

TALLINNA UNIVERSITY OF TECHNOLOGY

Information technology department

Computer science institute

Jaanus Alnek 107361

Evaluation of the impact of the number of TSVs
in 3D NoCs

Master Thesis

Advisor:

Gert Jervan

Professor / Ph. D

2

Tallinn 2013

I hereby declare that this master thesis, my original investigation and achievement,

submitted for the master’s degree at Tallinn University of Technology, has not been

submitted for any degree or examination. I have made the presented thesis myself and

solely with the aid of the means permitted by the examination regulations of the Tallinn

University of Technology. The literature used is indicated in the used literature.

(Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt

varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised

seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.)

 Jaanus Alnek

3

List of used abbrevations and terms

IC

IP

SoC

NoC

VLSI

FEOL

BEOL

TSV

FPGA

TAM

SIM

Integrated Circuit

Intellectual Property

System on Chip

Network on Chip

Very Large-Scale Integration

Front-End-Of-Line

Back-End-Of-Line

Through Silicon Via

Field Programmable Gate Array

Traffic Assessment Method

Simulated Annealing

4

Abstract

Technological evolution has made great progress in circuit design for several past decades.

However in the recent years it has become apparent that we are reaching the pinnacle of our

current methods of technological progress scaling down dimensions as we have hit the

physical limitation barrier. Many new research directions have branched off looking for

new ways to continue the legacy of Gordon Moore, to keep technological advancement

from slowing down. In the recent years research into 3D stacking technology has shown

great results over current technology and is believed to be the successor of the current

generation of integrated chip design.

New technology requires new evaluation tools for development and efficiency assessment,

therefore the objective is create a target system simulation and define a method to find

tradeoffs points between systems configurations using different number of vertical

interconnections. Research into evaluation methods and tools is necessary to design and

improve new technologies. In this paper a method will be proposed to evaluate TSV impact

in a 3D NoC platform.

5

Annotatsioon

(Magistri töö teema nimetus – TSVde arvu mõju hindamine 3D kiipvõrkudes)

Tehnoloogia evolutsioon on viimaste aastakümnete jooksul teinud suuri edusamme ja ei ole

veel pidama jäänud. Viimastel aastatel on selgeks saanud tõsiasi, et oleme jõudnud

tehnoloogia mõõtmete vähendamise füüsilistele piiridele praeguse tehnoloogia mõõtmetes.

Palju uusi uurimis suundi on alustatud, otsides uusi meetmeid Gordon Moore-i ennustuste

jätkamiseks, et tehnoloogia areng ei aeglustuks.3D kiip-virnastus tehnoloogia on näidanud

paremaid tulemusi hetkese tehnoloogia suhtes ja seda peetakse uueks kiipsüsteemide

tehnoloogia järglaseks. Ühendades kiipvõrgud 3D tehnoloogiaga on võimalik luua väga

erinevate otstarvetega platvorme mis on pindalalt väiksemad ja tarbivad seetõttu vähem

energiat. Uus tehnoloogia ei tule ilma uute probleemideta nii disaini kui tootmis

protsessides.

Uued tehnoloogiad vajavad uusi arendusmeetmeid ja hindamisvahendeid. Ülesandeks on

koostada uue platvormi simulatsioon koostamine ja selle abil leida meetod hindamaks

kompromisse platvormi konfiguratsioonide vahel, mis sisladavad erinevaid TSV-de arve.

Selles töös pööratakse peamiselt tähelepanu kiipvõrkudele ja 3D kiip-virnastus

tehnoloogiale, tutvustades nende kujunemislugu ja kirjeldatakse nende ehitust ja tootmist

viise. Töö viimases peatükis pakutakse välja uus meetod, leidmaks vertikaal ühenduste arvu

mõju 3D kiipvõrkude platvormidel, mis kasutavad TSV tehnoloogiat.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 67 leheküljel, 4 peatükki, 16

joonist ja 4 tabelit.

6

Contents
Evaluation of the impact of the number of TSVs in 3D NoCs ... 1

List of used abbrevations and terms ... 3

Abstract ... 4

Annotatsioon ... 5

Contents .. 6

Contents of tables ... 8

Contents of Figures ... 9

1. Introduction .. 10

1.1. Overview .. 11
SoC and NoC technologies .. 11

Introduction to 3D stacking technology .. 12

System dependability and reliability ... 12

1.2. Objective .. 13
1.3. Organization ... 14

2. Background ... 14

2.1. The NoC Paradigm ... 15
2.1.1. NoC architecture composition .. 16

2.1.2. NoC architecture layouts... 17

2.1.3. Routing rules ... 20

2.2. Three-dimensional IC architecture and manufacture ... 21
2.3. Through Silicon Vias ... 23

2.3.1. Design and manufacture of through silicon vias ... 24

2.3.2. Design challenges using stacking and vertical interconnection technologies 26
2.4. Design flow .. 28

2.4.1. Mapping algorithms .. 28

2.4.2. Scheduling ... 29

3. TSV impact assessment on 3D NoC platforms .. 30

3.1. Architecture platform ... 30
3.2. Problem formulation .. 32

3.2.1. Traffic assessment method ... 35

3.2.2. Test system description .. 39

3.2.3. Traffic assessment method ... 40

3.2.4. Communication routing algorithm .. 41

7

3.2.5. Static priority list scheduling ... 42

3.3. Simulated annealing ... 43
3.3.1. General simulated annealing algorithm .. 43

3.3.2. Revised simulated annealing algorithm .. 45

3.4. Experimental results ... 51
3.5. Conclusion.. 61

4. Summary ... 62

Resümee .. 64
Used literature .. 66

8

Contents of tables
Table 1: comparison of A1 and A2. Test series 1 ... 38

Table 2: Initial temperature tests .. 48
Table 3: TAM and SIM comparison ... 55
Table 4: TAM and SIM comparison using APP3 ... 58

9

Contents of Figures

Figure 1: Simple NoC with standard resource elements ... 16
Figure 2: (a) Mesh, (b) Torus, (c) Hypercube, (d) Hierarchical ring 19
Figure 3: Turn model routing examples, (a) west-first, (b)north-last, (c) negative first 21
Figure 4: 3D architecture .. 23
Figure 5: Via-middle manufacturing process ... 25

Figure 6: NoC-based MPSoC architecture example ... 31
Figure 7 – An example of a precedence graph with edge weights and execution times 33
Figure 8: Traffic priority algorithm diagram .. 37
Figure 9: Test system layout ... 40

Figure 10: Example layouts .. 50
Figure 11: Traffic assessment algorithm output example ... 52
Figure 12: TAM and SIM comparison ... 53

Figure 13: Traffic assessment and simulated annealing. .. 54
Figure 14: Traffic assessment and simulated annealing. Test series3 56

Figure 15: Traffic assessment and simulated annealing, test series 4 57
Figure 16: APP3 comparison using a 5x5x2 platform .. 60

file:///C:/Users/Zahadun/Desktop/3DIC%20NOC%20TSV%20MIN%20V4.doc%23_Toc384807859
file:///C:/Users/Zahadun/Desktop/3DIC%20NOC%20TSV%20MIN%20V4.doc%23_Toc384807860
file:///C:/Users/Zahadun/Desktop/3DIC%20NOC%20TSV%20MIN%20V4.doc%23_Toc384807861
file:///C:/Users/Zahadun/Desktop/3DIC%20NOC%20TSV%20MIN%20V4.doc%23_Toc384807862

10

1. Introduction

Intel’s co-founder Gordon Moore published a paper in 1965 [1], in which he noted that the

number of transistor on a square inch (2.54cm) doubled every year after the invention of

Integrated Circuits (ICs) and predicted this trend to continue for a minimum of 10

subsequent years, which was later called Moore’s law. Moore’s initial prediction was later

corrected and would state that the number of transistors would double every 18months as

the initial boost from the technological revolution had calmed down. Recent technological

advances have begun to deviate from this ideal scaling theory - standard technological

solutions have been hampered by severe growth limitations resulting from the physical

limitations of materials used, and are therefore no longer sufficient to keep up with the

ever-growing performance requirements that are expected from the industry. The main

cause is difficulty of voltage scaling [2]. Temperature difference on energy transition

between different metals does not scale down, making it hard to lower threshold voltage of

a MOS transistor without increasing sub-threshold leakage, noise and heat. Without

threshold voltage scaling, power and performance has become a tradeoff. Two methods

have been used to increase a chip’s performance – the first method changes the circuit and

system architecture from power consumption point of view, the other method changes

integration structure to lower the wiring length and pin capacitance. Many reasons, such as

increased application complexity, physical limitations and computational requirements,

paved the road to system that used more than a single processing unit. Multiple processing

units on a single chip, later designated multi-core processors, are processors that house

multiple processing units on the same silicon wafer with shared memory and peripherals.

The objective of the thesis is to propose a new method to evaluate the impact of vertical

interconnections in upcoming 3D stacked Network-on-Chip systems (NoC).

A method will be proposed that is able to assess the impact of vertical interconnections in

3D NoC systems. The new method will have comparatively short runtime that scales a

linear way towards systems with larger search space. For comparison purposes, Simulated

Annealing will also be implemented as a secondary algorithm.

11

1.1. Overview

SoC and NoC technologies

System on Chip (SoC) is an IC that incorporates all electronic components required to

implement an entire system on a single chip. Using this method often integrates several

types of signals such as analog, digital, mixed-signals and even radio frequency functions.

Typical application example of this technology is an IC embedded into other systems,

where chip area is in most cases quite limited and power consumption should be as low as

possible. The increase in complexity of computer systems has also increased the number of

challenges we meet in the design and manufacture of technology. Several drawbacks still

exist, using SoC technology such as processing core placement and count, wire arbitration,

global wiring related delays and so on. The first SoC evolved from a wrist computer

prototype [2], 4000 bonding wires connecting 44 circuits, which was simply too unreliable

due to the fragmented timekeeping circuitry. The solution was later redesigned onto a

single chip, however due to the high power consumption of a display using light emitting

diodes no advances were made until Liquid Crystal Displays (LCD) were invented in

1973.The first true SoC solution appeared in 1974 inside the form of a digital watch

invented by Peter Stoll in which he integrated an LCD driver interface with timing

functions onto a single CMOS chip. In the 1990s many Application Specific Integrated

Circuit vendors started embedding microcontrollers and digital signal processing units into

single system-level chips which gave way to a wave of new application areas such as hand

held products, data communications and peripheral products.

Communication plays a crucial role in the design and performance of SoC systems and will

become more important when more processing units are implemented. Traditionally

Integrated Chips(IC) use dedicated point-to-point links for each signal, however the given

method however does not scale well for very large circuits on account of physical aspects

such as increasing chip area occupied by wiring, wire length and resulting complications in

signal propagation. Bus architecture have become inefficient when it comes to systems with

large number of Intellectual Property (IP) modules and intense parallel communication, as

12

it may not meet the performance requirements needed by large applications. Network on

Chip (NoC) has been deemed a good solution to simplify and optimize such designs as they

continue to grow with each new processor generation. NoC technologies were designed to

lower overall system complexity and increase performance by redesigning component and

wiring layout along with communication methods.

Introduction to 3D stacking technology

During the last two decades three-dimensional large scale integration (3D LSI) technology

has become a viable alternative to traditional circuit design. The promise of 3-D IC

technology lies in the numerous benefits it can potentially provide to increase performance

and response speed of electronic devices over traditional 2-D ICs designs such as the

integration of different signals, analog digital and even radio frequencies, or a method to

overcome current design tradeoffs due to physical limitations between flexibility system

performance physical dimension and cost. 3D technology principle divides a planar chip

into blocks, where each block can be stacked on top of the previous one. By allowing chips

to grow in the vertical dimension instead of requiring larger die area, higher packing

density and smaller footprint can be achieved. Generally 3D-IC contain multiple layers of

active devices that extensively utilize the vertical dimension by utilizing shorter wires as

interconnections between layers to connect components and are expected to address

interconnect delay related problems. This can be exploited to build faster SoC circuits by

choosing the optimal placement between layers, therefore optimizing load in blocks with

different performance requirements. Since the process of implementing vertical

interconnections is more challenging compared to the planar ones, the physical

characteristics of these interconnections can become a burden for achieving the required

performance. Various types of vertical interconnections have been proposed so far [3] such

as TSV, wire bonding, metal bumps and contactless bonds. For the purpose of system

efficiency, TSV technology has been the preferred technology for new design patterns.

System dependability and reliability

13

System reliability and dependability become more important as the technology is scaled

down due to increase in component break-down possibilities resulting from physical

problems. Systems with high dependability issues are often required to continue operation

after an active component or wire fails. With a built in functionality that updates all of its

components about the changes in the system, it is possible to warrant at least partial

capability of the system in case a component fails. The trait to maintain partial functionality

when a component failure occurs is called graceful degradation. Graceful degradation is

often considered equivalent to fault tolerance. Systems with fault tolerant designed have

backup components that take over the work of a failed component, graceful degradation

however is a method of effective fault management, where the system will detect, isolate

and resolve failure problems. Examples include application areas such as real-time systems

in critical areas where even a smallest breakdown can mean loss of life, systems that can

employ adaptive technological advantages bypassing failed components by rerouting

communication and rescheduling applications to avoid complete system failures until

repairs can be made. Backup components can also degrade over time and might be

unusable when need arises.

1.2. Objective

The objective of this thesis is to provide an assessment methodology for IC design by

creating a method to evaluate the impact of the number of TSV links in upcoming 3D

technology implementations. Assessment in a large search space of possible configurations

of such a platform can become cumbersome if algorithms with a long runtime that consume

too much time are used. Quicker analysis methods are necessary to lower development cost

and duration or assess system functionality after a failure has occurred. This thesis will

propose a simple heuristic method to help assess the effectiveness of TSV based three

dimensional NoC with non-uniform layout configurations. This is done by quickly

assessing the necessity of each TSV by comparing application execution time to TSV

count. For comparison purposes a simulated annealing algorithm was used. Comparison

results have shown that the simulated annealing algorithm provides evaluation values with

lower estimated application runtime time, but takes several times longer to execute to

14

assess the search space. For quick difference comparison purposes the new assessment

method is well suited.

1.3. Organization

This thesis is divided into 4 chapters. Chapter 1 provides a short overview of the thesis,

making introductions into SoC and NoC technologies and how they evolved towards three

dimensional technologies, the target technology line for this thesis. Additionally a short

introduction into system dependability can be found. Chapter 2 will explain the background

of the target system and technology and the design flow needed to optimize the

performance. Chapter 3 presents a new method to assess TSV impact in 3D NoC layouts, a

comparison algorithm and test results comparing the outcome of the algorithms. Chapter 4

contains the summary of the background and test results.

2. Background

The aim of this chapter is to explain the basics of the target platform by giving a short

overview of SoC and NoC structure and capabilities in detail and provide an overview of

their structure. Chapter 2.1 will explain the basics of a NoC - point out properties

characteristics and building blocks, and benefits of using them instead of ad-hoc global

wiring or regular bus architectures. Chapter 2.2 will provide a broader overview of 3D

stacking technology, while Chapter 2.3 take a closer look into TSV technology and its

design.

MPSoC systems can be divided into homogenous and heterogeneous systems according to

the IP variety they employ. Homogeneous systems integrate only one type of general-

purpose processors for the sole purpose of increasing system parallelism. General

implementations include PCs and general purpose handheld devices. However the SoC

ability to be globally asynchronous and locally synchronous known as GALS, allows the

usage of a wide variety of IPs, creating heterogeneous systems [18]. Heterogeneous

systems are more challenging and costly to design as task specific IPs have to be mapped

15

onto proper positions. IP mapping is a step in design methodology when the system has two

or more different IPs with specific purposes as opposed to general-use processing units. It

is possible to minimize the execution of specific applications by strategically placing task

specific IPs in favorable positions in the system during the design phase. During the task

mapping process on heterogeneous systems, if specific task execution time on every type of

IP is known beforehand, a complex scheduling algorithm is needed to optimize application

execution. Heterogeneous system performance becomes poor when the application does

not fit the ideal form or type due to longer routing delays or possible task execution time

increase resulting from task execution on non-task specific IP. Heterogeneous structures are

generally used in embedded systems.

2.1. The NoC Paradigm

To circumvent the communication bottlenecks in MPSoC architecture bus and network

infrastructures are used. Embedded systems, which are often dedicated to specific tasks,

compared to general purpose computers such as Personal Computers (PC). A dedicated

processor unit is cheaper to manufacture than general purpose processor as it requires fewer

logical components.

Similar to modern telecommunication networks a NoC consists on multiple point-to-point

communication links interconnected by switches, allowing packets to be sent from one

module to any other in the system using digital packet switching over multiplexed links. It

is possible to use any regular network topology but by far the most common design is the

square mesh topology.

Mapping algorithms for MPSoC can be divided between two processes – hardware (IPs and

interconnections) placement algorithms for heterogeneous hardware layout design, and task

mapping to optimize software concurrency which will be explained in chapter 3. For

heterogeneous MPSoC systems dedicated to a specific task, both application task mapping

and IP placement are often optimized simultaneously to for better execution times and

system performance.

16

2.1.1. NoC architecture composition

Generally a network consists of multiple terminals interconnected via switches and wiring

between them. Network on Chip solutions in MPSoC are represented with three main

components such as links, routers and network interfaces. Figure.1 shows an example

layout of NoC implementation using a mesh topology.

Figure 1: Simple NoC with standard resource elements

Links in NoC systems consist of channels – physical channels, represented by a group of

wires, and optional virtual channels, represented by a set of additional buffers built into

routers. A virtual channel is created by temporarily storing the message in the extra

memory buffer of a router, guided according to a set of protocols. The width of the

channel, the number of parallel wires, may vary depending on the bandwidth requirements

and avalible chip area. The number of wires in a unidirectional channel is usually constant

throughout the system and is known as the “channel bitwidth”. A channel can be

unidirectional or bidirectional depending on the design requirements and limitations.

Generally links in networks architectures have two physical unidirectional channels for

opposite directions, creating a fully-duplexed link, allowing communication to flow both

ways without collisions. A link in NoC architecture can in most cases only be used in a

single direction at the same time for noise mitigation in an extremely constrained area.

The use of interwoven bidirectional channel structure however, using alternating clock

cycles and using the other channel as noise shielding, enables the use of the in link both

ways simultaneously [2]. Networks using point-to-point links can be viewed as a set of

17

interconnected switches, each connected to zero or more nodes. Direct networks are router

based and correspond to cases where every router is connected to a single node and can be

divided into mesh, torus and hypercube subdivisions. Indirect networks are switch based

and can be separated into crossbar networks and multistage interconnection networks.

Network topologies are explained in-depth in chapter 2.1.2.

Routers in NoC are elements composed of buffers, input/output channels and an

implementation of any networking protocol(s). The router implementation complexity

impacts the cost of design and validation, as well as the area and power consumption. A

router acts by checking the destination address of the packets received and re-reoutes the

packets according to a network protocol implemented in the system on local router level

or global routing paths assigned by the source node.

Network interfaces are network translation devices built into processing cores. Their

main purpose is tag packets with destination addresses. Since most NoCs are message-

passing by nature, an adapter is needed. It should be observed that in realistic NoC

architectures, network interfaces play a significant role in determining the overall chip

area requirements. Network interfaces allow the separation between computation and

communication platform, which in turn allows the reuse of both, core and communication

infrastructure independent of each other. Network interfaces can also be implemented on

block level to better accommodate the integration of different signals throughout the entire

chip.

2.1.2. NoC architecture layouts

A NoC can be characterized by the structure of the router connections. Many regular

network topologies can be implemented in NoC technology using different component

designs and protocols for a wide variety of purposes. In direct-network topologies nodes

are composed of a router and the associated processing unit(s), and connected to a fixed

number of neighboring nodes. Messages between two nodes go through one or more

intermediate nodes. In these topologies only the routers and links are involved in

18

communication between nodes, using a routing algorithm implemented by routers. In this

arrangement, nodes are distributed in an n-dimensional space where packets can move in

only 1 dimension at a time. Figure 2 shows a several examples of the most common direct

topologies.

 Ring topology is the simplest network topology that comes with a high cost,

the average “hop count”. A hop count refers to the number of intermediary

network nodes used to reach the destination. Ring topology can often be compared

to BUS designs due to the simplistic structure, large channel count and channel

bitwidth as the the links of a ring topology are unidirectional. Communication flow

is unidirectional and can only move in circular motion to reach other nodes.

Absence of routing path diversity can lead to performance bottlenecks under heavy

loads and is a major obstacle for fault tolerance. Regular ring topology is not

recommended for larger networks. Hierarchical ring topology divides large

systems into small clusters and connects them with opposite directional ring flow.

 Mesh topology nodes create a semi-permeable barrier similar to a mesh, in

the shape of interlinked squares. By far the most implemented NoC topology, due

to its structure flexibility and low complexity. The link structure is bidirectional

and allows for dynamic communication flow to avoid stalls resulting in

 Torus topology is an evolutionary step in mesh topology with a set of links

connecting opposite side nodes of the same dimension to form shorter paths. Torus

layout requires several additional metal layers to implement the extra link set.

A generalization of the cube to dimensions greater than three is called a hypercube, n-cube

or measure polytope. Hypercube topology is based on the fourth dimension principle,

creating the illusion of a tesseract. Just as the surface of the cube consists of 6 square faces,

the hyper-surface of the tesseract consists of 8 cubical cells.

19

Figure 2: (a) Mesh, (b) Torus, (c) Hypercube, (d) Hierarchical ring

In indirect topologies some routers are not directly connected to any processing units and

are only meant to propagate the communication to nodes further away.

 Fat-tree topology does not have a specific form. The basic principle connects the

network links into large centralized channels creating bundles that look like large

tree trunks. By judiciously choosing the fatness of links, the network can be

tailored to efficiently use any bandwidth made available by packaging and

communications technology. In contrast, other communications networks, such as

hypercube and mesh topologies, have communication requirements that follow a

specified mathematical law, and therefore cannot be tailored to specific packaging

technologies.

 The crossbar's high degree of connectivity allows for a large number of

simultaneous connections to keep data moving through the network.

Unfortunately, this connectivity comes at a high cost. Crossbars utilize a large

number of switches and a large number of wires, which translates into high power

consumption, large size, and low operational frequencies. The key feature of the

crossbar is that it is a strictly non-blocking network; any free input port can be

connected to any free output port without changing existing input/output pairs.

However, non-blocking design may be too cumbersome for system constraints.

 Multi-stage topology is a regular NoC, where routers are identical and organized

stages. Input and output stages are connected to the functional units in one side and

to the internal nodes in another side.

(a) (b) (c) (d)

20

2.1.3. Routing rules

A routing protocol specifies how routers communicate with each other, propagating

information to processing units enabling the selection of different paths between any two

nodes on a network if more than one is available. Routing algorithms determine the

specifics leading to a choice of a route. Depending on the network structure, routing can

be blocking or non-blocking, if it can manage all requests that are issued during operation.

Communication in a NoC system is usually carried out using an implemented form of a

handshake protocol, similar to how communication in regular computer networks.

Handshake protocols are built on the principle that no communication will be carried out

until the destination node is notified about an incoming transfer and the reply has been

received in the form of an acknowledgement message. Routing can be divided into two

main categories, adaptive routing and oblivious routing. When a routing path is blocked

by another communication activity, adaptive routing considers other paths to reach its

destination following a set of rules. Oblivious routing routes packets without any

information about traffic and conditions of a network, ignoring the possibility of

situational routing paths. Oblivious routing algorithms never end up in a dead-lock

situation. A dead-lock is a situation where the communication activity is closed in a loop

between routers, this situation occurs when a path is blocked and the communication flow

is redirected dynamically to avoid stalls. Both of the packets reserve some resources and

both are waiting each other to release the resources. Below are a few examples of

oblivious routing algorithms that can be integrated into most path finding algorithms.

Dimension order routing algorithms route packets along dimension in a specific order,

once a packet has traveled to the distance in the specific dimension, it cannot be routed

along that dimension again. XY routing, a dimension order routing algorithm, suits well

on a network using mesh or torus topology. Addresses of the routers are geometrical

coordinates in two-dimensional space. Turn model algorithms can be applied to prevent

dead-lock situations in dynamic routing environments where real-time constraints are

critical. Turn model algorithms determine one or more directional turns which are not

allowed during routing [21].

21

Figure 3: Turn model routing examples, (a) west-first, (b)north-last, (c) negative first

Shortest path routing algorithms are the simplest deterministic routing algorithm, where

packets are always routed along the shortest possible path. Examples of shortest path

routing algorithms are distance vector routing and a link state routing. In Distance Vector

Routing, each router has a routing table that contains information about neighboring

routers and all recipients. Routers exchange routing table information with each other and

this way keep their own tables up to date. Routers route packets by counting the shortest

path on the grounds of their routing tables and then send packets forward. Distance vector

routing is a simple and cost efficient method as each router does not have to know the

structure of the whole network. If nodes are always updated on the layout, a source

routing method can be applied where a sender makes all decisions about a routing path of

a packet. The whole route is stored in a header of packet before sending, and routers along

the path carry out the sender’s instructions.

2.2. Three-dimensional IC architecture and manufacture

Taking full advantage of expanding in three dimensions instead of two requires

sophisticated design techniques and new computer aided design tools for higher

manufacturing precision. There are still very few standards for TSV-based 3D-IC design,

manufacturing, and packaging. In addition, there are many integration options being

explored such as via-last, via-first, via-middle, interposers and direct bonding. Currently

there are three 3D technology design methods: monolithic 3D, where all of the electronic

components and interconnects are built on-top of a single silicon wafer layer by layer and

then diced into fully functional 3D chips, wafer-level stacking, where components are built

on two or more wafers that are thinned stacked bonded and diced into chips, die on wafer

stacking, where multiple dies are aligned and bonded onto each other and then onto a

22

carrier wafer or a silicon interposer layer. A cross-section example of 3D stacking can be

seen in Figure 3.

 A silicon interposer is a thick silicon layer containing only TSVs that connect

multiple chips that are stacked separately on top of the same interposer layer, often

referred to as 2,5D, a method that allows the reuse of pre-built dies with similar

footprints. A silicon interposer minimizes the TSV area penalty and allows the use

of a large variety of different types of TSV, including optical TSVs for high speed

data transfer and polymer clad TSVs for heat collection [4]. Silicon interposers are

already used in FPGA board manufacturing process [7], where integration of

different signals and reuse of pre-built chips is an important requirement.

 Stacking approach includes Wafer-to-wafer, die-to-wafer and die-to-die stacking

methods. Wafer-on-wafer method stacks entire silicon wafers, with a single layer of

active devices, on-top of each other. In this method, the vertical interconnections are

etched through the entire wafer and all metal layers. Wafer-on-wafer bonding can

reduce yields, since if any 1 of N chips in a 3D IC are defective, the entire 3D IC

will be defective. Die-on-wafer stacking method utilizes pre-made components

which are built on one or several semiconductor wafers. All but one wafer are diced

into chips, then aligned and bonded onto die sites of a wafer that will remain un-

diced for the duration of the stacking process. Using die-on-die stacking method,

electronic components are built on multiple die, which are then aligned and bonded.

Thinning and TSV creation may be done before or after bonding. One advantage of

die-on-die is that each component die can be tested first, so that one dysfunctional

die does not ruin an entire stack.

 Monolithic approach is an upcoming technology that aims to replace TSV based 3D

technologies when it comes to multiple layers of active components. The

manufacturing process involves a sequential device process where the frontend

device layer construction is repeated on a single wafer to build several layers of

active devices. The main design problem for this method has always been heat

dissipation, however recent research has shown that using polymer clad TSVs to

direct heat directly into the heat-sink is possible. Many advances may have taken

23

place in the recent years, but has yet to prove reliability and usability from mass

production point of view.

Figure 4: 3D architecture

2.3. Through Silicon Vias

Through Silicion Via (TSV) is one of the interconnection technologies for 3D IC, enabling

the use of multiple layers by bonding them together and able to relay communication,

power and even heat depending on its design. TSVs are vertical interconnections that pass

through the entire silicon substrate which no active area can overlap with [13].At the 45 nm

technology node, the area footprint of a 10μm x 10μm TSV is comparable to that of about

50 gates. Additional area around a TSV is also reserved in the form of a “keep-out-zone”

representing the signal saturation distance it takes to prevent noise related problems.

Although TSV reduces interconnection length between cells, when placed on top of each

other, they increase wire length on planar scale since they occupy significant silicon area

spreading out the placement. Furthermore routing becomes more difficult on planar scale,

especially for TSV last methodology as the TSVs go through all metal layers becoming

possible obstacles. Excessive or ill-placed TSV not only increase die area but have also

negative impact on coupling. Depending on VIA first or VIA last methodology, may even

interfere with not only the device but also the metal layer.

24

Interconnection placement is mainly used in three-dimensional IC design in system without

a NoC

2.3.1. Design and manufacture of through silicon vias

The goal of TSV design is to minimize the size and maximize the TSV pitch without

exceeding the maximum resistance permitted by an application. This combination results in

a TSV whose low capacitance and resistance leads to a power-efficient design that meets

the system’s performance requirements. No metal wire lines can be routed over the TSV

zone except the highest and lowest metal layer deposits that are used for routing and

redistributing the TSV’s own signal for the same reason. The integration of TSVs can be

divided into three groups depending on the phase they are etched into the design. Via-first

TSVs are manufactured before metallization, thus occupy the device layer and result in

placement obstacles. Via-middle are manufactured after Front-End-Of-Line process but

before Back-End-Of-Line. Via-last TSVs are manufactured after metallization and pass

through the chip. Thus, they occupy both the device and metal layers, resulting in

placement and routing obstacles. Typically TSVs manufactured using via-first and via-

middle methods are smaller, denser and with larger aspect ratios than via-last method. An

example of via-middle manufacturing process can be seen in Figure. 4. While the usage of

TSVs is generally expected to reduce wire length, this depends on the number of TSVs and

their characteristics.

TSV architecture typically consists of a cylinder with a uniform circular cross-section of a

conducting material surrounded by an insulator which is intended to prevent voltage leaks

and lower parasitic capacitance [3]. The final characteristics of a TSV depend on the

geometrical parameters (height, diameter, pitch, and oxide thickness) and electrical

parameters (metal conductivity, oxide permittivity and silicon resistivity). Several issues

such as fabrication technology, heat removal, reliability, application technology and many

others, have to be resolved simultaneously and have been preventing proper

implementation of this method in the past. Metal filled TSVs with very high density can be

achieved by depositing a thin titanium-nitrate film that acts as a seed layer and diffusion

25

barrier for the tungsten deposits using metal-organic chemical vapor deposition. To release

stress, the tungsten is partially etched back. This process is better best suited for small

TSVs as larger than 5μm are preferably filled with quicker and cheaper process like

electrodepositing copper. Stress monitoring shows that the maximum stress and strain with

tungsten filling is observed not in the bulk region of the TSV but in the upper section

between the metal layer and tungsten filler, while copper-filling experiences more stress in

the TSV [12]. The possibility of manufacturing TSVs with other properties such as coaxial

and optical TSVs for data transfers, polymer clad electrical TSVs for power distribution or

even fluidic TSVs for coolant material routing [13] [14].

Figure 5: Via-middle manufacturing process

TSVs in 3D design are connections to other layers stacked on top of each other by either

soldered micro-bumps or thermo compressed bump-less bond pads. Lack of bonding

strength due to bad bond pad distribution during die stacking and vibration testing can lead

to delamination and cracks in the substrates. Bonding failures can be lowered by changing

bond pad density, a technique that has already been accounted for in the physical design

phase of bond pads. The most straightforward bonding method assumes that, for every

26

TSV, there is at least one bond pad to attach to the next die in the stack. Addition of further

bond pads would require more TSVs to be inserted into the design; however, as suggested

by [3], maximum TSV amount (NTSV) on a chip is limited due to area penalty. None the

less, using this approach creates the requirement of a minimum number of bond pads. This

leads to the assumption, that interconnections between dies are solely limited by TSVs, not

bond pads. The need to decrease NFP and increase NTSV in 3D integration starts

contradicting the fabrication process as long as NFP > NTSV requirement is set. A

proposed solution would be to create redundant or dummy bonding pads what leads to

complex problems in operations that involve two or more dies. According to [6], backside

bond pad routing is a difficult process after wafer thinning, resulting in a larger routing

pitch. Vertical alignment of bond pads to corresponding TSVs can be done to reduce costs

by removing the need for bond pad routing. Test results have shown a highest success ratio

of 93% for proper bonding using double bond pads, where the dummy bond pads have no

net connection. In a more recent approach to building 3D chips, 2D chips are stacked and

either bump- or adhesively bonded to a base wafer. In this design vertical connections are

achieved within but not through the chips. The sizes of the chips can be different which

permits the integration of chips from different sources and different technologies, but the

alignment of the pads on the base wafer and the chips to be attached must be compatible.

To minimize the TSV pitch, etching method is required that maximizes the aspect ratio of

the depth to the width of the TSV cavity. In addition the etching process must be done in a

way that avoids erosion which can lead to an increase size of the cavity at the surface,

increasing the area required by the TSV. A masking agent that is not affected by the etching

process can be used to maintain the dimensional integrity of the mask but removal can be a

challenge [15].

2.3.2. Design challenges using stacking and vertical
interconnection technologies

Several design challenges have prevented the efficient use of TSVs in IC manufacturing

process, including noise and heat mitigation, area penalty, bonding strength and stacking

accuracy. Substrate noise in 2D ICs is well-studied but noise caused by the use of TSVs in

27

3D chip has not been studied thoroughly. Establishment of more effective design guidelines

are necessary to better understand how critical circuit design parameters, such as signal

slew rate, and TSV-to-TSV/device spacing impact signals. Placing substrates on dies with

grounded backside planes have been used in certain 2D packaging but have yet to be

redesigned for 3D purposes. The experiments in [14] pointed out that body voltage for the

substrate without grounded backside was extremely high, reaching almost transition voltage

levels due to coupling and having no charge collection ways. Voltage transition in the TSV

affects the substrates, causing change in body voltage of nearby devices. Although with a

small time window, such voltage changes affects both analog and digital devices, the latter

being more susceptible to the timing of the peak voltage change. Experimentations with

slew rate have shown that peak noise always occurred at constant distances from the and

further analysis showed that body voltage is independent of voltage transition time in the

TSV. Thickness of the TSV sidewall has shown similar results as peak locality did not

change, but showed considerable noise reduction in both configurations. TSV height

however affects peak body voltage locality, amplitude and affected substrate area for both

devices and other TSVs.

The major manufacturing yield limiters for a 3D IC technology are die and wafer bonding

defects from stacking, TSV shorts due to stack misalignment, and changes of device

parameters due to 3D processing. Thermal management is one of the important issues of

3D IC integration. Effective thermal management methodologies and solutions are needed

for widespread use of 3D IC integration. The heat dispersal/source environment of a 2D IC

is the cooling material, but the same environment of a die within a 3D IC may be another

die that also generates heat. The thermal analysis is an important and proper heat collection

TSV layout modification from thermal and stress distribution point of view can enhance the

circuit reliability. Therefore, Thermal management in 3D ICs is critical for maintaining

required reliability, performance, and power dissipation target.

The addition of a third dimension would require more advanced planning tools to account

for the new dimension [3] [18]. 3D IC physical design has attracted an increasing amount

of attention and has generated a significant amount of research work on the floor planning,

28

placement and routing for 3D ICs. However, all these tools have been developed by

different groups, using different formats to represent the design data, creating barriers for

researchers who need to use the existing design tools to conduct further studies.

Considering the above, IC design is in need of new standardization to accommodate 3D IC

design.

2.4. Design flow

To optimize the performance of a technology a proper design flow must be followed.

Systems with multiple processors for example have increased performance compared to

single processor systems but include many new complications related to design complexity,

proper resource usage and communication between them. The performance of a platform

does not multiply when adding more processor as complications with application

concurrency and increase in data transmissions leads to a drop in overall system

performance, creating bottleneck situations for communication and memory systems. To

increase the performance gain, several design and management methods have been devised.

Chapter 3.1 gives a short overview of task mapping and Chapter 3.2 a short overview of

task scheduling respectively.

2.4.1. Mapping algorithms

Task mapping entails the designation of an application’s tasks to different processing units

in multi-processor systems. Application performance can be increased by mapping tasks in

a way that would minimize the task execution time and communication delay between

them. The main weakness of dynamic mapping is the incomplete data available of the task

graph, since the task being mapped considers only the communication with its recipient

task [17]. On the other hand, static algorithms consider all tasks and resources together,

allowing for better mapping exploration using more complex algorithms. Simulated

annealing algorithm, explained in detail in chapter 4.3, is often used for task mapping

purposes in MPSoC systems. Most static task mapping algorithms are based on critical path

29

principle, first mapping tasks that are designated in the critical path sequence. Commonly

used with all forms of projects, including construction, aerospace and defense, software

development, research projects and engineering among others. Although the original

critical path algorithm is no longer used, the term is still generally applied to all approaches

used to analyze a logical diagrams and graphs. A schedule generated using critical path

techniques is often not processed precisely, as estimations are used to calculate values, if

mistakes are made, the results of the analysis may change. For example, the bottom-up

algorithm is based on the critical-path algorithm. Instead of starting with the first task, the

bottom up algorithm maps tasks start from the bottom of the graph and work their way up.

2.4.2. Scheduling

Scheduling in general is a process of deciding how to commit resources between a variety

of possible tasks. In computing, scheduling is a concept by which processes and data flows

are given access to system resources such as processor time or communication bandwidth.

Initially on a single processing unit, scheduling consisted of sharing the processor resource

between several processes running on the system using a variety of different methods to fill

empty processor cycles or switch between currently running processes based on task

priority. A scheduler, a protocol responsible for choosing processes to execute, works by

selecting tasks based on priority values influenced by scheduler type.

Scheduling methods can be divided into two sub-categories. The first category is non-

preemptive scheduling, where a process once scheduled will be executed until completion.

The first category is preemptive scheduling, a method where a process can run for a

predetermined amount of time before a preemptive check allows another process to run.

Dynamic scheduling that falls under this category implies the possibility of executing tasks

as soon as they can be executed, making it possible for new instructions to be carried out

when a stall occurs as long as they do not produce application structural hazards or

dependencies. Due to the contextual objective of the thesis and for the purpose of lowering

complexity of the scheduling phase described in detail in chapter 4, dynamic scheduling

will be ignored.

30

Non-preemptive scheduling is mostly used in static schedules, which are optimized by the

compiler. When the application is stalled, no further instructions are given until the

situation is resolved by hardware. Real-time schedules are dynamic by nature and are

mostly enforced by hardware. Most static scheduling algorithms are based on the list

scheduling technique [1]. The basic idea of list scheduling is to make a scheduling list, a

sequence of tasks yet to be executed, by assigning priorities to them and repeating the

simple process of checking each entry of the list sequentially if it can be executed starting

with the highest priority tasks. The priority of a task can be assigned using any number of

evaluation parameters defined by the algorithm or the user.

3. TSV impact assessment on 3D NoC platforms

The highest priority objective in chip design is the balance between performance and cost;

in consideration, the need to assess new design aspects properly becomes apparent as TSVs

require chip area several times larger than a regular interconnection. With the integration of

each new TSV, the chip area will be increased, resulting in relative distance increase for all

interconnection. Additionally the possibility exists that chips with few dysfunctional TSVs

can be reconfigured to provide at least partial system performance and capabilities from the

ideal form. A method is needed to reassess the chip performance and cost values. In

consideration of the above, a method is needed to assess the efficiency of an entire system

for possible impacts the TSVs might have. For comparison purposes a modified simulated

annealing algorithm will also be implemented on the testing platform.

3.1. Architecture platform

MPSoC systems generally use a tile-based multiprocessor template often found in parallel

computer architecture related literature where each tile contains one or more processor

cores and local memories. Tiles (nodes) can be either homogeneous or heterogeneous from

the system point of view – in a homogeneous MPSoC system all nodes contain identical

processor cores, while heterogeneous MPSoC system tiles are chosen from a variety of

31

different processor cores available. The tile architecture and processor core differences

have no impact from communication point of view.

Definition 1. (Architecture)The network architecture iLPN , is a three

dimensional mesh composed of m n k)(ZYX number of homogenous tiles, where each

node Pp represents individual tiles and Lppl jik),(represents a link between

nodes ip and jp . Vertical dimension links LLi connecting horizontal layouts can be

arbitrarily mapped and can create non-uniform paths. Vertical links, in X and Y

dimensions, differ from horizontal links, in Z dimension, in length and bandwidth.

Figure 6: NoC-based MPSoC architecture example

Communication between tiles involves sending data over a sequence of links from the

source to the destination tile. This sequence of links through the architecture layout is

called a route and is defined formally as follows.

Definition 2. (Route) A route jir , , between tile ip and jp where ji pp , is a sequence of

links nnmm llll ,,...,, 11 in the network architecture. Src and dst are the respective source and

destination tile operators of the route or a link. For a route jir , we assume that:

 The source of the first link)(mlsrc is equal to the source tile of the route)(, jirsrc

and the destination of the last link)(nldst is the destination tile)(, jirdst .

 For any two consecutive links 1, kk ll in a sequence,)()(1 kk lsrcldst .

 There is no cycle in a route, i.e. for any two links lk ll in the sequence holds

)()(1 kk ldstldst .

32

 When jijiji rrrdstrsrc)()(,, will result in an empty route jir , .

 The length of a route jir , is equal to the number of links in its sequence, denoted

by jir , . jim rl , denotes that link ml is part of the link sequence of route jir , .

Links and processor tiles can generally be used by multiple processes simultaneously due to

conventional pipeline methods built into the elements themselves, however for the purpose

of lowering test complexity all system elements can be used by only one activity at a time.

All nodes will only be able to process a single task at any given time. All links in a route

jir , sequence will be reserved and blocked to other activities until a communication transfer

has finished. When the source and destination nodes of an inter-task communication data

transfer are the same, communication time and cost between the tasks is equal to 0.

3.2. Problem formulation

 Definition 3. (Application entity)An application is represented by ,G V E and

is an task precedence graph consisting of two subsets: a subset of nodes Vvi with data

volumes denoted as)(ivvw and a subset of edges with precedence relation between two

nodes iv and jv , denoted as
,i je E , and is associated with the weight of the edge

)(, jieew indicating the communication volume between iv and jv .

33

Definition 4. (Mapping) Given a set of precedence constricted tasks GV and

assigning them to a set of processors NP for execution, forms a mapping PVM ,

which dictates on what processor resource each task is carried out on. A mapping does not

include communication resource assignments and cannot therefore dictate in which order

the tasks are executed.

A mapping assigns tasks to be executed by specific nodes. If no constraints are set for node

structure and type, both homogeneous and heterogeneous mappings are possible. On a

homogeneous system, if the assumption that the system is heterogeneous and the

application’s tasks are already partitioned and mapped optimally on the target system is

made, creates a situation where the system can be perceived to be either homogenous or

heterogeneous. Random and heuristic mapping methods

Definition 5. (Schedule) A Schedule, a 3-tuple MGNS ,, , is an execution order and

communication routing schema, where N is the architecture description, G is the

application graph and M is a mapping of said graph onto the architecture platform. Nodes

and Edges in set G cannot be scheduled until all of itheir predecessors are scheduled.

node units

A 20

B 12

C 17

D 22

E 16

F 10

G 8

H 14

A H

D

C

F

E G

20
10

24

10

15

18

14

8

B
9

Figure 7 – An example of a precedence graph with edge weights and execution times

34

*note that link speeds may vary according to the interconnection type that is used.

 **The pareto efficiency set provides an overview about the impact of adding/removing

TSVs in the NoC.

A schedule provides a time frame, within which a communication event can be sent along

the route r. All links along the route’s sequence are reserved for the entire duration of the

event.

Definition 6. (Schedule function) A scheduling function CES :

 the route starts from the source tile:)(rsrci ,

 the route ends at the destination tile:)(rsrcj ,

 the communication does not start before the earliest moment in time at which the

data is available: readystart tt ,

The total communication cost can be formulated as the sum of all communication

transmissions for every *communication process between tasks, while the communication

cost for a single transfer is equal to 0 if two consecutive tasks are mapped onto the same

processor.

),(

,

ji

jicomm rT (1)

The problem can be stated as the following:

Given:

1. Application task graph, ,G V E

2. Network topology, ,N P L

3. Mapping PVM ,

Determine:

A pareto efficiency set** for TSV number and execution time.

Such that:

35

 A single schedule provides an area penalty value based on the number of TSVs in

the network topology

 The placement of inter-layer communication links is different for every schedule.

 Total number TSVs and graph execution time for each schedule form a pareto

efficiency set.

3.2.1. Traffic assessment method

Given a 3 dimensional NoC layout with knm number of tiles, defines the max number

of vertical interconnections to be equal to)1(knmi . The possibility of a vertical

interconnection in the system is binary, either existent or non-existent, giving us a layout

combinatorial search space given by equation.1. The last layout for every vertical layer is

discarded as unfeasible due to lack of vertical interconnections between layers, making

inter-layer communication impossible.

)1(2
!)!(

!

0

k
jji

i i
i

j

 (2)

Example: if number of tiles in system is equal to 2228 , the max number of vertical

interconnections would be equal to 1224 and the search space consists 15 of possible

vertical interconnection layouts (3).

!4)!44(

!4

!3)!34(

!4

!2)!24(

!4

!1)!14(

!4

!0)!04(

!4
15

 (3)

Optimal number of tested solutions becomes critical for high tile count, due to the 2
n
-1

complexity of the search space. When all interconnections are given a priority value the

number of solutions that need to be tested becomes equal to n-1.

36

The general idea of this method is to quickly and efficiently find 3D NoC layout

assessment when TSV layout is non-uniform. This is done by removing a TSV from a fully

homogenous mesh layout, therefore changing the routing paths and impacting the execution

time of an application. Time needed for communication events inside an application is

influenced by the routing distance. This process is repeated until there are no vertical

interconnections remaining. The result will be a pair of vertical interconnection number and

execution time for each point where a change to the network layout occurred.

Probabilistic and random load-balancing mapping methods have an even distribution

chance for the entire system, but are less efficient when inter-task communication is

present. The amount of inter-task communication generates traffic that can be used to

assess interconnection suitability, therefore the task mapping will be carried out randomly

to simplify the testing process of the algorithm and increase the accuracy of test data.

The system is initialized before the algorithm is executed, this include the construction of

the network structure and processing the graph data. The initial scheduling is done with an

unmodified fully homogenous system to ascertain the maximum values and evaluate the

initial state. All vertical interconnections are checked and order by traffic load into a

working set and the interconnection with the lowest value is set to inactive. The next

process is an iterative loop that creates a new schedule based on the new layout and

recalculates the execution time. The process finishes when no interconnections in the set

remain. A diagram of the entire process is depicted on Figure 8.

37

NoC architecture Application graph

Parse graph file Generate structure

Create static priority list

More than 0

TSVs

Create initial schedule and

calculate execution time

Create new schedule and

calculate execution time

Create priority list based on

TSV load from last schedule

Remove TSV with lowest

traffic margin

Create output file

true false

Figure 8: Traffic priority algorithm diagram

38

To determine the effectiveness of different assessment parameters a series of small tests

were carried out. The first test on the platform described in chapter 4.2.2 is carried out with

the traffic based heuristic algorithm to see what type of communication evaluation is

possible. Tests were carried out using two slightly different traffic assessment parameters,

such as activity count (AC) and total time spent on activities (TS). AC counts the routes

that were mapped through the specified vertical interconnection during the scheduling

process, while TS calculates the total time the vertical interconnection had been in use

during the execution of these tasks. The first test application APP1 consist of 41 tasks with

execution length of 5-15ms and 40 communication events ranging from sizes of 20-30

packets. The second application APP2 consists of 59 tasks with execution length of 5-15ms

and 40 communication events ranging from 20-30 packets. An example of the results of the

tests can be seen in table.1. In Table 1, column 2 and 5 show test results using AC as

priority assessor variable, while column 3 and 6 show TS as assessor variable. Table 1,

Column 4 and 7 show the execution time difference between the two methods. The

difference between AC and TS methods can be seen on Table 1, row 7 to 9 with only TSV

count goes below 4.

Table 1: comparison of A1 and A2. Test series 1

The results show little difference between the methods but show that AC method is slightly

more efficient when using the same mapping and scheduling methods. AC method will be

therefore used for all other test sets in this thesis.

TSV

count

exec AC

(app1)

[ms]

Exec TS

(app1)

[ms]

delta

|TS-AC|

[ms]

exec AC

(app2)

[ms]

Exec TS

(app2)

[ms]

delta

|TS-AC|

[ms]

9 357 357 0 1307 1307 0
8 394 394 0 1318 1318 0
7 378 378 0 1350 1350 0
6 378 378 0 1350 1350 0
5 404 404 0 1424 1424 0
4 406 406 0 1415 1415 0
3 442 418 24 1498 1630 132
2 427 428 1 1511 1694 183
1 571 613 42 2416 2443 27

39

3.2.2. Test system description

The test platform will imitate a 3D mesh NoC layout by implementing a data structure that

simulates node and link positioning that is generated at the execution of the test application.

The test system consists of 4 individual components:

 Customizable network structure implemented as a three dimensional cube structure

where each node is an abstract element defined before compile time. The necessary

elements for a layout are defined on compile time prior to execution. The nodes can

be turned on or off by the user or the algorithm.

 A graph parser is built into the system that accepts TGFF [10] file format and

generates a graph structure based on the graph description found. It is possible to

generate random precedence task graphs of any size, suited for the purpose of these

tests, using the TGFF platform.

 An implementation of a path routing algorithm that can find a path given a 3D data

structure based on shortest path principle. The implemented A* algorithm is capable

of assessing relative distance using the Manhattan distance principle [7] instead of

the Euclidian distance due to the nature of the network structure.

 A scheduler, the “execution unit”, checks the task graph iteratively and checks the

status of tasks, the node element responsible for the task will schedule the task if the

required data has been received. The scheduler built into each network node and

link will mark down the process and check its current schedule if the proposed time

slot is open. If the time slot is occupied or overlapping, the next task will be

scheduled after the currently last process is scheduled to end. Links used in

communication processes will use the start time of the entire process for all links in

the sequence, blocking the entire route for the duration of the transfer.

40

Test system will use a generated task graph file and platform dimensions as variable inputs.

The platform dimensions are currently defined at compile time and have to be changed

manually, for the duration of the tests for this thesis the platform dimensions will be 3x3x2.

3.2.3. Traffic assessment method

The objective of this method is to assess the effectiveness of adding/removing TSVs in a

3D NoC systems in a shorter time span compared to more exhaustive search algorithms

while providing solutions close to global minimum. The method is iterative – by adding or

removing a horizontal interconnection on every iteration from the structure, after the

current state has been evaluated, allows for the viability assessment of each TSV using

communication traffic as the evaluation variable. For this method to work, on the given

platform, several other algorithms/methods have to be implemented that are explained in

detail below.

Path

routing

Scheduling

Custom

network

map

Graph

parser

map

Assess-

ment

algorithm

Figure 9: Test system layout

41

3.2.4. Communication routing algorithm

When choosing the routing algorithm there are several path-finding algorithms besides the

regular NoC routing rule types, as the scheduling method is non-dynamic and the mapping

is done prior to execution. Although there are no hard deadlines implemented, speed and

efficiency are required so that tests can be carried out with systems of all sizes. As the

search space is three dimensional and direct path might not be available considering the

non-uniform layout making traversal paths non-constant throughout the testing phase,

regular NoC routing algorithms like XY or turn models are not admissible. Due to the lack

of 3D specific routing algorithms a time efficient shortest path search algorithm will be

used and no routing path restrictions will be applied as oblivious routing will be used. The

choice between the following three different routing algorithms will be considered.

 A* (also known as A-star) algorithm is a general use path finding algorithm and is

widely used for its simplicity and application possibilities. Given a method to find a

node’s neighbors and a relative distance assessment function, it is possible to

traverse and search any type and shape of system for the shortest path by generating

a search tree using the node’s neighbors as branches. A* is a greedy algorithm that

chooses nodes that seem closest to the destination node, using heuristic methods to

ascertain the relative distance to the target node and the distance already traveled.

The heuristic method h(x) uses calculation methods such as Manhattan distance or

Euler’s distance based on the search space and requirements of the problem. The

complexity of the A* algorithm depends on the heuristic method used.

 Dijkstra’s shortest path algorithm is a simple graph traversal algorithm that always

chooses the shortest path among all possible paths. The search space has to be

deconstructed into a graph. In directed acyclic graphs it is possible to find shortest

paths from a given starting vertex in linear time, by processing the vertices in a

topological order, and calculating the path length for each vertex to be the minimum

length obtained via any of its incoming edges. The algorithm is less effective

compared to A* for large search spaces due to the complexity of O (|E|log2|E|),

where E is the set of edges in the graph. Dijkstra’s algorithm can be viewed as a

special case of A* where the heuristic h(x) = 0.

42

 Bellman–Ford algorithm is weighted graph shortest distance search algorithm that

can use graphs with negative edge weights. Bellman–Ford algorithm, similar to

Dijkstra’s algorithm, is based on the relaxation principle that refines the

approximation of the correct distance gradually with more accurate values until

eventually reaching optimum solution. The distributed form of the algorithm has

already been used in some CISCO networking routers that use distance vector

routing methods. Computation speed is slower compared to the other two shorte1st

path algorithms and does not scale well for larger systems.

Given the fact that distance to neighboring nodes is always constant in a matrix and due to

the parameterized system boundaries, the choice was made to use A-star over other shortest

path algorithms.

3.2.5. Static priority list scheduling

Static scheduling is a list scheduling method that similar to critical path method uses

longest paths to evaluate priorities in the list. Differently to a critical path algorithm

however, static scheduling method calculates priority values by starting from the exit nodes

of the graph instead of the starting node. Static value for a node is based on its execution

time and the static level values of child nodes - by adding the highest static value from its

child nodes to its own execution time creates a priority assessment value. This method was

originally described in Hu’s algorithm, but has been used in several other scheduling and

mapping algorithms since [17] [19]. The original algorithm has been modified to

accommodate task graphs without clear level indentations to fit the test platform.

The scheduling process starts by assigning static levels to all tasks and sorts the task list

using descending static level values as its comparison parameter. After the initialization

process, the scheduler checks each task individually in the given order if it can be executed

or not - this is done by checking if all necessary data has arrived prior to its execution.

Once a task has been deemed ready to be executed on the core it was assigned to, the

secondary function of the scheduler will check if the given processing unit is free at that

point in time. The scheduler will delay the execution of the task if the processing unit is

43

currently busy and will mark the task to be executed after the current task has been carried

out. When the task execution has finished, all outgoing communication will be checked and

carried out starting from the communication with the highest volume.

3.3. Simulated annealing

Simulated Annealing is a general probabilistic non-greedy algorithm for approximating the

global optimum in a wide array of optimization problems [17]. The general idea behind

simulated annealing comes from physics where each molecule tries to achieve a zero

charge value by accepting or rejecting electrons. In condensed matter physics, annealing is

known as a thermal process for obtaining low energy states of a solid matter using a heat

bath. The general annealing process is described by the following two steps: the first

process increases the temperature of the heat bath to a maximum value at which the

material melts, followed by a slow careful process to decrease the temperature of the heat

bath until the particles arrange themselves in the ground state of the solid. Hurried or

interrupted cooling process would normally lead to a sub-optimal energy distribution

between the molecules weakening the bonds which may result in a brittle state.

Simulated annealing accepts changes into higher cost states with a probability that

decreases over time but always accepts changes that lower the cost in the system. The

acceptance of cost states gives the algorithm the means of escaping local minima and the

possibility of achieving the global minimum. The algorithm cannot guarantee the global

minimum solution at all times and despite being slower than heuristic methods is often used

for NP-complete problems with large search spaces to avoid more exhaustive methods. A

general form of a simulated annealing algorithm can be found below.

3.3.1. General simulated annealing algorithm

In this chapter we introduce a very basic Simulated Annealing algorithm and explain how

the algorithm works. The following pseudo code contains all aspects of Simulated

Annealing but needs to be adjusted to a specific problem.

44

1. S ← S0 (Set initial state)

2. C ← Cost (S0) (Cost of initial state)

3. Cbest ← C (Set initial cost)

4. T ← T0 (Initial temperature)

5. For i ← 0 to ∞ {

6. T ← Cooling (T0,i) (Calculate temperature)

7. Snew ← Move (S) (Perform move operation)

8. Cnew ← Cost (Snew) (Calculate cost of new state)

9. ΔC ← Cnew – C (Evaluate new state)

10. if (ΔC < 0 OR (0,1) < Acceptance (T, ΔC)){

11. if (Cnew < Cbest){

12. Sbest ← Snew (Chosen as current best)

13. Cbest ← Cnew

14. }

15. S ← Snew (Move is accepted)

16. C ← Cnew

17. }

18. if (End condition met){ (End condition)

19. break loop

20. }

21. }

The algorithm starts by assigning an initial state and parameters (1-4) that can be user

defined or random, the initial state defines the starting position and influences the run time

of the algorithm greatly. The initial state is evaluated and assigned as the current best

solution (2-3). The iterative loop that follows (5) generates neighboring states and evaluates

them by changing only a single detail in the current state (7-8). The new state can be

accepted as the current state or rejected, depending on the evaluation function (10). The

evaluation function always accepts moves into better states but also accepts moves into

worse state using an acceptance function (10). The chance of accepting a new state depends

on the “temperature value” that decreases over time (6), ultimately lowering the chance of

accepting moves into worse states the longer the algorithm loop is executed. If the current

best state is evaluated as worse than the new state it will be replaced with the new state (11-

13). The length of the execution is depends on the end condition(s) defined by the user (18)

and are often specifically tailored for the problem being solved. Steps 6 to 17 will be

repeated until end condition in step (18) is met.

End conditions can include number of consecutive rejected moves, a final temperature or a

final accepted cost which the algorithm has to achieve before it can be terminated. Since the

objective is not targeted at real-time operations, final temperature and final acceptable cost

45

value would normally be priority choices, however consecutive rejects is by far the most

popular choice. The functions and conditions used in the simulated annealing algorithm are

subject to change based on the objective of task the algorithm is meant to perform. The

right choice of the function procedures and variables is necessary for optimal efficiency of

the algorithm yet difficult to determine.

A problem oriented tailored simulated annealing algorithm is needed to fit the specifics of

the current problem. As there is more than one base state, adding/removing a TSV creates a

new base state for each number of TSVs, a second iterative loop has to be generated to

assess all of the possible layout solutions, effectively search through most of the search

space with less time than exhaustive tests.

3.3.2. Revised simulated annealing algorithm

The revision to the simulated annealing algorithm is carried out to using a two stage

process. The main purpose for the outer loop is to generate layouts with different number of

vertical interconnections, while the main loop generates slight differences in the base layout

provided within the iterations of the first stage. Using the two stage algorithm makes it

possible to go through all viable combinations in the search space with less time compared

to an exhaustive search, however reaching global minimum is not always guaranteed.

S ← S0 ; //Set initial state

C ← Cost (S0); //Cost of initial state

Sbest ← S0; //Set best state

Cbest ← C; //Set best cost

T ← T0; //Initial temperature

For i ← 0 to ∞ {

S ← Move1 (Sbest); //perform move operation 1

C ← Cost (S); //calculate cost of next

Iteration state cost

For k ← 0 to ∞ {

T ← Cooling (T0,k); //Calculate temperature

 Snew ← Move2 (S); //Perform move operation 2

 Cnew ← Cost (Snew) ; //Calculate cost of new state

 ΔC ← Cnew – C; //Evaluate new state

if (ΔC < 0 OR (0,1) < Acceptance (T, ΔC)){

if (Cnew < Cbest){

Sbest ← Snew; //Chosen as current best

Cbest ← Cnew;

}

46

S ← Snew; //Move is accepted

C ← Cnew;

}

if (0,5 > T){ //Inner loop end condition min

break loop; temperature value reached

}

}

If(TSVnum < 1){ //Outer loop end condition no

break loop; TSV remain

}

}

During the execution of this algorithm a number of random layout mappings will be

generated for each number of TSVs to test out a larger portion of the search space and to

follow the trend of the traffic based assessment algorithm. To optimize the search algorithm

several parameters and functions have to be manually defined.

 Cooling function – The objective of the cooling function is to lower the simulated

annealing temperature slowly. Given a simple cooling function (x), where α ≠ 0 is a

cooling coefficient multiplied with the iteration temperature Ti, results in a limit

value (x2) where the temperature T would endlessly come closer to 0 but would

never reach it.

Ti+1= α * Ti (x)

0
lim * 0i
T

T

 (x2)

The most common value for α coefficient in simulated annealing has been 0.95. The

temperature related parameters are very important for the success of the algorithm

and should therefore be tailored for the given problem. Specific testing on the

platform with change in alpha coefficient has shown that lowering its value

decreases the runtime of the algorithm but changes the exploration depth of the

search algorithm slightly. Increasing its value increases the algorithm runtime

significantly but shows no improvement. The algorithm currently outputs the

boundaries of the maximum and minimum values the simulated annealing algorithm

has registered during the runtime process; however they may not necessarily be the

respective global minimum and maximum of the entire search space.

47

Tabel 1: Alpha coefficient tests

 Application runtime estimate(ms)

TSVs Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

9 926 926 926 926 926 926 926 926 926

8 926 926 926 926 926 926 926 926 926

7 926 926 953 953 926 926 953 926 951

6 888 926 888 926 888 888 888 888 888

5 881 881 881 881 881 888 881 881 881

4 900 900 900 913 900 900 910 900 900

3 933 942 933 933 933 933 933 933 933

2 1084 1084 1084 1084 1084 1084 1084 1084 1084

1 1387 1287 1287 1287 1287 1287 1287 1287 1287

Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Beta 100 100 100 100 100 100 100 100 100

Time
(sec) 0.295 0.312 0.321 0.398 0.455 0.56 0.638 0.97 1.806

Table 1 shows a small example of tests carried out using different alpha values,

where the alpha value was increased with each test from 1 to 9. As simulated

annealing is a probabilistic algorithm, result values may vary, but show little change

in end result values but higher alpha values give more consistent and stable results.

End results may also seem to be influenced by possible incompatibility with

scheduling and path finding subroutines.

On closer inspection of the given problem to solve, to warrant more accurate search

patterns the initial temperature should dynamically change throughout the

algorithm. The reason for this lies in the fact that the number of possible TSV

layouts changes every time one of them is removed and can easily be calculated by

multiplying the number of remaining and the number of removed TSVs. Therefore

the initial temperature will also be calculated using the following equation, where β

is the user definable multiplication constant to keep the temperature from lowering

too fast.

Tinitial = β * TSVopen * TSVclosed

48

Several tests show that for this particular problem, increasing initial temperature

changes, using a coefficient variable, has no impact besides increasing execution

time. An example of the test can be seen in table 2. Beta coefficient value should

therefore be as low as possible, but increased according to the application and

platform complexity.

Table 2: Initial temperature tests

 Application runtime estimate(ms)

TSVs Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

9 1307 1307 1307 1307 1307 1307 1307 1307 1307

8 1218 1218 1218 1218 1218 1218 1218 1218 1218

7 1251 1226 1251 1251 1251 1251 1251 1251 1226

6 1195 1268 1195 1195 1195 1195 1195 1195 1195

5 1246 1276 1246 1246 1246 1246 1246 1246 1246

4 1293 1293 1293 1293 1293 1293 1293 1293 1293

3 1333 1333 1333 1333 1333 1333 1333 1333 1333

2 1511 1511 1511 1511 1511 1511 1511 1511 1511

1 2068 2068 2068 2068 2068 2068 2068 2068 2068

Alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Beta 20 40 60 80 100 120 140 160 180

Time
(sec) 0.647 0.731 0.769 0.807 0.852 0.892 0.894 0.952 0.955

 Acceptance function – The objective of the acceptance function is method that

accepts a move into a worse state with a certain probability, which is the only

means of finding a way out of a local minimum state to find the global minimum.

The acceptance function is displayed below where ΔC is the cost difference

between the current and the new state and T is the current temperature. The current

acceptance function is based on Bolzmann probability principle.

Acceptance (Δ C, T) = 1 / (1 + e
(ΔC/T)

))

 Cost function – The objective task of the thesis is to minimize the number of TSVs

used relative to the total time it takes to execute the task graph on the system and

49

must therefore include these elements. A cost value per TSV could be inserted into

the cost function to help minimize the total amount of TSVs.

Texec = Ttask + Tcomm

C = α * Texec+ β * Carea

However the objective is to ascertain the effectiveness of removing/adding TSVs

which will be carried out inside the inner loop of the new algorithm. Since cost

effectiveness evaluation is carried on a broader spectrum of TSV placements, the

amount of TSVs for each inner loop does not change and therefore does not

influence the calculations at that stage. Alpha and Beta coefficients are there to

lower or raise the importance of area cost resulting from adding/removing TSVs.

The area cost is constant for the inner cycle where cost is calculated and is therefore

ignored for the duration of this thesis to keep test system flexibility.

 Move function 1&2 – Move function one has the objective to deactivate TSVs each

time it is called. When the first loop cycle creates the initial state for the loop nested

inside it, it deactivates a TSV at random from the best state of the previous cycle.

Move function two is responsible for changing to another neighboring state on

every iteration of the first algorithms loop. This is done by turning an active TSV to

inactive and vice versa for an inactive TSV, therefore changing the position of an

active TSV link. The function creates two lists, one is filled with active TSVs and

the other is filled with TSVs that have been deactivated. Upon execution of the

move function a TSV is chosen from the first list and turned inactive followed by

turning another TSV from the second list active, effectively moving the position of

one of the TSVs.

 End condition – The end condition is another parameter that can be user defined.

The end condition of rejected moves is a good solution for problems where

algorithm runtime is of great importance and the search space is linear. Due to the

added secondary objective of assessing the layout search space separately for each

50

number of TSVs, creating several sets of search spaces, each with different size.

Due to the fact that the initial temperature is bound to the number of possible

layouts for each search space set, a final temperature option becomes very lucrative.

Several short test have shown that the final temperature should be relatively low to

allow proper search space exploration and is set to 0.5 for the duration of this thesis.

The algorithm starts by initializing parameters – initial temperature, initial state and initial

cost, the latter two are marked as part of the current best solution. When analyzing the

initial state where the platform is fully uniform Figure 10 (a), all TSVs are open (TSV

count max) and therefore, during the initial state, only one possible layout exists. This

layout is handled as an exception prior to the execution of the algorithm. The tasks from the

test application graph are then mapped to selected processing units; the processing unit for

each task is currently selected at random to lower test system complexity. To evaluate a

network layout state, the test application is sent to the scheduler. The scheduler creates a

static priority list out of the task graph and iteratively goes through the list until all tasks

and communication events are scheduled. The end time of the last task is the execution

time of the task graph.

Each iteration in the first cycle disables a TSV on the current best layout at random (TSV

count -1 on each iteration), evaluates the state and appoints it as the current state and best

state for the upcoming annealing loop, along with the evaluated execution cost values. An

example Figure 10 (b) shows a TSV layout after two TSVs have been removed. After this,

the temperature for the annealing loop is calculated The new best state is the initial state for

the second simulated annealing algorithm loop that changes the layout slightly, by

rearranging a single TSV from one place to another on every iteration as can be seen on

(a) Initial layout
Exec: 987

 (b) 2nd Base

layout Exec: 1081

(c) New layout
Exec: 1058

(d) Best layout
Exec: 1058

(e) Best layout(2)
Exec: 1090

 Figure 10: Example layouts

51

Figure 10 (c). The initial temperature is calculated for each secondary loop based on the

total number of possible layouts to improve search space exploration. After the new state is

evaluated, a cost difference between the current state and new state is calculated by

subtracting the current cost from the new cost. If the resulting delta value is negative or

equal to zero, meaning the new state has a faster execution time, then the new state is

accepted right away Figure 10 (d). If the new state has a higher execution time, then the

state can still be moved into based on a probability comparison of a random number

between 0 and 1 and the acceptance function return value that also is between 0 and 1.

When a move is accepted into a worse state Figure 10 (e), it is possible to find states that

would otherwise be ignored. If the accepted state’s execution value is also lower than the

current best state with the same TSV count, then the current best state is replaced with the

new state. If the current temperature has gone below the user specified minimum, the

secondary loop ends and the primary loop moves into the next iteration. The primary loop

exits once the number of TSVs in the layout has gone below 1, where further executions are

impossible if tasks of the test application are mapped onto several different layers.

3.4. Experimental results

Using the algorithm presented in Chapter 2.3 a series of tests were carried out on a testing

platform programmed in C++. The experiments were carried out on a NoC simulation

model with a 3D mesh topology. In order to evaluate the performance of the

interconnection system in controllable conditions, several precedence graphs with and their

respective communication volumes, were generated with by TGFF task graph generator

[11] for testing purposes. To test the capability of the platform using the test applications

several sets of tests need to be run to assess the effectiveness of the traffic based algorithm

compared to the simulated annealing algorithm. Due to complications resulting from

multiple layers of TSVs on the test platform, only two layers of cores will be implemented

at any given test. The simulation model does not consider buffer latency. The Simulated

annealing algorithms’ abbreviation in henceforth SIM and traffic assessment algorithms’

abbreviation is TAM. Several tests were carried out using the random task mapping

generator and the traffic assessment method.

52

The first test set objective is to provide a comparison between several random task

mappings, showing the application execution time differences. An example of the results

can be seen in Figure 11 using a platform with 9 cores and 59 tasks.

Figure 11: Traffic assessment algorithm output example

The task differences seem to influence the results slightly for TAM algorithm when

choosing the TSVs to remove, which leads to the notion that mapping and scheduling

method need to be in sync to find optimal execution times.

Secondary tests were carried out using the modified simulated annealing algorithm

implementation for comparison purposes to evaluate the effectiveness of the traffic based

method. To ascertain accurate data, both methods were used in succession using the same

random task mapping designations for each test cycle. Only the best (SIM min) and worst

(SIM max) execution times were added to the output. The time it takes to execute the

algorithm is presented in parenthesis behind the algorithm’s name on the figures. The

results in Figure 12 include the maximum execution time values explored during the

runtime of the simulated annealing algorithm. The area created with the upper and lower

53

bound values of the simulated annealing algorithm gives a good perspective of the search

space being explored and should give a better understanding on the effectiveness of the

TAM algorithm.

Figure 12: TAM and SIM comparison

APP2 was used with a 3x3x2 network platform. The results are displayed in Figure. 12.

The results for test series 2 show that the TAM method does not perform as well as the SIM

algorithm in terms of minimal execution time. The changes from higher execution time to

lower execution time after removing a TSV are probably caused by the rescheduling and

path mapping implementations and incompatibility between scheduling and mapping.

Figure 13 shows results for the execution of the same application on two platforms with

different core counts. The results for the 18core platform (9TSVs) tests are slightly moved

to the left for better comparison of execution times represented by a secondary axis line.

54

Figure 13: Traffic assessment and simulated annealing.

The results for Figure 12 tests show that the traffic assessment algorithm, being a heuristic

method, can be executed several times faster than the simulated annealing algorithm. The

execution time for both layouts in Figure 13 show similar test results to the simulated

annealing algorithm for, but shows slightly larger best and worst case scenario

discrepancies. Closer analysis suggests random mapping differences as the main cause,

confirms the need for a better cooperation between mapping and scheduling algorithms.

The conclusion for the tests show that without the need to find the global minimum

execution times, it is possible to quickly and with a sufficient accuracy assess possible

impact of adding or removing TSVs from a 3D NoC layout.

The test series in table 3 was done with different core numbers per layer using the same test

application. The objective of this test set is to see how the number of cores affects the

results of the execution of the test application and observe the differences between TAM

and SIM algorithms. Runtime in Table 3, columns 2 and 5, signify the application’s

estimated runtimes for the TSV count found in column 3. The time it takes to execute the

SIM and TAM evaluation algorithms can be found in columns 4 and 6 interlinked with core

55

count in column 1. For example for a platform of 8 cores the evaluation using SIM

algorithm takes 0.141sec to execute while TAM evaluation algorithm only takes 0.027sec

to evaluate the same search space. TAM execution (Table3, column 4) and SIM execution

(Table3, column 6) shows that simulated annealing algorithm execution times grow at

different speeds compared to each other, the higher the number of cores and TSVs grows.

Table 3: TAM and SIM comparison

cores
TAM runtime
[ms]

TSVs
 [links]

TAM execution
[s]

SIM runtime
[ms]

SIM execution
[s]

8(2x2x2) 970 4

970
 1029 3 1029

 1182 2 1139

 1902 1 0.027 1646 0.141

18(3x3x2) 965 9

965
 965 8 912

 942 7 909

 1023 6 909

 990 5 909

 990 4 912

 1140 3 933

 1307 2 1251

 1561 1 0.064 1561 0.809

32(4x4x2) 1261 16

1261
 1241 15 1241

 1241 14 1241

 1224 13 1189

 1224 12 1176

 1224 11 1176

 1353 10 1176

 1337 9 1176

 1337 8 1176

 1337 7 1176

 1337 6 1176

 1269 5 1176

 1265 4 1233

 1265 3 1319

 1549 2 1483

 2064 1 0.168 2064 2.873

56

While TAM execution time growth is linear, the execution time of the simulated annealing

algorithm growth multiplier however seems to be exponential. The runtime of both

algorithms increase each time core number is increased as the search space and minimal

number of state evaluations increases. The fact becomes clear, that the larger the search

space becomes, the larger the difference of the TAM and SIM algorithm’s execution times

grows. Considering the runtime of both algorithms and the results that can be seen in both

table 3 and Figure 12 prove again that the simulated annealing algorithm lower bound hold

slightly lower cost values but has the runtime of the algorithm times longer than TAM.

The test series, which example can be found in Figure 14, shows comparison results for

TAM and SIM algorithms with a slight change in SIM algorithms regarding the removal of

TSVs for each primary cycle. The simulated annealing algorithm was modified to remove

TSV similar to the TAM algorithm instead of removing one at random.

Figure 14: Traffic assessment and simulated annealing. Test series3

57

The results show a marginal decrease in execution times on both upper and lower bound

and a slight increase of ~0.030sec in algorithm runtime compared to the original SIM

algorithm.

The next test set was carried out using an application with task count several times higher

than the number of cores to see how the application influences the results if the platform

size remains low. Using a test application APP3 was used for test series 4, that has over 200

tasks ranging from 10 to 20 ms execution times and containing communication events with

90-120 packets. The platform has 2 layers and total IP count of 32.

Figure 15: Traffic assessment and simulated annealing, test series 4

The difference between the algorithms has become more severe. Figure 15 shows a

significant spike in TAM algorithm’s performance, but the overall performance shows the

superiority of the simulated annealing algorithm. The spike in execution time shows the

importance of choosing the right TSV to remove, but also shows that less time analyzing

the search space gives sub-optimal results. When considering the graceful degradation

principle where the choice of which TSV is removed cannot be predicted, the choice of

58

proper scheduling and communication mapping becomes even more critical. A non-virtual

test environment would provide more accurate results, but cannot be constructed due to the

lack design tools and manufacturer at this time.

The next set of tests was carried out to ascertain how the increase of core count influences

the execution of APP3 that has high task count. Table 4 shows the results from using APP3

in extensive tests over several platform sizes ranging from 8 cores to 50cores. Runtime in

Table 3, columns 2 and 5, signify the application’s estimated runtimes for the TSV count

found in column 3. The time it takes to execute the SIM and TAM evaluation algorithms

can be found in columns 4 and 6 interlinked with core count in column 1. Comparing

algorithm execution times between TAM (Table4, column 4) and SIM (Table4, column 6)

shows that simulated annealing algorithm takes several times longer, the higher the number

of cores and TSVs gets, the same conclusion that can be drawn from Table 3. Columns 2

and 5 show that the smaller the platform is the longer the application takes to run as

expected of the system.

Table 4: TAM and SIM comparison using APP3

cores
TAM runtime
[ms]

TSV
[links]

TAM execution
[s]

SIM runtime
[ms]

SIM execution
[s]

8(2x2x2) 5429 4

5429
 5441 3 5431

 5445 2 5433

 5447 1 0.039 5445 0.622

18(3x3x2) 3773 9

3773
 3773 8 3674

 3773 7 3674

 3773 6 3672

 3771 5 3672

 3775 4 3678

 3781 3 3601

 3785 2 3605

 3791 1 0.149 3640 3.57

32(4x4x2) 3427 16

3427
 3427 15 3427

 3427 14 3427

 3427 13 3356

59

 3427 12 3358

 3427 11 3358

 3427 10 3356

 3427 9 3354

 3431 8 3271

 3431 7 3271

 3362 6 3269

 3362 5 3277

 3362 4 3354

 3368 3 3283

 3372 2 3291

 3495 1 0.309 3302 17.445

50(5x5x2) 3075 25

3075
 3075 24

2839

 3075 23

3075

 3075 22

2839

 3075 21

2806

 2852 20

2852

 2852 19

2835

 2856 18

2794

 2856 17

2852

 3081 16

2831

 3081 15

2796

 3081 14

2799

 3083 13

2836

 3083 12

2843

 3083 11

2802

 3083 10

2839

 3077 9

2811

 3075 8

2840

 3079 7

2836

 3081 6

2814

 3085 5

2798

 3085 4

2813

 3089 3

2851

 3101 2

2881

 3107 1 0.621 2906 57.879

The decrease in application execution time with higher core count is to be expected. The

spikes in execution time however can only be observed when using a system with 50 cores.

60

This fact leads to the conclusion that complications arise from increasing complexity of the

scheduling process and the fact, that test application graph branching leads to more than a

single end task.

The following test is a replication of the execution time spikes to give a visual

representation for the results in Table 4. The test used a 5x5x2 platform and APP3, the

maximum task count and core count the test platform could handle. Erratic change in the

minimal execution times found by the simulated annealing algorithm can be observed when

the TSV count reached 23. The execution time of the application for TAM algorithm

suddenly drops when the TSV count is between 20 and 17 TSVs.

Figure 16: APP3 comparison using a 5x5x2 platform

Figure 15 uses APP3 but employs a 5x5x2 platform with 50cores. The cost spike can also

be noted here that was present in Figure 14. This phenomenon was present at every test that

used more than 100 tasks and might hint to a problem in the test system. However the

results of the TAM algorithm still fall within simulated expected ranges defined by the SIM

algorithm. Further testing in a real environment would be beneficial.

61

3.5. Conclusion

Unfortunately the platform size could not be increased beyond 5x5x2 and 200 tasks as

memory leaks due to data structures prevented testing beyond the given parameters.

Redesigning the test platform might yield testing capability with larger systems and

applications. The test platform shows abnormal behavior when the number of TSVs is still

relatively high, this phenomenon might be the caused by the inflexibility of the scheduling

and communication path mapping algorithms. The path mapping algorithm used is

designed to find an optimal path in a short time using relative position to the destination,

however it might not always be the shortest path. The behavior does not seem to be related

to the max number of TSV links in the system.

When comparing the execution times of SIM and TAM algorithms, it becomes clear that

the linear scaling of the TAM execution time becomes a great advantage with higher TSV

count where the search space is larger, if a general overview is needed. However SIM

algorithm provides lower global minimum results compared to TAM with improving

results the larger the search space becomes. Looking at the test results, depending on the

aim and requirements of the assessment, both algorithms are be viable. The viability of

TAM in real-time constrained dependable systems assessment can be observed if the

objective is to ascertain if the system can maintain a minimal load requirement.

Several problems during testing indicate the need to choose better mapping and scheduling

algorithms that have a high compatibility to each other. Further testing of the TAM

algorithm would be advised using a more accurately represented test system. Further testing

may be required if dynamic scheduling methods or adaptive routing methods are used as

they would severely change the test results.

62

4. Summary

The technological advances in integrated circuit technology have started to slow down as

we reach the physical limitations to technological scaling with our current manufacturing

technologies. However the ever increasing need performance and functionality is pushing

scientists to search for new ways to overstep our boundaries. Several research directions

that have been taken, have already shown good test results, but have yet to be proven

applicable in mainstream technology.

The current most promising solution to fulfill the requirements of our society is 3D chip

stacking technology. The strongest positive influences of this technology can be

summarized as the following. Due to wafer thinning, resulting vertical chip thickness is

several times lower than initially estimated. Using this method potentially increases the

chip’s performance and power consumption used for signal propagation. The design can be

built as separate parts and integrated later into a single chip. Silicon interposers enable the

reusability of old designs with similar footprints, old research and development tools can

still be used.

The opportunities 3D stacking technology provides do come with a set of challenges and

limitations. Namely power consumption may be lower, but increase in power density

creates problems in thermal management. Vertical interconnections increase the chip area

by a small amount, resulting in a wire delay increase, which in turn leads to a limited

number of interconnections for a design depending on the properties of the interconnections

used. To mitigate the problematic aspects of using Through-Silicon-Vias in Network-on-

Chip technology a method was devised to assess the viability of each TSV in a given

design.

The proposed TSV impact assessment method can employ and adapt to a wide variety of

scheduling and mapping algorithms on a network layout with any number and structure of

nodes, given the assumption that the design’s interconnection placement can change.

However, the method assumes that the graph can be fully explored and contains

63

concurrency. Given a method to compare and assess systems with similar interconnection

layouts quickly, allows for the improvement of reconfigurable and dependable 3D systems.

The conclusion can be drawn that the Traffic Assessment method can be used to quickly

reassess the capabilities of a 3D NoC system to ascertain if the system is capable to

continue operation performing to a given minimal load. The viability of simulated

annealing algorithm can still be observed if the system has low real-time constraints and

reassessment of the system is not immediate.

64

Resümee

Tehnoloogilised saavutused integraalskeemide vallas on hakkanud vaikselt aeglustuma ja

on jõudnud füüsiliste piiranguteni tingitud füüsikalistest limiitidest, mille tõttu ei saa

elektroonika komponentide suurusi enam oluliselt vähendada. Sellest olenematta tõuseb

nõudlus jõudluse ja funktsionaalsuse järele, mis on lükanud käima suurel hulgal uusi

laialdasi uurimistöid erinevates valdkondades, otsides viise kuidas ületada tehnoloogia

barjääri. Paljud uurimis suunad on andnud tulemusi , kuid pole veel suutnud ennast

tõestada.

Hetkel parimaks tehnoloogiliseks järeltulijaks, täitaks ühiskonna vajadusi, on 3D

kiipvirnastus tehnoloogia. Tema tugeivamad mõjualad saab kokkuvõtta lühidalt. Planaarne

2D kiipe saab tükeldada väiksemateks plokkideks ja virnastada üheks kiibiks, vähendades

nende vahelisi ühenduste pikkusi ja signaali juhtimiseks vaja minevat energia tarvet. Tänu

kiipide hõrendamisele, mis toob endaga kaasa on kiibi vertikaalse mõõte suurenemise,

saavutuatud pindala võit suurem kui planaarsel asetusel. Tänu 2.5D tehnoloogia omadusele

on võimalik kasutada vanu arendus tööriistu ja toomis vahendeid, langetades prototüübi

väljaarendamise maksumust. Disainide osad saab luua erladi projektidena ja taaskasutada

juba olemasolevaid disaine.

3D kiipvirnastus tehnoloogia omab samuti palju väljakutseid ja piiranguid. Nimelt

väiksemat energiatarvet asendab energia tiheduse probleem mis omakorda püstitab

temperatuuri probleeme.Vertikaal ühendused tõstavad omakorda vajaminevat kiibi pindala,

mis tõstab viivitusi tulenevalt juhtmete pikenemisest. Juhtmete pikenemise tagajärgede

vältimiseks on püstitatud limiit vertikaal ühenduste arvule, mida kokku kasutatakse nii

energia jaotuseks, temperatuuri alandamiseks kui ka andmevoogude tarbeks. Selles töös

koostati meetod TSV-de hindamiseks kiipvõrkudes, et aidata vähendada selle tehnoloogia

negatiivseid tagajäregesid.

Koostatud TSVde hindamis meetod suudab kasutada palju erinevaid aja- ja ülesannete

planeerimisalgoritme, ükskõik millise kiipvõrgu kuju ja protsessor tuumade arvu jaoks.

65

Arvesse tuleb võtta eeldust, et vertikaal ühenduste arv ja asukohad peaksid olema

muudetavad ja meetmed nende teostamiseks olemas. Siinjuures peaks programmi graaf

olema täies mahus teada ning omama paraleelselt töödeldavaid ülesandeid. Eeldades, et

meil on meetod mille abil hinnata süsteemide sarnaste vertikaal ühenduste paiknemist ja

effektiivsust kiiresti, lubab fukntsionaalsust hinnates uuesti konfigureeritavaid ja

töökindlaid 3D süsteeme luua ja tõsta süsteemi töökidlust vigade esinemisel. Töö käigus

jõuti järeldusele, et välja pakutud liiklus-põhine hindamismeetodit saab kasutada 3D

kiipvõrk süsteemide jõudluse kiireks uuesti hindamiseks, et kinnitada süsteemi

jätkusuutlikust vähemalt defineeritaval minimaalsel koormusel. Simulated Annealing

algoritmi kasutamise võimalus eksisteerib süsteemidel, mis ei oma tugevaid reaalaja

piiranguid, kus süsteemi jõudluse uuesti hindamine ei ole koheselt vajalik. Dünaamiliste

paigutus meetodite kasutamisel tuleks liiklus-põhine hindamismeetod uuesti üle testida,

kuna nende mõju süsteemile on tugev.

66

Used literature

1. Moore’s Law [WWW] http://download.intel.com/museum/Moores_Law/Articles-

Press_releases/Gordon_Moore_1965_Article.pdf (10.06.2013)

2. The Silicon Engine: A timeline of semi-conductors in computers [WWW]

http://www.computerhistory.org/semiconductor/timeline/1974-digital-watch-is-

first-system-on-chip-integrated-circuit-52.html (10.06.2013)

3. Khaled Salah Alaa EI Rouby Rani Ragai Yehea Ismail: 3D/TSV Enabling

Technologies for SOC/NOC: Modeling and Design Challenges – Microelectronics

(ICM), 2010 International Conference on, Pages: 268 - 271 [Online] IEEEXplore

4. Parekh, Thadesar, Bakir. Electrical, optical and fluidic through-silicon vias for

silicon interposer applications: Electronic Components and Technology Conference

(ECTC), 2011 IEEE 61
st
, Pg 1992-1998 [Online] IEEEXplore

5. D. N. Jayasimha, Bilal Zafar, Yatin Hoskote: On-Chip Interconnection Networks:

Why They are Different and How to Compare Them [Online]

http://glearning.tju.edu.cn/

pluginfile.php/74998/mod_resource/content/0/ODI_why-different.pdf

6. Ding-Ming Kwai, Chang-Tzu Lin: 3D stacked IC layout considering bond pad

density and doubling for manufacturing yield improvement: Quality Electronic

Design (ISQED), 2011 12th International Symposium on, pg.1-6 [Online]

IEEEXplore (21.05.2012)

7. Kirk Saban: “Xilinx Stacked Silicon Interconnect technology delivers breakthrough

FPGA capacity, bandwidth, and power efficiency” [WWW]

http://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silico

n_Interconnect_Technology.pdf (02.09.2012)

8. Manhattan distance principle [WWW] http://www.improvedoutcomes.com/docs/

WebSiteDocs/Clustering/Clustering_Parameters/Manhattan_Distance_Metric.htm

9. A-star Shortest Path Algorithm (C++ recipe) [WWW] http://code.activestate.com/

recipes/577457-a-star-shortest-path-algorithm/ (02.09.2012)

10. Designing and Building Parallel Programs: Chapter 2. Mapping (1995) [WWW]

http://www.mcs.anl.gov/~itf/dbpp/text/node19.html (10.08.2012)

11. Task Graphs For Free [WWW] http://ziyang.eecs.umich.edu/~dickrp/tgff/

(10.05.2013)

12. Le Yu, Haigang Yang, Jia Zhang, Wei Wang. Performance Evaluation of Air-gap-

Based Coaxial RF TSV for 3D NoC: 2011 IEEE/IFIP 19th International Conference

on VLSI and System-on-Chip [Online] IEEE (03.03.2012)

13. Dae Hyun Kim, Krit Athikulwongse, Sung Kyu Lim. Electrical, Optical and Fluidic

Through-Silicon Vias for Silicon Interposer Applications: 2009 IEEE/ACM

International Conference on Computer-Aided Design Digest of Technical Papers

pg.674-680 [Online] IEEEXplore

14. Nauman H. Khan, Syed M. Alam, and Soha Hassoun. Through-Silicon Via (TSV)-

induced Noise Characterization and Noise Mitigation using Coaxial TSVs: 3D

System Integration, 3DIC 2009. IEEE International Conference pg.1-7 [Online]

IEEEXplore

67

15. James Burns. Chapter 2. TSV-Based 3D Integration: Three Dimensional System

Integration: IC Stacking 13 Process and Design, Springer Science+Business Media,

LLC 2011 [Online] SpringerLink. LNCS

16. Introduction to A*: From Amit’s Thoughts on Pathfinding [WWW]

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

(10.05.2013)

17. Heikki Orsila. Optimizing Algorithms for Task Graph Mapping on Multiprocessor

System on Chip: Thesis for the degree of Doctor of Science in Technology.

Tampere, Tampere University of Technology 2011

18. Ciprian Seiculescu, Srinivasan Murali, Luca Benini and Giovanni De Micheli. 3D

Network on Chip Topology Synthesis: Designing Custom Topologies for Chip

Stacks: 3D Integration for NoC-based SoC Architectures, Integrated Circuits and

Systems, Chapter 9. Pg 194-211 [Online] SpringerLink. LNCS (21.05.2012)

19. Sih, G. C. and Lee, E. A., “A Compile-Time Scheduling Heuristics for

Interconnection-Constrained Heterogeneous Processor Architectures”, IEEE

Transaction on Parallel and Distributed Systems, Vol. 4, No. 2, pp. 175-187, 1993

[Online] IEEExplore

20. É. Cota et al., Reliability, Availability and Serviceability of Networks-on-Chip:

Springer Science+Business Media, LLC 2012, Chapter 2 Pg.1-21 [Online]

SpringerLink. LLC

21. Ville Rantala, Teijo Lehtonen, Juha Plosila. Network on Chip Routing Algorithms:

TUCS Technical Report 2006 [WWW] http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.120.8910&rep=rep1&type=pdf

