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Introduction

The most popular approach in nonlinear control theory is based on differential
geometry [10, 22]. The introduction of differential algebraic methods [7] offered
alternative tools. Today, the algebraic point of view has gained popularity
and the related approach, based on the vector spaces of differential one-forms
over suitable fields of nonlinear functions has been described in [4] for the
continuous-time systems and in [9, 1] for the discrete-time systems. The tools
based on differential one-forms and the related methods based on the theory
of the skew polynomial rings are complementary to the differential geometric
methods, but what is more important, these tools are characterized by their
inherent simplicity and strong similarity to their linear counterparts. The
latter makes these tools a better choice in teaching engineering courses in
nonlinear control and in practical applications.

In this thesis the algebraic approach of differential one-forms is used to pro-
vide a solution for three modeling problems. First, the necessary and sufficient
irreducibility condition for the multi-input multi-output (MIMO) discrete-time
nonlinear control systems has been found together with the method for sys-
tem reduction. Second, the realizability conditions for quadratic input-output
differential (i/o) equation have been formulated directly in terms of system pa-
rameters. Third, an alternative method for computing a certain subspace of
differential one-forms, which allows to simplify the solution of the realization
problem, is presented for a single-input single-output (SISO) system. Addi-
tionally, we have developed computer algebra package NLControl for solving
modeling, synthesis and analysis problems, which is largely based on algebraic
and polynomial approaches and is implemented within Mathematica. More
important functions of the NLControl package are made available over the
internet using webMathematica tools.

The choice of these tasks was motivated by several observations. Most
results on nonlinear identification are achieved for systems, described by i/o
differential equations. At the same time the majority of techniques for non-
linear system analysis and control design are based on state-space description.
To apply the numerous available methods requires realization, i.e. recovering
the state-space model, if possible, starting from the i/o equations. Algebraic
approach of differential one-forms has been applied for studying realization
problem in [4] and in [14], respectively for the continuous- and discrete-time
systems; however, there still exist some gaps related to this topic. In order to
obtain accessible realization, the i/o equations have to be in the irreducible
form. So far the irreducibility conditions were formulated only for SISO sys-
tems, using differential one-forms in [4] and skew polynomials in [31, 13], but
not for MIMO systems.

In course of practical identification process there is a certain freedom when
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selecting the mathematical model describing the system. Since an arbitrary
i/o model does not necessarily have a state space representation, it is desirable
to choose a realizable model. Though the realizability conditions given in [4]
are transparent and inherently simple, they are not helpful if we want to check
realizability directly from the knowledge of the model parameters. Therefore,
our aim was to provide suggestions to identifiers, by formulating realizability
conditions for the continuous-time quadratic i/o model in terms of the system
parameters. These conditions generalize the earlier realizability conditions for
bilinear systems [16].

We have found an alternative to the method described in [1] for realization
of discrete-time SISO equation, which is based on skew polynomials. The new
method is faster, more direct and therefore better suited for implementation
in computer algebra packages like Mathematica or Maple, while the algorithm
given in [1] is more general, and applicable also for MIMO case.

And finally, since the solutions of nonlinear control problems require a
huge amount of symbolic computations, additional assistance is provided by
the nonlinear control system software package NLControl developed by us.
The package is based on the algebraic methods of differential one-forms and
skew polynomials, and is developed within (symbolic) software system Math-
ematica.

The thesis is organized as follows. Section 1 gives a short overview of the
linear algebraic and polynomial approach and subsection 2.1 recalls some basic
definitions. In subsection 2.2 necessary and sufficient irreducibility condition
as well as reduction algorithm for discrete-time MIMO systems are introduced.
In subsection 2.3 realizability conditions for continuous-time quadratic systems
in terms of the system parameters are presented. The complete list of second-
and third-order realizable i/o quadratic models is given and two subclasses of
the n-th order realizable i/o quadratic systems are suggested. In subsection
2.4 solution of the realization problem in terms of skew polynomials is formu-
lated for SISO discrete-time system. Section 3 describes NLControl package
together with its web application and also provides some examples. The last
section draws the conclusion. The main results of the thesis are presented in
subsections 2.2, 2.3 and 2.4.
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1 Preliminaries

1.1 Control systems

Throughout the work we consider two representations of the nonlinear control
system, state space and input-output (i/o) equations. A nonlinear multi-input
multi-output (MIMO) control system can be described by the state equations

x(t+ 1) = f(x(t), u(t))
y(t) = h(x(t))

(1)

in the discrete-time case, or by

ẋ = f(x, u)
y = h(x)

(2)

in the continuous-time case. In both cases x ∈ X ⊂ IRn is a state variable,
u ∈ U ⊂ IRm is an input variable, y ∈ Y ⊂ IRp is an output variable,
f : U × X → X and h : X → Y are real analytic functions. The algebraic
method applied in the present work is based on the difference/differential field,
associated with the control system. In order to construct the difference field,
associated with the system (1), the following assumption has to be satisfied:

A1 System (1) is generically submersive, i.e. almost everywhere except on
the set of measure zero, the state transition map in (1) satisfies

rank
∂f

∂(x(t), u(t))
= n.

Note that in the continuous-time case this assumption is not necessary [3].
A MIMO system in the i/o form is described by the set of higher order

difference equations

yi(t+ ni) = φi(yν(t), . . . , yν(t+ niν − 1), uk(t), . . . , uk(t+ αik),
ν = 1, . . . , p, k = 1, . . . ,m),

i = 1, . . . , p
(3)

in the discrete-time case, and by the set of higher order differential equations

y
(ni)
i = φi(yν , . . . , y

(niν−1)
ν , uk, . . . , u

(αik)
k ,

ν = 1, . . . , p, k = 1, . . . ,m),
i = 1, . . . , p

(4)

in the continuous-time case. In both equations u = (u1, . . . , um) ∈ U ⊂
IRm is an input variable, y = (y1, . . . , yp) ∈ Y ⊂ IRp is an output variable
and φi are real analytic functions. Notations n := n1 + . . . + np and α :=
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max{αik, k = 1, . . . ,m, i = 1, . . . , p} are used for systems (3) and (4). In
order to construct the difference field, associated with the system (3), the
submersivity assumption has to be satisfied again:

A2 System (3) satisfies generically the condition

rank
∂φi(·)

∂(y(t), u(t))
= p.

Additionally we require that the following assumptions hold for systems (3)
and (4).

A3 System is strictly proper, i. e. αik < ni, for i = 1 . . . , p, k = 1, . . . ,m.
A4 Since the mathematical tools we employ require that instead of working

with the equations themselves, we work with their differentials, the systems
φ(·) = 0 and φ(·) + const = 0 are not distinguished for arbitrary constant
value. In order to avoid such situations we fix the constant to be zero.

The assumption A4 is restrictive, but the results of the present work can
be extended to the case when const 6= 0.

1.2 Difference/differential field; differential forms

Below we give an overview of the algebraic approach based on the differential
one-forms [9, 1, 14]. We provide a detailed exposition for the discrete-time
case, since it is more complicated and then briefly mention the differences of
the continuous-time case.

Consider the system described by the equations (1). Let K denote the
field of meromorphic functions in a finite number of variables from the infinite
set {x(0), uj(t), j = 1, . . . ,m, t ≥ 0}. Introduce the forward-shift operator
δ : K → K, which is defined by shifting the arguments of the function according
to the rules δxi(t) = xi(t + 1) = fi(·), i = 1, . . . , n, δuj(t) = uj(t + 1), j =
1, . . . ,m. An important fact to emphasize is that in K, xi(t+ 1), i = 1, . . . , n
are not independent variables and should be always replaced by fi(·) from
equations (1). Under assumption A1, δ is injective and the pair (K, δ) is a
difference field.

The inverse operator of δ is denoted by δ−1 and called backward-shift
operator. The difference field (K, δ) is not inversive in general, which means
that δ−1ζ may not have a pre-image in K for all ζ ∈ K. Up to an isomorphism,
there exists a unique inversive difference field (K∗, δ∗), called the inversive
closure of (K, δ), such that K ⊂ K∗, δ∗ : K∗ → K∗ is an automorphism and
the restriction of δ∗ to K equals δ. By abuse of notation, hereinafter we
assume that (K∗, δ∗) is given and use the same symbol to denote (K, δ) and
its inversive closure. A construction of K∗ for practical computations is given
[1].
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In order to define K∗ for i/o equations we may associate with the set
of i/o equations (3) its extended state-space system with the input v(t) =
u(t + α + 1), the state z(t) = [y1(t), . . . , y1(t + n1 − 1), . . . , yp(t), . . . , yp(t +
np − 1), u1(t), . . . , u1(t+ α), . . . , um(t), . . . , um(t+ α)]T and a state transition
map fe(z(t), v(t)) defined as

z1(t+ 1) = z2(t)
. . .

zn1(t+ 1) = φ1(z(t))
. . .

zn1+...+np−1+1(t+ 1) = zn1+...+np−1+2(t)
. . .

zn1+...+np(t+ 1) = φp(z(t))
zn+(j−1)(α+1)+k(t+ 1) = zn+(j−1)(α+1)+k+1(t)

zn+j(α+1)(t+ 1) = vj(t)

(5)

for j = 1, . . . ,m, k = 1, . . . , α. After that, K∗ for equations (3) can be
constructed in a similar manner as for state equations (1).

For the continuous-time case the best reference on algebraic approach of
differential one-forms is [4]. Consider the system described by the equations
(2). Now K denotes the field of meromorphic functions in a finite number of

variables from {x, u(k)j , j = 1, . . . ,m, k ≥ 0}. Let s : K → K denote the time
derivative operator d/dt. The pair (K, s) is a differential field.

Over the field K one can define a vector space E := spanK{dϕ | ϕ ∈ K}.
The elements of E are called one-forms. In the discrete-time case the operator
δ : K → K induces a forward-shift operator δ : E → E by∑

i

aidϕi 7→
∑
i

(δai)d(δϕi), ai, ϕi ∈ K (6)

and δ−1 : K → K induces a backward-shift operator δ−1 : E → E by∑
i

aidϕi 7→
∑
i

(δ−1ai)d(δ−1ϕi), ai, ϕi ∈ K. (7)

In the continuous-time case the operator s : K → K induces a derivative
operator s : E → E by∑

i

aidϕi →
∑
i

said(ϕi) +
∑
i

aid(sϕi), ai, ϕi ∈ K.

Definition 1 The relative degree r of a one-form ω ∈ E is defined to be
the least integer such that δrω /∈ spanK{dx(0)} or srω /∈ spanK{dx}, in the
discrete- and continuous-time cases, respectively. If such an integer does not
exist, we set r =∞.
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A sequence of subspaces {Hk} of E associated with the system (1) is defined
by

H1 = spanK{dx(0)}
Hk+1 = {ω ∈ Hk | δω ∈ Hk}, k ≥ 1.

(8)

Analogously, {Hk} associated with the system (2) is defined by

H1 = spanK{dx}
Hk+1 = {ω ∈ Hk | ω̇ ∈ Hk}, k ≥ 1.

(9)

Each Hk contains the one-forms with relative degree equal to k or greater than
k. The sequences (8) and (9) are decreasing. Denote by k∗ the least integer
such that H1 ⊃ . . . ⊃ Hk∗ ⊃ Hk∗+1 = Hk∗+2 = . . . = H∞. The subspaces
Hk are invariant with respect to the regular static state feedback and state
coordinate transformation.

Theorem 1 (Frobenius) Let W = spanK{ω1, . . . , ωr} be a subspace of E. W
is closed iff dωk ∧ ω1 ∧ . . . ∧ ωr = 0 for all k = 1, . . . , r.

Under Frobenius conditions there exists locally a system of coordinates {ζ1, . . . , ζr}
such that W is generated by {dζ1, . . . ,dζr}. In this case W is said to be com-
pletely integrable.

1.3 Polynomial framework

1.3.1 Non-commutative polynomial ring

Polynomial framework is built upon the framework of differential one-forms.
Below we focus on the discrete-time case, the differences from the continuous-
time case are briefly indicated. A left polynomial is an element which can be
uniquely written in the form

a(∂) =

n∑
i=0

ai∂
n−i, ai ∈ K, (10)

where ∂ is polynomial indeterminate and a(∂) 6= 0 iff at least one of the
functions ai, i = 0, . . . , n is nonzero. If a0 6≡ 0, then the positive integer n is
called the degree of the left polynomial a(∂) and denoted by d0(a). In addition,
we set d0(0) = −∞.

The difference field (K, δ) induces a (left) noncommutative skew polyno-
mial ring.

Definition 2 The left skew polynomial ring induced by (K, δ) is the
ring K[∂, δ] of polynomials in ∂ over K with usual addition, and the non-
commutative multiplication defined by the commutation rule

∂ · a = δa · ∂ (11)
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for any a ∈ K ⊂ K[∂, δ]. A ring is called an integral domain, if it does not
contain zero divisors. This means that if a and b are two elements of the ring
such that ab = 0, then a = 0 or b = 0.

Lemma 1 [17]

(i) The ring K[∂, δ] is an integral domain.

(ii) If a and b are nonzero polynomials, then d0(a b) = d0(a) + d0(b).

Moreover, the ring K[∂, δ] satisfies the (left) Ore condition, which guarantees
that for all nonzero a, b ∈ K[∂, δ] there exist nonzero a1, b1 ∈ K[∂, δ] such that
a1b = b1a.

Elements of such ring are called skew polynomials or non-commutative
polynomials or Ore polynomials [25].

In the continuous-time case the ring of Ore polynomials is induced by the
differential field (K, s) and the commutation rule is given, instead of (11), by

∂ · a = a · ∂ + s(a) (12)

for any a ∈ K ⊂ K[∂, s].
Since K[∂, δ] is an Ore ring, one can construct the division ring of fractions.

If p(∂) = p1(∂)p2(∂), then p1(∂) is called a left divisor of p(∂) and p(∂) is called
left divisible by p1(∂). If for p1(∂), p2(∂) ∈ K[∂, δ], pc(∂) is a left divisor of
p1(∂)−p2(∂), then pc(∂) is called a common left divisor of p1(∂) and p2(∂). If
the degree of pc(∂) is the greatest of all common left divisors of p1(∂)− p2(∂),
then pc(∂) is called the greatest common left divisor (gcld). To find the gcld
one can use the left Euclidean division algorithm. The gcld is only unique up
to multiplication by function from K, but it can be made unique by requiring
that it has to be monic.

1.3.2 Polynomial matrices

We now consider a class of matrices R(∂) whose elements are polynomials
r(∂) ∈ K[∂, δ] of finite, but unbounded degree and write Kp×q[∂, δ] for the
set of p × q matrices with entries in K[∂, δ]. Like in the linear case where
the polynomials have real coefficients, the polynomial matrix with entries in
K[∂, δ] can be transformed by a sequence of elementary column operations to
the lower left triangular form. This result allows us to obtain the irreducibility
criterion for nonlinear control systems.

Definition 3 The following three elementary column operations E(∂) on
the polynomial matrix R(∂) are defined

(i) Interchange of columns i and j.

(ii) Multiplication of column i by nonzero scalar in K.

14



(iii) Replacement of column i by itself plus any polynomial multiplied by any
other column j.

Definition 4 A matrix U(∂) ∈ K[∂, δ] is called unimodular if it is invertible
in K[∂, δ], that is, there exists a matrix U−1(∂) in K[∂, δ].

A unimodular matrix U(∂) can be obtained from the identity matrix I by a
finite number of elementary column operations on I: U(∂) = IE1(∂) . . . Ek(∂).
Any sequence of elementary column operations on R(∂) is equivalent to right
multiplication of R(∂) by an appropriate unimodular matrix U(∂).

Definition 5 Two polynomial matrices R(∂) and R̂(∂) are called column
equivalent iff R(∂) = R̂(∂)U(∂), where U(∂) is a unimodular matrix.

Definition 6 If three polynomial matrices satisfy the relation P (∂) =
CL(∂)Q(∂), then CL(∂) is called a left divisor of P (∂) and P (∂) is called a
right multiple of CL(∂). A gcld of two polynomial matrices P (∂) and Q(∂) is
a common left divisor which is a right multiple of every common left divisor
of Q(∂) and P (∂).

Definition 7 A pair {P (∂), Q(∂)} of polynomial matrices which have the
same number of rows is said to be relatively left prime if and only if its gclds
are unimodular matrices.

1.3.3 Polynomial system description

We now represent the nonlinear system (3) in terms of two polynomial ma-
trices, with the polynomials from the Ore ring K[∂, δ]. For that we apply the
differentiation operation to (3) and use the relations dys(t + j) = δjdys(t),
duk(t+ r) = δrduk(t) (that follow from (6)) to obtain

P (∂)dy(t) = Q(∂)du(t), (13)

where P (∂) and Q(∂) are p× p and p×m-dimensional matrices respectively,
whose elements pij , qij ∈ K[δ]:

pis(∂) = δni −
nis−1∑
j=0

∂fi
∂ys(t+ j)

∂j , qik(∂) =

αik∑
r=0

∂fi
∂uk(t+ r)

∂r

and dy(t) = [dy1(t), . . . ,dyp(t)]
T , du(t) = [du1(t), . . . ,dum(t)]T .

2 System reduction and realization

2.1 Introduction

The realization problem is defined as follows. Given a nonlinear system, de-
scribed by the i/o equation of the form (3), find, if possible, the state coor-
dinates x(t) ∈ X ⊂ IRn, x(t) = ψ(y(t), . . . , y(t + n − 1), u(t), . . . , u(t + α))
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such that in these coordinates the system takes the classical state space form
(1) and the sequences {u(t), y(t), t ≥ 0} generated by (1) and (3) coincide.
Then (1) is called realization of (3). Before formulating the realizability con-
ditions, the two important properties of the control systems, accessibility and
observability, are recalled.

Accessibility is the structural property of the nonlinear system that in
the linear case reduces to the controllability property. The necessary and
sufficient condition for accessibility is H∞ = {0} [1]. A nth-order realization
of equation (3) is accessible iff system (3) is irreducible. The necessary and
sufficient irreducibility conditions as well as the reduction algorithm for system
(3) are given in section 2.2.

Definition 8 System (1) is said to be (single-experiment) observable if
the observability matrix has generically full rank, i.e. if

rankK
∂(h(x(t)), δh(x(t)), . . . , δn−1h(x(t)))

∂x(t)
= n. (14)

This condition reduces to the standard Kalman observability criterion in the
special case of linear systems.

Theorem 2 [14] The nonlinear system described by the i/o difference equa-
tion (3) has an accessible and observable state space realization of order n iff
for 1 ≤ k ≤ α + 2 the subspaces Hk defined by (8) are completely integrable.
Moreover, the state coordinates can be obtained by integrating the basis vectors
of Hα+2.

In the continuous-time case the solution of the realization problem of the
set of i/o differential equations (4) is analogous. In Definition 8 one has to
replace the forward-shift operator δ by the time-derivative operator s = d/dt.

Theorem 3 The nonlinear system described by the set of i/o differential equa-
tions (4) has an accessible and observable state space realization of order n iff
for 1 ≤ k ≤ α + 2 the subspaces Hk defined by (9) are completely integrable.
Moreover, the state coordinates can be obtained by integrating the basis vectors
of Hα+2.

2.2 Irreducibility conditions for discrete-time systems; system
reduction

The results of the present subsection are based on paper I. Definition of the
irreducible system is based on the concept of autonomous variable.

Definition 9 A (possibly vector-valued) function ϕr (with components) in
K is said to be an autonomous variable for a system (3) if there exist an integer
µ ≥ 1 and a non-zero meromorphic function F (again possibly vector-valued)
such that

F (ϕr, δϕr, . . . , δ
µϕr) = 0. (15)
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Definition 10 The system (3) is said to be generically irreducible if there
does not exist any non-zero autonomous variable for the system (3) in a dif-
ference field K, associated with system (3).

The next two theorems describe the important properties of the polynomial
matrices, necessary to represent the irreducibility conditions for system (3).

Theorem 4 Any p× q (p ≤ q) polynomial matrix R(∂) is column equivalent
to the lower left triangular matrix shown below, i. e. one can always find
a sequence of elementary column operations which reduces R(∂) to the form

R̂(∂) = [GL(∂)
...0], where

GL(∂) =

 g11(∂)
g21(∂)g22(∂)
...
gp1(∂)gp2(∂) . . . gpp(∂)

 . (16)

Furthermore, in the above form, the polynomials gk1(∂), . . . , gk,k−1(∂) are of
lower degree than gkk(∂) for all k = 1, . . . , p if deg gkk(∂) > 0, and are all
zero, if gkk(∂) is a nonzero scalar in K.

Theorem 5 Consider the pair {P (∂), Q(∂)} of polynomial matrices which

have the same number of rows. If the composite matrix [P (∂)
...Q(∂)] is reduced

to lower left triangular form [GL(∂)
...0] as in Theorem 4, then GL(∂) is a gcld

of P (∂) and Q(∂).

The gcld is, in general, not unique, but it can be made unique by requier-
ing that the polynomials in the diagonal of GL(∂) are monic. Irreducibility
conditions are stated by the next theorem, which is the main result of paper
I.

Theorem 6 The nonlinear system (3) is irreducible iff the polynomial matri-
ces P (∂) and Q(∂) in system description (13) are relatively left prime.

If P (∂) and Q(∂) have non-unimodular gcld GL(∂), then (13) can be rewritten
as

GL(∂)ω = 0,

where ω = [ω1, . . . , ωp]
T is a column-vector of exact differential one-forms (or

can be made exact by multiplying them by the integrating factor). So one can
define ωi = dϕri for i = 1, . . . , p, being elements of P̃ (∂)dy(t) − Q̃(∂)du(t).
The reduced system equations are ϕri = 0, i = 1, . . . , p.
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2.3 Realizability conditions of continuous-time quadratic sys-
tems

The results of the present subsection are based on paper II. Consider a single-
input single-output (SISO) case of the system (4) where p = m = 1; and define
φ(·) := φ1(·), u := u1, y := y1, n := n1 and α := α11,

y(n) = φ(y, . . . , y(n−1), u, . . . , u(α)). (17)

In many practical situations continuous-time i/o models of the form (17)
are deduced from i/o data when no information regarding the structure of the
observed dynamical system is available a priori. Such representations form the
basis of much modern identification theory. Identification therefore involves
model structure selection prior to parameter estimation. In practice, this
involves selecting a form of the nonlinear function φ(·), α and n, i.e. specifying
the maximal derivatives for the input and output, respectively, that appear
in equation (17). Typically, φ is assumed to be a low order polynomial, most
often a bilinear or quadratic function, and not all possible terms are included
since in most cases a more complex model does not necessarily equate to a
better model.

Our purpose was to find the subsets of quadratic i/o equations

y(n) =

n∑
i=1

aiy
(n−i) +

n∑
i=1

biu
(n−i) +

n∑
i=1

n∑
j=1

cijy
(n−i)u(n−j)

+
n∑
i=1

n∑
j=i

dijy
(n−i)y(n−j) +

n∑
i=1

n∑
j=i

eiju
(n−i)u(n−j)

(18)

that are guaranteed to have a state space representation (2) of order n, and as
such are good candidate structures to be used in system identification. Since
the quadratic model (18) is linear in the parameters, it lends itself easily to
the well-established parameter estimation algorithms.

Despite the structural simplicity of the quadratic i/o model, the general
realizability conditions, given in Theorem 3, yield little insight and do not
tell us in terms of the parameters ai, bi, cij , dij , eij which quadratic model is
realizable in the classical state space form and which is not. To give a more
general view of the nature of parameter restrictions necessary for realizability,
it is instructive to consider the special cases where n = 1, 2, 3.

Note that the first order quadratic i/o model ẏ = a1y + b1u + c11yu +
d11y

2 + e11u
2 is obviously realizable in the classical state space form, and the

choice x(t) = y(t) will yield the state space model. Propositions 1 and 2 below
consider the cases n = 2 and n = 3, respectively. The computer algebra system
Mathematica-based software was used to obtain the results of Proposition 2,
as well as the results of subsection 2.3.2.
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2.3.1 The realization of the 2nd and 3rd order quadratic i/o equa-
tions

Proposition 1 The second order quadratic system described by i/o equation
(18) with n = 2 is realizable in the classical state space form iff e11 = 0, and
for the case c11 6= 0 the state equations are

ẋ1 = −A

ẋ2 = e−c11u

(
b2u+ e22u

2 + (a2 + c22u+ d22x1)x1

− (a1 + c12u+
c21
c11

+ d12x1)A+ d11A
2

) (19)

where A = (1/c211)[e12 + c11(b1 − ec11uc11x2 + c21x1 + e12u)], and y = x1.
Example 2 in section 3.8 demonstrates how this result can be obtained

using Mathematica.
Note that the condition, specified for the second-order quadratic system as

e11 = 0 in Proposition 1, has been known as necessary realizability condition
for a long time. This represents the fact, that the highest-order input deriva-
tive has to appear linearly in the i/o equation, see, for example, [5]. Moreover,
the above result follows also from Theorem 1 in [8] if we rewrite the second
order i/o equation as a generalized state equation, containing also the input
derivative u̇. The remaining part of Proposition 1, that is sufficiency and the
explicit form of the state equations, is a new contribution.

Condition e11 = 0 agrees also with the earlier result for the 2-nd order
bilinear i/o equation which is always realizable in the classical state space
form [16].

Our results also extend those of [29], which claim that the nonlinear i/o
differential equation of the form

y(n) + b1y
(n−1) + . . .+ bny

= anu+ an−1u
(1) + . . .+ an−mu

(m)

+ N(u, y, y(1), . . . , y(n−m)), m ≤ n
(20)

can be realized in the classical state-space form. Note that the realizable
subclass of the 2nd order quadratic systems, specified in Proposition 1, does
not accommodate into the realizable subclass, given by (20) in proposition,
because of the term c11ẏu̇+ c21yu̇+ (e12 + e21)u̇u.

Proposition 2 The third order quadratic system described by the i/o equation
(18) with n = 3, is realizable in the classical state space form iff either one of
the following set of conditions is satisfied

(i) c11 = c21 = c31 = e11 = e12 = e13 = 0, e22 = −b1c12 − b21d11.
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(ii) c11 = d11 = e11 = e12 = 0, e13 = e22, c12 = c21.

Remark 1 Condition (ii) extends the earlier condition for the 3rd order
bilinear i/o equation [16]

c11 = 0, c12 = c21. (21)

Note, that condition (i) for bilinear i/o equations yields either b1 = c11 =
c21 = c31 = 0 or c11 = c21 = c31 = c12 = 0, but the second branch is a special
case of (21).

Remark 2 For identification purposes, the conditions c21 = c12, e22 = e13
in (ii), unless all parameters are equal to zero, are unnatural since there is no
reason to assume that the terms ẏü and ÿu̇ or u̇2 and üu should have equal
coefficients. The same holds for the requirement e22 = −b1c12 − b21d11 in (i).
For that reason we suggest the following 3rd order realizable i/o equations to
be used for modelling purposes

(a) b1 = c11 = c21 = c31 = e11 = e12 = e13 = e22 = 0,

(b) c11 = c21 = c12 = d11 = e11 = e12 = e13 = e22 = 0.

The state equations, corresponding to (a), are given as a special case of
equations (22) for n = 3 (see below). The state equations, corresponding to
case (b) are too complicated to present here.

2.3.2 Two realizable subclasses

The results of Propositions 1 and 2 illustrate the complicated nature of realiz-
ability conditions for i/o quadratic models. For arbitrary n, in order to get the
conditions, one has to go through n− 1 steps. At each step we obtain several
restrictions on system parameters with many branches. All these conditions
can be combined together in very many different ways. They yield peculiar
structures and most of them are probably not important for practical appli-
cations. We suggest below two realizable subclasses of i/o quadratic models.
These two subclasses provide two possible patterns of nonzero coefficients.

Subclass 1 b1 = . . . = bn−2 = 0, c11 = . . . = c1,n−2 = 0, c21 = . . . =
c2,n−2 = 0, . . . , cn,1 = . . . = cn,n−2 = 0. The only nonzero elements of eij
are en−1,n and en,n. There are no restrictions on dij . Coefficient matrices
AT = (ai), BT = (bi), C = (cij), D = (dij) and E = (eij) for i, j = 1, . . . , n are
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shown below on scheme, where ◦ represents a zero and • a nonzero coefficient

AT =
(
• . . . • • •

)
BT =

(
◦ . . . ◦ • •

)

C =


◦ . . . ◦ • •
◦ . . . ◦ • •
...

...
...

...
◦ . . . ◦ • •



D =


• . . . • • •
• . . . • • •
...

...
...

...
• . . . • • •



E =


◦ . . . ◦ ◦ ◦
...

...
...

...
◦ . . . ◦ ◦ ◦
◦ . . . ◦ ◦ •
◦ . . . ◦ ◦ •


Subclass 2 b1 = . . . = bn−3 = 0, c11 = . . . = c1,n−1 = 0, c21 = . . . =

c2,n−2 = 0, c31 = . . . = c3,n−3 = 0, . . . , cn,1 = . . . = cn,n−3 = 0, d11 = 0. The
only nonzero elements element of eij are en−1,n and en,n.

AT =
(
• . . . • • • •

)
BT =

(
◦ . . . ◦ • • •

)

C =



◦ . . . ◦ ◦ ◦ •
◦ . . . ◦ ◦ • •
◦ . . . ◦ • • •
...

...
...

...
...

◦ . . . ◦ • • •
◦ . . . ◦ • • •



D =


◦ • • . . . • •
◦ • • . . . • •
◦ ◦ • . . . • •
...

...
...

...
...

◦ ◦ ◦ . . . ◦ •



E =


◦ . . . ◦ ◦ ◦ ◦
...

...
...

...
...

◦ . . . ◦ ◦ ◦ ◦
◦ . . . ◦ ◦ ◦ •
◦ . . . ◦ ◦ ◦ •


Note that realizability conditions for the first case impose restrictions on

bi, cij and eij parameters. Further, note that if bj = 0 is required, then so
is cij for all i. Conversely, note that in the other case, one additional cij
parameter, and one additional dij parameter, namely c1,n−1 and d11 must
also be zero for realizability. But now when compared with the first case,
bn−2, c3,n−2, . . . , cn,n−2 may be nonzero. Overall, the two subclasses do not
differ much. The notable restrictions have to be imposed on eij parameters –
all of them, except en−1,n and enn have to be zero for both cases.

For the 1st subclass we also give the state equations, shown below:

ẋ1 = x2, . . . , ẋn−2 = xn−1, ẋn−1 = −A

ẋn = e−c1,n−1u

(
bnu+ ennu

2 +

n−1∑
i=1

Bixi + (d11xn −Bn)A+ d11A
2

) (22)
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where

A =
1

c21,n−1

(
bn−1c1,n−1 + (1 + c1,n−1u)en−1,n

+ c1,n−1

n∑
j=1

(−ec1,n−1u)δjncn−j+1,n−1xj

 ,

Bi =

 Ci, i = 1

Ci +
cn−i+2,n−1
c1,n−1

, i ≥ 2

Ci = an−i+1 + cn−i+1,nu+

i∑
j=1

dn−i+1,n−j+1xj .

and δjn is Kronecker delta.
Though the state equations given above were suggested by applying the

realization theory in [4], they can be checked directly by eliminating x from
the state equations.

If we analyze the coefficients related to the quadratic terms, we notice
a remarkable nonsymmetricity in non-zero e (coefficients of cross-products
of different u derivatives) and d (cross-products of different y derivatives)
coefficients. Note that in both realizable subclasses only two e coefficients are
allowed to be non-zero whereas in the first subclass no restrictions are imposed
on the d coefficients at all. In the second subclass only one d element has to
be zero.

2.4 Solution of the realization problem using polynomial ap-
proach in the discrete-time case

The present subsection is based on paper III, which provides an alterna-
tive method for computing the sequence {Hk} in Theorem 2. If compared
to the earlier method in [1] it is more direct and therefore better suited for
implementation in the computer algebra packages like Mathematica or Maple.
Moreover, the method, described in [1], requires solving a system of equa-
tions, which may fail if the i/o equation is complex, in particular, if it contains
roots. For such systems polynomial method is frequently able to produce the
result. For the discrete-time systems, polynomial method is also noticeably
less time-consuming. However, the method described in [1] is more general,
while polynomial method is applicable only to the SISO systems, given by i/o
equations.

Consider a SISO case of the system (3) where p = m = 1; and define
φ(·) := φ1(·), u := u1, y := y1, n := n1 and α := α11

y(t+ n) = φ(y(t), . . . , y(t+ n− 1), u(t), . . . , u(t+ α)), (23)
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and the corresponding polynomial system description (13) with P (∂) = p11(∂) ,
p(∂), Q(∂) = q11(∂) , q(∂). Equation (13) takes now a form

p(∂)dy(t)− q(∂)du(t) = 0, (24)

where

p(∂) = ∂n −
n−1∑
i=0

pi∂
i, q(∂) = −

s∑
j=0

qj∂
j .

The aim is to compute sequence Hk for equation (23). The solution is formu-
lated in terms the (generalized) shift-and-cut operator δ−1c : K[∂, δ]→ K[∂, δ],
defined as

δ−1c (p(∂)) = δ−1(p(∂)− p0).

The definition of δ−1c is extended to vectors and matrices of polynomial ele-
ments in a componentwise manner. Iterated application of δ−1c will be consid-
ered in the following and denoted as

δ−kc =

k times︷ ︸︸ ︷
δ−1c ◦ δ−1c ◦ . . . ◦ δ−1c .

Theorem 7 1 For the i/o model (23), the subspaces Hk for k = 2, . . . , α+ 2
can be calculated as

Hk = spanK{dy(t), . . . ,dy(t+ n− k + 1),
du(t), . . . ,du(t+ α− k + 1), ωl, l = 1, . . . , k − 2}, (25)

where

ωl = δ−lc [p(∂), q(∂)]

[
dy(t)
du(t)

]
. (26)

Another task was to compute differentials of the state coordinates.

Corollary 1 For the realizable i/o equation (23) the differentials of the state
coordinates can be calculated as the integrable linear combinations of the one-
forms

ωi = δ−ic [p(∂), q(∂)]

[
dy(t)
du(t)

]
, i = 1, . . . , n.

3 NLControl package

The present section is based on papers IV and V. The package NLControl
provides basic tools for modeling, analysis and synthesis both for discrete- and
continuous-time nonlinear systems and it is built within computer algebra sys-
tem Mathematica. The reason for developing the package is that nonlinear

1In paper III the theorem was given in slightly different form.
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control systems, unlike their linear counterparts, practically miss a support
of professional software products. For example, both Matlab Control System
Toolbox and Mathematica Control System Professional Suite are applicable
only for linear systems. Some custom-made packages based on symbolic com-
putations for nonlinear control systems have been developed, see for example
[11, 6, 28, 27, 24], but their distribution is extremely limited and only the last
of them implements the methods based on algebraic tools and skew polynomial
rings.

Only these functions of the package, which are included into papers IV and
V are described in present thesis. A few exceptions are made to functions, re-
lated with inversive closure and Ore polynomials, which were omitted from the
articles due to space limitations. Note that Mathematica does not have built-in
functions dealing with noncommutative polynomials. There exists a custom-
made package [21] for computing Groebner basis of Ore polynomial matri-
ces, but the general functionality of the package is very limited. For Maple
there is available a general-purpose Ore polynomial package, called OreTools.
However, neither of these packages is suitable for application in the field of
nonlinear control, because this requires a possibility to define shift/derivative
operator of the Ore ring using control system equations. Therefore it was
necessary to develop all functions dealing with Ore polynomials from the be-
ginning.

3.1 Control systems

Most NLControl functions operate on special data types, or control objects,
that contain the information of the control system. These are StateSpace

and IO.
To perform computations with the systems described by the state equations

in the form (1) or (2), it is necessary to enter the system in the following form:

StateSpace[ f, Xt, Ut, t, h, Yt, type ].

In above, f is a list of the components of the state function; Xt, Ut and Yt
define a lists of the state, input and output variables, respectively; t is a time
argument and h defines the output function. The argument type may have one
of the following values: TimeDerivative stands for continuous-time case and
Shift for discrete-time case. The function h and the list Yt can be omitted,
in this case StateSpace fills their places with empty lists {}.

To enter the i/o system (3) or (4), one has to use the syntax

IO[eqs, Ut, Yt, t, type ],

where the meanings of the arguments Ut , Yt and type are the same as in
the case of StateSpace and the argument eqs defines the i/o equation (3) or
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(4). As conventional for Mathematica, instead of the lists of input and output
variables, a single variable may be entered in case of SISO system. However,
StateSpace and IO always embrace the single variable with curly brackets.
This guarantees that SISO and MIMO systems have the same data structure
and consequently, the same programs can handle them. Most of the assis-
tant functions or low-level functions require separate programs for discrete-
and continuous-time systems. The higher level functions (Linearization,
Accessibility, Observability and transformations between different sys-
tem descriptions) can share the same source code for discrete and continuous-
time systems.

The tools of NLControl are not designed for approximate calculations.
Therefore, all real (floating-point) numbers are transformed into rational num-
bers by StateSpace and IO.

Sometimes (and it is obvious from the examples of StateSpace and IO

functions) the form of some objects, determined by Mathematica and NL-
Control package differs from the traditional and familiar form. By this reason
within NLControl package the function BookForm is introduced which displays
such objects in a traditional form.

In NLControl syntax descriptions sseq denotes the StateSpace object, ioeq
denotes the IO object and ctrlsyst can be either of them.

3.2 Inversive closure

In the discrete-time case application of the algebraic formalism requires the
construction of the inversive closure K∗, see Section 1.2. That is, for system (1)
we have to find the variable z(t) ⊂ IRm (that is not unique) and the functions
ψ(·) such that (x(t), u(t)) = ψ(x(t+ 1), z(t)). The function

NegativeTimeShifts[ctrlsyst ]

finds all the possibilities zi(t) to define variable z(t) for system (1) (or (3)).
The function

BackwardShiftOperator[ctrlsyst ]

computes for each zi(t) the operator ψi(·) and chooses one with the simplest
expression. Simplicity is measured by Mathematica function ByteCount. An
alternative syntax

BackwardShiftOperator[ctrlsyst, zi(t) ]

allows to find the backward shift operator for the particular set zi(t). Finally,
the function returns the backward shift operator in the form {x1(t − 1) →
ψ1(x(t), z(t−1)), . . . , xn(t−1)→ ψn(x(t), z(t−1)), u1(t−1)→ ψn+1(x(t), z(t−
1)), . . . , um(t− 1)→ ψn+m(x(t), z(t− 1))}.
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3.3 Sequences of subspaces

NLControl uses a special object

SpanK[{{a11, a12, . . .}, {a21, a22, . . .}, . . .}, {x1, x2, . . .}, −1, t ]

to represent the subspace of one-forms spanned overK by the vectors
∑

j≥1 aijdxj
for i ≥ 1. Replacing the third argument by 1 gives a subspace spanned over K
by the vector fields – a mathematical object used for instance in [18, 20]. The
last argument t tells Mathematica that all symbols depending on t are to be
considered as variables, even if they do not appear explicitly in the coordinate
list {x1, x2, . . .}.

To compute the sequence of subspaces {Hk} for the discrete- or continuous-
time control system a function

SequenceH[ctrlsyst,n ]

is implemented. The integer n determines how many elements in the sequence
will be computed. Using keyword All instead of n allows to find all subspaces
{H1, . . . ,H∞}.

By default, the function applies the universal algorithm given in [4], but
for special cases alternative methods also exist. The first alternative, which
can be used only for discrete-time systems, is the recursive formula Hk+1 =
δ−1(Hk ∩ δHk) for k ≥ 1. For that one has to add an option Method->2 as the
last argument of the function. The second alternative is based on the fact that
the elements of the {Hk} can be computed as the maximal annihilators of the
elements in certain sequence of distributions of the vector fields, [19, 18]. The
latter method has a built-in restriction: if the subspace Hk is integrable and
Hk+1 is not, then the method can be used to compute all the subspaces up
Hk+1, but not any more for Hk+2 and further. The method can be called by
option Method->3. And finally, there is one more alternative for the discrete-
time systems given by SISO i/o equation: this is the polynomial method
described in Section 2.4, which can be called by option Method->4.

The integrability property of the subspace of differential one-forms can be
checked by function

Integrability[oneforms ],

where oneforms has to be object SpanK. Actual integration may be performed
by function

IntegrateOneForms[oneforms ].
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3.4 Ore polynomials

NLControl uses a special object OreRing to store the information about the
Ore ring were polynomials belong to and about difference/differential field
where polynomial coefficients belong. The easiest way to create the object
OreRing associated with the control system, is to use the function

DefineOreRing[ð, ctrlsyst ].

Note that we use ð as a polynomial variable, since ∂ is reserved symbol in
Mathematica. It is also possible to work with Ore rings not associated with
any control system. In this case, the object OreRing can be created by

DefineOreRing[ð, t, Shift],

if the polynomial coefficients are from difference ring, and by

DefineOreRing[ð, t, TimeDerivative],

if the polynomial coefficients are from differential ring.
Additionally, we define the object representing the Ore polynomial. The

special object is necessary, since Mathematica automatically reorders the fac-
tors connected with standard multiplication operator ”*”, for instance the
expression y[t] ∗ ð is immediately rewritten as ðy[t], which is wrong for the
case of Ore polynomials. Therefore, the Ore polynomial in the form (10) is
represented as

OreP[an, . . .,a1, a0],

where an, . . . , a0 are polynomial coefficients. The function

OreSimplify[p, R ]

simplifies the polynomial p, assuming it belongs to the Ore ring R, as described
below. The argument R has to be given as the object OreRing. If there
are relations defined between polynomial coefficients, this yields that certain
expressions in K are equal to zero. The function OreSimplify applies these
relations to polynomial coefficients and then simplifies the result. Note that
these relations are not applied automatically, since the polynomial object OreP
have no information about them. Addition of polynomials may performed by
Mathematica standard ”+” operator, but multiplication requires a special
function

OreMultiply[p1,. . ., pn, R ],

which computes a product of polynomials p1,. . ., pn from the Ore ring R and
is based on commutation rules (11) or (12). Let p and q be polynomials from
the Ore ring R. Then the following functions can be applied to them:
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• LeftQuotient[p, q, R ] finds the left quotient of p and q.

• LeftRemainder[p, q, R ] finds the left remainder of p and q.

• LeftQuotientRemandier[p, q, R ] returns a list {γ, r}, where γ is
the left quotient and r is the left remainder of p and q.

• LeftGCD[p, q, R ] finds the gcld of p and q.

• LeftLCM[p, q, R ] finds the least common left multiple of p and q.

Corresponding right-side functions are also available.
And finally, there are two functions for matrices with the polynomial entries

belonging to the Ore ring R. Analogously with the standard matrix multipli-
cation function Dot, the function

OreDot[A1,. . ., An, R ]

finds a product of polynomial matrices A1,. . ., An. The function

LowerLeftTriangularMatrix[A, R]

transforms the rectangular polynomial matrixA into lower left triangular form.

3.5 Transformations between different system descriptions

In this subsection functions are described that allow to transform one system
description into another. The function

Reduction[ioeq]

determines whether the system described by the i/o equations is irreducible
or not, and if not, finds the reduced set of i/o equations. In the discrete-time
case the function is based on Theorem 6 and in the continuous-time case an
analogical result proved in [15]. The function

Realization[ioeq, x#[t]&]

determines whether the i/o equation (3) (or (4)) can be transformed into
the state-space form and in case of the positive answer finds the state equa-
tions. In the discrete-time case the function is based on Theorem 2 and in
the continuous-time case on Theorem 3. The second argument x#[t]& is a so
called pure function, which determines the state variables to be denoted as
x1[t], x2[t], . . .. Alternative way is to replace the pure function by the list of
state variables, for example by {x1[t], x2[t]}, but in that case one has to be
careful to choose a list with a correct length. The function

IOToPolynomials[ioeq]
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computes the matrices P (∂) and Q(∂) in (13), given the i/o equations (3).
Analogously, the function finds polynomial representation for the continuous-
time system (4). The function

ClassicStateToIO[sseq]

finds the i/o equations (3) (or (4)) from the state equations (1) or (2), respec-
tively. The function is based on the state elimination method given in [4]. The
function

NormalForm[sseq, ξ#[t]&]

transforms the system given by the state equations (1) or (2), if possible, into
the normal form which is a good starting point for applying the inversion-based
control algorithms and for computing zero dynamics, [12]. The argument
ξ#[t]& determines the new state variables to be denoted as {ξ1[t], ξ2[t], . . .}.

3.6 Checking the system properties

The function

Accessibility[sseq]

returns True if the system (1) (or (2)) is accessible and False otherwise. In
case the system is not accessible, it can be decomposed into accessible and
non-accessible subsystems by the function

AccessiblityDecomposition[sseq, ξ#[t]& ].

The function

Observability[sseq]

returns True if the system (1) (or (2)) is observable and False otherwise. The
function

ObservabilityDecomposition[sseq, ξ#[t]& ]

decomposes the state equations into the observable and un-observable part.

3.7 Feedback linearization

System (1) is said to be static state feedback linearizable if there exist a state
coordinate transformation x̃(t) = Φ(x(t)) and a regular static state feedback of
the form u(t) = β(x(t), v(t)), with rankK[∂β(·)/∂v] = m, the number of system
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inputs, such that in the new coordinates the compensated system equations
are in the form

x̃i1(t+ 1) = x̃i2(t)
· · ·

x̃iki−1(t+ 1) = x̃iki(t)
x̃iki(t+ 1) = vi(t), i = 1, ...,m.

The necessary and sufficient conditions for feedback linearizability are:

(i) H∞ = {0},

(ii) Hk is completely integrable for 1 ≤ k ≤ k∗,

where k∗ is an integer k∗ ≤ n such that, for 0 ≤ k ≤ k∗, Hk+1 ⊂ Hk but
Hk+1 6= Hk and Hk∗+1 = Hk∗+2 = . . . = H∞.

The function

Linearization[sseq, x̃#[t]&, v#[t]& ]

checks whether the system is feedback linearizable and in the case of affirmative
answer finds the state coordinate change, the feedback and the linear closed-
loop equations.

3.8 Examples

Example 1 Consider the system described by the i/o difference equations

y1(t+ 2) = y1(t+ 1)− u1(t)y1(t) + u1(t+ 1)y1(t+ 1)
y2(t+ 3) = y2(t+ 2)u2(t+ 2) + y2(t+ 1)− u1(t+ 1)y1(t+ 1)

−3y1(t+ 1) + 3u1(t)y1(t) + y1(t)− u2(t)y2(t).
(27)

In order to use any function from the package NLControl, one first has to load
the package by the following command

In[1]:= «NLControl‘Master‘

Let us create the object IO for this system.

In[2]:= eqs = {y1[t+2]→→→ y1[t+1]- u1[t]y1[t]+ u1[t+1]y1[t+1],
y2[t+3]→→→ y2[t+2]u2[t+2]+ y2[t+1]- u1[t+1]y1[t+1]-
3y1[t+1]+ 3u1[t]y1[t]+ y1[t]- u2[t]y2[t]};

Ut= {u1[t],u2[t]};
Yt= {y1[t],y2[t]};
ioeq=IO[eqs,Ut,Yt,t,Shift];
BookForm[ioeq]

Out[6]=

y1[t+2] = y1[t+1]- u1[t]y1[t]+ u1[t+1]y1[t+1],

y2[t+3] = (y2[t+2]u2[t+2]+ y2[t+1]- u1[t+1]y1[t+1]-

3y1[t+1]+ 3u1[t]y1[t]+ y1[t]- u2[t]y2[t]
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Next, we construct an Ore ring associated with the system (27).

In[7]:= K = DefineOreRing[ððð,ioeq]
Out[7]= OreRing[ð,t,{Shift, t->t+1, t->t-1, 0&},

{{{y1[i+t], -∞ ≤i≤1}, {y2[j+t], -∞ ≤j≤2},
{u1[k+t], 0≤k≤ ∞}, {u2[l+t], 0≤l≤ ∞}},{«4»}}]

The next function finds the matrices P (ð) and Q(ð) for the system.

In[8]:= {P, Q} = FromIOToOreP[ioeq];
MatrixForm[BookForom[P, K]]

Out[9]=

(
ð2+(-1-u1[t+1])ð + u1[t] 0

(3+u1[t+1])ð + (-1-3u1[t]) ð3 - u2[t+2]ð2 - ð + u2[t]

)
In[10]:= MatrixForm[BookForom[Q, K]]

Out[10]=

(
y1[t+1]ð - y1[t] 0

-y1[t+1]ð + 3y1[t] y2[t+2]ð2 - y2[t]

)
According to Theorem 6, we can find a gcld GL(ð) of P (ð) and Q(ð) by reduc-

ing the composite matrix [P (ð)
...Q(ð)] into lower left triangular form [GL(ð)

...0].

In[11]:= PQ = MapThread[Join,{P,Q}];
MatrixForm[BookForom[

G = LowerLeftTriangularMatrix[PQ, K],K]]

Out[12]=

(
y1[t+1]ð - y1[t] 0

-y1[t+1]ð + 3y1[t] ð2 - 1

)
Since GL(ð) is not a unimodular matrix, the system (27) can be reduced; that
is we can find the polynomial matrices P̃ (ð) and Q̃(ð) defining the reduced
system P̃ (ð)dy(t) = Q̃(ð)du(t) from the equations P (ð) = GL(ð)P̃ (ð) and
Q(ð) = GL(ð)Q̃(ð):

In[13]:= MatrixForm[BookForm[P̃̃P̃P = LeftQuotient[P,G,K],K]]

Out[13]=

 1
y1[t]

ð -
u1[t]

y1[t]
0

1 ð - u2[t]


In[14]:= MatrixForm[BookForm[Q̃̃Q̃Q = LeftQuotient[Q,G,K],K]]

Out[14]=

(
1 0

0 y2[t]

)

For this example the equations P̃ (ð)dy(t) = Q̃(ð)du(t) can be easily integrated
to provide the reduced i/o difference equations:
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In[15]:= BookForm[sp = SimplifyBasis[FromOrePToSpanK[P̃, Q̃, ioeq]]]

Out[15]= SpanK[-u1[t]dy1[t]+dy1[t+1]-y1[t]du1[t],

dy1[t]-u2[t]dy2[t]+dy2[t+1]-y2[t]du2[t]]

In[16]:= psinew = IntegrateOneForms[sp]

Out[16]= {y1[t] - u2[t]y2[t] + y2[1+t], -u1[t]y1[t] + y1[1+t]}

So, the reduced i/o equations are

In[17]:= BookForm[IO[Thread[psinew==0],Ut,Yt,t,Shift]]

Out[17]=
y1[t] - u2[t]y2[t] + y2[t+1] = 0

-u1[t]y1[t] + y1[t+1] = 0

The above reduction procedure can be also performed by the single command
Reduction[ioeq].

Example 2 This example demonstrates the technique used to obtain the
realizability conditions and state equations presented in Paper II. Consider
the second order quadratic i/o equation (18) with n = 2.

At first, compose the matrices of coefficients A,B, C,D, E and matrices of
variables U ,Y for equation (18) in such way that they could be easily gener-
alized to the systems n > 2.

In[18]:= n=2; s=1;
AAA = Table[ai,{i,n}];
BBB = Table[bi,{i,s+1}];
CCC = Table[c10*i+j,{i,n},{j,s+1}];
DDD = Table[If[i<=j,d10*i+j,0],{i,n},{j,n}];
EEE = Table[If[i<=j,e10*i+j,0],{i,s+1},{j,s+1}];
UUU = Table[Derivative[s+1-i][u][t],{i,s+1}];
YYY = Table[Derivative[n-i][y][t],{i,n}];
MatrixForm/@{AAA,BBB,CCC,DDD,EEE}

Out[26]=

{(
a1
a2

)
,

(
b1
b2

)
,

(
c11 c12
c21 c22

)
,

(
d11 d12
0 d22

)
,

(
e11 e12
0 e22

)}
In[27]:= MatrixForm/@{UUU,YYY}

Out[27]=

{(
u’[t]

u[t]

)
,

(
y’[t]

y[t]

)}
Next, let us create the i/o equation.

In[28]:= SetOptions[BookForm,TimeArgument -> False];
eq = y(n)[t] -> Expand[A.YA.YA.Y + B.UB.UB.U + C.U .YC.U .YC.U .Y +D.Y.YD.Y.YD.Y.Y + E .U .UE .U .UE .U .U];
ioeq IO[eq,u[t],y[t],t,TimeDerivative]; BookForm[ioeq]

Out[30]= y” = b2u+e22u
2 +a2y+c22uy+d22y

2 +b1u’+e12uu’+

c21yu’ + e11u’
2 +a1y’ + c12uy’ +d12yy’ + c11u’y’ + d11y’

2
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According to Theorem 2, we need to compute the first three elements of the
sequence Hk to check realizability of the system ioeq.

In[31]:= BookForm[Hk = SequenceH[ioeq,3]]

Out[30]= {SpanK[dy,dy’,du,du’], SpanK[du,dy’,dy],

SpanK[dy,dy’+(-b1 - e12u - c21y - 2e11u’- c11y’)du]}

In[32]:= Integrability/@Hk

Out[32]= {True,True,False}

The subspace H3 is not integrable, thus the system ioeq has no classical state
space form. In order to find the restrictions on the coefficients we have to
compute the wedge products in Frobenius’ theorem. For that, convert H3

from object SpanK to the set of one-forms and denote the one-forms by ω1 and
ω2.

In[33]:= BookForm[{ωωω1,ωωω2} = ToDifferential[Hk[[3]]]]

Out[33]= {dy,dy’+(-b1 - e12u - c21y - 2e11u’- c11y’)du}

It is clear dω1∧ω1∧ω2 = 0, since dω1 = d(dy) = 0. Next, compute dω2∧ω1∧ω2:

In[34]:= coords = Hk[[3,2]]

Out[34]= {y[t],y’[t],u[t],u’[t],u”[t]}

In[35]:= BookForm[
Wedge[De[ωωω2,Coordinates -> coords], Wedge@@{ωωω1,ωωω2}]]

Out[35]= -2e11du ∧ dy ∧ du’ ∧ dy’

Above wedge product is zero iff e11 = 0. So, taking e11 = 0 in equation ioeq

gives us a new realizable system ioeq1.

In[36]:= ioeq1 = ioeq/.e11 -> 0;
BookForm[Hk = SequenceH[ioeq1,3]]

Out[37]= {SpanK[dy,dy’,du,du’], SpanK[du,dy’,dy],

SpanK[dy,dy’+(-b1 - e12u - c21y - c11y’)du]}

Now the subspace H3 is integrable and according to Theorem 2, by integrating
the basis vectors of H3 gives us the state coordinates for realization.

In[38]:= BookForm[states = IntegrateOneForms[Hk[[3]]],t]

Out[38]= {y,
e-c11u(b1c11 + e12 + c11(e12u + c21y) + c

2
11y’)

c211
}

Finally, we can find the state equations for system ioeq1. To make the result
visually shorter, denote the expression b1c11 + e12 (1 + c11u[t]) + c11c21x1[t]−
ec11u[t]c211x2[t] in state equations by A.
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In[39]:= {cls,repl} = Realization[ioeq,x#[t]&,states];
BookForm[cls/.(b1c11 + e12(1 + c11u[t]) +
c11(c21x1[t] - e

c11u[t]c11x2[t])) -> A]

Out[40]=

x’1 = -A/c211
x’2 = e-c11u(-A a1c211 - A c11c21 + A2d11 - Ac211(c12u + d12x1) +

c311(- A + e12)u’ - e
c11uc511x2u’ +

c411(b2u + e22u
2 + a2x1 +

c22u x1 + d22x21+b1u’ + e12u u’ + c21x1u’)/ c411

3.9 WebMathematica application

The functions from the package NLControl cannot be used outside the Math-
ematica environment. In order to overcome this limitation we have developed
a webMathematica-based application, that allows certain functions from NL-
Control to be used on the world-wide-web, in such a way that no other software
except for an internet browser needs to be installed in a computer. This allows
these tools to be applied in graduate courses as well as to make them available
to a wider control community and to engineers.

However, the NLControl website has several restrictions when compared
with NLControl running within standard Mathematica. First, only the most
important NLControl functions are available on the website. Currently there
are 15 functions for discrete-time systems, 13 functions for continuous-time
systems and 3 functions for the systems defined on homogeneous time-scales.
Second, the website automatically interrupts all the computations lasting
longer than 30 seconds. The reason is there is only one Mathematica ker-
nel running in the server, which is shared between different users. Third,
equations entered in to the website should be in plain text form, which means
that instead of subscripted variables x1, x2, . . . one has to use x1, x2, . . . and
entering Greek letters is uncomfortable, since for example instead of α one
should type \[Alpha].

The NLControl website is built of jsp (Java Server Pages) files, which
contain elements of several programming languages: Javascript is used for
opening and closing windows and communicating between different windows,
Java is used for choosing random examples from examples library and finally
Mathematica together with webMathematica functions is used to generate the
result. The file structure of the website is simple. For every function there is
one jsp file, individual for discrete- and continuous-time systems, which allows
to enter the input data using html forms. Input data is sent to the other jsp
file, so called result file, which sends the data to Mathematica kernel and after
getting the answer prints it. Most of the functions use the same result file for
discrete- and continuous-time systems, since it allows to decrease the number
of files.
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The developed webpage is available at
http://webmathematica.cc.ioc.ee/webmathematica/NLControl/.

Conclusions

In present thesis three modeling (realization-related) problems of nonlinear
control systems are solved using algebraic approach of differential forms.

Necessary and sufficient condition for the irreducibility of MIMO difference
equations, formulated in terms of the greatest common left divisor of the
polynomial matrices associated with the system equations, is presented. The
condition remarkably coincides with the corresponding result for the linear
systems, yet in the nonlinear case polynomials are defined over the difference
field, and unlike the linear case, belong to a noncommutative polynomial ring.
Analogous irreducibility conditions are also valid for differential equations [15].

Noncommutative polynomials also turned out to be useful for simplifying
the solution of the realization problem. A new formula is presented in terms of
Ore polynomials, which allows to compute the basis of the subspace Hα+2 of
differential one-forms that determines the differentials of the state coordinates
for SISO difference equation. Note that in the linear case, our results yield
the results given in [26]. The main advantage of the polynomial method is
shorter computation time and compact program code, if compared to the
algebraic method, based on the solution of the set of nonlinear equations. The
polynomial method of computing Hα+2 has been also extended for differential
equation [30].

The third problem studied in this thesis is the realizability of a class of
higher order quadratic i/o differential equations. For the second- and third-
order models sufficient and necessary conditions, in terms of restrictions on
the quadratic model parameters, have been provided to establish whether
it is possible to find a state space representation of the i/o system or not.
The computer algebra package NLControl was used to obtain realizability
conditions for the second- and third-order quadratic equations and realizable
subclasses for the n-th order equations. For higher order quadratic equations
two realizable subclasses were suggested. Note also that earlier results do
not suggest explicit state equations for i/o models. In this thesis we provide
explicit state equations for realizable second order quadratic i/o equations and
for one realizable subclass of quadratic i/o equations for the general case of
arbitrary order n. Future research will be directed towards the development
of general model classes, other than bilinear and quadratic, which can be put
into the state space form, and capture the basic non-linearities of the plants
whilst remaining within limited complexity.

Additionally to above theoretical problems the Mathematica based soft-
ware package NLControl for nonlinear control systems and its webMathemat-
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ica application is described. Not all the tasks that can be solved by NLControl
are included into this thesis. For instance, reduction and realization problem
can be also solved for systems defined on homogeneous time scales [2] and
realization of discrete-time composite systems is possible [23]. NLControl
also provides an alternative approach to differential one-forms – vector fields,
which allow to solve several control problems [20, 19, 18] and are only briefly
mentioned here. Our future goal is to implement more NLControl functions
into webMathematica website, improve the documentation and example li-
brary. Especially, we want to include functions that allow output feedback
linearization and/or decoupling, construct the transfer function from the i/o
equations or from the state equations, find the discrete-time model from the
continuous-time system equations and solve the model-matching problem.
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moving the input derivatives in the generalized bilinear state equations.
Proceedings of the Estonian Academy of Sciences, 58(2):98–107, 2009.
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Resümee

Käesoleva dissertatsiooni teoreetilises osas lahendatakes kolm mittelineaarsete
juhtimissüsteemide modelleerimisülesannet, kasutades selleks diferentsiaalvor-
midel ja mittekommutatiivsetel polünoomidel baseeruvat algebralist forma-
lismi. Esiteks, on leitud mitme mitme sisendi ja mitme väljundiga diskreetse
mittelineaarse juhtimissüsteemi taandumatuse tarvilikud ja piisavad tingimused.
Need tingimused, mis on formuleeritud süsteemiga seotud mittekommutatiiv-
sete polünoomide maatriksite suurima ühisteguri abil, annavad ka meetodi
süsteemi taandamiseks. Teiseks vaadeldakse sisend-väljund võrrandiga kir-
jeldatud ruutsüsteemide realiseeritavust. Teist ja kolmandat järku mudelite
joaks on leitud realiseeritavuse tarvilikud ja piisavad tingimused vahetult ruut-
süsteemi parameetrites. Kõrgemat järku mudelite jaoks on välja toodud kaks
realiseeritavat alamklassi. Kolmandaks on leitud meetod realisatsiooniülesande
lahendamiseks mittekommutatiivsete polünoomide teooria abil ühe sisendi ja
ühe väljundiga diskreetse mittelineaarse juhtimissüsteemi jaoks.

Töö teine osa kirjeldab sümbolarvutuse pgorammi NLControl, mis võimaldab
lahendada mittelineaarsete juhtimissüsteemide modelleerimise, analüüsi ja sün-
teesiga seotud ülesnadeid. See tarkvara baseerub samuti diferentsiaalvormide
ja mittekommutatiivsete poünoomide algebralisel formalismil ja on arendatud
tarkvarapaketi Mathematica keskkonnas. Lühidalt on kirjeldatud NLControli
veebisaiti, mis võimaldab kasutada NLControli tähtsamaid funktsioone inter-
neti vahendusel, ilma Mathematicat lokaalsesse arvutisse installeerimata.
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Abstract

In the theoretical part of this thesis algebraic approach of differential forms,
supplemented by skew polynomial formalism, is applied to three modelling
problems of nonlinear control systems. First, necessary and sufficient irre-
ducibility condition for multi-input multi-output discrete-time control system
is presented. The condition is formulated in terms of the greatest common left
divisor of the skew polynomial matrices associated with the system equations
and it also provides a natural method for system reduction. Second, realiz-
ability of the class of higher order quadratic input-output differential equation
is examined. For the second- and third-order models necessary and sufficient
realizability conditions in terms of the quadratic model parameters have been
provided. For higher order quadratic equations two realizable subclasses were
suggested. Third, the realization problem for single-input single-output dif-
ference equation is solved using the theory of skew polynomials.

The second part of the thesis is devoted to symbolic computer algebra
package NLControl, which allows to solve numerous problems related to mod-
elling, analysis and synthesis of nonlinear control systems, both continuous and
discrete-time case. The package is based on the algebraic methods of differen-
tial one-forms and skew polynomials and it is created within computer algebra
system Mathematica. A brief exposition of the NLControl website, which al-
lows to perform computations with more important NLControl functions over
the internet, without having Mathematica installed into local computer, is also
given.

43



Elulookirjeldus

1. Isikuandmed

Ees- ja perekonnanimi Maris Tõnso
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Tallinna Pedagoogikaülikool 2000 matemaatika, M.Sc.

4. Keelteoskus

Eesti keel – kõrgtase
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fineeritud mittelineaarsete juhtimissteemide ekvivalents ja taandamine”
(2007 - 2009).

45



Curriculum vitae

1. Personal data

Name Maris Tõnso
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mathematica. In Medzinárodná konferencia Kybernetika a Informatika
SSKI, conference preprints, page 10. Ždiar, Slovakia, 2008.
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T. Mullari, Ü. Kotta, and M. Tõnso. The connection between different
static state feedback linearizability conditions of discrete time nonlin-
ear control systems. In European Control Conference, pages 4268–4275.
Kos, Greece, 2007.
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Štrbské Pleso, Slovakia, 2009

8. Defended thesis

How to use Mathematica, B.Sc., Tallinn Pedagogical University,
1997.

Possibilities of Symbolic Computation in Modelling of Nonlinear
Control Systems on the basis of Mathematica, M.Sc., Tallinn Ped-
agogical University, 2000.

9. Main areas of scientific work/Current research topics

Nonlinear control systems, Mathematica programming.

10. Other research projects

Estonian-Polish Joint Research Project under the Agreement on Scien-
tific Cooperation between the Polish Academy of Sciences and the Es-
tonian Academy of Sciences ”Equivalence and reducibility of nonlinear
control systems on time scales” (2007 - 2009).

49





Appendix

51


