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Abstract 
 

Technological evolution has made great progress in circuit design for several past decades. 

However in the recent years it has become apparent that we are reaching the pinnacle of our 

current methods of technological progress scaling down dimensions as we have hit the 

physical limitation barrier. Many new research directions have branched off looking for 

new ways to continue the legacy of Gordon Moore, to keep technological advancement 

from slowing down. In the recent years research into 3D stacking technology has shown 

great results over current technology and is believed to be the successor of the current 

generation of integrated chip design.  

 

New technology requires new evaluation tools for development and efficiency assessment, 

therefore the objective is create a target system simulation and define a method to find 

tradeoffs points between systems configurations using different number of vertical 

interconnections. Research into evaluation methods and tools is necessary to design and 

improve new technologies. In this paper a method will be proposed to evaluate TSV impact 

in a 3D NoC platform.  
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Annotatsioon 
 

(Magistri töö teema nimetus – TSVde arvu mõju hindamine 3D kiipvõrkudes) 

 

Tehnoloogia evolutsioon on viimaste aastakümnete jooksul teinud suuri edusamme ja ei ole 

veel pidama jäänud. Viimastel aastatel on selgeks saanud tõsiasi, et oleme jõudnud 

tehnoloogia mõõtmete vähendamise füüsilistele piiridele praeguse tehnoloogia mõõtmetes. 

Palju uusi uurimis suundi on alustatud, otsides uusi meetmeid Gordon Moore-i ennustuste 

jätkamiseks, et tehnoloogia areng ei aeglustuks.3D kiip-virnastus tehnoloogia on näidanud 

paremaid tulemusi hetkese tehnoloogia suhtes ja seda peetakse uueks kiipsüsteemide 

tehnoloogia järglaseks. Ühendades kiipvõrgud 3D tehnoloogiaga on võimalik luua väga 

erinevate otstarvetega platvorme mis on pindalalt väiksemad ja tarbivad seetõttu vähem 

energiat. Uus tehnoloogia ei tule ilma uute probleemideta nii disaini kui tootmis 

protsessides. 

 

Uued tehnoloogiad vajavad uusi arendusmeetmeid ja hindamisvahendeid. Ülesandeks on 

koostada uue platvormi simulatsioon koostamine ja selle abil leida meetod hindamaks 

kompromisse platvormi konfiguratsioonide vahel, mis sisladavad erinevaid TSV-de arve. 

Selles töös pööratakse peamiselt tähelepanu kiipvõrkudele ja 3D kiip-virnastus 

tehnoloogiale, tutvustades nende kujunemislugu ja kirjeldatakse nende ehitust ja tootmist 

viise. Töö viimases peatükis pakutakse välja uus meetod, leidmaks vertikaal ühenduste arvu 

mõju 3D kiipvõrkude platvormidel, mis kasutavad TSV tehnoloogiat.  

 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 67 leheküljel, 4 peatükki, 16  

joonist ja 4 tabelit. 
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1.  Introduction
 

Intel’s co-founder Gordon Moore published a paper in 1965 [1], in which he noted that the 

number of transistor on a square inch (2.54cm) doubled every year after the invention of 

Integrated Circuits (ICs) and predicted this trend to continue for a minimum of 10 

subsequent years, which was later called Moore’s law. Moore’s initial prediction was later 

corrected and would state that the number of transistors would double every 18months as 

the initial boost from the technological revolution had calmed down. Recent technological 

advances have begun to deviate from this ideal scaling theory - standard technological 

solutions have been hampered by severe growth limitations resulting from the physical 

limitations of materials used, and are therefore no longer sufficient to keep up with the 

ever-growing performance requirements that are expected from the industry. The main 

cause is difficulty of voltage scaling [2]. Temperature difference on energy transition 

between different metals does not scale down, making it hard to lower threshold voltage of 

a MOS transistor without increasing sub-threshold leakage, noise and heat. Without 

threshold voltage scaling, power and performance has become a tradeoff. Two methods 

have been used to increase a chip’s performance – the first method changes the circuit and 

system architecture from power consumption point of view, the other method changes 

integration structure to lower the wiring length and pin capacitance. Many reasons, such as 

increased application complexity, physical limitations and computational requirements, 

paved the road to system that used more than a single processing unit. Multiple processing 

units on a single chip, later designated multi-core processors, are processors that house 

multiple processing units on the same silicon wafer with shared memory and peripherals. 

The objective of the thesis is to propose a new method to evaluate the impact of vertical 

interconnections in upcoming 3D stacked Network-on-Chip systems (NoC). 

 

A method will be proposed that is able to assess the impact of vertical interconnections in 

3D NoC systems. The new method will have comparatively short runtime that scales a 

linear way towards systems with larger search space. For comparison purposes, Simulated 

Annealing will also be implemented as a secondary algorithm.   
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1.1. Overview 
 

 

SoC and NoC technologies 

 

System on Chip (SoC) is an IC that incorporates all electronic components required to 

implement an entire system on a single chip. Using this method often integrates several 

types of signals such as analog, digital, mixed-signals and even radio frequency functions. 

Typical application example of this technology is an IC embedded into other systems, 

where chip area is in most cases quite limited and power consumption should be as low as 

possible. The increase in complexity of computer systems has also increased the number of 

challenges we meet in the design and manufacture of technology. Several drawbacks still 

exist, using SoC technology such as processing core placement and count, wire arbitration, 

global wiring related delays and so on. The first SoC evolved from a wrist computer 

prototype [2], 4000 bonding wires connecting 44 circuits, which was simply too unreliable 

due to the fragmented timekeeping circuitry. The solution was later redesigned onto a 

single chip, however due to the high power consumption of a display using light emitting 

diodes no advances were made until Liquid Crystal Displays (LCD) were invented in 

1973.The first true SoC solution appeared in 1974 inside the form of a digital watch 

invented by Peter Stoll in which he integrated an LCD driver interface with timing 

functions onto a single CMOS chip. In the 1990s many Application Specific Integrated 

Circuit vendors started embedding microcontrollers and digital signal processing units into 

single system-level chips which gave way to a wave of new application areas such as hand 

held products, data communications and peripheral products. 

 

Communication plays a crucial role in the design and performance of SoC systems and will 

become more important when more processing units are implemented. Traditionally 

Integrated Chips(IC) use dedicated point-to-point links for each signal, however the given 

method however does not scale well for very large circuits on account of physical aspects 

such as increasing chip area occupied by wiring, wire length and resulting complications in 

signal propagation. Bus architecture have become inefficient when it comes to systems with 

large number of Intellectual Property (IP) modules and intense parallel communication, as 
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it may not meet the performance requirements needed by large applications. Network on 

Chip (NoC) has been deemed a good solution to simplify and optimize such designs as they 

continue to grow with each new processor generation. NoC technologies were designed to 

lower overall system complexity and increase performance by redesigning component and 

wiring layout along with communication methods.  

Introduction to 3D stacking technology 

 

During the last two decades three-dimensional large scale integration (3D LSI) technology 

has become a viable alternative to traditional circuit design. The promise of 3-D IC 

technology lies in the numerous benefits it can potentially provide to increase performance 

and response speed of electronic devices over traditional 2-D ICs designs such as the 

integration of different signals, analog digital and even radio frequencies, or a method to 

overcome current design tradeoffs due to physical limitations between flexibility system 

performance physical dimension and cost. 3D technology principle divides a planar chip 

into blocks, where each block can be stacked on top of the previous one. By allowing chips 

to grow in the vertical dimension instead of requiring larger die area, higher packing 

density and smaller footprint can be achieved. Generally 3D-IC contain multiple layers of 

active devices that extensively utilize the vertical dimension by utilizing shorter wires as 

interconnections between layers to connect components and are expected to address 

interconnect delay related problems. This can be exploited to build faster SoC circuits by 

choosing the optimal placement between layers, therefore optimizing load in blocks with 

different performance requirements. Since the process of implementing vertical 

interconnections is more challenging compared to the planar ones, the physical 

characteristics of these interconnections can become a burden for achieving the required 

performance. Various types of vertical interconnections have been proposed so far [3] such 

as TSV, wire bonding, metal bumps and contactless bonds. For the purpose of system 

efficiency, TSV technology has been the preferred technology for new design patterns. 

 

System dependability and reliability 
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System reliability and dependability become more important as the technology is scaled 

down due to increase in component break-down possibilities resulting from physical 

problems. Systems with high dependability issues are often required to continue operation 

after an active component or wire fails. With a built in functionality that updates all of its 

components about the changes in the system, it is possible to warrant at least partial 

capability of the system in case a component fails. The trait to maintain partial functionality 

when a component failure occurs is called graceful degradation. Graceful degradation is 

often considered equivalent to fault tolerance. Systems with fault tolerant designed have 

backup components that take over the work of a failed component, graceful degradation 

however is a method of effective fault management, where the system will detect, isolate 

and resolve failure problems. Examples include application areas such as real-time systems 

in critical areas where even a smallest breakdown can mean loss of life, systems that can 

employ adaptive technological advantages bypassing failed components by rerouting 

communication and rescheduling applications to avoid complete system failures until 

repairs can be made. Backup components can also degrade over time and might be 

unusable when need arises. 

 

1.2. Objective 
 

The objective of this thesis is to provide an assessment methodology for IC design by 

creating a method to evaluate the impact of the number of TSV links in upcoming 3D 

technology implementations. Assessment in a large search space of possible configurations 

of such a platform can become cumbersome if algorithms with a long runtime that consume 

too much time are used. Quicker analysis methods are necessary to lower development cost 

and duration or assess system functionality after a failure has occurred. This thesis will 

propose a simple heuristic method to help assess the effectiveness of TSV based three 

dimensional NoC with non-uniform layout configurations. This is done by quickly 

assessing the necessity of each TSV by comparing application execution time to TSV 

count. For comparison purposes a simulated annealing algorithm was used. Comparison 

results have shown that the simulated annealing algorithm provides evaluation values with 

lower estimated application runtime time, but takes several times longer to execute to 
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assess the search space. For quick difference comparison purposes the new assessment 

method is well suited. 

 

1.3. Organization 
 

This thesis is divided into 4 chapters. Chapter 1 provides a short overview of the thesis, 

making introductions into SoC and NoC technologies and how they evolved towards three 

dimensional technologies, the target technology line for this thesis. Additionally a short 

introduction into system dependability can be found. Chapter 2 will explain the background 

of the target system and technology and the design flow needed to optimize the 

performance. Chapter 3 presents a new method to assess TSV impact in 3D NoC layouts, a 

comparison algorithm and test results comparing the outcome of the algorithms. Chapter 4 

contains the summary of the background and test results. 

 

2. Background 
 

The aim of this chapter is to explain the basics of the target platform by giving a short 

overview of SoC and NoC structure and capabilities in detail and provide an overview of 

their structure. Chapter 2.1 will explain the basics of a NoC - point out properties 

characteristics and building blocks, and benefits of using them instead of ad-hoc global 

wiring or regular bus architectures. Chapter 2.2 will provide a broader overview of 3D 

stacking technology, while Chapter 2.3 take a closer look into TSV technology and its 

design. 

 

MPSoC systems can be divided into homogenous and heterogeneous systems according to 

the IP variety they employ. Homogeneous systems integrate only one type of general-

purpose processors for the sole purpose of increasing system parallelism. General 

implementations include PCs and general purpose handheld devices. However the SoC 

ability to be globally asynchronous and locally synchronous known as GALS, allows the 

usage of a wide variety of IPs, creating heterogeneous systems [18]. Heterogeneous 

systems are more challenging and costly to design as task specific IPs have to be mapped 
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onto proper positions. IP mapping is a step in design methodology when the system has two 

or more different IPs with specific purposes as opposed to general-use processing units. It 

is possible to minimize the execution of specific applications by strategically placing task 

specific IPs in favorable positions in the system during the design phase. During the task 

mapping process on heterogeneous systems, if specific task execution time on every type of 

IP is known beforehand, a complex scheduling algorithm is needed to optimize application 

execution.  Heterogeneous system performance becomes poor when the application does 

not fit the ideal form or type due to longer routing delays or possible task execution time 

increase resulting from task execution on non-task specific IP. Heterogeneous structures are 

generally used in embedded systems. 

 

2.1. The NoC Paradigm 
 

To circumvent the communication bottlenecks in MPSoC architecture bus and network 

infrastructures are used. Embedded systems, which are often dedicated to specific tasks, 

compared to general purpose computers such as Personal Computers (PC). A dedicated 

processor unit is cheaper to manufacture than general purpose processor as it requires fewer 

logical components. 

 

Similar to modern telecommunication networks a NoC consists on multiple point-to-point 

communication links interconnected by switches, allowing packets to be sent from one 

module to any other in the system using digital packet switching over multiplexed links. It 

is possible to use any regular network topology but by far the most common design is the 

square mesh topology.  

 

Mapping algorithms for MPSoC can be divided between two processes – hardware (IPs and 

interconnections) placement algorithms for heterogeneous hardware layout design, and task 

mapping to optimize software concurrency which will be explained in chapter 3. For 

heterogeneous MPSoC systems dedicated to a specific task, both application task mapping 

and IP placement are often optimized simultaneously to for better execution times and 

system performance. 
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2.1.1. NoC architecture composition 

 

Generally a network consists of multiple terminals interconnected via switches and wiring 

between them. Network on Chip solutions in MPSoC are represented with three main 

components such as links, routers and network interfaces. Figure.1 shows an example 

layout of NoC implementation using a mesh topology.  

 

 

Figure 1: Simple NoC with standard resource elements 

 

Links in NoC systems consist of channels – physical channels, represented by a group of 

wires, and optional virtual channels, represented by a set of additional buffers built into 

routers. A virtual channel is created by temporarily storing the message in the extra 

memory buffer of a router, guided according to a set of protocols. The width of the 

channel, the number of parallel wires, may vary depending on the bandwidth requirements 

and avalible chip area. The number of wires in a unidirectional channel is usually constant 

throughout the system and is known as the “channel bitwidth”. A channel can be 

unidirectional or bidirectional depending on the design requirements and limitations. 

Generally links in networks architectures have two physical unidirectional channels for 

opposite directions, creating a fully-duplexed link, allowing communication to flow both 

ways without collisions. A link in NoC architecture can in most cases only be used in a 

single direction at the same time for noise mitigation in an extremely constrained area. 

The use of interwoven bidirectional channel structure however, using alternating clock 

cycles and using the other channel as noise shielding, enables the use of the in link both 

ways simultaneously [2]. Networks using point-to-point links can be viewed as a set of 
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interconnected switches, each connected to zero or more nodes. Direct networks are router 

based and correspond to cases where every router is connected to a single node and can be 

divided into mesh, torus and hypercube subdivisions. Indirect networks are switch based 

and can be separated into crossbar networks and multistage interconnection networks. 

Network topologies are explained in-depth in chapter 2.1.2. 

 

Routers in NoC are elements composed of buffers, input/output channels and an 

implementation of any networking protocol(s). The router implementation complexity 

impacts the cost of design and validation, as well as the area and power consumption. A 

router acts by checking the destination address of the packets received and re-reoutes the 

packets according to a network protocol implemented in the system on local router level 

or global routing paths assigned by the source node. 

 

Network interfaces are network translation devices built into processing cores. Their 

main purpose is tag packets with destination addresses. Since most NoCs are message-

passing by nature, an adapter is needed. It should be observed that in realistic NoC 

architectures, network interfaces play a significant role in determining the overall chip 

area requirements. Network interfaces allow the separation between computation and 

communication platform, which in turn allows the reuse of both, core and communication 

infrastructure independent of each other. Network interfaces can also be implemented on 

block level to better accommodate the integration of different signals throughout the entire 

chip.  

 

2.1.2. NoC architecture layouts 

 

A NoC can be characterized by the structure of the router connections. Many regular 

network topologies can be implemented in NoC technology using different component 

designs and protocols for a wide variety of purposes. In direct-network topologies nodes 

are composed of a router and the associated processing unit(s), and connected to a fixed 

number of neighboring nodes. Messages between two nodes go through one or more 

intermediate nodes. In these topologies only the routers and links are involved in 
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communication between nodes, using a routing algorithm implemented by routers. In this 

arrangement, nodes are distributed in an n-dimensional space where packets can move in 

only 1 dimension at a time. Figure 2 shows a several examples of the most common direct 

topologies. 

 Ring topology is the simplest network topology that comes with a high cost, 

the average “hop count”. A hop count refers to the number of intermediary 

network nodes used to reach the destination. Ring topology can often be compared 

to BUS designs due to the simplistic structure, large channel count and channel 

bitwidth as the the links of a ring topology are unidirectional. Communication flow 

is unidirectional and can only move in circular motion to reach other nodes. 

Absence of routing path diversity can lead to performance bottlenecks under heavy 

loads and is a major obstacle for fault tolerance. Regular ring topology is not 

recommended for larger networks. Hierarchical ring topology divides large 

systems into small clusters and connects them with opposite directional ring flow.  

 Mesh topology nodes create a semi-permeable barrier similar to a mesh, in 

the shape of interlinked squares. By far the most implemented NoC topology, due 

to its structure flexibility and low complexity. The link structure is bidirectional 

and allows for dynamic communication flow to avoid stalls resulting in  

 Torus topology is an evolutionary step in mesh topology with a set of links 

connecting opposite side nodes of the same dimension to form shorter paths. Torus 

layout requires several additional metal layers to implement the extra link set. 

 

A generalization of the cube to dimensions greater than three is called a hypercube, n-cube 

or measure polytope. Hypercube topology is based on the fourth dimension principle, 

creating the illusion of a tesseract. Just as the surface of the cube consists of 6 square faces, 

the hyper-surface of the tesseract consists of 8 cubical cells.  
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Figure 2:  (a) Mesh, (b) Torus, (c) Hypercube, (d) Hierarchical ring 

 

In indirect topologies some routers are not directly connected to any processing units and 

are only meant to propagate the communication to nodes further away. 

 Fat-tree topology does not have a specific form. The basic principle connects the 

network links into large centralized channels creating bundles that look like large 

tree trunks. By judiciously choosing the fatness of links, the network can be 

tailored to efficiently use any bandwidth made available by packaging and 

communications technology. In contrast, other communications networks, such as 

hypercube and mesh topologies, have communication requirements that follow a 

specified mathematical law, and therefore cannot be tailored to specific packaging 

technologies. 

 The crossbar's high degree of connectivity allows for a large number of 

simultaneous connections to keep data moving through the network. 

Unfortunately, this connectivity comes at a high cost. Crossbars utilize a large 

number of switches and a large number of wires, which translates into high power 

consumption, large size, and low operational frequencies. The key feature of the 

crossbar is that it is a strictly non-blocking network; any free input port can be 

connected to any free output port without changing existing input/output pairs. 

However, non-blocking design may be too cumbersome for system constraints. 

 Multi-stage topology is a regular NoC, where routers are identical and organized 

stages. Input and output stages are connected to the functional units in one side and 

to the internal nodes in another side. 

 

(a) (b) (c) (d) 
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2.1.3. Routing rules 

 

A routing protocol specifies how routers communicate with each other, propagating 

information to processing units enabling the selection of different paths between any two 

nodes on a network if more than one is available. Routing algorithms determine the 

specifics leading to a choice of a route. Depending on the network structure, routing can 

be blocking or non-blocking, if it can manage all requests that are issued during operation. 

Communication in a NoC system is usually carried out using an implemented form of a 

handshake protocol, similar to how communication in regular computer networks. 

Handshake protocols are built on the principle that no communication will be carried out 

until the destination node is notified about an incoming transfer and the reply has been 

received in the form of an acknowledgement message. Routing can be divided into two 

main categories, adaptive routing and oblivious routing. When a routing path is blocked 

by another communication activity, adaptive routing considers other paths to reach its 

destination following a set of rules. Oblivious routing routes packets without any 

information about traffic and conditions of a network, ignoring the possibility of 

situational routing paths. Oblivious routing algorithms never end up in a dead-lock 

situation. A dead-lock is a situation where the communication activity is closed in a loop 

between routers, this situation occurs when a path is blocked and the communication flow 

is redirected dynamically to avoid stalls. Both of the packets reserve some resources and 

both are waiting each other to release the resources. Below are a few examples of 

oblivious routing algorithms that can be integrated into most path finding algorithms. 

 

Dimension order routing algorithms route packets along dimension in a specific order, 

once a packet has traveled to the distance in the specific dimension, it cannot be routed 

along that dimension again. XY routing, a dimension order routing algorithm, suits well 

on a network using mesh or torus topology. Addresses of the routers are geometrical 

coordinates in two-dimensional space. Turn model algorithms can be applied to prevent 

dead-lock situations in dynamic routing environments where real-time constraints are 

critical. Turn model algorithms determine one or more directional turns which are not 

allowed during routing [21].  
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Figure 3: Turn model routing examples, (a) west-first, (b)north-last, (c) negative first 

 

Shortest path routing algorithms are the simplest deterministic routing algorithm, where 

packets are always routed along the shortest possible path. Examples of shortest path 

routing algorithms are distance vector routing and a link state routing. In Distance Vector 

Routing, each router has a routing table that contains information about neighboring 

routers and all recipients. Routers exchange routing table information with each other and 

this way keep their own tables up to date. Routers route packets by counting the shortest 

path on the grounds of their routing tables and then send packets forward. Distance vector 

routing is a simple and cost efficient method as each router does not have to know the 

structure of the whole network. If nodes are always updated on the layout, a source 

routing method can be applied where a sender makes all decisions about a routing path of 

a packet. The whole route is stored in a header of packet before sending, and routers along 

the path carry out the sender’s instructions. 

 

2.2. Three-dimensional IC architecture and manufacture 
 

Taking full advantage of expanding in three dimensions instead of two requires 

sophisticated design techniques and new computer aided design tools for higher 

manufacturing precision. There are still very few standards for TSV-based 3D-IC design, 

manufacturing, and packaging. In addition, there are many integration options being 

explored such as via-last, via-first, via-middle, interposers and direct bonding. Currently 

there are three 3D technology design methods: monolithic 3D, where all of the electronic 

components and interconnects are built on-top of a single silicon wafer layer by layer and 

then diced into fully functional 3D chips, wafer-level stacking, where components are built 

on two or more wafers that are thinned stacked bonded and diced into chips, die on wafer 

stacking, where multiple dies are aligned and bonded onto each other and then onto a 
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carrier wafer or a silicon interposer layer. A cross-section example of 3D stacking can be 

seen in Figure 3. 

 A silicon interposer is a thick silicon layer containing only TSVs that connect 

multiple chips that are stacked separately on top of the same interposer layer, often 

referred to as 2,5D, a method that allows the reuse of pre-built dies with similar 

footprints. A silicon interposer minimizes the TSV area penalty and allows the use 

of a large variety of different types of TSV, including optical TSVs for high speed 

data transfer and polymer clad TSVs for heat collection [4]. Silicon interposers are 

already used in FPGA board manufacturing process [7], where integration of 

different signals and reuse of pre-built chips is an important requirement.  

 Stacking approach includes Wafer-to-wafer, die-to-wafer and die-to-die stacking 

methods. Wafer-on-wafer method stacks entire silicon wafers, with a single layer of 

active devices, on-top of each other. In this method, the vertical interconnections are 

etched through the entire wafer and all metal layers. Wafer-on-wafer bonding can 

reduce yields, since if any 1 of N chips in a 3D IC are defective, the entire 3D IC 

will be defective. Die-on-wafer stacking method utilizes pre-made components 

which are built on one or several semiconductor wafers. All but one wafer are diced 

into chips, then aligned and bonded onto die sites of a wafer that will remain un-

diced for the duration of the stacking process. Using die-on-die stacking method, 

electronic components are built on multiple die, which are then aligned and bonded. 

Thinning and TSV creation may be done before or after bonding. One advantage of 

die-on-die is that each component die can be tested first, so that one dysfunctional 

die does not ruin an entire stack. 

 Monolithic approach is an upcoming technology that aims to replace TSV based 3D 

technologies when it comes to multiple layers of active components. The 

manufacturing process involves a sequential device process where the frontend 

device layer construction is repeated on a single wafer to build several layers of 

active devices. The main design problem for this method has always been heat 

dissipation, however recent research has shown that using polymer clad TSVs to 

direct heat directly into the heat-sink is possible. Many advances may have taken 
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place in the recent years, but has yet to prove reliability and usability from mass 

production point of view. 

 

 

Figure 4: 3D architecture 

 

2.3. Through Silicon Vias 
 

Through Silicion Via (TSV) is one of the interconnection technologies for 3D IC, enabling 

the use of multiple layers by bonding them together and able to relay communication, 

power and even heat depending on its design. TSVs are vertical interconnections that pass 

through the entire silicon substrate which no active area can overlap with [13].At the 45 nm 

technology node, the area footprint of a 10μm x 10μm TSV is comparable to that of about 

50 gates. Additional area around a TSV is also reserved in the form of a “keep-out-zone” 

representing the signal saturation distance it takes to prevent noise related problems. 

Although TSV reduces interconnection length between cells, when placed on top of each 

other, they increase wire length on planar scale since they occupy significant silicon area 

spreading out the placement. Furthermore routing becomes more difficult on planar scale, 

especially for TSV last methodology as the TSVs go through all metal layers becoming 

possible obstacles. Excessive or ill-placed TSV not only increase die area but have also 

negative impact on coupling. Depending on VIA first or VIA last methodology, may even 

interfere with not only the device but also the metal layer.  



24 

 

Interconnection placement is mainly used in three-dimensional IC design in system without 

a NoC 

 

2.3.1. Design and manufacture of through silicon vias 

 

The goal of TSV design is to minimize the size and maximize the TSV pitch without 

exceeding the maximum resistance permitted by an application. This combination results in 

a TSV whose low capacitance and resistance leads to a power-efficient design that meets 

the system’s performance requirements. No metal wire lines can be routed over the TSV 

zone except the highest and lowest metal layer deposits that are used for routing and 

redistributing the TSV’s own signal for the same reason. The integration of TSVs can be 

divided into three groups depending on the phase they are etched into the design. Via-first 

TSVs are manufactured before metallization, thus occupy the device layer and result in 

placement obstacles. Via-middle are manufactured after Front-End-Of-Line process but 

before Back-End-Of-Line. Via-last TSVs are manufactured after metallization and pass 

through the chip. Thus, they occupy both the device and metal layers, resulting in 

placement and routing obstacles. Typically TSVs manufactured using via-first and via-

middle methods are smaller, denser and with larger aspect ratios than via-last method. An 

example of via-middle manufacturing process can be seen in Figure. 4. While the usage of 

TSVs is generally expected to reduce wire length, this depends on the number of TSVs and 

their characteristics.  

 

TSV architecture typically consists of a cylinder with a uniform circular cross-section of a 

conducting material surrounded by an insulator which is intended to prevent voltage leaks 

and lower parasitic capacitance [3]. The final characteristics of a TSV depend on the 

geometrical parameters (height, diameter, pitch, and oxide thickness) and electrical 

parameters (metal conductivity, oxide permittivity and silicon resistivity). Several issues 

such as fabrication technology, heat removal, reliability, application technology and many 

others, have to be resolved simultaneously and have been preventing proper 

implementation of this method in the past. Metal filled TSVs with very high density can be 

achieved by depositing a thin titanium-nitrate film that acts as a seed layer and diffusion 
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barrier for the tungsten deposits using metal-organic chemical vapor deposition. To release 

stress, the tungsten is partially etched back. This process is better best suited for small 

TSVs as larger than 5μm are preferably filled with quicker and cheaper process like 

electrodepositing copper. Stress monitoring shows that the maximum stress and strain with 

tungsten filling is observed not in the bulk region of the TSV but in the upper section 

between the metal layer and tungsten filler, while copper-filling experiences more stress in 

the TSV [12]. The possibility of manufacturing TSVs with other properties such as coaxial 

and optical TSVs for data transfers, polymer clad electrical TSVs for power distribution or 

even fluidic TSVs for coolant material routing [13] [14]. 

 

 

Figure 5: Via-middle manufacturing process 

 

 

TSVs in 3D design are connections to other layers stacked on top of each other by either 

soldered micro-bumps or thermo compressed bump-less bond pads. Lack of bonding 

strength due to bad bond pad distribution during die stacking and vibration testing can lead 

to delamination and cracks in the substrates. Bonding failures can be lowered by changing 

bond pad density, a technique that has already been accounted for in the physical design 

phase of bond pads. The most straightforward bonding method assumes that, for every 
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TSV, there is at least one bond pad to attach to the next die in the stack. Addition of further 

bond pads would require more TSVs to be inserted into the design; however, as suggested 

by [3], maximum TSV amount (NTSV) on a chip is limited due to area penalty. None the 

less, using this approach creates the requirement of a minimum number of bond pads. This 

leads to the assumption, that interconnections between dies are solely limited by TSVs, not 

bond pads. The need to decrease NFP and increase NTSV in 3D integration starts 

contradicting the fabrication process as long as NFP > NTSV requirement is set. A 

proposed solution would be to create redundant or dummy bonding pads what leads to 

complex problems in operations that involve two or more dies. According to [6], backside 

bond pad routing is a difficult process after wafer thinning, resulting in a larger routing 

pitch. Vertical alignment of bond pads to corresponding TSVs can be done to reduce costs 

by removing the need for bond pad routing.  Test results have shown a highest success ratio 

of 93% for proper bonding using double bond pads, where the dummy bond pads have no 

net connection. In a more recent approach to building 3D chips, 2D chips are stacked and 

either bump- or adhesively bonded to a base wafer. In this design vertical connections are 

achieved within but not through the chips. The sizes of the chips can be different which 

permits the integration of chips from different sources and different technologies, but the 

alignment of the pads on the base wafer and the chips to be attached must be compatible. 

To minimize the TSV pitch, etching method is required that maximizes the aspect ratio of 

the depth to the width of the TSV cavity. In addition the etching process must be done in a 

way that avoids erosion which can lead to an increase size of the cavity at the surface, 

increasing the area required by the TSV. A masking agent that is not affected by the etching 

process can be used to maintain the dimensional integrity of the mask but removal can be a 

challenge [15]. 

 

2.3.2. Design challenges using stacking and vertical 
interconnection technologies 

 

 

Several design challenges have prevented the efficient use of TSVs in IC manufacturing 

process, including noise and heat mitigation, area penalty, bonding strength and stacking 

accuracy. Substrate noise in 2D ICs is well-studied but noise caused by the use of TSVs in 
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3D chip has not been studied thoroughly. Establishment of more effective design guidelines 

are necessary to better understand how critical circuit design parameters, such as signal 

slew rate, and TSV-to-TSV/device spacing impact signals. Placing substrates on dies with 

grounded backside planes have been used in certain 2D packaging but have yet to be 

redesigned for 3D purposes. The experiments in [14] pointed out that body voltage for the 

substrate without grounded backside was extremely high, reaching almost transition voltage 

levels due to coupling and having no charge collection ways. Voltage transition in the TSV 

affects the substrates, causing change in body voltage of nearby devices. Although with a 

small time window, such voltage changes affects both analog and digital devices, the latter 

being more susceptible to the timing of the peak voltage change. Experimentations with 

slew rate have shown that peak noise always occurred at constant distances from the and 

further analysis showed that body voltage is independent of voltage transition time in the 

TSV. Thickness of the TSV sidewall has shown similar results as peak locality did not 

change, but showed considerable noise reduction in both configurations. TSV height 

however affects peak body voltage locality, amplitude and affected substrate area for both 

devices and other TSVs.  

 

The major manufacturing yield limiters for a 3D IC technology are die and wafer bonding 

defects from stacking, TSV shorts due to stack misalignment, and changes of device 

parameters due to 3D processing. Thermal management is one of the important issues of 

3D IC integration. Effective thermal management methodologies and solutions are needed 

for widespread use of 3D IC integration. The heat dispersal/source environment of a 2D IC 

is the cooling material, but the same environment of a die within a 3D IC may be another 

die that also generates heat. The thermal analysis is an important and proper heat collection 

TSV layout modification from thermal and stress distribution point of view can enhance the 

circuit reliability. Therefore, Thermal management in 3D ICs is critical for maintaining 

required reliability, performance, and power dissipation target. 

 

The addition of a third dimension would require more advanced planning tools to account 

for the new dimension [3] [18]. 3D IC physical design has attracted an increasing amount 

of attention and has generated a significant amount of research work on the floor planning, 
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placement and routing for 3D ICs. However, all these tools have been developed by 

different groups, using different formats to represent the design data, creating barriers for 

researchers who need to use the existing design tools to conduct further studies. 

Considering the above, IC design is in need of new standardization to accommodate 3D IC 

design. 

 

 

2.4. Design flow 
 

To optimize the performance of a technology a proper design flow must be followed. 

Systems with multiple processors for example have increased performance compared to 

single processor systems but include many new complications related to design complexity, 

proper resource usage and communication between them. The performance of a platform 

does not multiply when adding more processor as complications with application 

concurrency and increase in data transmissions leads to a drop in overall system 

performance, creating bottleneck situations for communication and memory systems. To 

increase the performance gain, several design and management methods have been devised. 

Chapter 3.1 gives a short overview of task mapping and Chapter 3.2 a short overview of 

task scheduling respectively. 

 

2.4.1. Mapping algorithms 

 

 

Task mapping entails the designation of an application’s tasks to different processing units 

in multi-processor systems. Application performance can be increased by mapping tasks in 

a way that would minimize the task execution time and communication delay between 

them. The main weakness of dynamic mapping is the incomplete data available of the task 

graph, since the task being mapped considers only the communication with its recipient 

task [17]. On the other hand, static algorithms consider all tasks and resources together, 

allowing for better mapping exploration using more complex algorithms. Simulated 

annealing algorithm, explained in detail in chapter 4.3, is often used for task mapping 

purposes in MPSoC systems. Most static task mapping algorithms are based on critical path 
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principle, first mapping tasks that are designated in the critical path sequence. Commonly 

used with all forms of projects, including construction, aerospace and defense, software 

development, research projects and engineering among others. Although the original 

critical path algorithm is no longer used, the term is still generally applied to all approaches 

used to analyze a logical diagrams and graphs. A schedule generated using critical path 

techniques is often not processed precisely, as estimations are used to calculate values, if 

mistakes are made, the results of the analysis may change. For example, the bottom-up 

algorithm is based on the critical-path algorithm. Instead of starting with the first task, the 

bottom up algorithm maps tasks start from the bottom of the graph and work their way up.  

2.4.2. Scheduling 

 

Scheduling in general is a process of deciding how to commit resources between a variety 

of possible tasks. In computing, scheduling is a concept by which processes and data flows 

are given access to system resources such as processor time or communication bandwidth. 

Initially on a single processing unit, scheduling consisted of sharing the processor resource 

between several processes running on the system using a variety of different methods to fill 

empty processor cycles or switch between currently running processes based on task 

priority. A scheduler, a protocol responsible for choosing processes to execute, works by 

selecting tasks based on priority values influenced by scheduler type.  

 

Scheduling methods can be divided into two sub-categories. The first category is non-

preemptive scheduling, where a process once scheduled will be executed until completion. 

The first category is preemptive scheduling, a method where a process can run for a 

predetermined amount of time before a preemptive check allows another process to run. 

Dynamic scheduling that falls under this category implies the possibility of executing tasks 

as soon as they can be executed, making it possible for new instructions to be carried out 

when a stall occurs as long as they do not produce application structural hazards or 

dependencies. Due to the contextual objective of the thesis and for the purpose of lowering 

complexity of the scheduling phase described in detail in chapter 4, dynamic scheduling 

will be ignored. 
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Non-preemptive scheduling is mostly used in static schedules, which are optimized by the 

compiler. When the application is stalled, no further instructions are given until the 

situation is resolved by hardware. Real-time schedules are dynamic by nature and are 

mostly enforced by hardware. Most static scheduling algorithms are based on the list 

scheduling technique [1].  The basic idea of list scheduling is to make a scheduling list, a 

sequence of tasks yet to be executed, by assigning priorities to them and repeating the 

simple process of checking each entry of the list sequentially if it can be executed starting 

with the highest priority tasks. The priority of a task can be assigned using any number of 

evaluation parameters defined by the algorithm or the user.  

 

3. TSV impact assessment on 3D NoC platforms 
 

The highest priority objective in chip design is the balance between performance and cost; 

in consideration, the need to assess new design aspects properly becomes apparent as TSVs 

require chip area several times larger than a regular interconnection. With the integration of 

each new TSV, the chip area will be increased, resulting in relative distance increase for all 

interconnection. Additionally the possibility exists that chips with few dysfunctional TSVs 

can be reconfigured to provide at least partial system performance and capabilities from the 

ideal form. A method is needed to reassess the chip performance and cost values. In 

consideration of the above, a method is needed to assess the efficiency of an entire system 

for possible impacts the TSVs might have. For comparison purposes a modified simulated 

annealing algorithm will also be implemented on the testing platform. 

 

3.1. Architecture platform 
 

MPSoC systems generally use a tile-based multiprocessor template often found in parallel 

computer architecture related literature where each tile contains one or more processor 

cores and local memories. Tiles (nodes) can be either homogeneous or heterogeneous from 

the system point of view – in a homogeneous MPSoC system all nodes contain identical 

processor cores, while heterogeneous MPSoC system tiles are chosen from a variety of 
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different processor cores available. The tile architecture and processor core differences 

have no impact from communication point of view. 

 

Definition 1. (Architecture)The network architecture  iLPN , is a three 

dimensional mesh composed of m n k  )( ZYX number of homogenous tiles, where each 

node Pp represents individual tiles and Lppl jik  ),(  represents a link between 

nodes ip and jp . Vertical dimension links LLi  connecting horizontal layouts can be 

arbitrarily mapped and can create non-uniform paths. Vertical links, in X and Y 

dimensions, differ from horizontal links, in Z dimension, in length and bandwidth.  

 

 
Figure 6: NoC-based MPSoC architecture example 

 

 

Communication between tiles involves sending data over a sequence of links from the 

source to the destination tile. This sequence of links through the architecture layout is 

called a route and is defined formally as follows. 

 

Definition 2. (Route) A route jir , , between tile ip and jp  where ji pp  , is a sequence of 

links nnmm llll ,,...,, 11  in the network architecture. Src and dst are the respective source and 

destination tile operators of the route or a link. For a route jir ,  we assume that: 

 The source of the first link )( mlsrc is equal to the source tile of the route )( , jirsrc  

and the destination of the last link )( nldst  is the destination tile )( , jirdst . 

 For any two consecutive links 1, kk ll in a sequence, )()( 1 kk lsrcldst . 

 There is no cycle in a route, i.e. for any two links lk ll  in the sequence holds 

)()( 1 kk ldstldst . 
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 When jijiji rrrdstrsrc  )()( ,, will result in an empty route jir , . 

 The length of a route jir ,  is equal to the number of links in its sequence, denoted 

by jir , . jim rl , denotes that link ml is part of the link sequence of route jir , . 

 

Links and processor tiles can generally be used by multiple processes simultaneously due to 

conventional pipeline methods built into the elements themselves, however for the purpose 

of lowering test complexity all system elements can be used by only one activity at a time. 

All nodes will only be able to process a single task at any given time. All links in a route 

jir ,  sequence will be reserved and blocked to other activities until a communication transfer 

has finished. When the source and destination nodes of an inter-task communication data 

transfer are the same, communication time and cost between the tasks is equal to 0.  

 

3.2. Problem formulation 
 

   Definition 3. (Application entity)An application is represented by  ,G V E  and 

is an task precedence graph consisting of two subsets: a subset of nodes Vvi  with data 

volumes denoted as )( ivvw  and a subset of edges with precedence relation between two 

nodes iv  and jv , denoted as 
,i je E , and is associated with the weight of the edge 

)( , jieew indicating the communication volume between iv  and jv . 
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Definition 4. (Mapping) Given a set of precedence constricted tasks GV  and 

assigning them to a set of processors NP   for execution, forms a mapping  PVM ,  

which dictates on what processor resource each task is carried out on. A mapping does not 

include communication resource assignments and cannot therefore dictate in which order 

the tasks are executed. 

 

A mapping assigns tasks to be executed by specific nodes. If no constraints are set for node 

structure and type, both homogeneous and heterogeneous mappings are possible. On a 

homogeneous system, if the assumption that the system is heterogeneous and the 

application’s tasks are already partitioned and mapped optimally on the target system is 

made, creates a situation where the system can be perceived to be either homogenous or 

heterogeneous. Random and heuristic mapping methods 

 

Definition 5. (Schedule) A Schedule, a 3-tuple  MGNS ,, , is an execution order and 

communication routing schema, where N is the architecture description, G is the 

application graph and M is a mapping of said graph onto the architecture platform. Nodes 

and Edges in set G cannot be scheduled until all of itheir predecessors are scheduled. 
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Figure 7 – An example of a precedence graph with edge weights and execution times 
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*note that link speeds may vary according to the interconnection type that is used. 

 **The pareto efficiency set provides an overview about the impact of adding/removing 

TSVs in the NoC. 

 

A schedule provides a time frame, within which a communication event can be sent along 

the route r. All links along the route’s sequence are reserved for the entire duration of the 

event.  

 

Definition 6. (Schedule function) A scheduling function CES :  

 the route starts from the source tile: )(rsrci  , 

 the route ends at the destination tile: )(rsrcj  , 

 the communication does not start before the earliest moment in time at which the 

data is available: readystart tt  , 

  

 

The total communication cost can be formulated as the sum of all communication 

transmissions for every *communication process between tasks, while the communication 

cost for a single transfer is equal to 0 if two consecutive tasks are mapped onto the same 

processor.  

 





),(

,

ji

jicomm rT (1) 

 

The problem can be stated as the following: 

Given: 

1. Application task graph,  ,G V E  

2. Network topology,  ,N P L   

3. Mapping  PVM ,  

Determine: 

A pareto efficiency set** for TSV number and execution time. 

Such that: 
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 A single schedule provides an area penalty value based on the number of TSVs in 

the network topology 

 The placement of inter-layer communication links is different for every schedule.

 Total number TSVs and graph execution time for each schedule form a pareto 

efficiency set. 

3.2.1. Traffic assessment method 

 

Given a 3 dimensional NoC layout with knm  number of tiles, defines the max number 

of vertical interconnections to be equal to )1(  knmi . The possibility of a vertical 

interconnection in the system is binary, either existent or non-existent, giving us a layout 

combinatorial search space given by equation.1. The last layout for every vertical layer is 

discarded as unfeasible due to lack of vertical interconnections between layers, making 

inter-layer communication impossible. 
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Example: if number of tiles in system is equal to 2228  , the max number of vertical 

interconnections would be equal to 1224  and the search space consists 15 of possible 

vertical interconnection layouts (3).  
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  (3) 

 

Optimal number of tested solutions becomes critical for high tile count, due to the 2
n
-1 

complexity of the search space. When all interconnections are given a priority value the 

number of solutions that need to be tested becomes equal to n-1. 
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The general idea of this method is to quickly and efficiently find 3D NoC layout 

assessment when TSV layout is non-uniform. This is done by removing a TSV from a fully 

homogenous mesh layout, therefore changing the routing paths and impacting the execution 

time of an application. Time needed for communication events inside an application is 

influenced by the routing distance. This process is repeated until there are no vertical 

interconnections remaining. The result will be a pair of vertical interconnection number and 

execution time for each point where a change to the network layout occurred.  

Probabilistic and random load-balancing mapping methods have an even distribution 

chance for the entire system, but are less efficient when inter-task communication is 

present. The amount of inter-task communication generates traffic that can be used to 

assess interconnection suitability, therefore the task mapping will be carried out randomly 

to simplify the testing process of the algorithm and increase the accuracy of test data.  

 

The system is initialized before the algorithm is executed, this include the construction of 

the network structure and processing the graph data. The initial scheduling is done with an 

unmodified fully homogenous system to ascertain the maximum values and evaluate the 

initial state. All vertical interconnections are checked and order by traffic load into a 

working set and the interconnection with the lowest value is set to inactive. The next 

process is an iterative loop that creates a new schedule based on the new layout and 

recalculates the execution time. The process finishes when no interconnections in the set 

remain. A diagram of the entire process is depicted on Figure 8. 
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Figure 8: Traffic priority algorithm diagram 
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To determine the effectiveness of different assessment parameters a series of small tests 

were carried out. The first test on the platform described in chapter 4.2.2 is carried out with 

the traffic based heuristic algorithm to see what type of communication evaluation is 

possible. Tests were carried out using two slightly different traffic assessment parameters, 

such as activity count (AC) and total time spent on activities (TS). AC counts the routes 

that were mapped through the specified vertical interconnection during the scheduling 

process, while TS calculates the total time the vertical interconnection had been in use 

during the execution of these tasks. The first test application APP1 consist of 41 tasks with 

execution length of 5-15ms and 40 communication events ranging from sizes of 20-30 

packets. The second application APP2 consists of 59 tasks with execution length of 5-15ms 

and 40 communication events ranging from 20-30 packets. An example of the results of the 

tests can be seen in table.1. In Table 1, column 2 and 5 show test results using AC as 

priority assessor variable, while column 3 and 6 show TS as assessor variable. Table 1, 

Column 4 and 7 show the execution time difference between the two methods. The 

difference between AC and TS methods can be seen on Table 1, row 7 to 9 with only TSV 

count goes below 4. 

 

Table 1: comparison of A1 and A2. Test series 1 

 

The results show little difference between the methods but show that AC method is slightly 

more efficient when using the same mapping and scheduling methods. AC method will be 

therefore used for all other test sets in this thesis. 

 

TSV 

count 

exec AC 

(app1)  

[ms] 

Exec TS 

(app1)  

[ms] 

delta  

|TS-AC| 

[ms] 

exec AC 

(app2)  

[ms] 

Exec TS 

(app2)  

[ms] 

delta  

|TS-AC| 

[ms] 

9 357 357 0 1307 1307 0 
8 394 394 0 1318 1318 0 
7 378 378 0 1350 1350 0 
6 378 378 0 1350 1350 0 
5 404 404 0 1424 1424 0 
4 406 406 0 1415 1415 0 
3 442 418 24 1498 1630 132 
2 427 428 1 1511 1694 183 
1 571 613 42 2416 2443 27 
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3.2.2. Test system description 

  

The test platform will imitate a 3D mesh NoC layout by implementing a data structure that 

simulates node and link positioning that is generated at the execution of the test application. 

The test system consists of 4 individual components: 

 Customizable network structure implemented as a three dimensional cube structure 

where each node is an abstract element defined before compile time. The necessary 

elements for a layout are defined on compile time prior to execution. The nodes can 

be turned on or off by the user or the algorithm.  

 A graph parser is built into the system that accepts TGFF [10] file format and 

generates a graph structure based on the graph description found. It is possible to 

generate random precedence task graphs of any size, suited for the purpose of these 

tests, using the TGFF platform.  

 An implementation of a path routing algorithm that can find a path given a 3D data 

structure based on shortest path principle. The implemented A* algorithm is capable 

of assessing relative distance using the Manhattan distance principle [7] instead of 

the Euclidian distance due to the nature of the network structure. 

 A scheduler, the “execution unit”, checks the task graph iteratively and checks the 

status of tasks, the node element responsible for the task will schedule the task if the 

required data has been received. The scheduler built into each network node and 

link will mark down the process and check its current schedule if the proposed time 

slot is open. If the time slot is occupied or overlapping, the next task will be 

scheduled after the currently last process is scheduled to end. Links used in 

communication processes will use the start time of the entire process for all links in 

the sequence, blocking the entire route for the duration of the transfer. 
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Test system will use a generated task graph file and platform dimensions as variable inputs. 

The platform dimensions are currently defined at compile time and have to be changed 

manually, for the duration of the tests for this thesis the platform dimensions will be 3x3x2.

 

3.2.3. Traffic assessment method 

 

The objective of this method is to assess the effectiveness of adding/removing TSVs in a 

3D NoC systems in a shorter time span compared to more exhaustive search algorithms 

while providing solutions close to global minimum. The method is iterative – by adding or 

removing a horizontal interconnection on every iteration from the structure, after the 

current state has been evaluated, allows for the viability assessment of each TSV using 

communication traffic as the evaluation variable. For this method to work, on the given 

platform, several other algorithms/methods have to be implemented that are explained in 

detail below.  

Path 

routing 

Scheduling 

Custom 

network 

map 

Graph 

parser 

map 

Assess-

ment 

algorithm 

Figure 9: Test system layout 
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3.2.4. Communication routing algorithm  

 

When choosing the routing algorithm there are several path-finding algorithms besides the 

regular NoC routing rule types, as the scheduling method is non-dynamic and the mapping 

is done prior to execution. Although there are no hard deadlines implemented, speed and 

efficiency are required so that tests can be carried out with systems of all sizes. As the 

search space is three dimensional and direct path might not be available considering the 

non-uniform layout making traversal paths non-constant throughout the testing phase, 

regular NoC routing algorithms like XY or turn models are not admissible. Due to the lack 

of 3D specific routing algorithms a time efficient shortest path search algorithm will be 

used and no routing path restrictions will be applied as oblivious routing will be used. The 

choice between the following three different routing algorithms will be considered. 

 

 A* (also known as A-star) algorithm is a general use path finding algorithm and is 

widely used for its simplicity and application possibilities. Given a method to find a 

node’s neighbors and a relative distance assessment function, it is possible to 

traverse and search any type and shape of system for the shortest path by generating 

a search tree using the node’s neighbors as branches.  A* is a greedy algorithm that 

chooses nodes that seem closest to the destination node, using heuristic methods to 

ascertain the relative distance to the target node and the distance already traveled. 

The heuristic method h(x) uses calculation methods such as Manhattan distance or 

Euler’s distance based on the search space and requirements of the problem. The 

complexity of the A* algorithm depends on the heuristic method used. 

 Dijkstra’s shortest path algorithm is a simple graph traversal algorithm that always 

chooses the shortest path among all possible paths. The search space has to be 

deconstructed into a graph. In directed acyclic graphs it is possible to find shortest 

paths from a given starting vertex in linear time, by processing the vertices in a 

topological order, and calculating the path length for each vertex to be the minimum 

length obtained via any of its incoming edges. The algorithm is less effective 

compared to A* for large search spaces due to the complexity of O (|E|log2|E|), 

where E is the set of edges in the graph. Dijkstra’s algorithm can be viewed as a 

special case of A* where the heuristic h(x) = 0. 
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 Bellman–Ford algorithm is weighted graph shortest distance search algorithm that 

can use graphs with negative edge weights. Bellman–Ford algorithm, similar to 

Dijkstra’s algorithm, is based on the relaxation principle that refines the 

approximation of the correct distance gradually with more accurate values until 

eventually reaching optimum solution. The distributed form of the algorithm has 

already been used in some CISCO networking routers that use distance vector 

routing methods. Computation speed is slower compared to the other two shorte1st 

path algorithms and does not scale well for larger systems. 

 

Given the fact that distance to neighboring nodes is always constant in a matrix and due to 

the parameterized system boundaries, the choice was made to use A-star over other shortest 

path algorithms.  

 

3.2.5. Static priority list scheduling 

 

Static scheduling is a list scheduling method that similar to critical path method uses 

longest paths to evaluate priorities in the list. Differently to a critical path algorithm 

however, static scheduling method calculates priority values by starting from the exit nodes 

of the graph instead of the starting node. Static value for a node is based on its execution 

time and the static level values of child nodes - by adding the highest static value from its 

child nodes to its own execution time creates a priority assessment value. This method was 

originally described in Hu’s algorithm, but has been used in several other scheduling and 

mapping algorithms since [17] [19]. The original algorithm has been modified to 

accommodate task graphs without clear level indentations to fit the test platform.  

The scheduling process starts by assigning static levels to all tasks and sorts the task list 

using descending static level values as its comparison parameter. After the initialization 

process, the scheduler checks each task individually in the given order if it can be executed 

or not - this is done by checking if all necessary data has arrived prior to its execution. 

Once a task has been deemed ready to be executed on the core it was assigned to, the 

secondary function of the scheduler will check if the given processing unit is free at that 

point in time. The scheduler will delay the execution of the task if the processing unit is 
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currently busy and will mark the task to be executed after the current task has been carried 

out. When the task execution has finished, all outgoing communication will be checked and 

carried out starting from the communication with the highest volume.  

 

3.3. Simulated annealing 
 

Simulated Annealing is a general probabilistic non-greedy algorithm for approximating the 

global optimum in a wide array of optimization problems [17]. The general idea behind 

simulated annealing comes from physics where each molecule tries to achieve a zero 

charge value by accepting or rejecting electrons. In condensed matter physics, annealing is 

known as a thermal process for obtaining low energy states of a solid matter using a heat 

bath. The general annealing process is described by the following two steps: the first 

process increases the temperature of the heat bath to a maximum value at which the 

material melts, followed by a slow careful process to decrease the temperature of the heat 

bath until the particles arrange themselves in the ground state of the solid. Hurried or 

interrupted cooling process would normally lead to a sub-optimal energy distribution 

between the molecules weakening the bonds which may result in a brittle state. 

Simulated annealing accepts changes into higher cost states with a probability that 

decreases over time but always accepts changes that lower the cost in the system. The 

acceptance of cost states gives the algorithm the means of escaping local minima and the 

possibility of achieving the global minimum. The algorithm cannot guarantee the global 

minimum solution at all times and despite being slower than heuristic methods is often used 

for NP-complete problems with large search spaces to avoid more exhaustive methods. A 

general form of a simulated annealing algorithm can be found below. 

 

3.3.1. General simulated annealing algorithm 

 

In this chapter we introduce a very basic Simulated Annealing algorithm and explain how 

the algorithm works. The following pseudo code contains all aspects of Simulated 

Annealing but needs to be adjusted to a specific problem. 
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1. S ← S0      (Set initial state) 

2. C ← Cost ( S0 )     (Cost of initial state) 

3. Cbest ← C      (Set initial cost) 

4. T ← T0      (Initial temperature) 

5. For i ← 0 to ∞ {  

6. T  ← Cooling (T0,i)    (Calculate temperature) 

7. Snew ← Move ( S )     (Perform move operation) 

8. Cnew ← Cost ( Snew )     (Calculate cost of new state) 

9. ΔC ← Cnew – C     (Evaluate new state) 

10. if ( ΔC < 0 OR (0,1) < Acceptance (T, ΔC)){ 

11. if ( Cnew < Cbest ){ 

12. Sbest ← Snew     (Chosen as current best) 

13. Cbest ← Cnew 

14. } 

15. S ← Snew      (Move is accepted) 

16. C ← Cnew 

17. } 

18. if (End condition met){   (End condition) 

19. break loop     

20. } 

21. } 

 

The algorithm starts by assigning an initial state and parameters (1-4) that can be user 

defined or random, the initial state defines the starting position and influences the run time 

of the algorithm greatly. The initial state is evaluated and assigned as the current best 

solution (2-3). The iterative loop that follows (5) generates neighboring states and evaluates 

them by changing only a single detail in the current state (7-8). The new state can be 

accepted as the current state or rejected, depending on the evaluation function (10). The 

evaluation function always accepts moves into better states but also accepts moves into 

worse state using an acceptance function (10). The chance of accepting a new state depends 

on the “temperature value” that decreases over time (6), ultimately lowering the chance of 

accepting moves into worse states the longer the algorithm loop is executed. If the current 

best state is evaluated as worse than the new state it will be replaced with the new state (11-

13). The length of the execution is depends on the end condition(s) defined by the user (18) 

and are often specifically tailored for the problem being solved. Steps 6 to 17 will be 

repeated until end condition in step (18) is met. 

End conditions can include number of consecutive rejected moves, a final temperature or a 

final accepted cost which the algorithm has to achieve before it can be terminated. Since the 

objective is not targeted at real-time operations, final temperature and final acceptable cost 
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value would normally be priority choices, however consecutive rejects is by far the most 

popular choice. The functions and conditions used in the simulated annealing algorithm are 

subject to change based on the objective of task the algorithm is meant to perform. The 

right choice of the function procedures and variables is necessary for optimal efficiency of 

the algorithm yet difficult to determine. 

A problem oriented tailored simulated annealing algorithm is needed to fit the specifics of 

the current problem. As there is more than one base state, adding/removing a TSV creates a 

new base state for each number of TSVs, a second iterative loop has to be generated to 

assess all of the possible layout solutions, effectively search through most of the search 

space with less time than exhaustive tests. 

 

3.3.2. Revised simulated annealing algorithm 

 

The revision to the simulated annealing algorithm is carried out to using a two stage 

process. The main purpose for the outer loop is to generate layouts with different number of 

vertical interconnections, while the main loop generates slight differences in the base layout 

provided within the iterations of the first stage. Using the two stage algorithm makes it 

possible to go through all viable combinations in the search space with less time compared 

to an exhaustive search, however reaching global minimum is not always guaranteed.  

 

S ← S0 ;      //Set initial state 

C ← Cost ( S0 );      //Cost of initial state 

Sbest ← S0;      //Set best state 

Cbest ← C;      //Set best cost 

T ← T0;      //Initial temperature 

For i ← 0 to ∞ {  

S ← Move1 (Sbest);     //perform move operation 1 

C ← Cost ( S );     //calculate cost of next  

Iteration state cost 

For k ← 0 to ∞ {  

T  ← Cooling (T0,k);  //Calculate temperature 

 Snew ← Move2 ( S );   //Perform move operation 2 

 Cnew ← Cost ( Snew ) ;  //Calculate cost of new state 

 ΔC ← Cnew – C;   //Evaluate new state 

 

if ( ΔC < 0 OR (0,1) < Acceptance (T, ΔC)){ 

if ( Cnew < Cbest ){ 

Sbest ← Snew;  //Chosen as current best 

Cbest ← Cnew; 

} 
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S ← Snew;   //Move is accepted 

C ← Cnew; 

} 

if (0,5 > T){ //Inner loop end condition min 

break loop;   temperature value reached  

}       

  

} 

If(TSVnum < 1){     //Outer loop end condition no 

break loop;    TSV remain 

} 

} 

 

During the execution of this algorithm a number of random layout mappings will be 

generated for each number of TSVs to test out a larger portion of the search space and to 

follow the trend of the traffic based assessment algorithm. To optimize the search algorithm 

several parameters and functions have to be manually defined. 

 

 Cooling function – The objective of the cooling function is to lower the simulated 

annealing temperature slowly. Given a simple cooling function (x), where α ≠ 0 is a 

cooling coefficient multiplied with the iteration temperature Ti, results in a limit 

value (x2) where the temperature T would endlessly come closer to 0 but would 

never reach it. 

 

Ti+1= α * Ti (x) 

 

0
lim * 0i
T

T

   (x2) 

The most common value for α coefficient in simulated annealing has been 0.95. The 

temperature related parameters are very important for the success of the algorithm 

and should therefore be tailored for the given problem. Specific testing on the 

platform with change in alpha coefficient has shown that lowering its value 

decreases the runtime of the algorithm but changes the exploration depth of the 

search algorithm slightly. Increasing its value increases the algorithm runtime 

significantly but shows no improvement. The algorithm currently outputs the 

boundaries of the maximum and minimum values the simulated annealing algorithm 

has registered during the runtime process; however they may not necessarily be the 

respective global minimum and maximum of the entire search space. 
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Tabel 1: Alpha coefficient tests 

 Application runtime estimate(ms) 

TSVs Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 

9 926 926 926 926 926 926 926 926 926 

8 926 926 926 926 926 926 926 926 926 

7 926 926 953 953 926 926 953 926 951 

6 888 926 888 926 888 888 888 888 888 

5 881 881 881 881 881 888 881 881 881 

4 900 900 900 913 900 900 910 900 900 

3 933 942 933 933 933 933 933 933 933 

2 1084 1084 1084 1084 1084 1084 1084 1084 1084 

1 1387 1287 1287 1287 1287 1287 1287 1287 1287 

Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Beta 100 100 100 100 100 100 100 100 100 

Time 
(sec) 0.295 0.312 0.321 0.398 0.455 0.56 0.638 0.97 1.806 

 

Table 1 shows a small example of tests carried out using different alpha values, 

where the alpha value was increased with each test from 1 to 9. As simulated 

annealing is a probabilistic algorithm, result values may vary, but show little change 

in end result values but higher alpha values give more consistent and stable results. 

End results may also seem to be influenced by possible incompatibility with 

scheduling and path finding subroutines. 

  

On closer inspection of the given problem to solve, to warrant more accurate search 

patterns the initial temperature should dynamically change throughout the 

algorithm. The reason for this lies in the fact that the number of possible TSV 

layouts changes every time one of them is removed and can easily be calculated by 

multiplying the number of remaining and the number of removed TSVs. Therefore 

the initial temperature will also be calculated using the following equation, where β 

is the user definable multiplication constant to keep the temperature from lowering 

too fast. 

Tinitial = β * TSVopen * TSVclosed 
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Several tests show that for this particular problem, increasing initial temperature 

changes, using a coefficient variable, has no impact besides increasing execution 

time. An example of the test can be seen in table 2. Beta coefficient value should 

therefore be as low as possible, but increased according to the application and 

platform complexity. 

 

Table 2: Initial temperature tests 

 Application runtime estimate(ms) 

TSVs Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 

9 1307 1307 1307 1307 1307 1307 1307 1307 1307 

8 1218 1218 1218 1218 1218 1218 1218 1218 1218 

7 1251 1226 1251 1251 1251 1251 1251 1251 1226 

6 1195 1268 1195 1195 1195 1195 1195 1195 1195 

5 1246 1276 1246 1246 1246 1246 1246 1246 1246 

4 1293 1293 1293 1293 1293 1293 1293 1293 1293 

3 1333 1333 1333 1333 1333 1333 1333 1333 1333 

2 1511 1511 1511 1511 1511 1511 1511 1511 1511 

1 2068 2068 2068 2068 2068 2068 2068 2068 2068 

Alpha 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

Beta 20 40 60 80 100 120 140 160 180 

Time 
(sec) 0.647 0.731 0.769 0.807 0.852 0.892 0.894 0.952 0.955 

 

 

 Acceptance function – The objective of the acceptance function is method that 

accepts a move into a worse state with a certain probability, which is the only 

means of finding a way out of a local minimum state to find the global minimum. 

The acceptance function is displayed below where ΔC is the cost difference 

between the current and the new state and T is the current temperature. The current 

acceptance function is based on Bolzmann probability principle. 

 

Acceptance (Δ C, T) = 1 / (1 + e
(  ΔC/T)

 ))  

  

  

 Cost function – The objective task of the thesis is to minimize the number of TSVs 

used relative to the total time it takes to execute the task graph on the system and 
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must therefore include these elements. A cost value per TSV could be inserted into 

the cost function to help minimize the total amount of TSVs.   

 

Texec = Ttask + Tcomm 

 

C = α * Texec+ β * Carea 

 

However the objective is to ascertain the effectiveness of removing/adding TSVs 

which will be carried out inside the inner loop of the new algorithm. Since cost 

effectiveness evaluation is carried on a broader spectrum of TSV placements, the 

amount of TSVs for each inner loop does not change and therefore does not 

influence the calculations at that stage. Alpha and Beta coefficients are there to 

lower or raise the importance of area cost resulting from adding/removing TSVs. 

The area cost is constant for the inner cycle where cost is calculated and is therefore 

ignored for the duration of this thesis to keep test system flexibility. 

 

 Move function 1&2 – Move function one has the objective to deactivate TSVs each 

time it is called. When the first loop cycle creates the initial state for the loop nested 

inside it, it deactivates a TSV at random from the best state of the previous cycle. 

Move function two is responsible for changing to another neighboring state on 

every iteration of the first algorithms loop. This is done by turning an active TSV to 

inactive and vice versa for an inactive TSV, therefore changing the position of an 

active TSV link. The function creates two lists, one is filled with active TSVs and 

the other is filled with TSVs that have been deactivated. Upon execution of the 

move function a TSV is chosen from the first list and turned inactive followed by 

turning another TSV from the second list active, effectively moving the position of 

one of the TSVs. 

 End condition – The end condition is another parameter that can be user defined. 

The end condition of rejected moves is a good solution for problems where 

algorithm runtime is of great importance and the search space is linear. Due to the 

added secondary objective of assessing the layout search space separately for each 
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number of TSVs, creating several sets of search spaces, each with different size. 

Due to the fact that the initial temperature is bound to the number of possible 

layouts for each search space set, a final temperature option becomes very lucrative. 

Several short test have shown that the final temperature should be relatively low to 

allow proper search space exploration and is set to 0.5 for the duration of this thesis. 

 

The algorithm starts by initializing parameters – initial temperature, initial state and initial 

cost, the latter two are marked as part of the current best solution. When analyzing the 

initial state where the platform is fully uniform Figure 10 (a), all TSVs are open (TSV 

count max) and therefore, during the initial state, only one possible layout exists. This 

layout is handled as an exception prior to the execution of the algorithm. The tasks from the 

test application graph are then mapped to selected processing units; the processing unit for 

each task is currently selected at random to lower test system complexity. To evaluate a 

network layout state, the test application is sent to the scheduler. The scheduler creates a 

static priority list out of the task graph and iteratively goes through the list until all tasks 

and communication events are scheduled. The end time of the last task is the execution 

time of the task graph.  

 

 

 

Each iteration in the first cycle disables a TSV on the current best layout at random (TSV 

count -1 on each iteration), evaluates the state and appoints it as the current state and best 

state for the upcoming annealing loop, along with the evaluated execution cost values. An 

example Figure 10 (b) shows a TSV layout after two TSVs have been removed. After this, 

the temperature for the annealing loop is calculated The new best state is the initial state for 

the second simulated annealing algorithm loop that changes the layout slightly, by 

rearranging a single TSV from one place to another on every iteration as can be seen on 

(a) Initial layout 
Exec: 987 

 

 (b) 2nd Base 

layout Exec: 1081 

(c) New layout 
Exec: 1058 

 

(d) Best layout 
Exec: 1058 

 

 

(e) Best layout(2) 
Exec: 1090 

 

 Figure 10: Example layouts 
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Figure 10 (c). The initial temperature is calculated for each secondary loop based on the 

total number of possible layouts to improve search space exploration. After the new state is 

evaluated, a cost difference between the current state and new state is calculated by 

subtracting the current cost from the new cost. If the resulting delta value is negative or 

equal to zero, meaning the new state has a faster execution time, then the new state is 

accepted right away Figure 10 (d). If the new state has a higher execution time, then the 

state can still be moved into based on a probability comparison of a random number 

between 0 and 1 and the acceptance function return value that also is between 0 and 1. 

When a move is accepted into a worse state Figure 10 (e), it is possible to find states that 

would otherwise be ignored. If the accepted state’s execution value is also lower than the 

current best state with the same TSV count, then the current best state is replaced with the 

new state. If the current temperature has gone below the user specified minimum, the 

secondary loop ends and the primary loop moves into the next iteration. The primary loop 

exits once the number of TSVs in the layout has gone below 1, where further executions are 

impossible if tasks of the test application are mapped onto several different layers. 

 

 

3.4. Experimental results 
 

Using the algorithm presented in Chapter 2.3 a series of tests were carried out on a testing 

platform programmed in C++. The experiments were carried out on a NoC simulation 

model with a 3D mesh topology. In order to evaluate the performance of the 

interconnection system in controllable conditions, several precedence graphs with and their 

respective communication volumes, were generated with by TGFF task graph generator 

[11] for testing purposes. To test the capability of the platform using the test applications 

several sets of tests need to be run to assess the effectiveness of the traffic based algorithm 

compared to the simulated annealing algorithm. Due to complications resulting from 

multiple layers of TSVs on the test platform, only two layers of cores will be implemented 

at any given test. The simulation model does not consider buffer latency. The Simulated 

annealing algorithms’ abbreviation in henceforth SIM and traffic assessment algorithms’ 

abbreviation is TAM. Several tests were carried out using the random task mapping 

generator and the traffic assessment method. 
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The first test set objective is to provide a comparison between several random task 

mappings, showing the application execution time differences. An example of the results 

can be seen in Figure 11 using a platform with 9 cores and 59 tasks.  

 

 

Figure 11: Traffic assessment algorithm output example 

 

The task differences seem to influence the results slightly for TAM algorithm when 

choosing the TSVs to remove, which leads to the notion that mapping and scheduling 

method need to be in sync to find optimal execution times. 

 

Secondary tests were carried out using the modified simulated annealing algorithm 

implementation for comparison purposes to evaluate the effectiveness of the traffic based 

method. To ascertain accurate data, both methods were used in succession using the same 

random task mapping designations for each test cycle. Only the best (SIM min) and worst 

(SIM max) execution times were added to the output. The time it takes to execute the 

algorithm is presented in parenthesis behind the algorithm’s name on the figures. The 

results in Figure 12 include the maximum execution time values explored during the 

runtime of the simulated annealing algorithm. The area created with the upper and lower 
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bound values of the simulated annealing algorithm gives a good perspective of the search 

space being explored and should give a better understanding on the effectiveness of the 

TAM algorithm.  

 

 

Figure 12: TAM and SIM comparison 

 

APP2 was used with a 3x3x2 network platform. The results are displayed in Figure. 12. 

The results for test series 2 show that the TAM method does not perform as well as the SIM 

algorithm in terms of minimal execution time. The changes from higher execution time to 

lower execution time after removing a TSV are probably caused by the rescheduling and 

path mapping implementations and incompatibility between scheduling and mapping. 

 

Figure 13 shows results for the execution of the same application on two platforms with 

different core counts. The results for the 18core platform (9TSVs) tests are slightly moved 

to the left for better comparison of execution times represented by a secondary axis line. 
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Figure 13: Traffic assessment and simulated annealing.  

 

The results for Figure 12 tests show that the traffic assessment algorithm, being a heuristic 

method, can be executed several times faster than the simulated annealing algorithm. The 

execution time for both layouts in Figure 13 show similar test results to the simulated 

annealing algorithm for, but shows slightly larger best and worst case scenario 

discrepancies. Closer analysis suggests random mapping differences as the main cause, 

confirms the need for a better cooperation between mapping and scheduling algorithms. 

The conclusion for the tests show that without the need to find the global minimum 

execution times, it is possible to quickly and with a sufficient accuracy assess possible 

impact of adding or removing TSVs from a 3D NoC layout. 

 

The test series in table 3 was done with different core numbers per layer using the same test 

application. The objective of this test set is to see how the number of cores affects the 

results of the execution of the test application and observe the differences between TAM 

and SIM algorithms. Runtime in Table 3, columns 2 and 5, signify the application’s 

estimated runtimes for the TSV count found in column 3. The time it takes to execute the 

SIM and TAM evaluation algorithms can be found in columns 4 and 6 interlinked with core 



55 

 

count in column 1. For example for a platform of 8 cores the evaluation using SIM 

algorithm takes 0.141sec to execute while TAM evaluation algorithm only takes 0.027sec 

to evaluate the same search space. TAM execution (Table3, column 4) and SIM execution 

(Table3, column 6) shows that simulated annealing algorithm execution times grow at 

different speeds compared to each other, the higher the number of cores and TSVs grows.  

 

Table 3: TAM and SIM comparison 

cores 
TAM runtime 
[ms] 

TSVs 
 [links] 

TAM execution 
[s] 

SIM runtime 
[ms] 

SIM execution  
[s] 

8(2x2x2) 970 4 
 

970 
   1029 3   1029   

  1182 2   1139   

  1902 1 0.027  1646 0.141  

18(3x3x2) 965 9 
 

965 
   965 8   912   

  942 7   909   

  1023 6   909   

  990 5   909   

  990 4   912   

  1140 3   933   

  1307 2   1251   

  1561 1 0.064  1561 0.809  

32(4x4x2) 1261 16 
 

1261 
   1241 15   1241   

  1241 14   1241   

  1224 13   1189   

  1224 12   1176   

  1224 11   1176   

  1353 10   1176   

  1337 9   1176   

  1337 8   1176   

  1337 7   1176   

  1337 6   1176   

  1269 5   1176   

  1265 4   1233   

  1265 3   1319   

  1549 2   1483   

  2064 1 0.168  2064 2.873  
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While TAM execution time growth is linear, the execution time of the simulated annealing 

algorithm growth multiplier however seems to be exponential. The runtime of both 

algorithms increase each time core number is increased as the search space and minimal 

number of state evaluations increases. The fact becomes clear, that the larger the search 

space becomes, the larger the difference of the TAM and SIM algorithm’s execution times 

grows. Considering the runtime of both algorithms and the results that can be seen in both 

table 3 and Figure 12 prove again that the simulated annealing algorithm lower bound hold 

slightly lower cost values but has the runtime of the algorithm times longer than TAM.  

 

 

The test series, which example can be found in Figure 14, shows comparison results for 

TAM and SIM algorithms with a slight change in SIM algorithms regarding the removal of 

TSVs for each primary cycle. The simulated annealing algorithm was modified to remove 

TSV similar to the TAM algorithm instead of removing one at random. 

 

 

 
Figure 14: Traffic assessment and simulated annealing. Test series3 
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The results show a marginal decrease in execution times on both upper and lower bound 

and a slight increase of ~0.030sec in algorithm runtime compared to the original SIM 

algorithm. 

 

The next test set was carried out using an application with task count several times higher 

than the number of cores to see how the application influences the results if the platform 

size remains low. Using a test application APP3 was used for test series 4, that has over 200 

tasks ranging from 10 to 20 ms execution times and containing communication events with 

90-120 packets. The platform has 2 layers and total IP count of 32. 

 

 

Figure 15: Traffic assessment and simulated annealing, test series 4 

 

The difference between the algorithms has become more severe. Figure 15 shows a 

significant spike in TAM algorithm’s performance, but the overall performance shows the 

superiority of the simulated annealing algorithm. The spike in execution time shows the 

importance of choosing the right TSV to remove, but also shows that less time analyzing 

the search space gives sub-optimal results. When considering the graceful degradation 

principle where the choice of which TSV is removed cannot be predicted, the choice of 
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proper scheduling and communication mapping becomes even more critical. A non-virtual 

test environment would provide more accurate results, but cannot be constructed due to the 

lack design tools and manufacturer at this time. 

 

The next set of tests was carried out to ascertain how the increase of core count influences 

the execution of APP3 that has high task count. Table 4 shows the results from using APP3 

in extensive tests over several platform sizes ranging from 8 cores to 50cores. Runtime in 

Table 3, columns 2 and 5, signify the application’s estimated runtimes for the TSV count 

found in column 3. The time it takes to execute the SIM and TAM evaluation algorithms 

can be found in columns 4 and 6 interlinked with core count in column 1. Comparing 

algorithm execution times between TAM (Table4, column 4) and SIM (Table4, column 6) 

shows that simulated annealing algorithm takes several times longer, the higher the number 

of cores and TSVs gets, the same conclusion that can be drawn from Table 3. Columns 2 

and 5 show that the smaller the platform is the longer the application takes to run as 

expected of the system.  

 

Table 4: TAM and SIM comparison using APP3 

cores 
TAM runtime 
[ms] 

TSV  
[links] 

TAM execution 
[s] 

SIM runtime 
[ms] 

SIM execution 
[s] 

8(2x2x2) 5429 4 
 

5429 
   5441 3   5431   

  5445 2   5433   

  5447 1 0.039  5445 0.622  

18(3x3x2) 3773 9 
 

3773 
   3773 8   3674   

  3773 7   3674   

  3773 6   3672   

  3771 5   3672   

  3775 4   3678   

  3781 3   3601   

  3785 2   3605   

  3791 1 0.149  3640 3.57  

32(4x4x2) 3427 16 
 

3427 
   3427 15   3427   

  3427 14   3427   

  3427 13   3356   
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  3427 12   3358   

  3427 11   3358   

  3427 10   3356   

  3427 9   3354   

  3431 8   3271   

  3431 7   3271   

  3362 6   3269   

  3362 5   3277   

  3362 4   3354   

  3368 3   3283   

  3372 2   3291   

  3495 1 0.309  3302 17.445  

50(5x5x2) 3075 25 
 

3075 
   3075 24 

 
2839   

  3075 23 
 

3075   

  3075 22 
 

2839   

  3075 21 
 

2806   

  2852 20 
 

2852   

  2852 19 
 

2835   

  2856 18 
 

2794   

  2856 17 
 

2852   

  3081 16 
 

2831   

  3081 15 
 

2796   

  3081 14 
 

2799   

  3083 13 
 

2836   

  3083 12 
 

2843   

  3083 11 
 

2802   

  3083 10 
 

2839   

  3077 9 
 

2811   

  3075 8 
 

2840   

  3079 7 
 

2836   

  3081 6 
 

2814   

  3085 5 
 

2798   

  3085 4 
 

2813   

  3089 3 
 

2851   

  3101 2 
 

2881   

  3107 1 0.621  2906 57.879  

 

The decrease in application execution time with higher core count is to be expected. The 

spikes in execution time however can only be observed when using a system with 50 cores. 
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This fact leads to the conclusion that complications arise from increasing complexity of the 

scheduling process and the fact, that test application graph branching leads to more than a 

single end task.  

 

The following test is a replication of the execution time spikes to give a visual 

representation for the results in Table 4. The test used a 5x5x2 platform and APP3, the 

maximum task count and core count the test platform could handle. Erratic change in the 

minimal execution times found by the simulated annealing algorithm can be observed when 

the TSV count reached 23. The execution time of the application for TAM algorithm 

suddenly drops when the TSV count is between 20 and 17 TSVs. 

 

 

Figure 16: APP3 comparison using a 5x5x2 platform 

 

Figure 15 uses APP3 but employs a 5x5x2 platform with 50cores. The cost spike can also 

be noted here that was present in Figure 14. This phenomenon was present at every test that 

used more than 100 tasks and might hint to a problem in the test system. However the 

results of the TAM algorithm still fall within simulated expected ranges defined by the SIM 

algorithm. Further testing in a real environment would be beneficial. 
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3.5. Conclusion 
 

Unfortunately the platform size could not be increased beyond 5x5x2 and 200 tasks as 

memory leaks due to data structures prevented testing beyond the given parameters. 

Redesigning the test platform might yield testing capability with larger systems and 

applications. The test platform shows abnormal behavior when the number of TSVs is still 

relatively high, this phenomenon might be the caused by the inflexibility of the scheduling 

and communication path mapping algorithms. The path mapping algorithm used is 

designed to find an optimal path in a short time using relative position to the destination, 

however it might not always be the shortest path. The behavior does not seem to be related 

to the max number of TSV links in the system.  

When comparing the execution times of SIM and TAM algorithms, it becomes clear that 

the linear scaling of the TAM execution time becomes a great advantage with higher TSV 

count where the search space is larger, if a general overview is needed. However SIM 

algorithm provides lower global minimum results compared to TAM with improving 

results the larger the search space becomes. Looking at the test results, depending on the 

aim and requirements of the assessment, both algorithms are be viable. The viability of 

TAM in real-time constrained dependable systems assessment can be observed if the 

objective is to ascertain if the system can maintain a minimal load requirement.  

Several problems during testing indicate the need to choose better mapping and scheduling 

algorithms that have a high compatibility to each other. Further testing of the TAM 

algorithm would be advised using a more accurately represented test system. Further testing 

may be required if dynamic scheduling methods or adaptive routing methods are used as 

they would severely change the test results. 
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4. Summary 
 

The technological advances in integrated circuit technology have started to slow down as 

we reach the physical limitations to technological scaling with our current manufacturing 

technologies. However the ever increasing need performance and functionality is pushing 

scientists to search for new ways to overstep our boundaries. Several research directions 

that have been taken, have already shown good test results, but have yet to be proven 

applicable in mainstream technology. 

 

The current most promising solution to fulfill the requirements of our society is 3D chip 

stacking technology. The strongest positive influences of this technology can be 

summarized as the following. Due to wafer thinning, resulting vertical chip thickness is 

several times lower than initially estimated. Using this method potentially increases the 

chip’s performance and power consumption used for signal propagation. The design can be 

built as separate parts and integrated later into a single chip. Silicon interposers enable the 

reusability of old designs with similar footprints, old research and development tools can 

still be used. 

 

The opportunities 3D stacking technology provides do come with a set of challenges and 

limitations. Namely power consumption may be lower, but increase in power density 

creates problems in thermal management. Vertical interconnections increase the chip area 

by a small amount, resulting in a wire delay increase, which in turn leads to a limited 

number of interconnections for a design depending on the properties of the interconnections 

used. To mitigate the problematic aspects of using Through-Silicon-Vias in Network-on-

Chip technology a method was devised to assess the viability of each TSV in a given 

design. 

 

The proposed TSV impact assessment method can employ and adapt to a wide variety of 

scheduling and mapping algorithms on a network layout with any number and structure of 

nodes, given the assumption that the design’s interconnection placement can change. 

However, the method assumes that the graph can be fully explored and contains 
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concurrency. Given a method to compare and assess systems with similar interconnection 

layouts quickly, allows for the improvement of reconfigurable and dependable 3D systems. 

The conclusion can be drawn that the Traffic Assessment method can be used to quickly 

reassess the capabilities of a 3D NoC system to ascertain if the system is capable to 

continue operation performing to a given minimal load. The viability of simulated 

annealing algorithm can still be observed if the system has low real-time constraints and 

reassessment of the system is not immediate. 
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Resümee 
 

Tehnoloogilised saavutused integraalskeemide vallas on hakkanud vaikselt aeglustuma ja 

on jõudnud füüsiliste piiranguteni tingitud füüsikalistest limiitidest, mille tõttu ei saa 

elektroonika komponentide suurusi enam oluliselt vähendada. Sellest olenematta tõuseb 

nõudlus jõudluse ja funktsionaalsuse järele, mis on lükanud käima suurel hulgal uusi  

laialdasi uurimistöid erinevates valdkondades, otsides viise kuidas ületada tehnoloogia 

barjääri. Paljud uurimis suunad on andnud tulemusi , kuid pole veel suutnud ennast 

tõestada. 

 

Hetkel parimaks tehnoloogiliseks järeltulijaks, täitaks ühiskonna vajadusi, on 3D 

kiipvirnastus tehnoloogia. Tema tugeivamad mõjualad saab kokkuvõtta lühidalt. Planaarne 

2D kiipe saab tükeldada väiksemateks plokkideks ja virnastada üheks kiibiks, vähendades 

nende vahelisi ühenduste pikkusi ja signaali juhtimiseks vaja minevat energia tarvet. Tänu 

kiipide hõrendamisele, mis toob endaga kaasa  on kiibi vertikaalse mõõte suurenemise, 

saavutuatud pindala võit suurem kui planaarsel asetusel. Tänu 2.5D tehnoloogia omadusele 

on võimalik kasutada vanu arendus tööriistu ja toomis vahendeid, langetades prototüübi 

väljaarendamise maksumust. Disainide osad saab luua erladi projektidena ja taaskasutada 

juba olemasolevaid disaine. 

 

3D kiipvirnastus tehnoloogia omab samuti palju väljakutseid ja piiranguid. Nimelt 

väiksemat energiatarvet asendab energia tiheduse probleem mis omakorda püstitab 

temperatuuri probleeme.Vertikaal ühendused tõstavad omakorda vajaminevat kiibi pindala, 

mis tõstab viivitusi tulenevalt juhtmete pikenemisest. Juhtmete pikenemise tagajärgede 

vältimiseks on püstitatud limiit vertikaal ühenduste arvule, mida kokku kasutatakse nii 

energia jaotuseks, temperatuuri alandamiseks kui ka andmevoogude tarbeks. Selles töös 

koostati meetod TSV-de hindamiseks kiipvõrkudes, et aidata vähendada selle tehnoloogia 

negatiivseid tagajäregesid. 

 

Koostatud TSVde hindamis meetod suudab kasutada palju erinevaid aja- ja ülesannete 

planeerimisalgoritme, ükskõik millise kiipvõrgu kuju ja protsessor tuumade arvu jaoks. 
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Arvesse tuleb võtta eeldust, et vertikaal ühenduste arv ja asukohad peaksid olema 

muudetavad ja meetmed nende teostamiseks olemas. Siinjuures peaks programmi graaf 

olema täies mahus teada ning omama paraleelselt töödeldavaid ülesandeid. Eeldades, et 

meil on meetod mille abil hinnata süsteemide sarnaste vertikaal ühenduste paiknemist ja 

effektiivsust kiiresti, lubab fukntsionaalsust hinnates uuesti konfigureeritavaid ja 

töökindlaid 3D süsteeme luua ja tõsta süsteemi töökidlust vigade esinemisel. Töö käigus 

jõuti järeldusele, et välja pakutud liiklus-põhine hindamismeetodit saab kasutada 3D 

kiipvõrk süsteemide jõudluse kiireks uuesti hindamiseks, et kinnitada süsteemi 

jätkusuutlikust vähemalt defineeritaval minimaalsel koormusel. Simulated Annealing 

algoritmi kasutamise võimalus eksisteerib süsteemidel, mis ei oma tugevaid reaalaja 

piiranguid, kus süsteemi jõudluse uuesti hindamine ei ole koheselt vajalik. Dünaamiliste 

paigutus meetodite kasutamisel tuleks liiklus-põhine hindamismeetod uuesti üle testida, 

kuna nende mõju süsteemile on tugev. 
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