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Abstract 

Fileless threats are on the rise and most recently adopted by a broader range of malware 

such as ransomware, crypto-mining malware. In this modern era, cloud computing is 

widely used due to the financial benefits and high availability. Virtualization is the base 

concept of cloud technology. Due to the prevalence of virtual resources, organizational 

cloud is one of the most targeted points by cyber attackers. Sophisticated attacks such as 

fileless threats are most popular among cyber attackers as they are hardly detected by 

traditional detection solutions. Besides, advanced attacks are capable of altering the 

exiting detection solutions to evade detection. Therefore, typical antivirus solutions 

considered as untrusted upon the presence of advance attacks.  Machine learning 

technology widely used in numerous researches as an alternative mechanism to detect 

malware attacks. In this paper, novel and trusted methodology have been used to detect 

fileless threats in cloud. Volatile memory dumps collected from virtual machines upon 

the execution of each malware and legitimate applications. In addition, necessary features 

extracted for analysis by using the opensource Volatility framework. Sandbox analysis 

report has been used to obtain additional network-level features related to each program. 

Thereafter, extracted volatile memory features and network-level features analyzed using 

random forest machine learning model to predict malicious behaviour of fileless threats.  

Altogether, 33 features analyzed using machine learning model. As per the analysis, 96% 

accuracy has been obtained using entire feature set and 83% accuracy achieved using the 

most important feature. Despite the fact that fileless threats do not leave any traces in the 

hard disk, still, it has traditional malware features such as create network connections and 

processes. This analysis showed that fileless threats executes in the memory, leaves traces 

that allow detecting using feature analysis. Finally, the proposed methodology shows that 

analysis of different feature, including volatile memory, can be used to distinguish the 

different state of computer systems and use them to optimize the new trend of fileless 

malware detection accuracy.  

This thesis is written in English and is 61 pages long, including 6 chapters, 8 figures and 

11 tables. 
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Annotatsioon 

Failivaba pahavara tuvastamine pilveteenuses kasutades masinõpe 

tehnikaid 

Failideta ohud on tõusuteel ja viimasel ajal on neid laiemalt kasutusele võetud 

pahavarades, näiteks lunavara ja krüptokaevandamise pahavarad. Sel kaasaegsel ajastul 

kasutatakse pilvandmetöötlust laialdaselt rahaliste eeliste ja kerge kättesaadavuse tõttu. 

Pilvetehnoloogia põhikontseptsioon on virtualiseerimine. Virtuaalsete ressursside 

levimuse tõttu on organisatsiooni pilv küberründajate üks enim sihtpunkte. Keerukad 

rünnakud, nagu failideta ründed on küberründajate seas kõige populaarsemad, kuna 

traditsiooniliste tuvastamislahendustega neid peaaegu ei saa tuvastada. Lisaks on 

täiustatud rünnakud võimelised muutma olemasolevaid avastamislahendusi, et vältida 

tuvastamist. Seetõttu peetakse tüüpilisi viirusetõrjelahendusi eelnevalt mainitud 

rünnakute esinemise korral ebausaldusväärseteks. Uuritud on kõigi pahavara ja 

õigustatud rakenduste käivitamisel virtuaalsetest masinatest kogutud hävimälu 

mälumahud. Lisaks on analüüsimiseks vajalikud omadused eraldatud, kasutades avatud 

lähtekoodiga Volatility raamistikku. Iga programmiga seotud täiendavate võrgutaseme 

tunnuste saamiseks on kasutatud liivakasti analüüsi aruannet. Seejärel analüüsiti 

eraldatud hävimälu mäluomadusi ja võrgutasandi omadusi, kasutades „random forrest“ 

õppimismudelit, et ennustada failideta ohtude pahatahtlikku käitumist. Kokku analüüsiti 

masinõppe mudeli abil 33 omadust. Analüüsi kohaselt on kogu tunnuste komplekti abil 

saavutatud 96% täpsus ja kõige olulisema omaduse analüüsimisel saadud 83% täpsus. 

Vaatamata asjaolule, et failivabad ohud ei jäta kõvakettale jälgi, on sellel siiski 

traditsioonilised pahavarafunktsioonid, näiteks võrguühenduste loomine ja protsesside 

käivitamine. See analüüs näitas, et failivabad ohud käivituvad mälus ja jätavad jälgi, mis 

võimaldavad erinevate omaduste analüüsi abil neid tuvastada. Kokkuvõtteks näitab 

pakutud metoodika, et erinevate omaduste, sealhulgas hävimälu analüüsi abil saab 

arvutisüsteemide erinevat olekut tuvastada ja kasutada neid failivaba pahavara 

tuvastamise tehnikate täpsemaks optimeerimiseks.  

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 61 leheküljel, 6 peatükki, 8 

joonist, 11 tabelit. 

 

https://et.wiktionary.org/wiki/h%C3%A4vim%C3%A4lu
https://et.wiktionary.org/wiki/h%C3%A4vim%C3%A4lu
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1 Introduction 

Cloud computing is one of the widely used concepts in the modern era. Cloud computing 

enables end-user to access computer system resources and data via the internet. This is 

one of the key features that emphasize cloud computing from traditional computer system 

infrastructure. Most organizations deploy their computer infrastructure in the cloud to 

ensure high availability. Virtualization is one of the key concepts in cloud computing. 

Virtual resources such as virtual servers, virtual switches and virtual network devices 

widely used to provide more accurate and feasible service while providing high 

availability for the organization computer resources. Based on the Flexera survey on 

cloud computing trends [1], 84% of organizations use multi-cloud (including private, 

public and hybrid cloud environment). Furthermore, as per the survey, this use of cloud 

trend has drastically increased compared to the previous year.  

As cloud computing is one of the most popular and widely used services among the 

organizations, cyber-attacks are more frequent for this platform. Most cyber attackers are 

more focus on servers and data storages deployed in the cloud platform as critical data is 

one of their primary concerns. Upon the advance and sophisticated attacks, organization 

may not even discover the compromised assets despite the presence of endpoint detection 

platforms such as antivirus. In addition, cloud services introduce new challenges to 

security organizations as one compromise virtual machines may lead to a huge security 

breach [2].  

Fileless or non-malware attacks are on the rise and most recently adopted by a broader 

range of malware such as ransomware, crypto-mining malware. Fileless threats are one 

of the advance attack types among the malware trends history. Fileless malware differs 

from traditional malware as it doesn’t require to install any malicious software to infect 

victim machine [3]. Additionally, unlike typical malware, fileless threats don’t write 

anything to disk, but it writes to the RAM and evade detection of traditional antivirus 

security [4]. Customer service and managerial staff at retailers targeted by fileless 
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malware campaign called August from TA530 during November 2016 [5]. August steal 

credentials and sensitive data from the infected computer.  

As per the existing security solutions, prevention of fileless attacks are relies upon 

endpoint protection solutions such as antivirus. However, these solutions have limited 

capabilities to detect unknown attacks and sophisticated attacks, as most of them are 

relying on signature matching. As fileless threats do not leave any malicious files in the 

system and use only legitimate Windows components to carry out the attack, endpoint 

detection software cannot generate a signature definition to detect the specific threat. 

Signatures refer to data explained the characteristics of malware. This data can be used to 

determine whether the victim machine or software application contains malware [6]. This 

makes a challenge, as the antivirus doesn’t know what to look for. Since fileless attacks 

use living off the land (LoL) tactics, it is more difficult to detect by traditional detection 

engines. Cyber attackers tend to use fileless malware to carry out the attack as it has the 

capability to evade most of the traditional detection methods. Therefore, it is not 

surprising that most organizations face difficulty to detect and handle these types of 

incidents. As per the Symantec threat intel report, attackers use LoL tactics and 

preinstalled system tools to evade detection and hide malicious activities during the attack 

[7].  

As the report by ThreatVector, even though fileless attacks are relatively rare, existing 

attacks are advance and sophisticated compare to the traditional attacks [8]. Fileless 

attacks get its name by not leaving files on disk, but it is residing in the memory and 

execute commands and run tools which are legitimate and already installed in the victim 

machine. For instance, often fileless threat use PowerShell to carry out the attacks. 

PowerShell is a powerful scripting language and can use for various reasons such as make 

remote connections, invoke other applications and process etc. “Kovter” is one of 

sophisticated fileless attack which began leveraging in 2016. “Kovter” is a pervasive 

click-fraud trojan that utilizes a fileless persistence mechanism to build up the attack and 

evade traditional detection mechanisms [9].  

Apart from that, most of the sophisticated advance malware capable of altering or 

interfere with the detection functionality exiting antivirus solutions to avoid detection or 

trigger alarms/alerts. This considers as another significant weakness of existing detection 

solution that is available on the market. 
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As per the insufficient accuracy of detecting fileless threats by using traditional signature 

matching detection solutions, security researchers work on different detection logics such 

as machine learning and behavioural analysis. Behaviour pattern analysis and machine 

learning detection techniques have proven that those are accurate and efficient enough to 

detect advance malware threats such as ransomware [10]. However, features in volatile 

memory have not been tested with machine learning algorithms to detect most emerging 

fileless threats.  

In this study, we focus on presenting a novel methodology to detect most emerging 

fileless threats in the organization’s private cloud by analyzing volatile memory using 

machine learning algorithms. Volatile memory dumps have been extracted from the 

virtual machines. Volatility framework has been used to extract the meta-features from 

memory dumps and leverage them using machine learning algorithms to detect fileless 

malware threats. In the proposed methodology, memory extraction, analysis and 

detections are mainly operating on hypervisor level. Therefore, malware running inside 

the virtual machine cannot interfere or evade the analyzing and detection functionality. 

For instance, we analyze the volatility memory dumps taken from victim machines and 

malware that is running on the machine cannot detect any underground operation such as 

taking the snapshot as it executes in the hypervisor level.  

Most of the traditional threat detection solutions detect malware upon the results of static 

or dynamic analysis of suspicious file/s running in the victim machine [11]. Thus, the 

existing solution is not capable of detecting fileless threats as it does not create any 

malicious files to carry out the attack. To overcome this limitation, the proposed 

methodology evaluates the volatile memory using machine learning algorithms to 

distinguish the usual and unusual behaviour of the system. In this study, infrastructure 

has been mainly deployed on Microsoft Hyper-V virtualization environment and VMware 

virtual environment. Additionally, the proposed methodology has been tested against 

Windows 7, Windows 10 using a list of known fileless attacks.  
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2 Background Information 

Important background information regards to the fileless threats, virtualization, cloud 

computing, virtual environment, and volatile memory forensics have been expressed in 

this section. 

2.1 Fileless malware 

Fileless malware is one of the most emerging threats in history. According to the 

Cybereason [12], unlike traditional malware, fileless threats do not require the threat actor 

to install any software on the victim machine. Instead, fileless threats leverage tools and 

application that are in-built in Windows, such as PowerShell to take out the malicious 

actions. Since these tools and related operations are usually trusted by all detection 

software, it is particularly a challenge to differentiate and distinguish these types of 

malicious activities from legitimate activities [12]. Apart from that, fileless infection does 

not store anything in the hard drive; instead, it goes straight into the Random-Access 

Memory (RAM) which leaves no traces behind. However, as this type of malware 

operates in volatile memory, the operation can be terminated upon the system reboot. 

Same as most advance attacks today, fileless attacks also use social engineering tactics 

for the entry points such as malicious link in the email which leads the user to download 

the word document with a malicious macro. According to Microsoft fileless malware 

article, there are three primary categories of fileless attack types [13].  

- No file activity performed:  

Completely fileless malware that is not writing any file on the disk. For instance, 

during SMB EternalBlue vulnerability also refer as SMB MS17-010 vulnerability 

exploitation, victim machine receives malicious network packets that exploit 

SMB vulnerability, leads to install DoublePulsar backdoor and end up reside only 

in the kernel memory. EternalBlue is a powerful cyberattack exploit released by 

well-known hacker group known as Shadow Brokers. This exploit kit uses SMB 

MS17-010 vulnerability to exploit unpatched Microsoft systems. Importantly 

during this attack, no “write to file” operation involved.  
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- Indirect file activity: 

This type does not directly write files on the system but ends up using files 

indirectly. For example, attackers use PowerShell to execute malicious commands 

and configure Windows management instrumentation (WMI) to run commands 

periodically. WMI is a Microsoft implementation which allows to obtain data 

from a remote computer. Also, this compatible with WMI scripting facility to 

automate administrative tasks. WMI mainly developed by Microsoft for 

administrative purpose. However, attackers misuse WMI to interact with remote 

machines and perform malicious operations such as information gathering and 

remote execution [14]. 

 

- Files required to operate:  

This malware contains partial fileless characteristics as sometimes files involve 

delivering the payload. An example for this scenario is “Kovter” fileless malware 

which leaves open a backdoor in the victim machine by executing malicious script 

through the legitimate tool mshta.exe. Payload for the “Kovter” can receive via 

word document with a malicious macro. 

 

Apart from that, there are some other methods that fileless threat can arrive into the 

machine such as via exploit, through compromised hardware, or via execution of 

script/application. Some advance fileless threats infect into the master boot record 

(MBR), which bootstrap the execution of malware even before load the operation system 

[13]. MBR is a special section of the disk that loads operating system information and 

hard disk partition information. Adversaries overwrite this special section to invoke 

malicious code upon the start-up of normal bootloader [15]. According to the McAfee 

threat report, fileless threats are typically used for lateral movement and gaining fist level 

access to the system [16]. Lateral movement refers to a set of techniques and tools that 

attackers use to progressively spread throughout the victim network and obtain higher 

privilege access [17]. Creative cybercriminals aim at four main aspects by developing 

fileless malware [18], 

- Stealth: The ability to hide malicious activities to evade the detection 

- Privilege escalation: The ability to take over the administrative access by 

exploiting system vulnerabilities 
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- Gather information: Harvest information and data about victim network for 

later usage  

- Persistence: Malware remain undetected  

Fileless threat mainly differs from typical malware is where the advance techniques of 

persistence and stealth mechanisms take place.  Attacker also develops fileless threats to 

first store the payload on the RAM to gain persistence. The main reason to hide the 

payload in the RAM instead of hard disk, is to evade the detection. There are mainly three 

techniques that fileless threats follow to remain undetected [18],  

- Memory-resident malware: Load malicious code into the memory and use 

windows authentic programs to carry out the attack. For instance, use Windows 

legitimate process mshta.exe to execute HTML applications and scripts. This 

gains less attention from the endpoint sensors since all the legitimate tools 

involved in the attacking process. The primary focus of this is to remain 

undetected throughout the attack.  

- Rootkits: Rootkits often hide behind the kernel; thus, it maintains the persistence 

upon system restart and antivirus scans. As the name implies, rootkit contains a 

set of tools that ability to gain administrative access without informing the user. 

Rootkit is able to track everything on the victim machine. Once after delivered the 

payload to the victim machine, dropper installs rootkit. In most fileless threats, 

dropper delivered to the victim machine as a word document with an embedded 

malicious macro. These rootkits are difficult to detect as they are mostly executing 

as child processes under legitimate parent processes. 

- Windows registry malware: Modern fileless threats are capable of resides in the 

Windows registry files. Windows registry stores the low-level settings related to 

the operating system and certain applications. During this type of attack, malware 

file executes in the registry file and then self-destruct the malware file upon 

completion of the malicious task. 
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2.1.1 Detection of fileless threats,  

Currently, software-based solutions are available to detect malware based on machine 

behaviour. Unlike traditional signature matching solutions, behavioural based analysis 

based threat detection tools identify malicious, suspicious behaviour by analyzing 

differences in usual everyday activities in computer system to proactively mitigate 

cyberattacks before the attackers fully execute their destructive plans. For instance, 

net.exe executed in human resource manager computer is a suspicious behavioural 

activity. Genuine net.exe is a legitimate software component in Windows system that used 

to control network connections, services, users and groups. Use of net.exe in human 

resource manager PC may indicate compromised scenario where attacker performing 

local reconnaissance, enumerating accounts to identify high-privilege targets [19]. 

However, most of the detection’s software can be manipulated by advance malware and 

turn off the alerts. For example, Regsvr32.exe is a legitimate command-line utility used 

to register and unregister DLLs files on Windows machines. Regsvr32.exe can also use 

to execute arbitrary binaries. Malicious actors take advantage of this functionality to 

register a malicious program to avoid triggering security alerts [20]. Apart from that, since 

fileless threats use LoL binaries, leave no suspicious behaviour while executing the 

attack. Same as typical malware, fileless threats also built to use an operating system or 

application vulnerability to exploit the system. For instance, EternalBlue exploits server 

message block (SMB) vulnerability in Microsoft. As referenced before, EternalBlue is a 

critical exploit released by well-known hacker group. WannaCry ransomware use this 

exploit to attack Windows computers which contain a vulnerable version of SMB [21]. 

McAfee recommends regular patching and system hardening to reduce the risk [22].  

2.2 Virtualization and cloud computing  

Virtualization allows users to create a computing environment or IT resources by utilizing 

traditional bounded hardware [23]. This enables organizations to build up multiple virtual 

resources by partitioning a single physical computer. Each virtual resource can be used 

for an independent task with different features such as operating system while sharing the 

same hardware resources [24]. Virtualization is the fundamental technology that powerup 

cloud computing [25]. Cloud computing is one of the famous IT trends in the modern era. 

Cloud computing enables to deliver different services via the internet. Due to the cost 
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benefits, high availability and efficiency cloud computing are more popular among 

organizations [26]. Virtualization is the underground base concept of cloud computing.  

2.2.1 Virtual machine 

Virtual machine is an emulation of computer that provides the same functionality as a 

physical computer. Virtual machine implements on top of specialized hardware and 

software combination. Same physical resources can be shared among multiple virtual 

machines. This feature is one of the key advantages of virtual machines. Virtual machines 

deploy on top of the hypervisor, which is mainly responsible for allocating physical 

resources to virtual machines. Besides, the same hypervisor can manage multiple virtual 

resources and ensure that machines are completely isolated from each other [27].  

2.3 Volatile memory forensics 

“Computer forensics is a method of extracting and preserving data from a computer so 

that, it can be used in a criminal proceeding as evidence” [28]. The exact objective of 

computer forensic it to uncover and determine the truth behind the digital crime. Digital 

forensic plays a significant role in cyber-attacks and digital crime investigations.  

Computer mainly stores its data in hard drive (non-volatile memory) and volatile memory. 

Hence, security investigators usually analyze both hard drive and volatile memory during 

the forensic investigation to reveal the scenario. Volatile memory keeps instructions and 

data related to the running programmes [29]. Volatile data will be lost upon the reboot or 

machine power off.   Some advance malware leaves no data in hard drive but resides in 

volatile memory. Therefore, volatile memory analysis plays a significant role during the 

investigation of such sophisticated attacks. For instance, essential data such as keys used 

for encrypting volumes during ransomware attacks (TrueCrypt, VeraCrypt, BitLocker) 

can be retrieved by analyzing volatile memory [30].  Mainly there are two approaches in 

volatile memory forensics which are live response and memory imaging. During the live 

response method, investigator access to the device using remote shell connection and do 

in-depth analysis and take immediate incident response actions to promptly mitigate 

identified threats [31].  However, there are certain disadvantages in this method, such as 

if malware running in the target machine, it will manipulate the data collection process. 

During the memory imaging approach, volatile memory image will be extracted from the 

computer and store for analysis. The main advantage of this method is not changing the 
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state of the system. The image remains as same before and after the analysis. Additionally, 

memory imaging analysis can be more trusted than live response as malware cannot 

manipulate the analysis process.  

In this study, memory imaging approach has been used to analyze the volatile memory as 

it is more trusted and accurate. Also, infrastructure has been deployed in the Hyper-V and 

VMware environment. We used their inbuilt snapshot feature to take fresh memory image 

from virtual machines. 

2.4 Machine Learning 

Machine learning is a method of teaching computers to automate certain operations based 

on data analysis [32]. Machine learning is mainly used to predict and forecast certain 

features and parameters, also called supervised learning. For example, machine learning 

algorithms can be trained to forecast traffic pattern for busy intersection by analyzing 

certain data about past traffic pattern. The accuracy of the prediction depends on multiple 

parameters such as dataset, machine learning algorithm etc. Machine learning algorithms 

use data set to find a pattern of distribution to make better decisions and predictions. There 

are mainly two types of machine learning methods, which are supervised learning and 

unsupervised learning. Supervised learning trained the machine learning model using data 

and correct labels. This allows the machine learning model to map the data with 

correspondent labels or classes and make the prediction based on data provided as input. 

However, inappropriate data feed to the model could give inaccurate results in supervised 

learning method. Supervised learning can further group into two main approaches which 

are, classification and regression. Classification use when the desired output is class or 

category. For instance, machine learning model for detect spam email. In this case, two 

categories are spam and not-spam. Supervised classification model is appropriate for such 

scenarios. Regression approach uses when the expected output value is variable such as 

weight or dollars. For instance, machine learning model uses to predict the stock market 

price for next month. In unsupervised learning, only the data feed to the model without 

any labels. The expectation of unsupervised learning is to build its own structure based 

on the input data [33]. Main disadvantages of unsupervised learning are computationally 

complex and less accurate as it is not trained with labels. In this study, we used meta-
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features of volatile memory as a dataset to train the machine learning algorithm and 

distinguish legitimate and malicious fileless threats.  

2.4.1 Machine learning classification algorithms  

Classification is a supervised learning technique that allows to categorize data into 

appropriate classes. This process starts with training the model with test data and finally 

predict the unseen classes according to input data. In this study, decision tree, random 

forest, k-nearest neighbour and support vector machine classification models accuracies 

have been evaluated with our dataset.  

- Decision Tree 

Decision tree breaks down the data set into subsets. This typically consists of three 

main elements which are, root node, branches and leaf node. Each node represents 

a feature while each branch represents a decision, and each leaf represents an 

output [34]. Root node represents the final decision based on the data. Besides, 

using the decision tree, it is easy and accurate to understand the most significant 

variables and the relationship between features. This considered as one of the 

major advantages of the decision tree. Besides that, overfitting considered as one 

of the major limitations in the decision tree. Overfitting explained briefly in 

section 5.1. 

- Random Forest 

Random forest contains large number of individual decision trees. Each individual 

tree predicts the class. The highest number of prediction class become the final 

prediction result. More about random forest explained in section 5.2. 

- K-Nearest Neighbour 

k-Nearest Neighbour also known as kNN is a supervised learning algorithm which 

relies on labels in the dataset. k-Nearest Neighbour put all the training data into 

n-dimensional space. Unknown data class predicts based on the closest k-number 

of neighbours, and the most common class take as the final value. In kNN, 

classification mainly based upon the assumption of similar data points exist close 

to each other [35].  

- Support Vector Machines 
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SVM is a supervised learning algorithm used for classification and regression 

problems in machine learning.  SVM model basically denotes a different set of 

classes in a hyperplane in multidimensional space [36]. Hyperplane refers to 

decision boundaries that classify data points in the graph. So, data points belong 

to each side label with the corresponding class. 

2.4.2 K-Fold cross-validation 

Machine learning data set can be divided into two main sets, training set and testing test. 

Training set used to train the model while testing test used to evaluate the result of the 

training set. Usually, 70% of the dataset used to train the model and 30% of data set to 

use as testing dataset to evaluate the trained model. K-Fold cross-validation allows to 

compare the different machine learning classification algorithms to pick up the most 

suitable method. In this k-fold cross-validation, the data set divide into k number of sets 

and then train the module using (K-1) number of subsets and the remaining set will be 

used to evaluate the trained model. This process iterates K number of times with different 

subset as testing module [37]. This method allows to use each subset for validation exactly 

once while (K-1) number of subsets use as the training set. The average of the result after 

K number of iterations take as K-fold cross-validation. 

2.4.3 Confusion matrix 

This section describes the effectiveness of apply random forest to the training dataset. 

Confusion matrix is a method of evaluating the performance of the machine learning 

classification algorithm [38]. As the name implies, confusion matrix allows to visualize 

the confusion between classes predicted by the selected classification algorithm. 

Moreover, confusion matrix summarizes the number of correct and incorrect predictions 

made by classification algorithm. The key advantage confusion matrix is, it just not only 

provides insight on correct and incorrect predictions, but it gives the type of errors also. 

Example for confusion matrix as follows. Note that, table rows represent actual classes 

while columns represent predicted classes.  

   Predicted class 

  Malware Legitimate 

Actual class 
Malware True Positive (TP) False Negative (FN) 

Legitimate False Positive (FP) True Negative (TN) 
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Table 1: Confusion matrix 

 

As per the confusion matrix table, true positive and true negative states indicate the 

correct prediction of the machine learning model. True positive (TP) illustrates the state 

where the actual malware program predicted as malware by the machine learning model. 

True negative (TN) is the state where legitimate application classified as legitimate by 

the machine learning model. In other words, these TP and TN states illustrate the correct 

prediction of the machine learning model. False-negative (FN) denotes actual malware 

program that predicted as legitimate and false positive (FP) indicate legitimate application 

predicted as malware by machine learning model. In data science, false-positive known 

as Type I Error and false-negative called Type II Error [39].  

Different optimization methods used to reduce these two types of error. In this study, an 

optimized machine learning algorithm has been used to reduce these two types of errors 

to increase the accuracy of detecting threats. Besides, Precision and Recall used to 

evaluate the accuracy of the detection model. Precision is ideal to use when the weight 

and cost of false-positive are high.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

This is equal to true positives count divided by all positive prediction count. As name 

implies, precision equation calculates how precise the model is by getting the ratio of 

correct positive predictions to count out of total positive predictions [40].  

In this research, we have calculated the precision with the below characteristics. Python 

scikit-learn inbuilt method has been used for the calculation.  

Recall method is ideal when the high weight and cost associated with false negative. 

Recall can be calculated using the below equation:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

As equation describes, Recall calculates the ratio between the number of correctly 

predicted positive predictions and the number of overall all positives. In this study, Recall 

can be used to calculate how many malicious files detected from total malicious 

application dataset by using our trained machine learning classification model.  
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Ideally, accuracy is a fraction of, number of correct predictions out of the total number of 

predictions. This is not a good approach to follow if the data set is not balanced. Accuracy 

can be calculated using the below equation,  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

These precisions and recall methods are individually suitable to evaluate the accuracy in 

different aspects under different characteristics. However, a good machine learning model 

should perform well in both situations. F1-Score is the combination of both precision and 

recall, which balance the two approaches [40]. Furthermore, “F1-Score is the harmonic 

mean of this precision and recall” [41]. This can be calculated using the below formula, 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

2.4.4 Feature selection 

Feature selection is the selection of features or attributes in the dataset that are more 

relevant to the prediction of classes [42]. Feature selection method is useful to detect and 

avoid redundant and irrelevant unnecessary features that do not contribute to the final 

accuracy of the model. Also, this helps the model to run faster as it significantly reduces 

the data set. There are three main models in the feature selection [42],  

➢ Filter method: Each feature in the data set ranked by using statistical measuring 

method. Feature removal decision can be taken based on the ranked score. 

➢ Wrapper method: Evaluate different combination of features with other 

combinations. Machine learning model used to evaluate the combinations of 

features. Assign score for combinations based on the accuracy of the model. 

➢ Embedded method: Determine which feature and how much it contributed to the 

model accuracy.  
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2.4.5 Correlation matrix 

In data science, correlation matrix is a table that shows the measure of the correlation 

coefficient between features/variables. Correlation coefficient calculates the strength of 

the relationship between two variables [43]. This strength value, or in other words, 

correlation coefficient, varies within the range of (-1.0) to (1.0).  In this range, -1.0 

denotes the perfect negative correlation, and 1.0 indicates the perfect positive correlation. 

Any value in the correlation matrix that is greater than zero represents a positive 

relationship, while less than zero indicate a negative relationship. In the negative 

correlation, the involvement of two variables/features moves in opposite direction. For 

instance, when variable A increases, variable B will decrease if both values have a 

negative correlation and vice versa in positive correlation [44]. Also, if the correlation 

coefficient value is zero, it indicates that there is no linear relationship between two 

variables, but it can be some other type of relationship such as quadratic.  

2.4.6 Feature importance  

Generally, in feature selection, the main functionality is removing unnecessary features 

then re-train the model and compare the accuracy with baseline. However, in feature 

importance approach is little bit different from feature selection method as feature 

importance choose the best set of features that contribute to the accuracy. However, both 

models achieve the same goal from different directions which is to remove unnecessary 

features and increase the efficiency of the model. Python feature_importance_ library 

allows to evaluate the relative importance of each element.  

2.4.7 Principal component analysis  

Principal component analysis (PCA) is an unsupervised machine learning method that is 

used for dimensionality reduction. Dimensionality is the number of variables in the data 

set. Model overfitting is a primary problem associated with high dimensionality. 

Overfitting refers to when a model gets trained with too much of data including noisy 

data, the model learned from those inaccurate data entries. In this case, the model does 

not classify data accurately because of inaccurate learning data. This caused overfitting 

in machine learning [45]. This mainly reduces generalization in the machine learning 

model.  Generalization refers to the ability of model to adapt for new, unseen data from 

the same distribution [46]. High dimension makes overfitting in the model, which 

increases the generalization error [47]. Furthermore, high dimension data extremely 
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complex to analyze and process due to some feature’s incompatibility. By applying PCA 

to the data set, it is able to reduce dimensionality by only selecting the important features 

that capture maximum information about the dataset. Also, by lowering dimensionality 

PCA allows to speedup the data processing and model training [48].  
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3 Related work 

This section explains the previous work related to the fileless malware detection, cloud 

computing, virtualization and memory forensics. A literature search performed in selected 

digital libraries such as ACM digital library, IEEE Explore and web search in google 

scholar. Search keywords such as fileless, file-less, malware-less, malware less have been 

used to find the related papers. Manual web search used to find the relevant articles and 

publications from reputed sources. Snowballing method has been used to find out 

associated researches.  

Carlin et al. [49] presented research related to dynamic opcode analysis tool to detect 

fileless browser-based crypto-mining engines. Based on the author, this is the first 

dynamic opcode analysis for fileless crypto mining using machine learning. For the 

experimental setup, dedicated machines were used for the experiments, using a fresh 

image of Windows 7 64-bit, an Intel Celeron 2.90GHz G3930 CPU and 4GB RAM. The 

open-source OllyDbg v2 debugger used to trace the dynamic opcodes of each runtime, 

with StrongOD v0.4.8.892 used to cloak the running debugger. Firefox 54 was used as 

the browser to execute all HTML files. Bespoke Python scripts were employed to 

automate the execution process. This methodology was followed constantly during the 

dataset creation process. Random Forest (RF) machine learning model used with WEKA 

3.9, for all classification tasks. As per the result presented in this paper, dynamic opcode 

analysis is an effective way to detect crypto-mining behaviours in the browser and detect 

malicious activities. Furthermore, this model can be used to determine crypto mining 

sites, weaponized benign sites, de-weaponized crypto mining sites and legitimate real-

world sites. However, this study only addressed the browser-based crypto-mining 

malware for opcode analysis.  

Nahmias et al. [50] presented a solution which is named as “Trustsign” a novel, trusted 

automatic malware signature generation method based on features transferred from a pre-

trained VGG-19 model. VGG-19 is a convolutional neural network. This is one of the 

well-known models to classify the real-world images. “Trustsign” is trusted and fully 

capable of signing file-less malware. “Trustsign” produces signature based on the 

malicious process in the volatile memory (rather than the file representation on the local 

drive), thus overcoming packing and obfuscation techniques which are usually applied by 
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malware developers in order to avoid detection. Moreover, TrustSign does not require 

feature engineering or time-consuming model training, as it leverages transfer learning, 

thus minimizing the critical time interval between the malware’s analysis and the 

distribution of its signature. “TrustSign” leverages virtualization to produce signatures 

based on the presence of a malicious process in the volatile memory in a trusted manner. 

To achieve trusted analysis, execute the malware on a designated virtual machine. Then, 

while the malicious process is active, snapshot has been taken from the system’s volatile 

memory by querying the hypervisor. TrustSign’s methodology is trusted since it analyses 

the volatile memory dump taken from a virtual machine, and the malware that is running 

on the machine cannot evade, interfere with, or shut down TrustSign. However, as per the 

author, TrustSign encounters difficulty in producing a signature for malware that injects 

code into memory. Additionally, there is no such malware program involved for analysis 

in this study. However, in this study, we overcome these limitations by addressing fileless 

threats that injects malicious code into memory, such as Astaroth attack.  

Cohen et al. [11] Most companies are migrating to cloud infrastructure, and due to that 

reason, most attackers target virtual servers in the cloud. Most of the antivirus software 

cannot detect advance threats, and most of the advance prevention tools not yet developed 

to secure the cloud environment. This study presented a methodology to detect known 

and unknown ransomware in virtual machines on an organization’s private cloud using 

volatile memory. For the implementation, VMware vSphere has been used to create and 

manage virtual machines for evaluation. This allows to take snapshots of the VM and 

easily extract the volatile memory. Using these snapshots, collected memory dumps after 

the execution of multiple legitimate and malicious programs. Conducted analysis on 

volatile memory dumps that are taken from virtual machines. Volatility framework has 

been used to extract general descriptive meta-features from memory dumps. Thereafter 

leveraged the meta-features using machine learning algorithm to capture unknown 

ransomware. The main limitation of this study is only ransomware attacks have been 

encountered for the analysis. Apart from that, only five ransomware attacks have been 

involved in the analysis. In our study, we addressed more than fifteen fileless threats in 

the analysis.  

Hăjmăşan et al. [51] presented a scoring mechanism for dynamic evaluation of the 

behaviour of potential malware processes. Most of the dynamic behaviour malware 

detection platforms are based on learning method which prone to more false positives and 
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not accurate enough for real-time detection. This study presented a scoring engine based 

on dynamic behaviour evaluation of the machine. Proposed methodology monitor the 

actions performed by processes, kernel and assign a separate score for each action based 

on the proposed scoring mechanism.  The primary theoretical contribution of this research 

is the scoring mechanism for dynamic behaviour evaluation of malware. Proposed 

solution tested against with malicious files, processes running in the machines. Detection 

test performed using an automated analysis platform that executed the samples in multiple 

virtual machines with the Windows 7 x64 OS installed.  By analyzing the results, 14949 

malicious files detected and 2120 were not. This can be translated into a detection rate of 

87.57%. The tested files have been obtained from various sources like spam email 

attachments, URLs used to spread malware and infected web sites. However, based on 

the study result, this proposed solution has a significant amount of false-positive rate, 

which is more than 13%. Apart from that, most of the advance attacks are capable of 

manipulating the monitoring systems. Hence, this solution monitors each action 

performed by the kernel module and process it may not be a trusted solution against 

sophisticated attacks.  

Handaya et al. [52] proposed a methodology to detect fileless cryptocurrency mining 

malware using a machine learning approach. Proposed methodology analyzes benign and 

malicious cryptocurrency malware using different machine learning models such as 

random forest, support vector machine and kNN. This research mainly focused on 

Monero crypto-mining malware during the analysis. For the analysis, EMBER data set 

has been extracted upon execution of each malware and legitimate programs in the 

machine. EMBER refers to benchmark dataset used for train machine learning models in 

order to statically detect malicious Windows executable files [53]. This dataset contains 

features extracted from binary files and malicious and benign training samples. As per 

the analysis, the main limitation of this research is they analyzed only Monero crypto-

mining malware for the evaluation.  

Gadgil et al. [54] presented an analytical approach to hunting advance volatile threats 

using memory forensics. Memory forensics become critical as memory contains many 

forensic artifacts that cannot obtain from traditional disk forensics. This study mainly 

checks for the indicator of compromise (IOC’s) exist in the memory to detect 

malware/threats in the memory. Indicator of compromise represents data, log entries or 

files that are related to the malicious activities. In this study, infected machines analyzed 
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with the Volatility framework using a different set of plugins. Different plugins have been 

categorized to identify different characteristics. For example, to identify rouge process, it 

is able to use pslist, pstree plugins. These two plugins list down the process list in the 

memory so that analyst can check for unusual suspicious processes. Besides, examine the 

open connections to verify the malicious connections.  

Tsuda et al. [55] proposed a HIDS based on process generation pattern. Proposed HIDS 

system, at first, periodically collects lists of active processes from hosts on managed 

networks. The system extracts process paths from process trees which the system builds 

by using the collected lists. Finally, the system detects anomaly processes considering 

process paths’ uniqueness and lifetime. In order to find anomaly behaviours on well-

managed networks, it is effective to observe changes in executing applications and 

processes. The proposed system has implemented in an actual organization to evaluate 

machines. It has collected 2,403,230 process paths in total from 498 hosts for two months. 

HIDS system could extract 38 anomaly processes. Most of the processes are created by 

benign applications which were used for maintenance and daily works. Among the 

anomaly processes, there is a PowerShell process created by a macro in Microsoft Excel. 

It also detected by using an antivirus software running on the organization. The other 18 

PowerShell processes were benign, which were related to updating programs for 

maintaining hosts, and the anti-virus software. Based on the author, HIDS system should 

be improved using the sanctioned and unsanctioned application method to minimize the 

false positives. 

As per the literature, there are certain amount studies have been conducted on malware 

detection based on dynamic analysis and machine learning. Among them, most of the 

researches focused on unique malware type such ransomware, fileless crypto-mining 

malware and dynamic analysis based on opcode analysis, volatile memory analysis and 

signature matching etc. There is no proper study found related to the detection of fileless 

threats using machine learning model. Additionally, no proper study found to provide a 

detailed analysis of how to select memory features to detect such advanced attacks. In 

this paper, we presented a novel and trusted methodology to detect fileless malware in 

virtual machines and a private cloud. Additionally, we presented a set of feature list that 

can be used for analysis and correlation characteristics between those features in order to 

detect fileless threats. As mentioned in the literature, Volatile memory feature analysis 

has been used in previous studies for ransomware detection. However, in this study, we 
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used a combination of both volatile memory and network-level feature analysis using 

machine learning model to detect fileless threats in the cloud. Additionally, proposed 

methodology mainly developed in hypervisor level. Since malware does not have access 

to the hypervisor level, it cannot manipulate or evade the detection process. Therefore, 

the proposed methodology can be considered as trusted also. 
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4 Methodology  

This section explains the approach that has been used in this study, including 

infrastructure, data collection and evaluation procedure. Workflow of this master thesis 

can be categorized into four main phases: Acquisition of volatile memory, data collection, 

feature extraction and data analysis. Machine learning algorithm has been trained to 

determine legitimate and fileless threats by analyzing volatile memory features.  

4.1 Acquisition of volatile memory 

Microsoft released Hyper-V in 2016 to introduce virtualization to Microsoft end users. 

Hyper-V is virtualization software that provides the ability to deploy and manage virtual 

resources such as virtual client machines, virtual servers. Additionally, end-user can 

customize resources and choose the operating system while deploying virtual machines. 

All the virtual resources can be managed via Hyper-V manager which automatically 

installed upon the enabling of Hyper-V. In this study, Microsoft Hyper-V environment 

and VMware used to demonstrate private cloud computing platform. All the virtual 

machines are also deployed in the Hyper-V environment. Below figure shows the 

virtualization infrastructure that has been used in this study.  

 

 

Figure 1: Hyper-V virtualization infrastructure 
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Hyper-V allows to take snapshot from virtual machines at the specific state and save to 

snapshot file. The data of the snapshot contains the virtual machine’s power state (power 

on, power off or suspended), hard drive data, volatile memory information and device 

information. Necessary volatile memory data can be extracted from snapshot files using 

the Volatility framework. All the snapshots have been stored in to separate external hard 

drive for analysis. Below diagram illustrates the three main steps followed to collect 

volatile memory dumps. The process initiates from a fresh virtual machine which 

considers as baseline state.  

 

Figure 2: Process flow of collecting snapshots 

Since the infrastructure has been deployed in the Hyper-V environment, virtualization 

technology ensures the segregation between the hypervisor and virtual machines. This 

methodology considered as trusted as a program running in the virtual machines cannot 

reach hypervisor level. Therefore, malicious programs running inside virtual machines 

cannot manipulate or interfere with the snapshot acquisition process.  
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4.2 Data collection  

As described in section 4.1, new virtual machines have been deployed on the Hyper-V 

infrastructure.  

Specifications of the virtual machines as below,  

Operating Systems Windows 7, Windows 10 

Memory 2 GB 

Number of processors 4 

Hard Disk 20 GB 

Network Connection NAT 

Table 2: Virtual machine specifications 

 

As illustrated in Figure 2, snapshot data has been collected by executing both legitimate 

applications and fileless malware one at a time. During the default state of the virtual 

machine, snapshot has taken. Upon the execution of each program (both legitimate and 

malicious) and snapshot process, VM roll back to the baseline state, which considered as 

the default state of the client machine. For each snapshot, memory dump has been saved 

to an external hard drive for analysis. Additionally, the snapshotting process has taken 

approximately four minutes to make each 2 GB size snapshot. In this study, altogether, 

40 snapshots have been analyzed, and 24 of them are legitimate while 16 are malicious 

fileless threats. These threat samples contain fileless threat features and categorized as 

fileless threats [56]. 

 

Below figure illustrates the snapshot collection process upon the execution of each 

program at a time. Benign application represented by green while malicious fileless 

malware represented by red colour. All benign programmes are related to the 

organizational Windows client programs and software that use a regular basis such as 

Microsoft office, run full antivirus, Wireshark, Procmon etc.  
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Figure 3: Snapshot creating process 

 

Below table contains the programs executed in virtual machines before taking the 

snapshot. Details about fileless malware and malware samples are collected from 

“chenerlich” GitHub page [56], AnyRun [57] and Hybrid-Analysis.    

 
Program Description OS Type 

Baseline Baseline Windows 10 Benign  

Legitimate word document Microsoft Office tool  Windows 10 Benign 

Wireshark Network monitoring tool Windows 10 Benign 

Procmon Process monitoring tool  Windows 10 Benign 

Avast antivirus Antivirus engine  Windows 10 Benign 

MS word doc with macro Microsoft Office tool with legitimate macro Windows 10 Benign 

Spotify Music application  Windows 10 Benign 

7Zip File archiver Windows 10 Benign 

Zoom Video conferencing tool Windows 10 Benign 

Google chrome  Internet browser Windows 10 Benign 

WhatsApp web Messaging and calling application  Windows 10 Benign 

Outlook Mail client Windows 10 Benign 

Adobe Reader  PDF file   Windows 10 Benign 

Microsoft store Microsoft store Windows 10 Benign 

Firefox Internet browser Windows 10 Benign 

Skype Messaging and calling application Windows 10 Benign 

Microsoft Excel Microsoft Office tool Windows 10 Benign 

VMware Virtualization software Windows 10 Benign 

iTunes Apple devices management panel Windows 10 Benign 

Microsoft Edge  Internet Browser Windows 10 Benign 

KeePass Password manager Windows 10 Benign 

Windows Defender scan Microsoft firewall  Windows 10 Benign 

Notepad++ Text and source code editor Windows 10 Benign 

PowerShell  Execute PowerShell script Windows 10 Benign 

Emotet Emotet is a banking trojan malware Windows 10 Malware 
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GZipDe GZipDe malware drops backdoor Windows 10 Malware 

Macros Malicious automation script Windows 7 Malware 

Valyria Malicious visual basic script Windows 7 Malware 

LokiBot Macro malware steals sensitive information  Windows 7 Malware 

August Steals credentials and sensitive documents Windows 10 Malware 

JS_POWMET 
Trojan JS_POWMET is downloaded via an 
auto-start registry entry 

Windows 10 
Malware 

Keybase Macro based malware  Windows 7 Malware 

Kovter Pervasive click-fraud trojan Windows 10 Malware 

Rozena Malicious script  Windows 10 Malware 

Phase Bot Fileless rootkit Windows 7 Malware 

Silence Malicious script Windows 7 Malware 

CryptoWorm  Fileless Crypto-mining malware Windows 7 Malware 

CodeFork Fileless malware by CodeFork hacker group Windows 10 Malware 

PowerWare A novel approach to ransomware Windows 10 Malware 

Poweliks  Malware resides in the Windows registry Windows 7 Malware 

Table 3: Programs executed in virtual machines 

 

All the snapshots have been collected to an external hard drive for later analysis. Since 

this study is focused explicitly on volatile memory, only volatile memory dump has been 

extracted from each snapshot. The size of each dump is equal to RAM size, which is 2 

GB. After that, features have been obtained from each memory dump using the Volatility 

framework. Feature extraction method has been explained in section 4.3 Feature 

Extraction 

4.2.1 Fileless malware samples 

In this study fileless threat samples have been collected upon certain requirements such 

as, malware should able to execute in Windows 7 or Windows 10 environment and 

malware that can able to execute offline or able to communicate with command and 

Control servers (to retrieve the payload). Most of the available malware samples cannot 

be analyzed as their C&Cs are no longer active. Hence those type of threats cannot 

complete the entire execution in the victim machine. Additionally, some fileless threat 

samples that are available on internet specifically built to address certain vulnerabilities 

in the applications. Those type of threats can only execute upon the existence of such 

vulnerability in the victim machine. The main difficulty we found in this study is to collect 

fileless malware samples as there is only a limited number of platforms to download 

samples in the community. In order to download fileless malware samples, we used 

Hybrid analysis sandbox special educational package and full API package that provide 

for research purposes and Any-Run special researches. Apart from that VirusShare 

website [58] also used to acquire fileless scripts. In this study, multiple malware samples 

have been tested, and only 16 samples met the above requirements.  
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4.3 Feature Extraction  

4.3.1 Volatility Framework  

Volatility is an open-source platform used for digital forensic investigations. Raw 

memory dumps, virtual machine snapshots, Microsoft crash dumps, VMware dumps can 

be analyzed using this framework. Volatility is a well-known and frequently used 

platform among security experts and forensic investigators [59]. This framework supports 

both 32-bit and 64-bit operating systems. Besides Volatility framework support all 

flavours of Windows, Linux and macOS and Android. Furthermore, raw memory dumps, 

hibernation files, virtual box memory dumps, Microsoft crash dumps and VMware dumps 

can be analyzed using Volatility framework. Volatility contains over 35 plugins to 

analyze different characteristics of the volatile memory [60]. Prior to initiate memory 

dump analysis, the appropriate profile should be defined in the command. The primary 

objective of this process is to synchronize with frequent feature enhancement applied by 

the operating system. Volatility allows identifying the appropriate profile once after 

analyzing the metadata of the memory sample. Apart from that, this framework is able to 

provide active process status, hidden processes, DLL loaded, socket information, network 

connection information upon the analysis of the memory file. Present-day, most malware 

such as rootkits, fileless threats are capable of hiding their existence during the period of 

attack. Most of these attacks are hide their malicious processes in the volatile memory 

instead of writing to the hard disk. However, run time memory analysis is capable of 

detecting such behaviour. Hence in this research, we used the Volatility framework to 

inspect the memory dumps.  

4.3.2 Feature extraction for dataset creation 

In this research, Shell script has been developed to extract the predefined set of features 

from the volatile memory dumps. As explained in section 4.1, volatile memory contains 

data and instructions related to running programs. Developed shell script utilizes 

Volatility framework 2.6 to extract the necessary information from the memory dumps. 

In this study, different Volatility plugins have been used to obtain system information 

such as running processes, DLLs, Network connections [61].  Extracted features exported 

to the excel file. Python program has been developed for the extract only the necessary 

features from the excel files that are created by shell script in the previous process. For 

instance, avoid the duplicate DLL file in the memory dump and get the count of unique 
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DDL file in the memory. These set of features extracted and exported to CSV file, as 

shown in Appendix 1. In the CSV, columns represent the features while rows represent 

the memory dump. Furthermore, additional features such as network-level characteristics, 

file actives and registry activities are extracted from a live sandbox environment upon the 

execution of each malware. This allows to obtain file and registry activity features during 

the execution of malware.  

 

Figure 4: Feature Extraction Process 

 

The duration for extract features from memory dump mainly depends on the size of the 

dump file. In this study, for 2 GM memory dump file, it has taken approximately 5 

minutes to complete the feature extraction process. In this study, altogether, 40 memory 

dumps have been analyzed. Therefore, entirely 3 hours and 20 minutes spent for memory 

extraction process.   

Below table contains the list of plugins used in this study to extract features from memory 

dumps [62]. More details regarding the Volatility plugins can be found in the Volatility 

Command Reference GitHub page [63]. 

 
Volatility plugin  Description 

psxview List of plugins utilizing in the machine 

thrdscan List of thread objects using pool scanner 

svcscan List of windows services 

dlllist List of loaded DLLs for each process 

ldrmodules List of unlinked DLLs 

modules List of modules loaded 

privs List of process privileges  

callbacks List of kernels callbacks (notification routines) 

handles List of open handles for each process 

mutantscan List of mutex objects using pool scanner 

connections List of open connections 

hivelist List of registry hives 

pslist List all running processes 

Table 4: List of Volatility Plugins 
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4.3.3 Set of features  

Table 4 explained the volatile memory features extracted from the memory dumps. List 

of these memory features obtained into CSV file for analysis. For each element, feature 

name, description, data type and Volatility plugin name has been provided in the table. In 

this study, list of features that are used for analysis decided based on a previous research 

article on ransomware detection [10], and study on an analytical approach to hunting 

advance threats using memory forensics [54]. Specific Volatility plugins have been used 

multiple times to obtain a different set of features. Additionally, list of these features 

contains not only the characteristics of memory but also various system operations such 

as file modification, registry modification during the execution of the program. These set 

of features are obtained by executing each program in the sandbox environment. Table 4 

represents the features that are extracted using Volatility plugins.  

 

# Feature  Description Type 
Volatility 

Plugin/Source 

1 handles_num Number of handles Integer handles 

2 hiveList Number of registry hives Integer  hivelist 

3 dlls_ldrmodules_num 
Number of DLLs used by all 
processes  

Integer ldrmodules 

4 dlls_ldrmodules_unique_mappedpaths_num 
Number of unique DLLs 
used by all processes 

Integer ldrmodules 

5 dlls_ldrmodules_InInit_fales_num 
Number of DLLs with InInit 
false 

Integer ldrmodules 

6 dlls_ldrmodules_InLoad_false_num 
Number of DLLs with 
InLoad false 

Integer ldrmodules 

7 dlls_ldrmodules_InMem_False_num 
Number of DLLs with 
InMem false 

Integer ldrmodules 

8 dlls_ldrmodules_all_false_num 
Number of DLLs with all 
false 

Integer ldrmodules 

9 modules_num Number of modules Integer modules 

10 callbacks_num Number of kernels callbacks Integer callbacks 

11 processes_privs_enabled_not_default_num 
Number of processes with 
enable and without default  

Integer privs 

12 processes_psxview_exited_num 
Number of processes 
completed before taking the 

snapshot  

Integer psxview 

13 processes_psxview_false_columns_num 
Number of process listing 
techniques that do not detect 
at least one process 

Integer psxview 

14 processes_psxview_false_rows_num 
Number of processes that are 
not detected by at least one 
process listing techniques 

Integer psxview 

15 processes_psxview_num 
Number of processes 
detected by psxview  

Integer psxview 

16 processes_psxview_pslist_true_num 
Number of processes 
detected by pslist  

Integer psxview 

17 processes_psxview_psscan_true_num 
Number of processes 
detected by psscan  

Integer psxview 

18 services_svcscan_num Number of services Integer svcscan 

19 services_svcscan_running_num Number of running services Integer svcscan 

20 services_svcscan_stopped_num Number of stopped services Integer svcscan 

21 dlls_dlllist_unique_paths_num Number of dlls Integer dlllist 
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22 mutex_mutantscan_num Number of mutexes Integer mutantscan 

23 threads_thrdscan_num Number of threads  Integer thrdscan  

24 pslist Number of processes  Integer hivelist 

25 tcp/udp_connections 
Number of TCP/UDP 
connections 

Integer sockets 

Table 5: List of features from Volatility 

Table 6 explains the features that are extracted from the sandbox environment by 

executing the malware. These set of features have been extracted for each sample by 

executing each malware in the sandbox environment at a time. Important network features 

such as domain name services (DNS) requests cannot be extracted using Volatility. 

Therefore, we used sandbox to extract these additional important features for analysis.  

26 total_reg_events Number of registry events Integer sandbox 

27 read_events Number of read operations Integer sandbox 

28 write_events Number of write operations Integer sandbox 

29 del_events Number of delete operations  Integer sandbox 

30 executable_files Number of executable files Integer sandbox 

31 unknown_types Number of unknown files Integer sandbox 

32 http(s)_requests Number of HTTP requests Integer sandbox 

33 dns_requests Number of DNS requests Integer sandbox 

Table 6: List of features from Sandbox report 

4.4 Data processing using machine learning algorithm 

4.4.1 Classification machine learning algorithms 

In this study, we applied four commonly used machine learning classification algorithms 

on the dataset. In machine learning, classification is a process of predicting the class of 

the specific given data point [64]. For instance, in this study, fileless malware detection 

can be identified as a classification problem. This can be categorized as binary 

classification since it consists of only two classes as malicious and non-malicious. In this 

case, known fileless threats and legitimate applications have been used as training data to 

train the classifier. After that, it can be used to detect the unknown fileless threats. This 

is known as supervised learning as output based on the input dataset. In this study, the 

following classification algorithms have been used:  Random Forest (RF), Decision Tree 

(DT), K-Nearest Neighbour (K-NN) and Support Vector Machines (SVM). More 

information about these algorithms explained in section 2.4.1. 
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5 Evaluation 

In this section, we evaluate the accuracy of detecting fileless threats by using the proposed 

methodology.  

In this research, decision tree, random forest, k-nearest neighbour and support vector 

classifier algorithms have been chosen since our test data set has binary classifications. 

Additionally, based on previous studies, those algorithms widely used due to their 

accuracy and efficiency measures. Most suitable classification algorithm mainly depends 

on the nature of the dataset [64].  However, in this study cross-validation has been used 

to select the most appropriate classification algorithm for the available data set.  

5.1 K-Fold cross-validation  

K-Fold cross-validation allows to compare the different machine learning classification 

algorithms to pick up the most suitable method. In this research, we used scikit-learn 

python machine learning library to calculate the k-fold cross-validation for each selected 

classification algorithms. Below table illustrates the behaviour of each classification 

algorithm when K=10, training sample size: 70% and testing sample size: 30%.  

Classification Algorithm Decision Tree Random Forest k-Nearest N SVM 

Cross validation score 0.933 0.966 0.625 0.566 

Table 7: K-Fold cross-validation performance 

Based on the cross-validation score, random forest classification model scored 96%, 

which is highest from other evaluated models. Despite the decision tree is comparably 

faster than the random forest, deep decision trees experience overfitting, which decreases 

the performance and accuracy [65]. Overfitting refers to when the model gets trained with 

too much of data including noisy data, the model learned from those inaccurate data 

entries. In this case, the model does not classify data accurately because of inaccurate 

learning data. This caused overfitting in machine learning [45]. One of the advantages of 

random forest is, it can handle missing values. Besides, random forest classification has 

high efficiency because of the number of decision trees contribute to the prediction. 

Therefore, in this research, we used random forest as the machine learning classification 

algorithm.  
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5.2 Random Forest 

Random forest is one of the most popular machine learning algorithms that belong to 

supervised learning algorithm. As explained in section 2.4.1, Random forest contains 

large number of individual decision trees. Each individual tree predicts the class. Instead 

of relying prediction on a single decision tree, random forest checks each decision tree 

prediction and obtain the final prediction based on the majority votes of prediction [66]. 

Besides random forest use bootstrap aggregating method, also known as bagging method 

to tree learners. Bagging is applying base classifier on random subsets of the original 

dataset and aggregate individual predictions of each of them [67]. Since bootstrap 

aggregation decreases the variance of the model, it increases the performance of the base 

model. Furthermore, bagging reduces the overfitting, which considered a limitation of the 

decision tree. Also, in the random forest method, a larger number of decision trees capable 

of giving more accurate result.  

5.3 Fileless threat detection: performance  

Below table illustrates the confusion matrix values retrieved using random forest machine 

learning model. Python scikit-learn library used for the calculation. 30% of the data set 

has been used as testing data for this evaluation.  

   Predicted class 

  Malware Legitimate 

Actual class 
Malware 4 0 

Legitimate 1 7 

Table 8: Confusion matrix derived from the model 

 

Altogether twelve samples (four malware samples and eight legitimate applications) have 

been involved with the confusion matrix evaluation. As per the table result, there is one 

false-positive result which is one legitimate application detected as malware by machine 

learning mode. As per the test samples, execution of Avast antivirus engine has been 

labelled as malware by machine learning mode.  
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5.4 Correlation matrix 

In this study, correlation strength has been calculated against each feature and illustrated 

using correlation matrix heatmap. Matplotlib and Python plotting utility has been used to 

generate the below graph.  

 

Figure 5: Correlation between features of the dataset 

 

In Figure 5, blue denotes negative and red indicates the positive correlation coefficient 

values. Grey indicates that there is no correlation between features. Also, stronger in 

colour correspond to the magnitude of the correlation value. Diagonal correlation 

coefficient is always 1.0 as each feature perfectly correlates with itself. As per the figure 

05 illustration, dlls_ldrmodules_InLoad_false_num feature highly correlated with 

dlls_ldrmodules_InInit_false_num and dlls_ldrmodules_InMem_false_num features. 

This indicates that number of DLLs that were not found in the InLoad highly correlated 

with number of DLLs that were not found in the InInit and InMem.  In other words, count 
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of DLLs, including hidden DLLs that failed to load is correlated with DLL count that are 

not initialized. As per the figure, dark blue square indicates that service svcscan stopped 

count is negatively correlate with running service svcscan. In other words, there is a 

negative correlation between services running in the machine and services stopped. 

Furthermore, the TCP/UDP connection count strongly correlate with HTTP(S) request 

count. However, these network features not avoided from the dataset as these two features 

operate in two different layers in OSI seven layers (TCP/UDP belongs to transport-layer, 

and HTTP is an application-layer protocol). Therefore, these two features have different 

visibility.  

5.5 Analysis of feature importance 

In this study feature importance method has been used to extract the top ten features in 

the dataset. Below figure illustrates the ten best features that contribute to increase the 

accuracy of the machine learning model we use in this study. Python feature_importance_ 

library has been used to evaluate the relative importance of each element. Relative 

importance is the feature importance divided by the highest feature importance value so 

that values remain between 0 and 1. Feature importance calculation is a method of assign 

scores to input features in the dataset based on their contribution to the model accuracy  

[68].  

 

Figure 6: Top ten features according to feature importance 
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These top ten features are contributing to increase the model accuracy in different levels.  

As per the above figure, the TCP/UDP connection count significantly contributes to the 

accuracy of the model. Network connection analysis is one of the essential tasks during 

the advance threat hunting. According to Lockheed Martin, the Cyber Kill Chain, most 

adversaries need network connectivity to achieve their objective [69]. For instance, the 

malicious script invokes PowerShell and connect with the C&C server to download 

secondary payload or exfiltration of data after the exploitation. For achieve, these task 

malware needs internet connectivity. Therefore, analysis of TCP/UDP connections are 

significantly contributing to thereat detection process. DNS requests also one of the most 

important features to analyze during the malware investigations.  The most recent 

example for DNS fileless attack is DNSMessenger that use DNS requests to receive 

malicious PowerShell commands. DNSMessenger malware distributed via Microsoft 

word document embedded with a malicious macro. This macro leaves a backdoor which 

enables the communication between C&C and victim machine. Thereafter, 

DNSMessenger sends DNS TXT records which contains malicious PowerShell 

commands for further exploitation [70]. Besides, it is common that malicious domain 

takes down upon the user report. Therefore, cybercriminals programme malware to try 

out multiple abused or malicious domains. In this study, we collected DNS requests data 

as it is more relevant to the modern malware behaviour and as per the feature importance, 

it is the second most feature contributes to the model accuracy.  

Apart from that, the third most important feature is DLL enumeration. DLL stands for 

Dynamic Link Library. As name implies “A DLL is a library that contains code and data 

that can be used by more than one program at the same time” [71].  This reduces memory 

consumption as a set of codes share among multiple programs instead of duplicating the 

same code. Adversaries misuse this technique by loading DLLs into a legitimate program, 

leading to normal process conduct malicious task and evade the detection [72]. Also, there 

are hidden DLLs in Windows that not show up by default. Those DLLs mostly interact 

with malicious activities to carry out the attack anonymously. Therefore, DLL analysis is 

one of the critical tasks in forensic investigations and threat hunting. In this study, we 

used Volatility dlllist and ldrmodules plugins to get all the DLLs in the system, including 

hidden DLLs. As per the figure, mutant scan also one of the essential functionalities in 

the malware hunting process.  
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In Windows, mutant is a kernel object that allows programs to synchronize between 

different events [73]. Adversaries often misuse this feature to avoid re-infect the same 

machine over time as to decrease chances of detection. For example, malicious macro 

embedded in the word document infect the victim machine. Each time user opens the 

word document, it re-infects the computer over again. This makes unnecessary potential 

to detect the attack. To overcome this situation, adversaries use mutants to avoid 

reinfection once it successfully infected the victim machine [73]. In this study, we used 

Volatility mutantscan to extract the created mutants in the memory.  

Below table illustrates the accuracy of the model based on the selected important features. 

Training size is 70% of the dataset; testing size is 30% and K=10. 

Number of features  Recall Precession F-Score Accuracy 

Best Feature 0.80 0.66 0.72 0.83 

5 best features 0.80 1.00 0.88 0.86 

10 best features 1.00 0.83 0.90 0.91 

All features 0.80 1.00 0.88 0.96 

Table 9: Performance-based on selected features 

As per Table 10: 

- Best feature, which is TCP/UDP connection count denotes the highest 

contributing feature to increase the model accuracy. By analyzing this individual 

feature, machine learning model is capable of distinguishing malware and 

legitimate applications with over 83% of overall efficiency. 

- Random forest machine learning model can be trained to with best five features 

to achieve over 86% of accuracy in terms of fileless threat hunting  

- 91% of efficiency achieved only using top ten important features  

- Using all features, the machine learning model can be trained to detect fileless 

threats with 96% accuracy.  

5.6 Principal Component Analysis 

Principal component analysis (PCA) is an unsupervised machine learning method that is 

used for dimensionality reduction. Figure 7 is the visualization of data distribution in this 
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study. PCA has been used to reduce 33 dimensions into two dimensions in order to 

represent in a 2D graph. Python's Scikit-Learn library used to draw the graph.  

 

Figure 7: 2D principal component graph 

 

As per the figure, principal component 1 (PC1) and principal component 2 (PC2) are two 

dimensions derived from the dataset using PCA. These two dimensions are selected based 

on the variance. Variance refers to the statistical measurement, that measures “how far 

each number in the set is from the mean and therefore, from every other number in the 

set” [74]. Total variance is the sum of the variance of all individual variables. So, the 

component which has higher value covers a higher part of the original dataset. In figure 

7, the highest variance is the PC1 while the second-highest variance considers as PC2. 

Also, these principal components do not have any correlation between each other.  

Apart from the data visualization, PCA can be used to perform analysis and rebuild the 

model after reducing features then train model and finally make predications and evaluate. 

Furthermore, dimensional reduction in PCA reduces computational power to run the 

model as it has only a few variables to process.  
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5.6.1 Performance evaluation using PCA 

In this study, we applied PCA to reduce features in the dataset while reducing 

computational power to run the machine learning model. Since proposed methodology of 

malware detection should be run real-time in the hypervisor, minimal computational 

power consumption is much more important to provide better end-user experience. In this 

section, random forest classification has been used as classification model and evaluated 

based on predictions. Below table illustrates the performance of the model along with 

principal components. Training size is 70% of the dataset; testing size is 30% and K=10. 

Principal Components 
Cumulative 

Variance  
Recall Precession F-Score Accuracy 

PC1 0.22 0.80 1.00 0.88 0.91 

PC1 and PC2 0.35 0.80 1.00 0.88 0.91 

PC1, PC2, PC3, PC4 and PC 5 0.64 1.00 0.41 0.58 0.93 

Table 10: Accuracy based on PCA model 

As table 10 illustrates, the accuracy achieved with only one principal component is higher 

than accuracy achieved three principal components. This emphasizes that the accuracy of 

the classifier doesn't necessarily improve with increased number of principal components 

[75]. As per the table 10, cumulative explained variance of fist five principal components 

is around 64% which is more than half of the overall variance. However, in some cases, 

all features are equally contributing to the overall variance where none of the components 

can be ignored theoretically. But in this study, as graph represents principal components 

doesn’t equally contribute to the variance. Therefore, cumulative explained variance ratio 

against with number of components graph has been used to ignore the principal 

components which make lower contribution to variance.  

Below graph illustrates the cumulative explained variance ratio against with number of 

components. This can be used to determine number of principal components need to feed 

into the model.  
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Figure 8: Cumulative explained variance with the number of components  

This curve illustrates how much of the total, 32-dimensional variance is accommodated 

within the first N number of components [76]. As per the figure, first 15 components 

contain more than 95% of the overall variance, while other17 components explain around 

5% of the variance. Also, this graph shows that after 15th components, there is no huge 

gain of explained variance. In this study, we used PCA to reduce the number of 

components from 32 to 15.  

Below table illustrates the random forest model performance evaluation with fist 15 

principal components after dimension reduction. Training size is 70% of the dataset; 

testing size is 30% and K=10. 

Principal 

Components 

Cumulative 

variance 
Recall Precession F-Score Accuracy 

15 principal 

components  
0.97 0.80 1.00 0.88 0.96 

Table 11: Accuracy based on the selected number of principal components 

As per the table, 96 % accuracy achieved using 15 principal components in random forest 

classification model.  
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6 Conclusion 

Fileless attacks leave no traces as these threats programmed to use legitimate Windows 

tools to carry out the attack. Additionally, fileless threats capable of manipulating 

Windows legitimate process and alter system registry files to hide their presence. In this 

study, we presented a methodology to detect fileless threats in virtual machines deployed 

on the cloud. Proposed methodology mainly based on feature analysis by using machine 

learning in order to detect fileless threats. The initial data set was built using analysis of 

volatile memory features and network features that derived from memory dumps and 

sandbox threat reports. In this experiment, the first task was training the machine learning 

classification model with the appropriate dataset. Thereafter we evaluated the detection 

accuracy across different machine learning algorithms such as random forest, decision 

tree, k-nearest neighbour, SVM. As per the cross-validation score, random forest 

achieved the highest accuracy, which is around 96 % upon analysis of the entire dataset. 

Additionally, random forest results for other sub-experiments performed: precession=1.0, 

recall=0.80 and F-score=0.88.  

Feature selection methods used to reduce the number of features by merging correlated 

features. Besides, the feature importance method has been integrated to choose the best 

features that contribute to the accuracy of the classification model. Correlation coefficient 

has been calculated against all 33 features to evaluate the relationship between each 

feature. Based on the correlation matrix heatmap, all the DLLs, including hidden DLLs 

that were not found loaded DLL list highly correlated with DLLs that were not initialized. 

This indicates that the number of DLLs that were not found in the InLoad highly 

correlated with the number of DLLs that were not found in the InInit.  Based on these 

characteristics, ‘DLLs not initialized count’ removed from the analysis as to increase the 

performance by reducing the data amount to be processed.  

As per the study of feature importance, network features such as TCP/UDP connection 

count, DNS request count significantly contribute to distinguish between malware and 

legitimate applications. This finding points out, similar to typical malware, fileless 

malware also make unusual patterns of network traffic during the attack. Besides, 

according to the feature importance bar chart, ldrmodules feature which lists down the 

DLLs including hidden DLLs significantly contribute to the accuracy of the model. 
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However, DLL enumeration using dlllist plugin doesn’t show such contribution to the 

overall efficiency emphasize that fileless threat we analyzed in this research, are 

programmed to use hidden DLL strategy to conceal their existence during the attack. 

Based on the overall result with all features, it was able to achieve random forest accuracy 

more than 96 %, and with the best ten features, it is around 91 %. Based on these results, 

it shows that even though there are a smaller number of features, it is still able to perform 

a significant level of accuracy with the most essential and appropriate features.  

Apart from these methods, we used a statistical model to speed up the training and 

predictions in the machine learning model. Since threat detection should operate in real-

time, minimal computational power consumption is much more critical for the proposed 

methodology to provide high accuracy and better end-user experience. Therefore, in this 

study, we used principal component analysis (PCA) to perform dimensionality reduction 

and speedup the random forest model. Also, here we used a statistical approach to 

determine the number of components involved in our classification model. After PCA 

dimensionality reduction, 96 % random forest accuracy achieved using only 15 principal 

components.  

This research shows that despite the strategy of the typical malware and fileless threats 

have significant differences in the operational process, in network-level behaviour and 

volatile memory features indicate certain similarities. Combination of these features can 

be used to train proper machine learning classification model and use it to distinguish 

between malicious operations and legitimate operations in machines. Finally, this set of 

feature analysis can be used to optimize the performance of detecting widely spread 

fileless threats. 
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Appendix 1 – Data set used for the analysis 

These tables table illustrates the dataset used for the analysis in this research.  

# Program Label 
Feature List 

1 2 3 4 5 6 7 8 9 10 11 

1 Baseline 0 100 568 2635 467 130 78 78 78 156 10 7 

2 Legitimate word document 0 97 497 1484 504 103 68 68 68 155 9 1 

3 Wireshark 0 98 502 2133 492 117 75 75 75 156 12 2 

4 Procmon 0 97 523 2242 476 114 62 62 62 156 9 2 

5 Avast antivirus 0 98 514 2746 496 144 94 94 94 155 9 1 

6 MS word doc with macro 0 98 512 2585 519 131 87 87 87 154 10 1 

7 Spotify 0 97 509 2432 506 106 79 79 79 154 9 1 

8 7Zip 0 98 504 2114 483 137 81 81 81 156 9 2 

9 Zoom 0 98 521 2493 502 121 98 98 98 154 10 2 

10 Google chrome  0 98 516 2123 523 129 83 83 83 154 10 1 

11 WhatsApp web 0 97 507 2653 502 132 78 78 78 156 9 1 

12 Outlook 0 98 493 1728 521 118 73 73 73 154 9 2 

13 Adobe Reader  0 97 526 2343 483 138 89 89 89 154 10 2 

14 Microsoft store 0 97 573 2534 443 119 63 63 63 154 9 1 

15 Firefox 0 98 512 2013 424 138 71 71 71 156 9 1 

16 Skype 0 97 501 2404 502 129 63 63 63 154 10 1 

17 Microsoft Excel 0 97 523 2371 478 118 76 76 76 154 10 2 



56 

18 VMware 0 98 507 2236 521 136 69 69 69 155 9 2 

19 iTunes 0 98 546 2115 496 109 73 73 73 155 9 1 

20 Microsoft Edge  0 97 512 2132 501 131 59 59 59 156 10 2 

21 KeePass 0 97 513 2112 523 112 78 78 78 154 10 1 

22 Windows Defender scan 0 98 486 1833 496 136 83 83 83 154 9 1 

23 Notepad++ 0 97 521 2341 467 127 66 66 66 156 10 2 

24 PowerShell  0 98 532 2058 504 106 71 71 71 154 10 1 

25 Emotet 1 98 609 2337 538 111 70 70 70 155 9 1 

26 GZipDe 1 95 671 2561 675 152 99 99 99 155 10 2 

27 Macros 1 98 532 2482 551 134 90 90 90 154 10 7 

28 Valyria 1 98 526 2534 538 140 95 95 95 156 9 1 

29 LokiBot 1 98 506 1776 115 113 72 72 72 156 9 2 

30 August 1 99 576 1261 490 104 74 74 74 157 10 2 

31 JS_POWMET 1 98 608 2514 502 127 79 79 79 157 9 1 

32 Keybase 1 97 525 2936 1016 795 755 755 755 156 9 2 

33 Kovter 1 98 579 2316 492 126 84 84 84 154 12 0 

34 Rozena 1 98 623 2418 556 133 73 73 73 156 9 2 

35 Phase Bot 1 98 556 2569 543 136 93 93 93 156 9 2 

36 Silence 1 98 513 1767 498 196 89 89 89 154 10 2 

37 CryptoWorm  1 97 569 1892 623 113 90 90 90 157 9 1 

38 CodeFork 1 98 591 2317 517 172 69 69 69 154 9 2 

39 PowerWare 1 98 616 1483 639 118 70 70 70 155 9 1 

40 Poweliks  1 98 668 2463 548 126 86 86 86 155 10 2 
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# Program Label 
Feature List 

12 13 14 15 16 17 18 19 20 21 22 

1 Baseline 0 5 60 60 60 0 393 139 254 15453 446 791 

2 Legitimate word document 0 5 47 47 47 0 393 134 256 16060 443 965 

3 Wireshark 0 5 45 45 45 0 392 139 253 13222 420 637 

4 Procmon 0 5 47 47 47 0 393 134 259 14352 423 702 

5 Avast antivirus 0 5 52 52 52 0 391 132 253 16122 413 769 

6 MS word doc with macro 0 5 47 47 47 0 393 137 258 13900 410 722 

7 Spotify 0 5 43 43 43 0 393 134 259 13432 412 672 

8 7Zip 0 5 53 53 53 0 393 139 254 12257 463 712 

9 Zoom 0 5 47 47 47 0 393 137 258 14463 421 748 

10 Google chrome  0 5 55 55 55 0 393 140 253 13874 411 698 

11 WhatsApp web 0 5 44 44 44 0 393 137 258 13921 416 643 

12 Outlook 0 5 56 56 56 0 393 134 259 13280 412 709 

13 Adobe Reader  0 5 52 52 52 0 393 137 258 12421 428 631 

14 Microsoft store 0 5 46 46 46 0 392 139 253 12318 434 718 

15 Firefox 0 5 52 52 52 0 393 134 259 13426 463 728 

16 Skype 0 5 49 49 49 0 393 137 256 12798 421 673 

17 Microsoft Excel 0 5 43 43 43 0 393 134 259 13248 410 702 

18 VMware 0 5 59 59 59 0 393 140 253 12287 449 673 

19 iTunes 0 5 46 46 46 0 393 137 256 14321 407 724 

20 Microsoft Edge  0 5 51 51 51 0 393 134 259 13871 421 697 

21 KeePass 0 5 58 58 58 0 392 139 253 16548 422 713 

22 Windows Defender scan 0 5 49 49 49 0 393 137 258 12874 417 648 

23 Notepad++ 0 5 55 55 55 0 392 133 259 15489 443 721 

24 PowerShell  0 5 47 47 47 0 393 134 259 13651 491 786 

25 Emotet 1 5 43 43 43 0 393 136 257 12624 469 635 
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26 GZipDe 1 5 56 56 56 0 393 140 253 16741 552 790 

27 Macros 1 5 52 52 52 0 393 135 258 13301 488 679 

28 Valyria 1 5 47 47 47 0 393 136 257 15073 446 822 

29 LokiBot 1 5 46 46 46 0 393 140 253 13878 445 809 

30 August 1 5 40 40 40 0 393 134 259 12917 407 798 

31 JS_POWMET 1 5 50 50 50 0 393 138 255 14536 427 793 

32 Keybase 1 5 43 43 43 0 393 137 256 14245 429 793 

33 Kovter 1 4 43 43 43 0 393 136 257 12259 419 609 

34 Rozena 1 5 47 47 47 0 393 138 255 13876 443 798 

35 Phase Bot 1 5 50 50 50 0 393 137 256 14423 479 806 

36 Silence 1 4 43 43 43 0 393 137 256 15646 484 688 

37 CryptoWorm  1 5 47 47 47 0 393 138 255 13775 492 811 

38 CodeFork 1 5 48 48 48 0 393 140 253 13423 434 613 

39 PowerWare 1 5 43 43 43 0 393 136 257 12624 469 720 

40 Poweliks  1 5 51 51 51 0 393 136 257 12241 413 673 

 

# Program Label 
Feature List 

23 24 25 26 27 28 29 30 31 32 33 

1 Baseline 0 25 24 1 0 0 0 0 0 0 12 44 

2 Legitimate word document 0 1881 915 911 55 0 2 0 0 0 12 47 

3 Wireshark 0 1709 812 796 63 0 0 1 4 2 12 45 

4 Procmon 0 396 377 19 0 0 0 0 0 0 14 48 

5 Avast antivirus 0 1251 1035 579 0 0 0 1 0 0 13 52 

6 MS word doc with macro 0 1015 1033 525 57 0 0 0 0 0 12 47 

7 Spotify 0 1123 1025 503 41 0 0 0 0 0 12 45 

8 7Zip 0 1286 1196 623 0 0 0 0 0 0 12 48 
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9 Zoom 0 1344 789 478 0 0 0 0 0 0 13 45 

10 Google chrome  0 1886 1504 342 0 0 0 0 0 0 12 47 

11 WhatsApp web 0 1621 1128 421 6 0 0 0 0 0 12 44 

12 Outlook 0 1104 1016 445 3 0 0 0 0 0 13 48 

13 Adobe Reader  0 1498 996 512 0 1 0 0 0 1 13 48 

14 Microsoft store 0 1023 894 517 0 0 0 0 0 0 12 45 

15 Firefox 0 1115 1021 529 0 0 1 0 0 0 12 44 

16 Skype 0 1017 653 322 3 1 0 0 0 0 13 44 

17 Microsoft Excel 0 1151 1006 536 0 0 0 0 0 0 12 44 

18 VMware 0 1089 1034 486 0 0 0 0 0 0 13 45 

19 iTunes 0 991 967 511 13 1 0 1 3 2 12 48 

20 Microsoft Edge  0 1610 1542 394 0 0 0 0 0 0 12 45 

21 KeePass 0 336 114 756 62 0 0 0 0 0 12 44 

22 Windows Defender scan 0 1249 1428 313 42 1 0 0 0 0 13 44 

23 Notepad++ 0 1076 776 602 0 0 0 0 0 0 13 48 

24 PowerShell  0 1468 1026 416 4 0 0 0 0 0 12 45 

25 Emotet 1 2414 1639 703 72 2 5 13 15 5 16 51 

26 GZipDe 1 1271 926 344 1 0 1 1 1 0 14 56 

27 Macros 1 1955 1236 649 70 1 5 1 1 1 14 52 

28 Valyria 1 1808 1149 604 55 1 2 3 6 5 15 49 

29 LokiBot 1 1165 1039 121 5 3 2 0 1 25 14 53 

30 August 1 2063 1310 697 56 1 11 4 8 5 14 47 

31 JS_POWMET 1 310 231 79 0 1 0 0 2 2 16 50 

32 Keybase 1 2006 877 124 5 0 0 0 1 1 15 54 

33 Kovter 1 393 302 90 1 0 0 1 17 0 13 52 

34 Rozena 1 1844 1183 604 57 0 2 0 0 1 13 50 

35 Phase Bot 1 1424 923 588 13 0 0 3 7 17 14 49 
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36 Silence 1 2191 1317 728 41 0 3 7 8 21 13 46 

37 CryptoWorm  1 1871 1631 113 7 4 2 4 12 7 14 52 

38 CodeFork 1 2023 1121 623 12 1 7 5 4 6 16 46 

39 PowerWare 1 2413 1643 721 73 2 5 14 12 5 16 51 

40 Poweliks  1 1637 1061 453 31 0 2 3 8 2 15 52 

 

In the above three tables, feature list denoted by numeric values from 1 to 33. Feature name corresponding to each numeric value mentioned in the 

below table.  

Number Feature  Description Type 

1 handles_num Number of handles Integer 

2 hiveList Number of registry hives Integer 

3 dlls_ldrmodules_num Number of DLLs used by all processes  Integer 

4 dlls_ldrmodules_unique_mappedpaths_num Number of unique DLLs used by all processes Integer 

5 dlls_ldrmodules_InInit_fales_num Number of DLLs with InInit false Integer 

6 dlls_ldrmodules_InLoad_false_num Number of DLLs with InLoad false Integer 

7 dlls_ldrmodules_InMem_False_num Number of DLLs with InMem false Integer 

8 dlls_ldrmodules_all_false_num Number of DLLs with all false Integer 

9 modules_num Number of modules Integer 

10 callbacks_num Number of kernels callbacks Integer 

11 processes_privs_enabled_not_default_num Number of processes with enable and without default  Integer 

12 processes_psxview_exited_num Number of processes completed before taking the snapshot  Integer 

13 processes_psxview_false_columns_num Number of process listing techniques that do not detect at least one process Integer 
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14 processes_psxview_false_rows_num Number of processes that are not detected by at least one process listing techniques Integer 

15 processes_psxview_num Number of processes detected by psxview  Integer 

16 processes_psxview_pslist_true_num Number of processes detected by pslist  Integer 

17 processes_psxview_psscan_true_num Number of processes detected by psscan  Integer 

18 services_svcscan_num Number of services Integer 

19 services_svcscan_running_num Number of running services Integer 

20 services_svcscan_stopped_num Number of stopped services Integer 

21 dlls_dlllist_unique_paths_num Number of dlls Integer 

22 mutex_mutantscan_num Number of mutexes Integer 

23 threads_thrdscan_num Number of threads  Integer 

24 pslist Number of processes  Integer 

25 tcp/udp_connections Number of TCP/UDP connections Integer 

26 total_reg_events Number of registry events Integer 

27 read_events Number of read operations Integer 

28 write_events Number of write operations Integer 

29 del_events Number of delete operations  Integer 

30 executable_files Number of executable files Integer 

31 unknown_types Number of unknown files Integer 

32 http(s)_requests Number of HTTP requests Integer 

33 dns_requests Number of DNS requests Integer 

 


