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1 Introduction
Advanced tools such as ChatGPT and Midjourney have recently drawn mainstream atten-tion to the power of AI algorithms. However,Machine Learning (ML), which is the sub-fieldof AI behind these spectacular tools, is an old field. It was introduced between 1957 and
1960 [19] and has since benefited from advances in research in mathematics, electron-ics, algorithms, and software development, to name a few, making it a vital area in theadvancement of various technologies. ML and its subfield, Deep Learning (DL), focus ondeveloping algorithms that use data to mimic human decision-making. With their abilityto learn hidden information contained in data that humans can not extract and quantify,ML algorithms have proven to be more efficient than human decision-making in a con-siderable number of real-world applications, such as image classification [11, 45], naturallanguage processing (NLP) [56, 49] and stock market predictions [32, 34]. Due to its supe-rior performance in a variety of real-world applications, it has attracted the attention ofresearchers and healthcare professionals.

The advancements in various fields of AI have somewhat alleviated the prejudices andfears that healthcare professionals previously held about this technology. The use of AI inmedical research is expanding exponentially. This is largely driven by the adoption of Elec-tronic Health Records (EHR) [23] in healthcare facilities. The application of ML algorithmson various complex tasks such as drug discovery [29], cancer detection [30], andmortalityprediction [35], has proved highly effective. This effectiveness is proof that ML should beused on a large scale to help healthcare professionals in their decision-making. Beyondtheir predictive power, ML tools enable the delivery of better care, reduce the risk of prac-titioner burnout, improve patient health, better manage hospital resources, and reducecosts for both patients and hospitals, to name but a few [4, 53]. It is in this perspective ofcontinuing to provide effective ML predictive tools that will improve the delivery of careand, consequently, the social lives of patients and healthcare professionals that this thesisis set.
Before the AI venue, medicine was more preventive and curative. With its arrival, re-searchers are trying to make it more predictive by drawing on the massive and heteroge-neous quantity of data contained in EHRs. Compared with statistical models, ML models,particularly DL models, have a better ability to handle longitudinal data while preservingrelevant information. As a result, they are ideal predictive models in medical settings,where patient health data are frequently recorded over time and across successive visitsor admissions. Researchers have proposed several ML models trained on individual ormixed EHR data, including patient demographics, images, physiological measurements,and clinical codes, to predict or detect potential adverse medical events during a pa-tient’s medical stay. Despite achieving satisfactory results in various medical predictiontasks, these models still face certain limitations, namely suboptimal processing of irregu-lar temporal data and suboptimal processing of historical medical data. In the literature[27, 2, 54], many models using data from successive patient admissions (or visits) oftenneglect the days elapsed between these admissions or assume that the days elapsed areuniform, meaning that the number of days between admissions is always the same. Thisis undoubtedly a flawed approach, as the level of importance the model attaches to re-cent data will be the same as that it attaches to older data. By exploiting the power of DLalgorithms, as in previous related studies, this thesis seeks to address the above pitfallsand provide more accurate predictive models, whether for irregular temporal numericaldata or irregular temporal categorical data.
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To achieve the aim of the thesis, the author first identified the adverse events likelyto occur during a patient’s stay and the type of data that could be used to predict them.The author first hypothesizes that while there may be a multitude of events, such as sep-sis or surgery, that may occur during the patient’s stay, the worst is undoubtedly death.Therefore, mortality prediction is the primary concern of the thesis and irregular physio-logical time series measurements are used to carry out this prediction. The author basesthe second hypothesis on the notion that an adverse medical event can be prevented bypromptly identifying the illness that is likely to cause it. So, the author developed a deeplearning model that uses historical and current medical data and patient demographicsto detect eventual illnesses during a patient visit. Due to the area of expertise and dataaccessibility, the author chose depression detection as a pilot case. A recent survey bythe National Health Interview (NIH) found that approximately 3.5% of deaths at the pop-ulation level were linked to depression or anxiety [39]. These statistics reveal the crucialimportance of detecting depression at an early stage. Finally, the author hypothesizesthat predicting the patient’s likelihood of readmission could potentially prevent adversemedical events. Some studies in the literature have highlighted the fact that unplannedreadmissions worsen patients’ state of health [31, 48]. Part of the thesis therefore focuseson predicting unplanned hospital readmission upon patient discharge. A deep learningmodel that leverages historical and current medical data, patient demographics and ad-ditional stay information was then developed to perform this prediction.
Through 4 articles (3 of which are published and one currently under review), thisthesis presents 4 different deep-learning models that aim to improve the accuracy of pre-dicting adverse medical events. Two of these models aim to predict mortality in IntensiveCare Units (ICU), while the other two focus on detecting depression and predicting un-planned hospital readmissions. As demonstrated by extensive experiments conducted inpublications, deep learning models are ideal and robust tools that can support physiciansin their decision-making. The superior performance of the proposed models comparedto state-of-the-art models highlights the effectiveness of the different strategies imple-mented to account for relevant aspects of the data. While the short-term goal of thisthesis is to use machine learning tools to effectively predict adverse medical events, thelong-term goal is to improve healthcare delivery and hospital management.
Despite their effectiveness, the proposedmodels have some limitations. These includea lack of explainability, a failure to account for uncertainty in the imputed values, and theuse of a few clinical features as predictors. As these issues need to be resolved before themodels can be deployed in real medical scenarios, future work will focus on overcomingthe limitations faced by each model. In addition, the biases of the models and the ethicalaspects associated with their use will be studied. The development of a unified system inwhich all proposed models work in synergy rather than individually will also be explored.
The thesis is carefully organizedwith awell-structured framework that includes severalkey chapters:
• Chapter 2: “Focus and Aim”: This chapter presents the research questions and thevarious publications dealing with these questions.
• Chapter 3: “Research Methodology”: This chapter describes the applied researchmethodology used to conduct the various studies carried out as part of the thesis.
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• Chapter 4: “Related Research”: This chapter presents an overview of the literatureon the prediction of adverse medical events from multivariate clinical time seriesand longitudinal patient health data 1.
• Chapter 5: “Publication-specific Contributions”: This chapter provides a high-leveloverview of the components of the models introduced in each article;
• Chapter 6: “Discussion of Challenges”: This chapter presents the challenges en-countered during the research journey.
• Chapter 7: “Conclusion”: The final chapter provides a concise summary of the mainfindings and contributions of the thesis.

1Although multivariate clinical time series are also longitudinal data, throughout the thesis, lon-gitudinal specifically refers to data collected over successive admissions or visits.
12



2 Focus and Aim
The short-term goal of this PhD thesis is to propose various deep-learning models thatovercome underlying clinical data issues identified in the literature to provide accuratepredictions of adverse events during the patient’s medical stay. The long-term goal is touse these models in real-world medical scenarios to: assist physicians in their decision-making; relieve hospital congestion; reduce mortality rates; and improve the quality ofcare, to name a few. Having hypothesized that the worst event that might occur during apatient’s stay is death and that some adverse medical events can be avoided by detectingin advance possible illnesses or predicting unplanned hospital readmissions, this thesisseeks to answer the research questions mentioned in Section 2.1.
2.1 Research Questions

• RQ.1: How to effectively predict mortality using irregular physiological time seriesmeasurements?This research question focuses on how to effectively predict mortality from physi-ological time series measurements that suffer from temporal irregularities, leadingto underlying problems such as data sparsity and increased missing values. Tempo-ral regularity refers to irregular time intervals between successive observations ofa univariate time series. In the case of multivariate time series, irregularities mayexhibit different patterns across univariate time series. Temporal irregularity is gen-erally due to the fact that medical sensors have different and irregular data collec-tion frequencies. Processing directly irregular physiological time series undoubtedlymakes predictive machine learning or deep learning models suboptimal, accordingto the literature [13, 37]. For a task as sensitive as mortality, it is vital to proposea predictive model that overcomes the underlying problems associated with tem-poral irregularity. In summary, this research question aims to develop a model thatoptimally handles irregular temporal numerical (continuous) data, especially phys-iological measurements, to improve the accuracy of mortality prediction.
• RQ.2: How can adverse events be effectively predicted based on longitudinal data,i.e. historical and current patient data?The second research question aims to propose deep learning models that optimallyprocess longitudinal patient data to prevent adverse events. It is observed in the lit-erature that several models relying on historical and current patient data overlookthe elapsed days between admissions (or visits) and their inherent irregularity (i.e.,variation in elapsed days). This approach is neither optimal nor realistic, as it in-volves giving equal weight to historical and current medical information, leadingto inaccurate downstream prediction. Furthermore, although some models in theliterature [3, 14] implement attention mechanisms to focus on the most relevantclinical features, none of them have considered developing a mechanism that ex-plicitly focuses on frequent medical events such as chronic diseases. Indeed, thelatter are often the cause of some adverse events. Elapsed days and tracking fre-quent medical events are two key aspects that should be considered when usingpatient longitudinal data to predict adverse events. It is worth mentioning that,unlike the first research question, the data used in this research question are ir-regular temporal categorical data. Indeed, longitudinal data encompass categoricalfeatures such as diagnoses, procedures, and medication of consecutive admissionsoccurring at irregular time intervals, hence the term irregular temporal categoricaldata.
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Four papers have proposed solutions to these research questions. These papers con-sist of building new deep-learning models or combining existing deep-learning architec-tures to predict adverse events during a patient’smedical stay. Each article is based on oneof the hypotheses put forward in the introduction. They contribute to answering themainresearch question, which is to predict adverse medical events during the patient’s med-ical stay. These predictions are made using deep learning models capable of efficientlyprocessing clinical data, solving their underlying problems and modelling temporal infor-mation.
• Publication I “A new efficient ALignment-driven Neural Network forMortality Pre-
diction from Irregular Multivariate Time Series Data” addresses partially the firstresearch question. It introduces a newdeep learningmodel calledALignment-drivenNeural Network (ALNN) built on top of a Recurrent Neural Network (RNN) to makethe mortality prediction task more accurate. RNN, the state-of-the-art model fortime series analysis, has difficulty handling irregular multivariate time series [37], asit is intrinsically designed for regular time series. ALNN therefore provides it with apseudo-regular version of irregular physiological time series called pseudo-alignedlatent values. Extensive experiments have shown that ALNN makes RNNs, espe-cially the Gated Recurrent Unit (GRU), more accurate when it comes to predictingmortality in ICU based on patients’ physiological measurements.

• Publication II “Deep Padding and Alignment Strategies for Irregular Multivariate
Clinical Time Series” is the sequel to publication [I]. It answers the first researchquestion by integrating a data-driven imputation and padding approach in the pre-diction process. Various experiments were carried out to demonstrate the effec-tiveness of data-driven imputation to fill in missing values and data-driven paddingto obtain univariate time series of equal length. This extended architecture has im-proved the accuracy of the mortality prediction task.

• Publication III “Evaluation of Deep Learning-Based Depression Detection Using
Medical Claims Data” answers the second research question through a use case.This paper presents how the Self-Attention mechanism [49] can be combined withGRU-decay [12] to optimally detect depression from longitudinal patient claims data.The Self-Attention is used to model the relationship between diagnoses and filterout irrelevant diagnoses. While GRU-decay models temporal information. Com-pared to state-of-the-artmodels, the superior results of the proposedmodel demon-strate the critical importance of considering temporal information and accuratelyencoding relationships between diagnoses when detecting depression.

• Under review: “Deep Magnitude Management of Clinical Code Embeddings to
Predict Unplanned Hospital Readmissions” answers the second research questionby proposing a newdeep-learningmodel calledDeepMagnitudeManagement (D2M)that predicts unplanned hospital readmissions from longitudinal patient data andadditional features. In contrast to previously proposed sequential models designedto predict hospital readmission, D2M processes clinical data of successive hospitaladmissions based on their corresponding recording date and incorporates a mech-anism that explicitly focuses on frequent medical events such as chronic diseases.Extensive experiments have demonstrated that D2M improves the accuracy of theunplanned hospital readmissions prediction task.
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In summary, the first two publications present newdeep-learningmodels that improvethe accuracy of mortality prediction. This improvement is due to the models’ ability toovercome underlying problems associated with physiological time series data. In the sec-ond paper, the author optimally combines two existing deep learning architectures to pro-pose a model that efficiently encodes underlying medical information, such as diagnosticrelationships and visit dates. This combination resulted in improved detection of depres-sion from longitudinal patient claims data. Finally, in the paper under review, the authorintroduces a novel deep-learning model that processes clinical data of successive admis-sions while considering their corresponding dates and frequent medical events. Beyondthe ability of the introduced models to answer research questions, the author believesthat once they reachmaturity, they will contribute to the expansion of AI in medicine and,by extension, in other fields. Indeed, many decision support tools in real-world scenariosrely on irregular time series and longitudinal data.

15



3 Research Methodology
The objective of the thesis is to propose machine learning tools to predict adverse med-ical events. Therefore, the author uses the Applied Research methodology as a researchdesign since it seeks to provide a practical solution to an existing problem. The existingproblem is the prediction of adverse medical events, while the practical solution consistsof machine learning tools. Applied Research encompasses systematic procedures involv-ing the identification of problems, and the development of hypotheses, followed by ex-periments to test those hypotheses. Through these procedures, the author can addressthe underlying problems related to the prediction of adverse medical events and providerobust artefacts as solutions. Figure 1 illustrates the systematic procedures of Applied Re-search.

Figure 1: Systematic applied research procedures.

Applied Research methodology has proven to be well-suited to various fields seekingpractical solutions to the problems they face [18]. By relying on it, researchers have beenable to provide valuable artefacts that contribute to the advancement of their field and, byextension, to other fields. The author therefore considers its adoption as essential to con-duct rigorous research that will ultimately provide efficient and robust machine learningtools for predicting adversemedical events and additional artefacts such as peer-reviewedstudy synthesis and model formulation.
To overcome the thesis challenges, Applied Research iterations were adopted in allthree publications and the article under review. These iterations, including evaluating theliterature, problem identification, data collection and analysis, data processing, hypothe-ses formulation, and development of deep learningmodels implementing these hypothe-ses, constitute the basic steps in each publication. Publications [I, III] are published inhigh-impact Q1 journals, highlighting the considerable contribution they make to the ap-plication of AI in healthcare. Additionally, Publication [III] is published in a well-regardedB conference. Overall, these publications demonstrate the value and robustness of thework carried out as part of this thesis to provide effective ML tools for predicting adverseevents during a patient’s medical stay.
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To answer the research questions, specific types of Applied Research were adopted.In Publications [I, II] and the article under review, the Research and Development typewas used as the backbone. This made it possible to build and evaluate new deep-learningmodels based on hypotheses formulated from data. In Publication [III], the EvaluationResearch type was adopted. After screening the literature, existing deep learning archi-tectures capable of modelling hypotheses formulated from data and medical procedureswere adopted. Table 1 presents each research question, the publications that answer it,and the type of applied research adopted in these publications.

Table 1: Research questions, publications, and type of Applied Research.

Publication Type of Applied Research
RQ1 I Research and Development: exploring the literature,formulating hypotheses and building new deep learningmodels.II
RQ2 III Evaluation research: exploring the literature, formulat-ing hypotheses and using existing deep learning architec-tures to build a model.RQ2 Under review Research and Development: exploring the literature,formulating hypotheses and building new deep learningmodels.
In publications [I, II], the Research and Development design is adopted because theauthor believed that building new deep learning models was the appropriate approach toanswer the first research question. Existingmachine or deep learningmodels are subopti-mal for predicting mortality from physiological time series. Therefore, it was necessary toanalyse their limitations by reviewing the literature, formulating hypotheses, and propos-ing newmodels based on these hypotheses. TensorFlow and Keras, two Python machine-learning libraries, were used to develop the models proposed in Publications [I, II]. AreaUnder the ROCCurve (AUC), AreaUnder the Precision-Recall Curve (AUPRC), and F1 scores,specificity and sensitivity were used as metrics to evaluate the proposed models. Thesemetrics were chosen because the detection and prediction tasks conducted in the the-sis involve binary classifications with unbalanced class distributions. They allow for theevaluation of the models’ ability to classify the minority classes (deceased patient, de-pressed patient, patient to be readmitted), which are the classes of interest in each arti-cle. The models were tested, evaluated and compared to state-of-the-art models usingthe publicly available MIMIC-3 [23] and PhysioNet [20] databases. MIMIC-3 consists ofanonymized health-related data from over forty thousand patients who stayed in the ICUat Beth Israel DeaconessMedical Center between 2001 and 2012. PhysioNet is a databasedeveloped as part of amortality prediction challenge. It contains twelve thousand patientrecords of patients hospitalized for cardiac diseases in intensive care units. MIMIC-3 andPhysioNet are benchmark databases widely used in the literature to evaluate medical AImodels. Overall, the Research and Development design led to the creation of robust andaccurate predictive models that will ultimately improve healthcare.In publication [III], the author employed the Evaluation Research Design to addressthe second research question, given that certain pre-existing deep learning architecturesalready offered the essential framework for incorporating the formulated hypotheses.Two existing architectures were combined to build a model. The latter was coded us-ing the Python programming language and its machine learning libraries, namely Ten-
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sorFlow and Keras. AUC, AUPRC, sensitivity and specificity were used as metrics. Theauthor trained, tested, and compared the model with various deep learning models con-sidered good candidates for depression detection using Estonian patient medical claimsdata, which includes more than eighty thousand publicly insured people with a diagnosisof depression. Additionally, Matplotlib, a Python graphics library, was utilized to generategraphs that illustrate the correlation between diseases during the depression detectionprocess.Finally, in the paper under review, the author once again embarrassed the Researchand Development design to develop a new deep-learning model that predicts the risk ofpatients being readmitted to the hospital. This research design enables the identificationof the limitations of existingmodels designed to predict unplanned hospital readmissions.Based on the findings, the author proposed a new deep-learning model. Python and itsmachine learning libraries, including TensorFlow and Keras, were used to implement themodel. AUC, AUPRC, sensitivity and specificity were used as metrics. The model wastrained with data extracted from theMIMIC-3 database. Some graphs were also providedto explain the model’s prediction (explainability). They were created using Matplotlib, aPython graphics library.The Applied Research methodology has made it possible, through meticulous steps,to build robust neural networks to predict adverse medical events effectively.
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4 Related Research
This section provides an overview of the literature on predictive models that exploit mul-tivariate clinical time series or longitudinal patient data to predict adversemedical events.Ameticulous analysis of existing work is carried out to extract knowledge and identify lim-itations. The extracted knowledge is synthesized to provide an overview of the literatureand construct new models to fill the identified gaps.
4.1 Predictive Models Using Multivariate Clinical Time Series

The development of sensors capable of collecting data continuously over time has madeit possible to create powerful predictive machine-learning tools trained from time seriesdata. For instance, in [38] and [55], the authors exploit time series data to propose pre-dictive models for traffic management and stock market prediction, respectively. In themedical field, time series are an effective and rich source of information for analysing apatient’s state of health over time. Although medical sensors such as electromyographyand pulse oximetry can collect massive amounts of time-series clinical data, these dataoften need to be analysed and processed before further use for a predictive task. Thegeneral problem facing clinical time series is temporal irregularity (i.e. irregular time in-terval between successive observations), which leads to data sparsity and an increase inmissing values. Indeed, time series data may already contain missing values due to out-liers or machine failures. Temporal irregularity is due to the divergence in data collectionfrequency betweenmedical sensors. It leads to irregular univariate time series data whena single sensor is used for time series analysis and to irregular multivariate time serieswhen several sensors are used. Several models have been proposed in the literature toovercome the pitfalls of clinical time series while increasing the accuracy of the down-stream task [43, 44, 47]. Although some works have implemented Convolutional NeuralNetworks (CNNs) and Transformermodels to deal with irregular time series [41, 43, 50, 51],RNN-based models are the most preferred.
RNN is the state-of-the-art model for dealing with time series. However, it reachesits limits when these are irregular [37]. Three approaches are often adopted to makeit more effective against irregular time series. The first is to discretize the time periodover which the data were collected [16, 52]. The problem with this approach is that it re-quires ad hoc management of time intervals and removes fine-grained information. Thesecond approach is to modify the structure of the RNN so that imputation/interpolationcan be performed directly within its core [42, 46]. Although this approach has the advan-tage of performing data-driven imputation, it often introduces additional noise during thelearning process. The third approach is to model the hidden states of RNN as continuousfunctions via ordinary differential equations (ODE) [25, 26]. Like the second approach,it has the disadvantage of introducing additional noise during the learning process. Thenoise is due to the fact that ODE-RNN-based models deal with time series in continuousspacetime. Consequently, latent values calculated at irrelevant timestamps will introducenoise. The main idea behind the last two approaches is to process raw irregular time se-ries without any preprocessing step, such as time discretization, that may discard relevantinformation.
The thesis, aware of these limitations that make medical predictive models subopti-mal, introduces new deep-learning architectures through Publications [I, II] dedicated toanswering the first research question. An alignment strategy underpins these deep learn-ing architectures, enabling direct processing of raw time-series data while preserving rel-evant information. Although the model proposed in Publication [I] makes it possible to
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answer the first research question, it comes up against a limitation, namely the imputa-tion of missing values (caused by outliers or machine failures) during the pre-processingphase. In addition, the imputationmethods used are based on strong assumptions. Publi-cation [II] therefore introduces a data-driven imputation and padding approach to fill thisgap.

4.2 Predictive Models Using Longitudinal Patient Data
The development of EHRs in medical facilities has undoubtedly contributed to the break-through of IA in medicine [3, 57]. EHR makes it possible to save heterogeneous longitudi-nal patient data. Therefore, decision support tools, such as predictive machine learningmodels, can leverage historical and current data. It is common for physicians to reviewpatients’ historical medical data before any decision-making. Indeed, in some cases, suchas that of a patient suffering from a chronic illness, current medical information may notbe sufficiently quantitative or qualitative to establish a diagnosis. When the amount ofdata is not so large, a physician can mine historical medical data for diagnostic purposes.However, this becomes difficult to achieve when historical data has been collected over along period at each admission or visit.Establishing a diagnosis often requires browsing through a patient’s historical medi-cal data in medical settings. For this reason, machine learning models, in particular deeplearning models capable of processing current information while taking into account pastinformation, have beenwidely used in the literature to addressmedical problems [14, 28].As deep learning models such as RNNs and Transformers integrate different strategies toencode long-term relationships between data, they are often preferred as backbones inthe literature to tacklemedical tasks. Although they have shown functional results, vanillaRNNs and vanilla Transformers treat successivemedical events as if they occurred at a reg-ular time interval [21, 27]. This is an incorrect assumption, because the elapsed time be-tween successivemedical events may vary. Failing to consider elapsed days in themodel’sdecision process may lead themodel to give the same level of importance to past and cur-rent data. As a result, the prediction or detection is affected. Another limitation of existingmodels designed to predict adverse medical events from longitudinal patient data is thelack of a mechanism that explicitly focuses on frequent medical events. Indeed, frequentmedical events, such as chronic diseases, are often at the origin of adversemedical events[36]. It is therefore essential to focus explicitly on them in the decision-making process.Publication [III] combines two existing deep-learning models to detect depressionfrom longitudinal patient data. While one model encodes relationships between diag-noses, the second integrates elapsed days into the decision process. The article, under re-view, introduces a new deep-learning model that considers elapsed days between admis-sions and incorporates a mechanism that explicitly focuses on frequent medical events.These different strategies applied in Publication [III] and in the article under review haveenabled improving the accuracy of the models dedicated to the detection of depressionand the prediction of unplanned hospital readmissions.
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5 Publication-specific Contributions
This section presents the deep learning architectures introduced in each publication toanswer the research questions. The aim is to give a high-level overviewof the componentsof each architecture and how they work together.
5.1 A New Efficient ALignment-driven Neural Network for Mortality Pre-

diction from Irregular Multivariate Time Series data [I]
In this study, the author introduces a new deep learning architecture called ALignment-driven Neural Network (ALNN) that aims to predict ICU mortality from irregular physio-logical time series data. The main contribution of ALNN is to overcome the limitationsof RNNs, which have difficulty handling irregular time-series data, and thus improve theaccuracy of predictions. Its advantages over previous studies presented in Subsection 4.1include: not performing alignment during the preprocessing step, which could removerelevant information and introduce noise in the model calculations; and filling in onlymissing values that are caused by issues unrelated to time irregularities such as outliers,sensor failure, or change in the patient’s state of health. Indeed, because of changes inthe patient’s state of health, the physician may decide not to record his/her physiologicalmeasurements during a stay or a medical visit.The proposed overall model, called ALNN-GRU, that was trained and tested with theMIMIC-3 database includes a preprocessing step that involves missing value completion;an alignment component that maps the irregular multivariate time series into a pseudo-regular time series called pseudo-aligned latent values; a GRU that encodes the sequentialpattern; and a classifier that predicts whether a patient will die or not. Each stage andcomponent of the model is shown in Figure 2 and detailed in the following paragraphs.

Figure 2: A high-level abstraction of the ALNN-GRU. The white box represents a processing step
performed outside the model (before training) and the dark boxes represent steps performed within
the model.
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• MIMIC-3 is the database used to train and evaluate the ALNN-GRU. From the 
chartevents and outputevents tables, we have extracted patient data from the first 
24 hours (37,375 patients) and 48 hours (25,755 patients). As a patient may have 
several admissions, for the 24-hour dataset, we obtained 45,954 admissions 
records, 41,162 associated with living patients, and 4,792 (11.64%) associated with 
deceased patients. Whereas, for the 48 hour-dataset, we obtained 30,415 
admissions records, 26,577 associated with living patients and 3,838 (12%) 
associated with deceased patients.

• Preprocessing consists of filling in missing values using various techniques, includ-
ing imputation by empirical mean, interpolation, backward filling and forward filling.



Each of these techniques is used in different contexts. Interpolation is used to fill 
in missing values between observations; backward filling is employed when initial 
values are missing; forward filling is utilized to obtain univariate time series with 
the same number of observations; and the empirical mean is used to complete the 
variables without observations. The output of the processing step is the imputed 
irregular multivariate time series;

• Alignment aims to transform imputed irregularmultivariate time series into pseudo-aligned latent values. This transformation process is carried out by a neural net-work called ALNN, which first calculates the time lag scores, and then performsvalue-level extraction and feature-level aggregation. The time lag scores encodethe amount of information that must be accounted for in each value based on theirtemporal distance from each user-defined uniformly spaced reference time point.Once time lag scores are calculated, they are combined individually with their cor-responding value, the mask indicator (which indicates whether the correspondingvalue is observed or imputed) and the time variation value. This step correspondsto value-level extraction. The result of value-level extraction, which is a tensor witheach value corresponding to a latent value of each feature at each reference pointin time, will be aggregated to produce the pseudo-aligned latent values. This aggre-gation step is called feature-level aggregation. For example, if the study involves 5features with each 10 observations and there are 4 reference time points, the ten-sor obtained at the value-level extractionwill be of shape 4×10×5. In feature-levelaggregation, the aggregation will be performed on the second axis of the previouslyobtained tensor to produce the pseudo-aligned latent value matrix of shape 4×5.The pseudo-aligned latent values matrix is a matrix in which each row correspondsto the latent value of each physiological feature at each evenly spaced referencetime point;

• Sequentialmodelling involves encoding the sequential order contained in the pseudo-aligned latent values. This is achieved using a GRU. Initially, the GRU is suboptimalwith irregular multivariate time series. Therefore, the pseudo-aligned latent valuematrix, which is a pseudo-regular version of the original irregular multivariate timeseries, makes the GRU more optimal. The GRU output is a vector called contextvector. It is a compressed version of the pseud-aligned latent value. It can be seenas a latent vector containing information about the patient’s state of health;

• Classifier is a set of stacked feedforward neural networks that take the context vec-tor as input and calculate the likelihood of a patient dying. It is worth mentioningthat ALNN, GRU and classifier are trained end-to-end for better hyperparameteroptimization.
Although the ALNN-GRU model has improved the accuracy of ICU mortality predic-tion, it still faces a major limitation, namely filling in missing values during preprocessing.The imputation technique used during preprocessing relies on strong assumptions andmay introduce noise into the model calculations. A data-driven approach that could be asolution to this limitation is introduced in the next publication.
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5.2 DeepPadding andAlignment Strategies for IrregularMultivariate Clin-
ical Time Series [II]

This publication aims to overcome the aforementioned limitations of ALNN-GRU. Insteadof imputingmissing values during the pre-processing phase, which can be a noise driver, itintroduces data-driven imputation and padding strategies, performed via a bidirectionalrecurrent imputation for time series (BRITS) [10] variant called PaddGRU. BRITS was orig-inally proposed to fill in missing values in time series. However, its architecture does notallow it, under certain conditions, to generate the timestamp values required to runALNN.It has therefore been redesigned to obtain PaddGRU. PaddGRU performs data-driven im-putations to fill in missing values and data-driven padding to obtain univariate time seriesof equal length and their corresponding timestamp values. The data-driven imputationand padding approaches have the advantage of being guided by the underlying structureof the data and the downstream task criterion. The imputed and padded values obtainedusing these approaches are more reliable and less noisy, leading to better model perfor-mance. Excepted the data-driven imputation and padding component presented in thispublication, the other components are those presented in the first publication. A high-level view of the model architecture is shown in Figure 3.

Figure 3: A high-level abstraction of the PaddGRU+ALNN-GRU. The dark boxes represent the steps
performed in the model.

• MIMIC-3 is one of the databases used to train and evaluate the proposed model. Inthis study, only patients who spend at least 48 are included. 27,162 patients fulfill-ing this condition were obtained. As some patients were admitted several times tothe ICU, we extracted 32,496 admissions distributed as follows: 28,075 related topatients who remain alive and 4,421 (15.75%) to patients who die. 12 physiologicaltime series data are used as model input.
• PhysioNet is the second database used to train and evaluate the proposed model.Data from 4,000 patients were extracted. They are distributed as follows: 3,446related to patients who remain alive and 554 (13.85%) to patients who die. 37physiological time series data are used as model input.
• Data-driven imputation and padding is performed with a PaddGRU that is a BRITSvariant. The first step is to generate imputed values via a linear transformation ofthe hidden layer. The use of hidden layers enables to recursively introduce pastinformation in the generation process. The second step, via another linear trans-formation of the hidden layer, consists of generating time variation values that will
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be added to the previous timestamps to generate the actual ones. Since generatedtimestamps cannot exceed the highest timestamp value, the previous timestampis used if a generated timestamp is greater than the highest timestamp value. Forinstance, if the data was collected over 48 hours, the maximum value of the times-tamps will be 48. Therefore, if a generated value is greater than this value, thepreviously generated timestamp is used instead. This trick helps to preserve thetemporal structure of the data. PaddGRU and ALNN-GRU are combined and trainedin an end-to-end fashion. Experimental results obtained after training showed thatthis combination makes the prediction of ICU mortality more accurate.
The contributionmade in publications [I, II] is the introduction of a novel deep-learningmodel that efficiently predicts ICU mortality from irregular multivariate clinical time se-ries. Better prediction of ICU mortality in the short term will help physicians in theirdecision-making and, in the long term, will improve patients’ health and reduce theirhealthcare costs and those of hospitals.

5.3 Evaluation of Deep Learning-BasedDepression DetectionUsingMed-
ical Claims Data [III]

In real-world case scenarios, practitioners are used to analysing the diagnoses made dur-ing the patient’s most recent admissions or visits. This gives them a clearer picture of thepatient’s health trajectory and enables them to make an accurate diagnosis. While thisprocess can be achieved with a relatively small amount of data, it is almost impossible,even for an experienced practitioner, when faced with a large amount of data with com-plex relationships. This publication therefore aims to combine two existing deep learningarchitectures, which enable accurate decision-making from large amounts of longitudinalpatient data while efficiently encoding the relationship and temporal information of clin-ical data considered for decision-making. The medical event studied in this publication isthe detection of depression from longitudinal patients’ claims data during their visit (ormedical stay).The proposedmodel, called Att-GRU-decay, comprises two neural network layers, Self-Attention and GRU-decay [12]. The Self-Attention layer, a sublayer of the vanilla Trans-former [49], is used to encode the diagnoses (represented in ICD-10 format) based ontheir hidden relationships. On the other hand, GRU-decay is responsible for weightingthe significance of diagnoses according to their recording date and modelling their se-quential order. On top of Self-Attention and GRU-decay, there is an embedding layer thataims to encode each diagnosis into a continuous vector before any further use. A high-level abstraction of Att-GRU-decay is illustrated in Figure 4. Each component is describedin the following paragraphs.
• TheMedical Claims data used consists of all publicly insured people in Estonia witha depression diagnosis (80,243 patients with 4,252,213 diagnoses). The controlgroup consists of 732,610 patients (with 22,721,730 diagnoses), of which 498,764people (with 10,779,835 diagnoses) did not have a psychiatric disorder diagnosedand 233,846 patients (with 11,941,895 diagnoses) had a psychiatric disorder otherthan depression.
• Diagnosis embedding involves encoding each diagnosis in a continuous vector viaan embedding layer. These continuous vectors are called diagnoses embeddings;
• Encoding of relationship aims to learn and encode the relationship between rel-evant diagnosis embeddings and filter out irrelevant diagnosis embeddings to the
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Figure 4: A high-level abstraction of Att-GRU-decay.The white box represents a step performed out-
side the model (after training) and the dark boxes represent steps performed within the model.

downstream task. This step is carried out in the Self-Attention layer;
• The temporal weighting and sequential modelling performed in GRU-decay, con-sists of weighting the significance of each diagnosis (embedding version) accordingto their corresponding elapsed days value and modelling the sequential order inwhich diagnoses were recorded. The elapsed-day value of a diagnosis is obtainedby subtracting its corresponding recorded date from that of the following diagnosis.This is linearly transformed and passed to an exponential decay function to producethe decay factor. The decay factor, which is used as a weight, is then multiplied bythe actual hidden state. The underlying intuition is to reduce the values of the hid-den state when the diagnosis was made a long time ago, and to keep them virtuallyunchanged when the diagnosis was made recently. The GRU-decay output is a con-text vector, which is a compressed representation of all diagnosis embeddings andtheir associated information, including their recording date and sequential order;
• Patient demographics encoded is carried out with a feedforward neural network.It aims to encode the patient’s demographic data, including gender and age, intoa continuous vector. This continuous vector is the latent representation of the pa-tient’s demographic;
• Depression detection is performed using a set of stacked feed-forward neural net-works that calculate the likelihood that a patient is detected as depressed. Thesefeedforward neural networks are fed by the concatenation of the context vectorand the latent representation of the patient’s demographics.
Although the proposedAtt-GRU-decaymodel is highly accurate in detecting in advancepatients who may suffer from depression, its accuracy does not guarantee its use in real-world medical settings. Indeed, in a field as sensitive as medicine, the model’s decisionmust be explained. The author therefore suggested providing physicians with graphs un-

covering disease patterns. More specifically, these graphs show the correlation betweendiagnoses so that physicians can better understand what led to the decision.
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The study carried out in this publication provides an answer to the second researchquestion. It reveals that better encoding of relationships between clinical codes and con-sidering the elapsed time between visits are crucial factors when predicting or detectingcertain medical events from longitudinal patient data spanning several successive visits.
5.4 Deep Magnitude Management of Clinical Code Embeddings to Pre-

dict Unplanned Hospital Readmissions [under review]
This paper presents a novel sequential deep-learning architecture, which aims to providean alternative solution to the second research question. It presents a deep learningmodelcalled Deep Magnitude Management (D2M) that predicts unplanned hospital readmis-sions from longitudinal data of heterogeneous patients. Heterogeneous patients refer topatients with different diseases. Like the model proposed in Publication [III], D2M alsointegrates into the model calculation scheme the elapsed days between successive ad-missions. Additionally, it incorporates a mechanism that enables it to focus explicitly onfrequent medical events such as chronic diseases, which are often the origin of adversemedical events. Extensive experiments conducted with data extracted from the MIMIC-3 database demonstrated that these different strategies, namely taking into account thedays elapsed between admissions and incorporating a mechanism explicitly focused onfrequentmedical events, improve prediction. A high-level abstraction of D2M is illustratedin Figure 5. Each component is described in the following paragraphs.

Figure 5: A high-level abstraction of D2M. The white boxes represent steps performed outside the
model (before and after training) and the dark boxes represent steps performed within the model.

• The MIMIC-3 database is used to train and evaluate the D2M model. Data from
14,753 patients were extracted. 2,471 (16.75%) are linked to unplanned hospitalreadmissions (positive cases) and 12,282 are not (negative cases).

• Reorganization of clinical codes rearranges the clinical code in each admission rep-resentation. Admissions are represented in vector format. Each value in these vec-tors is an integer value corresponding to a clinical code. If a clinical code is present
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in two successive admissions, the rearrangement procedurewill place it in the sameposition index in both admission representations;
• Clinical code embeddingsmaps clinical codes initially represented by integers intocontinuous vectors. These vectors are called clinical code embeddings;
• Sequential Modellingmodels the sequential order of admissions while transferringinformation from one admission to another. The information transfer between suc-cessive admissions only takes place if and only if there is at least one clinical codeembedding belonging to both admissions. The information transfer score, whichdetermines the amount of information to be transferred, is obtained by a nonlineartransformation of the elapsed days between admissions and the similar score ofthese admissions. This step is performed with a neural network layer called magni-tude management;
• Patient demographics encoded encodes patient demographics into a continuousvector using a feedforward neural network;
• Classifier determines whether a patient will be readmitted to the hospital based onencoded patient demographics and the output of magnitude management, whichis the latent representation of admissions. The classifier consists of a set of feedfor-ward neural networks;
• Explainability is provided through a set of graphs. These graphs present the diagno-sis embeddings in a two-dimensional space, along with their corresponding decayfactor and transfer score (if computable). These are used to quantify the contribu-tion of clinical codes in the prediction.
The strategies implemented in D2M improved the prediction of unplanned hospitalreadmissions, thus answering the second research question. This highlights their impor-tance when processing longitudinal patient data recorded over multiple admissions. D2Mperformancesmust be improved before any deployment in a real-worldmedical scenario.In future work, the use of additional features, such as laboratory results and physiologicalmeasurements, will be investigated to improve its performance.
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6 Discussion of Challenges
New deep-learning architectures presented in the publications have proven effective inpredicting adverse medical events during patient stays. While Publication [II] introducedvarious strategies to overcome a limitation of the model presented in Publication [I], themodel developed in Publication [II] still faces major limitations. Some limitations are alsoidentified in Publication [III] and in the article under review. Aware of the domain’s sen-sitivity and the impact that a prediction error can have on patient health, future workwill focus on overcoming these limitations before deploying the proposed models in real-world medical scenarios.

Although the model developed in Publication [II] overcomes a limitation of the oneproposed in Publication [I], it still faces a major limitation, namely lack of explainability.In a field as sensitive as medicine, it is not just a matter of providing accurate models. It isequally important that these models are explainable. Explainability is a must in medicine[22]. If this is very important from a social or legal perspective, it enables healthcare pro-fessionals in general and physicians in particular to understand what has led to the deci-sion. How the model makes the decision must be transparent and explainable. Severalstudies have shown that deep models struggle to be adopted in real-world medical sce-narios due to their lack of explainability [1, 15]. It is therefore crucial tomake them explain-able to increase the level of confidence of physicians. Various fields, including medicine,have widely used the attention mechanism, a procedure that involves weighting the mostrelevant model inputs, to make model predictions interpretable and explainable. Morerecently, Self-Attention introduced in the Vanilla Transformer has become the state-of-the-art technique adopted to provide explainable deep learning models. Although thesetechniques are potential solutions tomake the proposedmodel explainable, an innovativetechnique would be the analysis of the activation weights associated with the pseudo-aligned latent values. Indeed, we can exploit the pseudo-aligned latent values to easilyidentify the latent value associated with each feature at different timestamps. Conse-quently, analysing the weight associated with these latent values can help identify whichfeature and at which period contributes most to the prediction.
Taking into account the degree of uncertainty in the imputed value is also an aspect onwhich future work will focus. Not all imputed values have the same level of uncertainty.While those with a low level of uncertainty will help to improve the prediction, those witha high level of uncertainty will tend to reduce the model’s performance. One possiblesolution to fill this gap is to use probabilistic techniques such as those used in studies [24,33], to obtain the level of uncertainty in the imputed value and inject it into the decision-making process.
Another limitation of the models introduced in Publications [I] and [II] is the exclusiveuse of physiological measurements as predictors. Although these are themost reliable ini-tial data that physicians can obtain in the ICU, additional predictors such as demographics,prior medical events, images, and others can be incorporated into the decision-makingprocess. The author then intends to expand the model architecture to process and fuseadditional predictors with the pseudo-aligned latent values, thereby improving the pre-diction of ICU mortality.
Regarding publication [III], the study may be subject to bias. Medical claims data areused for billing purposes. There is no guarantee that some diagnoses made by physiciansare not made solely to increase their revenue. In addition, because of the previouslydescribed low accuracy of human diagnoses, the ground truth used to train the modellikely introduced biases into the prediction. This aspect of data quality needs to be furtherinvestigated. The model should also be evaluated on non-medical claims data to further
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support the research findings. Although themodel has performed spectacularlywell usingpatients’ diagnostic and demographic data, the author plans to see what benefits can begained by introducing interview notes into the decision-making process. These could beused to improve the explanatory power of the model by identifying the most relevantclinical terms in the notes.Finally, for the model proposed in the article under review, the author intends to trainit with more clinical features and improve its explanatory power. Since some clinical fea-tures might be represented in time series format or continuous values, the author plansto combine the proposedmodel (D2M) in an end-to-end fashion with other deep learningarchitectures such as CNN, Transformers or/and RNN that will be dedicated to processingthese additional features.In addition to the limitations listed, the author plans to carefully study and consider theethical aspects of using the data andmodels. Whendeveloping and deploying AImodels inmedical settings, thesemust be accompanied by frameworks determining responsibilitiesand legal liability, fair use of data must be ensured, and transparent reporting on modelperformance must be available [40]. For example, suppose the model predicts with a
98% probability that the patient will die. Several questions arise: Should the doctor stopor continue monitoring? Should the doctor reduce resources in favour of patients witha low risk of death? These are just a few examples of the ethical issues that need to becarefully analysed before any further deployment.In summary, while the proposedmodels havemet the challenges of predictingmedicalevents encountered in the literature, they also have certain limitations. These limitationsinclude lack of explainability, inability to account for uncertainty in the imputed value, andthe limited number of clinical features used as predictors. To address these limitations andmake AI models in medicine trustworthy, future work will be directed towards developingan explainable component to identify the features in the clinical time series that have con-tributed to the decision; the integration of uncertainty into the model calculation schemeso that the model can rely more on low-uncertainty imputed values, thereby reducing thenoise that high-uncertainty values can introduce; and using additional clinical features aspredictors to improve model performance. Ethical issues and biases in models and datawill also be addressed.
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7 Conclusion
This thesis presents novel deep-learningmodels designed to predict adversemedical eventsfrommultivariate clinical time series and longitudinal patient data. Prediction of ICUmor-tality, detection of depression and prediction of unplanned hospital readmission are themedical tasks that the introduced models seek to improve. While multivariate clinicaltime series are used to predict ICU mortality, longitudinal patient data are used to de-tect depression at an early stage and predict unplanned hospital readmissions. Usingdata extracted from MIMIC-3, PhysioNet and those provided by the Estonian Health In-surance Fund (medical claims data), extensive experiments were conducted to evaluateand compare the proposed models to state-of-the-art models. The superior performanceof the model dedicated to ICU mortality prediction revealed the crucial importance ofdata-driven alignment, imputation and padding when predictions are based on irregularmultivariate clinical time series. For the depression detection task, better encoding of re-lationships between diagnoses and incorporation of elapsed days between visits into themodel calculation scheme proved to be relevant factors when using longitudinal patientdata as predictors. Finally, for the unplanned hospital readmissions prediction task, theexperimental results highlighted the importance of taking into account the days elapsedbetween admissions, and the importance of implementing a mechanism that focuses onfrequentmedical events. Overall, the various experiments carried out as part of the thesisrevealed the crucial importance of temporal information in predictive medical tasks. Thisthesis proposes not only efficient models for irregular numerical temporal data but alsoefficient models for irregular categorical temporal data.The thesis has a short-term and long-term goal. On the one hand, the short-term goalis to proposemachine learning tools, more precisely deep learningmodels that effectivelypredict adverse medical events. On the other hand, its long-term goal is to make theproposed models explainable more accurate and robust so that they can be adopted inreal medical scenarios to support physicians in their daily decision-making. The authoris convinced that the proposed models will make it possible to improve the delivery ofcare, better manage resources, relieve hospital overcrowding, avoid physician burnout,improve patient health and reduce healthcare costs for patients and hospitals. It shouldbe noted that the machine learning tools developed in this thesis are not intended toreplace healthcare professionals, but rather to assist them.To achieve the thesis’s long-term goal, the limitations of the proposed models mustfirst be overcome. For the ICU mortality prediction model, future work will account foranalysing the uncertainty of imputed values, explaining themodel prediction, and trainingit with additional clinical features and patient demographics. For the study on depressiondetection and prediction of unplanned hospital readmissions, future work will focus onimproving the explanatory power of their respective model and training these modelswith additional clinical features. In addition to limitations, ethical questions and biases inmodels and data will also be addressed. Once these limitations are overcome and ethicaland bias issues addressed, the author plans to integrate all models into a unified sys-tem. This will enable each model to benefit not only from the hidden patterns extractedby other models in the data but also from the predictions of these models. In parallel,the models will be evaluated on additional medical and nonmedical tasks to determinewhether they can be generalized.
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Abstract
Predictive Systems Using Machine Learning Tools to Forecast
Adverse Events During Medical Stays
This Ph.D. thesis uses deep learning, a subfield of machine learning, to propose robustand accurate models for predicting adverse medical events during a patient’s medicalstay. Indeed, the architecture of deep learning models makes it possible to extract rele-vant hidden features from massive amounts of data and to process sequential data whilepreserving relevant past information over time. These characteristics make them idealcandidates for processing heterogeneous and complex medical data, often recorded oversuccessive admissions or visits.

AI tools, such as machine learning and deep learning, have demonstrated significanteffectiveness in solving problems across various fields, including finance, engineering, me-teorology, and medicine, the main focus of this thesis. Despite the reservations and justi-fied fears that AI in medicine faces compared to other fields, research aimed at proposingAI solutions to medical problems is rapidly expanding. Continuing the trend of previousstudies, this thesis focuses on the advancement of AI solutions for medical challenges.More specifically, it aims to solve the problem of predicting adversemedical events duringa patient’s medical stay. The author adopted an applied research methodology to achievethis objective. Applied research involves effective procedures for identifying the researchproblem, developing hypotheses, and proposing practical solutions based on these hy-potheses.
The machine learning tools developed during the thesis, namely deep learning mod-els, are used to predict mortality, detect depression and predict unplanned hospital read-missions. While physiological time series are used for mortality prediction, longitudinalpatient data and additional features are used to detect depression and predict unplannedhospital readmission. Using Applied Research Methodology, the author highlighted thechallenges of processing physiological time series and longitudinal patient data, as well asthe limitations of state-of-the-art models.
The literature has proposed several models to overcome the challenges associatedwith irregular clinical time series. Irregular clinical time series can lead to underlyingproblems such as sparsity, increased missing values, and data misalignment. While someadvancedmodels can produce functional results, they still face certain limitations, includ-ing the incorporation of techniques that introduce noise into the model’s computationalscheme. To address this problem, this thesis presents a novel deep-learning architecturethat enables data-driven imputation, padding, and alignment. In extensive experiments,these strategies have proven to be more efficient and generate less noise than those im-plemented by competingmodels, thereby increasing the accuracy ofmortality prediction.
Two problems have been identified in state-of-the-art models developed to predictadverse medical events from longitudinal patient medical data, i.e. data collected acrosssuccessive admissions or visits. These include the failure to take into account elapseddays between admission (or visits) and the absence of components focusing explicitly onfrequent medical events such as chronic diseases, which are commonly responsible foradverse events. If the model disregards elapsed days, it might assign equal importance tomedical events that happened long ago and those that occurred recently. This does notcorrespond to reality, because inmost cases, physicianswill base their diagnoses on recentevents. Since failing to consider the aforementioned aspect makes previously proposedmodels suboptimal, this thesis introduces novel deep-learningmodels that integrate theminto the decision-making process to detect depression and predict unplanned hospital
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readmission effectively.This thesis presents the potential of machine learning tools for predicting adversemedical events. It identifies relevant aspects of the data that should be considered whenprocessing health data and proposes various new deep-learning models that incorporatethem. Overall, it introduces diverse effectivemodels for processing irregular temporal nu-merical data and irregular temporal categorical data. The thesis’s short-term goal involvesproposing effective models to predict adverse medical events. However, its long-term ob-jective involves maturing these models by overcoming their limitations and enabling theiradoption in real-world medical scenarios to enhance healthcare delivery.
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Kokkuvõte
Ennustavad süsteemid, mis kasutavad masinõppe vahendeid 
kõrvalekallete prognoosimiseks haiglas viibimise ajal
See doktoritöö kasutab süvaõpet, masinõppe alaharu, et pakkuda välja usaldusväärseid ja 
täpseid mudeleid meditsiiniliste tüsistuste prognoosimiseks patsiendi hospitaliseerimise 
ajal. Süvaõppe mudelite arhitektuur võimaldab relevantsete varjatud tunnuste eraldamist 
massiivsetest andmetest ning järjestikuste andmete töötlemist, säilitades aja jooksul olu-
list varasemat teavet. Need omadused teevad süvaõppe mudelitest ideaalsed kandidaadid 
keeruliste ja heterogeensete meditsiiniliste andmete töötlemiseks, mis on sageli salvesta-
tud järjestikuste hospitaliseerimiste või visiitide käigus.

Tehisintellekti tööriistad, nagu masinõpe ja süvaõpe, on näidanud märkimisväärset tõ-
husust probleemide lahendamisel mitmes valdkonnas, sealhulgas rahanduses, inseneri-
teaduses, meteoroloogias ja meditsiinis, mis on käesoleva töö põhivaldkond. Vaatamata 
meditsiinis kasutatava tehisintellekti suhtes valitsevatele kahtlustele ja õigustatud hirmu-
dele võrreldes teiste valdkondadega, on teadustöö, mille eesmärk on pakkuda meditsiini-
listele probleemidele tehisintellekti abil lahendusi, kiiresti laienemas. Jätkates varasemate 
uuringute suundumust, keskendub käesolev töö tehisintellekti lahenduste arendamisele 
meditsiiniliste väljakutsete lahendamiseks. Täpsemalt püüab see lahendada probleemi, 
mis seisneb meditsiiniliste tüsistuste ennustamises patsiendi hospitaliseerimise ajal. Selle 
eesmärgi saavutamiseks kasutas autor rakendusuuringute metoodikat. Rakendusuuringud 
hõlmavad tõhusaid protseduure uurimisprobleemi tuvastamiseks, hüpoteeside välja-
töötamiseks ja nendele hüpoteesidele tuginevate praktiliste lahenduste pakkumiseks.

Doktoritöö käigus välja töötatud masinõppe tööriistu, eelkõige süvaõppe mudeleid, 
kasutatakse suremuse ennustamiseks, depressiooni tuvastamiseks ja planeerimata hospi-
taliseerimiste ennustamiseks. Suremuse ennustamiseks kasutatakse füsioloogilisi aegri-
dasid; depressiooni tuvastamiseks ja planeerimata hospitaliseerimise ennustamiseks aga 
longituudseid andmed ja muid lisatunnuseid. Rakendusuuringute metoodikat kasutades 
tõi autor esile füsioloogiliste aegridade ja longituudsete andmete töötlemisega seotud 
probleemid ning ka hetkel kasutatavate mudelite piirangud.

Teaduskirjanduses on välja pakutud mitmeid mudeleid, et ületada ebaregulaarsete 
kliiniliste aegridadega seotud probleeme. Ebaregulaarsed kliinilised aegread võivad põh-
justada selliseid probleeme nagu sisuvaesus, suurenenud puuduvate väärtuste hulk ja 
andmete joondamise probleemid. Kuigi mõned täiustatud mudelid suudavad anda funkt-
sionaalseid tulemusi, seisavad need siiski silmitsi teatud piirangutega, sealhulgas lisanduv 
müra mudeli arvutuslikku skeemi. Selle probleemi lahendamiseks pakub käesolev töö välja 
uue süvaõppe arhitektuuri, mis võimaldab andmepõhist imputeerimist, täidistamist ja 
joondamist. Ulatuslikes katsetes on need strateegiad osutunud tõhusamaks ja tekitanud 
vähem müra kui konkureerivate mudelite rakendatud meetodid, suurendades seeläbi 
suremuse ennustamise täpsust.

Kaks peamist probleemi on tuvastatud tippmudelites, mis on välja töötatud meditsii-
niliste tüsistuste ennustamiseks pikisuunalistest patsiendiandmetest, st andmetest, mis 
on kogutud järjestikuste hospitaliseerimiste või visiitide käigus. Need hõlmavad päeva-
de möödumise mittearvestamist hospitaliseerimiste (või visiitide) vahel ja komponenti-
de puudumist, mis keskenduksid selgesõnaliselt sagedastele meditsiinilistele sündmuste-
le, nagu kroonilised haigused, mis on sageli tüsistuste põhjustajaks. Kui mudel ei arvesta 
möödunud päevi, võib see omistada sama tähtsust ammu toimunud ja hiljuti aset leidnud 
meditsiinilistele sündmustele. See ei vasta tegelikkusele, sest enamikul juhtudel tuginevad 
arstid oma diagnoosides hiljutistele juhtumitele. Kuna eelnimetatud aspektide mittear-
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vestamine muudab varem pakutud mudelid vähem optimaalseks, tutvustab käesolev tööuusi süvaõppe mudeleid, mis integreerivad need otsustusprotsessi, et tõhusalt tuvastadadepressiooni ja ennustada planeerimata hospitaliseerimist.See doktoritöö tutvustab masinõppevahendite potentsiaali meditsiiniliste tüsistusteennustamiseks. See rõhutab olulisi andmete aspekte, mida tuleks terviseandmete tööt-lemisel arvesse võtta, ja pakub välja mitmeid uusi süvaõppe mudeleid, mis neid aspektearvestavad. Kokkuvõttes tutvustab töö erinevaid tõhusaidmudeleid ebaregulaarsete ajali-selt muutuvate numbriliste andmete ja ebaregulaarsete ajaliselt muutuvate kategoorilisteandmete töötlemiseks. Doktoritöö lähem eesmärk on pakkuda tõhusaid mudeleid medit-siiniliste tüsistuste ennustamiseks, pikaajaline eesmärk on mudelite täiustamine, nendepiirangute ületamine ja rakendamise võimaldamine reaalses meditsiinilises keskkonnas,et parandada tervishoiuteenuste osutamist.
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A B S T R A C T

The irregularity of the time interval between observations in and across the stream is a key factor that leads
to a drop in performance when classical machine learning or deep learning models are used for a downstream
task requiring multivariate time series. Indeed, irregular multivariate time series not only increase the rate of
missing values but also lead to data sparsity, which consequently makes the data almost unleverageable and/or
ineffective for models. To tackle this scorching challenge, most of the pioneering approaches apply imputation
or interpolation in their core, which might lead to embedding data with noise. To especially address this
irregular multivariate time series issue, we introduce, in this paper, a new deep neural network model called
ALignment-driven Neural Network. The innovative idea of our model is to transform the irregular multivariate
time series into pseudo-aligned (or pseudo-regular) latent values. The latter are shown as a matrix, where the
coefficients are the latent values of each feature at user-defined reference time points that are evenly spaced.
They are obtained through a duplication process driven by an exponential decay mechanism. The obtained
output is then passed to a Recurrent Neural Network model, which is undoubtedly the must-use model for
regular time series data. To show that our model added value, we looked at the Intensive Care Unit mortality
prediction task. In this unit, the physiological measurements used to make decisions have a problem with
time irregularity. Leveraging the publicly available MIMIC-III, we compare the performance of our model to
that of flagship models. In addition, we also performed extensive ablation studies to highlight the importance
of specific components in our model. Interestingly enough, whenever data is collected 24 and 48 h after a
patient’s admission, we outperform our pioneering competitors, i.e., +1.1% and +1.5% for the AUC score, +2.3%
and +2.4% for the AUPRC score and +0.6% and +1.7% for the F1-score.

1. Introduction

What justifies the growing use of sensors in various applications
(medical, finance, meteorology) is their ability to collect quasi-real-time
data associated with various types of content (Choi, Xiao, Stewart, &
Sun, 2018; Veillette, Samsi, & Mattioli, 2020; Zebin, Scully, & Ozanyan,
2016). However, due to the wide variety of sensors and data record-
ing methods, it is rare to obtain raw data with all information and
input variables sampled simultaneously. Data inconsistency does not
systematically reflect a lack of data. In fact, in some applications, the
number of times data is sampled may change over time. In this case, the
data cannot be considered missing. On the other hand, when data are
collected at regular intervals, but some are missing, the series becomes

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: nzamba.bignoumba@taltech.ee (N. Bignoumba), n.mellouli@iut.univ-paris8.fr (N. Mellouli), sadok.ben@taltech.ee, say@mmmi.sdu.dk

(S.B. Yahia).

irregular. Furthermore, irregular data can occur for both univariate and
multivariate time series. Univariate irregular time series are made up of
one characteristic variable measured at a sampling rate with no regular
time between observations. For multivariate time series with multiple
measurement techniques and instruments, the recording frequency of
each variable will often be different. The resulting inconsistent data
and missing values make it very difficult to analyze and model the
data for tasks such as classification and regression. A simple solution
to this problem could be to divide the data collection period into hour-
long bins, (El-Rashidy, El-Sappagh, AbuHmed, Abdelrazek, & El-Bakry,
2020; Wanyan, Honarvar, Azad, Ding, & Glicksberg, 2021). However,
the disadvantage of this solution is that it eliminates many important
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Fig. 1. Graphical representation of the ALNN transformation. The dotted squares on the left plot represent the domains of missing values. On the right plot, at each evenly spaced
reference time point, we now have a new latent value for each feature.

data points and exacerbates data loss. In addition, the fact that fine-
grained information is lost when aggregation is done in an hour-long
bin with many values is another drawback of this method. It can be
even worse if an inappropriate aggregation function is used. In other
words, this process either removes important fine-grained information,
as the granularity of the observed time series may vary from one ob-
servation to another depending on the underlying observation context,
or introduces noise during the aggregation step.

It is identified that machine and deep learning models are chal-
lenged by irregular sampling, which generally assumes fully observed
feature representations of an expected fixed size (Shukla & Marlin,
2018). For example, basic RNN models assume that the observation
times in a stream are evenly spaced out and that the observation
times of different variables for a downstream task are all lined up.
However, in real life, time series that are few and far between can
rarely meet these assumptions. On one hand, many machine learning
and statistical models, e.g., Bayesian Network (MacKay, 1992), Gaus-
sian Processes (Roberts et al., 2013), and Support Vector Regression
(SVR) (Vapnik, Golowich, & Smola, 1996), to cite but a few, were
applied to address this issue. Still, they failed due to their inability
to capture complex temporal dependencies. On the other hand, thanks
to their neural architecture dedicated to data extraction and complex
pattern detection, deep learning models have shown more promising
results (Binkowski, Marti, & Donnat, 2018; Lea, Flynn, Vidal, Reiter,
& Hager, 2017; Song, Rajan, Thiagarajan, & Spanias, 2018). Several
prediction, classification, or generation tasks involving irregular mul-
tivariate time series have seen their accuracy increase thanks to the
advent of neural networks. For instance, the implementation of a deep
learning model to cope with irregular time series in the laboratory has
improved the accuracy of early detection of pancreatic cancer (Park
et al., 2022). Xu and Tan (2021) proposed a deep-learning model to
efficiently predict asset prices. Tan et al. (2020) proposed a graph-
guided neural network for irregularly sampled multivariate time series
and showed that their model improved the accuracy of healthcare
and human activity classification tasks. Wang, Chen, et al. (2023)
developed a deep learning model called BiT-MAC to efficiently impute
corrupted data in the ICU1 and COVID-19 irregular multivariate time
series datasets. Tipirneni and Reddy (2022) developed a self-supervised
transformer for sparse and irregularly sampled multivariate clinical
time series that improves the accuracy of the mortality prediction task.
Motivated by these promising results on various tasks, particularly
medical tasks, which rely on irregular time series, we decided to
propose a deep learning-based solution for one of the most widely
studied classification tasks, namely mortality prediction.

What makes mortality one of the most studied classification tasks
is that mankind, and researchers in particular, are constantly looking
for solutions to reduce the mortality rate. Therefore, being able to

1 Intensive care unit

predict the risk of mortality will enable healthcare professionals to act
upstream to avoid this tragic event (if it can be avoided). Concerned
by this issue as humans and as researchers, we decided to propose
a deep learning model to predict mortality in intensive care units
(ICU) from irregular multivariate time series data. Indeed, due to their
temporal properties, physiological measures are part of the electronic
health records (EHRs) content widely used in the literature to predict
mortality. However, as these are irregular multivariate time series data,
processing them is a delicate task. To overcome the aforementioned un-
derlying issues of irregular multivariate time series and make mortality
prediction more accurate, we introduce in this paper a deep learning-
based model that we called ALignment-driven Neural Network (ALNN),
which transforms irregular multivariate time series into pseudo-aligned
latent values. The latter are represented as a matrix, where the coeffi-
cients are the latent values of each feature at user-defined reference
time points that are evenly spaced. To illustrate this transformation
graphically, we can see on the left plot of Fig. 1 that before the ALNN
transformation, we had two features whose values were collected at
different times. Additionally, the time intervals between the values of
these features are irregular. After the ALNN transformation, at each
evenly spaced user-defined reference time point, we now have a new
latent value for each feature. LANN transformation takes place in
latent spaces During this transformation, compared to existing models,
e.g., Che, Purushotham, Cho, Sontag, and Liu (2018), Shukla and
Marlin (2019a), our model has the advantage of not relying on any in-
imputation2 or in-interpolation3 that might be noise driver. Instead, this
change is made through a duplication process guided by an exponential
decay mechanism shown in Fig. 2.

RNNs are ideally designed for regular time series, so they will be
more accurate in handling pseudo-aligned latent values than irregular
multivariate time series. Therefore, the accuracy of the downstream
task will improve. It is worth mentioning that ALNN can be used as
a stand-alone model for a regression or classification task. In light of
this, the significant contributions of the proposed model are as follows:

• We build an ALignment-driven Neural Network (ALNN) to trans-
form irregular multivariate time series into pseudo-aligned la-
tent values. In other words, the pseudo-aligned latent values are a
pseudo-regular version of the initial irregular multivariate time
series;

• The ALNN transformation is performed in two stages based on
a duplication strategy. In the first stage, after duplicating the
value, mask, and time interval matrices as many times as there
are reference time points, an exponential decay mechanism is
implemented to calculate the time lag penalty score of each value
with respect to each reference time point. In the second stage, the
time lag penalty score tensor is concatenated with the duplicated

2 Imputation performed in the model’s core.
3 Interpolation performed in the model’s core.
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Fig. 2. Duplication process applied in ALNN. 𝐚 and 𝐛 are two univariate time series with different timestamps 𝐭𝑎 and 𝐭𝑏, respectively. The time interval between the values of 𝐭𝑎
and 𝐭𝑏 is irregular. 𝐫 is the user-defined vector of reference time points. In contrast to 𝐭𝑎 and 𝐭𝑏, the time interval 𝛥𝑟 = 0.1 in 𝐫 is regular. 𝐚 and 𝐛 and their respective timestamps
𝐭𝑎 and 𝐭𝑏, are duplicated as many times as there are reference time points. The pseudo-aligned latent value matrix, which is the global ALNN output, contains the new latent
values 𝑧𝑟∗∗ of 𝐚 and 𝐛 at different reference time points. Note that to keep the illustration simple, we only implied 𝐚, 𝐛, 𝐭∗, and 𝐫 as ALNN parameters. However, as we will see in
Section 3, other matrices are involved in the calculation. The principle for calculating 𝑧𝑟∗∗ will remain the same (read the square’s contents at the bottom right).

version of the value, mask, and time interval matrices to produce
the pseudo-aligned latent values via an alignment process;

• The advantage of the proposed model is that no potentially noisy
in-imputation/interpolation is required to deal with the temporal
irregularity. Furthermore, the fact that the value of each feature
is latent makes the downstream task more accurate. Indeed, al-
though latent values are less explicable than observed values, they
are nevertheless more informative in the sense that they encode
relevant hidden patterns;

• We combine ALNN with GRU (Dey & Salem, 2017) (ALNN-GRU)
to predict mortality in the intensive care unit. The training is
performed in an end-to-end fashion to jointly optimize the pa-
rameters of both models;

• We validated the proposed model using the MIMIC-III database
(Johnson et al., 2016). After a thorough empirical evaluation,
we found that our proposal sharply outperforms state-of-the-art
models designed to handle multivariate time series data.

The remainder of this paper is organized as follows: We present
the related works in Section 2. A formal description of our model is
presented in Section 3. In Section 4, we discuss the performance of the
ALNN-GRU on the pilot case, which is the mortality prediction task, and
compare it versus the state-of-the-art models. We also perform ablation
studies to show the importance of specific model components. Section 5
discusses some model limitations and how they can be addressed.
Section 6 reminds the takeaways and contributions of this paper and
sketches pathways for future work.

2. Related work

This paper pays heed to the research on the scorching issue of
irregular data from univariate and multivariate systems, where records
with irregular sampling intervals and a timestamp do not have val-
ues for every variable in the feature space. In terms of the amount
of missing data, there is a snug connection between data sparsity
and data irregularity. In real-world time series datasets, the amount
of missing data can vary greatly from one domain to the next. For

example, in the case of low-frequency data, environmental samples
may contain fewer than 10% missing observations. In contrast, for
high-frequency data such as intensive care unit (ICU) data, samples
can commonly contain 80% missing data in a multivariate feature
space, while the sparsity of financial transactions can be interpreted
as extremely high since transactions in multiple stocks very rarely
occur at the same time and transactions are made regularly. Many
common statistical models, like ARIMA (Chen, Wang, & Huang, 1995),
or Gaussian processes (Roberts et al., 2013), and many classic machine
learning models, like KNN (Martínez, Frías, Pérez, & Rivera, 2019) or
SVM (Vapnik et al., 1996), have also been used a lot to solve time series
problems. However, these methods cannot capture the complex tempo-
ral relationships between observations in univariate and multivariate
time series. Recurrent Neural Networks (RNNs) have been shown to
be more efficient in dealing with regular multivariate time series. In
particular, gated RNNs and their scalable architectures are among the
most widely used methods for time series modeling to date. Since
modeling time series data with gated RNNs has been successful, our
paper contributes to further improving these models to handle irregular
time series data.

The remainder of this section is dedicated to the scrutiny of RNN-
based and non-RNN-based approaches.

2.1. RNN-based model

Dealing with multivariate time series data, also known as sporad-
ically observed time series, comes down to defining an approach to
impute or interpolate missing values caused by temporal irregularity
and other aspects, such as not collecting data during a period of time
𝑡. One of the most common and straightforward acceptable approaches
used in El-Rashidy et al. (2020), Wanyan et al. (2021) is to discretize
the time period over which the data are collected, aggregate values
belonging to the same hour-long bin, and perform an imputation (with
0, median, or mean) on timestamps without observed values. Still, this
imputation does not allow the model to distinguish between imputed
and non-imputed values. Instead, it grants the same level of trust to
both. Then, the authors in Lipton, Kale, and Wetzel (2016) proposed a
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continuous-time observation discretization into an hour-long bin. They
introduced a mask matrix, allowing their model to capture the missing
informative missing patterns. To capture the level of uncertainty of
imputed values and propagate it over time, the authors in Jun, Mulyadi,
Choi, and Suk (2021) proposed an uncertainty-gated stochastic se-
quential model combined with a recurrent variational network that
estimates the distribution of missing values. In Yoon, Zame, and van der
Schaar (2019), the authors proposed a multi-directional recurrent neu-
ral network to interpolate and impute between data streams while
capturing the uncertainty of the imputed values. Although these models
work well in practice, they require ad-hoc time bin management and
could provide missing data when empty bins are detected or lose data
when fine-grained information is removed. Our proposal overcomes
this issue by directly dealing with the raw, irregular multivariate time
series. Ad-hoc time bin management is no longer necessary.

To avoid this ad hoc time bin management, several models have
used a data-driven imputation approach. A data-driven approach steers
the imputation partially (or totally) with the downstream objective
loss function. For instance, a gated recurrent network incorporating
a decay mechanism (GRU-D) that imputes missing values to its core
was introduced in Che et al. (2018). The missing value is imputed by
capturing the long-term temporal dependencies in the time series via a
decay mechanism conditioned on a time interval matrix. A mask matrix
is also incorporated to identify the values that need to be imputed
and capture missing patterns. Unlike the GRU-D, whose imputation
process relies on a medical assumption, the authors in Cao et al.
(2018a) proposed a more generic imputation model. The latter is a
modified bi-directional RNN in which recurrent data-driven imputation
is performed while accounting for the correlation between variables. In
addition to a recurrent imputation that exploits the correlation between
variables, the authors in Suo et al. (2020) combine the latter with an-
other recurrent imputation that captures specific patterns of individual
variables. Subsequently, they implement multidirectional self-attention
to learn long-term dependencies across time and variables. In the same
trend, the authors in Shukla and Marlin (2019b) proposed a semi-
parametric interpolation network that also performed imputation in
its core. Therefore, they propose to interpolate the missing values
based on several radial basis functions (RBFs) concerning a set of
reference points defined on the timescale. The aim of this interpolation
is to generate regular time series from irregular data. Similarly, Tan
et al. (2021) proposed an explainable uncertainty-aware convolutional
recurrent neural network for irregular medical time series, in which
they use a Gaussian process to generate regular data from irregular
ones and estimate the uncertainty of the generated values. In addi-
tion, a hierarchical uncertainty-aware decomposition is implemented to
adaptively decompose the time series into different subseries and assign
them appropriate weights based on their reliability. Since the approach
of imputing values with respect to a set of evenly spaced reference
time points may suppress the underlying information conveyed by
the temporal irregularity and affect the accuracy of the downstream
task, Tan et al. (2020) proposed a GRU-based model called DATA-GRU
that imputes missing values only with respect to observed timestamps.
This imputation is performed by a time-aware mechanism that also
produces reliability vectors of the imputed values. A dual-attention
mechanism is then implemented to deal with missing values by jointly
considering data quality and medical knowledge. The disadvantage
of data-driven imputation/interpolation models that do not rely on
evenly spaced reference points but instead intersect all timestamps
of all features to obtain a single vector of timestamps is that this
intersection increases the length of the input and therefore the number
of parameters. To overcome this problem, we favor the use of evenly
spaced reference time points. However, to reduce the noise that may
be introduced by the latter, we parameterize the time interval between
them in order to be able to select the least noisy reference time points
using a technique such as grid search.

Data-driven imputation/interpolation models calculate new values,
which are combined with the initial values to make the decision.
However, these new values may be noise factors and then alter the
hidden structure of the data. Instead, with the duplication process, only
the initial values are used in the model calculation. A similar approach
of relying only on initial value has been proposed by Neil, Pfeiffer, and
Liu (2016). They proposed a Phased-LSTM, which is a variant of LSTM
with an additional time gate. The units of this time gate process a set
of signals that control the updating of hidden and memory cells. The
hidden and memory cells do not need to be updated at each observed
time, which is substantial in terms of efficiency.

2.2. ODE-based model

Unlike classical RNNs consisting of discrete hidden layers, which
makes them intrinsically suitable for regular time series, alternative
deep learning models based on ordinary differential equations (ODE)
have also been proposed. Their particularity is to process irregular
time series in a continuous latent space. In Chen, Rubanova, Betten-
court, and Duvenaud (2018), the precursors of this approach proposed
substituting the sequence of hidden layers with a continuous latent
function relying on an ODE black box that captures the continuous-time
dynamic flow. Inspired by Chen et al. (2018), the authors Rubanova,
Chen, and Duvenaud (2019) proposed to combine ODE with RNNs.
Their approach is to compute the hidden states of an RNN via ODE
conditioned on a continuous latent function, the previous hidden state,
and the current and previous timestamp values. Rather than using
RNNs that suffer from vanishing or exploding gradient problems during
training, the authors in Lechner and Hasani (2020) combined ODE
with an LSTM designed to address the vanishing problem. The LSTM
then makes it possible to separate the memory unit from its latent
time-continuous state, which might introduce a vanishing or exploding
gradient problem. A similar work, based on ODE, was also carried
out in Kidger, Morrill, Foster, and Lyons (2020). Although ODE-based
models have the particularity of processing time series in a continuous
space and therefore overcome the problem of irregular time intervals,
these models have the disadvantage of requiring more computation
time. Moreover, calculating latent values at irrelevant time points may
introduce noise into the learning process, affecting the downstream
task’s accuracy. Since ODE processes time series in a continuous time–
space, there is no way to avoid including irrelevant time points in the
learning process. However, with our model, thanks to the parameteri-
zation of the time interval between reference points, we can find a snug
approximation of the behavior of a continuous function (if necessary),
which reduces the rate of irrelevant time points in the learning process.

2.3. Transformer-based model

More recently, due to their effectiveness over classical models
such as RNN in NLP tasks, several researchers have implemented
transformer-based models to process irregular time series data (Shan,
Li, & Oliva, 2021; Tipirneni & Reddy, 2022; Wang et al., 2021).
Indeed, thanks to the position encoding component, they were able
to capture irregular temporal patterns. For example, to avoid any
imputation or interpolation of missing values caused by the irregularity
within the time series, Lee, Jun, and Suk (2021) proposed a multi-
view integration approach relying on a time interval matrix, mask,
and observed value matrices. The latter integrates the missingness
information by processing the time interval and mask matrices with
a multi-head attention component. Du, Côté, and Liu (2023) developed
a self-attention-based model called SAITS to impute missing values in
multivariate time series. The self-attention applied in this model is
enhanced by two diagonally-masked self-attention (DMSA) for better
capture of feature correlation and temporal dependencies. SAITS is
trained using a joint optimization approach. Although SAITS produces
functional results, there is no evidence that it will work correctly
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Table 1
Competing models with the techniques or approaches they use to deal with irregular time series. Our model is also listed. ×̄ stands for pseudo. GRU-mask is a GRU whose inputs
are a concatenation of value matrices and mask matrices.

RNN-
based

ODE-
based

Competing models Discretization In-imputation/
interpolation

Alignment
mechanism

Irregular time
modeling

Continuous time
modeling

Missing information
modeling

Duplication

× BRITS (Cao et al., 2018b) × × ×

× Interp-net (Shukla & Marlin, 2019a) × × ×

× GRU-D (Che et al., 2018) × × ×

× GRU-mask (see Section 4.6.1) × ×

× × ODE-LSTM (Lechner & Hasani, 2020) ×

× mTAND (Shukla & Marlin, 2021a) × × ×

× Neural-CDE (Chen et al., 2018) ×

× Phased-LSTM (Neil et al., 2016) ×

× ALNN-GRU (Neil et al., 2016) × × ×̄ × ×

with irregular multivariate time series. Narayan Shukla and Marlin
(2021) built a multi-time attention network composed of an inference
network (encoder) and a generative model (decoder). Technically,
in the encoder, a set of latent variables is picked from a learned
distribution based on the output of multi-time attention blocks and a set
of reference time points for a classification task. On the other hand, the
decoder figures out what the missing values should be when asked for.
However, in this approach, which is probably the closest to ours, the
imputation was made without considering the heteroscedastic aspect.
To address this, Shukla and Marlin (2021b) proposed a heteroscedastic
temporal variational autoencoder model.

Although there is great potential for applying transformers to time
series data, current research in this area is still limited, and the results
are mitigated. Indeed, the memory intensity of standard transformers
is one of the limitations of very long sequences and their quadratic
time complexity compared to the linear complexity of RNNs. Besides,
processors still have difficulty extracting features due to their lack of
true recurrent gradients and inability to encode positional information
faithfully. These shortcomings with transformers compared to the ongo-
ing evolution of gated recurrent networks demonstrate a strong interest
in using gated RNN models for time series data.

Attention-based mechanisms have been approved to make logs more
sensitive to their local contexts and more aware of them, as well as to
make standard transformers less complicated.

2.4. Graph-based model

Graph neural networks have attracted a great deal of interest in
time series modeling because of their flexibility and ability to capture
spatio-temporal dependencies between data points and features. For
instance, Zhang, Zeman, Tsiligkaridis, and Zitnik (2022) proposed a
graph neural network called RAINDROP, in which the vertices repre-
sent the sensors (features) and the edges represent the relationships
between them. The principle of this method is to map each sample,
which is modeled as a graph, into an embedding vector of fixed
dimension. Message passing, which models the relationship between
sensors, is used to estimate the embedding value of the sensors when
they are not observed at a given timestamp. Chen, Ding, and Zhai
(2022) proposed decomposing each univariate time series into different
intrinsic mode functions (IMFs) and residuals using the Empirical Mode
Decomposition (EMD) and modeling each IMF and residual as nodes
of a graph neural network. A multi-head attention mechanism and
a temporal convolutional network (TCN) are then used to learn the
correlation between nodes and encode temporal relationships, respec-
tively. Although the combination of these different models has proved
effective for some regression tasks involving regular multivariate time
series, there is no evidence of their effectiveness for tasks involving
irregular multivariate time series. As the dynamics of multivariate time
series can change over time, Li, Yu, Zhang, and Xu (2023) proposed
a dynamic graph neural network that models this change. Whether

in the learning or testing phase, the dynamic properties of the graph
allow it to rebuild itself in the event of a change detected in the
input data. Oskarsson, Sidén, and Lindsten (2023) built a temporal
graph neural network for irregular data, in which they introduced a
time-continuous latent state in each node (observation). Similar works
implementing graph neural network-based models for irregular time
series modeling were conducted in Cini, Marisca, and Alippi (2021),
Wang, Liu, et al. (2023).

The limitation of graphical neural networks is that they may require
expert assistance to construct the links in the graph. As for those that
implement data-driven link construction, they are often designed for
regular multivariate time series.

2.5. Takeaway messages of the scrutiny of the related work

Table 1 summarizes common approaches and techniques used in
models that deal with irregular time series. We have limited this
summary to our model and those of our competitors. These approaches
and techniques are as follows:

• Discretization: discretization of the time period over which data
are collected;

• In-imputation/interpolation: the imputation or interpolation of
the missing values is carried out in the model’s core and is driven
by the objective loss function(s) related to the downstream task;

• Alignment mechanism: A set of ordered reference time points
is used to either estimate or interpolate missing values at these
points or to calculate the latent values for each. This allows
obtaining values (observed or latent) with the same time trend
in and across streams;

• Irregular time modeling: The model deals with raw, irregular
time series. No discretization or alignment mechanism is im-
plemented. They often rely on decay functions to model the
irregularity of time;

• Continuous time modeling: the model processes the irregular
time series with a continuous-time function(s) rather than using
a sequence of discrete hidden layers;

• Missing information modeling: Strategies implemented in mod-
els’ core to differentiate between observed and missing values.
The most common technique is the use of a binary mask to
indicate whether a value is observed or missing (or imputed) (c.f.
Eq. (2)).

• Duplication: duplication of values to fill in the reference time
points. This duplication is guided by an exponential decay mech-
anism that weights each value according to its temporal distance
from each reference time point.

In view of the aforementioned drawbacks faced by the existing
models, we introduce our new model, called ALNN-GRU. As highlighted
by the last row of Table 1 the sighting items of ALNN-GRU are as
follows:
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• We process the raw irregular multivariate time series (irregular
time modeling) to preserve the fine-grained information and un-
derlying structure of the data. In doing so, we avoid the pitfall of
performing any discretization or in-imputation \interpolation
that might remove fine-grained information or introduce more
noise;

• As we impute the data for the reasons listed in Section 4.3, we
introduce a binary mask, which will make the model less focused
on imputed values (missing information modeling);

• We implement a duplication process that relies solely on the
initial values to avoid introducing noisy values into the model
calculation.

• We implement an alignment mechanism to provide the RNN,
which works best with regular time series, with a ‘‘regularized’’
version of irregular multivariate time series.

• By relying on configurable reference time points, our model can
approximate the behavior of a continuous function (continuous
time modeling).

3. Method

Basic RNN models assume a regular time interval between obser-
vations in the case of univariate time series and aligned data points
in the case of multivariate time series. Aligned data refers to the fact
that the values across features are all collected following the same
time trend. Therefore, feeding an RNN model with irregular univari-
ate or multivariate time series observations would undeniably worsen
performance. To address this issue, we build on top of the latter a
deep-based preprocessing model called ALNN that aims to transform
irregular multivariate time series data into pseudo-regular multivariate
latent time series, which we have named ‘‘pseudo-aligned latent values’’.

Before thoroughly elaborating on ALNN-GRU, we present the pre-
liminary mathematical notations, definitions, and hypotheses neces-
sary for a smooth understanding of our proposal in the following
subsections.

3.1. Preliminaries

We first detail the mathematical notations, then the key definitions
of our approach, and finally, present the different hypotheses on which
our approach is grounded.

3.1.1. Mathematical notations
We let  = {(𝑋𝑛,𝑀𝑛, 𝑇𝑛, 𝛥𝑛, 𝑦𝑛)𝑛=1,2,…,𝑁} represents a dataset, where

𝑁 is the number of samples. 𝑋𝑛 = [𝐱1, 𝐱2,… , 𝐱𝐾 ]𝖳 is the multivariate
time series, where 𝐱𝑘 ∈ R𝑗

(𝑗=1,2,…,𝐽 ) is the 𝑘th univariate time series. As
the number of values 𝑗 in the streams may differ, we fixed a length J
for all streams. 𝐽 is set following a process described in Subsection 4.4.
Thus, 𝑋𝑛(𝑥𝑘𝑗 ) ∈ R𝐽×𝐾 and 𝑥𝑘𝑗 is either observed or imputed. 𝑇𝑛(𝑡𝑘𝑗 ) ∈
R𝐽×𝐾 is the timestamp matrix, 𝑀𝑛 ∈ {0, 1}𝐽×𝐾 with coefficients 𝑚𝑘

𝑗 , is
a binary matrix that indicates whether a value in 𝑋𝑛 has been imputed
or not. 𝛥𝑛(𝛿𝑘𝑗 ) ∈ R𝐽×𝐾 is the time interval (or variation) matrix where
columns represent the time intervals between the values of each stream
(univariate time series), and 𝑦𝑛 is a single target whose value is discrete
in the case of classification and real-valued in the case of regression. In
the case of mortality prediction, the target 𝑦𝑛 value is a binary value,
i.e., 1 for dead, 0 for alive. The remaining notations are described in
Table 2.

Example 1. We have a multivariate time series represented by 𝑋
shown below, where the subscript 𝑛 has been dropped to simplify
notation. Three values are collected, and three are imputed (𝑋 imputed
values are in bold).

𝑋 =
[

1.5 𝟖𝟎.𝟎 𝟔𝟕.𝟓
1.9 𝟖𝟎.𝟎 70.0

]
𝑇 =

[
1 0 1
2 3 4

]
(1)

Table 2
ALNN-GRU notations.

Notation Definition

𝐗,𝐌,𝐓,𝚫, 𝐈 Tensors of observed values, masks, timestamps, time
intervals, and penalties.

𝑋,𝑀, 𝑇 , 𝛥, 𝐼,𝑍 Matrices of observed values, masks, timestamps, time
intervals, penalties, and pseudo-aligned latent values.

𝐫, 𝐳 Reference time points and latent global state of the
patient (also called context vector).

𝐽 ,𝐾, 𝑃 The number of values per feature, Number of features,
and the number of reference time points.

𝑄 Is a condensed representation of 𝑃 × 𝐽 ×𝐾.

𝑁 ′ It represents the batch.

⟨.⟩, 𝜎(.), |.|
𝑒𝑥𝑝(.), 𝜙(.), ⊙ Concatenation symbol, activation function, absolute

distance, exponential function, sum function, and
Hadamard product.

𝑥𝑘𝑗 , 𝑚
𝑘
𝑗 , 𝑡

𝑘
𝑗 and 𝛿𝑘𝑗 They are respectively the coefficients of 𝑋,𝑀, 𝑇 𝛥.

(𝑖𝑘𝑗 )𝑝 (𝑖𝑘𝑗 )𝑝 ∈ 𝐼𝑝 ∈ 𝐈. It represents the penalty score of 𝑥𝑘𝑗 at
the reference time 𝑟𝑝.

𝑀 =
[

1 0 0
1 0 1

]
𝑚𝑘
𝑗 =

{
1 i𝑓 𝑥𝑘𝑗 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
0 o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

𝛥 =
[

0 0 0
1 3 3

]
𝛿𝑘𝑗 =

⎧
⎪⎨⎪⎩

𝑡𝑘𝑗 − 𝑡𝑘𝑗−1 + 𝛿𝑘𝑗−1 j > 1, m𝑘
𝑗−1 = 0

𝑡𝑘𝑗 − 𝑡𝑘𝑗−1 j > 1, 𝑚𝑘
𝑗−1 = 1

0 j = 1
(3)

The imputed values are due to outliers, streams of different lengths,
or streams with no values. The first value of the first feature (𝑘 = 1),
𝑥11 = 1.5, is the full value, and we assign 1 to 𝑚1

1. It is observed at the
timestamp 𝑡11 = 1 (in hours). The time interval between the observed
values 𝑥11 = 1.5 and 𝑥12 = 1.9 is 𝛿12 = 1. It should be remembered that
the time interval (𝛿) between successive timestamps is not constant for
an irregularly sampled dataset.

3.1.2. Definitions
In this subsection, we define two key concepts.

Reference time points. They are ordered and evenly spaced values 𝑟𝑝 ∈
𝐫 = [𝑟1, 𝑟2,… , 𝑟𝑃 ]𝑝=1,…,𝑃 that represent a temporal discretization of the
period during which we collect the data. For example, if we decide to
collect data for the first 5 h, 𝐫 = [0, 1, 2, 3, 4, 5] and the time interval
𝛥𝑟 = 1. Notably, 𝐫 and 𝛥𝑟 are user-defined hyperparameters.

Pseudo-aligned latent values. They are transformations of irregular mul-
tivariate series that ALNN takes as input. They are represented in matrix
form. Each coefficient in each row corresponds to the latent value of a
feature 𝑘 at a reference time point 𝑟𝑝.

3.1.3. Hypotheses
This subsection presents the underlying assumptions of our ALNN-

GRU model.

Hypothesis 1. We assume that the perfect time interval 𝛥𝑟 between
the reference time points 𝑟𝑝 can be obtained by a grid search performed
by the user rather than being a data-driven interval;

Hypothesis 2. Since some streams may not have the number 𝐽 of
values set per stream, we assume that these missing values and their
corresponding timestamps can be imputed by simply repeating the last
value and timestamp of the stream until we obtain 𝐽 values;

Hypothesis 3. We suppose that the further the timestamp value 𝑡𝑘𝑗 of
𝑥𝑘𝑗 is temporally from a reference time point 𝑟𝑝, the less influence it has
at this reference time point.
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Fig. 3. Architecture of the ALNN-GRU.

After introducing all the notations, definitions, and hypotheses, we
formally describe ALNN in the next subsection.

The final model, whose overall architecture is glanced at in Fig. 3,
is called ALNN-GRU since it combines ALNN and RNN models, specif-
ically a GRU. A glance at this figure shows that the ALNN performs an
initial preprocessing stage on irregular multivariate time series inputs
before passing them through the RNN. Unlike the initial multivariate
time series, which suffers from temporal irregularity, the pseudo-aligned
latent values can be more efficiently handled by an RNN model to obtain
a context vector. The latter is then passed sequentially to the last layer,
which plays the classifier (resp. generator) role in a classification (resp.
regression) task.

3.2. ALNN-GRU-step 1: The alignment-driven neural network (ALNN)

The main goal of the neural network ALNN is to transform the irreg-
ular multivariate time series into pseudo-aligned latent values. The ALNN
transformation is performed in two steps, namely the computation of
the time lag penalty scores and the alignment process. Both steps are
thoroughly described in the following.

3.2.1. Time lag penalty
The Time lag Penalty step aims to compute the time lag penalty

score of all values, i.e., their influence at each reference time point.
Roughly speaking, the time lag penalty score indicates the amount of
information to be considered from 𝑥𝑘𝑗 given a reference time point 𝑟𝑝.
This penalty score is computed following Hypothesis 3 of Section 3.1.3.
The penalty score matrix 𝐼 is calculated as follows:

𝐼𝑝 = 𝑋 ⊙ 𝑒𝑥𝑝{−𝑚𝑎𝑥(0,−𝛾𝑝|𝑟𝑝 − 𝑇 |)}; 𝐼𝑝 ∈ R𝐽×𝐾 (4)

where the values (𝑖𝑘𝑗 )𝑝 ∈ 𝐼𝑝 are the penalties score of each value 𝑥𝑘𝑗
at the reference time point 𝑟𝑝. 𝛾𝑝 is a value of the transition vector
𝛤 = [𝛾1,… , 𝛾𝑃 ]. Each value, 𝛾𝑝, is associated with a reference time point
𝑟𝑝. 𝛤 is a learnable parameter. |𝑟𝑝 − 𝑇 | is the absolute distance between
timestamps 𝑡𝑘𝑗 of 𝑥𝑘𝑗 and a reference time point 𝑟𝑝. As a penalty score
matrix is needed for all reference time points, it is then computed 𝑃
times. The global penalty score tensor is as follows:

𝐈 =
[

𝐼1, ⋯ , 𝐼𝑃
]𝖳 ; 𝐈 ∈ R𝑁 ′×𝑄 (5)

𝑁 ′ is the batch size value, which is set to 1 for the simplicity of matrix
representations in Appendix A, and 𝑄 = 𝑃 × 𝐽 × 𝐾. The rationale

behind choosing the absolute distance rather than the Euclidean dis-
tance is that the variation between the timestamps 𝑡𝑘𝑗 and the reference
time points 𝑟𝑝 will generally be high. The absolute distance is more
appropriate for high variability, while the Euclidean distance is for low
variability.

In the following subsection, we formally describe how the penalty
tensor score 𝐈 is integrated into the alignment component to transform
the irregular multivariate time series into pseudo-aligned latent values.

3.2.2. Alignment
In the following, we describe how the multivariate time series 𝑋

is transformed into a pseudo-aligned latent values through a duplication
process driven by the penalty score tensor 𝐈. The duplication process
(c.f. Eq. (6)) consists of duplicating 𝑋,𝑀 and 𝛥 𝑃 times. This allows
each set [𝑋,𝑀, 𝛥] to be concatenated with a penalty matrix score 𝐼𝑝 for
value-level extraction and feature-level aggregation, explained below
and illustrated in Fig. 4.

𝐗 = [𝑋,… , 𝑋]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

1,…,𝑃

𝖳, 𝐌 = [𝑀,… ,𝑀]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

1,…,𝑃

𝖳, ∆ = [𝛥,… , 𝛥]
⏟⏞⏞⏟⏞⏞⏟

1,…,𝑃

𝖳 (6)

It is worth mentioning that we favor the duplication approach over
the iterative approach for parallel computing. This strategy is time-
effective.

Value-level extraction. It consists of calculating an embedded value
(𝑣𝑘𝑗 )𝑝 ∈ 𝐕, which is a non-linear combination of 𝑥𝑘𝑗 , 𝑚

𝑘
𝑗 , 𝛿

𝑘
𝑗 and (𝑖𝑘𝑗 )𝑝.

In other words, (𝑣𝑘𝑗 )𝑝 is a faithful latent representation of 𝑥𝑘𝑗 carrying
the missingness, temporal transition, and time lag penalty information.
The embedded value (𝑣𝑘𝑗 )𝑝 is computed as follows:

(𝑣𝑘𝑗 )𝑝 = 𝜎(𝑥𝑘𝑗 (�̂�
𝑘
1)

𝑝
𝑗 + 𝑚𝑘

𝑗 (�̂�
𝑘
2)

𝑝
𝑗 + 𝛿𝑘𝑗 (�̂�

𝑘
3)

𝑝
𝑗 + (𝑖𝑘𝑗 )𝑝(�̂�

𝑘
4)

𝑝
𝑗 + (�̂�𝑘)𝑝𝑗 ) (7)

𝜎(.) is an activation function. (�̂�𝑘
[1,4])

𝑝
𝑗 ∈ �̂� ∈ R1×𝑄×4 and (�̂�𝑘)𝑝𝑗 ∈ �̂� ∈

R1×𝑄×1 are learnable parameters. The global matrix of all embedded
values (𝑣𝑘𝑗 )𝑝 is then obtained as follows:

𝐕 = 𝜎(𝜙(< 𝐗,𝐌,∆, 𝐈 > ⊙�̂� + �̂�)); (𝑣𝑘𝑗 )𝑝 ∈ 𝐕 ∈ R𝑁 ′×𝑄×1 (8)

where 𝜙(.) is the sum function of the coefficients of (< 𝐗,𝐌,∆, 𝐈 >
⊙�̂� + �̂�) ∈ R𝑁 ′×𝑄×4 along the last axis (c.f. Eq. (7)). ⊙ is the
Hadamard product. We use the Hadamard product at this level to keep
the calculation of each embedding value (𝑣𝑘𝑗 )𝑝 separate. Formally, (𝑣𝑘𝑗 )𝑝
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Fig. 4. Illustration of the alignment process. 𝐚 and 𝐛 are two features and 𝐫 = [𝑟1 , 𝑟2] the reference time points vector. 𝑓 is the nonlinear function that performs the values-level
extraction and 𝜃 = {�̂� , �̂�} its parameters (c.f Eq. (7),(8)). 𝑔 is the nonlinear function that performs the feature-level extraction and 𝛼 = {�̄� , �̄�} its parameters (c.f Eq. (9),(10)).

is uniquely obtained from 𝑥𝑘𝑗 , its corresponding mask, time interval, and
time lag penalty. All 𝑥𝑘′𝑗′ ≠ 𝑥𝑘𝑗 and their respective mask, time interval,
and time lag penalty are ignored (𝑘′ ∈ [0, 𝐾]; 𝑗′ ∈ [0, 𝐽 ]).

Once the values-level extraction is achieved, we perform the feature-
level aggregation.

Feature-level aggregation. It consists of merging all embedded values
(𝑣𝑘∶𝐽 )𝑝 by weighting each of them. This merging process, followed by
a nonlinear transformation, aims to obtain a single latent value 𝑧𝑘𝑝
(Eq. (10)) for the feature 𝑘 at the reference time point 𝑟𝑝. Therefore,
the pseudo-aligned latent values 𝑍, which is the global matrix of all 𝑧𝑘𝑝 ,
is obtained as follows:

𝑍 = 𝜎(𝜙(�̄�⊙ �̄�𝑧 + �̄�𝑧));𝑍 ∈ R𝑃×𝐾 (9)

where 𝜎(.) is an activation function; 𝜙(.) the sum function of the
coefficients of (�̄�⊙ �̄�𝑧 + �̄�𝑧) ∈ R𝑁 ′×𝑄 along the third axis (𝑁 ′ = 1 and
𝑄 = 𝑃 ×𝐽 ×𝐾). 𝑉 (�̄�𝑘𝑗 )𝑝 ∈ R𝑁 ′×𝑄 is the reshaped version of 𝑉 ∈ R𝑁 ′×𝑄×1.
�̄�𝑧((�̄�𝑘

𝑗 )
𝑝) ∈ R1×𝑄 and 𝐵𝑧((�̄�𝑘)𝑝) ∈ R1×𝑃×𝐾 are model parameters. The

Hadamard product allows weighing the latent values of a feature 𝑘
without considering the other features’ values. Unlike some works, such
as Wang et al. (2021), we do not consider the correlation of variables to
address the irregularity issue. The coefficients 𝑧𝑘𝑝 of the pseudo-aligned
latent values 𝑍 are calculated as follows:

𝑧𝑘𝑝 = 𝜎(
𝐽∑
𝑖=1

(�̄�𝑘𝑖 )𝑝(�̄�
𝑘
𝑖 )

𝑝 + (�̄�𝑘)𝑝); 𝑧𝑘𝑝 ∈ 𝑍 (10)

Remark 1.

1. The term aligned refers to the fact that in 𝑍, each row 𝑧∶𝐾𝑝 rep-
resents the latent values of each feature 𝑘 at the same reference
time point 𝑟𝑝. Whereas it is unlikely for 𝑋, values in the same
row have different timestamps.

2. The term pseudo was introduced since the calculation of 𝑧𝑘𝑝 does
not only rely on all embedded representations (𝑣𝑘∶𝐽 )𝑝 of all 𝑥𝑘∶𝐽
with the timestamp 𝑡𝑘𝑗 = 𝑟𝑝. Rather, it depends on all embedded
representations (𝑣𝑘∶𝐽 )𝑝 of 𝑥𝑘∶𝐽 having timestamps 𝑡𝑘𝑗 such as 𝑟1 <=
𝑡𝑘𝑗 <= 𝑟𝑃 . In other words, 𝑧𝑘𝑝 , the new feature value 𝑘 at the
reference time point 𝑟𝑝 is calculated by considering all values 𝑥𝑘𝑗
observed before and after the reference time point 𝑟𝑝 (c.f Fig. 4
for illustration).

Remark 2. We want to emphasize that although our duplication
process may introduce some noise, it remains negligible. Indeed, even
though the reference time interval delta is small 𝛥𝑟 = 𝜖, the difference
between the penalty scores of 𝑥𝑘𝑗 at the reference time points 𝑟𝑝 and (𝑟𝑝+
𝜖) will ‘‘most often’’ be non-zero, thanks to the exponential function.
We said ‘‘most often’’ because this difference can be zero due to our
computers’ finite number of bits. In this case, noise is introduced.

So far, no sequential pattern between rows of 𝑍 has been captured.
The following subsection presents how pseudo-aligned latent values are
passed through a GRU for sequential pattern detection and sequen-
tially into a Dense layer for the final binary classification task. It
is worth mentioning that the final task can also be any regression,
multi-regression, or multi-classification task.

3.3. ALNN-GRU-step 2: The prediction model

We used a GRU, an RNN model that solves the vanishing problem, to
take advantage of the sequential pattern of pseudo-aligned latent values.
The output 𝐳 of the GRU named context vector, seen as a global latent
representation of a patient over the 𝑟𝑃 hours, is fed sequentially into a
dense layer for the mortality prediction task. Formally:

𝐳 = 𝐺𝑅𝑈𝜃(𝑍) (11)

�̂� = 𝐷𝑒𝑛𝑠𝑒𝛼(𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐳)) (12)

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐳) = 1
1 + 𝑒−𝐳

(13)

GRU and Dense parameters are denoted by 𝜃 and 𝛼, respectively.
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(.) represents the activation function. We used it because our
downstream task is a binary classification task. Other activation func-
tions, such as 𝐿𝑖𝑛𝑒𝑎𝑟(.) or 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(.), could be used for regression or
multiple classification tasks. �̂� ∈ [0, 1] represents the likelihood that the
patient will die.

As far as we are dealing with unbalanced data, i.e., the major class
‘‘0’’ is by far more numerous than the minor class ‘‘1’’, we used the
focal loss (Lin, Goyal, Girshick, He, & Dollár, 2017) to cope with such
an issue. After extensive experiments, the focal loss was selected, and
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Fig. 5. Class distribution of the 24- and 48-hour datasets. Green squares represent number of admissions with deceased patients and blue squares represent number of admissions
with living patients.

its performances were compared to normal binary cross-entropy and
weighted binary cross-entropy. The focal loss is defined as follows:

𝑓𝑙 = − 1
𝑁

𝑁∑
𝑛=1

−𝑤𝑓𝑙1(1−�̂�𝑛)𝑤𝑓𝑙2 𝑙𝑜𝑔(�̂�𝑛) �̂�𝑛 =
{

𝑝𝑛 if 𝑦𝑛 = 1
1 − 𝑝𝑛 otherwise.

(14)

where 𝑝𝑛 is the predicted probability of the model for 𝑦𝑛 = 1, 𝑤𝑓𝑙1 ∈
[0, 1] is a weighting factor used to balance the importance between
them, and 𝑤𝑓𝑙2 ≥ 0 is a focusing parameter applied to focus on the
minority class. These are hyperparameters defined by the user.

The outcomes of the experimental evaluation are presented in the
section that follows.

4. Experiment results and comparisons

To evaluate the performance of ALNN-GRU, we have chosen the
task of predicting mortality in the ICU as a pilot case. Indeed, death is
probably the worst of the adverse events that may occur during medical
stays. Although paradoxically, the mortality rate in hospitals is higher
than in Intensive Care Units (Capuzzo et al., 2014), the patients who
enter intensive care are those whose prognosis is life-threatening. In
such an emergency environment, where critical patient arrival rates
can rapidly increase, decision-making can be very tricky, even for an
experienced physician. As deep learning models have shown superior
results compared to probabilistic and machine learning models on
classification tasks, our model, which is a deep learning-based model,
seems to be an ideal solution to support physicians’ decision-making.
Furthermore, as ICU data suffer from missing values due to time
irregularity, these data are appropriate for evaluating the performance
of the ALNN-GRU, which was originally built to handle irregular time
series data while improving the accuracy of the downstream task.

In the following section, we describe the environment in which our
model is run.

4.1. Settings

We coded the proposed model using the Python 3.0 programming
language and the machine learning libraries Keras 2.4.3 and Tensor-
Flow 2.4.0. All remaining pre-processing and performance evaluations
were done with NumPy, Pandas, and Scikit-learn libraries. Finally, we
ran the code on a computer cluster with the following characteristics:

Table 3
Physiological measures.

Acronym Definition Type

SPO2 Oxygen Saturation numeric
DBP Diastolic Blood Pressure numeric
SBP Systolic Blood Pressure numeric
UO Urine Output numeric
Temp Temperature numeric
FiO2 Fraction Inspired Oxygen numeric
HR Heart Rate numeric
RR Respiratory Rate numeric
TGCS Total Glasgow Coma Score numeric
pH pH numeric
Glucose Glucose numeric
CRR Peripheral Capillary Refill Oxygen Saturation categorical

The AMD Threadripper 3960X is a 24-core, 48-thread processor with
128 GB of memory. It is paired with an NVidia 3090 GPU with 24 GB
of graphics memory. The code is available at ALNN-GRU.

In the following, we thoroughly describe the dataset used in this
experiment.

4.2. Dataset

We conducted our experiment with the publicly available database
MIMIC-III, which contains anonymized health-related data from over
forty thousand patients who stayed in the Beth Israel Deaconess Med-
ical Center intensive care units between 2001 and 2012. From the
chartevents and outputevents tables, we have extracted patient data
from the first 24 hours (37,375 patients) and 48 hours (25,755 patients).
As a patient may have several admissions, for the 24-hour dataset, we
obtained 45,954 admissions records, 41,162 with label 0, and 4,792
(11.64%) with label 1. Whereas, for the 48 hour-dataset, we obtained
30,415 admissions records, 26,577 with the label 0 and 3,838 (12%)
with the label 1. The class distribution of the two datasets is shown in
Fig. 5. Inspired by Purushotham, Meng, Che, and Liu (2018), Shukla
and Marlin (2019a), the physiological measures selected are described
in Table 3.

In the next section, we describe the preprocessing steps performed
before training the model.
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Fig. 6. Missing value rate by feature: The left axis of each plot is the number of data points (observed and missing) per feature in percent. The top axis of each plot is the number
of observed values per feature. The right axis of each plot is the number of data points (observed and missing) per feature.

4.3. Pre-processing

Before diving into the pre-processing details, it should be noted
that the pre-processing we perform here is not intended for ad hoc
time bin management but rather to deal with outliers (identified with
practitioners’ assistance), missing values, time series with different
lengths, and worthless features. In fact, for certain medical or technical
reasons, it may happen that during a patient visit, certain features
from Table 3 are not recorded. This results in samples (multivariate
time series) whose corresponding features have no value. The missing
value rate for data collected in the first 24 and 48 hours is 74.57% and
76.53%, respectively. Fig. 6 shows the rate of missing values per feature
in both datasets

The first step in pre-processing is to deal with outliers and missing
values. We removed outliers with practitioners’ assistance and consid-
ered them missing values. Missing values can occur at the beginning,
middle, or/and end of a time series. If the time series contains missing
values in the middle, we first interpolate them using the Pandas time
interpolation method (c.f. Fig. 7, 1-preprocessing). The interpolation is
based on the values surrounding the missing value and their respective
timestamps. If a missing value appears at the beginning or end of the
time series, we cannot use interpolation, as it relies on the surrounding
values. Therefore, for that occurring at the beginning, we use the
Pandas’ backward fill method that relies on the value recorded after the
current missing value (c.f. Fig. 7, 1-2-preprocessing). For the missing
value occurring at the end of the time series, we use the Pandas’
forward fill method that relies on the value recorded before the current
missing value (c.f. Fig. 7, 1-2-preprocessing). The Pandas’ forward fill
method is also used for padding purposes. In other words, we use it
to obtain univariate time series with the same number of observations.
The last observed value and its corresponding timestamp are duplicated
(c.f. Fig. 7, 2-preprocessing). Although the problem of time series
with a number of observations is an underlying problem of temporal
irregularity, the padding that we perform to remedy it does not solve
the irregular temporal problem. We apply this because ALNN requires
inputs with the same number of observations. To mitigate the impact
of padded values in the model calculation, a binary mask is associated
with them (c.f. Eq. (7)).

Unlike outliers and missing values, whose respective timestamps are
recorded, we do not have timestamps for worthless features. Therefore,
since ALNN requires timestamps, we need to impute both values and
their respective timestamps. We set the timestamp values to 0, and we
fill in worthless features with the empirical mean of the corresponding
features (c.f. Fig. 7, 3-preprocessing). Since the impact of a value

depends on its time lag penalty score (c.f. Section 3.2.1), the values
with 0 as timestamp will be less involved in the model calculation.
Additionally, a binary value is associated with each value to allow the
model to rely less on imputed values (c.f. Eq. (7))

Although we do not perform any imputation/interpolation at the
model’s core that might be a noise factor, we do impute/interpolate
values during processing that might generate noise. However, as Fig. 8
shows, the distribution of the original data is almost similar to that
obtained after imputation. This observation ensures that the different
imputation strategies we have used have resulted in minimal distortion
of the original data structure. As a result, less noise is generated

In the next section, we present the properties and hyperparameters
of the model.

4.4. Model properties and hyperparameters

Experiments were performed with values collected, respectively, at
24 and 48 hours after patient admission. The number of values observed
for each patient’s physiological measurements (features) during the
admission may differ. Since the deep learning model requires inputs
to have the same number of values, we define a standard length for
each feature. After an extensive grid search, it was found that 60
was the optimal number of values per feature for the 24 hour-dataset.
Regarding data loss, only 1.28% of features have more than 60 values.
As we double the hours, we intuitively double the number of values per
feature for the 48-hour dataset. Therefore, for the latter, the number of
values per feature was set at 160. Concerning data loss, only 0.46% of
features have more than 120 values. To link the mathematical notation
in Section 3.1.1 to the experiment, for the 24−hour dataset 𝑋, 𝑇 ,𝑀 and
𝛥 ∈ R60×12. For the 48−hour dataset 𝑋, 𝑇 ,𝑀 and 𝛥 ∈ R120×12. 12 is the
number of physiological measures (c.f. Table 3).

The reference time point vectors (c.f. Section 3.1.2) are set to 0−24
and 0 − 48 for the 24− and 48−hour datasets, respectively. 𝛥𝑟 was
set to 1 for both. Then, if we denote by 𝐫24 and 𝐫48 the set reference
time points for the 24− and 48−hour datasets, respectively, we will
have 𝐫24 = [0, 1, 2, 3,… , 24] and 𝐫48 = [0, 1, 2, 3,… , 48]. Suppose we
had set 𝛥𝑟 to 0.5, then we would have had 𝐫24 = [0, 0.5, 1, 1.5,… , 24]
and 𝐫48 = [0, 0.5, 1, 1.5,… , 48]. The smaller 𝛥𝑟 is, the closer we get to
a set of continuous numbers, hence the claim that our function can
approximate the behavior of a continuous function.

By a grid search procedure, we chose 𝑟𝑒𝑙𝑢 as the activation func-
tion at value-level extraction and feature-level aggregation (c.f. Sec-
tion 3.2.2). More precisely, in Eqs. (7)–(10), the activation function
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Fig. 7. Imputation workflow. 𝐚, 𝐛 and 𝐜 are three univariate time series belonging to the same sample with different missing value scenarios. * is the missing value indicator.
Values in red are imputed values. 𝑐 is the empirical mean of the feature 𝐜. After preprocessing, all univariate time series have the same number of observations and timestamps.
It should be noted that there is no other step in the pre-processing. The numbering is used for referencing purposes only.

Fig. 8. Comparison of distributions of the two datasets before and after imputation of missing values.

𝜎(.) used is 𝑟𝑒𝑙𝑢. Due to the consideration of many parameters, we also
apply a dropout=0.05 at these two levels to overcome the overfitting
problem (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014). Then Eqs. (9) and (10) are reformulated as follows:

𝐕 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝜎(𝜙(< 𝐗,𝐌,∆, 𝐈 > ⊙�̂� + �̂�)); 0.5) (15)

𝑍 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝜎(𝜙(�̄�⊙ �̄�𝑧 + �̄�𝑧)); 0.5) (16)

The number of GRU units was set to 168 (c.f. Eq. (11)). Focal loss
weighted factors were set to 𝑤𝑓𝑙1 = 0.10 and 𝑤𝑓𝑙2 = 2.10 for the
previous 24 and 48 hours (c.f. Eq. (14)). The batch size value was
set to 2000, and the number of epochs to 100. We use the Adam
optimizer (Kingma & Ba, 2014) with a learning rate equal to 0.001.

As the k-fold cross-validation value is frequently set at 5 in several
works (Che et al., 2018; Jun, Mulyadi, Choi, & Suk, 2020; Shukla
& Marlin, 2019a), we also use the same value to train and test our
model and those of our competitors. The training configuration and
model’s hyperparameters are summarized in Table 4. Apart from the
number of epochs and GRU units, which differ from competing mod-
els, all parameters remain the same. After an extensive grid search,
the number of epochs of the GRU-𝛥𝑡, GRU-𝛥𝑡-zero and BRITS-GRU-𝛥𝑡

Table 4
Training configuration and hyperparameters of ALNN-GRU.

Hyperparameters Value Hyperparameters Value

GRU-units 168 ALNN activation functions Relu
𝛥𝑟 1 dropout at the values-level extraction 0.05
Batch size 2000 dropout at the features-level aggregation 0.05
epochs 100 Focal loss weighted factors 𝑤𝑓𝑙1∕𝑤𝑓𝑙2 0.1∕2.1
Learning rate 0.001 k-fold cross-validation 5

was set at 50. For Interp-net (Neil et al., 2016), GRU-D, Bi-LSTM-
𝛥𝑡, mTAND (Shukla & Marlin, 2021a), ODE-LSTM (Lechner & Hasani,
2020), Phased-LSTM (Neil et al., 2016) and Neural-CDE (Chen et al.,
2018), it was set at 100. The number of GRU units was set at 200 for
all competitors integrating this layer. The Training configuration and
hyperparameters of ALNN-GRU are summarized in Table 4.

4.5. Prediction performance

We usher in this section with a focus on mortality prediction accu-
racy. We compare the average Area under the ROC Curve (AUC), the
Area Under the Precision-Recall Curve (AUPRC) scores and F1-scores
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Table 5
Performances of the mortality prediction task (mean ±standard deviation from 5-cross validation).

Models 24 48

AUC AUPRC F1-score AUC AUPRC F1-score

Bi-LSTM-𝛥𝑡 0.817 ± 0.005 0.413 ± 0.012 0.367 ± 0.015 0.805 ± 0.017 0.434 ± 0.026 0.397 ± 0.023
BRITS-GRU-𝛥𝑡 0.819 ± 0.006 0.406 ± 0.010 0.364 ± 0.003 0.805 ± 0.008 0.418 ± 0.020 0.405 ± 0.006
GRU-D 0.843 ± 0.006 0.448 ± 0.011 0.392 ± 0.008 0.826 ± 0.004 0.463 ± 0.019 0.422 ± 0.011
GRU-𝛥𝑡zero 0.782 ± 0.012 0.334 ± 0.017 0.343 ± 0.009 0.756 ± 0.009 0.348 ± 0.022 0.358 ± 0.007
GRU-𝛥𝑡 0.829 ± 0.009 0.430 ± 0.018 0.389 ± 0.008 0.818 ± 0.004 0.448 ± 0.013 0.419 ± 0.007
Interp-net 0.803 ± 0.005 0.359 ± 0.009 0.352 ± 0.003 0.754 ± 0.005 0.313 ± 0.005 0.359 ± 0.008
mTAND 0.840 ± 0.007 0.416 ± 0.010 0.388 ± 0.005 0.807 ± 0.004 0.442 ± 0.017 0.411 ± 0.006
Neural-CDE 0.798 ± 0.020 0.385 ± 0.017 0.362 ± 0.012 0.793 ± 0.005 0.401 ± 0.010 0.388 ± 0.012
ODE-LSTM 0.816 ± 0.009 0.396 ± 0.015 0.370 ± 0.011 0.806 ± 0.003 0.431 ± 0.016 0.410 ± 0.008
Phased-LSTM 0.841 ± 0.004 0.458 ± 0.016 0.394 ± 0.005 0.831 ± 0.004 0.483 ± 0.021 0.433 ± 0.012

ALNN-GRU 𝟎.𝟖𝟓𝟒 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟒𝟖𝟏 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟎𝟎 ± 𝟎.𝟎𝟏𝟖 𝟎.𝟖𝟒𝟔 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟓𝟎𝟕 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟒𝟓 ± 𝟎.𝟎𝟏𝟑

over the 5-fold cross-validation that we obtained against those of the
state-of-the-art models shown below:

• Bi-LSTM-𝛥𝑡: It is a bidirectional LSTM whose inputs are the con-
catenation of matrices of values, timestamps and masks;

• BRITS-GRU-𝛥𝑡: It is a GRU-𝛥𝑡 whose missing values are imputed
using the BRITS model (Cao et al., 2018b). BRITS is a bidirec-
tional model that imputes missing values using recursive units
and linear regression. BRITS and GRU-𝛥𝑡 are trained in end-to-end
fashion;

• Interp-net (Shukla & Marlin, 2019a): Interpolation neural network
that uses a set of Radial Basis Functions to interpolate missing
values against a set of reference time points;

• GRU-D (Che et al., 2018): GRU-based model with a decay mech-
anism applied in its core which aims to impute missing values
according to the duration of their absence;

• GRU-𝛥𝑡: GRU whose inputs concatenate the observed values, their
masks, and the time interval matrix. Irregularity and missing
value patterns are implicitly captured through its inputs. No
explicit mechanism is applied in its core;

• GRU-𝛥𝑡-zero: GRU-𝛥𝑡 whose missing values are imputed with the
value 0;

• mTAND (Shukla & Marlin, 2021a): It is an attention-RNN-based
model consisting of an encoder and a decoder. The encoder is
responsible for encoding a set of latent variables as a function of
a set of reference time points and the observed value, along with
their respective time stamps. Technically, the latent variables are
sampled from a distribution learned via the output of multi-time
attention and a set of reference time points. The decoder, on the
other hand, interpolates the missing values into a set of requested
time points;

• Neural-CDE (Chen et al., 2018): A neural network whose hidden
layers at time 𝑡 are calculated with an ordinary differential equa-
tion having as parameters the initial hidden state, the derivative
of the function that calculates the hidden state, and the targeted
timestamp (it can be a list of timestamps if multiple hidden states
are needed);

• ODE-LSTM (Lechner & Hasani, 2020): LSTM-based model whose
hidden states are calculated with ordinary differential equations;

• Phased-LSTM (Neil et al., 2016): LSTM-based model with an
additional gate called the time gate. This gate is dedicated to a
periodic update of the hidden and the memory cells of the LSTM
according to a set of signals calculated in its different units.

In addition to the AUC, AUPRC and F1 scores, we also present in the
Appendix B the confusion matrix for each model in the first cross-
validation (i.e. the first loop of the cross-validation). Although, com-
pared with the average of the AUC, AUPRC and F1 scores for the 5-fold
cross-validation, the confusion matrix for the first cross-validation can-
not accurately reflect the performance of the models, it gives us an
overview of the Sensitivity and Specificity of each model.

On both datasets (24 h and 48 h), we can see in Table 5 that
our model has a better AUC, AUPRC and F1-score. This confirms the
effectiveness of the hypotheses we formulated in the 3.1.3 subsection
and the model design choices. Among the competitors, we note that the
Phased-LSTM and GRU-D models are the ones that perform the best.
What may explain the effectiveness of GRU-D is the consideration of
the property observed in human body health data (Vodovotz, An, &
Androulakis, 2013) when imputing missing values. The effectiveness
of Phased-LSTM, on the other hand, is due to its temporal gate which
allows it to retain the original underlying temporal structure and
handle temporal irregularities without requiring any imputation which
could be a noise factor. Although the above models implement different
practical approaches to dealing with temporal irregularity, the superior
performance of our model highlights the fact that the duplication
strategy driven by an exponential time decay mechanism deals better
with irregular multivariate time series and makes the downstream task
more accurate

Surprisingly, we find that GRU-𝛥𝑡, which is the simplest model, per-
forms better than more sophisticated models such as Interp-net, ODE-
LSTM, Neural-CDE, BRITS-GRU-𝛥𝑡 and Bi-LSTM-𝛥𝑡. This shows that,
without a built-in explicit mechanism dedicated to solving the tem-
poral irregularity problem, a simple GRU can effectively capture this
irregularity through additional inputs (mask and time interval matrices)
and, consequently, provide functional results. The difference between
GRU-𝛥𝑡 and GRU-𝛥𝑡-zero is that they implement different imputation
techniques, namely mean imputation and zero imputation, respectively.
Therefore, the superior performance of GRU-𝛥𝑡 indicates that mean
imputation (which we also perform during the out-imputation4) should
be preferred to zero imputation.

Furthermore, we note that compared to the Interp-net and mTAND
models, which also perform an alignment process via a set of reference
time points, our model is the most accurate. This can be explained by
the fact that, in our model, the set of reference time points is strictly
defined according to the data collection period (for example, if the
data were collected for 10 hours, the minimum reference time point
would be 0 or 1 and the maximum 10, see Subsection 3.1.2). This is
not the case with the Interp-net and mTAND models, where the only
constraint is to have a regular time interval between reference points.
As a result, the underlying temporal structure associated with the new
values (which can be latent) calculated at these reference time points
may be considerably lost.

Another interesting analysis is the variation in the AUC, AUPRC
and F1 scores of the models. From Table 6, we observed that when
more data are considered (48-hour dataset), the AUC score of all models
decreases and their AUPRC (except Interp-net) and F1 scores increase
(despite a higher percentage of missing values). The higher percentage
of the targeted class in the 48-hour-dataset justifies this variation. For
the AUC score, our model achieves the second-lowest decay percentage.

4 Imputation performed during the preprocessing stage.
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Fig. 9. AUC, AUPRC and F1 scores by varying 𝛥𝑟 for the 24- and 48-hour datasets. As we can notice, there is no linear correlation between 𝛥𝑟 and the metric scores.

Table 6
AUC, AUPRC and F1-score variations from 24 to 48 h data.

Models AUC variation ↘ AUPRC variation ↗ F1-score variation ↗

Bi-LSTM-𝛥𝑡 0.012 0.021 0.030
BRITS-GRU-𝛥𝑡 0.014 0.012 0.041
GRU-D 0.017 0.015 0.030
GRU-𝛥𝑡zero 0.026 0.014 0.015
GRU-𝛥𝑡 0.011 0.018 0.030
Interp-net 0.049 0.046 ↘ 0.007
mTAND 0.033 0.026 0.023
Neural-CDE 𝟎.𝟎𝟎𝟓 0.016 0.026
ODE-LSTM 0.010 𝟎.𝟎𝟑𝟓 0.040
Phased-LSTM 0.010 0.025 0.039

ALNN-GRU 𝟎.𝟎𝟎𝟖 𝟎.𝟎𝟐𝟕 𝟎.𝟎𝟒𝟓

On the other hand, for the AUPRC and F1 scores, our model achieves
the second and first-best growth percentages, respectively. From this
analysis, if we have to compromise between the AUC score, the AUPRC
score, the F1-score and their respective variations, our model turns
out to be the perfect model to consider when more data with a more
significant number of the targeted class is available.

4.6. Ablation studies

In what follows, we put the focus on the outcomes of the following
ablation studies:

1. We compare our approach to the classical approach, which
consists of discretizing time;

2. We train our model with two other loss functions and compare
the results;

3. We remove the ALNN or the GRU to assess their respective
contribution;

4. We apply two other imputation strategies and compare them to
the one used and

5. We evaluate the performance of our model with different values
of 𝛥𝑟 and show how this parameter affects AUC and AUPRC
scores.

4.6.1. GRU-mask (time discretized) versus ALNN-GRU
To feed the GRU, we collect data every 1 hour. We then obtain

a regular multivariate time series. We performed a mean imputation
to fill in the hour bin with no value. The average is considered if
many observations are collected in an hour bin. Additionally, a mask
matrix indicating which value was imputed is concatenated with the
multivariate time series. We call this GRU variant the GRU-mask.
Table 7 sheds light on the cruciality of considering all the observed
values and transforming them into pseudo-aligned latent values via the
ALNN before feeding them into a GRU for the mortality prediction task.

4.6.2. Alternative loss functions
To check whether the focal loss is the most suitable to address the

unbalanced data problem, we evaluate our model with two other loss
functions: the Binary cross Entropy (17) and the Weighted Binary cross
Entropy (18).

𝑏𝑐 = − 1
𝑁

𝑁∑
𝑛=1

[𝑦𝑛 ∗ ln (�̂�𝑛) + (1 − 𝑦𝑛) ∗ ln (1 − �̂�𝑛)] (17)

𝑤𝑏𝑐 = − 1
𝑁

𝑁∑
𝑛=1

[𝑤1 ∗ 𝑦𝑛 ∗ ln (�̂�𝑛) +𝑤0 ∗ (1 − 𝑦𝑛) ∗ ln (1 − �̂�𝑛)] (18)

𝑤0 = 𝑁∕(2 ∗ 𝑁0) and 𝑤1 = 𝑁∕(2 ∗ 𝑁1), where 𝑁 is the number
of samples, 𝑁0 is the number of samples of the class 0, and 𝑁1 is
the number of samples of the class 1. Indeed, 𝑤1 makes it possible
to penalize the model more whenever class 1 is misclassified, whereas
𝑤0 makes it possible to penalize the model less whenever class 0 is
misclassified.

In Table 8, we notice that the focal loss addresses the unbalanced
data problem much better than other loss functions.

4.6.3. Contribution of ALNN versus GRU
Since the output of the ALNN is in matrix form, we add a Linear

layer to it, followed by a Dense layer with a sigmoid activation function.
We call this combination ALNN-FNN, where FNN stands for Feedfor-
ward Neural Network. The GRU here is actually a GRU-𝛥𝑡 since its
inputs are the matrix of values, time intervals, and masks. In Table 9,
the higher scores of the ALNN-FNN compared to those of the GRU-
𝛥𝑡 highlight the fact that ALNN contributes more than GRU when
combined. However, the performances of ALNN-FNN are lower than
those of ALNN-GRU. Indeed, a linear layer cannot capture temporal
patterns as well as the GRU does

4.6.4. Different imputation strategies
Zero and median imputation are simple imputation strategies com-

monly used in the literature. We then compare them to the one we used.
The results in Table 10 show that the combination of interpolation,
empirical mean, and backward and forward fill is much more effective
than the simple zero and median imputation strategies

4.6.5. Study impact of the 𝛥𝑟 variation
In this study, we varied the value of this parameter in {0.125, 0.25,

0.5, 1}. From Fig. 9, we notice no linear correlation between 𝛥𝑟 and
metric scores. In some cases, like the one with 𝛥𝑟 = 0.25 for the 24
hour-dataset, we obtain a better AUC score than the one obtained with
the default value, i.e., 𝛥𝑟 = 1. In addition, with 𝛥𝑟 = 0.5 for the 48
hour-dataset, the AUPRC score is lower than that obtained with the
default value. On the one hand, adding more reference time points
by decreasing the 𝛥𝑟 value does not guarantee a better score. Indeed,
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Table 7
Performance of the GRU (time discretized) vs. ALNN-GRU.

Models 24 48

AUC AUPRC F1-score AUC AUPRC F1-score

GRU-mask 0.832 ± 0.008 0.439 ± 0.019 0.388 ± 0.004 0.824 ± 0.004 0.469 ± 0.017 0.422 ± 0.007

ALNN-GRU 𝟎.𝟖𝟓𝟒 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟒𝟖𝟏 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟎𝟎 ± 𝟎.𝟎𝟏𝟖 𝟎.𝟖𝟒𝟔 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟓𝟎𝟕 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟒𝟓 ± 𝟎.𝟎𝟏𝟑

Table 8
Evaluation of loss function impact.

Prior hours Loss function AUC AUPRC F1-score

24
𝑏𝑐 0.843 ± 0.004 0.451 ± 0.014 0.398 ± 0.006
𝑤𝑏𝑐 0.842 ± 0.003 0.453 ± 0.014 0.396 ± 0.008
𝑓𝑙 (ours) 𝟎.𝟖𝟓𝟒 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟒𝟖𝟏 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟎𝟎 ± 𝟎.𝟎𝟏𝟖

48
𝑏𝑐 0.842 ± 0.008 0.489 ± 0.020 0.440 ± 0.009
𝑤𝑏𝑐 0.841 ± 0.006 0.489 ± 0.022 0.439 ± 0.011
𝑓𝑙 (ours) 𝟎.𝟖𝟒𝟔 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟓𝟎𝟕 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟒𝟓 ± 𝟎.𝟎𝟏𝟑

Table 9
ALNN-FNN versus ALNN-GRU versus GRU-𝛥𝑡.

Models 24 48

AUC AUPRC F1-score AUC AUPRC F1-score

GRU-𝛥𝑡 0.829 ± 0.009 0.430 ± 0.018 0.389 ± 0.008 0.818 ± 0.004 0.448 ± 0.013 0.419 ± 0.007
ALNN-FNN 0.847 ± 0.005 0.464 ± 0.021 0.396 ± 0.021 0.844 ± 0.006 0.490 ± 0.015 0.432 ± 0.007

ALNN-GRU 𝟎.𝟖𝟓𝟒 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟒𝟖𝟏 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟎𝟎 ± 𝟎.𝟎𝟏𝟖 𝟎.𝟖𝟒𝟔 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟓𝟎𝟕 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟒𝟓 ± 𝟎.𝟎𝟏𝟑

Table 10
ALNN-GRU performances with different imputation strategies.

Imputation strategy 24 48

AUC AUPRC F1-score AUC AUPRC F1-score

Median 0.838 ± 0.005 0.422 ± 0.110 0.388 ± 0.020 0.833 ± 0.002 0.446 ± 0.017 0.405 ± 0.012
Zero 0.839 ± 0.006 0.412 ± 0.019 0.380 ± 0.014 0.825 ± 0.006 0.436 ± 0.013 0.400 ± 0.010
ALNN-GRU 𝟎.𝟖𝟓𝟒 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟒𝟖𝟏 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟎𝟎 ± 𝟎.𝟎𝟏𝟖 𝟎.𝟖𝟒𝟔 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟓𝟎𝟕 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟒𝟒𝟓 ± 𝟎.𝟎𝟏𝟑

if several reference time points do not match the input timestamps,
the calculated latent values concerning these reference instants might
introduce noise. On the other hand, increasing the 𝛥𝑟 value to have
fewer reference time points might result in a low impact of observed
values with timestamps that do not match these reference time points.
We do not currently find a theoretical formula that allows us to choose
the value of 𝛥𝑟 better. As with other hyperparameters, a grid search or
similar techniques must be applied to find the most suitable one

5. Wrapping-up discussion

Although our proposal provides satisfactory results, it still has a
lot of room for improvement. Indeed, the out-imputation and out-
interpolation that we have performed to solve the problems of outliers,
streams of different lengths, and worthless streams are based on a
strong assumption that does not consider the objective function of the
downstream task. In other words, they are not data-driven imputa-
tion or interpolation methods. Therefore, even though our duplication
approach is a lower noise driver, we still inject noise during preprocess-
ing. A straightforward technique that could be implemented to solve
this problem would be to incorporate a mask layer that allows missing
values (usually defined with a value of 0) to be skipped during any
calculation performed in the model. The downside of this approach is
that it discards the information carried by missing values, which can be
crucial for a model dedicated to a sensitive task such as the prediction

of mortality. The authors in Rubin (1976) stated that, usually, miss-
ing values carry relevant information that might help to discriminate
the different classes involved in a classification problem. A better
alternative to addressing this missing value problem could be using a
generative model such as the Autoencoder. Integrating an Autoencoder
makes it possible to steer the imputation process toward the objective
function of the downstream task. In this way, we do not have to make
strong assumptions about missing values. With an autoencoder, imputa-
tion can also take advantage of correlation within and between streams.
This will be a plus, as we do not consider this aspect in our current
work. If integrating the autoencoder in addition to our proposal seems
like an efficient approach to handling missing values, certain aspects,
such as the uncertainty of imputed values and the heteroscedasticity (in
case we decide to use a Variational Autoencoder, (Kingma & Welling,
2013)), should be strongly considered.

6. Conclusion

We built a neural network-based model on top of an RNN model
(GRU) to transform irregular multivariate time series data into pseudo-
aligned latent values. As an RNN is composed of a series of discrete
hidden layers, it is more suitable for processing regular sequences of
observations. This property makes it a poor candidate when dealing
with irregular time series. The ALNN is a preprocessing step that
transforms irregular multivariate time series into a pseudo-aligned latent
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values to keep this property valid. Thanks to a duplication process
driven by an exponential decay mechanism, the ALNN’s core does not
perform any imputation or interpolation that might be very noisy.
The results show that the ALNN-GRU outperforms the state-of-the-
art models in performance. Also, because you can change how long
it takes between reference points, ALNN-GRU can behave in a way
that is similar to a continuous function. As a result, it is an excellent
candidate for dealing with time series, which are frequently defined
in continuous time space. However, in return, a massive amount of
calculation memory is required.

The fact that the output of the ALNN (the pseudo-aligned latent
values) is in matrix form gives us a wealth of possibilities to improve
the learning process, try different architectures such as combining a
CNN with an RNN, and implement an explainable component, which
is a must for a medical model. Regarding improving the learning
process, in our future work (in addition to using Autoencoder to impute
missing values), we first plan to calculate the correlation matrix from
the pseudo-aligned latent values and integrate it efficiently into the
model. Secondly, this correlation matrix with the pseudo-aligned latent
values will be used to build an explainable component dedicated to
highlighting physiological measures that may be the cause of death.
Even though we conducted this work for a specific medical task, our
proposal can be used for any classification or prediction task requiring
irregular time series data as input. For this reason, we also want to
see how well our model works on non-medical tasks requiring irregular
time series data.
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Appendix A. Matrix representation of alnn formulas

A.1. Time lag penalty

𝐼𝑝 = 𝑋 ⊙ 𝑒𝑥𝑝{−𝑚𝑎𝑥(0,−𝛾𝑝|𝑟𝑝 − 𝑇 |)}; 𝐼𝑝 ∈ R𝐽×𝐾 (A.1)

𝐈 =
[

𝐼1, ⋯ , 𝐼𝑃
]𝖳 ; 𝐈 ∈ R𝑁 ′×𝑄 (A.2)

𝑁 ′ = 1 and 𝑄 = 𝑃 × 𝐽 ×𝐾.

A.2. Alignment

𝐗 = [𝑋,… , 𝑋]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

1,…,𝑃

𝖳, 𝐌 = [𝑀,… ,𝑀]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

1,…,𝑃

𝖳, ∆ = [𝛥,… , 𝛥]
⏟⏞⏞⏟⏞⏞⏟

1,…,𝑃

𝖳 (A.3)

< 𝐗,𝐌,∆, 𝐈 >=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⋮
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⋮
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𝑃
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⎤
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.4)

< 𝐗,𝐌,∆, 𝐈 >∈ R𝑁 ′×𝑄×4 (A.5)

A.2.1. Values-level extraction

(𝑣𝑘𝑗 )𝑝 = 𝜎(𝑥𝑘𝑗 (�̂�
𝑘
1)

𝑝
𝑗 + 𝑚𝑘

𝑗 (�̂�
𝑘
2)

𝑝
𝑗 + 𝛿𝑘𝑗 (�̂�

𝑘
3)

𝑝
𝑗 + (𝑖𝑘𝑗 )𝑝(�̂�

𝑘
4)

𝑝
𝑗 + (�̂�𝑘)𝑝𝑗 ) (A.6)

𝜎(.) is an activation function. �̂� ((�̂�𝑘
[1,4])

𝑝
𝑗 ) ∈ R1×𝑄×4 and �̂�((�̂�𝑘)𝑝𝑗 ) ∈

R1×𝑄×1 are learnable parameters.

𝐕 = 𝜎(𝜙(< 𝐗,𝐌,∆, 𝐈 > ⊙�̂� + �̂�)); (𝑣𝑘𝑗 )𝑝 ∈ 𝐕 ∈ R𝑁 ′×𝑄×1 (A.7)

where 𝜙(.) is the sum function of the coefficients of (< 𝐗,𝐌,∆, 𝐈 >
⊙�̂� + �̂�) ∈ R𝑁 ′×𝑄×4 along the last axis (see Eq. (A.6)). ⊙ is the
Hadamard product.
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Fig. A.10. Phased-LSTM, GRU-D, Interp-net, GRU-𝛥𝑡-zero, Bi-LSTM-𝛥𝑡 and GRU-𝛥𝑡 confusion matrices for the 24-hour dataset.
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A.2.2. Features-level aggregation

𝑍 = 𝜎(𝜙(�̄�⊙ �̄�𝑧 + �̄�𝑧));𝑍 ∈ R𝑃×𝐾 (A.10)

where 𝜎(.) is an activation function; 𝜙(.) the sum function of the
coefficients of (�̄�⊙ �̄�𝑧 + �̄�𝑧) ∈ R𝑁 ′×𝑄 along the third axis (𝑁 ′ = 1 and
𝑄 = 𝑃 ×𝐽 ×𝐾). 𝑉 (�̄�𝑘𝑗 )𝑝 ∈ R𝑁 ′×𝑄 is the reshaped version of 𝑉 ∈ R𝑁 ′×𝑄×1.
�̄�𝑧((�̄�𝑘

𝑗 )
𝑝) ∈ R1×𝑄 and 𝐵𝑧((�̄�𝑘)𝑝) ∈ R1×𝑃×𝐾 are model parameters.
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Fig. A.11. BRITS-LSTM-𝛥𝑡, ODE-LSTM, mTAND, Neural-CDE and ALNN-GRU confusion matrices for the 24-hour dataset.
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𝑧𝑘𝑝 = 𝜎(
𝐽∑
𝑖=1

(�̄�𝑘𝑖 )𝑝(�̄�
𝑘
𝑖 )

𝑝 + (�̄�𝑘)𝑝); 𝑧𝑘𝑝 ∈ 𝑍 (A.14)

Appendix B. Confusion matrices

In this section, we present the confusion matrices of each model
obtained during the first cross-validation of the 24-hour (Figs. A.10 and
A.11) and 48-hour datasets (Figs. A.12 and A.13). Although, compared
with the average of the AUC, AUPRC and F1 scores for the 5-fold cross-
validation, the confusion matrix for the first cross-validation cannot
accurately reflect the performance of the models, it gives us insight into
the Sensitivity and the Specificity of each model. The results obtained
show that, on the two datasets, our model can achieve a Specificity and
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Fig. A.12. Phased-LSTM, GRU-D, Interp-net, GRU-𝛥𝑡-zero, Bi-LSTM-𝛥𝑡 and GRU-𝛥𝑡 confusion matrices for the 48-hour dataset.
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Fig. A.13. BRITS-LSTM-𝛥𝑡, ODE-LSTM, mTAND, Neural-CDE and ALNN-GRU confusion matrices for the 48-hour dataset.

Sensitivity score of around 70% and 80% respectively (see Figs. A.11
and A.13).
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cCentre for Industrial Software, University of Southern Denmark, Alsion 2, 6400- Sønderborg, Denmark
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Abstract

To improve the accuracy of an RNN when processing sparse and irregular multivariate clinical time series, we introduce two
stacked deep learning models built on top of it, namely Padd-GRU and Alignment-driven Neural Network (ALNN). The Padd-
GRU performs data-driven padding and imputation to obtain equal-length univariate and fill-in missing values, respectively. Then,
the ALNN component transforms the resulting padded irregular multivariate clinical time series into a pseudo-aligned (or pseudo-
regular) latent multivariate time series. We use the MIMIC-3 and PhysioNet databases to evaluate and compare our model to the
state-of-the-art models on the mortality prediction task.
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1. Introduction

Temporal irregularity is a common problem when processing data from one or more sensors with different temporal
patterns of data collection [12]. This irregularity may also be due to data collection practices. When data are collected
for a single feature/sensor, we face the problem of irregular univariate time series. On the other hand, when several
features/sensors are involved, we speak of irregular multivariate time series. What makes temporal irregularity a
problem in time series is that it leads to data sparsity, thereby increasing the rate of missing values. Recurrent neural
networks (RNNs), which are among the best models for processing time series, have done well in many tasks [2, 13,
18], but they get stuck when they try to handle irregular time series. For example, the authors of [6] modified the RNN
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Fig. 1. Illustration of the Padd-GRU and ALNN processes. −1 represents missing values not due to temporal irregularity, while ∗ represents missing
values caused by temporal irregularity. rt are the even-spaced reference time points. Za

1 is the latent value of the feature a at the reference time point
r1.

kernel to better accommodate irregular time series and improve the accuracy of mortality prediction, which is the task
of interest in our study.

Several medical prediction tasks, especially the mortality prediction task, rely on multivariate clinical time series
(MCTS). Due to variations in patient health status over time and the tools’ data collection frequency, MCTS are often
prone to spasticity (missing values) and temporal irregularities. Failing to implement specific strategies to overcome
these pitfalls during decision-making, assisted by a prediction model, may lead to irreversible clinical events.

Unlike previous approaches that address the problem of irregular multivariate clinical time series (IMCTS) by:
discretizing the data collection period [7, 24]; using ordinary differential equations (ODEs) to compute hidden states of
RNNs in a continuous space [11], imputing/interpolating missing values caused by time irregularity within or outside
the RNN core [5, 6, 15]; directly processing observed values and timestamps without additional imputation strategies
[10, 21]; our method takes a different approach. It combines a data-driven padding technique with an alignment
process, both applied on top of an RNN.

The goal of data-driven padding, which is done by Padd-GRU, a variant of the bidirectional recurrent imputation
for time series (BRITS) [5], is to pad the shortest univariate time series so that all univariate time series have the
same length. This padding strategy is also applied to the timestamp matrix. Additionally, Padd-GRU fills in missing
values that are not due to temporal irregularity but to other problems, such as machine failure. The Padd-GRU output,
which is the padded IMCTS, is then passed to the ALNN [3] for alignment. ALNN is a neural network designed to
transform an irregular multivariate time series (IMTS) into a pseudo-aligned latent multivariate time series (PLMTS);
see Figure 1 for illustration. The PLMTS is a matrix in which each row represents the latent values of each feature at
each user-defined equally spaced reference time point. While ALNN has the advantage of not performing any manual
alignment that is a noise generator (see manual alignment bloc in Figure 1 for illustration), it finds its limitation
in the imputation strategies it applies to fill in missing values that are not due to temporal irregularity. In addition,
these imputation strategies are based on strong assumptions. Therefore, we overcome this limitation with Padd-GRU,
which performs data-driven imputation and fills in missing values based on the underlying structure of the data and
the downstream task criterion. Overall, our model offers the following advantages over existing models:

• Performing a data-driven padding approach to obtain univariate time series of the same length and generate the
corresponding timestamp of the padded values;
• Performing a data-driven imputation to fill in missing values that are not due to a temporal irregularity;
• Not carrying out manual alignment, which could generate noise.
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Our motivation to conduct this study stems from the fact that many medical predictive studies rely on time series. In
a sensitive field where human lives are at stake, it is critical to propose an effective approach to dealing with irregular
clinical time series in order to avoid the worst. To summarize, the proposed model’s main contributions are:

• The implementation of a data-driven imputation approach via Padd-GRU to fill in missing values;
• The implementation of a data-driven padding approach via Padd-GRU to handle univariate time series of dif-

ferent lengths;
• The transformation of IMCTS into PLMTS via the ALNN model;
• We use two publicly available databases, MIMIC-3 and PhysioNet, to compare the performance of our model

to that of state-of-the-art models designed for irregular multivariate time series on the mortality prediction task.
The result obtained shows that our model improves prediction accuracy.

2. Related works

In this section, we present relevant work related to irregular multivariate time series.
The main underlying problems encountered when performing classification, regression, or generation tasks based

on multivariate time series data stem from how the data is collected. These include data sparsity, missing values, time
series of different lengths, irregular timestamps, and misalignment. Concerning the irregular timestamps issue, which
is one of the problems we are addressing in our study, the traditional approach to deal with it, is to discretize the period
over which data are collected into evenly spaced time bins. Then, either static imputation methods such as mean and
median imputations are used to fill in induced missing values during the pre-processing phase [7, 24], or a data-driven
method is implemented in the model core to fill in missing values [5, 8, 19].

As this temporal discretization has the disadvantage of discarding fine-grained information and altering the tem-
poral structure which can be a source of information, some methods directly deal with IMTS. Most of these methods
are RNN-based models that have been redesigned to deal with IMTS. Indeed, the original RNN-based models are
suboptimal when processing IMTS. For example, in [6], they proposed a GRU-based model that incorporates a decay
mechanism to model temporal irregularity. Additionally, they performed a data-driven imputation. The authors in [20]
also proposed a GRU-based model coupled with a dual-attention mechanism for the same purpose. In [11, 9], they
proposed to compute the hidden state of RNN with ordinary differential equations (ODE) so that irregular time series
can be processed in continuous latent space. Rather than modifying the structure of the RNN, the authors in [4] have
built a Spline-based cubic neural network that interpolates irregular time series and projects them into a continuous la-
tent space. Their representation in this continuous latent space is then divided into segments (to extract local features)
and transmitted to an RNN. In [15], the authors developed a semi-parametric interpolation neural network that inter-
polates the IMTS against a set of evenly-spaced reference time points. This strategy allows them to transform IMTS
into regular ones. Instead of using a set of evenly-spaced reference time points for interpolation purposes, which can
be a source of noise, ALNN’s authors [3] use them solely for alignment purposes. However, they still introduce noise
into the model calculation due to the imputation performed during the pre-processing phase to fill in the initial missing
values. Moreover, this imputation relies on strong assumptions.

Due to their high performance in natural language processing (NLP), Transformer architecture is increasingly
adopted to handle IMTS [14, 17]. For example, the authors in [16], proposed an attention-based model composed of
an encoder and decoder component. The encoder is responsible for encoding a set of latent variables conditioning
a set of reference time points, the observed values and their corresponding irregular timestamps. On the other hand,
the decoder is responsible for interpolating the missing values at a set of requested timestamps. In [21], they built
a Transformer-based model that treats the time series as a set of tuples (observed value, feature, timestamp). These
tuples are embedded in continuous vectors and pass through the Transformer component with multi-headed attention
layers to learn contextual triplet embeddings. With this strategy, they do not need to perform any time discretization or
alignment. In [23], they developed a time-aware dual-attention and memory-augmented networks model to overcome
the problems of asynchronous interactions, time irregularity and data sparsity.

Since multivariate time series can be represented in graph form, several graph neural network-based models have
also been proposed [1, 25, 22]. These models use a message-passing strategy to fill in the missing values from the
observed values and the information associated with them.
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Although the models mentioned above work well in practice, many of them require manual alignment (see Figure
1), which increases the rate of missing values and makes them suboptimal. To remedy this, in this study, we used
ALNN, a deep neural network that was designed for alignment purposes while overcoming its limitations with Padd-
GRU.

3. Method

When dealing with multivariate time series, we may be confronted with missing values caused by temporal irreg-
ularity. If the data already contained missing values at the outset, this temporal irregularity will increase the rate of
missing values and therefore, make the downstream prediction/classification task more complex. We propose a data-
driven padding approach, Padd-GRU, to mitigate the impact of missing values. Padd-GRU pads univariate time series
of different lengths and fills in the initially missing values, those not due to temporal irregularity (unlike other types
of missing values, their corresponding timestamp is recorded). The Padd-GRU’s output, a padded IMTS, is subse-
quentially fed into the ALNN to be transformed into a PLMTS. The ALNN transformation enables the application
of state-of-the-art time series modelling algorithms, specifically RNNs, built for regular time series. In other words,
Padd-GRU and ALNN will provide the RNN with a regular, imputed and padded version of the IMTS. Figure 2 gives
an overview of the model’s architecture. In what follows, we first introduce the data notation and then describe the
different components of the proposed model.

Fig. 2. Model architecture

3.1. Data notation

Let D = {Xn,Mn, Pn, S n,∆n, yn}n=1,2,···,N represents a dataset, where N is the number of samples. Xn =

[x1, x2, · · · , xT ]T
n ∈ RT×K is the n-th multivariate time series with T observations. K represents the number of fea-

tures. S n = [s1, s2, · · · , sT ]T
n ∈ RT×K , Mn = [m1,m2, · · · ,mT ]T

n ∈ {0, 1}T×K , Pn = [p1,p2, · · · ,pT ]T
n ∈ {0, 1}T×K and

∆n = [δ1, δ2, · · · , δT ]T
n ∈ RT×K are the timestamp matrix, the mask matrix, the padding matrix, and the time variation

matrix associated with the n-th multivariate time series, respectively. The timestamp value for observation xk
t ∈ xt is

sk
t , and the time variation between two consecutive observations xk

t−1 and xk
t>0 of the same univariate time series xk

:T is
ιkt ∈ δt, which is found in Equation 1. At t = 0, ιkt = 0. mk

t ∈ mt is a binary value that indicates whether xk
t is missing.

mk
t = 1 if xk

t is observed; 0 otherwise. pk
t ∈ pt is a binary value that indicates whether xk

t and sk
t are padded values.
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pk
t = 0 if xk

t and sk
t are not observed; 1 otherwise. yn is the target value of the n-th multivariate time series. Depending

on the downstream task (classification/regression), y can be a categorical target or a real number.

ιkt =



sk
t − sk

t−1 + ι
k
t−1 t > 1, mk

t−1 = 0
sk

t − sk
t−1 t > 1, mk

t−1 = 1
0 t = 1

(1)

It is worth noting that since the univariate time series have different lengths at the outset, we first apply zero padding
so that they can have the same T observations. We did the same for their corresponding timestamps and time variation
matrices.

3.2. Data-driven padding: Padd-GRU

The data-driven padding module, Padd-GRU, is inspired by BRITS, a bidirectional recurrent neural network variant
designed to fill in missing values in IMTS. BRITS combines a recurrent model with a regression model to impute
missing values (if any) in each t-th observation. The bidirectional recurrent neural network performs this task in both
forward and backward passes. BRITS can leverage the correlation between each variable to provide accurate imputed
values (the reader may refer to [5] for more details). Formally, it is described as follows:

x̂t = Wxht−1 + bx (2)

x̂c
t = mt ⊙ xt + (1 −mt) ⊙ x̂t (3)

γt = exp{−max(0,Wγδt + bγ)} (4)

ẑt = Wzx̂c
t + bz (5)

βt = σ(Wβ[γt ◦mt] + bβ) (6)

ĉt = βt ⊙ ẑt + (1 − βt) ⊙ x̂t (7)

ĉc
t = mt ⊙ xt + (1 −mt) ⊙ ĉt (8)

ht = σ(Wh[ht−1 ⊙ γt] + Uh[ĉc
t ◦mt] + bh) (9)

lt =
〈
mt,Le(xt, x̂t)

〉
+

〈
mt,Le(xt, ẑt)

〉
+

〈
mt,Le(xt, ĉt)

〉
(10)

where ⊙ and ◦ are the Hadamard product and the concatenation symbol, respectively. σ is a non-linear function.
x̂t ∈ RK , obtained by a linear transformation of the previous hidden state ht−1 is the estimation vector used to fill in
missing values. At t = 0, ht−1 = 0 where 0 is the zero vector. x̂c

t is the candidate observation vector. Its goal is to fill in
missing values with those calculated in x̂t and keep unchanged the observed ones. γt is the decay factor and ẑt ∈ RK

is a vector in which the value of each feature is calculated exclusively from those of the other ones. ẑt is called the
“learnable correlation vector”. ĉt is the weighted linear combination of ẑt and x̂t. βt ∈ [0, 1] is the weighted factor. ĉc

t
is the final candidate observation vector and ht is the calculated hidden state of the t-th observation. W∗ and b∗ are the
BRITS’s learnable parameters. lt is the loss accumulation function at each t-th observation. It uses mt to calculate the
loss exclusively from the observed values. Le(.) is the mean absolute error.

In our case, we can use BRITS to fill in the missing initial values and obtain univariate values of the same length, but
we need to redesign it to calculate the corresponding timestamps of the padded values. We calculated these timestamps
because the ALNN needs them for alignment purposes. Unlike BRITS, we propose Padd-GRU, a unidirectional RNN
that fills in the initial missing values, performs a padding to obtain a univariate variable of equal length, and then
calculates the corresponding timestamps of the padded values.

Padd-GRU is a data-driven padding model. The padding it performs is based on the hidden structure of the data and
the downstream task criterion. It introduces a learnable temporal variation vector in addition to the BRITS equations
mentioned above and is calculated as follows:

δ̂t = |Wδht−1 + bδ| (11)
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where δ̂t is the estimated time variation vector. We use the absolute value so that the values of the time variation vector
can be restricted to positive values. Wδ and bδ are learnable parameters. Since δ̂t is only used when processing padding
values, the candidate time variation vector δ̂ct is calculated as follows:

δ̂ct = pt ⊙ δt + (1 − pt) ⊙ δ̂t (12)

where pt is the current padding vector. Based on δ̂ct , we can then compute the new timestamp vector ŝt, defined as
follows:

ŝt = pt ⊙ st + (1 − pt) ⊙ (st−1 + δ̂
c
t ) (13)

where st−1 is the timestamp vector of the (t-1)-th observation. Since the timestamp value cannot exceed the maximum
duration of the data collection, we restrict the new values of the timestamp vector to values less than or equal to the
maximum duration of the data collection. The restriction is formalized as follows:

ŝk
t =



sk
t pk

t = 1
sk

t−1 + (ι̂kt )c pk
t = 0, [sk

t−1 + (ι̂kt )c] ≤ Υ
sk

t−1 pk
t = 0, [sk

t−1 + (ι̂kt )c] > Υ
(14)

where (ι̂kt )c is a value of δ̂ct and ŝk
t is a value of ŝt. Υ is the maximum duration of the data collection. For example, if

the data was collected during 48 hours, the value of Υ will be 48. 48 is in fact the maximum value of timestamps. The
next step is to update δ̂ct as follows:

(ι̂kt )c =



ιkt pk
t = 1

ι̂kt pk
t = 0, [sk

t−1 + (ι̂kt )c] ≤ Υ
ιkt−1 pk

t = 0, [sk
t−1 + (ι̂kt )c] > Υ

(15)

where ιkt−1 is a value of δt−1 (the time variation vector of the (t-1)-th observation). Since the decay factor (see Equation
4) depends on the time variation vector δt which has been redefined as δ̂ct , the new decay factor is now:

γt = exp{−max(0,Wγδ̂ct + bγ)} (16)

To efficiently learn the time variation vector δ̂t, we introduce the loss: (pt,Le(δt, δ̂t). Therefore, the acumination loss
at each t-th iteration becomes:

l′t = ϕ1lt + ϕ2

〈
pt,Le(δt, δ̂t)

〉
(17)

where lt is the initial accumulation loss function presented in Equation 10. pt is used to calculate only the loss gen-
erated by the padded values. The number of Padd-GRU units is set at 50 during the experiment. The regularization
parameters ϕ1 and ϕ2 are both set at 0.5.

After the imputation and padding steps performed in Padd-GRU, the initial matrices of values X, timestamps S and
time variations ∆ are redefined as:

X̃n = Mn ⊙ Xn + (1 − Mn) ⊙ Ĉc
n; (18)

S̃ n = Pn ⊙ S n + (1 − Pn) ⊙ Ŝ n (19)

∆̃n = Pn ⊙ ∆n + (1 − Pn) ⊙ ∆̂c
n (20)

where Ĉc
n = [ĉc

1, ĉ
c
2, · · · , ĉc

T ]T
n , Ŝ n = [ŝ1, ŝ2, · · · , ŝT ]T

n and ∆̂c
n = [δ̂c1, δ̂

c
2, · · · , δ̂cT ]T

n . X̃, S̃ and ∆̃ will then be passed into the
ALNN for alignment. In the following, we omit the subscript n for the simplicity of the formulas.

3.3. Alignment: ALNN

ALNN is a neural network designed to transform IMTS into PLMTS so that RNNs that are suboptimal with IMTS
can be more accurate with PLMTS. The PLMTS is a matrix in which row values correspond to the latent value zk

j of
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each feature k at regularly spaced user reference time points r j where, r j ∈ r = [r1, r2, · · · , rJ]J=1,2,···. zk
j is obtained

through two phases including, value-level extraction and feature-level aggregation (due to page limit, readers may
refer to [3] for more details).

Value-level extraction aims to non-linearly combine each x̃k
t ∈ X̃ with its mask value mk

t , time variation value
ι̃kt ∈ ∆̃, and time lag score value (ikt ) j, to obtain more compact and richer information (vk

t ) j. Additionally to mk
t , ι̃

k
t and

(ikt ) j, we also consider the corresponding padded indicator pk
t . In contrast to the original ALNN, (vk

t ) j is then obtained
as follows:

(vk
t ) j = σ{x̃k

t (w̆k
1) j

t + mk
t (w̆k

2) j
t + pk

t (w̆k
3) j

t + ι̃
k
t (w̆k

4) j
t + (ikt ) j(w̆k

5) j
t + (b̆k) j

t } (21)

(ikt ) j = x̃k
t exp(−γ j|r j − s̃k

t |) (22)

where σ is a non-linear function. The time lag score (ikt ) j represents the amount of information to consider from x̃k
t

given the absolute time distance between its corresponding timestamps s̃k
t and the reference time point r j. (w̆k

∗)
j
t , (b̆k) j

t
and γ j are learnable parameters.

Feature-level aggregation aims to aggregate all (vk
t ) j values according to each feature k. Indeed, since we have J

reference time points, then we will have J versions of each univariate time series as follows:

vk
1 = [(vk

1)1, · · · , (vk
T )1]T; · · · ; vk

J = [(vk
1)J , · · · , (vk

T )J]T (23)

where vk
j is the latent time series of the feature k with respect to the reference time point r j. For each aggregation

performed in vk
j we obtain:

zk
j = σ(

T∑

i=1

(vk
i )l(ẇk

i ) j + (ḃk) j); zk
j ∈ Z (24)

where zk
j is the final latent value of the feature k at the reference time point r j. Z(zk

j) ∈ RJ×K is the pseudo-aligned latent
multivariate time series (PLMTS). It will be passed through a GRU for sequential modelling and subsequentially to
the classifier.

3.4. GRU + Classifier

As GRU works better with regular time series than with irregular ones, ALNN provides it with PLMTS, which is a
pseudo-regular version of the initial IMTS. The GRU output which is a context vector will then be fed to the classifier.
The classifier encompasses two feedforward neural networks f1 and f2 with 100 and 1 units each, respectively. The
activation function of f1 is relu and for f2 sigmoid. The model’s output is then:

ŷ = f 2
θ f 2
◦ f 1
θ f 1
◦GRUθg (Z) (25)

where ◦ is the composition symbol. θg and θ f ∗ are the GRU and classifier parameters, respectively. ŷ ∈ [0, 1] is the
likelihood value. In addition to the losses introduced in Equation 17, we use the binary cross-entropy loss to calculate
the classification error and update the model parameters. We use Adam as the optimizer with a learning rate set to
0.001. The number of GRU units is set at 168 during the experiment.

4. Experimental validation

Intensive care unit (ICU) mortality prediction can rely on irregular physiological time series data. That is why
it is appropriate to use it as a pilot case to demonstrate the effectiveness of the proposed model. Furthermore,
our main objective is to propose a decision-support model to practitioners to prevent adverse events in the ICU.
Throughout this section, we conduct various experiments to evaluate the proposed model for ICU mortality predic-
tion. We extract the datasets from two publicly available databases, MIMIC-3 and PhysioNet. The code is available at
https://github.com/Zedfst/Padd ALNN GRU
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4.1. Datasets

MIMIC-3 consists of anonymized health-related data from over forty thousand patients who stayed in the ICU at
Beth Israel Deaconess Medical Center between 2001 and 2012. In this study, only patients who spend at least 48
are included. We obtained 27, 162 for patients fulfilling this condition. As some patients were admitted several times
to the ICU, we extracted 32, 496 admissions distributed as follows: 28, 075 related to patients who remain alive and
4, 421 (15.75%) to patients who die. For each admission, 12 physiological time series data are used as model input.
The associated target is a binary value, where 0 indicates that the actual physiological time series data is that of a
still-alive patient and 1 that of a deceased patient.

PhysioNet is a database developed as part of a mortality prediction challenge. The database contains information
on patients hospitalized for cardiac diseases in intensive care units. Only data from the first 48 hours after admission
is available. We extracted data from 4, 000 patients, which is distributed as follows: 3, 446 related to patients who
remain alive and 554 (13.85%) to patients who die. For each admission, 37 physiological time series data are used as
model input. The associated target is a binary value, where 0 indicates that the actual physiological time series data is
that of a still-alive patient and 1 that of a deceased patient.

4.2. Results

We devote this section to comparing and interpreting the performance of our model with that of competing models,
including ALNN [3], Interp-net[15], GRU-D [6], mTAND [16], ODE-LSTM [9], Phased-LSTM [10] and STraTS
[21]. All are described in Section 2. As we are dealing with unbalanced classes (alive and dead), we used the Area
Under the ROC Curve (AUC) and the Area Under the Precision-Recall Curve (AUPRC) to evaluate the performance
of our model against competing models over 5-fold cross-validation.

We conducted the experiment in two phases. The first consists of evaluating the models with the initial rate of
missing values, which is 27.27% for MIMIC-3 and 27.91% for PhysioNet (see Table 1). In the second phase, we
increase the missing value rate to 20% and 70% (see Table 2). We, therefore, obtain 47.27% and 97.27% for MIMIC-
3 and 47.91% and 97.91% for PhysioNet.

Concerning the first experiment, which consists of evaluating the models with the initial rate of missing values,
we see in Table 1 that the proposed model obtains the best performance. This highlights the effectiveness of the
strategies we implemented. However, ALNN’s AUC scores are similar, or almost similar, to ours. ALNN relies on
the empirical mean to fill in some missing values, which explains this. Because there are more negative than positive
classes, the empirical mean will tend to reflect the negative classes. Therefore, ALNN will use the empirical mean as
a discriminative feature in multiple samples with missing values. The model’s ability to correctly classify the negative
class (patients alive) significantly influences the AUC score. We observe that the Phased-LSTM [10] model, which
does not perform manual alignment but processes the IMTS directly as we do, is the third best-performing model.
This confirms the need to avoid manual alignment, which can be a noise driver. We hypothesize that the ALNN and
our model are better because of the data-driven alignment they perform. We suspect that Interp-net’s [15] lower score
is probably due to the manual alignment and interpolation it performs in its kernel (data-driven interpolation). This
could introduce noise and alter the underlying structure of the data. We hypothesize that the data-driven imputation
strategy used in GRU-D [6] works better and is less noisy than the one used in Phased-LSTM [10] because it relies
on medical knowledge. However, manual alignment also has an impact on GRU-D’s performance. Although mTAND
[16] and STraTS [21] are transformer-based models, their scores are among the lowest. Indeed, with a relatively small
amount of head attention, transformer-based models struggle to capture the complex hidden structure of IMTS.

In the second experiment, we increase the missing value rate to evaluate the robustness of our model. Table 2 shows
that, even with a high number of missing values, compared with competing models, it remains the most accurate 7 out
of 8 times.

5. Conclusion

We suggested adding two deep learning models on top of an RNN to make it more accurate when working with
irregular multivariate time series data, especially clinical data. These models are Padd-GRU and ALNN. While the
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Table 1. Models performance on the mortality prediction task (mean ± standard deviation from 5-fold cross validation).

MIMIC-3 PhysioNet

Model AUC AUPRC AUC AUPRC

ALNN [3] 0.848 ± 0.008 0.501 ± 0.024 0.834 ± 0.013 0.469 ± 0.029
Interp-net [15] 0.754 ± 0.005 0.313 ± 0.005 0.730 ± 0.020 0.330 ± 0.030
GRU-D [6] 0.826 ± 0.004 0.463 ± 0.019 0.806 ± 0.007 0.432 ± 0.024
mTAND [16] 0.807 ± 0.004 0.442 ± 0.017 0.720 ± 0.020 0.352 ± 0.017
ODE-LSTM [9] 0.806 ± 0.003 0.431 ± 0.016 0.766 ± 0.003 0.347 ± 0.031
Phased-LSTM [10] 0.831 ± 0.004 0.483 ± 0.021 0.818 ± 0.013 0.443 ± 0.033
STraTS [21] 0.800 ± 0.010 0.429 ± 0.003 0.730 ± 0.016 0.354 ± 0.011
Ours 0.850 ± 0.010 0.510 ± 0.020 0.834 ± 0.007 0.478 ± 0.018

Table 2. Model performance when the rate of the missing value is increased.

MIMIC-3 PhysioNet

+ missing value rate Model AUC AUPRC AUC AUPRC

+20% ALNN [3] 0.839 ± 0.010 0.480 ± 0.025 0.827 ± 0.014 0.459 ± 0.035
Interp-net [15] 0.640 ± 0.002 0.252 ± 0.017 0.613 ± 0.012 0.245 ± 0.010
GRU-D [6] 0.775 ± 0.014 0.362 ± 0.016 0.788 ± 0.013 0.392 ± 0.022
mTAND [16] 0.768 ± 0.012 0.360 ± 0.002 0.710 ± 0.020 0.350 ± 0.020
ODE-LSTM [9] 0.695 ± 0.011 0.339 ± 0.007 0.618 ± 0.038 0.244 ± 0.014
Phased-LSTM [10] 0.791 ± 0.020 0.426 ± 0.027 0.807 ± 0.017 0.438 ± 0.035
STraTS [21] 0.719 ± 0.016 0.346 ± 0.008 0.728 ± 0.023 0.349 ± 0.015
Ours 0.840 ± 0.010 0.480 ± 0.020 0.830 ± 0.008 0.472 ± 0.018

+70% ALNN [3] 0.805 ± 0.010 0.390 ± 0.022 0.803 ± 0.014 0.413 ± 0.037
Interp-net [15] 0.621 ± 0.002 0.244 ± −0.001 0.599 ± 0.017 0.240 ± 0.012
GRU-D [6] 0.738 ± 0.017 0.312 ± 0.025 0.781 ± 0.014 0.387 ± 0.029
mTAND [16] 0.760 ± 0.022 0.355 ± 0.018 0.700 ± 0.020 0.350 ± 0.010
ODE-LSTM [9] 0.673 ± 0.013 0.328 ± 0.011 0.599 ± 0.044 0.239 ± 0.018
Phased-LSTM [10] 0.752 ± 0.022 0.371 ± 0.037 0.735 ± 0.028 0.316 ± 0.065
STraTS [21] 0.720 ± 0.017 0.346 ± 0.008 0.735 ± 0.013 0.352 ± 0.010
Ours 0.803 ± 0.011 0.399 ± 0.026 0.803 ± 0.011 0.418 ± 0.017

Padd-GRU is responsible for filling in the missing values and padding the univariate time series so that they have the
same number of observations, ALNN transforms the output of the Padd-GRU into a pseudo-aligned latent multivariate
time series. Therefore, RNN can handle the pseudo-aligned latent multivariate time series more effectively than the
initial irregular multivariate time series. As mortality prediction can be based on irregular multivariate clinical time
series, we have chosen it as a pilot case to compare and evaluate our model with the state-of-the-art models designed
to deal with irregular multivariate time series. The AUC and AUPRC scores indicate that our model handles irregular
multivariate clinical time series better. We are optimistic about its ability to help practitioners make decisions in the
ICU to reduce mortality.

One of the main limitations of your model is its high complexity (space and time). For instance, training takes +7
minutes compared with the original ALNN. However, the test duration is almost the same. We believe this can be
mitigated by reducing the reference time point and making them learnable parameters to preserve model performance.
Although we used two different databases, the model was evaluated on the same pilot case. In addition, we did not
provide an explicable component, which is crucial in sensitive domains such as medicine. Therefore, future work
should focus on reducing complexity, providing model explainability, and evaluating the model on broader clinical
and non-clinical tasks. Its use in non-clinical tasks will enable us to assess its generalizability.
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A B S T R A C T

Human accuracy in diagnosing psychiatric disorders is still low. Even though digitizing health care leads
to more and more data, the successful adoption of AI-based digital decision support (DDSS) is rare. One
reason is that AI algorithms are often not evaluated based on large, real-world data. This research shows
the potential of using deep learning on the medical claims data of 812,853 people between 2018 and 2022,
with 26, 973, 943 ICD-10-coded diseases, to predict depression (F32 and F33 ICD-10 codes). The dataset used
represents almost the entire adult population of Estonia. Based on these data, to show the critical importance of
the underlying temporal properties of the data for the detection of depression, we evaluate the performance of
non-sequential models (LR, FNN), sequential models (LSTM, CNN-LSTM) and the sequential model with a decay
factor (GRU-𝛥𝑡, GRU-decay). Furthermore, since explainability is necessary for the medical domain, we combine
a self-attention model with the GRU decay and evaluate its performance. We named this combination Att-GRU-
decay. After extensive empirical experimentation, our model (Att-GRU-decay), with an AUC score of 0.990,
an AUPRC score of 0.974, a specificity of 0.999 and a sensitivity of 0.944, proved to be the most accurate.
The results of our novel Att-GRU-decay model outperform the current state of the art, demonstrating the
potential usefulness of deep learning algorithms for DDSS development. We further expand this by describing
a possible application scenario of the proposed algorithm for depression screening in a general practitioner
(GP) setting—not only to decrease healthcare costs, but also to improve the quality of care and ultimately
decrease people’s suffering.

1. Introduction

Psychiatric disorders, especially mood disorders such as depression,
represent the critical non-communicable diseases of the 21st century
and are ranked as the leading cause of years lived with disabilities [1].
Unfortunately, these diseases are often diagnosed late or incorrectly [2,
3]. According to [4], depression is diagnosed by general practitioners
with a sensitivity of 50.1% (95% CI: 41.3 to 59.0) and a specificity of
81.3% (95% CI: 74.5 to 87.3). Other research suggests that in the US,
two-thirds of depression patients go undiagnosed [5]. Psychiatric dis-
eases affect people’s health and leave an impact from a cost perspective
on a more global level. In Europe alone, psychiatric disorders accounted
for EUR 461 billion in healthcare costs [6]. Of all psychiatric diseases,
the economic costs of depression are among the highest. Other research
suggests that the quality-adjusted life years (QUALYs) lost amount to
$9950 per citizen with undiagnosed depression [7].

∗ Corresponding author.
E-mail address: mbertl@taltech.ee (M. Bertl).

The recommended method for diagnosing depression in 2023 is
based on questionnaires and assessment scales from the previous cen-
tury [8]. In psychology and psychiatry, medical professionals still rely
on methods dating back to the 1960s [9,10]. New technologies such
as Artificial Intelligence (AI), especially deep learning, could poten-
tially improve this situation by supporting medical professionals. The
computer-based systems that use data to assist decision-making are
called digital decision support systems (DDSS). AI-based DDSS for psychi-
atry is an active research field [11,12]. However, research often does
not make its way into clinical practice [13]. One cause is the missing
domain understanding among the DDSS developers and the heterogene-
ity of domain understanding among the DDSS developers and domain
experts [14]. Another reason is that the data used to develop such
systems are often unavailable or of bad quality [15]. More and more
countries are applying a single public payer approach to health care,

https://doi.org/10.1016/j.artmed.2023.102745
Received 14 May 2023; Received in revised form 1 December 2023; Accepted 1 December 2023



Artificial Intelligence In Medicine 147 (2024) 102745

2

M. Bertl et al.

like Canada [16], Australia [17], the UK [18] or Estonia [17], meaning
that a vast amount of medical claims data will be available in a central
place. However, data are mostly used for claims management and
rarely reused. This paper investigates which algorithm is best suited
for building a deep learning-based DDSS for depression detection based
on medical claims data. As one of the leaders of e-government [19],
Estonia is a good starting point for such research because lots of digital
data are already available.

The foundation of the Estonian e-state is its digital identity sys-
tem [20]. Each of the 1.3 million residents of Estonia has their own
unique ID code. This allows for the creation of digital government
services like online income tax declaration (used by 96% of peo-
ple [21]), internet voting (used by 46.7% [22]) or e-prescription (used
by 99% [23]) — e-health services especially profit from the Estonian e-
state. One example is the collection of medical data. In Estonia, medical
data are saved in two central places. The first is the e-health system
called the Estonian Nationwide Health Information System (NHIS). The
NHIS has been operational since 2008, allowing secure and trusted
online access to medical data, prescriptions and medical images for
virtually all Estonian residents. Instead of one big centralized database,
the NHIS comprises several federated and mutually independent sys-
tems. One of them is the nationwide electronic health record (EHR)
system. In the central EHR, patient data are saved based on interna-
tional standards such as HL7 CDA,1 DICOM,2 LOINC,3 ICD-104 and
SNOMED-CT.5

The second place is the Estonian Health Insurance Fund (EHIF),
which manages healthcare expense reimbursement. Their digital system
was introduced in 2001 as an addition to the paper-based process. Since
2005, all reimbursement claims and prescriptions must be submitted
electronically. As of today, the data collection process of the EHIF is
part of their reimbursement process for healthcare providers. Medical
professionals fill in the case history and demographic data in a struc-
tured electronic medical record system. Then they compose a discharge
letter or an outpatient summary, where the diseases are coded using
ICD-10 codes. This information is then sent to the EHIF, where it is
automatically quality-checked and a random sample set of cases is
manually validated before the reimbursement process is initiated. After
the checks, the data are saved in the EHIF data warehouse. The medical
statisticians of the EHIF then use the data for research, political or
healthcare policy decision-making or to supply information to other
governmental authorities. Based on the role of the data requester, the
data are available in either personalized form with patient identifiers
or in anonymized form. In the case of Estonia, a duplication of the data
is also saved to the NHIS.

Since ICD codes are a concatenation of digits and alphabetic charac-
ters that convey information, they are considered categorical features.
Thus, for analysis and prediction purposes involving ICD codes, we
can benefit from the state-of-the-art machine and deep learning models
dedicated to NLP tasks, such as [24–26]. For our work, we leverage on a
self-attention layer,6 which is a transformer’s sub-layer [25], for efficient
encoding of hidden relationships between diagnoses.

Since a single data modality (in our case, diagnosis) is usually
not consistent enough for effective decision-making, it is common in
the medical field to merge heterogeneous features or homogeneous
features with different modalities, such as clinical text, demographics,
images, or IoT sensor data [27–30]. In the case of depression detection,
due to its heterogeneity, i.e. different types of depression, several

1 http://www.hl7.org/.
2 https://www.dicomstandard.org/.
3 https://loinc.org/.
4 https://icd.who.int/browse10/.
5 https://www.snomed.org/.
6 The word layer can be used interchangeably with block, model or

component.

heterogeneous data are usually involved. Indeed, the high number
of similarities that exist between some depression types make their
classification complicated. Although considering several heterogeneous
data may improve model accuracy, some are difficult to collect or
biased with inconsistent patient responses. Assuming that diagnoses
performed by a doctor are more trusted and accessible, we decided
to combine them with demographic data for more accurate depression
detection.

Medical events are recorded with their corresponding date in the
patient’s electronic health record (EHR). The recording date plays a
crucial role in the clinical process: it allows practitioners to track the
trajectory of the patient’s health status over time to make appropriate
decisions. The omission of this information for decision support will
undoubtedly result in lower performance and make the model less
realistic. It is therefore necessary to consider the sequence of medical
events. Like many models that have been built for health care (or used
a medical problem as a pilot case) [31,32], we also consider the time
intervals between consecutive diagnoses as an additional input for our
model so that the process of detecting depression can rely more on
recent diagnoses. As in [31,33], we model this temporal aspect by
incorporating a decay factor in the gated recurrent unit (GRU) [34].
Considering the time intervals between consecutive diagnoses as addi-
tional inputs and effectively incorporating them into the GRU’s core
via a decay factor sets our proposal apart from previous works on
depression detection [35].

Depression is often addressed like a binary classification or mul-
timodal logistic regression problem [36,37]. Binary classification de-
termines whether a patient suffers from depression, while multimodal
logistic regression associates each type of depression with a probabil-
ity score. The highest scoring type is then selected as the diagnosis.
Although multimodal logistic regression has the advantage of learning
the distribution of each depression type mutually, it faces the problem
of imbalanced class distribution. Moreover, only patients who suffer
from depression are studied. As we want to minimize imbalanced
class problems, detecting patients suffering from depression and those
not suffering, we choose the binary classification approach with class-
weighting factors. Unlike our predecessors, here are additional aspects
that we considered:

• Using a self-attention layer to effectively learn hidden relationships
between diagnoses to better represent patient health status.

• Weighting the significance of diagnoses based on their corre-
sponding record date so that the model can rely more on recently
made diagnoses.

• Using weighted binary cross-entropy as the loss function to deal
with the imbalanced class problem.

• Comparing the performance of non-sequential models, sequential
models and sequential models with a decay factor versus our
novel approach to show the importance of good encoding of the
hidden relationship between diagnoses and the importance of
considering the time factor.

• Integrating an explainable component so that physicians have
greater confidence in the decision made by the model.

With the proposed approach, we aim to provide an AI model that
helps medical professionals to overcome the challenge of low diagnostic
accuracy. To improve the diagnostic process, we not only propose a
deep learning approach with sufficient accuracy, but we also ensure
that our algorithm is trained on a sufficiently large quantity of real-
world data that is available during the clinical process and propose an
application scenario for our algorithm.

The remainder of this paper is organized as follows: In Section 2,
we present background works. In Section 3, we formally represent the
dataset and describe our model. Section 4 is devoted to empirically
evaluating our model against our competitors on different metrics.
We have also carried out various ablation studies to show how the



Artificial Intelligence In Medicine 147 (2024) 102745

3

M. Bertl et al.

model works in different configurations. In Section 6, we discuss the
explainability of the results. In Section 7, we discuss possible use case
scenarios, limitations and further research. Section 8 recalls the paper’s
main points and contributions and outlines future work.

2. Related work

Data science aims to develop computational models that can auto-
matically infer hidden patterns from data to predict results. Predictions
can be based on single or multi-modal data sources [38]. For depres-
sion detection, several data sources like audio [39–41], EEGs [42–
45], IoT or wearable data [46–49], medical images [50,51] and text
data [52–55] have been investigated. However, these data must be
specifically collected and available for a decision support system. We
argue that data generated during the clinical process (like diagnosis
data) have a much higher chance to power successful DDSSs because
data availability and quality are lower and privacy issues are fewer.
Examples of these data include medical claims or electronic health
record data. Promising results on using medical claims data for cal-
culating the risk of suicide prevention have been reported in [28].
Medical claims data are also used to predict reactions to antidepressant
treatment [56]. However, studies using machine learning [36] or rule-
based approaches [57] on medical claims data for depression screening
still report low accuracy metrics.

With a growing volume of data and features and increased com-
puting power, deep learning starts to outperform traditional ML meth-
ods [58]. Traditional ML methods typically require good feature se-
lection and a significant amount of feature engineering to ensure
that the features used comply with the model’s assumptions. On the
other hand, deep learning uses a large, multi-layer network structure,
allowing it to take raw input features and still be able to learn hidden
patterns in data. Deep learning architectures can be distinguished by
the structure determining how the network’s artificial neurons are con-
nected. For processing sequential and/or structured/unstructured data
(like historical diagnoses and medication, clinical notes and images),
recurrent neural networks (RNNs) [59], convolutional neural networks
(CNNs) [60], transformers [25] and graph neural networks (GNNs) [61]
are perfect candidates. Due to their high performance on non-medical
tasks addressed with the same data structure as medical applications,
their utilization in the medical field has increased significantly. For
example, in [62], GNNs are combined with a pre-trained transformer-
based model, namely BERT (Bidirectional Encoder Representations from
Transformers) [63] for medical code representation and medication
recommendation. Also, in [64], a pre-trained BERT (specifically its
transformer-encoder component) is used to predict 30-day hospital
readmissions from clinical notes. In [65], a cost-sensitive formulation of
long short-term memory networks (LSTM) [66] is proposed to predict 30-
day readmission of congestive heart failure patients. Similar work using
machine learning and deep learning approaches to predict mortality
and readmission of in-hospital cardiac arrest patients with EHR was
also conducted in [67]. In [68], a convolutional graph transformer is
developed to learn the hidden structure of Electronic Health Record
(EHR) data for graph reconstruction while predicting hospital readmis-
sion. While some minor modifications had to be made to the core of
the aforementioned deep learning models to deal with medical data
efficiently, even more significant changes were needed to deal with
the ubiquitous irregular time series in the medical field. For example,
several studies [31,33,69] have focused on redesigning RNNs to better
handle irregular physiological time series data and thus improve the
accuracy of downstream medical tasks.

Regarding our main concern, namely the detection of depression,
we note several studies based on deep learning methods, such as [70–
72], which have used social network data rather than medical claims
data. For example, in [73], an LSTM-based model is coupled with an at-
tention mechanism to detect depression from users’ tweets. The dataset

was balanced (oversampling or undersampling) to address the imbal-
anced class problem. In [74], a data augmentation framework based
on topic modelling is proposed to solve the problem of imbalanced
classes when detecting depression. In contrast to approaches based
on social network data, [74] uses patients’ responses recorded during
encounters with doctors. Unlike the technique we use (the cost-sensitive
loss function), the undersampling or oversampling technique has the
disadvantage of altering the natural distribution of the data used in
the study. In addition, they may lose some information or add noise.
Although several depression detection studies have been conducted
using social network data, some, like ours, have used medical claims
data [75,76]. In [35], a bidirectional deep learning model is proposed—
a pre-trained and fine-tuned version of the BERT model. Compared to
our proposal, where only diagnoses and patient demographics are used,
the approach in [35] uses additional modalities such as procedures,
medications and clinical notes. Our approach, as in [35], relies on
the self-attention component to quantitatively assess the association
between clinical codes; however, it does not consider the time interval
when modelling consecutive visits.

As we can see, none of the aforementioned models addressing
the problem of depression detection have combined self-attention with
GRU-decay for better data representation and efficient integration of
temporal information, respectively. Additionally, unlike some, we use
real and voluminous medical datasets and do not apply any under-
sampling or oversampling that may remove relevant information or
introduce noise. Instead, we use a cost-sensitive loss function to deal
with the problem of imbalanced classes.

3. Method

Detecting depression from claims data involves considering three
important aspects: learning the hidden relationships between diag-
noses; filtering out the irrelevant diagnoses; and relying more on recent
diagnoses. In addition, we may face an imbalanced class problem, as
there are naturally fewer sick patients than healthy ones.

In this section, after introducing data notation, we formally describe
how a self-attention layer is stacked with GRU-decay to cover the
aforementioned aspects. Self-Attention is dedicated to learning hidden
relationships across diagnoses and filtering out the irrelevant ones. At
the same time, GRU-Decay allows detection based on the most recent
diagnoses. We name this combination Att-GRU-decay. The output of
Att-GRU-decay, which is the global health status of the patient, is
combined with the patient’s demographics and fed into a classifier
that we also describe formally in the following subsections. Finally, we
present the loss function used to address the imbalanced class problem.
The overall model architecture is depicted in Fig. 1.

3.1. Data notation

Let  = {𝐜𝑛,𝐝𝑛, 𝛥𝑛, 𝑦𝑛}𝑛=1,2,…,𝑁 where 𝐜𝑛 = [𝑐1, 𝑐2,… , 𝑐𝑡=𝑇 ] is the
set of diagnoses (ICD-10 codes) of the patient 𝑛 recorded at date index
𝑡 = 1, 2,… , 𝑇 . If a patient suffers from depression, the highest date
index 𝑇 is the one preceding the date on which the depression was
detected in the patient. Otherwise, the highest date index 𝑇 is that
of the last diagnosis made. 𝐝𝑛 = [𝑑1, 𝑑2] is the patient’s demographic
vector. 𝑑1 is the age and 𝑑2 is the gender. 𝛥𝑛 = [𝛿1, 𝛿2,… , 𝛿𝑡=𝑇 ] is the
elapsed time vector. More precisely, 𝛿𝑡 with 𝑡 > 1 and 𝑡 < 𝑇 is the time
difference between the recorded date of the medical code 𝑐𝑡 and 𝑐𝑡−1.
𝛿1 = 𝛿𝑇 = 1. 𝑦𝑛 is the depression state of the patient 𝑛: equal to 0 if the
patient has never suffered from depression; otherwise, it is equal to 1.
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Fig. 1. Att-GRU-decay architecture. The embedding layer encodes diagnoses into continuous vectors; Self-attention learns the hidden relationship between the diagnoses pair; and
the Residual & Normalization retain the initial information and prevent gradient problems. GRU-decay learns the sequential pattern of diagnoses while taking into account the
elapsed time between visits 𝛿𝑡 and generates a context vector ℎ̃, which is a latent representation of the patient’s health status. ℎ̃ is concatenated with the latent representation of
the patient’s demographics and passed through the classifier.

3.2. Self-attention

This section presents how diagnoses are transformed into a vector
embedding and passed through a self-attention layer responsible for
learning hidden relationships between diagnoses and filtering out the
ones irrelevant to the downstream task.

Since neural networks require real numbers as inputs, the first step
is to map each diagnosis to a vector of real numbers. For that, we use
an embedding layer, which, based on the co-occurrence of diagnoses,
will associate with each diagnosis 𝑐𝑡7 a vector embedding �̃�𝑡 obtained
as part of a matrix �̃� of all vector embeddings as follows:

�̃� = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝜃(𝐜) (1)

where 𝜃 are the learnable parameters of the embedding layer. �̃� ∈ R𝑇×𝑙

is the matrix of diagnoses encoded, where each row 𝑡 of �̃� is the
vector embedding �̃�𝑡 of the diagnosis 𝑐𝑡, and 𝑙 is the dimension of the
embedding space.

To discover the latent relationships between diagnoses and filter
out diagnoses that might not be relevant for detecting whether a
patient suffers from depression, we pass �̃� through a self-attention
layer. Throughout self-attention computations, we calculate an atten-
tion filter from a query matrix 𝑄 and a key matrix 𝐾 to encode hidden
relationships between diagnoses. This attention filter is then multiplied
by a value matrix 𝑉 to obtain a filtered version �̃� ′ of �̃�. In other
words, those vector embeddings �̃�𝑡 that will be detected as irrelevant
for determining whether a patient suffers from depression will have
coefficient values close to zero. The formula for calculating �̃� ′ is

�̃� ′ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(
𝑄𝐾𝖳

√
𝑑𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑓𝑖𝑙𝑡𝑒𝑟

𝑉 (2)

7 As the following formulas are valid for all patients, we omit the subscript
𝑛 in the sequel.

where 𝑄 = �̃�𝑊𝑄 ∈ R𝑇×𝑗 , 𝐾 = �̃�𝑊𝐾 ∈ R𝑇×𝑗 and 𝑉 = �̃�𝑊𝑉 ∈ R𝑇×𝑗

are three different linear transformations of �̃�. 𝑊𝑄,𝑊𝐾 and 𝑊𝑉 are
learnable parameters, 𝑗 = 𝑙 is the dimension of each linear space,
𝑑𝑘 is the dimension of the key vectors, and as usual, 𝐾𝖳 stands for
the transpose of 𝐾. �̃� ′ is normalized to prevent exploding values. The
normalized version of �̃� ′ is then added to �̃� to preserve initial relevant
information that might be lost during self-attention computation and
to prevent gradient problems. Residual is the sum of an input 𝑥 with
the output 𝑦 = 𝑓 (𝑥) [77]. The final output of the self-attention layer is
then equal to:

�̂� = �̃� +𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(�̃� ′)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

(3)

�̂� ∈ R𝑇×𝑗 is a matrix, where each row 𝑡 is the final embedding
representation �̂�𝑡 of a corresponding diagnosis 𝑐𝑡.

As some diagnoses may have been made long ago, assessing their
significance in terms of when they were made is crucial. Thus, in
Section 3.3, we formally show how we apply a decay factor on the
hidden layer of GRU so that past diagnoses cannot have the same level
of importance as recent ones.

It is worth mentioning that self-attention aims to encode the hidden
correlation between pairs of clinical codes, while GRU-decay encodes
the sequential order of visits, taking into account the time elapsed
between them. We could have used the positional encoding technique
implemented in the original Transformer [25] to model the sequential
order of visits. However, since the positional encoding vectors are
static, we would not have been able to capture the variation in elapsed
time between successive visits effectively. Shaw et al. [78], proposed
a Transformer variant capable of modelling the relative position or
distance between input element pairs. However, the method they use
to achieve this lacks the property of the decay function implemented in
our model (see Eq. (8)). Indeed, the objective is not only to encode the
distance (in terms of days) between input element pairs. It is also about
reducing the impact of the latter in the prediction when they took place
a long time ago.
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3.3. GRU-decay

Although some patients may suffer from depression without prior
symptoms, we can detect those who do with specific earlier symptoms.
This then requires browsing the patient’s historical diagnoses. Since
diagnoses are described by a set of clinical codes recorded over time,
depression detection can be approached as both time-series forecasting
and NLP tasks.

With RNNs and their variants having shown spectacular results on
time series forecasting and NLP tasks, e.g. [79,80], we can use them
to model the patient’s status while considering the time at which each
diagnosis has been recorded. Since RNNs suffer from gradient problems
when processing long sequences, we use their variant Gated Recurrent
Unit (GRU), which addresses this problem. GRU is mathematically
defined as follows:

𝐳𝑡 = 𝜎𝑔(�̂�𝑡𝑊𝑧 + 𝐡𝑡−1𝑈𝑧 + 𝑏𝑧) (4)

𝐫𝑡 = 𝜎𝑔(�̂�𝑡𝑊𝑟 + 𝐡𝑡−1𝑈𝑟 + 𝑏𝑟) (5)

�̄�𝑡 = 𝜙ℎ(�̂�𝑡𝑊ℎ + (𝐫𝑡 ⊙ 𝐡𝑡−1)𝑈ℎ + 𝑏ℎ) (6)
𝐡𝑡 = 𝐳𝑡 ⊙ 𝐡𝑡−1 + (1 − 𝐳𝑡)⊙ �̄�𝑡 (7)

where 𝐡𝑡−1 with (𝑡 − 1) ≥ 0 is the hidden state of the medical code
embedding �̂�𝑡−1; 𝐳𝑡 and 𝐫𝑡 are the update and reset gates associated
with the medical code embedding �̂�𝑡, respectively; �̄�𝑡 is the hidden
intermediate state; 𝐡𝑡 is the hidden state of the current input �̂�𝑡 and
also the GRU’s output; 𝑊𝑧, 𝑊𝑟, 𝑊ℎ, 𝑈𝑧, 𝑈𝑟, 𝑈ℎ, 𝑏𝑧, 𝑏𝑟; and 𝑏ℎ are GRU
training parameters; and ⊙ denotes the Hadamard product as usual.

The GRU’s Eqs. (4)–(7) assume that the elapsed time 𝛿𝑡 between the
recording dates of two consecutive diagnoses is regular. This assump-
tion is not valid since 𝛿𝑡 may vary. In addition, this variation might be
high. It is then crucial to weight each hidden state 𝐡𝑡 of �̂�𝑡 according to
𝛿𝑡 so that the model places more importance on recent diagnoses than
those made a long time ago. Therefore, we introduce a decay factor in
the GRU and multiply it by 𝐡𝑡 to obtain a new hidden state �̃�𝑡. A GRU
with a decay factor applied to its hidden state is called GRU-decay.
Except for the hidden state, it has the same structure as a GRU. �̃�𝑡 is
obtained as follows:

�̃�𝑡 = 𝑒𝑥𝑝(−𝑚𝑎𝑥(0, 𝛿𝑡�̃� + �̃�))⊙ 𝐡𝑡 (8)

where �̃� and �̃� are learnable parameters. �̃�𝑡=𝑇 = �̃� can be interpreted
as a latent summary of the patient’s health status.

As patient demographics (gender and age) are important factors to
study for depression, we formally describe, in Section 3.4, how they are
combined with the latent summary of patient health status �̃� and then
run through the classifier to predict whether the current patient will
suffer from depression.

3.4. Depression detection: Classifier

To calculate the likelihood that a patient will be detected as a de-
pressed patient, we first extract information from patient demographics
via a feedforward neural network (FNN) and combine the extracted in-
formation with �̂�𝑡. In end-to-end fashion, the result of this combination
is fed into a set of stacked FNNs that play the role of the classifier.
Formally, the classifier is

�̂� = 𝑓 1
𝛽1
◦𝑓 2

𝛽2
◦⋯◦𝑓𝑃

𝛽𝑃
(⟨�̃�,𝐝⟩) (9)

𝐝 = 𝑔𝛼(𝐝) (10)

where 𝑔𝛼 is an FNN with 𝑅𝑒𝑙𝑢 as an activation function; 𝛼 is a set of
learnable parameters of 𝑔; 𝐝 is the latent representation of patient’s
demographics vector; 𝑓 2

𝛽2
◦⋯◦𝑓𝑃

𝛽𝑃
is 𝑃 stacked FNNs with 𝑅𝑒𝑙𝑢 as an

activation function; 𝛽2,… , 𝛽𝑃 are learnable parameters; 𝑓 1
𝛽1

is the final
FNN with sigmoid as an activation function and 𝛽1 as its learnable

parameters; and �̂� ∈ [0, 1] is the likelihood that a patient suffers from
depression.

We used a weighted binary cross-entropy as a loss function [81]
to adjust the models’ parameters while dealing with the problem of
imbalanced classes. It is defined as follows:

𝑤𝑏𝑐 = − 1
𝑁

𝑁∑
𝑛=1

(
𝑤1 ∗ 𝑦𝑛 ∗ ln(�̂�𝑛) +𝑤0 ∗ (1 − 𝑦𝑛) ∗ ln(1 − �̂�𝑛)

)
(11)

where 𝑤0 = 1 and 𝑤1 = 𝑁0∕𝑁1 are the weighted factors of class 0
and 1, respectively. 𝑤1 allows penalizing the model more when the
class 1 is misclassified. Indeed, this choice is justified because we are
dealing with imbalanced classes, i.e. the number of patients suffering
from depression is much lower than those who do not suffer from it.

4. Experimentation

4.1. Settings

We coded the proposed model using Python 3.0 and the machine
learning libraries Keras 2.4.3 and TensorFlow 2.4.0. All remaining pre-
processing and performance evaluation was done with the libraries
NumPy, Pandas and Scikit-learn. Finally, we ran the code on a cluster
node with the following characteristics: An AMD Threadripper 3960X
processor with 24 cores and 48 threads, 128 GB of memory, and an
NVidia 3090 GPU with 24 GB of graphics memory.

4.2. Data

Our dataset was queried from the EHIF data warehouse and includes
information on gender, birth year, ICD-10 coded primary and secondary
diagnoses and the date of the treatment bill (diagnosis date) from
812,853 people (15 years or above) with a total of 26,973,943 diagnoses
between 2018 and 2022. The data consist of all publicly insured
people in Estonia with a depression diagnosis8 (80,243 patients with
4,252,213 diagnoses). The control group consists of 732,610 patients
(with 22,721,730 diagnoses), of which 498,764 people (with 10,779,835
diagnoses) did not have a psychiatric disorder diagnosed and 233,846
patients (with 11,941,895 diagnoses) had a psychiatric disorder other
than depression. The percentage of insured people in Estonia is above
93.63% [82], so we are confident that our dataset is representative of
the entire population.

Diagnoses were coded based on ICD-10. Each ICD-10 code con-
sists of an alpha character known as a chapter, two digits describing
the disease category, a dot and additional digits representing more
details like the cause, location, severity or other clinical information
(sub-categories). For example, F32.2 is the code for major depressive
disorder, single episode, severe without psychotic features. F stands
for mental and behavioural disorders; F30–F39 are codes for mood
[affective] disorders; and F32 is the category of major depressive
disorder, single episode. The ‘.2’ at the end of F32.2 specifies the
severity. All patients with the ICD-10 codes F33.x or F32.x are classified
as patients with depression. For the latter, only diagnoses made before
being diagnosed with depression are taken into account in the study.
Those which followed the depression diagnosis are ignored. Fig. 2
shows the data extraction process.

The Research Ethics Committee of the National Institute for Health
Development (TAIEK9) approved this study’s research design and data
usage (Decision No. 1148).

8 To overcome potential data leakage, we considered all diagnoses starting
with F32 (major depressive disorder) and F33 (recurrent depressive disorder)
as ‘depression’.

9 Tervise Arengu Instituudi inimuuringute eetikakomitee.
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Fig. 2. Data extraction process from two patients. For padding values, we assign 0 as elapsed time. For the first diagnosis (ICD code of the first visit), we assign 1 as the elapsed
time. When a depression code is observed in the diagnosis list, the associated ground truth is 1. All diagnoses after the first depression diagnosis are ignored. On the other hand,
when no depression code is observed, the ground truth associated with the sample is 0.

4.3. Model and training hyperparameters

We performed an extensive grid search over embedding_space =
{50, 80, 100}, dimenssion_linear_space = {32, 64, 80, 100}, GRU_decay_
units = {30, 50, 80, 100}, demographics_FNN_units = {10, 20, 30}, clas-
sifier_FNN_units = {20, 30, 50}, number_epochs = {20, 30, 40, 50, 60, 70,
80}, optimizer = {𝐴𝑑𝑎𝑚, 𝑆𝐺𝐷,𝑅𝑀𝑆𝑝𝑟𝑜𝑝} to find the optimal value
for each hyperparameter of the model. The values retained for each
hyperparameter are as follows:

• The dimension of the embedding space was set to 50.
• We used a mask on the embedding layer to skip padding values

during the calculation.
• For the attention layer, we set the dimension of linear spaces at
80.

• The number of GRU-decay units was set to 50.
• We applied a dropout of 0.5 on the hidden layer of GRU-decay to

prevent gradient problems.
• Concerning the FNN dedicated to the extraction of demographic

features of patients, we defined the number of units as 10.
• The classifier comprises two stacked FNNs, each with 20 and 1

units, respectively.

Once more, using the grid search technique, we defined the training
hyperparameters as follows:

• The number of epochs was set to 20.
• The batch size was set to 1500.
• We used 𝐴𝑑𝑎𝑚 as the optimizer.
• The learning rate was set to 0.001.

Table 1 summarizes all the hyperparameter values.

4.4. Results

To assess the performance of our model, we use the area under the
ROC Curve (AUC) and the area under the precision–recall curve (AUPRC)

Table 1
Model and training hyperparameters.

Hyperparameters Values

Dimension of the embedding space 50
Dimension of linear spaces 80
Number of GRU-decay units 50
GRU-decay dropout 0.5
Number of FNN units of patient’s demographics 0.5
Number of FNN units of the classifier 20&1
Number of epochs 20
Batch size value 1500
Optimizer 𝐴𝑑𝑎𝑚

as metrics. The precision–recall curve is a function of recall (12) on the 𝑥-
axis and precision (13) on the 𝑦-axis. The receiver operating characteristic
(ROC) curve is a function of false positive rate (14) on the 𝑥-axis and
recall on the 𝑦-axis.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = |𝑇𝑃 |
|𝑇𝑃 | + |𝐹𝑁| (12)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |𝑇𝑃 |
|𝑇𝑃 | + |𝐹𝑃 | (13)

𝐹𝑎𝑙𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 = |𝐹𝑃 |
|𝐹𝑃 | + |𝑇𝑁| (14)

where |𝑇𝑃 | is the number of true positives, |𝐹𝑁| the number of false
negatives, |𝑇𝑁| the number of true negatives and |𝐹𝑃 | the number
of false positives. Indeed, by varying the threshold when calculating
recall, precision and the false positive rate, these metrics avoid biased
scores caused by the high number of non-target classes, i.e. the class 0.
They are suitable for assessing the performance of models in the face
of an imbalanced class problem.

We compare the average AUC and AUPRC scores obtained over
5-fold cross-validation with those of the following models: logistic
regression (LR); feedforward neural network (FNN); long short-term
memory (LSTM); convolutional neural network combined with LSTM
(CNN-LSTM); gated recurrent unit with a decay factor (GRU-decay);
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Table 2
AUC and AUPRC scores on depression detection task over 5-cross validation. ± denotes
the standard deviation.

Models AUC AUPRC

LR 0.813 ± 0.002 0.296 ± 0.003
CNN-LSTM 0.849 ± 0.002 0.394 ± 0.009
LSTM 0.848 ± 0.001 0.385 ± 0.005
FNN 0.837 ± 0.002 0.374 ± 0.006
GRU-decay 0.989 ± 0.001 0.972 ± 0.001
GRU-𝛥𝑡 0.986 ± 0.002 0.961 ± 0.005
Att-GRU-decay 𝟎.𝟗𝟗𝟎 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟕𝟒 ± 𝟎.𝟎𝟎𝟐

and a gated recurrent unit taking as inputs diagnostic vectors concate-
nated to the elapsed time vectors (GRU-𝛥𝑡). All results are reported in
Table 2.

From Table 2, we can clearly see that our proposed model achieves
the best performances. Although the GRU-decay and GRU-𝛥𝑡 results are
very accurate, ours are slightly better. Compared to our Att-GRU-decay
model and the GRU-decay model, GRU-𝛥𝑡 is less accurate because it
does not incorporate any explicit techniques to better learn existing
patterns between diagnoses and time. The slight superiority of our
model highlights the additional contribution of the self-attention layer
in the decision-making process. Indeed, unlike the GRU-decay, which
only benefits from decay factors that prevent the prediction from being
based on diagnoses made a long time ago, our model, thanks to the self-
attention mechanism, will also detect hidden patterns existing between
diagnoses that may be the cause of possible depression in the patient.
Where the difference between the AUC scores of the models is not so
large, the AUPRC scores of our model and the GRU-decay model far
exceed those of the other competitors. This huge difference reveals how
crucial it is to weigh the significance of the diagnoses according to their
respective recording dates.

It is not surprising that the LR model, which is a traditional ma-
chine learning model, performs worse than the other models, which
are deep learning models. Indeed, unlike machine learning, which is
somewhat dependent on feature engineering, deep learning can extract
hidden features by itself thanks to its non-linear functions and therefore
does not need feature engineering. This property makes deep learning
models more accurate than machine learning models when processing
data with complex patterns. Machine learning models can sometimes
achieve results similar to or better than deep learning models [83].
Moreover, they are more explainable. Another aspect that reveals the
results in Table 2 is the low accuracy of non-sequential models such as
LR and FNN compared to others designed for sequence modelling. Thus,
we conclude that processing patients’ diagnoses at different dates with
non-sequential models leads to losing temporal patterns in depression
detection. Compared to GRU-decay and our model, CNN-LSTM and
LSTM, also models designed to handle sequential data, failed because
they processed diagnoses as if they were made at regular time intervals.

As AUC and AUPRC are calculated from different thresholds, we also
investigate the specificity (15) and the sensitivity of the models on fixed
threshold values of 0.5 and 0.8. This second evaluation was carried out
on a single loop of the 5-cross validation.

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = |𝑇𝑁|
|𝑇𝑁| + |𝐹𝑃 | (15)

Indeed, the higher the threshold, the more confidence practition-
ers have in the model’s outcome. A higher threshold is even more
important in the medical field, as misdiagnoses can have irreversible
consequences. The specificity and sensitivity scores of all models cal-
culated from the confusion matrices in Fig. 3 are reported in Table 3.
We also report the training and testing time for each model to give an
idea of how long it will take for each of them to produce results in
a real deployment. The ROC curves and precision–recall curves of the
evaluated models are shown in Fig. 4

Table 3 and Fig. 4 show that GRU-decay, GRU-𝛥𝑡 and ours ob-
tain the best specificity scores, sensitivity scores, ROC curves and

Table 3
Specificity and sensitivity scores on the depression detection task.

Models Specificity Sensitivity Time (min)

Threshold Train Test

0.5 0.8 0.5 0.8

LR 0.705 0.960 0.787 0.263 8.680 𝟎.𝟎𝟎𝟖
CNN-LSTM 0.718 0.902 0.818 0.549 8.299 0.035
LSTM 0.724 0.916 0.814 0.523 30.513 0.050
FNN 0.714 0.911 0.810 0.528 𝟏.𝟑𝟏𝟐 0.006
GRU-decay 𝟎.𝟗𝟗𝟓 𝟎.𝟗𝟗𝟗 0.939 0.926 49.547 0.068
GRU-𝛥𝑡 0.962 0.987 0.962 0.936 2.877 0.102
Att-GRU-decay 0.985 𝟎.𝟗𝟗𝟗 𝟎.𝟗𝟓𝟓 𝟎.𝟗𝟒𝟒 56.754 0.102

Precision_Recall curves. These scores again show how incorporating
a decay factor to handle better diagnoses recorded at different dates
improves the classification task. We note that almost all models provide
satisfactory results with a threshold set to 0.5. We assume that these
results are due to the large qualitative amount of data and the weighted
binary cross-entropy, which improves the models’ ability to classify
the minority class, i.e. the depressed patient. If a threshold is set to
0.5, the sensitivity scores for all models are fairly accurate. We find
a considerable drop in the performance of the LR, CNN-LSTM, LSTM
and FNN models when the threshold is set to 0.8. On the other hand,
the GRU-decay model and ours remain very accurate. Although the
specificity score of the GRU-decay model with a threshold of 0.5 is
better than that obtained with ours, with the other configurations,
our model is better overall. It is worth mentioning that, despite the
high threshold value of 0.8, we obtained spectacular sensitivity and
specificity scores close to 1. In verbal form, among the 146,522 non-
depressed patients in the training set, our model correctly classifies
146,409 with a probability of 0.8%. For the 13,677 depressed patients,
our model correctly classifies 12,906 with a probability of 0.8%.

For classification problems such as those related to medicine, the
output of the models must be very accurate to avoid misdiagnoses
leading to inappropriate treatment. Especially for the early detec-
tion of psychiatric diseases such as depression, the model’s sensitivity
is crucial. With the quantitative results we have obtained, we are
very confident that our model can help medical professionals in their
decision-making to detect patients with depression faster and thus
significantly reduce the misdiagnosis rate.

We note that in terms of training and testing times, our model takes
the longest. This is partly due to the number of parameters (97,121) and
the time complexity of the self-attention and GRU-decay mechanisms.
Despite having the longest test duration, 0.102 min is still sufficient
for using it in the clinical process. The number of parameters in the
competing models is shown in Appendix A.6.

In the next section, we conduct different ablation studies to show
how the model works in different configurations.

5. Ablation studies

We have devoted this section to evaluating the model in the fol-
lowing configuration: (i) without the decay factor; and (ii) with and
without patient demographics.

Without the decay factor. In Table 4, we observed a considerable drop
in performance when the decay factor is not taken into account. These
results support our assertion regarding the importance of accounting
for irregular elapsed time between visits. Indeed, the normal GRU fails
because it processes diagnoses as if they were made at regular intervals
and is therefore unable to capture the correct underlying temporal
pattern of diseases
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Fig. 3. Confusion matrices.

Table 4
Evaluation of the model without the decay factor over 5-cross validation.

Models AUC AUPRC

Att-GRU 𝟎.𝟖𝟓𝟑 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟒𝟎𝟓 ± 𝟎.𝟎𝟎𝟕
Att-GRU-decay 𝟎.𝟗𝟗𝟎 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟕𝟒 ± 𝟎.𝟎𝟎𝟐

With and without patient demographics. The AUC and AUPRC scores
in Table 5 show that patient demographics have little influence on
the detection of depression. We can see that without patient demo-
graphics, the performance of the model is not affected. However, when

patient demographics are used exclusively, model performance drops
significantly. We conclude that the model can still produce accurate
results when patient demographics are not available Scientific literature
suggests an impact of demographic factors like gender [84] or age [85]
on the likelihood of getting depression. We assume that this effect is not
visible in our ablation study because the model learns gender and age
trends through associated diseases.

As quantitative results are not sufficient to guarantee the veracity
of a model in medical applications, we also propose a component for
extracting disease patterns that influence the model output to be able to
give a qualitative interpretation of the model behaviour (see Section 6).
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Fig. 4. ROC and Precision–recall curves.

Table 5
Evaluation of the model without patient demographics and exclusively with over 5-cross
validation. ex/pd stands for exclusively with patient demographics, and wo/pd stands
for without patient demographics.

Models AUC AUPRC

Att-GRU-decay ex/pd 𝟎.𝟔𝟒𝟕 ± 𝟎.𝟎𝟎𝟐 𝟎.𝟏𝟑𝟏 ± 𝟎.𝟎𝟎𝟐
Att-GRU-decay wo/pd 𝟎.𝟗𝟗𝟎 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟕𝟐 ± 𝟎.𝟎𝟎𝟏
Att-GRU-decay 𝟎.𝟗𝟗𝟎 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟕𝟒 ± 𝟎.𝟎𝟎𝟐

6. Uncovering disease patterns

The following section shows the interaction between features in the
attention layer of our model.

Apart from the benefits of increased prediction accuracy, we use
self-attention to provide insights into the disease relationships the
model has learned. We propose using this to give medical profes-
sionals a better understanding of the model by showing that it can
correctly identify commonly known disease correlations. Those dis-
ease correlations can also be used to infer rules and find indicator
diseases [57].

The alignment matrix in Fig. 5 shows a given patient’s last seven
ICD-10 codes on the 𝑥-axis and how our trained neural network as-
sociates them with each other. The colour indicates the strength of
the correlation, from blue (not correlated) to red (strongly correlated).
In this example, our trained network identified a strong correlation
between heart failure and type 2 diabetes. This correlation is already
well known in medicine and shows how the Att-GRUD-decay could
infer it from the training data.

Now, consider the second patient (Fig. 6). We see the last ten
diagnoses, from which the model identified that oesophagitis is corre-
lated with migraine, dorsalgia and abdominal and pelvic pain. While
abdominal and pelvic pain could logically make sense, there is cur-
rently no strong medical evidence for a correlation with migraine or
dorsalgia. Nevertheless, some forms of migraine trigger strong nausea,
which could lead to oesophagitis and spinal problems, manifesting as
dorsalgia and negatively influencing migraines.

The third patient (Fig. 7) shows a strong correlation between the
need for immunization against other single viral diseases and sleep dis-
orders and retinal disorders. We are unaware of any medical evidence
of a correlation between those ICD-10 codes.

This example demonstrates how the model learned and can find
reasonable connections from large data sets. Still, not all correlations
are evidence-based from a medical perspective.

Generally, the correlations found can be sorted into three categories:

1. True correlations, which are (based on our current medical knowl-
edge) reasonable (Fig. 5, and potentially Fig. 6).

2. ‘‘Hallucinations’’ of the deep learning network, i.e. output that
does not seem to be justifiable based on the training data (po-
tentially Figs. 6 and 7).

3. Potentially true correlations, which we currently cannot grasp be-
cause they exceed today’s medical knowledge (Fig. 6, potentially
Fig. 7).

So, while the prediction accuracy of our model is high, the individ-
ual correlations shown by the self-attention still need to be evaluated
carefully.

It is important to note that these correlations are only based on the
attention layer of our model. They do not offer explainability of other
parts, e.g. the GRU component, of our model.

7. Discussion

Several high-performing AI models have already been proposed in
the healthcare sector [86–89]. Still, success stories of AI providing real
clinical value are rare. The reasons for this include a lack of data
availability, integration into clinical processes and lack of trust due to
the black-box characteristics of the models. In the previous sections,
we demonstrated that our novel Att-GRU-decay model outperforms the
current state of the art. In this section, we elaborate on a possible
application scenario to demonstrate how this model could improve the
status quo while avoiding the above-mentioned pitfalls.

Since one of the main problems in psychiatry is that patients with
psychiatric disorders are often diagnosed late, we propose to use this
model to screen patients when they visit a healthcare professional
proactively. This makes sense, especially for general practitioners (GPs)
with high patient turnover. The model can be plugged into the GP’s
systems and rolled out at the insurance provider level or on a na-
tional level on top of an NHIS via a RESTful [90] API. If the GP
enters the diagnosis at the end of the visit, our model enables the
doctor’s IT systems to send an alert if the patient is thought to have
undiagnosed depression. The GP can then re-evaluate the decision,
using our explainability component, and refer the patient to a specialist
for further treatment in the case of a true positive prediction. Since
the proposed system operates on diagnoses from medical claims data,
which medical professionals capture during their work anyway, no
additional effort is needed. This allows seamless integration into the
current clinical workflow. Because of the high specificity, we assume
the risk of alert fatigue is low. On the other hand, if we compare
our sensitivity of 94.4% to the reported 50.1% (95% CI: 41.3 to 59.0)
sensitivity of GPs for diagnosing depression [4], we see that our model
has the potential to decrease the number of undiagnosed depression
patients significantly. It even outperforms population-level screening
questionnaires, such as the PHQ-9, which has a sensitivity of 88%
and a specificity of 88% [91]. In addition, time-wise, the suggested
approach outperforms the current use of questionnaires and assessment
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Fig. 5. Attention filter — Example 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Attention filter — Example 2.

scales. Current depression assessment instruments, such as the Beck
Depression Inventory [9], the Hamilton Depression Rating Scale [10]
or the Montgomery-Åsberg Depression Rating Scale [92], take between
15 and 30 min to complete. At the same time, our proposed screening
approach outputs results in seconds.

This use case can be expanded to screening other diseases in do-
mains other than mental health as long as the data utilized have the
same structure. Since we operate based on medical claims data avail-
able in most countries and cover a wide range of medical information,
it should be fairly easy to retrain our model to predict other diseases.

It is important to stress that we are not proposing to replace medical
doctors with AI algorithms. We suggest that AI algorithms can be used
as screening instruments, assisting doctors by discovering hidden pat-
terns in large volumes of medical data to help them diagnose faster and
more accurately. The output of an AI model still needs to be validated,
checked against the current patient situation, and communicated. Fur-
thermore, the subsequent steps, i.e. further diagnostic procedures and
treatment decisions, still need to be taken by doctors.

We are fairly confident that the model will perform well in a
production setting because of the large amount of real-world data used

for training and evaluation, which includes nearly every adult Estonian.
For further research, the model needs to be evaluated in a randomized
control trial (RCT) to obtain further evidence on its usefulness in a
clinical setting. One limitation of our study is that the data we used as
ground truth might be biased, for instance, because of the previously
described low accuracy of human diagnoses, but also because medical
claims data are used for billing purposes, which creates an incentive
for medical professionals to adapt codes to maximize revenue. An RCT
can help show the impact of this potential bias on the usefulness of our
proposed model. Another limitation of our research is that we did not
use any prescription, laboratory, genomics data or other unobtrusive
data sources. We focused solely on diagnostic and socio-demographic
data because this is easily accessible during the clinical process without
the need for any specific data collection by the physician or patient.
Because of the good results of our approach, we saw the exploration
of other data sources as out of scope. Nevertheless, we encourage
further research to analyse whether other AI algorithms based on other
clinical data sources can give similar or better results. Additionally,
we encourage further research to evaluate the described scenario with
other digital health evaluation methods to assess usability and efficacy.



Artificial Intelligence In Medicine 147 (2024) 102745

11

M. Bertl et al.

Fig. 7. Attention filter — Example 3.

Further research is also planned to investigate how well the model
can be applied to different diseases using the same kind of data. We see
the use of self-attention rather than multi-head attention as a potential
limitation in terms of explainability and disease correlations. The use
of multi-head attention could potentially find more and deeper hidden
disease patterns.

8. Conclusion

In this research, we used the medical claims data of 812,853 pa-
tients with 26,973,943 diagnoses to evaluate deep learning for depres-
sion detection. We contribute by evaluating the most common deep
learning algorithms and introducing our novel Att-GRU-decay model,
which outperforms other state-of-the-art deep learning models with an
AUC of 0.99 and an AUPRC of 0.974. We further describe a potential
application scenario for using the proposed model for screening pa-
tients in a GP setting. Since the use of real-world data covers nearly
every adult Estonian, the excellent accuracy results of Att-GRU-decay,
in addition to the proposed use-case scenario with a potential increase
in the specificity of depression diagnosis by GPs from 50.1% to as
much as 94.4%, we see this research as a potential game changer for
psychiatric screening.
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Appendix A. Number of parameters per model

See Table A.6.

Table A.6
Number of parameters per model.

Models # of parameters

LR 1,649
CNN-LSTM 136,849
LSTM 101,871
FNN 5,156,331
GRU-decay 96,725
GRU-𝛥𝑡 107,326
Att-GRU-decay 97,121

Appendix B. Data distribution

See Figs. B.8–B.12.

Fig. B.8. Age distribution.
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Fig. B.9. Gender distribution.

Fig. B.10. Top 50 ICD-10 codes in our dataset.
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Fig. B.11. Top 50 ICD-10 codes for patients with depression.



Artificial Intelligence In Medicine 147 (2024) 102745

14

M. Bertl et al.

Fig. B.12. Top 50 ICD-10 codes for patients without depression.
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Abstract

The rate of unplanned hospital readmissions is a relevant indicator of the qual-
ity of care provided. From a financial point of view, unplanned readmissions are
costly for patients and healthcare providers. Awareness of unplanned readmis-
sions helps to mitigate the growth of healthcare costs. Several studies have been
carried out to propose models for reducing unplanned hospital readmissions. How-
ever, most of these studies do not consider the elapsed time between admissions,
when historical medical events are included in said studies. Additionally, the pro-
posed models do not explicitly focus on frequent medical events, such as chronic
illnesses, which often lead to unplanned readmissions. Failure to consider the
above aspects undoubtedly leads to suboptimal prediction of unplanned readmis-
sions. To remediate, we introduce a deep sequential learning model called ’Deep
Magnitude Management ’ (D2M) that handles sequences of admissions according
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to their corresponding date and incorporates a mechanism that allows it to focus
explicitly on frequent medical events. To provide effective evidence, we compare
the performance of D2M with the state-of-the-art models and conduct various
ablation studies using the MIMIC-3 database. Furthermore, we provide a series
of graphs for explainability purposes.

Keywords: Artificial Intelligence, Deep Learning, Decision Explainability, Healthcare,
Hospital Readmission Prediction, Support System.

1 Introduction

Hospital readmissions represent a major challenge for health systems worldwide, both
in terms of patient outcomes and efficiency in the allocation of health resources. The
rehospitalization of patients is not only financially burdensome but can also result
in increased morbidity and mortality rates, making it a critical issue in healthcare
management. Readmissions are detrimental for several compelling reasons. First, they
place additional physical and emotional burdens on patients who have already expe-
rienced the stress and discomfort of an initial hospital stay. Returning to the hospital
often signifies deterioration in health and can lead to further suffering and anxiety [1].
Second, frequent readmissions can significantly increase healthcare costs, straining
healthcare systems and resources. This financial burden affects not only hospitals
and insurers, but also the patients themselves, who may have to pay out of their
own pockets. A study conducted in [2] showed that unplanned readmissions caused
higher costs, ranging from $13, 424 to $21, 448 per patient. Moreover, unplanned
readmissions suggest potential issues with the quality of care or discharge planning.
Last, unplanned hospital readmissions can result in a cycle of care fragmentation,
where patients receive disjointed or inadequate treatment, leading to a prolonged
and compromised recovery process [3]. Thus, reducing unplanned readmissions is not
only essential for improving patient well-being and treatment outcomes but also for
optimizing the effectiveness and sustainability of healthcare delivery and enabling
evidence-based medicine and effective hospital management [4]. As a response to this
challenge, the application of deep learning techniques has emerged as a promising
avenue for predicting and mitigating unplanned hospital readmissions.

In the literature, unexpected readmission occurring within 30 days of hospital
discharge is considered unplanned hospital readmission or simply hospital readmission
[5]. The terms “hospital readmission” and “unplanned hospital readmission” are used
interchangeably. This paper explores the potential of deep learning to predict, at
hospital discharge, whether a patient may be subject to unplanned readmission within
30 days. We delve into the complexities of this problem, considering the multifaceted
factors that influence a patient’s likelihood of returning to the hospital after discharge.
By harnessing the power of deep learning, which is especially suitable for complex
tasks such as this [6], and leveraging patients’ Electronic Medical Records (EHRs), we
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aim to enhance our predictive model and ultimately reduce the burden of avoidable
readmissions on healthcare systems.

There are a number of digital decision support systems that can do in-depth anal-
yses quickly and with digital data from patients’ electronic health records (EHRs)
[7, 8, 9]. These models are repurposed versions of state-of-the-art models used in the
medical context, such as natural language processing (NLP), computer vision, and
time series forecasting, to name a few. As unplanned readmission prediction may be
conditioned by heterogeneous data, different types of models are usually combined
and trained in an end-to-end fashion [10]. For the proposals relying partially or fully
on a sequence of categorical features such as prescription, medication, and procedure,
we note that Transformers and Recurrent Neural Networks (RNNs) are the most pre-
ferred [11, 12, 13, 10]. This is justified by the fact that they are proven to be more
efficient than other models on sequence modeling tasks, such as emotion detection [14]
or machine translation [15].

Although several functional RNN and Transformer-based models [10, 11, 16] have
been developed to address the unplanned readmission prediction challenge, we have
noticed that most of them do not take into consideration one of the relevant factors,
namely the time elapsed between admissions when dealing with historical medical
events. This can be problematic because the model will assign the same level of impor-
tance to historical and current medical events. Furthermore, these models do not
incorporate an explicit mechanism that focuses on frequent clinical codes (diagnoses,
procedures, and medications) across admissions or visits. Given that frequent medical
events, such as chronic diseases, often result in patients returning to the hospital [17],
we assume that an explicit mechanism focusing on frequent clinical codes in general
and diseases (diagnoses) in particular should be built into the model’s core to enable
accurate prediction. To address these gaps, we then proposed a deep sequential neural
network-based model called Deep Magnitude Management (D2M), which processes the
content of sequential admissions based on their respective dates. Additionally, D2M
incorporates an explicit information transfer mechanism that allows it to focus on fre-
quent clinical codes while capturing their evolution over time. Note that our model
also has the advantage of working with all types of patients rather than being dedi-
cated to a specific patient cohort. Indeed, while remaining accurate, D2M may be an
alternative for hospitals that do not have sufficient funds and/or resources to develop
a model for each cohort of patients. Below, we outline the article’s main contributions:

• We introduce a deep sequential learning model called Deep Magnitude Management
(D2M) that overcomes the limitations of previous studies, namely the inability to
account for elapsed days between admissions when processing historical medical
events and the lack of a mechanism explicitly focused on frequent medical events,
such as chronic diseases, which are common causes of readmission;

• We show through extensive experiments and comparisons with the state-of-the-art
models that by overcoming the identified limitations, D2M makes it possible to
increase the accuracy of hospital readmission prediction;

• We show how the reasoning of D2M can be explained;
• And lastly, we provide a first step towards tackling the challenge of hospital

readmissions in healthcare.
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We use Medical Information Mart for Intensive Care (MIMIC-3) [18] to carry out
the experiments. The results obtained show that D2M is more effective in predicting
hospital readmission than competing models. We believe that D2M will certainly help
healthcare professionals, decision-makers, and ultimately patients by improving their
outcomes.

We organize the remaining portions of this paper as follows: We present the back-
ground work in Section 2. Section 3 provides a formal description of our model. In
Section 4, we examine the model’s performance and compare it with the state-of-the-
art models. We also conduct various ablation studies to highlight the significance of
D2M strategies and provide graphs to clarify the predictions. In Section 5, we discuss
the advantages and disadvantages of D2M. Finally, Section 6 recounts the takeaways
and contributions of this paper and sketches pathways for future work.

2 Background

The adoption of EHR by more and more healthcare institutions enables the use of
AI models for medical problem-solving. The combination of computer science and
medical knowledge has made it possible to develop functional models for tasks such
as breast cancer prediction [19], mortality prediction [20], and readmission prediction
[21], which is the task of interest in this study. Indeed, several approaches have been
proposed to solve the unplanned readmission problem. One of the most common is to
tackle it as an NLP task. The varied and rich content of the EHR makes this possible.
Indeed, EHR may include structured data like categorical data (clinical codes), time
series data, and patient demographics, and unstructured data like clinical notes, or
medical images.

Unstructured clinical notes alone may contain various relevant information about
the patient’s condition, treatment history, and visit information. For this reason,
several studies have used them exclusively to predict unplanned readmissions. For
instance, in [22] they used clinical notes for predicting heart failure readmission.
Instead of building a model to predict readmissions for a cohort of patients, the authors
in [13] and [23] proposed generic models that predict readmissions based on clinical
notes. Although authors in [13] used a transformer encoder for better data represen-
tation, they did not take the time factor into account. Additionally, the data quality
of unstructured text data like clinical notes is often insufficient for AI training [24].

As readmission prediction is generally confronted with unbalanced class problems,
various works introduced different loss function strategies [11, 12] to overcome this
problem. Unlike the aforementioned models, they used heterogeneous data such as lab-
oratory events, diagnoses, procedures, and patient demographics. In [25], authors used
the synthetic minority oversampling technique (SMOTE) [26] to balance the classes
during learning. As the deep learning model they used may discard some relevant
features during the forward pass, they explicitly injected other engineering features
to reinforce the learning. A limitation of this work is that the medical history is not
considered. In [27], they have shown that with an effective combination of knowledge
(engineering) and data-driven features, machine learning can overtake deep learning
methods in predicting unplanned readmissions. In contrast to [25], they included the
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patient’s data history while weighting it by the elapsed time. Although this method
addresses the readmission problem as well as we do, it is only suitable for patients with
chronic obstructive pulmonary disease. Another work similar to ours, i.e. a work that
takes into account the time elapsed between visits and incorporates attention mecha-
nisms, was proposed in [28]. However, the proposed method, Timeline, was designed
for breast cancer patients and does not include a mechanism that explicitly focuses
on frequent medical events. To predict the readmission rate of heart failure patients,
in [10] they implemented a content model using a vanilla RNN variant, to model the
sequential aspect of visits. The problem with vanilla RNNs is that they treat visits as
events that occur at regular time intervals. This is an incorrect assumption, as the time
between visits may differ. We note that, unlike all the models we have mentioned so
far, the content model has the advantage of explicitly leveraging patient similarities.
The authors in [29] built a model that exclusively predicts the unplanned readmission
of patients who have been treated in the emergency department. In [30], the authors
proposed to predict 30-day unplanned ICU readmission in heart failure patients by
taking into account historical medical events and their associated timestamps. To
integrate temporal information (timestamps), they mapped data extracted from the
EHR to event logs. Despite their use of historical medical events and associated times-
tamps, their method does not apply to patients with a single admission. This may be
limited in real-world scenarios where we would like to predict the readmission of a
patient who has been admitted for the first time and therefore has no historical med-
ical events. Our model has the advantage of being able to make predictions even for
patients without historical medical data. The authors of [31] created knowledge graph
embeddings from biomedical ontologies to make it easier to get meaning from clini-
cal features and store how they relate to each other. Although this approach makes it
possible to improve the accuracy of ICU readmission risk at different stages (before,
during, after), in particular during, the model is based solely on data from the current
admission. Similar work based on knowledge graphs has also been carried out in [32]
for ICU readmission prediction.

Since the patient’s daily behaviour and lifestyle after discharge from the hospi-
tal may be a factor in readmission, the authors in [33, 34] used data collected from
patients’ wearable devices to predict possible readmission at each stage of patient
treatment. In [35], they adopted an alternative approach that continuously monitored
and predicted readmission risk on a daily basis. Other works, such as [36, 37], have
also used data collected from wearable devices to predict the risk of readmission.

Although the works identified have obtained functional results, we have noted that
most of them do not take into account the time elapsed between admissions during
the learning process. For those that do take this aspect into account, they do not
incorporate an explicit mechanism focusing on frequent medical events or only predict
readmission for a specific cohort of patients.

3 Method

Partially or fully conditioned by textual or alphanumeric data, the prediction of
unplanned readmissions is generally approached as a natural language processing
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(NLP) task [10, 13], in particular as a sequential modelling task. Therefore, several
models, such as RNN and Transformer, have been redesigned to address the read-
mission prediction challenge [11, 13, 28]. Although functional, the majority of these
models do not take into account the time elapsed between admissions during their
decision-making process. For those that do, they do not integrate a mechanism that
explicitly focuses on frequent medical events that may be the cause of readmission.
Aware of these limitations, the D2M proposed model aims to fill these gaps. D2M is
a sequential model that processes the sequence of medical admissions based on their
date while focusing on frequent medical events (clinical codes) through an explicit
information transfer mechanism. We believe that our model will better equip health-
care professionals to anticipate possible unplanned readmissions, therefore enabling
them to improve healthcare delivery.

In what follows, we first introduce data notation, then we present the different com-
ponents of deep magnitude management (D2M). Finally, we present the readmission
prediction classifier.

3.1 Data notation

Let, D = {v1
n ∪ v2

n ∪ · · · ,v(J−1)
n ∪ vJ

n; sn;dn}n=1,2,··· ,N/1≤j≤J where N is the number

of samples and J the number of admissions. vj
n = {c2j1, c1j2, · · · , cljk}k=1,··· ,K is the

unordered set of clinical codes (procedures, prescriptions, and diagnoses) of the n-th
sample and the j-th admission. K is the number of clinical codes per admission. cljk is
a clinical code associated with the integer l at the index position k. 1 ≤ l ≤ L where L
is the number of distinct clinical codes (also called vocabulary size). We call the union

of all admissions v1
n∪v2

n∪· · · ,v(J−1)
n the historical medical events, and vJ

n the current
medical event. sn = [s1, · · · , sJ−2, sJ−1] is the elapsed time vector. sj represents the
time elapsed between the j-th and (j + 1)-th admission. dn = [d1, d2, d3, d4, d5] is the
vector of demographic codes (sex1, age) and additional information codes of the J-th
admission (the admission type, the length of stay and the insurance type) for the n-th
sample. We call dn complementary features.

3.2 Deep magnitude management (D2M)

Unlike existing sequential models such as RNN and Transformer, in D2M, the con-
dition allowing information transfer from one sequence (admission in our case) to
another is defined in advance and integrated into the model’s computational scheme.
When the condition is met, the transfer of information, controlled by two main aspects,
namely the time elapsed between admissions and their similarity, can take place. The
condition that D2M must meet to transfer the information is as follows: information
must flow from one admission to another if they have at least one common
clinical code. This strategy allows D2M to focus more on frequent medical events
such as chronic diseases that may cause readmission. The D2M architecture shown
in Figure 1 encompasses an order management component, an embedding layer, a
magnitude management layer, a feedforward neural network and a classifier. Each of

1Here, sex refers to a set of biological attributes that are associated with physical and physiological
features (e.g. chromosomal genotype, hormonal levels, internal and external anatomy).
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Fig. 1: D2M architecture: representation of the forward pass process with a patient
having 3 admissions. No information transfer is applied to calculate Q1 because V 1 is
the representation of the first admission. We did not apply decay factors to V 3 since
its clinical code embeddings are those of the current admission. The middle block
in the magnitude management illustrates how the intermediate admissions must be
processed if we have more than 2 admissions.

them is described in the following sections. The subscript n is omitted in the following
sections to simplify the formulas (except in Algorithm 1).

3.2.1 Order management algorithm

The order management algorithm provides the items needed to implement the con-
dition related to the information transfer. It rearranges the set of clinical codes vj

(j ̸= 1) and calculates a selection mask M j ∈ {0, 1}K×1 (j = 1, ...., J − 1) such as:

mj
k =

{
1 if cljk = clj+1

k

0 otherwise
(1)

where, cljk ∈ vj if j = 1, otherwise cljk ∈ vj rearranged. clj+1
k ∈ vj+1 rearranged (see

the order management block in Figure 1 for illustration). The selection mask M j will
be responsible for selecting the clinical codes in vj that should be weighted and added
to vj+1. Algorithm 1 lists the different order management instructions. Its complexity
is: O(N×(J−1)×2K) where N is the number of samples, J the number of admissions
per sample, and K the number of clinical codes per admission. It should be noted
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that order management (and hence the proposed model) is only applicable
if there is no sequential order in the input sequence.

Algorithm 1 Order management

Require: {v1
n ∪ v2

n ∪ · · · ,v(J−1)
n ∪ vJ

n}n=1,2,··· ,N ,M ∈ {0}N×J−1×K×1, N, J,K ▷ M
is the initial selection mask tensor.

1: for n = 1 to N do ▷ N is the number of samples.
2: for j = 1 to (J − 1) do ▷ J is the number of admissions per sample.
3: t, m=[],[] ▷ Intermediate variables.
4: for cljk in vj

n do

5: if (cljk ∈ vj+1
n ) and (cljk ̸= 0) then ▷ Zero is used as a filler value, so

we skip the calculation when it is encountered.
6: t.add(cljk) ▷ add cljk in t
7: m.add(1)
8: vj+1

n .remove(cljk) ▷ remove cljk in vj+1
n .

9: else
10: t.add(0)
11: m.add(0)
12: end if
13: end for
14: if

∑len(t)
i=1 ti > 0 then ▷ If at least one element of t is non-zero.

15: for ti in t do
16: if (ti == 0) and (len(vj+1

n ) > 0) then
17: clj+1

∗ ← vj+1
n .randomChoice() ▷ Randomly select an element

clj+1
∗=1,··· ,K ∈ vj+1

n .

18: ti ← clj+1
∗

19: vj+1
n .remove(clj+1

∗ )
20: end if
21: end for
22: vj+1

n ← t.padd(0,K) ▷ Zero padding to obtain t ∈ RK . vj+1
n is

rearranged.
23: m←m.padd(0,K) ▷ Zero padding to obtain m ∈ {0, 1}K .
24: M[n, j, :, 1]←mT ▷ Save the corresponding selection mask.
25: end if
26: end for
27: end for
28: return M

Once the selection mask has been calculated, the next step is to map each clinical
code to its embedding version. In the remainder of the article, we consider only two
admissions vj and vj+1. vj refers to the past admission (historical medical event)
and vj+1 to the current admission. In the case of more than two admissions, Figure 1
illustrates how they are processed.
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3.2.2 Clinical code embeddings

To encode each clinical code into a vector that carries its semantics and underlying
relationships with other codes, we passed them through an embedding layer:

V j , V j+1 = ρθ(vj ∥ vj+1
rearranged) (2)

where ρ(.) is the embedding layer. (. ∥ .) is the concatenate symbol and θ the learn-
able embedding parameters. V j and V j+1 ∈ RK×d are matrices where each row V j

k:

represents the embedding version χljk of the clinical code cljk. d is the dimension of the
embedding space. It should be noted that a single embedding layer is used because we
want a better representation of clinical codes. If we consider past and present medical
events as the overall context, the embedding process will work better because more
clinical codes will occur together, leading to more accurate clinical code embeddings.

In the following section, we describe how these clinical code embeddings are passed
through the magnitude management layer for sequential modelling of admissions.

3.2.3 Magnitude management

Magnitude management is a sequential layer that transfers information contained in
admission vj to admission vj+1. The clinical code in which the information is extracted
in vj must also be part of the admission vj+1. This strategy allows the model to better
capture frequent clinical codes in general and chronic diseases in particular.

We call this layer ’magnitude management’ because the explicit transfer of infor-
mation leads to a change in the magnitude of the clinical code embeddings. The
information transfer process is controlled by the similarity between successive admis-
sions (modelled by similarity scores) and the time elapsed between these admissions
(modelled by decay factors).

Similarity scores

Similarity scores are values that quantify the level of similarity between two succes-
sive admissions. Indeed, a patient may be diagnosed with the same disease on two
successive admissions, but the medical context of these admissions may be different.
It is therefore important, using similarity scores, to compare the medical context of
these two successive admissions before transferring any information. We distinguish
two types of similarity scores: the admission similarity score and the mask similarity
score.

The admission similarity score measures the similarity between the content of
successive admissions. In other words, it measures the degree of similarity between
the patient’s state of health at admission j and j + 1. The admission similarity score
is obtained as follows:

ϕj =
v̄j(v̄j+1)

T

||v̄j ||.||v̄j+1||+ ϵ
(3)

v̄∗ =

K∑

n=1

V ∗
n:; ∗ ∈ {j, j + 1} (4)
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where ϕj ∈ [−1, 1] is the admission similarity score between the j-th and (j + 1)-th
admission. ||.|| is the Euclidean norm symbol. v̄∗ ∈ Rd called admission embedding is
the sum of clinical embedding V ∗

k: = χl∗k. As some patients may not have any historical
medical events, i.e. ||v̄j || = 0, we add ϵ to the denominator in Equation 3 to prevent
division by zero.

The mask similarity score aims to encode the similarity of two successive admissions
based on their selection mask. Unlike the admission similarity score, which encodes
similarity between admissions at the content level, the mask similarity score encodes
admission similarity at the structure level. This can be viewed as comparing two people
on the basis of their physical appearance (mask similarity score) and their morality
(admission similarity score). In terms of matrix representation, let us imagine that we
have a selection mask whose values are all equal to one, which means that all clinical
codes appearing at admission j appear at admission j + 1. The patient’s condition at
these two admissions has therefore probably remained the same. The mask similarity
score is obtained through the non-linear and non-parametric transformation:

ωj =

{
σ(
∑K

n=1 M
j
n) if

∑K
n=1 M

j
n ̸= 0

0 otherwise
(5)

where σ is the sigmoid activation function. Equation 5 maintains the mask similarity
score scale between [0, 1].

Decay factors

We assume that a medical event that occurred a long time ago should not be inter-
preted in the same way as a medical event that occurred in the present. Therefore, we
calculated a decay factor matrix whose values model the importance of each clinical
code over time. Each decay factor value is specific to a clinical code, as clinical codes
such as diagnoses vary differently over time. For example, COVID-19 may take longer
to heal than the flu. Formally, if an admission has K clinical code embeddings, we
first concatenate them individually with the elapsed time value (see Equation 7). The
result of this concatenation is linearly transformed and passed through an exponential
decay function (Equation 6) to obtain the corresponding decay factor matrix:

∆j = exp{−max(0, δjW∆ + B∆)} (6)

δj = [sj ∥ V j
1:, · · · , sj ∥ V j

K:]
T (7)

V j
k: which is the k-th row of V j represents the clinical code embedding χljk. sj is the

elapsed time between the j-th and (j+1)-th admission. ∆j ∈ RK×1 is the decay factor
matrix. Each value ∆j

k is a decay factor value associated with the clinical embedding

χljk. W∆ ∈ R+(d+1)×1 and B∆ ∈ RK×1 are learnable parameters.
The values of the decay factor matrix ∆j ∈ ]0, 1] because

lim
∗→+∞

exp(−max(0, ∗)) = 0 and exp(0) = 1. Verbally, the higher the value of the

elapsed time sj between two consecutive admissions, the closer we expect the values
of the decay factor matrix ∆j to be to zero 2. Therefore, if a set of clinical codes was

2We say expect because decay factors also depend on clinical code embeddings.
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recorded long ago, their vector form (clinical code embedding) will be multiplied by
decay factors whose values are close to zero. This strategy allows historical clinical
codes to be used as additional information without significantly impacting prediction
if recorded long ago. By analogy, the physician can consult the medical history in
the patient’s electronic medical record before making a final decision. Based on the
patient’s current examinations, the physician will use the relevant medical history
as additional information to understand better what the patient is suffering from.
Although these are not the only factors, the relevance of a historical medical event
depends on when it was recorded, how often it occurred (e.g. was it a chronic disease?),
and whether it is a part of current medical events.

In the following paragraph, we show how the decay factor matrix is combined with
the similarity scores to control the information transfer process.

Information transfer process

The decay factor matrix, is combined with the similarity scores to guide the transfer
of information from one admission to the next. For the patient’s first admission, i.e.
the historical medical event, as we cannot transfer any information (because there was
no previous admission), we simply weighted the clinical code embeddings:

Qj = ∆j ⊙ V j (8)

where ⊙ is the Hadamard product and Qj ∈ RK×d represents V j rescaled (also called
latent representation of vj). The underlying intuition here is to reduce the magnitude
of clinical code embeddings χljk ∈ V j if they took place a long time ago, and to keep
their magnitude almost unchanged if they took place in the recent past.

For the second admission, which is the current medical event (since we are only
considering two admissions, i.e. J = 2), its rescaled representation is obtained as
follows:

Qj+1 = V j+1 + Γj ⊙M j ⊙ V j (9)

Γj = tanh([∆j ∥ ϕj ∥ ωj ]WΓ + bΓ) (10)

where Γj ∈ [−1, 1]K×1, the information transfer score matrix, is a non-linear trans-
formation of the concatenation of the decay factor values ∆j and similarity scores ϕj

and ωj . tanh(.) is the tangent hyperbolic function. WΓ ∈ R and bΓ ∈ R are learnable
parameters.

In the second term of Equation 9, M j selects the clinical code embeddings in V j

that are in V j+1, and Γj weights these clinical code embeddings. The operand + carries
out the information transfer from V j to V j+1. Each row Qj+1

k: of Qj+1 is either an

initial clinical code embedding χlj+1
k or a new clinical code embedding χlj+1

k +χljk×Γj
k

(see the magnitude management block in Figure 1 for illustration).
Each transfer score Γj

k controls the quantity and quality of information that should

be transferred from χljk to χlj+1
k . Quality here refers to the sign of Γj

k. When this latter

is negative, it tends to decrease the magnitude of χlj+1
k via the operation χlj+1

k +

χljk × Γj
k. Otherwise, it tends to increase 3 the magnitude of χlj+1

k . The underlying

3We say “tends to decrease (or increase)” because the signs of χljk × Γj
k also depend on χljk.
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intuition is that we want to increase the magnitude of a diagnosis embedding when
the corresponding disease worsens and decrease it when the disease improves. This
approach allows the model to capture disease progression over time, providing a more
accurate representation of the patient’s health status.

Once the information transfer process is complete, the latent representation of the
j-th and (j + 1)-th admission, Qj and Qj+1 respectively, will be combined as follows:

q = (q̄j ∥ q̄j+1) (11)

q̄∗ =

K∑

n=1

Q∗
k:; ∗ ∈ {j, j + 1} (12)

where q̄∗ ∈ R1×d is the sum of all rows in Q∗. q ∈ R1×2d is the latent patient’s condi-
tion vector. It will be combined with patient demographics and additional admission
information and then fed into the classifier.

3.3 Classifier

To find out whether admission will result in an unplanned readmission, we combine
the latent patient’s condition vector q with the latent complementary features d̃:

d̃ = fα(d) (13)

where f is a feedforward neural network with one layer and α its set of learnable
parameters. Therefore, the likelihood that a patient will be readmitted is:

ŷ = g1β1
◦ g2β2

· · · ◦ gSβS
((q ∥ d̃)) (14)

where the concatenation (q ∥ d̃) is the latent representation of the patient. ◦ is the
composition symbol. g2,g3 · · · , g(S) are (S − 1) stacked dense layers with relu as acti-
vation function. g1 is the last feedforward neural network with sigmoid as activation
function. β1,β2, · · · ,βS are the learnable parameters. ŷ ∈ [0, 1] is the likelihood that a
patient will be readmitted.

As a loss function, we used the binary cross entropy, defined as follows:

L = − 1

N

N∑

n=1

[yn ∗ ln (ŷn) + (1− yn) ∗ ln (1− ŷn)] (15)

where y is the true value. It should be noted that other loss functions, such as weighted
binary cross entropy and focal loss [38], which are designed for unbalanced classification
problems, were tested, but we did not obtain any improvement.

4 Experimental evaluation

This section is devoted to the empirical evaluation of the proposed model. First, we
present the dataset and the data extraction process. Then, we benchmark the model
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against state-of-the-art models and carry out various ablation studies to demonstrate
the effectiveness of strategies implemented in D2M. Finally, some graphs are provided
to explain how the model makes decisions.

We coded the proposed model using the Python 3.0 programming language and
the machine learning libraries Keras 2.9.0 and TensorFlow 2.9.2. All remaining pre-
processing and performance evaluations were done with NumPy, Pandas, and Scikit-
Learn libraries. Finally, we ran the code on a computer cluster with the following
characteristics: The AMD Threadripper 3960X is a 24-core, 48-thread processor with
128 GB of memory. It is paired with an NVidia 3090 GPU with 24 GB of graphics
memory.

4.1 Dataset

To conduct the study, we used MIMIC-3, a large and freely available database compris-
ing disidentified health-related data from forty thousand patients who were admitted
between 2001 and 2012 to the critical care units of the Beth Israel Deaconess Medical
Center. The data was collected from:

• Archives from critical care information systems (namely MetaVvision and CareVue)
• Hospital EHR databases
• Social Security Administration Death Master File

Indeed, MIMIC is one of the most widely used databases in the literature for bench-
marking machine learning models designed for medical problems. We used hospital
EHR data to obtain billing-related information such as patient demographics, in-
hospital mortality and clinical codes in the format of the International Classification
of Disease, 9th Edition (ICD-9). From the admissions table, we initially extracted data
from 46, 520 patients. We removed patients under 18 years old. In hospitals, death
excludes readmission, so admissions with death are eliminated. Out-patients were
excluded. In-patients for whom we did not have data on diagnosis, prescriptions, and
procedures were also excluded. Finally, patients admitted only once and whose date of
death (outside the hospital) is unknown were removed. It is worth pointing out that
the deceased patients filtered out are those who die in the hospital and not outside
the hospital. After applying these filters, we obtained 15, 344 samples, of which 2, 600
(10.20%) are linked to unplanned readmissions (positive cases) and 12, 744 are not
(negative cases). The following cases are considered unplanned readmission: patients
readmitted within 30 days after discharge from the hospital; and patients who died
within 30 days of discharge from the hospital. It should be noted that a hospital read-
mission unrelated to diagnoses made on the previous admission is not classified as
unplanned hospital readmission. The maximum number of admissions per patient is
2, which is approximately the average number of admissions per patient across the
entire database. The data extraction process is illustrated in Figure 2 and the data
description is summarized in Table 1.
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Fig. 2: Data extraction process.

Table 1: Data description

Features Values

# of clinical codes 8, 422
# of clinical codes per admission 107
Average # of admissions per patient 2
Average age 68
# of admission types 3
# of insurance types 5
Average length of stay 11 days

4.2 Model setting

We performed an extensive grid search to obtain the optimal hyperparameters of the
model. The retained values of these hyperparameters are as follows: the embedding
dimension is 50 (see Equation 2); a dropout of 0.8 is applied on q̄j+1; the dense layer
dedicated to extracting information from complementary features has 15 units and its
activation function is relu (see Equation 13); and finally, the classifier is composed of
two stacked dense layers with 45 units and 1 unit respectively (see Equation 14).
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We used the Adam optimizer to fit the model’s parameters during training. The
learning value rate was set to 0.001. The number of epochs and the batch size value
were set to 100 and 200, respectively. We used 5-fold cross-validation to train and
evaluate our model and competitors. Technically, during five loops, 4/5 of the dataset
was used for training (validation included 10%) and the remaining 1/5 for testing.
The hyperparameters and training parameters of the competing models are presented
in Appendix A.

4.3 Readmission prediction performances

We usher in this section with a focus on in-hospital readmission prediction accuracy.
Since the dataset is unbalanced, the Area Under the ROC Curve (AUC) and the Area
Under the Precision-Recall Curve (AUPRC) were used as metrics. The proposed model
and the competitors have been run over 5-fold cross-validation. The average AUC and
AUPRC are reported in Table 2. The confusion matrices from a 1-fold cross-validation
are also provided in Appendix B.

Long Short-Term Memory (LSTM) [39], GRU-Decay 4 [20] (GRU stands for Gated
Recurrent Unit), Retain [40], Timeline [28], Transformer [41] (only the encoder is
used), and Logistic Regression (LR) are the competing models against which we evalu-
ated the proposed model for benchmarking purposes. Except for the LR model, whose
admissions are encoded in a one-hot encoding format, the admissions for all other
models are the sum (or weighted sum) of clinical code embeddings.

Table 2: AUC and AUPRC scores over 5-fold cross-validation of competing models
vs ours.

Models AUC AUPRC # of parameters

GRU-Decay [20] 0.691± 0.010 0.364± 0.007 921, 865
LR 0.641± 0.008 0.303± 0.005 119,40
LSTM [39] 0.673± 0.009 0.343± 0.008 1, 018, 356
Retain [40] 0.686± 0.012 0.348± 0.010 723, 060
Timeline [28] 0.692± 0.010 0.361± 0.011 749, 555
Transformer [41] 0.684± 0.015 0.358± 0.014 637, 756
D2M 0.705± 0.007 0.372± 0.012 601,787

± Standard deviation.

From Table 2, we observe that D2M achieves the best AUC and AUPRC scores.
This confirms the effectiveness of the different strategies we have implemented. We
find that all models incorporating a mechanism for modelling the time elapsed between
admissions, including Timeline and GRU-decay, obtain the best results after our
model. This shows just how crucial it is to consider the time factor.

Our model’s emphasis on frequent clinical codes can be seen as an attention mech-
anism. Consequently, if we compare this attention with that of Retain (attention at

4Unlike the original version proposed in [20], it does not incorporate the imputation strategy.
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admission level) and Transformer (attention at clinical code level), we can assume
that ours, in the case of readmission prediction, is more effective because of the higher
scores we obtained. The fact that the elapsed time factor is a part of our attention
mechanism may explain this superiority. Indeed, our model focuses on frequent clini-
cal codes while considering their evolution over time. This is not the case with Retain
and Transformer. Although Timeline incorporates an attention mechanism that also
exploits the elapsed time factor, it does not explicitly focus on frequent clinical codes.
This may explain its underperformance compared to D2M.

LSTM and Transformer are less accurate than GRU-decay, Timeline and D2M
because they treat medical events as if they always occurred at regular time intervals.
This is the wrong approach because the time between admissions is decidedly irregular.
For instance, in Transformer, the position-encoding vectors that encode the order of
admissions assume a regular interval of one day between admissions.

It is also observed that models such as LSTM and LR, which do not incorpo-
rate attention mechanisms, perform less well than the other models including Retain,
Timeline, Transformer and D2M, which all incorporate attention mechanisms. This
underperformance highlights the crucial role played by attention mechanisms when
processing complex and heterogeneous data such as medical data.

Unsurprisingly, the LR model, the unique non-deep learning model, is the least
accurate. Indeed, while the LR model requires, in some cases, additional feature engi-
neering to be more efficient, deep learning models can extract hidden features and
therefore do not need additional feature engineering. This capability makes them, in
most cases, more efficient than traditional machine learning and statistical models.

Regarding the number of parameters, Table 2 shows that D2M is the deep learning
model with the fewest parameters. With climate change a major concern and infor-
mation technology (IT) playing an important role in achieving the United Nations’
sustainable development goals [42], it is important to offer functional and green mod-
els [43]. This green aspect involves providing models with a relatively small number of
parameters while remaining sufficiently accurate. In conclusion, if we have to make a
compromise between performance and ecology, our model seems to be the best choice
for the hospital readmission prediction task.

4.4 Ablation studies

In this section, we perform two specific ablation studies: one at the model architecture
level and another at the data level.

4.4.1 Ablation study at model architecture level

This ablation study consists of evaluating D2M performance in different configurations,
including:

• Without (w/o) decay factors: the first admission was not weighted (see Equation
8), and the decay factors were not integrated into the information transfer score
matrix (see Equation 10);

• w/o similarity scores: similarity scores (see Equations 3 and 5) were not
integrated into the information transfer score matrix (see Equation 10);
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The modified mathematical formulas for these different configurations and the results
obtained are presented in Table 3. We observe a drop in D2M performance when decay
factors, and similarity scores, are not used. These results reinforce our assertion of
the importance of exploiting the time elapsed between admissions and their mutual
similarities. We note that D2M performance is more affected when the decay factors
matrix is excluded than when similarity scores are. We assume this is because, even
without similarity scores, the decay factor matrix can implicitly capture how similar
two admissions are based on the time elapsed. We believe that in a classification
or regression task exclusively related to chronic diseases, D2M would perform better
because the selection mask (see Equation 1) will be less sparse and therefore bring
more information into the decision process.

Table 3: Ablation study at model architecture level.

Configuration AUC AUPRC Formula

w/o decay factors 0.692± 0.012 0.359± 0.012

Qj = V j

Γj =
tanh([ϕj ∥ ωj ]

WΓ +BΓ)

w/o similarity scores 0.699± 0.012 0.365± 0.010
Γj = tanh(∆j

WΓ +BΓ)

Full 0.705± 0.007 0.372± 0.012

± Standard deviation. w/o Without.

4.4.2 Ablation study at data level

We dedicate this second ablation study to assessing D2M performance when:

• Clinical codes are excluded: w/o clinical codes. We did not use clinical codes as
input features (see Equation 14). Only complementary features are used;

• Complementary features (see subsection 3.1) are excluded: w/o complementary
features.

Table 4: Ablation study at data level.

Input AUC AUPRC Formula

w/o complementary features 0.683± 0.010 0.334± 0.013 ŷ = g1β1
◦ g2β2

· · · ◦ gSβS
(q)

w/o clinical codes 0.531± 0.002 0.183± 0.013 ŷ = g1β1
◦ g2β2

· · · ◦ gSβS
(d̃)

Full 0.705± 0.007 0.372± 0.012

± Standard deviation.

The results reported in Table 4 show that D2M performs poorly when clinical codes
and complementary features are not simultaneously used as inputs. We can conclude
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that the model performs better when some data are combined than when they are
processed separately. For instance, breast cancer (diagnosis) and female (sex) will
provide more information to the model when processed together rather than separately.

We have found that D2M performs better when it is fed only with clinical codes
than when it is fed exclusively with complementary features. Obviously, we expected
a significant performance drop by only exploiting the complementary features. The
goal of this configuration was to show the contribution of clinical code data. This
comparison leads us to deduce that diagnoses, prescriptions, and procedures (clinical
codes) are the primary features that should be considered for unplanned hospital
readmission prediction.

4.5 Explainability

In sensitive fields such as medicine, model accuracy is not the only factor that matters.
The model must also be trustworthy. In other words, the model must be accurate and
explainable. Not only is this important from a legal point of view, but it also enables
healthcare professionals to understand the model’s behaviour. The more explainable
the model, the higher the likelihood of its adoption. To meet the second condition, i.e.
explainability, we provide in this section several graphs that healthcare professionals
can use to understand the factors driving the model’s decisions. The explanation given
through the graphs is based on clinical code embeddings (Equation 2), the decay
factors (Equation 6), and the information transfer scores (Equation 10). The following
paragraphs explore the reasoning behind the model based on a use case. Note that the
words disease and diagnosis are used interchangeably in what follows.

Initially, to predict unplanned readmissions, patients’ clinical codes need to be
mapped to embedded vectors for efficient information representation. The first graph
in Figure 3 shows the diseases (also called diagnoses) diagnosed at the patient’s first
admission in a two-dimensional embedding space. The values of the x and y axes can-
not be interpreted; they are just mathematical representations of the data. However,
we would expect similar diseases with a similar context closer together. Health profes-
sionals can use this first graph to study hidden relationships between different diseases
and check whether the extracted information matches their knowledge.

In the second graph (Figure 4), time information, via the decay factors, is added
to the disease embeddings (or diagnosis embeddings) of the patient’s first admission.
Decay factors allow the model to learn how long diseases last. The higher they are,
the more likely it is that the diseases will still be present after some time and increase
the risk of readmission. The lower they are, the less likely it is that the diseases
will be present after some time, which could decrease the chance of readmission. In
other words, the decay factor quantifies the presence of a disease over time. Clinical
codes with a low decay factor should have a low impact on patient readmission. As
an example, Primary open-angle glaucoma has a high decay factor in Figure 4, which
makes sense because the disease is chronic and not curable. Also, a high decay factor of
infection with drug-resistant microorganisms makes sense because it often requires a
protracted treatment and increases the risk of complications, especially in the elderly
population. Interesting is the low decay factor of anaplastic large cell lymphoma, which
is a rare type of cancer which is fast-growing and often returns, compared to glaucoma.

18



Fig. 3: Diagnosis embeddings of the patient’s first admission.

This could be a hallucination of the model. Or the model really learned the fact that
drug-resistant infections are often hard to treat in the elderly population and increase
the risk of complications or even death. Overall, healthcare professionals will use the
second graph to see how an illness lasts over time and to check whether this duration
matches their knowledge.

The third graph (Figure 5) plays the same role as the first, except that the disease
embeddings are those from the patient’s second admission. In addition to the disease
embeddings, we introduced information transfer scores in Figure 6 that quantify the
amount of information added or subtracted from current diseases. This score is only
available for diseases of the second admission that have been diagnosed during the
first hospital admission (highlighted in yellow in Figures 5 and 6). The underlying
assumption is that not all diseases are equally important for unplanned readmissions
because there are common diseases, such as glaucoma with a lower impact, and more
complex diseases such as malignancies. The higher the information transfer score, the
more information on a disease that occurred during the previous admission is added
or subtracted 5 to the information relating to the same disease during the second
admission. This can be seen as a doctor merging information about the progress of the
disease based on medical records from previous admissions in which the disease was
diagnosed. This strategy enables the model to focus on chronic diseases and capture
their evolution over time. This principle is shown in our example case (Figure 6) where

5Depending on the sign of the information transfer score.
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Fig. 4: Diagnosis embeddings of the patient’s first admission with decay factors.

tracheostomy complications and large cell lymphoma scored higher because they are
highly relevant for potential readmission. Healthcare professionals can use this fourth
graph (Figure 6) to analyse the significance of diseases across successive admissions
and check whether the information extracted aligns with their knowledge.
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Fig. 5: Diagnosis embeddings of the patient’s second admission.

Fig. 6: Diagnosis embeddings of the patient’s second admission with information
transfer scores.
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5 Discussion

Beyond its ability to deliver superior performance over competing models, it is worth
mentioning that D2M has the advantage of being designed for any type of patient
whose number of admissions may vary. This makes it an ideal candidate for use in
real-life situations where patient medical profiles are heterogeneous. Moreover, in a
world where climate change is a major concern, its relatively small number of param-
eters compared with existing models designed to solve the problem of predicting
readmissions gives it an advantage in terms of energy and resource consumption.

While the above aspect makes D2M an ideal model for predicting unplanned hos-
pital readmission, its explanatory capacity remains limited. Indeed, as described in
subsection 4.5, through the decay factor value and information transfer score, we can
quantify to what extent a diagnosis influences the prediction. However, these decay
factor values and information transfer scores are not available for diagnoses in the cur-
rent admission that do not appear in the most recent historical medical event. This is
a limitation in terms of explainability, since the prediction may depend on these diag-
noses. The priority for further work is then to find a way to assign weights to these
diagnoses to make the D2M explainability capacity more complete.

As demonstrated in the figures in Section 4.5, the model might not capture current
medical knowledge perfectly. We can observe some potential hallucinations in terms
of the clustering of similar diseases, the decay factors, and the information transfer
scores. Apart from hallucinations, there is also the possibility that the model captured
and visualized connections that we have not yet understood and therefore cannot be
explained using current medical knowledge. As is widely known in the data science
community, this is typical for deep learning but needs to be taken into account and
explained when demonstrating the capabilities of the models to healthcare profession-
als, where the knowledge of the technical functionality of deep learning might not be
as high.

In terms of generalization, we assume that as long as some patients involved in
a health study (classification, regression) have historical medical events with their
corresponding registration dates; clinical codes can be encoded as categorical features
(e.g. ICD code for diagnoses); and patient demographics and additional information
are available, the proposed model can be used and can provide satisfactory results.
However, we are aware of the need to evaluate the model with non-ICD codes with a
coarser granularity than ICD. Indeed, there is no guarantee that the D2M performance
is not due to the ability of ICD codes to encode a considerable amount of medical
information at once.

Although unplanned readmissions have been used to quantify treatment quality,
this approach brings certain limitations. With datasets that only contain data from
one hospital, such as MIMIC, no unplanned readmission can also be the result of the
patient being admitted to another treatment facility. Additionally, based on the health
insurance system in the US, readmission might not happen because of financial issues.
Another limitation from a clinical point of view is the use of ICD-9 codes. ICD-9 was
retired in 2015. Disease classifications change over time. Compared to ICD-11, the cur-
rent coding standard for diseases in healthcare, ICD-9 offers a less granular capturing
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of diseases and does not always reflect the current state of the art in medical knowl-
edge. From a sampling perspective, the MIMIC dataset is primarily limited to ICU
patients who typically have more severe conditions and consequently have a differ-
ent treatment trajectory than other patients. That information is not captured in the
data and therefore could introduce a bias in the prediction. Nevertheless, the MIMIC
dataset has become a standard benchmark dataset for evaluating AI algorithms in
medicine and has therefore been used for this study.

Even though the AUC is acceptable, the AUPRC of our current model is rather
low, which is quite common also in similar studies [10, 44]. Although we outperform
other model architectures, the AUPRC would need to be drastically improved in order
to really bring benefit to patients and clinicians in a real-world scenario. We assume,
that the low AUPRC is because of the relatively low number of positive samples. In
future research, we plan to exploit a dataset containing a larger number of positive
samples and include additional features such as laboratory reports and vital signs
to improve AUPRC and AUC. To better understand the implications of the above-
mentioned limitations, further research, especially the evaluation of the proposed D2M
model in a clinical trial, is encouraged.

6 Conclusion

To improve the prediction of unplanned hospital readmissions, we designed a sequen-
tial deep learning model called Deep Magnitude Management (D2M) that processes
patient medical information recorded during successive admissions. In contrast with
the existing sequential models designed to address the unplanned hospital readmis-
sion challenge, D2M has the particularity of processing patients’ medical information
while taking into account the date on which this information was recorded. Addition-
ally, D2M incorporates an explicit information transfer mechanism that allows it to
focus on frequent medical events such as chronic diseases. These two strategies, which
aim to reduce the impact of medical events that occurred a long time ago and focus
on frequent medical events such as chronic diseases that often have a high impact on
unplanned readmissions, make it possible to predict readmissions more accurately. We
support our assertion by comparing D2M’s performance with that of state-of-the-art
models. Explainability being crucial in the medical field, we also offer an explainabil-
ity component based on four graphs that can be explored by healthcare professionals
to understand how the model arrived at a given decision. Following further evalua-
tion and training with more data, we believe D2M will help healthcare professionals
address the challenges associated with unplanned readmissions, including better man-
agement of medical resources, improved care and reduced expenditure for patients and
healthcare institutions.

Appendix A Competitor models’ setting

The hyperparameters and training configurations of competing models are as follows:

• LR: its penalty norm is L2 (ridge regression). It was trained over 1000 iterations;
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• LSTM [39]: the number of LSTM units is set to 300, and the training was done over
80 epochs;

• Timeline [28]: the dimension of the query and key vectors is set to 100, and the
number of the two RNN units (because it is bidirectional) is set to 100. It was
trained over 120 epochs;

• GRU-Decay [20]: the number of GRU units is set at 300 and they were trained over
170 epochs;

• Retain [40]: the number of its two RNN units (RNNβ and RNNα) is set to 100 and
it was trained over 40 epochs;

• Transformer [41]: the number of head attention is set to 4. Its feedforward neural
network (FNN) has 100 units. A dropout of 0.8 is applied to the output of the FNN.
It was trained over 50 epochs.

The remaining training hyperparameters are the same as those used to train our model.

Appendix B Confusion matrices

In this section, we present the confusion matrices for each model obtained from the
training set of 1-fold cross-validation. Each model is evaluated with the default thresh-
old 0.5 and the optimal threshold obtained with the Threshold-Moving technique.
Sensitivity and Specificity are also reported.

Although these confusion matrices do not reflect the overall performance of the
models, they provide insight into the performance of each model.
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(a) GRU-Decay

(b) LR

(c) LSTM

Fig. B1: Confusion matrices of GRU-Decay, LR and LSTM.
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(a) Retain

(b) Timeline

(c) Transformer

Fig. B2: Confusion matrices of Retain, Timeline and Transformer.
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(a) D2M

Fig. B3: Confusion matrices of D2M.
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