼ spanK

fdy½k�i ; k¼ 1;…;ni�1g and the vector space of one-forms
E ¼YþU . So, the elements of E are the linear combinations over
the field K of the standard basis elements from the set

dC≔fdyi;…;dy½ni �1�
i ;du½k�

j ; kZ0g. A one-form ω is said to be exact

if it is a differential of some function, i.e. ω¼ dφ, φAK. Also,

define Ek≔spanKfdyi;…;dy½k�1�
i ;duj;…;du½k�1�

j g for any kAN. The

forward-shift of a one-form ω¼∑sas dϕs is defined by

δ ∑
s
asdϕs

� �
≔∑

s
δðasÞ dðδϕsÞ;

where as;ϕsAK.
Though a one-form ωAE is, in general, given as a linear

combination of the elements of dC, it is often possible to find a
linearly independent set of exact one-forms with less elements
than those from dC in terms of which ω can be expressed.

Definition 2 (Rank of a one-form Choquet-Bruhat et al. [4]). We say
that γ is the rank of a one-form ω, if γ is minimal number of
linearly independent exact one-forms necessary to express a one-
form ω.

If the rank γ of a one-form ω is one, then ω¼ ξ dαðξ;αAKÞ is
clearly integrable. Thus the rank of a one-form generalizes the
concept of integrability of a one-form.

Example 1. A one-form ω¼ u½1� dyþy du½1� þy½1� du½2� is a linear
combination of three standard basis elements fdy;du½1�;du½2�g.
However, one can express ω as a linear combination of two exact
one-forms dðyu½1�Þ and du½2�, i.e. ω¼ dðyu½1�Þþy½1�du½2�. Thus, one
says that the rank of ω is 2.

3. I/O linearization

3.1. Problem statement

Given a control system of the form (1), we are searching for a
regular dynamic output feedback of the form:

η½1� ¼ Fðη; y; vÞ
u¼Hðη; y; vÞ; ð3Þ

where ηAΔ�Rρ and vAV �Rm are the state and the input of
the compensator (3), respectively, such that the differentials of
the input–output equations of the closed-loop system satisfy the
relations

dy½ni �
i AspanRfdy½niτ �

τ ;…;dyτ ;dvjg

dy½ni �
i =2spanRfdy½niτ �τ ;…;dyτg; ð4Þ

This means that, for the closed-loop system, dy½ni �
i is equal to a

linear combination of the elements from fdy½niτ �
τ ;…;dyτ ;dvjg

over R. Then, after integrating, which is always possible, one gets
that y½ni �

i is a linear function of the variables fy½niτ �
τ ;…; yτ ; vjg.

3 Except in Section 3.2.
4 Almost everywhere, except on the set of zero measure.
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If there exists such a feedback, then we say that system (1) is
input–output linearizable. Finally, note that we call the compensator
(3) regular, if it is right-invertible. For more information, see [9].

3.2. Necessary and sufficient condition

To present a necessary and sufficient I/O linearizability condi-
tion via dynamic output feedback, we first define certain5 one-
forms, fromwhich we find a set of functions, in terms of which the
condition is formulated.

Let

~ω i≔dy½ni �
i mod spanRfdy½niτ �τ ;…;dyτg:

Doing so, we ignore in the constructions that will follow the terms
of the right-hand side of Eq. (1) that already depend linearly6 on
outputs and their forward shifts. For solvability of the I/O linear-
ization problem, it is necessary that7

~ω iAEni � ri þ1; ð5Þ
since otherwise nonlinearities appear before the input u starts to
affect the output yi. The goal of the method, described below, is to
find a feedback of the form (3), such that in the closed-loop system
spanRf ~ωi gDspanKfdvg.

First, let ωi, i¼ 1;…; p1, be the basis elements8 of spanRf ~ωi g.
In the rest of this section assume that i; τ¼ 1;…; p1 and j¼1,…,m.

Let si be such that

ωiAEsi :

Next, define the one-forms

ω i;lAspanKfdy½si � l�;…;dy½si �1�;du½si � l�;…;du½si �1�g;
where l¼ 1;…;si�1, such that

ωi�ωi;lAEsi � l ð6Þ
and

ω i;si
≔ωi: ð7Þ

It means that the one-forms ω i;l depend on the ðsi� lÞ th and

higher order terms of the one-forms ωi. Let γi;l be the rank of a
one-form ωi;l for l¼ 1;…;si. Then there exist γi;l functions

~ϕ
k
i;lðy½si � l�;…; y½si �1�;u½si � l�;…;u½si �1�Þ such that

ω i;lAspanKfd ~ϕ
1
i;l;…;d ~ϕ

γi;l
i;l g:

Finally, define functions ϕk
i;l as a si� l step backward shift of

functions ~ϕ
k
i;l, i.e.

ϕk
i;l≔ðδ�1Þsi � l ~ϕ

k
i;l ¼ δl�si ~ϕ

k
i;l

for l¼ 1;…;si and k¼ 1;…; γi;l.

Theorem 1. Under the assumption (5) the system (1) is input–output
linearizable by dynamic output feedback of the form (3) if and only if

dimðspanK dϕk
i;l

n o
Þ ¼ rankK

∂ϕk
i;l

∂ðu; δϕk
i;ln Þ

; ð8Þ

for l¼ 1;…;si, l
n ¼ 1;…;si�1, k¼ 1;…; γi;l and functions ϕ1

i;si
are

independent from all the other functions.

Proof (Sufficiency). Construct the feedback that solves the input–
output linearization problem in the following way. Take all the

independent functions ϕk
i;l, l¼ 1;…;si�1, k¼ 1;…; γi;l, as the

states of the compensator (3), i.e.

ηi;l;k≔ ϕk
i;l: ð9Þ

Also, let

vi≔ ϕ1
i;si

: ð10Þ

By (8) the system of equations (9) and (10) is solvable with respect

to the variables fu;η½1�i;l;kg. Note that if p1om, the number of
equations is less than that of variables, and so m�p1 variables
are free. Take these free variables equal to the new input vπ ,
π ¼ p1þ1;…;m. Solution of the equations (9) and (10), with

respect to variables fu;η½1�i;l;kg, results in a feedback of the form (3).

This feedback yields, because of (7) and (10), ωi ¼ dvi. From the

definition of the one-forms ωi and ~ω i, one concludes dy½ni �
i A

spanRfdy½niτ �
τ ;…;dyτ ;dvg, i.e. the system (1) is input–output

linearized.
Necessity: To prove the necessity of condition (8), we use the

following one-forms: ψ i;l≔δ
l�siωi;l, l¼ 1;…;si. These one-forms

can be recursively computed as

ψ i;1 ¼ψ i;1

ψ i;2 ¼ δψ i;1þψ i;2

⋮

ψ i;si �1 ¼ δψ i;si �2þψ i;si �1

ψ i;si
¼ δψ i;si �1þψ i;si

; ð11Þ

where ψ i;lAspanKfdu;dyg, l¼ 1;…;si. Also, it is obvious from the
definition of one-forms ψ i;l that ψ i;lAspanKfdϕk

i;lg, where
l¼ 1;…;si and k¼ 1;…; γi;l.
Because of (4), in the closed-loop system one has ωi ¼ dvi. Since

ωi ¼ωi;si
¼ψ i;si

, one gets that ψ i;si
¼ dvi. Thus, to find a feedback,

that guarantees ωi ¼ dvi, one has to take ψ i;si
¼ dvi in (11) and

solve the set of equations in du and δψ i;l, l¼ 1;…;si�1. Now,
instead of integrating the one-forms ψ i;l, we use the concept of
rank of a one-form. Choose the state coordinates η of a feedback as
the integrals of the basis elements of a one-forms ψ i;l, i.e.
ψ i;lAspanKfdηg like in (9). Since the given system is feedback
linearizable, the system of equations (9) and (10) must be solvable
with respect to the variables fu;η½1�i;l;lg. This means that (8) must be
satisfied. □

3.3. Solution for ANARX systems

Consider a special subclass of MIMO systems, the so-called
ANARX systems, which are described by the equations of the form

y½ni �i ¼ ∑
ni

s ¼ 1
φi;sðy½ni � s�

τ ;u½ni � s�
j ;ni�sonτÞ: ð12Þ

Note that ni�sonτ in (12) means that the functions φi;s depend
only on the independent variables of the field K. In ANARX model
the restrictions are imposed on the structure (1), not allowing
coupling of shifts of different orders in the same term (function
φi;s). The choice of an appropriate (restricted) structure is a typical
approach in control to guarantee that the restricted system
structure will satisfy certain properties, important for feedback
construction.

Consider the case when

ωi ¼ ~ωi: ð13Þ

Then for ANARX systems (12) the computation of functions ϕk
i;l in

Theorem 1 is simplified. In this case, si ¼ ni�riþ1 and the one-

5 Not necessarily integrable.
6 This is the reason that we take here span over R and not over K as below.
7 Note that if ri¼1, then the condition (5) is always satisfied.
8 These basis elements are exact, since one-forms ~ωi are exact.
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forms ω i;l are given by

ωi;l ¼ ∑
ri þ l�1

s ¼ ri
dφi;s;

where l¼ 1;…;ni�riþ1. Note that these one-forms are all exact,
which means that γi;l ¼ 1. Thus, functions ϕ1

i;l are defined by

ϕ1
i;l ¼ ∑

ri þ l�1

k ¼ ri

δri �ni þ l�1φi;k: ð14Þ

Note that one can alternatively define these functions recursively

ϕ1
i;1 ¼ δri �niφi;ri

ϕ1
i;l ¼ δϕ1

i;l�1þδri �ni þ l�1φi;ri þ l�1 l¼ 2;…;ni�riþ1: ð15Þ

Next, we give a simple sufficient condition for the solvability of
the linearization problem for systems of the form (12).

Corollary 1. Under the assumptions (5) and (13), the system (12) is
I/O linearizable by dynamic output feedback if

dim spanK dðδri �niφi;ri Þ
n o� �

¼ rankK
∂ðδri �niφi;ri Þ

∂u
¼ p: ð16Þ

Proof. By (16), the functions ϕ1
i;1 are independent and (15) implies

the independence of all the functions ϕ1
i;l. Also, it is easy to see that

rankK∂ϕ
1
i;l=∂ðu; δϕ1

i;ln Þ, l¼ 1;…;ni�riþ1, ln ¼ 1;…;ni�ri, is equal to
the number of functions ϕ1

i;l. Thus, the condition of Theorem 1 is
satisfied and therefore, system (12) is I/O linearizable by dynamic
output feedback. □

By renumbering the inputs uj, if necessary, the dynamic output
feedback that linearizes the system (12) is given by

η½1�i;l ¼ ηi;lþ1�δlþ ri �niφi;lþ ri ð�Þ
η½1�i;ni � ri

¼ vi�φi;ni
ð�Þ

ui ¼ δri �niφ�1
i;ri

ð�Þ
us ¼ vs; ð17Þ
where l¼ 1;…;ni�ri�1, s¼ pþ1;…;m and inverse of φi;ri is taken
with respect to the argument u½ni � ri �

i .

Remark 1. In case of the SISO ANARX systems, conditions (16) and
(13) are always satisfied, since by the definition of relative degree,
δri �niφ1;ri depends on the control variable u. Then it remains only
to check whether the condition (5) is satisfied.

3.4. Generalized problem statement

In this section, we generalize the problem statement of I/O
linearization and then show that under the assumption that
system (1) is right-invertible the conditions of Theorem 1 are also
necessary and sufficient for the solvability of generalized problem.

Now, we are looking for a regular feedback of the form (3) such
that the closed-loop system satisfies

dy½ni �i AspanRfdy½niτ �τ ;…;dyτ ;dv
½ni �1�
j ;…;dvjg

dy½ni �i =2spanRfdy½niτ �
τ ;…;dyτg: ð18Þ

The difference with relations (4) is that now we also allow in the
closed-loop system y½ni �

i to depend on the forward-shifts of v.

Lemma 1. Assume that system (1) is right-invertible. Then there
exists a feedback of the form (3), such that (18) is satisfied for the
closed-loop system if and only if the conditions of Theorem 1 are
satisfied.

Proof (Necessity). Assume that there exists a regular feedback such
that (18) is satisfied for the closed-loop system. We show that then
there exists another regular feedback, such that (4) is satisfied for the

closed-loop system. The latter means that the conditions of Theorem
1 are satisfied. Clearly, since we apply regular feedback and system (1)
is right-invertible, the closed-loop system is right-invertible. Next, we
show that every right-invertible system satisfying (18) satisfies the
conditions of Theorem 1. Since the closed-loop system is linear,

ϕi;1 ¼ψ i;1ðuÞ
ϕi;l ¼ δϕi;l�1þψ i;lðuÞ

for l¼ 2;…;si, i¼ 1;…; p1 and some functions ψ i;lð�Þ.9 Therefore

dimðspanK dϕi;l

� 	Þ ¼ rankK
∂ϕi;l

∂ðu; δϕi;ln Þ

for i¼ 1;…; p1, l¼ 1;…;si and ln ¼ 1;…;si�1. The right-invertibility
guarantees that functions ϕi;si

are independent from all the other
functions ϕi;l, i.e. one can define the system of equations (9) and (10).
Thus, the conditions of Theorem 1 are satisfied.
Sufficiency: This is obvious. □

4. Examples

Example 2. Consider a system given by the set of I/O equations

y½4�1 ¼ y½3�1 þu½1�
1 y½2�1 u½2�

1 þy2u
½1�
2 þy2u1

y½2�2 ¼ y½1�1 u½1�
1 þu3y2: ð19Þ

For this system, sufficient conditions given in [8] are not satisfied,
but as we show here, the conditions of Theorem 1 are satisfied.
Note that relative degrees r1 ¼ 2 and r2 ¼ 1. We check the condi-
tion of Theorem 1 for system (19). Define the one-forms
~ω1 ¼ dðu½1�

1 y½2�1 u½2�
1 þy2u

½1�
2 þy2u1Þ and ~ω2 ¼ dy½2�2 . It is easy to see

that the condition (5) is satisfied in both cases. Note that for this
example ωi ¼ ~ω i, i¼1,2. Next we compute the one-forms ω i;l,
i¼1,2, l¼ 1;…;ni:

ω1;1 ¼ u½1�
1 dðy½2�1 u½2�

1 Þ
ω1;2 ¼ dðu½1�

1 y½2�1 u½2�
1 Þþy2du

½1�
2

ω1;3 ¼ dðu½1�
1 y½2�1 u½2�

1 þy2u
½1�
2 þy2u1Þ

ω2;1 ¼ dðy½1�1 u½1�
1 Þ

ω2;2 ¼ dðy½1�1 u½1�
1 þu3y2Þ: ð20Þ

From (20) it is easy to see that γ1;2 ¼ 2 and
γ1;1 ¼ γ1;3 ¼ γ2;1 ¼ γ2;2 ¼ 1. One can define the functions ϕk

i;l,
i¼1,2, l¼ 1;…;ni, k¼ 1;…; γi;l as follows:

ϕ1
1;1 ¼ y1u1

ϕ1
1;2 ¼ u1y

½1�
1 u½1�

1 ϕ2
1;2 ¼ u2

ϕ1
1;3 ¼ u½1�

1 y½2�1 u½2�
1 þy2u

½1�
2 þy2u1

ϕ1
2;1 ¼ y1u1

ϕ1
2;2 ¼ y½1�1 u½1�

1 þu3y2:

Now, since ϕ1
1;1 ¼ϕ1

2;1 and all other functions depend on some
different independent variables:

dimðspanKfdϕ1
1;1;dϕ

1
1;2;dϕ

2
1;2;dϕ

3
1;3;dϕ

1
2;1;dϕ

1
2;2gÞ ¼ 5:

Also,

rankK
∂ðϕ1

1;1;ϕ
1
2;1;ϕ

1
1;2;ϕ

2
1;2;ϕ

1
2;2;ϕ

1
1;3ÞT

∂ðu; δϕ1
1;1; δϕ

1
2;1; δϕ

1
1;2; δϕ

2
1;2Þ

9 Note that here we write ϕi;l instead of ϕk
i;l since k is equal to 1 for all the

functions.
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¼ rankK

y1 0 0 0 0 0 0
y1 0 0 0 0 0 0

δϕ1
1;1 0 0 u1 u1 0 0
0 1 0 0 0 0 0
0 0 y2 1 1 0 0
y2 0 0 0 0 1 y2

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 5;

i.e. everywhere except when y1 ¼ 0, y2 ¼ 0 or u1 ¼ 0.10 Thus, the
condition (8) is satisfied. The feedback of the form (3) can be found
by taking ηi;l;k and new input v as follows:

η1;1;1 ¼ϕ1
1;1 ¼ y1u1

η1;2;1 ¼ϕ1
1;2 ¼ u1y

½1�
1 u½1�

1

η1;2;2 ¼ϕ2
1;2 ¼ u2

v1 ¼ϕ1
1;3 ¼ u½1�

1 y½2�1 u½2�
1 þy2u

½1�
2 þy2u1

v2 ¼ϕ1
2;2 ¼ y½1�1 u½1�

1 þu3y2:

This set of equations has to be solved with respect to variables

fη½1�1;1;1;η
½1�
1;2;1;η

½1�
1;2;2;u1;u2;u3g. Since there are five equations, but six

unknowns, then one unknown, for example η½1�1;2;2, will remain free.
This variable will be taken equal to the new input v3. To conclude,
the feedback

η½1�1;1;1 ¼
y1η1;2;1
η1;1;1

η½1�1;2;1 ¼ v1�y2v3�
y2η1;1;1

y1

η½1�1;2;2 ¼ v3

u1 ¼
η1;1;1
y1

u2 ¼ η1;2;2

u3 ¼
v2η1;1;1�y1η1;2;1

y2η1;1;1

solves the input–output linearization problem for system (19).

Example 3. Consider the ‘Ball and Beam’ system, given for
example in [5].

J

R2þm
� �

€yþmg sin u�my _u2 ¼ 0; ð21Þ

where output y is the position of the ball, input u is the angle
between the beam and horizontal plane. The parameters of the
system have the following meaning: J, R and m are the inertia,
radius and mass of the ball, respectively, and g is the gravitational
constant.
Eq. (21) can be written as

€y ¼ c1 sin uþc2y _u
2; ð22Þ

where the parameters c1 and c2 are certain functions of system
parameters. Time-discretization of (22) yields the following equa-
tions:

y½2� ¼ 2y½1� �yþc1 sin uþc2yððu½1�Þ2�2uu½1� þu2Þ: ð23Þ
Note that by the results of [12] the model (23) is not transformable
into the state space form. Next, we find the feedback of the form
(3), that linearizes Eq. (23).. First, define

ω¼ ð2c2yu½1� �2c2yuÞ du½1� þðc1 cos u�2c2yu½1� þ2c2yuÞ du
þðc2ðu½1�Þ2�2c2uu½1� þc2u2Þ dy:

Since the relative degree of the output y is 1, condition (5) is
automatically satisfied for ω. Define, according to (6) and (7) two
one-forms

ω1 ¼ ð2c2yu½1� �2c2yuÞ du½1�

ω2 ¼ω:

Obviously, the rank of both one-form is one and ω1AspanKfdu½1�g,
ω2AspanKfdðc1 sin uþc2yððu½1�Þ2�2uu½1� þu2Þg. Therefore, inte-

grating ω1 and ω2, one obtains ~ϕ
1
1;1 ¼ u½1�, thus ϕ1

1;1 ¼ u, and

~ϕ
1
1;2 ¼ϕ1

1;2 ¼ c1 sin uþc2yðu½1� �uÞ2. It is easy to see that the

condition (8) is satisfied for ϕ1
1;1 and ϕ1

1;2. Following the procedure
in the proof of Theorem 1, denote

η≔u

v≔c1 sin ηþc2yðη½1� �ηÞ2

that results in the feedback

η½1� ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�c1 sin η

c2y

s
þη

u¼ η:

Note that, to be able to calculate the square root, one has to
guarantee that the position of the ball y40. Then v�c1 sin

η¼ c2yðη½1� �ηÞ240ðc2 ¼mR2=ðJþmR2Þ40Þ and the expression
under the square root is also positive. The equation of the
closed-loop system is

y½2� ¼ 2y½1� �yþv: ð24Þ

Example 4. As an example of ANARX system, consider the model
of the liquid level system of interconnected tanks [3], defined by
the I/O equation

y½3� ¼ 0:43y½2� þ0:681y½1� �0:149yþ0:396u½2� þ0:014u½1� �0:071u

�0:351y½2�u½2� �0:03ðy½1�Þ2�0:135y½1�u½1� �0:027ðy½1�Þ3

�0:108ðy½1�Þ2u½1� �0:099ðu½1�Þ3: ð25Þ

Since it is a SISO system, by Remark 1, the only condition one has
to check is (5). The latter is satisfied, because the relative degree of
y is 1. Now, according to (17) one can write down the equations of
the compensator

η½1�1 ¼ η2�0:681yþ0:03y2þ0:027y3

�ð0:014�0:135y�0:108y2Þ η1�0:43y
0:396�0:351y

þ 0:463η1�0:199y
0:183�0:163y

� �3

η½1�2 ¼ vþ0:149yþ0:071η1�0:031y
0:028�0:025y

u¼ η1�0:43y
0:396�0:351y

ð26Þ

yielding the closed-loop system equation y½3� ¼ v.

5. Conclusions

The necessary and sufficient conditions were given to linearize
the set of higher order nonlinear I/O difference equations by
dynamic output feedback. The main results are specified for a
subclass of ANARX systems. The future goal is to apply the
obtained results to solve the disturbance decoupling and I/O
decoupling problems by dynamic output feedback.10 Note that δϕ1

1;1 is zero only if y1 ¼ 0 or u1 ¼ 0.
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Input-output decoupling of discrete-time nonlinear systems by
measurement feedback

Arvo Kaldmäe and Ülle Kotta

Abstract— This paper addresses the input-output decoupling
problem for discrete-time nonlinear systems by measurement
feedback. Necessary and sufficient conditions are given to
solve the problem by static or dynamic measurement feedback,
respectively. Since the dynamic measurement solution presented
here depends on the solution of the input-output linearization
problem, a sufficient condition for linearizability of certain
functions is also given. Finally, the derived conditions are
specified to solve the problem by output feedback.

I. INTRODUCTION

The necessary and sufficient conditions for solvability of
the input-output (i/o) decoupling problem by state feedback
were given already in [10], [11] for continuous-time systems
and in [7], [9] for discrete-time systems. The purpose of
this paper is to consider a case when all the states are
not available for measurement. Then one has to consider
a different feedback, an output feedback or a measurement
feedback, where only some functions of states are measured.

In the nonlinear case only few papers address the i/o
decoupling problem by measurement or output feedback.
Necessary and sufficient conditions have been given to
solve the problem for continuous-time systems by static
measurement feedback in [3] and for discrete-time systems
by static output feedback in [8]. Theorem 1 below is the
analogue of the conditions in [3], whereas in [8] the special
case was studied when the controlled and measured outputs
coincide. To our best knowledge, dynamic measurement
feedback solution is looked for only in [12], where solvability
conditions are given that depend explicitly on linearizability
property of certain functions. These conditions are only
sufficient since linearizability property is specified in the
theorem via sufficient linearizability conditions.

The goal of this paper is to solve the i/o decoupling
problem by dynamic measurement feedback for discrete-
time systems. In this paper we use similar approach and
the same mathemathical tools as in [3], [8], [12]. However,
compared to [12], weaker linearizability conditions are used
in this paper. Necessary and sufficient solvability conditions
of i/o decoupling problem are given, which can be specified
to the dynamic output feedback case. The problem of i/o
linearization is also briefly mentioned in the paper, since it is

*This work was supported by the European Union through the European
Regional Development Fund, by the ETF grant nr. 8787 and by the Estonian
Research Council, personal research funding grant PUT481. A. Kaldmäe
was also supported by the Estonian Doctoral School in Information and
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Kaldmäe is also with IRCCyN, LUNAM, 1 rue de la Noë, 44321 Nantes
Cedex 3, France arvo@cc.ioc.ee;kotta@cc.ioc.ee

an important part of the solution, given in this paper. Unlike
in state feedback case, here one can not use all the states in
feedback. Thus, we divide some shifts of controlled outputs
into two parts: the one, which has to be compensated and
the one, which does not. Finally, a feedback is found, that
compensates the part which needs to be compensated, by
linearizing certain functions, whenever it is possible. Notice
that the obtained necessary and sufficient condition can be
generalized to continuous-time systems very easily.

II. PRELIMINARIES

Consider a discrete-time nonlinear system, described by
the equations

x(t+ 1) = f(x(t), u(t))

y∗(t) = h∗(x(t)) (1)
y(t) = h(x(t)),

where x(t) ∈ X ⊂ Rn is the state, u(t) ∈ U ⊂ Rm is
the input, y∗(t) ⊂ Y ∈ Rm is the controlled output and
y(t) ⊂ Z ∈ Rq is the measured output. It is assumed that
the functions f , h∗ and h are meromorphic. Also, we assume,
that the system (1) is submersive, meaning that generically,
i.e. everywhere except on a set of measure zero,

rank
[ ∂f

∂(x(t), u(t))

]
= n. (2)

In this paper, the following notations are used. Instead of
x(t) and x(t+k) (k ≥ 1) we use x and x[k], respectively. The
same notations are used for the other variables. Throughout
the paper it is assumed that i = 1, . . . ,m.

Extend the map f : (x, u) 7→ x[1] to the map f̃ : (x, u) 7→
(x[1], z), where z = χ(x, u), z ∈ Rm, such that f̃ is
generically invertible. Let K be the field of meromorphic
functions in finite number of variables from the set C =
{x, u[k], z[−l]; k ≥ 0, l > 0}. Introduce the forward-shift
operator δ : K → K, defined by equations (1); in particular
δx = f(x, u). Moreover, δu[k] = u[k+1] (k ≥ 0), δz[−1] =
χ(x, u), δz[−l] = z[−l+1] (l > 1) and

δϕ(x, u, . . . , u[k], z[−1], . . . , z[−l]) =

ϕ(f(x, u), u[1], . . . , u[k+1], χ(x, u), . . . , z[−l+1]).

Since f̃ is invertible, one can also define inverse of op-
erator δ, called backward-shift operator δ−1, as δ−1x =
f̃−1(x, z[−1]), δ−1u[k] = u[k−1] (k ≥ 0), δ−1z[−l] = z[−l−1]

(l > 1) and

δ−1ϕ(x, u, . . . , u[k], z[−1], . . . , z[−l]) =

ϕ(f̃−1(x, z[−1]), u, . . . , u[k−1], z[−2], . . . , z[−l−1]).
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Since the operator δ is an automorphism of the field K,
the pair (K, δ) is an inversive difference field, see [1], and
denoted simply by K.

Introduce the set of symbols dC = {dx, du[k],dz[−l]; k ≥
0, l > 0}. Let E := spanK{dC} be the vector space spanned
over K by the elements of dC. The elements of E , i.e.

ω =

n∑
i=1

aidxi +
∑
k≥0

m∑
j=1

bkjdu
[k]
j +

∑
l>0

m∑
ρ=1

clρdz
[−l]
ρ

where only finite number of coefficients ai, bkj , clρ ∈ K are
nonzero, are called one-forms. A one-form ω is called exact
if it is a differential of some function ϕ ∈ K, i.e. ω = dϕ.
The operators δ and δ−1 are extended to E by the rules

δ
(∑

j

ajdϕj
)

=
∑
j

δ(aj)d(δϕj)

δ−1
(∑

j

ajdϕj
)

=
∑
j

δ−1(aj)d(δ−1ϕj),

where aj , ϕj ∈ K. Let y∗ = (y∗1, . . . , y∗m) be the controlled
output vector of the system (1). The relative degree ri of
an output y∗i is defined by ri := min{k ∈ N | dy

[k]
∗i /∈

spanK{dx}}. If there does not exist such integer k, then set
ri := ∞. We also define some subspaces of E , i.e. Ek =
spanK{dy, . . . , dy[k−1],du, . . . ,du[k−1]} for every k ∈ N
and X = spanK{dx}.

In general, a one-form ω is a linear combination over K
of certain number of standard basis elements of E , i.e. dC.
However, it is often possible to find a linearly independent
set of exact one-forms, with less elements than those basis
elements of E , in terms of which ω can be expressed.

Definition 1: A minimal number γ ∈ N so that there exist
γ linearly independent exact one-forms such that ω is a linear
combination of these exact one-forms, is called the rank of
a one-form ω.
If the rank of a one-form ω ∈ E is equal to 1, then by
definition 1 there exist λ, ϕ ∈ K such that ω = λdϕ, i.e. the
one-form ω is integrable.

We say that system (1) is right-invertible with respect to
the output y∗ if there exist ji ∈ N such that

rankK
∂(h∗1(x[j1]), . . . , h∗m(x[jm]))T

∂u
= m, (3)

where h∗(x) = (h∗1(x), . . . , h∗m(x)), see [2] for more
information. Also, let jmax := max{j1, . . . , jm}.

As in [12], we define for each output component y∗i a
subspace Ωi of X in the following way:

Ωi = {ω ∈ X | ∀k ∈ N : δkω ∈ spanK{dx, dy
[ri]
∗i , (4)

. . . ,dy
[ri+k−1]
∗i }}.

The subspaces Ωi are essential to solve the input-output
decoupling problem. It is because the forward-shifts of
the elements of Ωi do not depend on the input u ex-
plicitly. Suppose Ωi = spanK{dθ1, . . . ,dθl}. We define
the forward-shift of subspace Ωi elementwise by Ω

[1]
i =

spanK{dθ
[1]
1 , . . . ,dθ

[1]
l }. Denote Ω

[0]
i := Ωi, and Ω

[k]
i :=

(Ω
[k−1]
i )[1]. The following lemma gives a procedure for

computing the subspaces Ωi.
Lemma 1: [4] The subspace Ωi may be computed as the

limit of the following algorithm:

Ω0
i = X (5)

Ωk+1
i = {ω ∈ Ωki | δω ∈ Ωki + spanK{dy

[ri]
∗i }}.

III. MAIN RESULTS

A. Problem statement

One says that system (1) is i/o decoupled if every con-
trolled output y∗i depends on exactly one input variable ui,
i.e. the relative degrees ri are finite and

dy
[k]
∗i ∈ spanK{dx, dui, . . . ,du

[k−ri]
i } k ≥ ri.

The next lemma gives the necessary and sufficient condi-
tion for a system to be i/o decoupled.

Lemma 2: Under the assumption that ri < ∞, for i =
1, . . . ,m, the system (1) is input-output decoupled iff

dy
[ri]
∗i ∈ Ωi + spanK{dui}. (6)

Proof: Necessity. If the system (1) is input-output decou-
pled, then

dy
[ri]
∗i ∈ spanK{dx,dui}.

Thus, there exists ωi ∈ X and λi ∈ K such that dy
[ri]
∗i =

ωi + λidui. We will show that ωi ∈ Ωi. Note that

δσωi ∈ spanK{dx, dui, . . . ,du
[σ−1]
i } (7)

for every σ ∈ N. Since dy
[k]
∗i ∈

spanK{dx, dui, . . . ,du
[k−ri]
i } for k ≥ 0, then

spanK{dx,dui, . . . ,du
[σ−1]
i } = (8)

spanK{dx, dy
[ri]
∗i , . . . ,dy

[ri+σ−1]
∗i }.

Thus, (7) and (8) give

δσωi ∈ spanK{dx,dy
[ri]
∗i , . . . ,dy

[ri+σ−1]
∗i }

for every σ ∈ N, which means that ωi ∈ Ωi.
Sufficiency. By Lemma 1 and (6), one gets

Ω
[1]
i ⊆ Ωi + spanK{dy

[ri]
∗i } ⊆ Ωi + spanK{dui}.

Thus, Ω
[k]
i ⊆ Ωi + spanK{dui, . . . ,du

[k−1]
i } and therefore,

dy
[ri+k]
∗i ∈ Ω

[k]
i + spanK{du

[k]
i }

⊆ Ωi + spanK{dui, . . . ,du
[k]
i }

⊆ spanK{dx, dui, . . . ,du
[k]
i },

which means, that system (1) is i/o decoupled.

The input-output decoupling problem can be formulated
as follows. Find a regular dynamic measurement feedback
of the form

η[1] = F (η, z, v)
u = H(η, z, v),

(9)

where v ⊂ V ∈ Rm is the new input and η ⊂ ∆ ∈ Rρ is
the state of the feedback, such that the closed-loop system
(1),(9) satisfies the following conditions:
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(i) the relative degree r̄i of output y∗i of the closed-loop
system is finite;

(ii) dy
[k]
∗i ∈ spanK{dx, dη,dvi, . . . ,dv

[k−r̄i]
i } for k ≥ r̄i.

Condition (ii) guarantees that outputs y∗i are decoupled, i.e.
different outputs y∗i are affected by different inputs vi at
every time instant k ≥ r̄i. By regularity of feedback we mean
that (9) defines generically the (z, η)-dependent one-to-one
correspondence between the variables v and u. Feedback (9)
is called static if ρ := dim η = 0.

Since the main Theorem of this paper, given below,
depends on the solution of the i/o linearization problem, we
give first the problem statement for the i/o linearization. For
more information, see [5].

B. Input-output linearization

In this section, we consider a discrete-time multi-input
multi-output (MIMO) nonlinear system, described by the set
of i/o difference equations

y
[nl]
l = Φl(yτ , . . . , y

[nlτ ]
τ , ui, . . . , u

[nl−1]
i ) (10)

for l, τ = 1, . . . , q, where Φl are supposed to be meromor-
phic functions of their arguments and the indices in (10)
satisfy the relations

n1 ≤ n2 ≤ · · · ≤ nq, nlτ < nτ

nlτ < nl, τ ≤ l (11)
nlτ ≤ nl, τ > l.

Like above, we assume, that system (10) is submer-
sive, which for the i/o model means that the map Φ =
(Φ1, . . . ,Φq)

T satisfies generically the condition

rank
[ ∂Φ

∂(y, u)

]
= q,

where y = (y1, . . . , yq) and u = (u1, . . . , um).
One says that equations (10) are linearizable by regular

dynamic output feedback of the form (9), if the differentials
dy

[nl]
l , defined by the input-output equations of the closed-

loop system, satisfy the relations

dy
[nl]
l ∈ spanR{dy[nlτ ]

τ , . . . ,dyτ ,dv} (12)

for l, τ = 1, . . . , q. In the case, when

dy
[nl]
l ∈ spanR{dv}

for l = 1, . . . , q, equations (10) are said to be strictly
linearizable.

One says that the set of functions
ϕi(z, . . . , z

[s−1], u, . . . , u[s−1]), i = 1, . . . ,m, are
linearizable (strictly linearizable) if the system of equations

y
[s]
i = ϕi(y, . . . , y

[s−1], u, . . . , u[s−1])

is linearizable (strictly linearizable).

C. Input-output decoupling
First, we give a solution to the input-output decoupling

problem by static measurement feedback. Let h∗(x) =
(h∗1(x), . . . , h∗m(x)).

Theorem 1: Let the relative degrees ri of outputs yi be
finite. Then the system (1) is input-output decoupable by
static measurement feedback iff
(i)

rankK

[∂(h∗1(x[r1]), . . . , h∗m(x[rm]))T

∂u

]
= m;

(ii) there exist one-forms ωi ∈ spanK{dy,du} with rank 1,
such that dy

[ri]
∗i − ωi ∈ Ωi.

The proof of Theorem 1 is given in [8] for the case when
y = y∗. The proof of the general case is similar.

In Theorem 2 below, the necessary and sufficient condi-
tions for solvability of the input-output decoupling problem
by dynamic measurement feedback are given, relaxing the
conditions of Theorem 1.

Theorem 2: The system (1) is input-output decoupable
by dynamic measurement feedback (9) iff the following
conditions are satisfied:
(i) the system (1) is right-invertible with respect to the

controlled outputs y∗i;
(ii) there exists s ≥ jmax − ri + 1 such that1

dy
[ri+s−1]
∗i ∈ Ωi + · · ·+ Ω

[s−1]
i

+spanK{dy, . . . , dy[s−1],du, . . . ,du[s−1]};

(iii) there exist one-forms ωi ∈ spanK{dy, . . . , dy[s−1],du,
. . . ,du[s−1]} with rank 1 such that

dy
[ri+s−1]
∗i − ωi ∈ Ωi + · · ·+ Ω

[s−1]
i ;

(iv) for ωi = λidϕi, λi, ϕi ∈ K, the functions
ϕi(y, . . . , y

[s−1], u, . . . , u[s−1]) are strictly linearizable
by dynamic feedback.

Proof. Necessity. Let s ≥ 1 be such that in the closed-loop
system the relative degree r̄i of output y∗i is r̄i = ri+s−1.
By Lemma 2 and the fact that the closed-loop system is i/o
decoupled,

dy
[r̄i]
∗i ∈ Ω̄i + spanK{dvi}, (13)

where Ω̄i is the subspace Ωi for the closed-loop system.
Next, we show that Ω̄i = Ωi + · · · + Ω

[s−1]
i . From the

definition of the subspace Ωi,

Ωi + · · ·+ Ω
[s−1]
i ⊆ spanK{dx,dy

[ri]
∗i , . . . ,dy

[ri+s−2]
∗i }.

Since r̄i = ri + s− 1, then in the closed-loop system

Ωi + · · ·+ Ω
[s−1]
i ⊆ spanK{dx,dη}. (14)

Thus,

Ωi + · · ·+ Ω
[s−1]
i = {ω̄ ∈ spanK{dx,dη} | ∀k ∈ N :

ω̄[k] ∈ spanK{dx, dη,dy
[ri+s−1]
∗i , . . . ,dy

[ri+s−k−2]
∗i }}

= Ω̄i.

1Note that, one can, in principle, search, instead of the joint index s, a
separate si that satisfies si ≥ jmax − ri + 1. Then s can be taken as
s = maxi{si}.
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The last equality comes from the definition (4) of the
subspace Ω̄i. Therefore, (13) becomes

dy
[ri+s−1]
∗i ∈ Ωi + · · ·+ Ω

[s−1]
i + spanK{dvi}.

Then one can define the one-forms ωi = λidvi such
that dy

[ri+s−1]
i − ωi ∈ Ωi + · · · + Ω

[s−1]
i . Now, con-

ditions (ii) and (iii) must be satisfied, since otherwise
vi would depend on x′, where dx′ ∈ X and dx′ /∈
spanK{dy}, i.e. the feedback would not be measurement
feedback. Since conditions (ii) and (iii) are satisfied, ωi =
λidϕi(u, . . . , u

[s−1], y, . . . , y[s−1]) for some functions ϕi.
Note that under the feedback ωi = λidvi, i.e. the functions
ϕi are strictly linearizable.

Sufficiency. We show that the feedback that linearizes
strictly functions ϕi in (iv), solves the i/o decoupling prob-
lem.

Since for the closed-loop system dϕi = dvi, the relative
degree of output y∗i is ri + s− 1. Thus

dy
[ri+j]
∗i ∈ spanK{dx, dη} (15)

for j = 0, . . . , s− 2. From the definition (4) of the subspace
Ωi one concludes Ωi + · · ·+ Ω

[s−1]
i ⊆ spanK{dx, dη}.

Now, as in the necessity part, one can show that Ωi+· · ·+
Ω

[s−1]
i = Ω̄i, where Ω̄i is the subspace Ωi for the closed-

loop system. Therefore, by (ii), (iii) and (iv), dy
[ri+s−1]
∗i ∈

Ω̄i+spanK{dvi}. By Lemma 2, system (1) is i/o decoupled.

Next, we give a simple sufficient condition for the strict
linearizability of functions ϕi in (iv) of Theorem 2. For
general input-output linearization problem, see [6].

Theorem 3: Functions ϕi in (iv) of Theorem 2 are strictly
linearizable by dynamic measurement feedback if there exist
functions φi,j ∈ spanK{dy, . . . , dy[j−1], du, . . . ,du[j−1]}
for j = 1, . . . , s, such that

dϕi = dφi,s(·, δφµ,ν , y, u; ν = 1, . . . , s− 1) (16)
◦δφi,s−1(·, δφµ,ν , y, u; ν = 1, . . . , s− 2) ◦ · · ·
· · · ◦ δφi,1(y, u)

where µ = 1, . . . ,m and

dim(spanK{dφi,j , 1 ≤ j ≤ ji}) = m. (17)
Proof: By condition (i) of Theorem 2 the indices ji,

defined by (3), are finite. Then set2

ηi,τ = φi,τ (·) (18)
vi = φi,s(·) (19)

for τ = ji, . . . , s−1. Because of (17), one can find a dynamic
measurement feedback by solving (18), (19) with respect
to the variables u and η

[1]
i,τ , τ = ji, . . . , s − 1. Then, from

(19) and (16) one concludes that in the closed-loop system
dϕi = dvi. Thus, the functions ϕi are strictly linearizable.

2Note that here τ = ji, . . . , s − 1. This is because functions φi,j , j =
1, . . . , ji − 1 depend by (3) and (17) on functions φi,ji .

The main difficulty in checking the conditions of Theorem
3 is related to finding the functions φi,j , j = 1, . . . , s.
Below an algorithm is given for searching such functions
whenever they exist. The algorithm is based on the input-
output linearization algorithm, introduced in [5]. The main
difference is that the one-forms ω̄i,p are defined differently
to make the Algorithm more transparent, and the number of
functions ϕi equals to the number of inputs ui.

Algorithm.
Step 0. Find the one-forms ωi, defined in condition (iii)

and (ii) of Theorem 2.
Step 1. Let

ω̄i,1 =

q∑
µ=1

αi,1,µdy[s−1]
µ +

m∑
j=1

βi,1,jdu
[s−1]
j

αi,1,µ, βi,1,j ∈ K

be such that ωi − ω̄i,1 ∈ Es−1. Check whether γi,1 :=
rank ω̄i,1 = 1. If not, then stop, the conditions of Theorem
3 are not satisfied. Otherwise, let φi,1 be such that ω̄i,1 =
πid(δs−1φi,1) for some πi ∈ K.

Step p. (p = 2, . . . , s− 1) Let

ω̄i,p =

q∑
µ=1

αi,p,µdy[s−p]
µ +

m∑
j=1

βi,p,jdu
[s−p]
j +

p−1∑
l=1

ω̄i,l,

αi,p,µ, βi,p,j ∈ K

be such that ωi − ω̄i,p ∈ Es−p. Check whether

dω̄i,p ∧ ω̄i,p ∧ d(δkφj,l) = 0,

where j = 1, . . . ,m, l = 1, . . . , p−1 and k = s−p, . . . , s−1.
If not, then stop. Otherwise, there exist γ, θj,l ∈ K such that

ω̂i,p := γ
(
ω̄i,p +

m∑
j=1

p−1∑
l=1

θj,ld(δkφj,l)
)

is exact (k = s − p, . . . , s − 1). Then define φi,p such that
ω̂i,p = d(δs−pφi,p).

Step s. Define φi,s = ϕi, i.e. such that ωi = λidφi,s for
some λi ∈ K. End of the algorithm.

In the case when the controlled output y∗ is measurable,
i.e. y∗ = y, one gets from Theorems 2 and 3 the following
two corollaries.

Corollary 1: Under the assumption that the relative de-
grees ri of outputs y∗i are finite, the system of the form
(1) is i/o decoupable by dynamic output feedback iff the
following conditions are satisfied
(i) the system (1) is right-invertible with respect to con-

trolled outputs y∗i;
(ii) there exists s ≥ jmax − ri + 1 such that

dy
[ri+s−1]
∗i ∈ Ωi + · · ·+ Ω

[s−1]
i

+spanK{dy∗, . . . ,dy
[s−1]
∗ ,du, . . . ,du[s−1]};

(iii) there exist one-forms ωi ∈ spanK{dy∗, . . . ,dy
[s−1]
∗ ,

du, . . . ,du[s−1]} with rank 1 such that

dy
[ri+s−1]
∗i − ωi ∈ Ωi + · · ·+ Ω

[s−1]
i ;
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(iv) for ωi = λidϕi, the functions ϕi(y∗, . . . , y
[s−1]
∗ , u, . . . ,

u[s−1]) are strictly linearizable by dynamic feedback.
Corollary 2: Functions ϕi in (iv) of Corollary 1 are

strictly linearizable by dynamic output feedback if there exist
functions φi,j ∈ spanK{dy∗, . . . ,dy

[j−1]
∗ ,du, . . . ,du[j−1]},

j = 1, . . . , s, such that

dϕi = dφi,s(·, δφµ,ν , y∗, u; ν = 1, . . . , s− 1)

◦δφi,s−1(·, δφµ,ν , y∗, u; ν = 1, . . . , s− 2) ◦ · · ·
· · · ◦ δφi,1(y∗, u)

where µ = 1, . . . ,m and

dim(spanK{dφi,j , 1 ≤ j ≤ ji}) = m.
Consider the system (1) without measured output y. In [7],

it has been shown that such system can be i/o decoupled by
state feedback if and only if it is right invertible, i.e condition
(3) is satisfied. Next, we explain briefly that, when we take
y = x, the conditions of Theorem 2 become necessary
and sufficient condition for i/o decoupling problem by state
feedback. For this, we show, that in the case of y = x,
the conditions (ii), (iii) and (iv) of Theorem 2 are always
satisfied.

Note that, when y = x, then spanK{dy, . . . , dy[s−1],du,
. . . ,du[s−1]} = spanK{dx, du, . . . ,du[s−1]} and since
dy

[ri+s−1]
∗i ∈ spanK{dx, du, . . . , du[s−1]} for i = 1, . . . ,m,

the condition (ii) is always satisfied. Also, one can take
ωi = dy

[ri+s−1]
∗i , then condition (iii) of Theorem 2 is

satisfied. It also means that ϕi = y
[ri+s−1]
∗i in condition (iv)

of Theorem 2 and these functions are linearizable if and only
if the given system is right-invertible. Thus, condition (iv)
of Theorem 2 is always satisfied if system (1) with y = x is
right-invertible.

IV. EXAMPLE

Consider a system described by the difference equations

x
[1]
1 = (x3 + x4)u1 − x2

x
[1]
2 =

u1x5

x4
+ x1

x
[1]
3 = x1x3

x
[1]
4 = (x3 + x4)u1x5

x
[1]
5 =

u2x5

x4
(20)

y∗1 = x1, y∗2 = x4

y1 = x3 + x4 y2 =
x5

x4
.

We check if the conditions of Theorem 2 are satisfied for
system (20). First, note that the relative degrees of outputs
y1 and y2 are r1 = r2 = 1. Since

y
[1]
∗1 = (x3 + x4)u1 − x2

y
[2]
∗2 =

(
y

[2]
∗1 + x1 +

u1x5

x4

)u2x5

x4
,

one gets rankK
∂(y

[1]
∗1 ,y

[2]
∗2 )T

∂u = 2. Therefore, the system (20)
is right-invertible and j1 = 1, j2 = 2. The subspaces Ωi

are, according to Lemma 1, Ω1 = spanK{dx1,dx3} and
Ω2 = spanK{dx4}.

Since s has to satisfy the inequalities s ≥ jmax − ri + 1
for i = 1, 2, the first choice for s is s = 2. Compute

dy
[2]
∗1 = u

[1]
1 dy

[1]
1 + y

[1]
1 du

[1]
1 − y2du1 − u1dy2 − dx1

∈ Ω1 + Ω
[1]
1 + spanK{du,dy,du[1],dy[1]}

dy
[2]
∗2 = u2y2y

[1]
1 du

[1]
1 + u2y2u

[1]
1 dy

[1]
1 + y2u

[1]
1 y

[1]
1 du2

+u2u
[1]
1 y

[1]
1 dy2

∈ Ω2 + Ω
[1]
2 + spanK{du,dy,du[1],dy[1]}

and really, condition (ii) of Theorem 2 is satisfied. Choosing

ω1 = u
[1]
1 dy

[1]
1 + y

[1]
1 du

[1]
1 − y2du1 − u1dy2

= d(y
[1]
1 u

[1]
1 − y2u1)

ω2 = u2y2y
[1]
1 du

[1]
1 + u2y2u

[1]
1 dy

[1]
1 + y2u

[1]
1 y

[1]
1 du2

+u2u
[1]
1 y

[1]
1 dy2 = d(u

[1]
1 y

[1]
1 u2y2),

then the condition (iii) is also satisfied. To check the
condition (iv), we use Theorem 3. For that, apply Algorithm
to the one forms ω1 and ω2.

Step 1. Take

ω̄1,1 = u
[1]
1 dy

[1]
1 + y

[1]
1 du

[1]
1

ω̄2,1 = u2y2y
[1]
1 du

[1]
1 + u2y2u

[1]
1 dy

[1]
1 .

It is obvious that the ranks of these one-forms are 1, because
ω̄1,1 = d(y

[1]
1 u

[1]
1 ) and ω̄2,1 = y2u2d(y

[1]
1 u

[1]
1 ). Thus, one

takes φ1,1 = φ2,1 = y1u1.
Step 2. Since this is the last step, one takes φ1,2 =

y
[1]
1 u

[1]
1 − y2u1 = δφ1,1 − u1y2 and φ2,2 = u

[1]
1 y

[1]
1 u2y2 =

δφ2,1u2y2.
It is easy to check that

dim(spanK{dφ1,1,dφ2,1,dφ2,2}) = 2 = m. Therefore,
conditions of Theorem 3 are satisfied.

Using the functions φi,j from Algorithm 1, one can find
the feedback that decouples the system, as suggested in the
proof of Theorem 3. For that, take

η1,1 = φ1,1 = y1u1

v1 = φ1,2 = η
[1]
1,1 − u1y2 (21)

v2 = φ2,2 = η
[1]
1,1u2y2.

Solving equations (21) in terms of u1, u2 and η[1]
1,1, one gets

the decoupling feedback

η
[1]
1,1 = v1 +

η1,1y2

y1

u1 =
η1,1

y1
(22)

u2 =
v2y1

y2(y1v1 + η1,1y2)
.

For the closed-loop system one gets r̄1 = r̄2 = ri+s−1 = 2
and

dy
[2]
∗1 = dv1 − dx1 ∈ Ω̄1 + spanK{dv1}

dy
[2]
∗2 = dv2 ∈ Ω̄2 + spanK{dv2},
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which means that by Lemma 2, the closed-loop system is i/o
decoupled.

V. CONCLUSION

A necessary and sufficient conditions for the solvability of
i/o decoupling problem by static and dynamic measurement
feedback was given in this paper. The solution, given in
this paper, depends on the linearization of certain functions
by output feedback. A sufficient condition was given to
linearize a set of functions, defined in the solution of the i/o
decoupling problem. The dynamic output feedback solution
was also given, based on the dynamic measurement feedback
solution.

REFERENCES

[1] R. Cohn. Difference Algebra. Wiley-Interscience, New York, 1965.
[2] J.W. Grizzle. A linear algebraic framework for the analysis of discrete-

time nonlinear systems. SIAM J. Contol Optim., 31:1026–1044, 1993.
[3] H.J.C. Huijberts, C.H. Moog, and R. Pothin. Input-output decoupling

of nonlinear systems by static measurement feedback. Systems and
Control Letters, 39:109–114, 2000.
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Abstract: The paper addresses the disturbance decoupling problem for MIMO discrete-
time nonlinear systems. A sufficient conditions are derived to solve the problem by dynamic
measurement feedback, i.e. the feedback that depends on measurable outputs only. The solution
to the disturbance decoupling problem, described in this paper, is based on the input-output
linearization, which is used to linearize certain functions. Two examples are added to illustrate
the results.

1. INTRODUCTION

The disturbance decoupling problem (DDP) is one of the
fundamental problems in control theory. There are a lot
of papers, that solve the problem by state feedback, see
Aranda-Bricaire and Kotta [2001, 2004], Fliegner and Ni-
jmeijer [1994], Grizzle [1985], Monaco and Normand-Cyrot
[1984] for nonlinear discrete-time systems and Conte et al.
[2007], Isidori [1995], Nijmeijer and van der Schaft [1990]
for nonlinear continuous-time systems. For output or mea-
surement feedback, the problem lacks the full solution.

The first paper that applied measurement feedback to
solve the DDP was Isidori et al. [1981], where sufficient
solvability conditions were given for continuous-time sys-
tems, and the feedback that was used was restricted to
the so-called pure dynamic measurement feedback. In
Kaldmäe et al. [2013], similar results as in Isidori et al.
[1981] were given for discrete-time systems (though, more
general feedback was used), using algebraic approach (lat-
tice theory), that is able to address also certain type
of non-smooth systems. A more general feedback, where
the state of the compensator is not a function of the
state of the system, but can be chosen independently of
it, was used in Xia and Moog [1999] and Kaldmäe and
Kotta [2012b], where sufficient conditions for the solv-
ability of the problem by dynamic measurement feedback
were given for continuous- and discrete-time SISO systems,
respectively. For static measurement feedback solutions see
Pothin et al. [2002] and Kaldmäe and Kotta [2012a].

In this paper, we extend the results of Kaldmäe and Kotta
[2012b] for MIMO discrete-time systems 1 . However, the
extension is not direct since we relax certain integrability
conditions. The result of this paper depends heavily on
the solution of the input-output linearization problem,
see Kaldmäe and Kotta [2014]. We show that a feedback

⋆ This work was supported by the European Union through the
European Regional Development Fund, by the ETF grant nr. 8787
and by the Estonian Research Council, personal research funding
grant PUT481.
1 Note that there are no solutions for MIMO continuous-time
systems.

that linearizes certain functions also solves the disturbance
decoupling problem. It is our conjecture that our results
can be generalized directly for continuous-time systems,
though the computations are different because the differ-
ential operator and forward-shift operator act differently
on the set of functions.

2. PRELIMINARIES

2.1 Algebraic tools

In this paper, x stands for x(t) and for k ≥ 1, x[k] stands
for kth-step forward time shift of x, defined by x[k] := x(t+
k). Similar notations are used for the backward shift and
the other variables.

Consider a nonlinear system, described by the equations

x[1] = f(x, u, w)

y = h∗(x) (1)

z = h(x),

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ Rm is the
controlled input, w ∈ W ⊂ Rι is the disturbance input,
y ⊂ Y ∈ Rp is the controlled output and z ⊂ Z ∈ Rq is the
measured output. It is assumed that the functions f , h∗
and h are meromorphic. Also, we assume, that the system
(1) is submersive, meaning that generically, i.e. everywhere
except on a set of measure zero,

rank
[ ∂f

∂(x(t), u(t))

]
= n. (2)

Also, throughout the paper it is assumed that i = 1, . . . , p.

Let K denote the field of meromorphic functions which
depend on finite number of variables from the set
{x, u[k], w[k]; k ≥ 0}. Introduce the forward-shift operator
δ : K → K, defined by the equations (1); in particular

δx := f(x, u, w)

and for k ≥ 0, δu[k] := u[k+1], δw[k] := w[k+1]. Moreover,
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δφ(x, u, w, . . . , u[k], w[s]) :=

φ(f(x, u, w), u[1], w[1], . . . , u[k+1], w[s+1])

for φ ∈ K. Under the submersivity assumption (2), the
pair (K, δ) is a difference field. In general, this difference
field is not inversive, i.e. the operator δ is not inversive
in K. However, one can always find an overfield K∗ of K,
called the inversive closure of K, which is inversive. See
Aranda-Bricaire et al. [1996], Aranda-Bricaire and Kotta
[2004] for details how to compute K∗. From now on, we
assume that difference field (K, δ) is inversive and denote
it by K. Note that then there exists an operator δ−1, which
is called backward-shift operator. By δk and δ−k we denote
the k-fold application of operators δ and δ−1, respectively.

Define the vector space of one-forms as E = spanK{dφ |
φ ∈ K}. Also, define X := spanK{dx},W := spanK{dw[k],
k ≥ 0}. The operators δ and δ−1 are extended to E by the
rules

δ
(∑

j

ajdφj

)
=
∑
j

δ(aj)d(δφj)

δ−1
(∑

j

ajdφj

)
=
∑
j

δ−1(aj)d(δ
−1φj),

where aj , φj ∈ K. A one-form ω is called exact, if it is a
differential of some function ξ ∈ K, i.e ω = dξ. Let y =
(y1, . . . , yp) be the controlled output vector of the system
(1). The relative degree ri of an output yi with respect to

input u is defined by ri := min{k ∈ N | dy[k]i /∈ X +W}.
If there does not exist such integer k, then set ri := ∞.

In general, a one-form ω is a linear combination over
K of finite number of standard basis elements of E , i.e.
{dx,du[k], dw[k]; k ≥ 0}. However, it is often possible to
find a linearly independent set of exact one-forms with
less elements than those basis elements of E in terms of
which ω can be expressed.

Definition 1. A number γ ∈ N is called the rank of a one-
form ω, if γ is minimal number of linearly independent
exact one-forms necessary to express a one-form ω. The
set of these exact one-forms is called the basis of ω.

Next we define two subspaces Ω and Ωu of X in the
following way:

Ω= {ω ∈ X | ∀k ∈ N : (3)

δkω ∈ spanK{dx, dy
[ri]
i , . . . , dy

[ri+k−1]
i }}.

and

Ωu = {ω ∈ X | ∀k ∈ N : δkω ∈ spanK{dx,du, (4)

. . . , du[k−1], dy
[ri]
i , . . . , dy

[ri+k−1]
i }}.

By definitions, Ω ⊆ Ωu. For SISO systems Ω = Ωu, since
du can be written as a linear combination of dx and dy[r],
where r is the relative degree of output y with respect to
input u.

Following lemmas give procedures for computing sub-
spaces Ω and Ωu.

Lemma 1. Kaldmäe and Kotta [2012a] The subspace Ω
may be computed as the limit of the following algorithm:

Ω0 =X (5)

Ωk+1 = {ω ∈ Ωk | δω ∈ Ωk + spanK{dy
[ri]
i }}.

Lemma 2. The subspace Ωu may be computed as the limit
of the following algorithm:

Ω0 =X (6)

Ωk+1 = {ω ∈ Ωk | δω ∈ Ωk + spanK{du,dy
[ri]
i }}.

Suppose Ω = spanK{dθ1, . . . , dθs}. Next define the k-
time forward-shift of subspace Ω elementwise by Ω[k] =

spanK{dθ
[k]
1 , . . . , dθ

[k]
s } for k ≥ 1.

2.2 Problem statement

The DDP by measurement feedback can be stated as
follows. Find a dynamic measurement feedback of the form

η[1] = F (η, z, v) (7)

u=H(η, z, v),

where η ∈ Rρ and v ∈ Rm, such that controlled outputs yi
of the closed-loop system do not depend on disturbance w
at any time instant, i.e.

dy
[k]
i ∈ spanK{dx,dη} k < r̃i

dy
[k]
i ∈ spanK{dx,dη, dv, . . . , dv[k−r̃i]} k ≥ r̃i,

where r̃i is the relative degree of output yi of the closed
loop system with respect to u.

Lemma 3. If the relative degrees ri of outputs yi with
respect to u are finite then system (1) is disturbance
decoupled if and only if

dy
[ri]
i ∈ Ωu + spanK{du}. (8)

Proof: Necessity. Since ri is the relative degree of output
yi with respect to input u,

dy
[ri]
i = ω0 +

m∑
j=1

bi,jduj ,

where bi,j ∈ K and ω0 ∈ spanK{dx}. We show that
ω0 ∈ Ωu. Assume contrary that ω0 /∈ Ωu. Then there exists
k ∈ N such that

δkω0 /∈ spanK{dx,du, . . . , du[k−1]}.
This means that one-form ω0 is not disturbance decoupled
and thus yi also is not disturbance decoupled. This is a
contradiction and thus ω0 ∈ Ωu.

Sufficiency. If (8) is true, then by Lemma 2 Ω
[1]
u ⊆

Ωu + spanK{du}. Thus, Ωu is invariant with respect to
the system dynamics and since dy ∈ Ωu, the system is
disturbance decoupled.

3. MAIN RESULTS

3.1 Input-output linearization

Since our solution of the DDP depends on the solution
of the input-output (i/o) linearization problem, we start
with the statement of the i/o linearization problem. For
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more information, see Kaldmäe and Kotta [2014]. In this
section, let l = 1, . . . , q.

Consider a discrete-time multi-input multi-output (MIMO)
nonlinear system, described by the difference equations

z
[nl]
l = Φl(zτ , . . . , z

[nlτ ]
τ , uj , . . . , u

[nl−1]
j ) (9)

for τ = 1, . . . , q, j = 1, . . . ,m, where Φl are supposed to be
meromorphic functions of their arguments and the indices
in (9) satisfy the relations

n1 ≤ n2 ≤ · · · ≤ nq, nlτ < nτ

nlτ < nl, τ ≤ l (10)

nlτ ≤ nl, τ > l.

Also, we assume, that system (9) is submersive, i.e. the
map Φ = (Φ1, . . . ,Φq)

T satisfies generically the condition

rank
[ ∂Φ

∂(z, u)

]
= q,

where z = (z1, . . . , zq) and u = (u1, . . . , um).

In this section, let K be the field of meromorphic func-
tions in variables z, u and a finite number of their
independent forward shifts, i.e. variables from the set

C = {zl, . . . , z[nl−1]
l , u

[k]
j ; k ≥ 0}. Also, let Ek :=

spanK{dzl, . . . , dz
[k−1]
l , duj , . . . , du

[k−1]
j } for any k ∈ N

and rl denotes the relative degree of the output zl with
respect to the input u.

Given a discrete-time MIMO nonlinear control system of
the form (9), we say that system (9) is i/o linearized
by feedback (7), if the differentials of the input-output
equations of the closed-loop system satisfy the relations

dz
[nl]
l ∈ spanR{dz[nlτ ]

τ , . . . , dzτ , dv} (11)

for τ = 1, . . . , q. In case when

dz
[nl]
l ∈ spanR{dv},

system (9) is said to be strictly i/o linearized.

We say that functions φl(z, . . . , z
[s−1], u, . . . , u[s−1]) are

linearizable (strictly linearizable) if the system

z
[s]
l = φl(z, . . . , z

[s−1], u, . . . , u[s−1])

is i/o linearizable (strictly i/o linearizable).

Let

ω̃l := dz
[nl]
l mod spanR{dz[nlτ ]

τ , . . . , dzτ},
where τ = 1, . . . , q. 2 For solvability of the i/o linearization
problem, it is necessary that 3

ω̃l ∈ Enl−rl+1, (12)

since otherwise nonlinearities appear before the input u
starts to affect the output yi.

First, let ωl∗ , l∗ = 1, . . . , q∗, be the basis elements of
spanR{ω̃l}. In the rest of this section assume that l∗, τ =
1, . . . , q∗ and j = 1, . . . ,m.

Let σl∗ be such that

ωl∗ ∈ Eσl∗ .

Next, define the one-forms

2 In the case of strict linearizability, one has to take ω̃l := dz
[nl]
l

.
3 Note that if rl = 1, then the condition (12) is always satisfied.

ω̄l∗,λ ∈ spanK{dz[σl∗−λ], . . . , dz[σl∗−1],du[σl∗−λ],

. . . ,du[σl∗−1]},
where λ = 1, . . . , σl∗ − 1, such that

ωl∗ − ω̄l∗,λ ∈ Eσl∗−λ (13)

and
ω̄l∗,σl∗

:= ωl∗ . (14)

It means that the one-forms ω̄l∗,λ depend on the (σl∗−λ)th
and higher order terms of the one-forms ωl∗ . Let γl∗,λ be
the rank of a one-form ω̄l∗,λ for λ = 1, . . . , σl∗ . Then there

exist γl∗,λ functions ϕ̃k
l∗,λ

(z[σl∗−λ], . . . , z[σl∗−1], u[σl∗−λ], . . . ,

u[σl∗−1]) such that

ω̄l∗,λ ∈ spanK{dϕ̃1
l∗,λ, . . . , dϕ̃

γl∗,λ

l∗,λ
}.

Finally, define the function ϕk
l∗,λ

as a (σl∗ − λ) step

backward shift of the function ϕ̃k
l∗,λ

, i.e.

ϕk
l∗,λ := (δ−1)σl∗−λϕ̃k

l∗,λ = δλ−σl∗ ϕ̃k
l∗,λ

for λ = 1, . . . , σl∗ and k = 1, . . . , γl∗,λ.

Theorem 1. Kaldmäe and Kotta [2014] Under the assump-
tion (12) the system (9) is input-output linearizable by
dynamic output feedback of the form (7) if and only if

dim(spanK{dϕk
l∗,λ}) = rankK

∂ϕk
l∗,λ

∂(u, δϕk
l∗,λ∗)

, (15)

for λ = 1, . . . , σl∗ , λ
∗ = 1, . . . , σl∗ − 1, k = 1, . . . , γl∗,λ

and functions ϕ1
l∗,σl∗

are independent from all the other

functions.

3.2 Sufficient conditions for solvability of the DDP

The theorem below gives sufficient solvability conditions
of the DDP by dynamic measurement feedback.

Theorem 2. Under the assumption that all the relative
degrees ri of outputs yi with respect to u are finite, the
DDP by dynamic measurement feedback is solvable for
system (1), if

(i) there exist one-forms ωi ∈ spanK{dz, . . . , dz[s−1], du,
. . . ,du[s−1]} with rank ωi =: γi such that

dy
[ri+s−1]
i − ωi ∈ Ω+ · · ·+Ω[s−1]

for some s ≥ 1;
(ii) for ωi =

∑γi

j=1 βi,jdαi,j(z, . . . , z
[s−1], u, . . . , u[s−1])

from (i), the functions αi,j are strictly linearizable
by dynamic measurement feedback.

Proof: We show that the feedback that linearizes strictly
the functions αi,j in (ii), solves the disturbance decoupling
problem.

Note that the relative degree of yi with respect to input
v is r̄i = ri + s − 1. Since for the closed-loop system
ωi ∈ spanK{dv}, one gets from (i) that

dy
[r̄i]
i ∈ Ω+ · · ·+Ω[s−1] + spanK{dv}.

Next, we show that Ω̄ = Ω + · · · + Ω[s−1], where Ω̄ is the
subspace Ω for the closed-loop system. From the definition
of the subspace Ω,

Ω + · · ·+Ω[s−1] ⊆ spanK{dx,dy
[ri]
i , . . . , dy

[ri+s−2]
i }.
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Since r̄i = ri + s− 1, then in the closed-loop system

Ω + · · ·+Ω[s−1] ⊆ spanK{dx,dη}.
Thus,

Ω + · · ·+Ω[s−1] = {ω̄ ∈ spanK{dx, dη} | ∀k ∈ N :

ω̄[k] ∈ spanK{dx,dη, dy
[ri+s−1]
i , . . . ,dy

[ri+s−k−2]
i }}

= Ω̄.

The last equality comes from the definition (3) of the
subspace Ω̄.

Since Ω̄ ⊆ Ω̄u, then by Lemma 3, system (1) is disturbance
decoupled.

Corollary 1. For SISO systems, the conditions of Theorem
2 are necessary and sufficient.

Proof: It remains to prove the necessity. By Lemma 3, since
the closed-loop system is disturbance decoupled,

dy[r̄] ∈ Ω̄u + spanK{dv}, (16)

where r̄ is the relative degree of y in the closed-loop system
with respect to the new input v and Ω̄u is the subspace
Ωu for the closed-loop system. We choose s ≥ 1 such that
r̄ = r + s− 1.

Since for single input systems Ω = Ωu, one can show, as in
the proof of Theorem 2, that Ω̄u = Ω+ · · ·+Ω[s−1]. Now,
one can find the one-form ω ∈ spanK{dv}, with rank 1,
such that we get from (16)

dy[r+s−1] − ω ∈ Ω+ · · ·+Ω[s−1].

Assume that ω = βdα for some functions β, α ∈ K.
Clearly, the feedback that solves the disturbance decou-
pling problem, also linearizes strictly function α, since for
the closed-loop system ω ∈ spanK{dv}. Thus conditions
(i) and (ii) of Theorem 2 are satisfied.

Note that if we take s = 1 in Theorem 2, we get solvability
conditions for DDP by static measurement feedback. In
this case the strict linearizability of functions αi,j means
that system of equations αi,j(z, u) = vµ, µ = 1, . . . ,m, is
solvable in u.

4. EXAMPLES

Example 1. Consider the system

x
[1]
1 = u1

x
[1]
2 = x3u3 + x2x4u2 − x1

x
[1]
3 = u2

x
[1]
4 = x1w (17)

x
[1]
5 = u1u2x4 + x2

y1 = x2

y2 = x5

z = x4.

First, note that the relative degrees r1 and r2 of outputs
y1 and y2 with respect to u are both 1. One can also
computes subspaces Ω = spanK{dx2, dx5} and Ωu =

spanK{dx1,dx2, dx3,dx5}. Clearly, dyi /∈ Ωu+spanK{du}
for i = 1, 2. Therefore, system (17) is not disturbance
decoupled.

To find the one-forms ωi, defined in (i) of Theorem 2, we

calculate dy
[ri+si−1]
i for si = 1, 2, . . ., until

dy
[ri+si−1]
i ∈ Ω+ · · ·+Ω[si−1]

+ spanK{dz, . . . , dz[si−1], du, . . . , du[si−1]}.
For system (17), we calculate

dy
[1]
1 = u3dx3 − dx1 + zu2dx2 + x3du3 + x2d(zu2)

̸∈ Ω+ spanK{du,dz}
dy

[1]
2 =dx2 + d(u1u2z)

∈ Ω+ spanK{du,dz}.
Thus, s2 = 1. Compute Ω + Ω[1] = spanK{dx2,dx5, dx

[1]
2 ,

dx
[1]
5 }. Now,

dy
[2]
1 =d(u

[1]
3 u2 − u1) + z[1]u

[1]
2 dx

[1]
2

+x
[1]
2 d(z[1]u

[1]
2 )

∈ Ω+ Ω[1] + spanK{du,du[1],dz, dz[1]},
meaning that s1 = 2. Next, we can choose the one-forms
ωi as

ω1 =d(u
[1]
3 u2 − u1) + x

[1]
2 d(z[1]u

[1]
2 )

ω2 =d(u1u2z).

Obviously, rank ω1 = 2 and rank ω2 = 1. It remains to

check whether the functions α1,1 = u
[1]
3 u2 − u1, α1,2 =

z[1]u
[1]
2 and α2,1 = u1u2z are linearizable. One can find,

that the dynamic feedback

η
[1]
1 =

z(η2v1 + v3)

η22

η
[1]
2 = v2

u1 =
v3
η2

(18)

u2 =
η2
z

u3 = η1,

linearizes functions α1,1, α1,2, α2,1 and also decouples
disturbances from the controlled outputs y1 and y2. Really,
in the closed-loop system

y
[2]
1 = v1 + x

[1]
2 v2

y
[1]
2 = v3 + x2

and since Ω̄u = spanK{dx1, dx2,dx5, dx
[1]
2 , dη2}, the con-

ditions of Lemma 3 are satisfied. This means that the
closed-loop system is disturbance decoupled.

Example 2. The next example is taken from Kaldmäe
et al. [2013]. The system in Figure 1 is a typical subsystem
in many applications and consists of linear subsystems
W1 = k1/(1 + T1

d
dt ), W2 = k2/(1 + T2

d
dt ), W3 =

k3T3
d
dt/(1 + T3

d
dt ), W4 = k4/

d
dt and saturation operation,

σ(x) =

{
x, if |x| ≤ x0

x0sign x, if |x| > x0
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Fig. 1. System with saturation operation.

that corresponds to the amplifier. Here k1, . . . , k5, are
real coefficients, T1, T2 are certain time constants and T3

may be considered as unknown function of disturbance w
because of the unexpected changes in the feedback loop.

After the Euler discretization, one gets a system described
by the equations:

x
[1]
1 = k4x2 + x1

x
[1]
2 =

k2
T2

σ(x3) + x2(1−
1

T2
)

x
[1]
3 =

1

T1
(k1k5(u− x1)− k1k3(x2 − x4)) + x3(1−

1

T1
)

x
[1]
4 =

1

T3(w)
x2 + x4(1−

1

T3(w)
) (19)

y = x1

z = k3(x2 − x4).

In Kaldmäe et al. [2013], a dynamic measurement feedback
is found that solves the DDP for system (19). However,
note that the problem statement of Kaldmäe et al. [2013]
is somewhat different from that in this paper. Namely,
in Kaldmäe et al. [2013] the state η of a compensator is
assumed to be a function of state x, i.e. η = ϕ(x).

Below we solve the DDP for system (19) using the method
described in this paper. Since our method assumes all
functions to be meromorphic, we take σ(x3) = x3 in (19),
i.e. |x3| ≤ x3,0 for some x3,0 ∈ R. Note that if |x3| > x3,0,
one can show by Lemma 3 that the system (19) is already
disturbance decoupled.

The relative degree of output y with respect to input u is
r = 3. Next, we have to find, by Lemma 1, the subspace
Ω. Compute Ω = Ω1 = spanK{dx1, dx2, dx3}. Since

y[3] =
(
1− k1k2k4k5

T1T2

)
x1 +

(
3k4 −

3k4
T2

+
k4
T 2
2

)
x2

+
(3k2k4

T2
− k2k4

T 2
2

− k2k4
T1T2

)
x3 +

k1k2k4
T1T2

(
k5u− z

)
,

one can choose ω = k5du − dz. Then condition (i) of
Theorem 2 is satisfied for s = 1. The rank of the one-form
ω is obviously 1 and α = k5u− z. By taking v = k5u− z,
one gets u = 1

k5
(v+ z). This static measurement feedback

solves the DDP for system (19).

The reason, why we get static solution in this paper, but
dynamic solution in Kaldmäe et al. [2013], is that the
selection of one-form ω, in Theorem 2, is more restricted,
than the selection of certain function, based on which the
solution is computed, in Kaldmäe et al. [2013]. In the latter
case the choice of a function that leads to static solution
is not obvious.

5. CONCLUSION

This paper addressed the DDP by dynamic measurement
feedback. Using algebraic methods, sufficient solvability
conditions were given. For SISO systems, the conditions
are also necessary. The key point of the solution is lin-
earization of certain functions by measurement feedback.
It is shown that this feedback also solves the disturbance
decoupling problem. The future work will include finding
necessary and sufficient solvability conditions for MIMO
systems. Two examples were given to illustrate the theory.
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E. Aranda-Bricaire, Ü. Kotta, and C. H. Moog. Lineariza-
tion of discrete-time systems. SIAM J. Control and
Optimization, 34(6):1999–2023, 1996.

G. Conte, C.H. Moog, and A.M. Perdon. Algebraic
Methods for Nonlinear Control Systems. Theory and
Applications. Springer, 2007.

T. Fliegner and H. Nijmeijer. Dynamic disturbance decou-
pling of nonlinear discrete-time systems. In Proc. of the
33rd IEEE Conf. on Decision and Control, volume 2,
pages 1790–1791, 1994.

J.W. Grizzle. Controlled invariance for discrete-time
nonlinear systems with an application to the disturbance
decoupling problem. IEEE Trans. Autom. Control, 30:
868–873, 1985.

A. Isidori. Nonlinear control systems. Springer, London,
1995.

A. Isidori, A.J. Krener, C. Gori-Giorgi, and S. Monaco.
Nonlinear decoupling via feedback: A differential gemet-
ric approach. IEEE Trans. Autom. Control, 26:331–345,
1981.
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A. Kaldmäe, Ü. Kotta, A. Shumsky, and A. Zhirabok.
Measurement feedback disturbance decoupling in
discrete-time nonlinear systems. Automatica, 49(9):
2887–2891, 2013.

S. Monaco and D. Normand-Cyrot. Invariant distributions
for discrete-time nonlinear systems. Systems and Con-
trol Letters, 5:191–196, 1984.

H. Nijmeijer and A.J. van der Schaft. Nonlinear dynamical
control systems. Springer, New York, 1990.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7739



R. Pothin, C.H. Moog, and X. Xia. Disturbance decou-
pling of nonlinear miso systems by static measurement
feedback. Kybernetika, 38:601–608, 2002.

X. Xia and C.H. Moog. Disturbance decoupling by
measurement feedback for siso nonlinear systems. IEEE
Trans. Autom. Control, 44:1425–1429, 1999.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7740



Publication 4
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–Brief Paper–

DISTURBANCE DECOUPLING OF TIME DELAY SYSTEMS

A. Kaldmäe and C. H. Moog

ABSTRACT

A necessary and sufficient condition is derived for the solvability of the disturbance decoupling problem by a pure
shift dynamic compensator. It corrects previously obtained results for multi-input multi-output (MIMO) systems. Also,
necessary and sufficient conditions are given for the solvability of the problem by a dynamic compensator for single
input single output (SISO) systems.

Key Words: Time delay systems, nonlinear systems, disturbance decoupling.

I. INTRODUCTION

Time delay systems are natural in many areas,
like telecommunications, remote control, and biological
systems [1].

The disturbance decoupling problem (DDP) has a
nice solution for delay-free systems [2], but, for time delay
systems, the full solution is missing. For linear time delay
systems, the DDP has been studied using the so-called
geometric approach [3,4], and for nonlinear time delay
systems, the problem has been considered in [5–7].

In this paper, the same mathematical approach as
in [6–8] is used to study the DDP for nonlinear time
delay systems. First, a counterexample is given to show
that the necessary and sufficient conditions in [7] are not
necessary. The mistake comes from the fact that certain
one-forms are assumed to be integrable, which is shown
to be too restrictive for necessity. Then, the correct con-
ditions are given to solve the DDP by pure shift dynamic
feedback. The key point of this new solution is the use
of rank of a one-form, which generalizes the notion of
integrability. Finally, the DDP by dynamic feedback is
considered for single input single output (SISO) systems
and necessary and sufficient conditions are given to solve
the problem.

The paper is organized in the following manner.
In Section II, the mathematical tools and preliminary
definitions are given. In Section III, pure shift dynamic
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feedback is considered while in Section IV, dynamic feed-
back is considered to solve the DDP for SISO systems. In
Section V, two examples are considered.

II. PRELIMINARIES

Consider a nonlinear time delay system of the form:

ẋ(t) = f (x(⋅), u(⋅), q(⋅))
y(t) = h(x(⋅)),

(1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
q ∈ Rr is the disturbance input, y ∈ Rp is the output of
the system, and 𝜉(⋅) ∶= (𝜉(t), 𝜉(t − 1),…) for 𝜉 ∈ C =
{x, u,… , u(k), q,… , q(k); k ∈ N}. Also, functions f and h
are assumed to be meromorphic.

Let  denote the field of meromorphic functions
that depend on a finite number of variables from the set
 = {x(⋅), u(⋅),… , u(k)(⋅), q(⋅),… , q(k)(⋅); k ∈ N}. Also,
denote by  the vector space spanned by the symbols
d = {dx(⋅), du(⋅),… , du(k)(⋅), dq(⋅),… , dq(k)(⋅); k ∈ N}
over the field  (in case of linear systems over the field
R). The elements of  are called one-forms. If a one-form
𝜔 = d𝜑, for some 𝜑 ∈ , one says that 𝜔 is an exact
one-form.

Consider the shift operator 𝛿 ∶  →  defined as
𝛿𝜑(𝜉(t − i); i ∈ N) ∶= 𝜑(𝜉(t − i − 1); i ∈ N), where 𝜉 ∈ C.
The shift operator is extended to the vector space  by
applying 𝛿 to all functions appearing in a given one-form.
Denote by (𝜗] the non-commutative ring of polynomi-
als in 𝜗 over the field . The elements of this ring are
in the form a0 + a1𝜗 + · · · + as𝜗

s for some finite s ∈ N.
Addition is defined on this ring as usual, but the rule
for multiplication is 𝜗 ⋅ 𝜑 = 𝛿(𝜑) ⋅ 𝜗 for 𝜑 ∈ . Also,
let (𝜗]p×r be the ring of matrices over (𝜗]. A matrix
A(𝜗) ∈ (𝜗]p×p is said to be unimodular, if it has an
inverse in the same ring.
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Let  be the formal module over the ring (𝜗], i.e.

 = span(𝜗]{d𝜁 ∣ 𝜁 ∈ }.

For a given set of one-forms {𝜔1,… , 𝜔s} ∈  , let
span(𝜗]{𝜔1,… , 𝜔s} represent the submodule of  gen-
erated by {𝜔1,… , 𝜔s}.

The next definition generalizes the definition of a
closure of a module, given in [3].

Definition 1. Let  be a submodule of  with rank s.
The closure of  over a ring (𝜗] is defined as the largest
submodule of  containing  and having rank s. The
closure of  is denoted by cl(𝜗]().

⊆ span(𝜗]{dx(t)} is
said to be invariant with respect to the dynamics (1) if
̇ ⊆  + span(𝜗]{du(t)}.

A very important definition in nonlinear control is
the definition of integrable one-form.

Definition 3. A one-form𝜔 is said to be integrable if there
exist a polynomial p(𝜗) ∈ (𝜗] and a function 𝜑 ∈ ,
such that 𝜔 = p(𝜗)d𝜑.

Note that this definition differs from the definition
of the integrable one-form in the case of delay-free non-
linear systems. This happens because the set of one-forms
is considered as a module here, not a vector space. Thus,
the integrating factor belongs to a ring (𝜗] instead of
a field . This also means that the traditional methods
to check the integrability of a one-form, i.e. the Frobe-
nius theorem, are no longer valid. For more information
about integrability conditions in the case of time delay
systems, see [6,9].

In general, integrability of a one-form is a restrictive
notion, but it is necessary in nonlinear control to obtain
a solution to different control problems. In this paper, we
define and use the rank of a one-form instead. It weakens
the definition of integrable one-form, but still allows us
to move from working with one-forms to functions.

Similarly, as in [10], we introduce the following
definition.

Definition 4. A one-form 𝜔 is said to have rank 𝛾 if 𝛾 is
the minimal number, such that 𝜔 = a1d𝜑1 + · · · + a𝛾d𝜑𝛾

for some ai ∈ (𝜗] and 𝜑i ∈ , i = 1,… , 𝛾.

A one-form 𝜔 is integrable if and only if its rank is
equal to 1.

To compute the rank of a one-form 𝜔, apply the fol-
lowing procedure. First, write 𝜔 as 𝜔 =

∑k
i=1 pi(𝜗)d𝜉i(t),

where pi(𝜗) ∈ (𝜗] and 𝜉i ∈ C. Next, let p(𝜗) be the great-
est common left factor of polynomials pi(𝜗). This means
that 𝜔 can be written as 𝜔 = p(𝜗)𝜔0 for some 𝜔0 ∈  . It
follows that the rank of 𝜔 is equal to the rank of 𝜔0. By
Pfaff-Darboux theorem, see [10], the rank 𝛾 of 𝜔0 is the
smallest integer k such that (d𝜔0)k ∧𝜔0 = 0, where (d𝜔0)k
is a k-times wedge product of d𝜔0.

Next, we define the relative degrees of system out-
puts yi(t), i = 1,… , p.

The relative degree 𝜌i of output yi(t)
with respect to the control input u(t) is defined as

𝜌i = min
{

k ∈ N ∣ ∃𝜏 ∈ N 𝜕y(k)i (t)
𝜕uj(t−𝜏)

≠ 0
}

for some j ∈

{1,… ,m}.

In a similar manner, by replacing u with q in the
above definition, one can define the relative degree 𝜎i of
output yi(t) with respect to the disturbance input q(t). It
is also useful to characterize the minimal shift of u(t), that
y(k)

i (t) depend on.

i of yi(t) is defined as

𝜇i = min
{

𝜕y(𝜌i )
i (t)

𝜕uj(t−𝜏)
≠ 0

}
for some j ∈ {1,… ,m}.

III. DISTURBANCE DECOUPLING FOR
MIMO TIME-DELAY SYSTEMS

3.1 Problem statement

In this paper, the so called pure shift dynamic com-
pensators of the form

z(t + 1) = M(x(⋅), z(⋅), v(⋅))
u(t) = G(x(⋅), z(⋅), v(⋅))

(2)

are considered as introduced in [6]. It is also assumed
that the compensator (2) is regular. By regularity of the
compensator (2), we mean that all the new system vari-
ables, i.e. z(t) and v(t), can be expressed as a function of
old system variables. Thus, there exists G̃,K ∈  such
that v(t) = G̃(x(⋅), u(⋅)) and z(t) = K(x(⋅), u(⋅)). A regu-
lar compensator (2) also can be written as P(𝜗)du(t) =
Q(𝜗)dv(t) + R(𝜗)dx(t), where the matrix Q(𝜗) is unimod-
ular. (This guarantees the regularity.) If the matrix P(𝜗)
is also unimodular, then the compensator (2) is said to be
compatible, which means that dim(z(t)) = 0.

The disturbance decoupling problem considered
in this paper is the following. Find a compensator (2)
such that, for the closed-loop system, y(k)(t) does not
depend on the disturbance input q(⋅) for all k ∈ N, i.e.
𝜕y(k)(t)∕𝜕q(⋅) ≡ 0 for all k ∈ N.

© 2015 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd
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Lemma 1. System (1) is disturbance decoupled if and
only if there exists an invariant submodule  ⊂

span(𝜗]{dx} with respect to system dynamics, such that
dyi ∈ , i = 1,… , p.

3.2 Problem solution

First, we show that the necessary and sufficient con-
dition given in [7] for the solvability of the DDP by
compatible compensator is only sufficient.

Example 1. Consider the system

ẋ1(t) = x1(t)u1(t − 1) + u2(t − 1)
ẋ2(t) = q(t) + u2(t)
y(t) = x1(t).

(3)

This system is disturbance decoupled, since the submod-
ule Ω = span(𝜗]{dx1(t)} is invariant. Nevertheless, the
conditions of theorem 1 in [7] are not satisfied. Really, if

cl(𝜗](Ω + Ω̇) = Ω⊕ span(𝜗]{𝜔},

then 𝜔 cannot be chosen such that the conditions (ii) and
(iii) of theorem 1 in [7] are satisfied. When we take 𝜔 =
x1(t)du1(t − 1) + du2(t − 1), then it is not integrable since
its rank is equal to 2. If 𝜔 = d(x1(t)u1(t − 1) + u2(t −
1)), then the condition (iii) is not satisfied. Therefore, the
conditions of Theorem 1 in [7] cannot be satisfied.

The following theorem generalizes the results of [6]
to multi-input multi-output (MIMO) systems and cor-
rects the results of [7].

Theorem 1. The disturbance decoupling problem is solv-
able by a compensator (2) if and only if there exists a
submodule Ω such that the following conditions are sat-
isfied:

(i) dy ∈ Ω;
(ii) there exist one-forms 𝜔i ∈ span(𝜗]{dx(t), du(t)}, i =

1,… , s, with rank 𝛾i such that

cl(𝜗](Ω + Ω̇) = Ω⊕ span(𝜗]{𝜔1,… , 𝜔s}

and 𝜔i = ai,1d𝜑i,1 + · · · + ai,𝛾i
d𝜑i,𝛾i

, then

dim(span(𝜗]{d𝜑i,j}) = rank

𝜕(𝜑i,j)
𝜕u(t)

(4)

where i = 1,… , s and j = 1,… , 𝛾i.

Proof. Sufficiency. Let d𝜑l , l = 1,… , dim(span(𝜗]
{d𝜑i,j}), be the basis of span(𝜗]{d𝜑i,j}. By (4), the system

of equations

𝜑l(x(⋅), u(⋅)) = vl(t) (5)

is solvable in u(t), and we get u(t) = L(x(⋅), v(t), u(t −
k); k ≥ 1). Now, define zq(t) ∶= u(t − q). Thus, we
get a feedback of the form (2). Under this feedback
span(𝜗]{d𝜑i,j} ⊆ span(𝜗]{dv(t)} and the submodule Ω
is invariant. Then, because of (i), the problem is solved.

Necessity. If the disturbance decoupling problem is
solved, then, by Lemma 1, there exists a submodule
Ω, which is invariant in the closed-loop system, such
that dy ∈ Ω. Thus, condition (i) is satisfied. Since
Ω is invariant, it satisfies Ω̇ ⊆ Ω + span(𝜗]{dv(t)}.
If one-forms 𝜔1,… , 𝜔s are defined as in (ii), then
span(𝜗]{𝜔1,… , 𝜔s} ⊆ span(𝜗]{dv(t)}. This means
that (5) must be solvable in u(t) and (4) must be satisfied.

In general, the choice of one-forms 𝜔i and func-
tions 𝜑i,j (even if 𝜔i are fixed) is not unique and different
choices may yield different results regarding the solvabil-
ity of the problem.

The difficulty of Theorem 1 is finding a correct sub-
module Ω. Clearly, since one wants that dy ∈ Ω, it
should satisfy

cl(𝜗]

(
span(𝜗]

{
dyi(t),… , dy(𝜌i−1)

i (t)
})

⊆ Ω

⊆ span(𝜗]

{
𝜕f
𝜕q(⋅)

}⊥

,

where i = 1,… , p.

IV. DYNAMIC DISTURBANCE
DECOUPLING FOR SISO TIME

DELAY SYSTEMS

In this section, we consider SISO systems, i.e. sys-
tems of the form (1), where m = p = 1. The goal is
to find a regular (i.e. invertible) dynamic compensator of
the form

�̇�(t) = F(x(⋅), 𝜂(⋅), z(⋅), v(⋅))
z(t + 1) = M(x(⋅), 𝜂(⋅), z(⋅), v(⋅))

u(t) = G(x(⋅), 𝜂(⋅), z(⋅), v(⋅)),
(6)

such that, for the closed-loop system, y(k)(t) does not
depend on the disturbance input q(⋅) for all k ∈ N, i.e.
𝜕y(k)(t)∕𝜕q(⋅) ≡ 0 for all k ∈ N.

To solve the dynamic disturbance decoupling prob-
lem, we define submodule Ω of  as follows (note that
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this can also be one possible choice of submodule Ω in
Theorem 1):

Ω = cl(𝜗]({𝜔 ∈ span(𝜗]{dx(t)} ∣ ∀k ∈ N

𝜔(k) ∈ span(𝜗]{dx(t), dy(𝜌)(t),… ,

dy(𝜌+k−1)(t)}}),
(7)

where 𝜌 is the relative degree of output y(t) with
respect to input u(t). Note that this definition yields
span(𝜗]{dy(t),… , dy(𝜌−1)(t)} ⊆ Ω. If a one-form 𝜔

belongs to the submodule Ω, clearly �̇� ∈ Ω +
span(𝜗]{dy(𝜌)(t)}. Thus, the submodule Ω can be com-
puted as the limit of the following algorithm:

Ω0 = span(𝜗]{dx(t)}
Ωk+1 = {𝜔 ∈ Ωk ∣ �̇� ∈ Ωk + span(𝜗]{dy(𝜌)(t)}}.

The latter also yields that Ω̇ ⊆ Ω + span(𝜗]{dy(𝜌)(t)}.

Lemma 2. The SISO time delay system (1) is disturbance
decoupled if and only if

dy(𝜌)(t) ∈ Ω + span(𝜗]{du(t)}. (8)

Proof. Necessity. Since 𝜌 is the relative degree of output
y(t) with respect to input u(t), dy(𝜌)(t) = 𝜔0 + bdu(t),
where b ∈ (𝜗] and 𝜔0 ∈ span(𝜗]{dx(t)}, we
show that 𝜔0 ∈ Ω. Assume by contradiction that
𝜔0 ∉ Ω. Then, there exists s ∈ N such that
𝜔
(s)
0 ∉ span(𝜗]{dx(t), du(t),… , du(s−1)(t)}. This means

that one-form 𝜔0 is not disturbance decoupled and that
dy(𝜌)(t) also is not disturbance decoupled. This is a con-
tradiction; therefore 𝜔0 ∈ Ω, meaning that (8) is satisfied.

Sufficiency. If (8) is true, then Ω̇ ⊆ Ω + span(𝜗]{du(t)},
since Ω̇ ⊆ Ω + span(𝜗]{dy(𝜌)(t)}. Thus, Ω is invariant
with respect to the system dynamics. Moreover, since
dy(t) ∈ Ω, the system is disturbance decoupled.

The next theorem gives necessary and sufficient con-
ditions for the solvability of the dynamic disturbance
decoupling problem for SISO systems. It is a gener-
alization of theorem 11 in [6], where static solutions
were considered.

Theorem 2. The DDP is solvable for SISO time delay sys-
tems by the compensator (6) if and only if there exist k+1
integrable one-forms 𝜔i ∈ span(𝜗]{�̇�i−1, dx(t− 𝜏), du(t−
𝜏); 𝜏 ≥ 𝜇} (Here 𝜇 is relative shift of y(t)), i = 0,… , k,

such that

dy(𝜌+j)(t) − 𝜔j ∈ span(𝜗]{dx(t), dy(𝜌)(t),

… , dy(𝜌+j−1)(t)}
dy(𝜌+k)(t) − 𝜔k ∈ Ω + · · · + Ω(k)

(9)

for j = 0,… , k − 1.

Proof. Necessity. Since the closed-loop system is dis-
turbance decoupled, by Lemma 2 dy(𝜌+k)(t) ∈ Ωcl +
span(𝜗]{dv(t)}, where Ωcl is the subspace Ω for the
closed-loop system. Since, in the closed-loop system, the
relative degree of output y(t) is 𝜌+k, it can be shown that
Ωcl = Ω+· · ·+Ω(k). The existence of integrable one-form
𝜔k is clear, since it can be taken as 𝜔k = akdv(t), where
ak ∈ (𝜗] is such that dy(𝜌+k)(t)−akdv(t) ∈ Ω+· · ·+Ω(k).

Now, assume by contradiction that there are no
integrable one-forms 𝜔j, j = 0,… , k − 1, satisfying the
conditions of Theorem 2. Then, either some y(𝜌+j)(t)
depend on the disturbance q(t) (which is a contradic-
tion) or some one-forms 𝜔j are not integrable. In the
latter case, dy(𝜌+j)(t) ∉ span(𝜗]{dx(t), d𝜂(t)}, which
is also a contradiction. Thus, there exist integrable
one-forms 𝜔j, j = 0,… , k − 1, that satisfy the condi-
tions of Theorem 2. Finally, since the feedback is causal
𝜔i ∈ span(𝜗]{�̇�i−1, dx(t−𝜏), du(t−𝜏); 𝜏 ≥ 𝜇}, i = 0,… , k.

Sufficiency. Let 𝜔i = aid𝜑i(�̇�i−1, x(⋅), u(⋅)) for i = 0,… , k,
and construct the system of equations 𝜂j = 𝜑j, v = 𝜑k,
where j = 0,… , k − 1. One can see that this system is
solvable in variables {�̇�j, u(t)}j = 0,… , k − 1. This will
yield a feedback under which 𝜔k = akdv(t). Also, the rel-
ative degree of y(t) of the closed-loop system is 𝜌 + k.
Thus,  = Ω + · · · + Ω(k) ⊆ Ωcl, where Ωcl is the sub-
space Ω for the closed-loop system. Really, since ̇ ⊆

 + span(𝜗]{dy(𝜌+k)(t)},  ⊆ Ωcl must be true. There-
fore, dy(𝜌+k)(t) ∈ Ωcl + span(𝜗]{dv(t)} and by Lemma 2
the system is disturbance decoupled.

V. EXAMPLES

Example 2 (Continuation of Example 1). Consider again
system (3). We show that the conditions of Theorem 1
are satisfied for this system. Let Ω = span(𝜗]{dx1(t)}.
Then, a one-form 𝜔1 = x1(t)du1(t−1)+du2(t−1) satisfies
condition (ii) of Theorem 1. Thus, 𝜑1,1 = u1(t), 𝜑1,2 =
u2(t). One can see that condition (4) is satisfied.

Example 3. This example demonstrates that, unlike in
the delay-free case, for time delay systems, the existence
of a dynamic feedback, which solves the DDP, does not
yield that there also exists a static solution. Consider a
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nonlinear time delay system:

ẋ1(t) = x2(t − 1)u(t − 1) + x3(t)
ẋ2(t) = q(t)
ẋ3(t) = x2(t − 1)
y(t) = x1(t).

(10)

This system cannot be disturbance decoupled by static
feedback. This happens because ẏ(t) depends on x3(t),
whose shift is smaller than the relative shift 𝜇 = 1, and
thus cannot be compensated. Nevertheless, there exists
a dynamic feedback that solves the problem. For system
(10) Ω = span(𝜗]{dx1(t)} and one-forms 𝜔i in Theorem
2 are 𝜔0 = d[x2(t − 1)u(t − 1)] and 𝜔1 = dÿ(t) =
�̇�0 + dx2(t − 1). A feedback can be found by solving the
equations 𝜂(t) = x2(t)u(t), v(t) = �̇�(t) + x2(t) in variables
�̇�(t), u(t):

�̇�(t) = v(t) − x2(t)

u(t) = 𝜂(t)
x2(t)

.
(11)

In the closed-loop system ẏ(t) = 𝜂(t−1)+x3(t) and ÿ(t) =
v(t − 1). Therefore, the output y(t) and its derivatives do
not depend on the disturbance explicitly.

VI. CONCLUSIONS

Necessary and sufficient conditions have been
derived for the solvability of the DDP for nonlin-
ear time-delay systems by a pure shift dynamic com-
pensator. The new results were obtained using the
rank of a one-form instead of integrability. Neces-
sary and sufficient conditions for the solvability of
the problem by dynamic compensator were also given
for SISO systems. Research perspectives include the
search for a general dynamic feedback solution for
MIMO systems and the study of stability of the
closed-loop system.
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Integrability for nonlinear time-delay systems
Arvo Kaldmäe, Claudia Califano Member, IEEE and Claude H. Moog, Fellow, IEEE

Abstract—In this paper the notion of integrability is defined
for 1-forms defined in the time–delay context. While in the
delay-free case, a set of 1-forms defines a vector space, it is
shown that 1-forms computed for time-delay systems have to be
viewed as elements of a module over a certain non-commutative
polynomial ring. Two notions of integrability are defined, strong
and weak integrability, which coincide in the delay-free case.
Necessary and sufficient conditions are given to check if a set of
1-forms is strongly or weakly integrable. To show the importance
of the topic, integrability of 1-forms is used to characterize
the accessibility property for nonlinear time-delay systems. The
possibility of transforming a system into a certain normal form
is also considered.

Index Terms—Time-delay systems, algebraic methods, accessi-
bility

I. INTRODUCTION

Time-delay systems are used in many important areas, like
telecommunications, remote control and biological systems
(see [1] and the references therein). The great success of
algebraic [2] and differential geometric [3], [4] methods for
delay-free systems has motivated many authors to generalize
the approaches to the time-delay case [5], [6], [7], [8], [9],
[10], [11], [12]. Of major importance in these approaches is
the notion of integrability of codistributions (or distributions).
In the delay-free case, the integrability is fully characterized
by the so-called Frobenius Theorem. The class of time-delay
systems is a special class of infinite dimensional systems
though, it was shown in [6] that Frobenius Theorem is still
valid to derive specific results. In [13] and [5], integrability
was tackled in the case of one-dimensional submodules and a
necessary and sufficient condition was derived. A sufficient
condition for the general case was also given in [5]. A
different approach was used in [6], where the integrability was
characterized using the extended Lie brackets.

At this point, there is no general theory about integrability
of 1-forms/codistributions in the case of time-delay systems.
The main goal in this paper is to clarify those notions of
integrability of 1-forms and which are not fully captured by the
integrability of vector fields. In [5], the existence of an exact
basis is defined for a module, while in [13] as the existence
of an exact basis is defined for the closure of a module.

A. Kaldmäe is with Institute of Cybernetics at TUT, Akadeemia tee 21,
12618, Tallinn, Estonia and LUNAM, IRCCyN, UMR CNRS 6597, 1 rue de
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In this paper, we use the notion of closure of a submodule
[14] to define two notions of integrability - strong integrability
and weak integrability - and give necessary and sufficient
conditions to check both these properties for a set of 1-
forms. The relationship between the obtained results and the
dual results of [6] is also discussed. Then, two problems are
considered, where the integrability of 1-forms plays a key role.
Accessibility of nonlinear time-delay systems is characterized
through the integrability of a certain submodule and conditions
are found under which a given system can be transformed into
a certain normal form. Preliminary results and examples can
be found in [15].

The paper is organized in the following manner. In Section
II, basic mathematical notions are given, which will be used
in the paper. In Section III, the main results are presented. The
integrability of 1-forms is defined and the condition is given,
together with two algorithms, to check integrability. In section
IV, the connection between the results of section III and [6] is
argued. Applications of integrability of 1-forms are considered
in Section V. The paper ends with some conclusions.

II. PRELIMINARIES

Non-commutative algebra is used to define the integrability
of 1-forms and to find the necessary and sufficient conditions
to get integrability (which is done in Section III). More
precisely, the proposed method refers to modules over non-
commutative rings (see [13], [7]). In this section, the mathe-
matics and definitions beyond this method are introduced.

Let K denote the field of meromorphic functions that depend
on a finite number of variables from the set {x(t− i); i ∈ N},
dim(x(t)) = n. Also, denote by E the vector space spanned
by the differentials {dx(t − i); i ∈ N} over the field K. The
elements of E are called 1-forms.

Consider the time shift acting over functions δ : K → K
defined as δf(x(t − i); i ∈ N) := f(x(t − i − 1); i ∈ N). On
the 1-form ω =

∑n
i=1

∑k
j=0 aidxi(t − j), one gets that the

time shift δω of ω is given by

δω =: ω− =
n∑
i=1

k∑
j=0

δ(ai)dxi(t− j − 1).

Accordingly, ω−p := δω−p+1. Furthermore, ω is said to be
exact if there exists ϕ ∈ K such that ω = dϕ. The use of
exterior differentiation and of the wedge product allows to
state in a concise manner both Poincaré Lemma and Frobenius
Theorem [16]:
• the 1-form ω is locally exact if and only if dω = 0;
• the codistribution spanK{ω1, . . . , ωq} is integrable if and

only if the q + 2-forms dωi ∧ ω1 ∧ . . . ∧ ωq are zero
for i = 1, . . . , q, where ∧ denotes the wedge product of
differential forms [16].
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The following notation is also used:

dω = 0 mod spanK{ω̄1, . . . , ω̄q}

means that dω ∧ ω̄1 ∧ · · · ∧ ω̄q = 0.
Next, the non-commutative ring of polynomials K(ϑ] is

constructed. The elements of this ring are polynomials in the
form a0 +a1ϑ+ · · ·+asϑ

s for some finite s ∈ N and ai ∈ K,
i = 0, . . . , s. Addition is defined on this ring as usual, but
the rule for multiplication is ϑψ = δ(ψ)ϑ for some ψ ∈ K.
Similarly, ϑ(ω) = δω, and when no confusion arises, ϑ(ω)
will be denoted ϑω. The set of matrices K(ϑ]k×s is also used
in this paper.

Definition 1: [17] A matrix A(ϑ) ∈ K(ϑ]k×k is unimodular
if it is invertible within the ring of polynomial matrices, i.e.
if there exists a B(ϑ) ∈ K(ϑ]k×k such that A(ϑ)B(ϑ) =
B(ϑ)A(ϑ) = Ik.

Example 1: The matrix

A(ϑ) =

(
1 x2(t− 1)ϑ
ϑ 1 + x2(t− 2)ϑ2

)
is unimodular, since the matrix

A(ϑ)−1 =

(
1 + x2(t− 1)ϑ2 −x2(t− 1)ϑ

−ϑ 1

)
is such that A(ϑ)A(ϑ)−1 = A(ϑ)−1A(ϑ) = I2. Note that
while any unimodular matrix has full rank, the converse is not
true. For example, there is no polynomial inverse for (1 +ϑ).

Let us now note that the set of 1-forms E has the structure
of a vector space over the field K. However, it has also the
structure of a module, denoted M, over the ring K(ϑ], i.e.

M = spanK(ϑ]{dx(t)}.

Example 2: The 1-forms dx1(t) and dx1(t − 1) are inde-
pendent over the field K, but dependent over the ring K(ϑ],
since ϑdx1(t)− dx1(t− 1) = 0. This simple example shows
that the action of time-delay is taken into account in M, but
not in E . This motivates the definition of the module M.

A left-submodule of M consists of all possible linear
combinations of given 1-forms (or row-vectors) {ω1, . . . , ωk}
over the ring K(ϑ], i.e. linear combinations of row-vectors.
A left-submodule, generated by {ω1, . . . , ωk}, is denoted
by A = spanK(ϑ]{ω1, . . . , ωk}. A right-submodule of M̂
[6] consists of all possible linear combinations of column-
vectors q1, . . . , ql, qi ∈ K(ϑ]n×1, and is denoted by ∆ =
spanK(ϑ]{q1, . . . , ql}.

Definition 2: The left closure of a left-submodule A of M,
denoted by clK(ϑ](A), is defined as clK(ϑ](A) = {ω ∈ M |
∃p(ϑ) ∈ K(ϑ], p(ϑ)ω ∈ A}.
By definition, the left closure of the left-submodule A is the
largest left-submodule, containing A, with the same rank as A.

Definition 3: The right closure of a right-submodule ∆ of
M̂, denoted by clK(ϑ](∆), is defined as clK(ϑ](∆) = {X ∈
M̂ | ∃q(ϑ) ∈ K(ϑ], Xq(ϑ) ∈ ∆}.
The right closure of the right-submodule ∆ is the largest right-
submodule, containing ∆, with the same rank as ∆.

Consider a left-submodule A of M and let the 1-forms
ω be the basis of A. These 1-forms can be written as ω =
P (ϑ)dx(t) for some matrix P (ϑ) ∈ K(ϑ]k×n.

Definition 4: The right-kernel (right-annihilator) of the left-
submodule A is the right-submodule ∆ containing all vectors
q(ϑ) ∈ M̂ such that P (ϑ)q(ϑ) = 0.

From Definition 4, the right-kernel is necessarily closed.
Consider a right-submodule ∆ = spanK(ϑ]{q1(ϑ), . . . , ql(ϑ)}.

Definition 5: The left-kernel (left-annihilator) of ∆ is the
left-submodule A containing all 1-forms ω(ϑ) ∈M such that
ω(ϑ)∆ = 0.

Again, from Definition 5, the left-kernel is necessarily
closed. Finally, it is straightforward to prove the following.

Lemma 1: The right-kernels of the left-submodules A and
clK(ϑ](A) are equal. The left-kernels of the right-submodules
∆ and clK(ϑ](∆) are equal.

III. RESULTS ON INTEGRABILITY OF 1-FORMS

In the present section a set of 1-forms {ω1, . . . , ωk} in-
dependent over K(ϑ] is considered (that is, there is no non
zero linear combination over the ring K(ϑ] which vanishes).
As it will be shown hereafter, the fact of considering 1-forms
as elements of M naturally leads to two different notions of
integrability. If 1-forms are considered as elements of vector
space E , there is only one single notion of integrability.

In fact, as it happens in the delay-free case, if the set of 1-
forms {ω1 . . . , ωk} are considered over K, then they are said to
be integrable if there exists an invertible matrix A ∈ Kk×k and
functions ϕ = (ϕ1, . . . , ϕk)T , such that ω = Adϕ. The full
rank of A guarantees the invertibility of A, since K is a field.
Instead, if the 1-forms {ω1 . . . , ωk} are viewed as elements
of the module M, then the matrix A ∈ K(ϑ]k×k instead of
Kk×k. Since A(ϑ) may be of full rank but not unimodular,
it is necessary to distinguish two cases. Accordingly, one has
the following two definitions of integrability.

Definition 6: A set of k 1-forms {ω1, . . . , ωk}, independent
over K(ϑ], is said to be strongly integrable if there exist k
independent functions {ϕ1, . . . , ϕk}, such that

spanK(ϑ]{ω1, . . . , ωk} = spanK(ϑ]{dϕ1, . . . ,dϕk}.

A set of k 1-forms {ω1, . . . , ωk}, independent over K(ϑ],
is said to be weakly integrable if there exist k independent
functions {ϕ1, . . . , ϕk}, such that

spanK(ϑ]{ω1, . . . , ωk} ⊆ spanK(ϑ]{dϕ1, . . . ,dϕk}.

If the 1-forms ω = (ω1, · · · , ωk)T are strongly (re-
spectively weakly) integrable, then the left-submodule
spanK(ϑ]{ω1, . . . , ωk} is said to be strongly (respectively
weakly) integrable.

Clearly, strong integrability yields weak integrability. Also,
the 1-forms ω are weakly integrable if and only if there exists
a matrix A(ϑ) ∈ K(ϑ]k×k with full rank and functions ϕ =
(ϕ1, . . . , ϕk)T such that ω = A(ϑ)dϕ. If in addition the matrix
A(ϑ) can be chosen to be unimodular, then the 1-forms ω are
also strongly integrable.

Example 3: The 1-form ω1 = dx(t) + x(t− 1)dx(t− 1) is
weakly integrable since ω1 = (1 + x(t− 1)ϑ)dx(t). It is also
strongly integrable as ω1 = d(x(t)+1/2x(t−1)2). Instead, the
1-form ω2 = dx1(t) + x2(t)dx1(t− 1) = (1 + x2(t)ϑ)dx1(t)
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is weakly integrable, but not strongly integrable, because the
polynomial 1 + x2(t)ϑ is not invertible.

Remark 1: Note that integrability of a closed left-submodule
spanK(ϑ]{ω1, . . . , ωk} always implies strong integrability. As
a consequence, the two notions of strong and weak integrabil-
ity coincide in case of delay-free 1-forms.

Integrability of a set of k 1-forms {ω1, . . . , ωk} is tested
thanks to the so-called

Derived Flag Algorithm (DFA):
Starting from a given I0 the algorithm computes

Ii = spanK{ω ∈ Ii−1 | dω = 0 mod Ii−1}. (1)

The sequence (1) converges as it defines a strictly decreasing
sequence of vector spaces Ii and by the standard Frobenius
Theorem, the limit I∞ has an exact basis, which represents
the largest integrable codistribution contained in I0.

In order to define I0 one has to note that when considering a
set of k 1-forms {ω1, · · · , ωk}, some shifts of ωi are required
for integration. It follows that the inizialization

Ip0 = spanK{ω1, . . . , ωk, . . . , ω
−p
1 , . . . , ω−pk }, (2)

allows to compute the smallest number of time shifts required
for the given 1-forms for the maximal integration of the
submodule. More precisely, the sequence Ipi defined by (1)
converges to an integrable vector space

Ip∞ = spanK{dϕ
p
1, . . . ,dϕ

p
γp} (3)

for some γp ≥ 0. By definition, dϕpi ∈ spanK(ϑ]{ω1, . . . , ωk}
for i = 1, . . . , γp and p ≥ 0. The exact 1-forms dϕpi , i =
1, . . . , γp, are independent over K, but may not be independent
over K(ϑ]. A basis for spanK(ϑ]{dϕ

p
1, . . . ,dϕ

p
γp} is obtained

by computing a basis for

I0∞ ∪
p⋃
i=1

[
Ii∞ mod(Ii−1∞ , δIi−1∞ )

]
as Ii∞ + δIi∞ ⊂ Ii+1

∞ .
Remark 2: A different initialization of derived flag algorithm

is

Ĩp0 = spanK{spanK(ϑ]{ω1,· · ·,ωk} ∩
spanK{dx(t),· · · ,dx(t− p)}}. (4)

which allows to compute for each p ≥ 0, the exact differentials
contained in the given submodule and which depend on
x(t), . . . , x(t−p) only. Both initialization allow the algorithm
to converge towards the same integrable submodule over K(ϑ],
but follow different steps, as shown in the next example.

Example 4: Let spanK(ϑ]{dx(t− 2)}. On one hand, initial-
ization (2) is completed for p = 0 as no time-shift of dx(t−2)
is required for its integration. On the other hand, initialization
(4) yields a 0 limit for p = 0 and p = 1 as the exact differential
involves larger delays than x(t) and x(t− 1). The final result
is obtained for p = 2.

Assume that the maximum delay that appears in
{ω1, . . . , ωk} (either in the coefficients or differentials) is s.
The necessary and sufficient condition for strong integrability

of 1-forms {ω1, . . . , ωk} is given by the following theorem in
terms of the limit Ip∞.

Theorem 1: A set of 1-forms {ω1, . . . , ωk}, independent
over K(ϑ], is strongly integrable if and only if there exists an
index p ≤ s(k − 1) such that starting from Ip0 defined by (2),
the derived flag algorithm (1) converges to Ip∞ given by (3)
with

ωi ∈ spanK(ϑ]{dϕ
p
1, . . . ,dϕ

p
γp} (5)

for i = 1, . . . , k.
Proof. Necessity. If a set of 1-forms {ω1, . . . , ωk},
independent over K(ϑ], is strongly integrable, then
there exist k functions ϕi, i = 1, . . . , k, such that
spanK(ϑ]{ω1, . . . , ωk} = spanK(ϑ]{dϕ1, . . . ,dϕk}.
Thus ωi ∈ spanK(ϑ]{dϕ1, . . . ,dϕk} and dϕi ∈
spanK{ω1, . . . , ωk, . . . , ω

−p
1 , . . . , ω−pk } for i = 1, . . . , k

and some p ≥ 0. Clearly, dϕi ∈ Ip∞ and the condition (5) is
satisfied for γp = k.

It remains to show that p ≤ s(k−1). Note that there exist in-
finitely many pairs (A(ϑ), ϕ), that satisfy ω = A(ϑ)dϕ. Since
the degree of unimodular matrices A(ϑ) has a lower bound,
then one can find a pair (A(ϑ), ϕ), where the degree of matrix
A(ϑ) is minimal among all possible pairs. Let A(ϑ) be such
a unimodular matrix for some functions ϕ = (ϕ1, . . . , ϕk)T .
Note that A(ϑ) and ϕ are not unique.

We show that the degree of A(ϑ) is less or equal to s. By
contradiction, assume that the degree of A(ϑ) is larger than
s, for example s+ 1. Then for some i

ωi = ai1(ϑ)dϕ1 + · · ·+ aik(ϑ)dϕk, (6)

where aij(ϑ) ∈ K(ϑ], j = 1, . . . , k, and at least one polyno-
mial aij(ϑ) has degree s+ 1.

Let aij(ϑ) =
∑s+1
l=0 a

i
j,lϑ

l, j = 1, . . . , k. From (6) one gets

ωi =
k∑
j=1

s+1∑
`=0

aij,`dϕ
−i
j , (7)

where at least one coefficient aij,s+1 ∈ K is non-zero. For
simplicity assume that ai1,s+1 6= 0 and aiγ,s+1 = 0 for γ =
2, . . . , k.1 We have assumed that the maximum delay in ωi is
s, but the maximum delay in dϕ−s−11 is at least s+ 1.

Note that dϕ1, . . . ,dϕ
−s−1
1 , . . . ,dϕ−s−1k are independent

over K. Therefore, to eliminate dϕ−s−11 from (7),

dϕ−s−11 =
k∑
j=1

bjdϕ
−lj
j + ω̄ (8)

for some coefficients bj ∈ K, delays lj ≤ s and the 1-form ω̄ ∈
spanK{dx, dx−, . . . ,dx−s}. Let l := min{lj}. For clarity,
let l = l2. We show that ω̄ can be chosen such that it is
integrable. By contradiction, assume that ω̄ can not be chosen
integrable. Then, the coefficients of ω̄ must depend on higher
delays than s. Since ω̄ is not integrable, then the coefficients of
ai1,s+1ω̄ depend also on higher delays than s. Now, substitute
ai1,s+1dϕ−s−11 to (7). One gets that ωi depends on ai1,s+1ω̄

1If there are multiple non-zero coefficients aiγ,s+1, then one would have
multiple equations like (8) below.
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and thus also on higher delays than s. This is a contradiction
and thus ω̄ can be chosen integrable.

Let ω̄ = adφ−l for some a, φ ∈ K. Then
spanK(ϑ]{dϕ1,· · ·,dϕk} = spanK(ϑ]{dϕ1,dφ, dϕ3,· · ·,dϕk}
and there exists an unimodular matrix Ā(ϑ) with smaller
degree than A(ϑ), and functions ϕ̄ = (ϕ1, φ, ϕ3, . . . , ϕk)T

such that ω = Ā(ϑ)dϕ̄, which leads to a contradiction. Thus
the degree of A(ϑ) must be less than or equal to s and the
degree of A−1(ϑ) is less or equal to s(k−1), i.e. p ≤ s(k−1).

Sufficiency. Let Ip∞ = spanK{dϕ}, where p ≤ s(k −
1). By construction Ip∞ ⊂ spanK(ϑ]{ω1, . . . , ωk} and
by (5) ωi ∈ spanK(ϑ]{dϕ} for i = 1, . . . , k. Thus,
spanK(ϑ]{ω1, . . . , ωk} = spanK(ϑ]{dϕ}.

Since Ip∞ ⊆ Ip+1
∞ for any p ≥ 0, one can check the

condition (5) step-by-step, increasing the value of p every step.
When for some p = p̄ the condition (5) is satisfied, then it is
satisfied for all p > p̄.

Given the set of 1-forms {ω1, . . . , ωk}, independent over
K(ϑ], the basis of vector space I

s(k−1)
∞ defines the ba-

sis for the largest integrable left-submodule contained in
spanK(ϑ]{ω1, . . . , ωk}.

Lemma 2: A set of 1-forms {ω1, . . . , ωk} is weakly inte-
grable if and only if the left closure of the left-submodule,
generated by {ω1, . . . , ωk}, is (strongly) integrable.
Proof: Necessity. By definitions of weak integrability and
left closure, there exist functions ϕ = (ϕ1, . . . , ϕk)T such
that dϕ = A(ϑ)ω̄, where ω̄ is the basis of the closure
of the left-submodule, generated by {ω1, . . . , ωk}. Choose
{dϕ1, . . . ,dϕk} such that for i = 1, . . . , k

dϕi 6= adφ+
k∑

j=1;j 6=i

bj(ϑ)dϕj (9)

for any φ ∈ K and bj(ϑ) ∈ K(ϑ]. It remains to show that one
can choose ϕ such that ω̄i ∈ spanK(ϑ]{dϕ}.

By contradiction, assume that one can not choose ϕ such
that ω̄i ∈ spanK(ϑ]{dϕ}. Then ω̄k 6∈ spanK(ϑ]{dϕ} and also
ω̄−jk 6∈ spanK(ϑ]{dϕ1, . . . ,dϕk} for j ≥ 1 and any ϕ. Really,
if

ω̄−jk =
∑
i

ci(ϑ)dϕi, (10)

then, since on the left-hand side of (10) everything is delayed
at least j times, everything that is delayed less than j times
on the right-hand side should cancel out. Therefore, one is
able to find functions φi, ψi ∈ K, i = 1, . . . , k, such that
dϕi = dφi + dψi and

ci(ϑ)dφi ∈ spanK(ϑ]{dx−j}
∑
i

ci(ϑ)dψi = 0.

Now, because of (9), ψi = 0, φi = ϕi for i = 1, . . . , k and thus
δjω̄k = δj

∑
i c̄i(ϑ)dϕ+j

i which yields ω̄k =
∑
i c̄i(ϑ)dϕ+j

i .
Clearly, 1-forms dϕ+j

i have to belong to spanK(ϑ]{ω̄}, be-
cause dϕi ∈ spanK(ϑ]{ω̄}. Now, one has a contradiction and
therefore ω̄−jk 6∈ spanK(ϑ]{dϕ} for j ≥ 1. Then, by construc-
tion spanK(ϑ]{dϕ1, . . . ,dϕk} ⊂ spanK(ϑ]{ω1, . . . , ωk−1},
which is impossible. Thus, the assumption that one can not
choose ϕ such that ω̄i ∈ spanK(ϑ]{dϕ} must be wrong.

Sufficiency. Sufficiency is satisfied directly by the definitions
of strong and weak integrability.

Example 5: Consider the following 1-forms

ω1 =x3(t− 1)dx2(t)+x2(t)dx3(t− 1)+x2(t− 1)dx1(t− 1)

ω2 =x3(t− 2)dx2(t− 1) + x2(t− 1)dx3(t− 2)

+dx1(t) + x2(t− 2)dx1(t− 2).

One gets for s(k − 1) = 2:

I2∞ = spanK{dx1(t),dx1(t− 1),d(x2(t)x3(t− 1))}.

When one eliminates the basis elements, which are dependent
over K(ϑ], one gets that the rank of spanK(ϑ]{dx1(t),dx1(t−
1),d(x2(t)x3(t − 1))} is 2. To check the condition (5), one
has to check whether there exists a matrix A(ϑ) such that
ω = A(ϑ)dϕ, where ω = (ω1, ω2)T , ϕ = (ϕ1, ϕ2)T , ϕ1 =
x2(t)x3(t− 1), ϕ2 = x1(t). In fact, ω = A(ϑ)dϕ, where the
unimodular matrix A(ϑ) is defined in Example 1. Thus, the
1-forms (11) are strongly integrable.

Example 6: Consider the following 1-forms:

ω1 = dx2(t)

ω2 = x4(t− 1)dx1(t) + x2(t)dx2(t− 1) + x1(t)dx4(t− 1)

ω3 = x3(t)x4(t)dx2(t) + x2(t)x4(t)dx3(t) (11)
+x3(t− 1)dx2(t− 1) + x2(t− 1)dx3(t− 1).

For s(k − 1) = 2: I2∞ = spanK{dx2(t),d(x4(t −
1)x1(t)),dx2(t−1),dx2(t−2),d(x4(t−2)x1(t−1))}. Now,
ω1 ∈ I2∞ and ω2 ∈ I2∞, but ω3 /∈ I2∞. Thus, 1-forms (11)
are not strongly integrable, and spanK(ϑ]{dx2(t),d(x4(t −
1)x1(t))} is the largest integrable left-submodule, contained
in A = spanK(ϑ]{ω1, ω2, ω3}.

Now, one can check if 1-forms (11) are weakly integrable.
For that, one has to compute the left closure of A and check if
it is strongly integrable. In practice, the left closure of a left-
submodule A can be computed as the left-kernel of its right-
kernel ∆. Thus, the right-kernel of A is ∆ = spanK(ϑ]{q(ϑ)},
where q(ϑ) = (x1(t)ϑ, 0, 0,−x4(t))T . The left-kernel of ∆ is

clK(ϑ](A) = spanK(ϑ]{dx2(t),dx3(t),d(x4(t− 1)x1(t))}.

Therefore, the 1-forms (11) are weakly integrable.

IV. INTEGRABILITY OF RIGHT-SUBMODULES

Since the left annihilator of a right submodule is by con-
struction closed, the integrability of a right submodule refers
only to weak integrability. Consider the right-submodule

∆ = spanK(ϑ]{q1(ϑ), . . . , qk(ϑ)},

where qi(ϑ) are the n× 1 column vectors.
Definition 7: The right-submodule ∆ is said to be integrable

if the left-kernel of ∆ admits an exact basis.
Define a matrix Q(ϑ) = (q1(ϑ), · · · , ql(ϑ)) and let Q(ϑ) =

Q0 + Q1ϑ + · · · + Qsϑ
s for some s ≥ 0 and matrices

Qj ∈ Kn×k, j = 0, . . . , s. Assume, that the ranks of matrices
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Q(ϑ) and Q0 are k. Consider the distributions ∆i defined on
R(i+s+1)n,

∆i := spanK


Q0 · · · Qs 0 · · · · · ·

0
. . . · · ·

. . . 0 · · ·
...

. . . δiQ0 · · · δiQs 0
0 · · · · · · 0 Ins

 , i ≥ 0

Theorem 2: [6] The right-submodule ∆ is integrable if and
only if there exists an integer γ such that, locally around some
point x0(·), dim(∆̄γ)− dim(∆̄γ−1) = k .

The integrability of right-submodules and 1-forms are con-
nected by the following corollary, which follows from Corol-
lary 2 and Lemma 1.

Corollary 1: Weak integrability of 1-forms is equivalent to
the integrability of its right-kernel.

To show more explicitly how the integrability of right-
submodules and weak integrability of 1-forms are related,
consider the Algorithm (1) inizialized with (4). The left-kernel
of ∆i, defined above, is equal to Ii∞, where Ii∞ is computed
with respect to the closure of a given submodule.

The next example shows, that in some cases, one can not use
the results of Section IV to check the integrability of 1-forms.
In that case, one has to use the results of Section III.

Example 7: Consider the 1-forms

ω1 = x1(t− 1)dx1(t) + x1(t)dx1(t− 1)

−x3(t)dx2(t− 1) + dx3(t− 1) (12)
ω2 = dx2(t) + x3(t)dx2(t− 1).

The 1-forms ω = (ω1, ω2)T can be written as

ω =

(
x1(t− 1) + x1(t)ϑ −x3(t)ϑ ϑ

0 1 + x3(t)ϑ 0

)
dx(t).

The right-kernel of the left-submodule spanK(ϑ]{ω1, ω2} is
not causal (i.e. one needs forward-shifts of variables x(t) to
represent it), thus one can not use Theorem 2 to check the
weak integrability of 1-forms (12). But, one can check by
using Corollary 2 and Theorem 1, that spanK(ϑ]{ω1, ω2} ⊂
spanK(ϑ]{d(x1(t)x1(t − 1) + x3(t − 1)),dx2(t)} and thus,
1-forms (12) are weakly integrable.

V. APPLICATIONS OF INTEGRABILITY

In this Section, two problems are considered, where inte-
grability of 1-forms is used. First, it is shown that accessibility
of nonlinear time-delay systems can be characterized through
integrability of a certain left-submodule. Secondly, necessary
and sufficient conditions are given to transform a nonlinear
time-delay system into the form (17) below.

Consider the nonlinear time-delay system

ẋ(t) = f(x(t− i), u(t− i); i = 0, . . . , dmax), (13)

where x(t) ∈ Rn and u(t) ∈ Rm. Also, assume that the
function f is meromorphic. To simplify the presentation,
the following notation is used: x(·) := (x(t), x(t − 1), . . .).
The notation ϕ(x(·)) means that function ϕ can depend on
x(t), . . . , x(t− i) for some finite i ≥ 0. The same notation is
used for other variables.

In this section Ku denotes the field of meromorphic func-
tions that depend on a finite number of variables from
the set C = {x(·), u(·), . . . , u(k)(·); k ∈ N}. Also, denote
by Eu the vector space spanned by the symbols dC =
{dx(·),du(·), . . . ,du(k)(·); k ∈ N} over the field Ku and
Mu = spanKu(ϑ]{dx(t),du(k)(t); k ≥ 0} is the correspond-
ing module spanned over the ring Ku(ϑ].

Definition 8: A 1-form ω ∈ spanKu(ϑ]{dx(t)} has relative
degree r, if r is the smallest integer such that ω(r) 6∈
spanKu(ϑ]{dx(t)}. A function ϕ ∈ Ku is said to have relative
degree r if the 1-form dϕ has relative degree r.

Define a sequence of left-submodules H1 ⊃ H2 ⊃ . . . of
Mu as follows:

H1 = spanKu(ϑ]{dx(t)}
Hi = spanKu(ϑ]{ω ∈ Hi−1 | ω̇ ∈ Hi−1}. (14)

Since H1 has finite rank and all the left-submodules Hi are
closed, sequence (14) converges (see [7]). Let H∞ be the limit
of sequence (14). By Ĥi one denotes the largest integrable left-
submodule contained in Hi. A left-submodule Hi contains
all the 1-forms with relative degree i or bigger. Thus, H∞
contains all the 1-forms which have infinite relative degree.

A. Accessibility

In this subsection the accessibility property of system (13)
is characterized using the notion of autonomous element, as
is done in [2] for delay-free systems, or in [18] for linear
time-delay systems through the notion of torsion elements.

Definition 9: A nonzero function ϕ ∈ Ku is said to be an
autonomous element of system (13) if there exist an integer ν
and a nonzero function F ∈ Ku such that

F (ϕ, ϕ̇, . . . , ϕ(ν)) = 0. (15)

Now, accessibility of system (13) can be defined as non-
existence of autonomous elements.

Definition 10: System (13) is said to be accessible if there
does not exist any autonomous element.

Lemma 3: Function ϕ ∈ Ku is an autonomous element of
system (13) if and only if it has infinite relative degree.
Proof: Necessity. Let ϕ be an autonomous element of sys-
tem (13) and assume it has finite relative degree. Then,
dim(spanKu(ϑ]{dϕ, . . . ,dϕ

(k−1)}) = k for all k ≥ 1. Be-
cause of (15), the last equality is not satisfied for k = ν + 1,
which is a contradiction. Thus, ϕ has infinite relative degree.

Sufficiency. Let ϕ be a nonzero function with infinite relative
degree. Then 1-forms dϕ, . . . ,dϕ(n) are dependent over the
ring Ku(ϑ]. Thus, there exist ai ∈ Ku(ϑ], i = 0, . . . , n, where
at least one of them is nonzero, such that

ω := a0dϕ+ · · ·+ andϕ(n) = 0. (16)

Then, there exists a delay differential equation as
α(δ, ϕ, . . . , ϕ(n)) = 0. By Definition 9 function ϕ is an
autonomous element of system (13).

Now, one can characterize accessibility of system (13) in
the following way.
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Theorem 3: System (13) is accessible if and only if
Ĥ∞ = ∅.
Proof: Necessity. If system (13) is accessible, then by Lemma 3
there does not exist any non constant function in Ku with
infinite relative degree. Therefore, there can not be any exact
nonzero 1-form in H∞ and thus Ĥ∞ = ∅ must be true.

Sufficiency. The left-submoduleH∞ contains all the 1-forms
with infinite relative degree. Since Ĥ∞ = ∅, there is no
non constant exact 1-form with infinite relative degree and
therefore, by Lemma 3, there is no autonomous element.

B. Normal form

In this subsection, one considers the possibility of trans-
forming (13), with one single input (m = 1), into the form

ż1(t) = f1(z1(·), u(·)) (17)
ż2(t) = f2(z1(·), z2(·)),

where the dynamics corresponding to z1(t) is accessible, by
a state transformation z(t) = ϕ(x(·)) and a regular static
feedback u(t) = α(x(·), v(·)).

To solve the above mentioned problem, first, we define
invariant and controlled invariant left-submodules. For that,
consider a left-submodule A = spanKu(ϑ]{ω1, . . . , ωk} and
let Ȧ = spanKu(ϑ]{ω̇1, . . . , ω̇k}.

Definition 11: A left-submodule A ⊆ spanKu(ϑ]{dx(t)} is
said to be invariant if Ȧ ⊆ clKu(ϑ](A) + spanKu(ϑ]{du(t)}.

Definition 12: A left-submodule A ⊆ spanKu(ϑ]{dx(t)}
is said to be controlled invariant if there exists a regular
feedback u(t) = α(x(·), v(·)) such that Ȧ ⊆ clKu(ϑ](A) +
spanKu(ϑ]{dv(t)}.

Theorem 4: System (13), where m = 1, can be trans-
formed into the form (17), where dim z1(t) = k, by a state
transformation z(t) = ϕ(x(·)) and a regular static feedback
u(t) = α(x(·), v(·)) if and only if
(i) rank Ĥ2 ≥ n− k

(ii) there exists a weakly integrable controlled invariant left-
submodule A with rank k such that A∩ Ĥ∞ = ∅ and A
contains H1/Ĥ2.

Proof: Necessity. Since dim z1(t) = k, then dim z2(t) =
n − k. Because the first order time derivatives of z2(t) do
not depend on the input variable, one gets that dz2j (t) =

dϕ2
j (x(·)) ∈ Ĥ2, j = 1, . . . , n − k. Therefore, since z2j ,

j = 1, . . . , n− k are independent, condition (i) is satisfied.
Let A = spanKu(ϑ]{dz

1}. Clearly, this left-submodule
satisfies the condition (ii) of Theorem 4.

Sufficiency. Because A is weakly integrable one has
clKu(ϑ](A) = spanKu(ϑ]{dϕ1, . . . ,dϕk}. Define z1i = ϕi,
i = 1, . . . , k. Since A contains H1/Ĥ2 and rank Ĥ2 ≥ n−k,
one can find z2 = ϕ2(x(·)) such that dz2 ∈ H2 and z(t) =
(z1, z2)T is a state transformation [19]. Because A is con-
trolled invariant, there exists a feedback u(t) = α(x(·), v(·))
which makes A invariant. Finally, condition A ∩ Ĥ∞ = ∅
guarantees accessibility of z1.

VI. CONCLUSION

The integrability of 1-forms, which plays an important
role in the analysis of time-delay systems, was characterized.
Necessary and sufficient conditions were given to check if a set
of 1-forms is strongly (weakly) integrable, together with two
algorithms to compute the largest integrable left-submodule,
which is contained in the (closure of) left-submodule generated
by the given 1-forms. It was also shown that accessibility
of nonlinear time-delay systems can be characterized through
integrability of certain left-submodule.
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20. A. Kaldmäe and Ü. Kotta. Dynamic measurement feedback in
discrete-time nonlinear control systems. In 2012 American Con-
trol Conference, pages 214-219, Montreal, Canada, 2012.
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