
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

IDK40LT

Anton Charnamord 134458IAPB

GENETIC APPROXIMATIONS FOR

THE FAILURE-FREE SECURITY

GAMES

Bachelor’s Thesis

Supervisor: Aleksandr Lenin

Ph.D

associated lecturer

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Informaatikainstituut

IDK40LT

Anton Charnamord 134458IAPB

GENEETILISED LÄHENDUSED

VEAVABADE TURVAMÄNGUDE

JAOKS

Bakalaureusetöö

Supervisor: Aleksandr Lenin

Ph.D

mittekoosseisuline õppejõud

Tallinn 2016

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials,

references to the literature and the work of others have been referred to. This thesis

has not been presented for examination anywhere else.

Author: Anton Charnamord

23.05.2016

3

Abstract

This thesis deals with computational aspects of attack trees, more precisely, evalu-

ating the expected adversarial utility in the failure-free game. It has been shown by

Buldas and Lenin that exact evaluation of this utility is an NP-complete problem,

so a computationally feasible approximation is needed. The thesis considers a ge-

netic approach for this challenge. Since genetic algorithms depend on a number of

non-trivial parameters, we now have a multi-objective optimization problem. The

work considers several heuristic criteria to solve them.

This thesis is written in English and is 35 pages long, including 6 chapters, 13 figures,

3 tables and 4 algorithms.

4

Abstract

Geneetilised Lähendused Veavabade Turvamänguge jaoks

Väitekirjas uuritakse ründepuude arvutuslikke aspekte, täpsemalt ründaja oote-

tulu hindamist veavaba turvamängus. Buldas ja Lenin näitasid, et ootetulu täpne

arvutamine on NP-täielik probleem ja seega on vajalikud arvutuslikult tõhusad

lähendid. Väitekiri vaatleb üldist lähenemist sellele väljakutsele. Et geneetilised

algoritmid sõltuvad paljudest mittetriviaalsetest parameetritest, siis tekivad mitme-

eesmärgilised optimiseerimisprobleemid. Töös vaadeldakse mitmeid heuristilisi kri-

teeriume nende lahendamiseks.

Lõputöö on kirjutatud inglise keeles keeles ning sisaldab teksti 35 leheküljel, 6

peatükki, 13 joonist, 3 tabelit ja 4 algoritmi.

5

List of Abbreviations and Symbols

Abbreviation Definition

AGA adaptive genetic algorithm

GA genetic algorithm

PDAG propositional directed acyclic graph

SAT Boolean satisfiability

Symbol Definition

X set of atomic attacks

xi atomic attack

F monotone Boolean function

σ attack suite

P prize of a SAT game

Ei expenses of Xi

pi probability of success of Xi

6

Contents

1 Introduction 10

1.1 Theoretical Background and Problem 10

1.2 Problem Statement . 10

1.3 Methodology . 11

1.3.1 Optimisation Methods . 11

1.3.2 Genetic Algorithm . 12

1.4 Thesis Outline . 12

2 State of the Art 13

2.1 Related Research . 13

2.2 Algorithm Basis . 14

3 Experiment Setup 16

3.1 Terms and Definitions . 16

3.2 Tools and Environment . 17

4 Genetic Algorithm 19

4.1 Individual . 19

4.2 Population Size . 20

4.3 Fitness Function . 22

4.4 Crossover . 23

4.5 Mutation Operator and Mutation Rate 24

4.6 Summary for GA Parameter Choice 26

5 Adaptive Genetic Algorithm 29

5.1 Adaptive Genetic Approach . 29

5.2 Population Size . 29

5.3 Summary for AGA . 30

6 Summary 33

7

List of Figures

2.1 Estimated Adversarial Utility . 15

3.1 Attack Tree Example . 17

4.1 Optimal population size . 21

4.2 Reasonable choice for population size 21

4.3 Population size effect on GA execution time. 22

4.4 Uniform crossover compared to single point crossover 24

4.5 Uniform crossover compared to two point crossover 24

4.6 One point crossover compared to two point crossover 25

4.7 GA mutation rate effect . 26

4.8 GA execution time . 27

5.1 Optimal population size . 30

5.2 Reasonable choice for population size 31

5.3 AGA execution time . 31

8

List of Tables

4.1 GA execution time complexity estimations 28

5.1 AGA execution time complexity estimations 32

6.1 GA vs AGA . 33

List of Algorithms

3.2.1 Attack tree generation algorithm . 18

4.1.1 Recursive individual generation algorithm 19

4.3.1 Fitness function . 22

4.4.1 The uniform crossover operation . 25

9

1 Introduction

This thesis is an extended version of the paper[1] which covers the results of the

research conducted in 2015.

1.1 Theoretical Background and Problem

It is well-known that security assessment methods use modelling approach which

allows to create a model of the analysed organisation. During the modelling process,

a model state, at which the model is considered to be protected, must be defined.

At the next stage of the process, computational methods check whether the model

is protected with respect to the model security definition.

A number of possible attack strategies is considered in order to model various adver-

sarial actions against the system. The strategies correspond to certain assumptions

of attacker’s behaviour. These models are called security games.

It is also known that solving a security game is a complex task which tends to belong

to NP-space. From a practical standpoint, heuristic methods are widely used. These

methods calculate the result with an acceptable accuracy within reasonable time.

1.2 Problem Statement

Buldas, A. and Lenin, A. introduced a certain type of security games called satisfia-

bility games [2, 3]. This new type of security assessment considers rational attackers

that perform targeted profit-oriented attacks. Attack trees are used to represent

all possible ways to attack. Based on them, expected adversarial expenses are cal-

culated. If the profit of an attacker exceeds his expenses, it is concluded that the

10

system requires to introduce additional security measures.

To solve satisfiability game means to answer the question: if there exists an attack

against the organisation where the total expenses of the attacker are lower then the

profit. This problem was named weighted monotone satisfiability problem and is an

NP-complete problem, so a computationally feasible approximation is needed.

Therefore, the main purpose of the work is to create an approximation method that

allows to solve satisfiability games in particular cases.

1.3 Methodology

1.3.1 Optimisation Methods

It is known that there is a wide range of various optimisation algorithms and meth-

ods. Some of the most popular approaches are:

• simplex method

• Karmarkar’s algorithm

• gradient ascent algorithm

• simulated annealing approach

Although the first three algorithms are very powerful and widespread, they cannot

be applied to this particular case. These approximation methods use fitness land-

scape function which is unknown for the considered model. The last approximation

algorithm is totally suitable and could be chosen to provide the research with a

plausible approximation. However, genetic approach has been chosen to solve the

optimisation problem. Based on the previous experience with GA implementation,

it is important to compare the results of the current research with the previous

ones [4].

11

1.3.2 Genetic Algorithm

A genetic algorithm typically depends on various parameters. The set of parameters

commonly contains the following:

• A genetic representation of chromosomes also known as individuals which

are feasible solutions for the optimization problem.

• A population of encoded solutions which is the number of used individuals.

• Fitness function which evaluates the optimality of the solutions.

• Genetic operators such as selection, crossover, mutation that generate a

new population from the existing one.

• Control parameters such as population size, crossover rate, mutation

rate, and the condition under which the reproduction process terminates.

Selecting all these loosely connected parameters is considered to be a non-trivial

task. Taking into account all the possible ways of solving the problem, collecting

heuristic evidence for optimal parameter selection was chosen as a basic method of

optimising the considered parameters of the algorithm. In order to do it, attack

tree generator was created to provide the research with suitable data set. The data

set was used as a benchmark data for the conducted experiments at which heuristic

evidences were collected empirically.

1.4 Thesis Outline

The work has the following structure. First, Chapter 2 draws the state of the art.

Then, Chapter 3 provides the reader with the theoretical background and initial

setup of the conducted experiments. Chapter 4 presents and evaluates the genetic

algorithm. This algorithm is improved with adaptiveness in Chapter 5. Finally,

Summary draws some conclusions.

12

2 State of the Art

2.1 Related Research

Security threats can be described and assessed using attack trees. This hierarchical

method for estimation of security risks represents a set of attacks against a system

as a tree structure, where the root of the tree is considered to be an attacker’s

goal. Intermediate and terminal nodes of the tree are used to illustrate a variety

of possible ways, in which the system can be attacked. Every attack against the

real organisation consists of atomic actions (atomic attacks) that the attacker has

to perform in order to achieve his goal.

In addition to purely descriptive approach which uses attack trees, computational

aspects have been introduced since its first descriptions. Based upon the variables

of an attack tree, the result of its analysis may vary. The value of a certain attack

can be assessed according to different set of criteria. For instance, it can be the cost

of the attack or expected profit.

Most of the earlier attack tree studies focus on the analysis of a single parameter. A

substantial step forward was taken by Buldas et al. [5] who introduced the idea of

game-theoretic modelling of the adversarial decision making process based on several

interconnected parameters like the cost, risks and penalties associated with different

atomic attacks. Their approach was later refined by Jürgenson et al. who introduce

sequentiality into the adversarial decision making model [6]. However, increase in the

model precision was accompanied by a significant drop in computational efficiency.

To compensate for that, a genetic algorithm approach was proposed by Jürgenson

et al. [4]. It was later shown by Lenin et al. that this approach is flexible enough to

allow extensions like attacker models [7].

Buldas et al. [8] introduced the upper bound ideology by pointing out that in order to

verify the security of the system, it is not necessary to compute the exact adversarial

13

utility but only the upper bounds. If adversarial utility has a negative upper bound

in their fully adaptive model, it is safe to conclude that there are no beneficial ways

of attacking the system.

Buldas et al. further improved the fully adaptive model by eliminating the force

failure states and suggested the new model called the failure-free model [2]. The

model more closely followed the upper bounds ideology originally introduced by

Buldas et al. [8] and turned out to be computationally somewhat easier to analyse.

2.2 Algorithm Basis

Based on the previous research of Buldas et al. [2], exact evaluation of adversarial

utility in the case of the failure-free game is an NP-complete problem, so a compu-

tationally feasible approximation is needed. The whole family of genetic algorithms

is considered to be one of the most widely used approaches to provide an approxi-

mation to NP-complete problems. This typical approximation approach is aimed to

significantly increase efficiency of computations. However, the increment in speed

of computations is accompanied by a drop in precision of results.

Hence, the main objective of the approximation is to find the cheapest solution that

does not exceed the specified value which is the prize P of the game. On one hand,

the propagation method [2] establishes the fixed upper bound for the adversarial

utility and limits real utility from above. On the other hand, the chosen genetic

approximation of the precise method aims at approaching the precise result from

below. Fig. 2.1 illustrates an interval which contains the real adversarial utility.

The interval has a fixed upper bound and sliding lower bound. The real adversarial

utility lies somewhere within the interval and cannot be well-determined during

the analysis. The upper bound is determined by the propagation method while

the lower bound is set by the genetic approximation. Therefore, the more precise

approximation is implemented, the closer the genetics to the precise result is.

14

UGen

UReal

UProp

U
ti
li
ty Utility Upper Bound

Real Utility

Utility Lower Bound

Figure 2.1: Estimated Adversarial Utility

15

3 Experiment Setup

3.1 Terms and Definitions

Every attack tree can be represented as a monotone Boolean function where the

arguments of the function correspond to the tree leaves and the ∧ and ∨ logic

operators correspond to AND and OR intermediate nodes, accordingly.

Let X = {x1, x2, . . . , xn} be the set of all possible atomic attacks, and F be a

monotone Boolean function corresponding to the considered attack tree.

Definition 1 (Attack Suite). Attack suite σ ⊆ X is a set of atomic attacks which

have been chosen by the adversary to be launched and used to try to achieve the

attacker’s goal. Also known as individual.

Definition 2 (Satisfying attack suite). A satisfying attack suite σ evaluates F to

true when all the atomic attacks from the attack suite σ have been evaluated to true.

Also known as live individual.

Definition 3 (Satisfiability game). A satisfiability game is mean a single-player

game in which the player’s goal is to satisfy a monotone Boolean function F (x1, x2, . . . , xk)

by picking variables xi one at a time and assigning xi = 1. Each time the player

picks the variable xi he pays some amount of expenses Ei, which is modelled as a

random variable. With a certain probability pi the move xi succeeds. The game ends

when the condition F ≡ 1 is satisfied and the player wins the prize P ∈ R, or when

the condition F ≡ 0 is satisfied, meaning the loss of the game, or when the player

stops playing. Thus three common types of games can be defined:

1. SAT Game Without Repetitions - the type of a game where a player can per-

form a move only once.

2. SAT Game With Repetitions - the type of a game where a player can re-run

failed moves an arbitrary number of times.

16

∨

∧

x1 x2 x3

∨

x4 x5

∧

x6 x7 x8

Figure 3.1: Attack Tree Example

3. Failure-Free SAT Game - the type of a game in which all success probabilities

are equal to 1. It has been shown that any game with repetitions is equivalent

to a failure-free game [2, Thm. 5].

For example, Fig. 3.1 shows an attack tree that can be interpreted as Boolean

function F = (x1 ∧ x2 ∧ x3) ∨ (x3 ∨ x4) ∨ (x6 ∧ x7 ∧ x8) with solutions: σ1 = {x5},
σ2 = {x1, x2, x3}, σ3 = {x4, x6, x7, x8}, etc.

3.2 Tools and Environment

Let the length of an attack tree is the number of leaves in the tree. All the ex-

periments and measurements described below have been conducted using sets of

randomly generated attack trees of different lengths. Algorithm 3.2.1 illustrates the

main logic of creation attack trees with specified number of leaves.

The reproduction process, as well as the condition, under which reproduction termi-

nates, is identical to the one described in [7]. According to Lenin et al., the repro-

duction phase terminates when the pre-defined number of last generations does not

increase outcome. Result of the current generation is considered to be not improving

the result of the previous generation if the difference between the results does not

exceed the pre-set value.

In addition, an extra stop condition has been introduced and implemented in GA

in this work. The evolution process is aborted when the algorithm run time exceeds

17

Algorithm 3.2.1: Attack tree generation algorithm

Data: The length of the generated attack tree Nl

Result: The root of generated attack tree

List of Nodes leaves := generate Nl random leaves;

List of Nodes notLinkedNodes := empty List;

add leaves to notLinkedNodes;

while (size of notLinkedNodes != 1) do

Node node := generate random intermediate Node;

childrenNum := randomly choose the number of the node’s children;

for i from 0 to childrenNum do

child := retrieve a node with a random index from notLinkedNodes;

set child to node;

Node root := retrieve the only element from notLinkedNodes;

return root;

the pre-set value. This constraint allows to get results not relying on the assumption

that the method will converge in the desired timeframe.

All the following computations were made with PC/Intel Core i5-4590 CPU @ 3.30

GHz, 8 GB RAM, Windows 8.1 (64 bit) operating system.

18

4 Genetic Algorithm

4.1 Individual

An individual is any feasible solution to the considered optimisation problem. Thus,

for the SAT games a solution is any of the satisfying attack suites. The linear

binary representation of individuals has been chosen to facilitate the robustness of

the crossover and mutation operations. The algorithm used to generate individuals

is shown in Algorithm 4.1.1.

Algorithm 4.1.1: Recursive individual generation algorithm

Data: The root of a propositional directed acyclic graph (PDAG)

representing a monotone Boolean function. An empty individual with

all bits set to 0.

Result: Live individual.

if the root is a leaf then

get the index of the leaf;

set corresponding individual’s bit to 1;

else if the root is an AND node then

forall children of the root do

recursive call: child considered as root parameter;

else if the root is an OR node then

choose at least one child;

forall chosen children do

recursive call: child considered as root parameter;

It is allowed for duplicate entries to be present in the population for the sake of

maintaining genetic variation and keeping the population size constant throughout

the reproduction process. It is well known in the field of genetic algorithms that

genetic variation directly influences the chances of premature convergence – thus

19

increasing genetic variation in the population is one of the design goals.

4.2 Population Size

The choice of the population size is important – too small population does not

contain enough genetic variation to maintain the exploration capabilities, whereas

too big population already contains enough genetic variation to efficiently explore

the search space, and only results in the performance overhead in the crossover

operator. This means that there exists an optimal population size corresponding to

the minimal population size capable of producing the best result. Thus the optimal

size of the population sets the lower bound for reasonable choice for the population

size, and the upper bound is solely based on performance considerations – what is

the reasonable time the analysts would agree to wait for the analysis to produce

the result. If the population size is suboptimal, there is a high risk to converge to

suboptimal solutions, and if the population is bigger than the optimal size it does

not add anything, except for the increase in the time required to run the analysis.

If the optimal population in some certain case is k% of the size of the attack tree

(the number of leaves in an attack tree), then any population size greater than k%

and capable of producing the result in reasonable time, would suit to be used for

analysis.

Fig. 4.1 demonstrates the effect of the population size on the result in the case of a

single attack tree. The measurements were taken for the attack tree with 100 leaves

using uniform crossover operator and mutation rate 0.1.

The experiments have been conducted on the set of attack trees of different sizes

(ranging from 10 to 100 leaves with steps of size 3) and observed that there is no

obvious relation between the size of the analysed tree and the optimal population

size. Apart from the size of the tree, the optimal population size might depend on,

at the very least, the structure of the tree itself. The measurements were taken with

the same crossover operator and the same mutation rate. Fig. 4.2 shows how many

trees (%) from the conducted experiment the considered population size would fit.

It can be seen that, in general, the population size equal to 180% of the size of the

tree would fit every considered attack tree. The population size 200%, chosen by

20

0 10 20 30 40 50

0

25

50

75

100

Population size

(# of individuals)

P
re

c
is
io
n
(%

)

average

minimal

maximal

Figure 4.1: Optimal population size

Jürgenson et al. in [4] for their ApproxTree model, was reasonable enough to be

optimal for the majority of the trees one might wish to analyse using their model.

Fig. 4.2 shows that in the case the population size was chosen (based on practical

or performance considerations) to be 50% of the size of the attack tree, this choice

would be optimal for approximately 75% of attack trees, and for the rest 25% of the

cases this choice might be suboptimal.

0 30 60 90 120 150 180

0

20

40

60

80

100

Population size

(% of the size of the tree)

%
o
f
th

e
c
o
n
si
d
e
re

d
tr
e
e
s

Figure 4.2: Reasonable choice for population size

Fig. 4.3 shows the time measurement for the suggested GA, depending on the size

of the population.

21

0 20 40 60 80 100 120 140 160 180 200

0

56

112

168

224

280

Population size (# of individuals)

T
im

e
(s
e
c
o
n
d
s)

Average execution time

Minimal execution time

Maximal execution time

Figure 4.3: Population size effect on GA execution time.

4.3 Fitness Function

The fitness function is the model-specific utility function for the Failure-Free SAT

game. The function’s result is the cost of the considered attack tree without actual

costs of all atomic attacks that are picked by the attacker. The pseudo-code of the

Failure-Free fitness function is shown in Algorithm 4.3.1.

Algorithm 4.3.1: Fitness function

Data: The indivividual that is an attack suite for the PDAG.

Result: Numeric value of the individual’s utility.

utility := the cost of the PDAG;

forall bits of the individual do

if the bit is active then
leaf := PDAG’s leaf corresponding to the individual’s bit with

expenses Eleaf and probability pleaf ;

utility := utility -
Eleaf
pleaf

;

return utility;

For more information about the function the reader is referred to the detailed de-

scriptions of the security games [9, 4, 7, 8, 2].

22

4.4 Crossover

Lenin et al. have shown that the crossover operations take 90-99% of the time

required to run the analysis [7].

The power of GA arises from crossover, which causes randomized, but still struc-

tured exchange of genetic material between individuals in assumption that ’good’

individuals will produce even better ones. The crossover rate controls the proba-

bility at which individuals are subjected to crossover. Individuals, not subjected to

crossover, remain unmodified. The higher the crossover rate is, the quicker the new

solutions get introduced into the population. At the same time, chances increase

for the solutions to get disrupted faster than selection can exploit them. The se-

lection operator selects individuals for crossing and its role is to direct the search

towards promising solutions. It was decided to disable parent selection entirely thus

defaulting to crossing every individual with every other individual in the popula-

tion (crossover rate equal to 1), as scalable selection pressure comes along with the

selection mechanisms after reproduction.

Notable crossover techniques include the single-point, the two-point, and the uniform

crossover types. Figures 4.4, 4.5 and 4.6 demonstrate the differences between the

convergence speeds resulting from using various crossover operators. These diagrams

show the difference between mean convergence speed and standard deviation from

it. It can be seen that even though there are cases when the choice of the crossover

operator does matter, graphs show that the considered crossover operators are, in

general, similar enough and do not have any major differences nor effect on the

convergence speed of the GA.

Our choice fell upon using the uniform crossover – this enables a more exploratory

approach to crossover than the traditional exploitative approach, resulting in a more

complete exploration of the search space with maintaining the exchange of good

information. The algorithm for the crossover operator is shown in Algorithm 4.4.1.

23

−10

0

10

D
iff

er
en

ce
in

c
o
n
v
e
rg

e
n
c
e
sp

e
e
d

(#
o
f
g
e
n
e
ra

ti
o
n
s)

Figure 4.4: Uniform crossover compared to single point crossover

−10

0

10

D
iff

er
en

ce
in

c
o
n
v
e
rg

e
n
c
e
sp

e
e
d

(#
o
f
g
e
n
e
ra

ti
o
n
s)

Figure 4.5: Uniform crossover compared to two point crossover

4.5 Mutation Operator and Mutation Rate

The role of the mutation operator is to restore lost or unexplored genetic material

into the population thus increasing the genetic variance and preventing premature

convergence to suboptimal solutions. The mutation rate controls the rate at which

’genes’ are subjected to mutation. High levels of mutation rate turn GA into a

random search algorithm, while too low levels of mutation rates are unable to restore

genetic material efficiently enough thus the algorithm risks converging to suboptimal

solutions. Typically the mutation rate is kept rather small, in the range 0.005−0.05.

In the implementation of the genetic algorithm, the mutation operator is a part of

the crossover operation, mutating the genes, having same value in the corresponding

positions in both parent individuals. The uniform crossover randomly picks corre-

24

−10

0

10

D
iff

er
en

ce
in

c
o
n
v
e
rg

e
n
c
e
sp

e
e
d

(#
o
f
g
e
n
e
ra

ti
o
n
s)

Figure 4.6: One point crossover compared to two point crossover

Algorithm 4.4.1: The uniform crossover operation

Data: The population of individuals represented as a sorted set.

Result: The population with new added individuals, created during the

crossover operation.

initialize a new set of individuals;

forall individual i in the population do

forall individual j different from i do
new individual := the result of cross operation between

individuals i and j ;

if new individual is alive then

add the new individual to the set of new individuals;

add the set of new individuals to the population;

sponding bits in the parent individuals to be used in the new individual, and thus

in the case bits are different, this already provides sufficient genetic variation. How-

ever, in the case when bits have the same value this yields just a single choice and

in order to increase the genetic variation (compared to its parents) just these bits

are mutated.

Fig. 4.7 demonstrates the mutation rate effect on the utility function for the case

of an attack tree with 100-leaves with initial population of 50 individuals. It shows,

that when the mutation rate exceeds 0.1, GA turns into a random search algorithm,

thus it is reasonable to keep the mutation rate rather small. Similar experiments

were conducted on larger sets of attack trees and the results have shown that the

25

optimal value for the mutation rate is not necessarily small – in some cases the

optimal mutation rate was 0.6 or even higher. This means that the optimal value

for the mutation rate cannot be set from the very beginning – it highly depends on

the structure of the fitness landscape. However, it is still reasonable to follow the

general rule of thumb to keep the mutation rate small, assuming that this should

work for the majority of the cases.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

85

90

95

100

Mutation rate (%)

P
re

c
is
io
n

(%
)

Average utility

Minimal utility

Maximal utility

Figure 4.7: GA mutation rate effect

4.6 Summary for GA Parameter Choice

Thus, the following set of GA parameters was found out.

• Crossover operator: uniform crossover.

• Crossover rate: 1.

• Selection operator: missing.

• Mutation operator: uniform mutation.

• Mutation rate: 0.1.

It is important to determine the practical applicability boundaries for the suggested

method. Practical applicability means the maximal size of the attack tree, which

26

the computational method is capable of analysing in reasonable time, set to two

hours. Extrapolating the time consumption curve in Fig. 4.8 it was concluded that

theoretically the suggested GA is capable of analysing attack trees containing up

to 800 leaves in reasonable time. This is a major advancement compared to the

ApproxTree model [4] which would take more than 900 hours to complete such a

task. Such a considerable increase in efficiency is due to the fact that the Failure-

Free model [2], where the adversaries are allowed to re-run failed attacks again

an arbitrary number of times, is easier to analyse than the Jürgenson-Willemson

parallel model [9] even with all the optimizations suggested in [4].

The execution time complexity estimations for GA are outlined in Table 4.1.

0 50 100 150 200 250 300 350 400 450 500

0

500

1,000

1,500

2,000

Attack tree size (# of leaves)

E
x
e
c
u
ti
o
n

ti
m
e
(s
e
c
o
n
d
s)

Average case

Best case

Worst case

Figure 4.8: GA execution time

For comparison, the execution time complexity of the ApproxTree model [4] was

estimated to be O(n4), where n is the number of leaves in the attack tree. This

difference comes from the fact that ApproxTree runs for a fixed number of genera-

tions, whereas the computations presented in this work run until local convergence,

as well as the fact that the utility function used in ApproxTree is considerably more

complex, compared to the corresponding utility function used in the Failure-Free

model.

27

Table 4.1: GA execution time complexity estimations

Case Approximation polynomial R2 coefficient

Worst 1.68 · 10−5n3 − 0.003n2 + 0.7015n− 23.03 0.99

Average 1.41 · 10−5n3 − 0.001n2 + 0.25n− 8.81 0.99

Best 1.26 · 10−5n3 + 1.62 · 10−5n2 + 0.047n− 2.55 0.99

28

5 Adaptive Genetic Algorithm

5.1 Adaptive Genetic Approach

During the research, two algorithms were compared. The genetic algorithm sug-

gested in Chapter 4 was compared to the adaptive genetic approach described in [10].

The authors suggest to adaptively vary the values of crossover and mutation rates,

depending on the fitness values of the solutions in the population. High fitness so-

lutions are ’protected’ and solutions with sub-average fitness are totally disrupted.

It was suggested to detect whether the algorithm is converging to an optimum by

evaluating the difference between the maximal and the average fitness values in the

population fmax− f̄ , which is likely to be less for the population which is converging

to an optimum solution than for a population scattered across the solution space.

Thus the corresponding values of the mutation and crossover rates are increased

when the algorithm is converging to an optimum and decreased when the popula-

tion gets too scattered. The authors concluded that the performance of AGA is in

general superior to the performance of GA but varies considerably from problem to

problem. The suggested method was applied to the problem of the security games.

5.2 Population Size

In the case of the adaptive genetic algorithm, the crossover and mutation rate param-

eters are assigned their initial values and are changed adaptively during the runtime

of the algorithm, and the only parameter which remains fixed is the population size.

Similarly to the GA, there exists an optimal population size, corresponding to the

minimal population size, capable of producing the maximal result. Fig. 5.1 shows

the result corresponding to the computations using various population sizes in the

experiment setup similar to the one for GA. It can be observed that the optimal

population size cannot be easily determined (as was the case in GA). In the case of

29

0 40 80 120 160 200

0

20

40

60

80

100

Population size

(# of individuals)

P
re

c
is
io
n
(%

)

average

minimal

maximal

Figure 5.1: Optimal population size

GA, the maximal value was stable with the increase in the population size, however

in the case of AGA some fluctuations are present. Fig. 5.2 shows how many trees

(%) from the conducted experiment the considered population size would fit. It can

be seen that, in general, the population size equal to 200% of the size of the tree

would fit every considered attack tree. If the population size was chosen (based on

practical or performance considerations) to be 50% of the size of the attack tree,

this choice would be optimal for approximately 42% of attack trees (in the case

of GA the corresponding value was 75%), and for the rest 68% of the cases this

choice might be suboptimal. Based on these observations, it can be concluded that

AGA seems to be more robust, but less stable, compared to GA and requires bigger

population sizes in order to produce optimal results for the majority of the cases.

5.3 Summary for AGA

Similarly to the GA, the maximal size of the attack tree which AGA is capable of

analysing within reasonable timeframe was estimated, set to two hours. Extrapo-

lating the time consumption curve with the most extreme values trimmed out in

Fig. 5.3 it was concluded that theoretically AGA is capable of analysing attack trees

containing up to 26000 leaves in reasonable timeframe, which is approximately 32

times more efficient compared to GA.

30

0 30 60 90 120 150 180

0

20

40

60

80

100

Population size

(% of the size of the tree)

%
o
f
th

e
c
o
n
si
d
e
re

d
tr
e
e
s

Figure 5.2: Reasonable choice for population size

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

Attack tree size (# of leaves)

E
x
e
c
u
ti
o
n

ti
m
e
(s
e
c
o
n
d
s)

average case

best case

worst case

Figure 5.3: AGA execution time

31

The execution time complexity estimations for AGA are outlined in Table 5.1.

Table 5.1: AGA execution time complexity estimations

Case Approximation polynomial R2 coefficient

Worst 3.985x3 − 0.0001x2 + 0.0358x− 1.1970 0.90

Average 3.5731x3 − 0.0001x2 + 0.0267x− 0.8786 0.94

Best 3.1892x3 − 0.0001x2 + 0.0192x− 0.6115 0.96

32

6 Summary

The objective of the work was to develop a new algorithm to solve security games.

Among numerous alternatives, genetic approach to approximation was considered,

since it is known to have worked on similar problems previously. Though, GA is

a domain specific approach depending on various loosely connected parameters, a

number of experiments was conducted and empirical evidence was collected. This

heuristic evidence helped to select optimal algorithm parameters.

In the course of the research, two genetics algorithm implementation were com-

pared. Table 6.1 illustrates the advantages and disadvantages of both GA and AGA

implementations.

Table 6.1: GA vs AGA

GA AGA

P
ro

s more stable generally faster convergence

smaller population size

C
on

s generally slower convergence less stable

larger population size

In comparison to GA, AGA converges generally faster and is more robust. Based on

the assumption that execution time is the most critical parameter, it is concluded

that AGA should be preferred to plain GA to achieve the practical goals.

From a practical standpoint, a new algorithm for solving satisfiability games was

developed. In comparison to algorithms, that were previously implemented to solve

similar problems [4], the considered algorithm is more effective providing comparable

accuracy level.

33

References

[1] Lenin, A., Willemson, J., Charnamord, A.: Genetic approximations for the

failure-free security games. In: Decision and Game Theory for Security - 6th

International Conference, GameSec 2015, London, UK, November 4-5, 2015,

Proceedings. (2015) 311–321

[2] Buldas, A., Lenin, A.: New efficient utility upper bounds for the fully adaptive

model of attack trees. In: Decision and Game Theory for Security - 4th Inter-

national Conference, GameSec 2013, Fort Worth, TX, USA, November 11-12,

2013. Proceedings. (2013) 192–205

[3] Lenin, A.: Reliable and efficient determination of the likelihood of rational

attacks. PhD thesis, Tallinn University of Technology, Tallinn, TUT Press,

2015 (12 2015)

[4] Jürgenson, A., Willemson, J.: On Fast and Approximate Attack Tree Compu-

tations. In Kwak, J., Deng, R.H., Won, Y., Wang, G., eds.: ISPEC. Volume

6047 of Lecture Notes in Computer Science., Springer (2010) 56–66

[5] Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational

Choice of Security Measures via Multi-Parameter Attack Trees. In: Critical

Information Infrastructures Security. First International Workshop, CRITIS

2006. Volume 4347 of LNCS., Springer (2006) 235–248

[6] Jürgenson, A., Willemson, J.: Serial Model for Attack Tree Computations. In

Lee, D., Hong, S., eds.: ICISC. Volume 5984 of Lecture Notes in Computer

Science., Springer (2009) 118–128

[7] Lenin, A., Willemson, J., Sari, D.P.: Attacker profiling in quantitative secu-

rity assessment based on attack trees. In: Secure IT Systems - 19th Nordic

Conference, NordSec 2014, Tromsø, Norway, October 15-17, 2014, Proceedings.

(2014) 199–212

34

[8] Buldas, A., Stepanenko, R.: Upper bounds for adversaries’ utility in attack

trees. In: Decision and Game Theory for Security - Third International Con-

ference, GameSec 2012, Budapest, Hungary, November 5-6, 2012. Proceedings.

(2012) 98–117

[9] Jürgenson, A., Willemson, J.: Computing Exact Outcomes of Multi-parameter

Attack Trees. In Meersman, R., Tari, Z., eds.: OTM Conferences (2). Volume

5332 of Lecture Notes in Computer Science., Springer (2008) 1036–1051

[10] Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation

in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics

24(4) (1994) 656–667

35

