
Tallinn 2020

 TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Weerarathna Patabendige Samoda Abeydeera 184685IVCM

FILELESS MALWARE DETECTION IN

CLOUD USING MACHINE LEARNING

TECHNIQUES

Master’s Thesis

Supervisor: Alejandro Guerra

Manzanares

 Cyber Security

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Weerarathna Patabendige Samoda Abeydeera

19.05.2020

3

Abstract

Fileless threats are on the rise and most recently adopted by a broader range of malware

such as ransomware, crypto-mining malware. In this modern era, cloud computing is

widely used due to the financial benefits and high availability. Virtualization is the base

concept of cloud technology. Due to the prevalence of virtual resources, organizational

cloud is one of the most targeted points by cyber attackers. Sophisticated attacks such as

fileless threats are most popular among cyber attackers as they are hardly detected by

traditional detection solutions. Besides, advanced attacks are capable of altering the

exiting detection solutions to evade detection. Therefore, typical antivirus solutions

considered as untrusted upon the presence of advance attacks. Machine learning

technology widely used in numerous researches as an alternative mechanism to detect

malware attacks. In this paper, novel and trusted methodology have been used to detect

fileless threats in cloud. Volatile memory dumps collected from virtual machines upon

the execution of each malware and legitimate applications. In addition, necessary features

extracted for analysis by using the opensource Volatility framework. Sandbox analysis

report has been used to obtain additional network-level features related to each program.

Thereafter, extracted volatile memory features and network-level features analyzed using

random forest machine learning model to predict malicious behaviour of fileless threats.

Altogether, 33 features analyzed using machine learning model. As per the analysis, 96%

accuracy has been obtained using entire feature set and 83% accuracy achieved using the

most important feature. Despite the fact that fileless threats do not leave any traces in the

hard disk, still, it has traditional malware features such as create network connections and

processes. This analysis showed that fileless threats executes in the memory, leaves traces

that allow detecting using feature analysis. Finally, the proposed methodology shows that

analysis of different feature, including volatile memory, can be used to distinguish the

different state of computer systems and use them to optimize the new trend of fileless

malware detection accuracy.

This thesis is written in English and is 61 pages long, including 6 chapters, 8 figures and

11 tables.

4

Annotatsioon

Failivaba pahavara tuvastamine pilveteenuses kasutades masinõpe

tehnikaid

Failideta ohud on tõusuteel ja viimasel ajal on neid laiemalt kasutusele võetud

pahavarades, näiteks lunavara ja krüptokaevandamise pahavarad. Sel kaasaegsel ajastul

kasutatakse pilvandmetöötlust laialdaselt rahaliste eeliste ja kerge kättesaadavuse tõttu.

Pilvetehnoloogia põhikontseptsioon on virtualiseerimine. Virtuaalsete ressursside

levimuse tõttu on organisatsiooni pilv küberründajate üks enim sihtpunkte. Keerukad

rünnakud, nagu failideta ründed on küberründajate seas kõige populaarsemad, kuna

traditsiooniliste tuvastamislahendustega neid peaaegu ei saa tuvastada. Lisaks on

täiustatud rünnakud võimelised muutma olemasolevaid avastamislahendusi, et vältida

tuvastamist. Seetõttu peetakse tüüpilisi viirusetõrjelahendusi eelnevalt mainitud

rünnakute esinemise korral ebausaldusväärseteks. Uuritud on kõigi pahavara ja

õigustatud rakenduste käivitamisel virtuaalsetest masinatest kogutud hävimälu

mälumahud. Lisaks on analüüsimiseks vajalikud omadused eraldatud, kasutades avatud

lähtekoodiga Volatility raamistikku. Iga programmiga seotud täiendavate võrgutaseme

tunnuste saamiseks on kasutatud liivakasti analüüsi aruannet. Seejärel analüüsiti

eraldatud hävimälu mäluomadusi ja võrgutasandi omadusi, kasutades „random forrest“

õppimismudelit, et ennustada failideta ohtude pahatahtlikku käitumist. Kokku analüüsiti

masinõppe mudeli abil 33 omadust. Analüüsi kohaselt on kogu tunnuste komplekti abil

saavutatud 96% täpsus ja kõige olulisema omaduse analüüsimisel saadud 83% täpsus.

Vaatamata asjaolule, et failivabad ohud ei jäta kõvakettale jälgi, on sellel siiski

traditsioonilised pahavarafunktsioonid, näiteks võrguühenduste loomine ja protsesside

käivitamine. See analüüs näitas, et failivabad ohud käivituvad mälus ja jätavad jälgi, mis

võimaldavad erinevate omaduste analüüsi abil neid tuvastada. Kokkuvõtteks näitab

pakutud metoodika, et erinevate omaduste, sealhulgas hävimälu analüüsi abil saab

arvutisüsteemide erinevat olekut tuvastada ja kasutada neid failivaba pahavara

tuvastamise tehnikate täpsemaks optimeerimiseks.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 61 leheküljel, 6 peatükki, 8

joonist, 11 tabelit.

https://et.wiktionary.org/wiki/h%C3%A4vim%C3%A4lu
https://et.wiktionary.org/wiki/h%C3%A4vim%C3%A4lu

5

List of abbreviations and terms

LoL

WinRM

RAM

WMI

SMB

NAT

VM

GB

C&C

HIDS

DLL

PCA

Living Off the Land

Windows Remote Management

Random Access Memory

Windows Management Instrumentation

Server Message Block

Network Address Translation

Virtual Machine

GigaByte

Command and Control

Host-Based Intrusion Detection System

Dynamic Link Library

Principal Component Analysis

6

Table of contents

Author’s declaration of originality .. 2

Abstract .. 3

List of abbreviations and terms ... 5

Table of contents ... 6

List of figures.. 8

List of tables ... 9

1 Introduction ... 10

2 Background Information .. 13

2.1 Fileless malware .. 13

2.1.1 Detection of fileless threats, .. 16

2.2 Virtualization and cloud computing ... 16

2.2.1 Virtual machine .. 17

2.3 Volatile memory forensics ... 17

2.4 Machine Learning ... 18

2.4.1 Machine learning classification algorithms ... 19

2.4.2 K-Fold cross-validation .. 20

2.4.3 Confusion matrix .. 20

2.4.4 Feature selection ... 22

2.4.5 Correlation matrix .. 23

2.4.6 Feature importance ... 23

2.4.7 Principal component analysis .. 23

3 Related work .. 25

4 Methodology .. 30

4.1 Acquisition of volatile memory ... 30

4.2 Data collection .. 32

4.2.1 Fileless malware samples .. 34

4.3 Feature Extraction ... 35

4.3.1 Volatility Framework.. 35

7

4.3.2 Feature extraction for dataset creation ... 35

4.3.3 Set of features ... 37

4.4 Data processing using machine learning algorithm .. 38

4.4.1 Classification machine learning algorithms ... 38

5 Evaluation .. 39

5.1 K-Fold cross-validation ... 39

5.2 Random Forest .. 40

5.3 Fileless threat detection: performance .. 40

5.4 Correlation matrix ... 41

5.5 Analysis of feature importance .. 42

5.6 Principal Component Analysis .. 44

5.6.1 Performance evaluation using PCA ... 46

6 Conclusion ... 48

References .. 50

Appendix 1 – Data set used for the analysis .. 55

8

List of figures

Figure 1: Hyper-V virtualization infrastructure.. 30

Figure 2: Process flow of collecting snapshots .. 31

Figure 3: Snapshot creating process .. 33

Figure 4: Feature Extraction Process ... 36

Figure 5: Correlation between features of the dataset .. 41

Figure 6: Top ten features according to feature importance ... 42

Figure 7: 2D principal component graph ... 45

Figure 8: Cumulative explained variance with number of components 47

9

List of tables

Table 1: Confusion matrix ... 21

Table 2: Virtual machine specifications ... 32

Table 3: Programs executed in virtual machines .. 34

Table 4: List of Volatility Plugins ... 36

Table 5: List of features from Volatility .. 38

Table 6: List of features from Sandbox report ... 38

Table 7: K-Fold cross-validation performance ... 39

Table 8: Confusion matrix derived from the model ... 40

Table 9: Performance-based on selected features ... 44

Table 10: Accuracy based on PCA model ... 46

Table 11: Accuracy based on the selected number of principal components 47

10

1 Introduction

Cloud computing is one of the widely used concepts in the modern era. Cloud computing

enables end-user to access computer system resources and data via the internet. This is

one of the key features that emphasize cloud computing from traditional computer system

infrastructure. Most organizations deploy their computer infrastructure in the cloud to

ensure high availability. Virtualization is one of the key concepts in cloud computing.

Virtual resources such as virtual servers, virtual switches and virtual network devices

widely used to provide more accurate and feasible service while providing high

availability for the organization computer resources. Based on the Flexera survey on

cloud computing trends [1], 84% of organizations use multi-cloud (including private,

public and hybrid cloud environment). Furthermore, as per the survey, this use of cloud

trend has drastically increased compared to the previous year.

As cloud computing is one of the most popular and widely used services among the

organizations, cyber-attacks are more frequent for this platform. Most cyber attackers are

more focus on servers and data storages deployed in the cloud platform as critical data is

one of their primary concerns. Upon the advance and sophisticated attacks, organization

may not even discover the compromised assets despite the presence of endpoint detection

platforms such as antivirus. In addition, cloud services introduce new challenges to

security organizations as one compromise virtual machines may lead to a huge security

breach [2].

Fileless or non-malware attacks are on the rise and most recently adopted by a broader

range of malware such as ransomware, crypto-mining malware. Fileless threats are one

of the advance attack types among the malware trends history. Fileless malware differs

from traditional malware as it doesn’t require to install any malicious software to infect

victim machine [3]. Additionally, unlike typical malware, fileless threats don’t write

anything to disk, but it writes to the RAM and evade detection of traditional antivirus

security [4]. Customer service and managerial staff at retailers targeted by fileless

11

malware campaign called August from TA530 during November 2016 [5]. August steal

credentials and sensitive data from the infected computer.

As per the existing security solutions, prevention of fileless attacks are relies upon

endpoint protection solutions such as antivirus. However, these solutions have limited

capabilities to detect unknown attacks and sophisticated attacks, as most of them are

relying on signature matching. As fileless threats do not leave any malicious files in the

system and use only legitimate Windows components to carry out the attack, endpoint

detection software cannot generate a signature definition to detect the specific threat.

Signatures refer to data explained the characteristics of malware. This data can be used to

determine whether the victim machine or software application contains malware [6]. This

makes a challenge, as the antivirus doesn’t know what to look for. Since fileless attacks

use living off the land (LoL) tactics, it is more difficult to detect by traditional detection

engines. Cyber attackers tend to use fileless malware to carry out the attack as it has the

capability to evade most of the traditional detection methods. Therefore, it is not

surprising that most organizations face difficulty to detect and handle these types of

incidents. As per the Symantec threat intel report, attackers use LoL tactics and

preinstalled system tools to evade detection and hide malicious activities during the attack

[7].

As the report by ThreatVector, even though fileless attacks are relatively rare, existing

attacks are advance and sophisticated compare to the traditional attacks [8]. Fileless

attacks get its name by not leaving files on disk, but it is residing in the memory and

execute commands and run tools which are legitimate and already installed in the victim

machine. For instance, often fileless threat use PowerShell to carry out the attacks.

PowerShell is a powerful scripting language and can use for various reasons such as make

remote connections, invoke other applications and process etc. “Kovter” is one of

sophisticated fileless attack which began leveraging in 2016. “Kovter” is a pervasive

click-fraud trojan that utilizes a fileless persistence mechanism to build up the attack and

evade traditional detection mechanisms [9].

Apart from that, most of the sophisticated advance malware capable of altering or

interfere with the detection functionality exiting antivirus solutions to avoid detection or

trigger alarms/alerts. This considers as another significant weakness of existing detection

solution that is available on the market.

12

As per the insufficient accuracy of detecting fileless threats by using traditional signature

matching detection solutions, security researchers work on different detection logics such

as machine learning and behavioural analysis. Behaviour pattern analysis and machine

learning detection techniques have proven that those are accurate and efficient enough to

detect advance malware threats such as ransomware [10]. However, features in volatile

memory have not been tested with machine learning algorithms to detect most emerging

fileless threats.

In this study, we focus on presenting a novel methodology to detect most emerging

fileless threats in the organization’s private cloud by analyzing volatile memory using

machine learning algorithms. Volatile memory dumps have been extracted from the

virtual machines. Volatility framework has been used to extract the meta-features from

memory dumps and leverage them using machine learning algorithms to detect fileless

malware threats. In the proposed methodology, memory extraction, analysis and

detections are mainly operating on hypervisor level. Therefore, malware running inside

the virtual machine cannot interfere or evade the analyzing and detection functionality.

For instance, we analyze the volatility memory dumps taken from victim machines and

malware that is running on the machine cannot detect any underground operation such as

taking the snapshot as it executes in the hypervisor level.

Most of the traditional threat detection solutions detect malware upon the results of static

or dynamic analysis of suspicious file/s running in the victim machine [11]. Thus, the

existing solution is not capable of detecting fileless threats as it does not create any

malicious files to carry out the attack. To overcome this limitation, the proposed

methodology evaluates the volatile memory using machine learning algorithms to

distinguish the usual and unusual behaviour of the system. In this study, infrastructure

has been mainly deployed on Microsoft Hyper-V virtualization environment and VMware

virtual environment. Additionally, the proposed methodology has been tested against

Windows 7, Windows 10 using a list of known fileless attacks.

13

2 Background Information

Important background information regards to the fileless threats, virtualization, cloud

computing, virtual environment, and volatile memory forensics have been expressed in

this section.

2.1 Fileless malware

Fileless malware is one of the most emerging threats in history. According to the

Cybereason [12], unlike traditional malware, fileless threats do not require the threat actor

to install any software on the victim machine. Instead, fileless threats leverage tools and

application that are in-built in Windows, such as PowerShell to take out the malicious

actions. Since these tools and related operations are usually trusted by all detection

software, it is particularly a challenge to differentiate and distinguish these types of

malicious activities from legitimate activities [12]. Apart from that, fileless infection does

not store anything in the hard drive; instead, it goes straight into the Random-Access

Memory (RAM) which leaves no traces behind. However, as this type of malware

operates in volatile memory, the operation can be terminated upon the system reboot.

Same as most advance attacks today, fileless attacks also use social engineering tactics

for the entry points such as malicious link in the email which leads the user to download

the word document with a malicious macro. According to Microsoft fileless malware

article, there are three primary categories of fileless attack types [13].

- No file activity performed:

Completely fileless malware that is not writing any file on the disk. For instance,

during SMB EternalBlue vulnerability also refer as SMB MS17-010 vulnerability

exploitation, victim machine receives malicious network packets that exploit

SMB vulnerability, leads to install DoublePulsar backdoor and end up reside only

in the kernel memory. EternalBlue is a powerful cyberattack exploit released by

well-known hacker group known as Shadow Brokers. This exploit kit uses SMB

MS17-010 vulnerability to exploit unpatched Microsoft systems. Importantly

during this attack, no “write to file” operation involved.

14

- Indirect file activity:

This type does not directly write files on the system but ends up using files

indirectly. For example, attackers use PowerShell to execute malicious commands

and configure Windows management instrumentation (WMI) to run commands

periodically. WMI is a Microsoft implementation which allows to obtain data

from a remote computer. Also, this compatible with WMI scripting facility to

automate administrative tasks. WMI mainly developed by Microsoft for

administrative purpose. However, attackers misuse WMI to interact with remote

machines and perform malicious operations such as information gathering and

remote execution [14].

- Files required to operate:

This malware contains partial fileless characteristics as sometimes files involve

delivering the payload. An example for this scenario is “Kovter” fileless malware

which leaves open a backdoor in the victim machine by executing malicious script

through the legitimate tool mshta.exe. Payload for the “Kovter” can receive via

word document with a malicious macro.

Apart from that, there are some other methods that fileless threat can arrive into the

machine such as via exploit, through compromised hardware, or via execution of

script/application. Some advance fileless threats infect into the master boot record

(MBR), which bootstrap the execution of malware even before load the operation system

[13]. MBR is a special section of the disk that loads operating system information and

hard disk partition information. Adversaries overwrite this special section to invoke

malicious code upon the start-up of normal bootloader [15]. According to the McAfee

threat report, fileless threats are typically used for lateral movement and gaining fist level

access to the system [16]. Lateral movement refers to a set of techniques and tools that

attackers use to progressively spread throughout the victim network and obtain higher

privilege access [17]. Creative cybercriminals aim at four main aspects by developing

fileless malware [18],

- Stealth: The ability to hide malicious activities to evade the detection

- Privilege escalation: The ability to take over the administrative access by

exploiting system vulnerabilities

15

- Gather information: Harvest information and data about victim network for

later usage

- Persistence: Malware remain undetected

Fileless threat mainly differs from typical malware is where the advance techniques of

persistence and stealth mechanisms take place. Attacker also develops fileless threats to

first store the payload on the RAM to gain persistence. The main reason to hide the

payload in the RAM instead of hard disk, is to evade the detection. There are mainly three

techniques that fileless threats follow to remain undetected [18],

- Memory-resident malware: Load malicious code into the memory and use

windows authentic programs to carry out the attack. For instance, use Windows

legitimate process mshta.exe to execute HTML applications and scripts. This

gains less attention from the endpoint sensors since all the legitimate tools

involved in the attacking process. The primary focus of this is to remain

undetected throughout the attack.

- Rootkits: Rootkits often hide behind the kernel; thus, it maintains the persistence

upon system restart and antivirus scans. As the name implies, rootkit contains a

set of tools that ability to gain administrative access without informing the user.

Rootkit is able to track everything on the victim machine. Once after delivered the

payload to the victim machine, dropper installs rootkit. In most fileless threats,

dropper delivered to the victim machine as a word document with an embedded

malicious macro. These rootkits are difficult to detect as they are mostly executing

as child processes under legitimate parent processes.

- Windows registry malware: Modern fileless threats are capable of resides in the

Windows registry files. Windows registry stores the low-level settings related to

the operating system and certain applications. During this type of attack, malware

file executes in the registry file and then self-destruct the malware file upon

completion of the malicious task.

16

2.1.1 Detection of fileless threats,

Currently, software-based solutions are available to detect malware based on machine

behaviour. Unlike traditional signature matching solutions, behavioural based analysis

based threat detection tools identify malicious, suspicious behaviour by analyzing

differences in usual everyday activities in computer system to proactively mitigate

cyberattacks before the attackers fully execute their destructive plans. For instance,

net.exe executed in human resource manager computer is a suspicious behavioural

activity. Genuine net.exe is a legitimate software component in Windows system that used

to control network connections, services, users and groups. Use of net.exe in human

resource manager PC may indicate compromised scenario where attacker performing

local reconnaissance, enumerating accounts to identify high-privilege targets [19].

However, most of the detection’s software can be manipulated by advance malware and

turn off the alerts. For example, Regsvr32.exe is a legitimate command-line utility used

to register and unregister DLLs files on Windows machines. Regsvr32.exe can also use

to execute arbitrary binaries. Malicious actors take advantage of this functionality to

register a malicious program to avoid triggering security alerts [20]. Apart from that, since

fileless threats use LoL binaries, leave no suspicious behaviour while executing the

attack. Same as typical malware, fileless threats also built to use an operating system or

application vulnerability to exploit the system. For instance, EternalBlue exploits server

message block (SMB) vulnerability in Microsoft. As referenced before, EternalBlue is a

critical exploit released by well-known hacker group. WannaCry ransomware use this

exploit to attack Windows computers which contain a vulnerable version of SMB [21].

McAfee recommends regular patching and system hardening to reduce the risk [22].

2.2 Virtualization and cloud computing

Virtualization allows users to create a computing environment or IT resources by utilizing

traditional bounded hardware [23]. This enables organizations to build up multiple virtual

resources by partitioning a single physical computer. Each virtual resource can be used

for an independent task with different features such as operating system while sharing the

same hardware resources [24]. Virtualization is the fundamental technology that powerup

cloud computing [25]. Cloud computing is one of the famous IT trends in the modern era.

Cloud computing enables to deliver different services via the internet. Due to the cost

17

benefits, high availability and efficiency cloud computing are more popular among

organizations [26]. Virtualization is the underground base concept of cloud computing.

2.2.1 Virtual machine

Virtual machine is an emulation of computer that provides the same functionality as a

physical computer. Virtual machine implements on top of specialized hardware and

software combination. Same physical resources can be shared among multiple virtual

machines. This feature is one of the key advantages of virtual machines. Virtual machines

deploy on top of the hypervisor, which is mainly responsible for allocating physical

resources to virtual machines. Besides, the same hypervisor can manage multiple virtual

resources and ensure that machines are completely isolated from each other [27].

2.3 Volatile memory forensics

“Computer forensics is a method of extracting and preserving data from a computer so

that, it can be used in a criminal proceeding as evidence” [28]. The exact objective of

computer forensic it to uncover and determine the truth behind the digital crime. Digital

forensic plays a significant role in cyber-attacks and digital crime investigations.

Computer mainly stores its data in hard drive (non-volatile memory) and volatile memory.

Hence, security investigators usually analyze both hard drive and volatile memory during

the forensic investigation to reveal the scenario. Volatile memory keeps instructions and

data related to the running programmes [29]. Volatile data will be lost upon the reboot or

machine power off. Some advance malware leaves no data in hard drive but resides in

volatile memory. Therefore, volatile memory analysis plays a significant role during the

investigation of such sophisticated attacks. For instance, essential data such as keys used

for encrypting volumes during ransomware attacks (TrueCrypt, VeraCrypt, BitLocker)

can be retrieved by analyzing volatile memory [30]. Mainly there are two approaches in

volatile memory forensics which are live response and memory imaging. During the live

response method, investigator access to the device using remote shell connection and do

in-depth analysis and take immediate incident response actions to promptly mitigate

identified threats [31]. However, there are certain disadvantages in this method, such as

if malware running in the target machine, it will manipulate the data collection process.

During the memory imaging approach, volatile memory image will be extracted from the

computer and store for analysis. The main advantage of this method is not changing the

18

state of the system. The image remains as same before and after the analysis. Additionally,

memory imaging analysis can be more trusted than live response as malware cannot

manipulate the analysis process.

In this study, memory imaging approach has been used to analyze the volatile memory as

it is more trusted and accurate. Also, infrastructure has been deployed in the Hyper-V and

VMware environment. We used their inbuilt snapshot feature to take fresh memory image

from virtual machines.

2.4 Machine Learning

Machine learning is a method of teaching computers to automate certain operations based

on data analysis [32]. Machine learning is mainly used to predict and forecast certain

features and parameters, also called supervised learning. For example, machine learning

algorithms can be trained to forecast traffic pattern for busy intersection by analyzing

certain data about past traffic pattern. The accuracy of the prediction depends on multiple

parameters such as dataset, machine learning algorithm etc. Machine learning algorithms

use data set to find a pattern of distribution to make better decisions and predictions. There

are mainly two types of machine learning methods, which are supervised learning and

unsupervised learning. Supervised learning trained the machine learning model using data

and correct labels. This allows the machine learning model to map the data with

correspondent labels or classes and make the prediction based on data provided as input.

However, inappropriate data feed to the model could give inaccurate results in supervised

learning method. Supervised learning can further group into two main approaches which

are, classification and regression. Classification use when the desired output is class or

category. For instance, machine learning model for detect spam email. In this case, two

categories are spam and not-spam. Supervised classification model is appropriate for such

scenarios. Regression approach uses when the expected output value is variable such as

weight or dollars. For instance, machine learning model uses to predict the stock market

price for next month. In unsupervised learning, only the data feed to the model without

any labels. The expectation of unsupervised learning is to build its own structure based

on the input data [33]. Main disadvantages of unsupervised learning are computationally

complex and less accurate as it is not trained with labels. In this study, we used meta-

19

features of volatile memory as a dataset to train the machine learning algorithm and

distinguish legitimate and malicious fileless threats.

2.4.1 Machine learning classification algorithms

Classification is a supervised learning technique that allows to categorize data into

appropriate classes. This process starts with training the model with test data and finally

predict the unseen classes according to input data. In this study, decision tree, random

forest, k-nearest neighbour and support vector machine classification models accuracies

have been evaluated with our dataset.

- Decision Tree

Decision tree breaks down the data set into subsets. This typically consists of three

main elements which are, root node, branches and leaf node. Each node represents

a feature while each branch represents a decision, and each leaf represents an

output [34]. Root node represents the final decision based on the data. Besides,

using the decision tree, it is easy and accurate to understand the most significant

variables and the relationship between features. This considered as one of the

major advantages of the decision tree. Besides that, overfitting considered as one

of the major limitations in the decision tree. Overfitting explained briefly in

section 5.1.

- Random Forest

Random forest contains large number of individual decision trees. Each individual

tree predicts the class. The highest number of prediction class become the final

prediction result. More about random forest explained in section 5.2.

- K-Nearest Neighbour

k-Nearest Neighbour also known as kNN is a supervised learning algorithm which

relies on labels in the dataset. k-Nearest Neighbour put all the training data into

n-dimensional space. Unknown data class predicts based on the closest k-number

of neighbours, and the most common class take as the final value. In kNN,

classification mainly based upon the assumption of similar data points exist close

to each other [35].

- Support Vector Machines

20

SVM is a supervised learning algorithm used for classification and regression

problems in machine learning. SVM model basically denotes a different set of

classes in a hyperplane in multidimensional space [36]. Hyperplane refers to

decision boundaries that classify data points in the graph. So, data points belong

to each side label with the corresponding class.

2.4.2 K-Fold cross-validation

Machine learning data set can be divided into two main sets, training set and testing test.

Training set used to train the model while testing test used to evaluate the result of the

training set. Usually, 70% of the dataset used to train the model and 30% of data set to

use as testing dataset to evaluate the trained model. K-Fold cross-validation allows to

compare the different machine learning classification algorithms to pick up the most

suitable method. In this k-fold cross-validation, the data set divide into k number of sets

and then train the module using (K-1) number of subsets and the remaining set will be

used to evaluate the trained model. This process iterates K number of times with different

subset as testing module [37]. This method allows to use each subset for validation exactly

once while (K-1) number of subsets use as the training set. The average of the result after

K number of iterations take as K-fold cross-validation.

2.4.3 Confusion matrix

This section describes the effectiveness of apply random forest to the training dataset.

Confusion matrix is a method of evaluating the performance of the machine learning

classification algorithm [38]. As the name implies, confusion matrix allows to visualize

the confusion between classes predicted by the selected classification algorithm.

Moreover, confusion matrix summarizes the number of correct and incorrect predictions

made by classification algorithm. The key advantage confusion matrix is, it just not only

provides insight on correct and incorrect predictions, but it gives the type of errors also.

Example for confusion matrix as follows. Note that, table rows represent actual classes

while columns represent predicted classes.

 Predicted class

 Malware Legitimate

Actual class
Malware True Positive (TP) False Negative (FN)

Legitimate False Positive (FP) True Negative (TN)

21

Table 1: Confusion matrix

As per the confusion matrix table, true positive and true negative states indicate the

correct prediction of the machine learning model. True positive (TP) illustrates the state

where the actual malware program predicted as malware by the machine learning model.

True negative (TN) is the state where legitimate application classified as legitimate by

the machine learning model. In other words, these TP and TN states illustrate the correct

prediction of the machine learning model. False-negative (FN) denotes actual malware

program that predicted as legitimate and false positive (FP) indicate legitimate application

predicted as malware by machine learning model. In data science, false-positive known

as Type I Error and false-negative called Type II Error [39].

Different optimization methods used to reduce these two types of error. In this study, an

optimized machine learning algorithm has been used to reduce these two types of errors

to increase the accuracy of detecting threats. Besides, Precision and Recall used to

evaluate the accuracy of the detection model. Precision is ideal to use when the weight

and cost of false-positive are high.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

This is equal to true positives count divided by all positive prediction count. As name

implies, precision equation calculates how precise the model is by getting the ratio of

correct positive predictions to count out of total positive predictions [40].

In this research, we have calculated the precision with the below characteristics. Python

scikit-learn inbuilt method has been used for the calculation.

Recall method is ideal when the high weight and cost associated with false negative.

Recall can be calculated using the below equation:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

As equation describes, Recall calculates the ratio between the number of correctly

predicted positive predictions and the number of overall all positives. In this study, Recall

can be used to calculate how many malicious files detected from total malicious

application dataset by using our trained machine learning classification model.

22

Ideally, accuracy is a fraction of, number of correct predictions out of the total number of

predictions. This is not a good approach to follow if the data set is not balanced. Accuracy

can be calculated using the below equation,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

These precisions and recall methods are individually suitable to evaluate the accuracy in

different aspects under different characteristics. However, a good machine learning model

should perform well in both situations. F1-Score is the combination of both precision and

recall, which balance the two approaches [40]. Furthermore, “F1-Score is the harmonic

mean of this precision and recall” [41]. This can be calculated using the below formula,

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

2.4.4 Feature selection

Feature selection is the selection of features or attributes in the dataset that are more

relevant to the prediction of classes [42]. Feature selection method is useful to detect and

avoid redundant and irrelevant unnecessary features that do not contribute to the final

accuracy of the model. Also, this helps the model to run faster as it significantly reduces

the data set. There are three main models in the feature selection [42],

➢ Filter method: Each feature in the data set ranked by using statistical measuring

method. Feature removal decision can be taken based on the ranked score.

➢ Wrapper method: Evaluate different combination of features with other

combinations. Machine learning model used to evaluate the combinations of

features. Assign score for combinations based on the accuracy of the model.

➢ Embedded method: Determine which feature and how much it contributed to the

model accuracy.

23

2.4.5 Correlation matrix

In data science, correlation matrix is a table that shows the measure of the correlation

coefficient between features/variables. Correlation coefficient calculates the strength of

the relationship between two variables [43]. This strength value, or in other words,

correlation coefficient, varies within the range of (-1.0) to (1.0). In this range, -1.0

denotes the perfect negative correlation, and 1.0 indicates the perfect positive correlation.

Any value in the correlation matrix that is greater than zero represents a positive

relationship, while less than zero indicate a negative relationship. In the negative

correlation, the involvement of two variables/features moves in opposite direction. For

instance, when variable A increases, variable B will decrease if both values have a

negative correlation and vice versa in positive correlation [44]. Also, if the correlation

coefficient value is zero, it indicates that there is no linear relationship between two

variables, but it can be some other type of relationship such as quadratic.

2.4.6 Feature importance

Generally, in feature selection, the main functionality is removing unnecessary features

then re-train the model and compare the accuracy with baseline. However, in feature

importance approach is little bit different from feature selection method as feature

importance choose the best set of features that contribute to the accuracy. However, both

models achieve the same goal from different directions which is to remove unnecessary

features and increase the efficiency of the model. Python feature_importance_ library

allows to evaluate the relative importance of each element.

2.4.7 Principal component analysis

Principal component analysis (PCA) is an unsupervised machine learning method that is

used for dimensionality reduction. Dimensionality is the number of variables in the data

set. Model overfitting is a primary problem associated with high dimensionality.

Overfitting refers to when a model gets trained with too much of data including noisy

data, the model learned from those inaccurate data entries. In this case, the model does

not classify data accurately because of inaccurate learning data. This caused overfitting

in machine learning [45]. This mainly reduces generalization in the machine learning

model. Generalization refers to the ability of model to adapt for new, unseen data from

the same distribution [46]. High dimension makes overfitting in the model, which

increases the generalization error [47]. Furthermore, high dimension data extremely

24

complex to analyze and process due to some feature’s incompatibility. By applying PCA

to the data set, it is able to reduce dimensionality by only selecting the important features

that capture maximum information about the dataset. Also, by lowering dimensionality

PCA allows to speedup the data processing and model training [48].

25

3 Related work

This section explains the previous work related to the fileless malware detection, cloud

computing, virtualization and memory forensics. A literature search performed in selected

digital libraries such as ACM digital library, IEEE Explore and web search in google

scholar. Search keywords such as fileless, file-less, malware-less, malware less have been

used to find the related papers. Manual web search used to find the relevant articles and

publications from reputed sources. Snowballing method has been used to find out

associated researches.

Carlin et al. [49] presented research related to dynamic opcode analysis tool to detect

fileless browser-based crypto-mining engines. Based on the author, this is the first

dynamic opcode analysis for fileless crypto mining using machine learning. For the

experimental setup, dedicated machines were used for the experiments, using a fresh

image of Windows 7 64-bit, an Intel Celeron 2.90GHz G3930 CPU and 4GB RAM. The

open-source OllyDbg v2 debugger used to trace the dynamic opcodes of each runtime,

with StrongOD v0.4.8.892 used to cloak the running debugger. Firefox 54 was used as

the browser to execute all HTML files. Bespoke Python scripts were employed to

automate the execution process. This methodology was followed constantly during the

dataset creation process. Random Forest (RF) machine learning model used with WEKA

3.9, for all classification tasks. As per the result presented in this paper, dynamic opcode

analysis is an effective way to detect crypto-mining behaviours in the browser and detect

malicious activities. Furthermore, this model can be used to determine crypto mining

sites, weaponized benign sites, de-weaponized crypto mining sites and legitimate real-

world sites. However, this study only addressed the browser-based crypto-mining

malware for opcode analysis.

Nahmias et al. [50] presented a solution which is named as “Trustsign” a novel, trusted

automatic malware signature generation method based on features transferred from a pre-

trained VGG-19 model. VGG-19 is a convolutional neural network. This is one of the

well-known models to classify the real-world images. “Trustsign” is trusted and fully

capable of signing file-less malware. “Trustsign” produces signature based on the

malicious process in the volatile memory (rather than the file representation on the local

drive), thus overcoming packing and obfuscation techniques which are usually applied by

26

malware developers in order to avoid detection. Moreover, TrustSign does not require

feature engineering or time-consuming model training, as it leverages transfer learning,

thus minimizing the critical time interval between the malware’s analysis and the

distribution of its signature. “TrustSign” leverages virtualization to produce signatures

based on the presence of a malicious process in the volatile memory in a trusted manner.

To achieve trusted analysis, execute the malware on a designated virtual machine. Then,

while the malicious process is active, snapshot has been taken from the system’s volatile

memory by querying the hypervisor. TrustSign’s methodology is trusted since it analyses

the volatile memory dump taken from a virtual machine, and the malware that is running

on the machine cannot evade, interfere with, or shut down TrustSign. However, as per the

author, TrustSign encounters difficulty in producing a signature for malware that injects

code into memory. Additionally, there is no such malware program involved for analysis

in this study. However, in this study, we overcome these limitations by addressing fileless

threats that injects malicious code into memory, such as Astaroth attack.

Cohen et al. [11] Most companies are migrating to cloud infrastructure, and due to that

reason, most attackers target virtual servers in the cloud. Most of the antivirus software

cannot detect advance threats, and most of the advance prevention tools not yet developed

to secure the cloud environment. This study presented a methodology to detect known

and unknown ransomware in virtual machines on an organization’s private cloud using

volatile memory. For the implementation, VMware vSphere has been used to create and

manage virtual machines for evaluation. This allows to take snapshots of the VM and

easily extract the volatile memory. Using these snapshots, collected memory dumps after

the execution of multiple legitimate and malicious programs. Conducted analysis on

volatile memory dumps that are taken from virtual machines. Volatility framework has

been used to extract general descriptive meta-features from memory dumps. Thereafter

leveraged the meta-features using machine learning algorithm to capture unknown

ransomware. The main limitation of this study is only ransomware attacks have been

encountered for the analysis. Apart from that, only five ransomware attacks have been

involved in the analysis. In our study, we addressed more than fifteen fileless threats in

the analysis.

Hăjmăşan et al. [51] presented a scoring mechanism for dynamic evaluation of the

behaviour of potential malware processes. Most of the dynamic behaviour malware

detection platforms are based on learning method which prone to more false positives and

27

not accurate enough for real-time detection. This study presented a scoring engine based

on dynamic behaviour evaluation of the machine. Proposed methodology monitor the

actions performed by processes, kernel and assign a separate score for each action based

on the proposed scoring mechanism. The primary theoretical contribution of this research

is the scoring mechanism for dynamic behaviour evaluation of malware. Proposed

solution tested against with malicious files, processes running in the machines. Detection

test performed using an automated analysis platform that executed the samples in multiple

virtual machines with the Windows 7 x64 OS installed. By analyzing the results, 14949

malicious files detected and 2120 were not. This can be translated into a detection rate of

87.57%. The tested files have been obtained from various sources like spam email

attachments, URLs used to spread malware and infected web sites. However, based on

the study result, this proposed solution has a significant amount of false-positive rate,

which is more than 13%. Apart from that, most of the advance attacks are capable of

manipulating the monitoring systems. Hence, this solution monitors each action

performed by the kernel module and process it may not be a trusted solution against

sophisticated attacks.

Handaya et al. [52] proposed a methodology to detect fileless cryptocurrency mining

malware using a machine learning approach. Proposed methodology analyzes benign and

malicious cryptocurrency malware using different machine learning models such as

random forest, support vector machine and kNN. This research mainly focused on

Monero crypto-mining malware during the analysis. For the analysis, EMBER data set

has been extracted upon execution of each malware and legitimate programs in the

machine. EMBER refers to benchmark dataset used for train machine learning models in

order to statically detect malicious Windows executable files [53]. This dataset contains

features extracted from binary files and malicious and benign training samples. As per

the analysis, the main limitation of this research is they analyzed only Monero crypto-

mining malware for the evaluation.

Gadgil et al. [54] presented an analytical approach to hunting advance volatile threats

using memory forensics. Memory forensics become critical as memory contains many

forensic artifacts that cannot obtain from traditional disk forensics. This study mainly

checks for the indicator of compromise (IOC’s) exist in the memory to detect

malware/threats in the memory. Indicator of compromise represents data, log entries or

files that are related to the malicious activities. In this study, infected machines analyzed

28

with the Volatility framework using a different set of plugins. Different plugins have been

categorized to identify different characteristics. For example, to identify rouge process, it

is able to use pslist, pstree plugins. These two plugins list down the process list in the

memory so that analyst can check for unusual suspicious processes. Besides, examine the

open connections to verify the malicious connections.

Tsuda et al. [55] proposed a HIDS based on process generation pattern. Proposed HIDS

system, at first, periodically collects lists of active processes from hosts on managed

networks. The system extracts process paths from process trees which the system builds

by using the collected lists. Finally, the system detects anomaly processes considering

process paths’ uniqueness and lifetime. In order to find anomaly behaviours on well-

managed networks, it is effective to observe changes in executing applications and

processes. The proposed system has implemented in an actual organization to evaluate

machines. It has collected 2,403,230 process paths in total from 498 hosts for two months.

HIDS system could extract 38 anomaly processes. Most of the processes are created by

benign applications which were used for maintenance and daily works. Among the

anomaly processes, there is a PowerShell process created by a macro in Microsoft Excel.

It also detected by using an antivirus software running on the organization. The other 18

PowerShell processes were benign, which were related to updating programs for

maintaining hosts, and the anti-virus software. Based on the author, HIDS system should

be improved using the sanctioned and unsanctioned application method to minimize the

false positives.

As per the literature, there are certain amount studies have been conducted on malware

detection based on dynamic analysis and machine learning. Among them, most of the

researches focused on unique malware type such ransomware, fileless crypto-mining

malware and dynamic analysis based on opcode analysis, volatile memory analysis and

signature matching etc. There is no proper study found related to the detection of fileless

threats using machine learning model. Additionally, no proper study found to provide a

detailed analysis of how to select memory features to detect such advanced attacks. In

this paper, we presented a novel and trusted methodology to detect fileless malware in

virtual machines and a private cloud. Additionally, we presented a set of feature list that

can be used for analysis and correlation characteristics between those features in order to

detect fileless threats. As mentioned in the literature, Volatile memory feature analysis

has been used in previous studies for ransomware detection. However, in this study, we

29

used a combination of both volatile memory and network-level feature analysis using

machine learning model to detect fileless threats in the cloud. Additionally, proposed

methodology mainly developed in hypervisor level. Since malware does not have access

to the hypervisor level, it cannot manipulate or evade the detection process. Therefore,

the proposed methodology can be considered as trusted also.

30

4 Methodology

This section explains the approach that has been used in this study, including

infrastructure, data collection and evaluation procedure. Workflow of this master thesis

can be categorized into four main phases: Acquisition of volatile memory, data collection,

feature extraction and data analysis. Machine learning algorithm has been trained to

determine legitimate and fileless threats by analyzing volatile memory features.

4.1 Acquisition of volatile memory

Microsoft released Hyper-V in 2016 to introduce virtualization to Microsoft end users.

Hyper-V is virtualization software that provides the ability to deploy and manage virtual

resources such as virtual client machines, virtual servers. Additionally, end-user can

customize resources and choose the operating system while deploying virtual machines.

All the virtual resources can be managed via Hyper-V manager which automatically

installed upon the enabling of Hyper-V. In this study, Microsoft Hyper-V environment

and VMware used to demonstrate private cloud computing platform. All the virtual

machines are also deployed in the Hyper-V environment. Below figure shows the

virtualization infrastructure that has been used in this study.

Figure 1: Hyper-V virtualization infrastructure

31

Hyper-V allows to take snapshot from virtual machines at the specific state and save to

snapshot file. The data of the snapshot contains the virtual machine’s power state (power

on, power off or suspended), hard drive data, volatile memory information and device

information. Necessary volatile memory data can be extracted from snapshot files using

the Volatility framework. All the snapshots have been stored in to separate external hard

drive for analysis. Below diagram illustrates the three main steps followed to collect

volatile memory dumps. The process initiates from a fresh virtual machine which

considers as baseline state.

Figure 2: Process flow of collecting snapshots

Since the infrastructure has been deployed in the Hyper-V environment, virtualization

technology ensures the segregation between the hypervisor and virtual machines. This

methodology considered as trusted as a program running in the virtual machines cannot

reach hypervisor level. Therefore, malicious programs running inside virtual machines

cannot manipulate or interfere with the snapshot acquisition process.

32

4.2 Data collection

As described in section 4.1, new virtual machines have been deployed on the Hyper-V

infrastructure.

Specifications of the virtual machines as below,

Operating Systems Windows 7, Windows 10

Memory 2 GB

Number of processors 4

Hard Disk 20 GB

Network Connection NAT

Table 2: Virtual machine specifications

As illustrated in Figure 2, snapshot data has been collected by executing both legitimate

applications and fileless malware one at a time. During the default state of the virtual

machine, snapshot has taken. Upon the execution of each program (both legitimate and

malicious) and snapshot process, VM roll back to the baseline state, which considered as

the default state of the client machine. For each snapshot, memory dump has been saved

to an external hard drive for analysis. Additionally, the snapshotting process has taken

approximately four minutes to make each 2 GB size snapshot. In this study, altogether,

40 snapshots have been analyzed, and 24 of them are legitimate while 16 are malicious

fileless threats. These threat samples contain fileless threat features and categorized as

fileless threats [56].

Below figure illustrates the snapshot collection process upon the execution of each

program at a time. Benign application represented by green while malicious fileless

malware represented by red colour. All benign programmes are related to the

organizational Windows client programs and software that use a regular basis such as

Microsoft office, run full antivirus, Wireshark, Procmon etc.

33

Figure 3: Snapshot creating process

Below table contains the programs executed in virtual machines before taking the

snapshot. Details about fileless malware and malware samples are collected from

“chenerlich” GitHub page [56], AnyRun [57] and Hybrid-Analysis.

Program Description OS Type

Baseline Baseline Windows 10 Benign

Legitimate word document Microsoft Office tool Windows 10 Benign

Wireshark Network monitoring tool Windows 10 Benign

Procmon Process monitoring tool Windows 10 Benign

Avast antivirus Antivirus engine Windows 10 Benign

MS word doc with macro Microsoft Office tool with legitimate macro Windows 10 Benign

Spotify Music application Windows 10 Benign

7Zip File archiver Windows 10 Benign

Zoom Video conferencing tool Windows 10 Benign

Google chrome Internet browser Windows 10 Benign

WhatsApp web Messaging and calling application Windows 10 Benign

Outlook Mail client Windows 10 Benign

Adobe Reader PDF file Windows 10 Benign

Microsoft store Microsoft store Windows 10 Benign

Firefox Internet browser Windows 10 Benign

Skype Messaging and calling application Windows 10 Benign

Microsoft Excel Microsoft Office tool Windows 10 Benign

VMware Virtualization software Windows 10 Benign

iTunes Apple devices management panel Windows 10 Benign

Microsoft Edge Internet Browser Windows 10 Benign

KeePass Password manager Windows 10 Benign

Windows Defender scan Microsoft firewall Windows 10 Benign

Notepad++ Text and source code editor Windows 10 Benign

PowerShell Execute PowerShell script Windows 10 Benign

Emotet Emotet is a banking trojan malware Windows 10 Malware

34

GZipDe GZipDe malware drops backdoor Windows 10 Malware

Macros Malicious automation script Windows 7 Malware

Valyria Malicious visual basic script Windows 7 Malware

LokiBot Macro malware steals sensitive information Windows 7 Malware

August Steals credentials and sensitive documents Windows 10 Malware

JS_POWMET
Trojan JS_POWMET is downloaded via an
auto-start registry entry

Windows 10
Malware

Keybase Macro based malware Windows 7 Malware

Kovter Pervasive click-fraud trojan Windows 10 Malware

Rozena Malicious script Windows 10 Malware

Phase Bot Fileless rootkit Windows 7 Malware

Silence Malicious script Windows 7 Malware

CryptoWorm Fileless Crypto-mining malware Windows 7 Malware

CodeFork Fileless malware by CodeFork hacker group Windows 10 Malware

PowerWare A novel approach to ransomware Windows 10 Malware

Poweliks Malware resides in the Windows registry Windows 7 Malware

Table 3: Programs executed in virtual machines

All the snapshots have been collected to an external hard drive for later analysis. Since

this study is focused explicitly on volatile memory, only volatile memory dump has been

extracted from each snapshot. The size of each dump is equal to RAM size, which is 2

GB. After that, features have been obtained from each memory dump using the Volatility

framework. Feature extraction method has been explained in section 4.3 Feature

Extraction

4.2.1 Fileless malware samples

In this study fileless threat samples have been collected upon certain requirements such

as, malware should able to execute in Windows 7 or Windows 10 environment and

malware that can able to execute offline or able to communicate with command and

Control servers (to retrieve the payload). Most of the available malware samples cannot

be analyzed as their C&Cs are no longer active. Hence those type of threats cannot

complete the entire execution in the victim machine. Additionally, some fileless threat

samples that are available on internet specifically built to address certain vulnerabilities

in the applications. Those type of threats can only execute upon the existence of such

vulnerability in the victim machine. The main difficulty we found in this study is to collect

fileless malware samples as there is only a limited number of platforms to download

samples in the community. In order to download fileless malware samples, we used

Hybrid analysis sandbox special educational package and full API package that provide

for research purposes and Any-Run special researches. Apart from that VirusShare

website [58] also used to acquire fileless scripts. In this study, multiple malware samples

have been tested, and only 16 samples met the above requirements.

35

4.3 Feature Extraction

4.3.1 Volatility Framework

Volatility is an open-source platform used for digital forensic investigations. Raw

memory dumps, virtual machine snapshots, Microsoft crash dumps, VMware dumps can

be analyzed using this framework. Volatility is a well-known and frequently used

platform among security experts and forensic investigators [59]. This framework supports

both 32-bit and 64-bit operating systems. Besides Volatility framework support all

flavours of Windows, Linux and macOS and Android. Furthermore, raw memory dumps,

hibernation files, virtual box memory dumps, Microsoft crash dumps and VMware dumps

can be analyzed using Volatility framework. Volatility contains over 35 plugins to

analyze different characteristics of the volatile memory [60]. Prior to initiate memory

dump analysis, the appropriate profile should be defined in the command. The primary

objective of this process is to synchronize with frequent feature enhancement applied by

the operating system. Volatility allows identifying the appropriate profile once after

analyzing the metadata of the memory sample. Apart from that, this framework is able to

provide active process status, hidden processes, DLL loaded, socket information, network

connection information upon the analysis of the memory file. Present-day, most malware

such as rootkits, fileless threats are capable of hiding their existence during the period of

attack. Most of these attacks are hide their malicious processes in the volatile memory

instead of writing to the hard disk. However, run time memory analysis is capable of

detecting such behaviour. Hence in this research, we used the Volatility framework to

inspect the memory dumps.

4.3.2 Feature extraction for dataset creation

In this research, Shell script has been developed to extract the predefined set of features

from the volatile memory dumps. As explained in section 4.1, volatile memory contains

data and instructions related to running programs. Developed shell script utilizes

Volatility framework 2.6 to extract the necessary information from the memory dumps.

In this study, different Volatility plugins have been used to obtain system information

such as running processes, DLLs, Network connections [61]. Extracted features exported

to the excel file. Python program has been developed for the extract only the necessary

features from the excel files that are created by shell script in the previous process. For

instance, avoid the duplicate DLL file in the memory dump and get the count of unique

36

DDL file in the memory. These set of features extracted and exported to CSV file, as

shown in Appendix 1. In the CSV, columns represent the features while rows represent

the memory dump. Furthermore, additional features such as network-level characteristics,

file actives and registry activities are extracted from a live sandbox environment upon the

execution of each malware. This allows to obtain file and registry activity features during

the execution of malware.

Figure 4: Feature Extraction Process

The duration for extract features from memory dump mainly depends on the size of the

dump file. In this study, for 2 GM memory dump file, it has taken approximately 5

minutes to complete the feature extraction process. In this study, altogether, 40 memory

dumps have been analyzed. Therefore, entirely 3 hours and 20 minutes spent for memory

extraction process.

Below table contains the list of plugins used in this study to extract features from memory

dumps [62]. More details regarding the Volatility plugins can be found in the Volatility

Command Reference GitHub page [63].

Volatility plugin Description

psxview List of plugins utilizing in the machine

thrdscan List of thread objects using pool scanner

svcscan List of windows services

dlllist List of loaded DLLs for each process

ldrmodules List of unlinked DLLs

modules List of modules loaded

privs List of process privileges

callbacks List of kernels callbacks (notification routines)

handles List of open handles for each process

mutantscan List of mutex objects using pool scanner

connections List of open connections

hivelist List of registry hives

pslist List all running processes

Table 4: List of Volatility Plugins

37

4.3.3 Set of features

Table 4 explained the volatile memory features extracted from the memory dumps. List

of these memory features obtained into CSV file for analysis. For each element, feature

name, description, data type and Volatility plugin name has been provided in the table. In

this study, list of features that are used for analysis decided based on a previous research

article on ransomware detection [10], and study on an analytical approach to hunting

advance threats using memory forensics [54]. Specific Volatility plugins have been used

multiple times to obtain a different set of features. Additionally, list of these features

contains not only the characteristics of memory but also various system operations such

as file modification, registry modification during the execution of the program. These set

of features are obtained by executing each program in the sandbox environment. Table 4

represents the features that are extracted using Volatility plugins.

Feature Description Type
Volatility

Plugin/Source

1 handles_num Number of handles Integer handles

2 hiveList Number of registry hives Integer hivelist

3 dlls_ldrmodules_num
Number of DLLs used by all
processes

Integer ldrmodules

4 dlls_ldrmodules_unique_mappedpaths_num
Number of unique DLLs
used by all processes

Integer ldrmodules

5 dlls_ldrmodules_InInit_fales_num
Number of DLLs with InInit
false

Integer ldrmodules

6 dlls_ldrmodules_InLoad_false_num
Number of DLLs with
InLoad false

Integer ldrmodules

7 dlls_ldrmodules_InMem_False_num
Number of DLLs with
InMem false

Integer ldrmodules

8 dlls_ldrmodules_all_false_num
Number of DLLs with all
false

Integer ldrmodules

9 modules_num Number of modules Integer modules

10 callbacks_num Number of kernels callbacks Integer callbacks

11 processes_privs_enabled_not_default_num
Number of processes with
enable and without default

Integer privs

12 processes_psxview_exited_num
Number of processes
completed before taking the

snapshot

Integer psxview

13 processes_psxview_false_columns_num
Number of process listing
techniques that do not detect
at least one process

Integer psxview

14 processes_psxview_false_rows_num
Number of processes that are
not detected by at least one
process listing techniques

Integer psxview

15 processes_psxview_num
Number of processes
detected by psxview

Integer psxview

16 processes_psxview_pslist_true_num
Number of processes
detected by pslist

Integer psxview

17 processes_psxview_psscan_true_num
Number of processes
detected by psscan

Integer psxview

18 services_svcscan_num Number of services Integer svcscan

19 services_svcscan_running_num Number of running services Integer svcscan

20 services_svcscan_stopped_num Number of stopped services Integer svcscan

21 dlls_dlllist_unique_paths_num Number of dlls Integer dlllist

38

22 mutex_mutantscan_num Number of mutexes Integer mutantscan

23 threads_thrdscan_num Number of threads Integer thrdscan

24 pslist Number of processes Integer hivelist

25 tcp/udp_connections
Number of TCP/UDP
connections

Integer sockets

Table 5: List of features from Volatility

Table 6 explains the features that are extracted from the sandbox environment by

executing the malware. These set of features have been extracted for each sample by

executing each malware in the sandbox environment at a time. Important network features

such as domain name services (DNS) requests cannot be extracted using Volatility.

Therefore, we used sandbox to extract these additional important features for analysis.

26 total_reg_events Number of registry events Integer sandbox

27 read_events Number of read operations Integer sandbox

28 write_events Number of write operations Integer sandbox

29 del_events Number of delete operations Integer sandbox

30 executable_files Number of executable files Integer sandbox

31 unknown_types Number of unknown files Integer sandbox

32 http(s)_requests Number of HTTP requests Integer sandbox

33 dns_requests Number of DNS requests Integer sandbox

Table 6: List of features from Sandbox report

4.4 Data processing using machine learning algorithm

4.4.1 Classification machine learning algorithms

In this study, we applied four commonly used machine learning classification algorithms

on the dataset. In machine learning, classification is a process of predicting the class of

the specific given data point [64]. For instance, in this study, fileless malware detection

can be identified as a classification problem. This can be categorized as binary

classification since it consists of only two classes as malicious and non-malicious. In this

case, known fileless threats and legitimate applications have been used as training data to

train the classifier. After that, it can be used to detect the unknown fileless threats. This

is known as supervised learning as output based on the input dataset. In this study, the

following classification algorithms have been used: Random Forest (RF), Decision Tree

(DT), K-Nearest Neighbour (K-NN) and Support Vector Machines (SVM). More

information about these algorithms explained in section 2.4.1.

39

5 Evaluation

In this section, we evaluate the accuracy of detecting fileless threats by using the proposed

methodology.

In this research, decision tree, random forest, k-nearest neighbour and support vector

classifier algorithms have been chosen since our test data set has binary classifications.

Additionally, based on previous studies, those algorithms widely used due to their

accuracy and efficiency measures. Most suitable classification algorithm mainly depends

on the nature of the dataset [64]. However, in this study cross-validation has been used

to select the most appropriate classification algorithm for the available data set.

5.1 K-Fold cross-validation

K-Fold cross-validation allows to compare the different machine learning classification

algorithms to pick up the most suitable method. In this research, we used scikit-learn

python machine learning library to calculate the k-fold cross-validation for each selected

classification algorithms. Below table illustrates the behaviour of each classification

algorithm when K=10, training sample size: 70% and testing sample size: 30%.

Classification Algorithm Decision Tree Random Forest k-Nearest N SVM

Cross validation score 0.933 0.966 0.625 0.566

Table 7: K-Fold cross-validation performance

Based on the cross-validation score, random forest classification model scored 96%,

which is highest from other evaluated models. Despite the decision tree is comparably

faster than the random forest, deep decision trees experience overfitting, which decreases

the performance and accuracy [65]. Overfitting refers to when the model gets trained with

too much of data including noisy data, the model learned from those inaccurate data

entries. In this case, the model does not classify data accurately because of inaccurate

learning data. This caused overfitting in machine learning [45]. One of the advantages of

random forest is, it can handle missing values. Besides, random forest classification has

high efficiency because of the number of decision trees contribute to the prediction.

Therefore, in this research, we used random forest as the machine learning classification

algorithm.

40

5.2 Random Forest

Random forest is one of the most popular machine learning algorithms that belong to

supervised learning algorithm. As explained in section 2.4.1, Random forest contains

large number of individual decision trees. Each individual tree predicts the class. Instead

of relying prediction on a single decision tree, random forest checks each decision tree

prediction and obtain the final prediction based on the majority votes of prediction [66].

Besides random forest use bootstrap aggregating method, also known as bagging method

to tree learners. Bagging is applying base classifier on random subsets of the original

dataset and aggregate individual predictions of each of them [67]. Since bootstrap

aggregation decreases the variance of the model, it increases the performance of the base

model. Furthermore, bagging reduces the overfitting, which considered a limitation of the

decision tree. Also, in the random forest method, a larger number of decision trees capable

of giving more accurate result.

5.3 Fileless threat detection: performance

Below table illustrates the confusion matrix values retrieved using random forest machine

learning model. Python scikit-learn library used for the calculation. 30% of the data set

has been used as testing data for this evaluation.

 Predicted class

 Malware Legitimate

Actual class
Malware 4 0

Legitimate 1 7

Table 8: Confusion matrix derived from the model

Altogether twelve samples (four malware samples and eight legitimate applications) have

been involved with the confusion matrix evaluation. As per the table result, there is one

false-positive result which is one legitimate application detected as malware by machine

learning mode. As per the test samples, execution of Avast antivirus engine has been

labelled as malware by machine learning mode.

41

5.4 Correlation matrix

In this study, correlation strength has been calculated against each feature and illustrated

using correlation matrix heatmap. Matplotlib and Python plotting utility has been used to

generate the below graph.

Figure 5: Correlation between features of the dataset

In Figure 5, blue denotes negative and red indicates the positive correlation coefficient

values. Grey indicates that there is no correlation between features. Also, stronger in

colour correspond to the magnitude of the correlation value. Diagonal correlation

coefficient is always 1.0 as each feature perfectly correlates with itself. As per the figure

05 illustration, dlls_ldrmodules_InLoad_false_num feature highly correlated with

dlls_ldrmodules_InInit_false_num and dlls_ldrmodules_InMem_false_num features.

This indicates that number of DLLs that were not found in the InLoad highly correlated

with number of DLLs that were not found in the InInit and InMem. In other words, count

42

of DLLs, including hidden DLLs that failed to load is correlated with DLL count that are

not initialized. As per the figure, dark blue square indicates that service svcscan stopped

count is negatively correlate with running service svcscan. In other words, there is a

negative correlation between services running in the machine and services stopped.

Furthermore, the TCP/UDP connection count strongly correlate with HTTP(S) request

count. However, these network features not avoided from the dataset as these two features

operate in two different layers in OSI seven layers (TCP/UDP belongs to transport-layer,

and HTTP is an application-layer protocol). Therefore, these two features have different

visibility.

5.5 Analysis of feature importance

In this study feature importance method has been used to extract the top ten features in

the dataset. Below figure illustrates the ten best features that contribute to increase the

accuracy of the machine learning model we use in this study. Python feature_importance_

library has been used to evaluate the relative importance of each element. Relative

importance is the feature importance divided by the highest feature importance value so

that values remain between 0 and 1. Feature importance calculation is a method of assign

scores to input features in the dataset based on their contribution to the model accuracy

[68].

Figure 6: Top ten features according to feature importance

43

These top ten features are contributing to increase the model accuracy in different levels.

As per the above figure, the TCP/UDP connection count significantly contributes to the

accuracy of the model. Network connection analysis is one of the essential tasks during

the advance threat hunting. According to Lockheed Martin, the Cyber Kill Chain, most

adversaries need network connectivity to achieve their objective [69]. For instance, the

malicious script invokes PowerShell and connect with the C&C server to download

secondary payload or exfiltration of data after the exploitation. For achieve, these task

malware needs internet connectivity. Therefore, analysis of TCP/UDP connections are

significantly contributing to thereat detection process. DNS requests also one of the most

important features to analyze during the malware investigations. The most recent

example for DNS fileless attack is DNSMessenger that use DNS requests to receive

malicious PowerShell commands. DNSMessenger malware distributed via Microsoft

word document embedded with a malicious macro. This macro leaves a backdoor which

enables the communication between C&C and victim machine. Thereafter,

DNSMessenger sends DNS TXT records which contains malicious PowerShell

commands for further exploitation [70]. Besides, it is common that malicious domain

takes down upon the user report. Therefore, cybercriminals programme malware to try

out multiple abused or malicious domains. In this study, we collected DNS requests data

as it is more relevant to the modern malware behaviour and as per the feature importance,

it is the second most feature contributes to the model accuracy.

Apart from that, the third most important feature is DLL enumeration. DLL stands for

Dynamic Link Library. As name implies “A DLL is a library that contains code and data

that can be used by more than one program at the same time” [71]. This reduces memory

consumption as a set of codes share among multiple programs instead of duplicating the

same code. Adversaries misuse this technique by loading DLLs into a legitimate program,

leading to normal process conduct malicious task and evade the detection [72]. Also, there

are hidden DLLs in Windows that not show up by default. Those DLLs mostly interact

with malicious activities to carry out the attack anonymously. Therefore, DLL analysis is

one of the critical tasks in forensic investigations and threat hunting. In this study, we

used Volatility dlllist and ldrmodules plugins to get all the DLLs in the system, including

hidden DLLs. As per the figure, mutant scan also one of the essential functionalities in

the malware hunting process.

44

In Windows, mutant is a kernel object that allows programs to synchronize between

different events [73]. Adversaries often misuse this feature to avoid re-infect the same

machine over time as to decrease chances of detection. For example, malicious macro

embedded in the word document infect the victim machine. Each time user opens the

word document, it re-infects the computer over again. This makes unnecessary potential

to detect the attack. To overcome this situation, adversaries use mutants to avoid

reinfection once it successfully infected the victim machine [73]. In this study, we used

Volatility mutantscan to extract the created mutants in the memory.

Below table illustrates the accuracy of the model based on the selected important features.

Training size is 70% of the dataset; testing size is 30% and K=10.

Number of features Recall Precession F-Score Accuracy

Best Feature 0.80 0.66 0.72 0.83

5 best features 0.80 1.00 0.88 0.86

10 best features 1.00 0.83 0.90 0.91

All features 0.80 1.00 0.88 0.96

Table 9: Performance-based on selected features

As per Table 10:

- Best feature, which is TCP/UDP connection count denotes the highest

contributing feature to increase the model accuracy. By analyzing this individual

feature, machine learning model is capable of distinguishing malware and

legitimate applications with over 83% of overall efficiency.

- Random forest machine learning model can be trained to with best five features

to achieve over 86% of accuracy in terms of fileless threat hunting

- 91% of efficiency achieved only using top ten important features

- Using all features, the machine learning model can be trained to detect fileless

threats with 96% accuracy.

5.6 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised machine learning method that is

used for dimensionality reduction. Figure 7 is the visualization of data distribution in this

45

study. PCA has been used to reduce 33 dimensions into two dimensions in order to

represent in a 2D graph. Python's Scikit-Learn library used to draw the graph.

Figure 7: 2D principal component graph

As per the figure, principal component 1 (PC1) and principal component 2 (PC2) are two

dimensions derived from the dataset using PCA. These two dimensions are selected based

on the variance. Variance refers to the statistical measurement, that measures “how far

each number in the set is from the mean and therefore, from every other number in the

set” [74]. Total variance is the sum of the variance of all individual variables. So, the

component which has higher value covers a higher part of the original dataset. In figure

7, the highest variance is the PC1 while the second-highest variance considers as PC2.

Also, these principal components do not have any correlation between each other.

Apart from the data visualization, PCA can be used to perform analysis and rebuild the

model after reducing features then train model and finally make predications and evaluate.

Furthermore, dimensional reduction in PCA reduces computational power to run the

model as it has only a few variables to process.

46

5.6.1 Performance evaluation using PCA

In this study, we applied PCA to reduce features in the dataset while reducing

computational power to run the machine learning model. Since proposed methodology of

malware detection should be run real-time in the hypervisor, minimal computational

power consumption is much more important to provide better end-user experience. In this

section, random forest classification has been used as classification model and evaluated

based on predictions. Below table illustrates the performance of the model along with

principal components. Training size is 70% of the dataset; testing size is 30% and K=10.

Principal Components
Cumulative

Variance
Recall Precession F-Score Accuracy

PC1 0.22 0.80 1.00 0.88 0.91

PC1 and PC2 0.35 0.80 1.00 0.88 0.91

PC1, PC2, PC3, PC4 and PC 5 0.64 1.00 0.41 0.58 0.93

Table 10: Accuracy based on PCA model

As table 10 illustrates, the accuracy achieved with only one principal component is higher

than accuracy achieved three principal components. This emphasizes that the accuracy of

the classifier doesn't necessarily improve with increased number of principal components

[75]. As per the table 10, cumulative explained variance of fist five principal components

is around 64% which is more than half of the overall variance. However, in some cases,

all features are equally contributing to the overall variance where none of the components

can be ignored theoretically. But in this study, as graph represents principal components

doesn’t equally contribute to the variance. Therefore, cumulative explained variance ratio

against with number of components graph has been used to ignore the principal

components which make lower contribution to variance.

Below graph illustrates the cumulative explained variance ratio against with number of

components. This can be used to determine number of principal components need to feed

into the model.

47

Figure 8: Cumulative explained variance with the number of components

This curve illustrates how much of the total, 32-dimensional variance is accommodated

within the first N number of components [76]. As per the figure, first 15 components

contain more than 95% of the overall variance, while other17 components explain around

5% of the variance. Also, this graph shows that after 15th components, there is no huge

gain of explained variance. In this study, we used PCA to reduce the number of

components from 32 to 15.

Below table illustrates the random forest model performance evaluation with fist 15

principal components after dimension reduction. Training size is 70% of the dataset;

testing size is 30% and K=10.

Principal

Components

Cumulative

variance
Recall Precession F-Score Accuracy

15 principal

components
0.97 0.80 1.00 0.88 0.96

Table 11: Accuracy based on the selected number of principal components

As per the table, 96 % accuracy achieved using 15 principal components in random forest

classification model.

48

6 Conclusion

Fileless attacks leave no traces as these threats programmed to use legitimate Windows

tools to carry out the attack. Additionally, fileless threats capable of manipulating

Windows legitimate process and alter system registry files to hide their presence. In this

study, we presented a methodology to detect fileless threats in virtual machines deployed

on the cloud. Proposed methodology mainly based on feature analysis by using machine

learning in order to detect fileless threats. The initial data set was built using analysis of

volatile memory features and network features that derived from memory dumps and

sandbox threat reports. In this experiment, the first task was training the machine learning

classification model with the appropriate dataset. Thereafter we evaluated the detection

accuracy across different machine learning algorithms such as random forest, decision

tree, k-nearest neighbour, SVM. As per the cross-validation score, random forest

achieved the highest accuracy, which is around 96 % upon analysis of the entire dataset.

Additionally, random forest results for other sub-experiments performed: precession=1.0,

recall=0.80 and F-score=0.88.

Feature selection methods used to reduce the number of features by merging correlated

features. Besides, the feature importance method has been integrated to choose the best

features that contribute to the accuracy of the classification model. Correlation coefficient

has been calculated against all 33 features to evaluate the relationship between each

feature. Based on the correlation matrix heatmap, all the DLLs, including hidden DLLs

that were not found loaded DLL list highly correlated with DLLs that were not initialized.

This indicates that the number of DLLs that were not found in the InLoad highly

correlated with the number of DLLs that were not found in the InInit. Based on these

characteristics, ‘DLLs not initialized count’ removed from the analysis as to increase the

performance by reducing the data amount to be processed.

As per the study of feature importance, network features such as TCP/UDP connection

count, DNS request count significantly contribute to distinguish between malware and

legitimate applications. This finding points out, similar to typical malware, fileless

malware also make unusual patterns of network traffic during the attack. Besides,

according to the feature importance bar chart, ldrmodules feature which lists down the

DLLs including hidden DLLs significantly contribute to the accuracy of the model.

49

However, DLL enumeration using dlllist plugin doesn’t show such contribution to the

overall efficiency emphasize that fileless threat we analyzed in this research, are

programmed to use hidden DLL strategy to conceal their existence during the attack.

Based on the overall result with all features, it was able to achieve random forest accuracy

more than 96 %, and with the best ten features, it is around 91 %. Based on these results,

it shows that even though there are a smaller number of features, it is still able to perform

a significant level of accuracy with the most essential and appropriate features.

Apart from these methods, we used a statistical model to speed up the training and

predictions in the machine learning model. Since threat detection should operate in real-

time, minimal computational power consumption is much more critical for the proposed

methodology to provide high accuracy and better end-user experience. Therefore, in this

study, we used principal component analysis (PCA) to perform dimensionality reduction

and speedup the random forest model. Also, here we used a statistical approach to

determine the number of components involved in our classification model. After PCA

dimensionality reduction, 96 % random forest accuracy achieved using only 15 principal

components.

This research shows that despite the strategy of the typical malware and fileless threats

have significant differences in the operational process, in network-level behaviour and

volatile memory features indicate certain similarities. Combination of these features can

be used to train proper machine learning classification model and use it to distinguish

between malicious operations and legitimate operations in machines. Finally, this set of

feature analysis can be used to optimize the performance of detecting widely spread

fileless threats.

50

References

[1] Flexera, “flexera.com,” Flexera, 16 11 2019. [Online]. Available:

https://www.flexera.com/blog/cloud/2019/02/cloud-computing-trends-2019-state-

of-the-cloud-survey/. [Accessed 28 03 2020].

[2] Microsoft Corporation, “Microsoft Security Intelligence Report,” June 2016.

[Online]. Available:

https://download.microsoft.com/download/E/B/0/EB0F50CC-989C-4B66-B7F6-

68CD3DC90DE3/Microsoft_Security_Intelligence_Report_Volume_21_Protecti

ng_Cloud_Infrastructure_English.pdf. [Accessed March 2020].

[3] E. Zhang, “What is Fileless Malware (or a Non-Malware Attack)?,” 12

September 2018. [Online]. [Accessed 13 January 2020].

[4] vmware Carbon Black, “Let’s Define Fileless Malware,” vmware Carbon Black,

[Online]. Available: https://www.carbonblack.com/resources/definitions/what-is-

fileless-malware/. [Accessed 12 February 2020].

[5] PROOFPOINT STAFF, “August in November: New Information Stealer Hits the

Scene,” 07 December 2016. [Online]. Available:

https://www.proofpoint.com/us/threat-insight/post/august-in-december-new-

information-stealer-hits-the-scene. [Accessed 02 January 2020].

[6] N. K. E. G. Carey S. Nachenberg, “Reducing malware signature set size through

server-side processing”. US Patent US 8.239,944 B1 , 07 Aug 2012.

[7] Security Response, “What is Living off the Land?,” 03 Oct 2018. [Online].

Available: https://medium.com/threat-intel/what-is-living-off-the-land-

ca0c2e932931. [Accessed 28 March 2020].

[8] ThreatVector, “Threat Spotlight: The Truth About Fileless Malware,” 04 April

2017. [Online]. Available: https://threatvector.cylance.com/en_us/home/threat-

spotlight-the-truth-about-fileless-malware.html. [Accessed 23 March 2020].

[9] The Cylance Threat Research Team, “Threat Spotlight: Kovter Malware Fileless

Persistence Mechanism,” ThreatVector, 23 January 2018. [Online]. Available:

https://threatvector.cylance.com/en_us/home/threat-spotlight-kovter-malware-

fileless-persistence-mechanism.html. [Accessed 29 March 2020].

[10] Y.-L. Wan, J.-C. Chang, R.-J. Chen and S.-J. Wang, “Feature-Selection-Based

Ransomware Detection with Machine Learning of Data Analysis,” in IEEE,

Nagoya, Japan, 2018.

[11] AviadCohen, Nir Nissim, “Trusted detection of ransomware in a private cloud

using machine learning methods leveraging meta-features from volatile memory,”

in ELSEVIER, Israel, 2018.

[12] F. O'CONNOR, “WHAT YOU NEED TO KNOW ABOUT POWERSHELL

ATTACKS,” 05 December 2017. [Online]. Available:

https://www.cybereason.com/blog/fileless-malware-powershell. [Accessed 28

March 2020].

[13] Microsoft, “Fileless threats,” 09 April 2019. [Online]. Available:

https://docs.microsoft.com/en-us/windows/security/threat-

protection/intelligence/fileless-threats. [Accessed 04 April 2020].

51

[14] MITRE ATT&CK, “Windows Management Instrumentation,” MITRE

ATT&CK, 17 July 2019. [Online]. Available:

https://attack.mitre.org/techniques/T1047/. [Accessed 03 May 2020].

[15] MITRE , “MITRE ATT&CK,” MITRE, 16 July 2019. [Online]. Available:

https://attack.mitre.org/techniques/T1067/. [Accessed 03 May 2020].

[16] McAfee, “What Is Fileless Malware?,” McAfee, [Online]. Available:

https://www.mcafee.com/enterprise/en-us/security-awareness/ransomware/what-

is-fileless-malware.html. [Accessed 04 April 2020].

[17] W. Williamson, “Lateral Movement: When Cyber Attacks Go Sideways,”

SecurityWeek, 2016.

[18] A. ZAHARIA, “Understanding Fileless Malware Infections – The Full Guide,”

03 Feb 2016. [Online]. Available: https://heimdalsecurity.com/blog/fileless-

malware-infections-guide/. [Accessed 03 May 2020].

[19] MITRE, “Net,” MITRE ATT&CK, 31 May 2017. [Online]. Available:

https://attack.mitre.org/software/S0039/. [Accessed 14 May 2020].

[20] MITRE, “Regsvr32,” MITRE, 31 May 2017. [Online]. Available:

https://attack.mitre.org/techniques/T1117/. [Accessed 10 May 2020].

[21] D.-Y. KAO, S.-C. HSIAO and R. TSO, “Analyzing WannaCry Ransomware

Considering the Weapons and Exploits,” in IEEE, PyeongChang

Kwangwoon_Do, 2019.

[22] McFee, “What Is Fileless Malware?,” McFee, [Online]. Available:

https://www.mcafee.com/enterprise/en-us/security-awareness/ransomware/what-

is-fileless-malware.html. [Accessed 10 04 2020].

[23] RedHat, “What is virtualization?,” [Online]. Available:

https://www.redhat.com/en/topics/virtualization/what-is-virtualization. [Accessed

23 04 2020].

[24] Microsoft Azure, “What is virtualization?,” Microsoft, [Online]. Available:

https://azure.microsoft.com/en-us/overview/what-is-virtualization/. [Accessed 23

April 2020].

[25] R. Andreas, “Virtualization vs. Cloud Computing: What's the Difference?,” Grow

Your Business , 04 Feb 2019.

[26] J. FRANKENFIELD, “Cloud Computing,” Investopedia, 18 May 2019. [Online].

Available: https://www.investopedia.com/terms/c/cloud-computing.asp.

[Accessed 23 April 2020].

[27] NirNissim, “Trusted system-calls analysis methodology aimed at detection of

compromised virtual machines using sequential mining,” vol. 153, pp. 147-175,

2018.

[28] K. Amari, Techniques and Tools for Recovering and Analyzing Data from

Volatile Memory, SANS Information Security Reading Room, 2009.

[29] S. M. J. F. EricConrad, “Chapter 3 - Domain 2: Asset Security (Protecting

Security of Assets),” in CISSP Study Guide (Third Edition), ScienceDirect, 2016,

pp. 81-101.

[30] A. H. R. panel Nihad, “Data Hiding Techniques in Windows OS,” in Data Hiding

Forensics, ScienceDirect, 2017, pp. Pages 207-265.

[31] Microsoft, “Investigate entities on devices using live response,” Microsoft, 29

April 2020. [Online]. Available: https://docs.microsoft.com/en-

52

us/windows/security/threat-protection/microsoft-defender-atp/live-response.

[Accessed 13 May 2020].

[32] MathWorks, “What Is Machine Learning?,” MATLAB, [Online]. Available:

https://www.mathworks.com/discovery/machine-learning.html. [Accessed 03

April 2020].

[33] ayushgangwar, “Getting started with Machine Learning,” GeekForGeek,

[Online]. Available: https://www.geeksforgeeks.org/getting-started-machine-

learning/. [Accessed 03 April 2020].

[34] M. Sanjeevi, “Decision Trees Algorithms,” Medium, 2017.

[35] O. Harrison, “Machine Learning Basics with the K-Nearest Neighbors

Algorithm,” 10 Sept 2018. [Online]. Available:

https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-

neighbors-algorithm-6a6e71d01761. [Accessed 15 May 2020].

[36] G. Gahukar, “Classification Algorithms in Machine Learning,” 08 Nov 2018.

[Online]. Available: https://medium.com/datadriveninvestor/classification-

algorithms-in-machine-learning-85c0ab65ff4. [Accessed 15 April 2020].

[37] A. Sharma, “Cross Validation in Machine Learning,” Methods of Cross

Validation, p. 2, 13 April 2020.

[38] MLK, “Confusion Matrix in Machine Learning with EXAMPLE,”

MakingAISimple, 04 May 2019. [Online]. Available:

https://machinelearningknowledge.ai/confusion-matrix-and-performance-metrics-

machine-learning/. [Accessed 29 March 2020].

[39] B. Schnarzo, “Understanding Type I and Type II Errors,” 18 August 2018.

[Online]. Available:

https://www.datasciencecentral.com/profiles/blogs/understanding-type-i-and-

type-ii-errors. [Accessed 27 April 2020].

[40] K. P. Shung, “towards data science,” Medium , [Online]. Available:

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9.

[Accessed 20 April 2020].

[41] Wikipedia, “F1 score,” Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/F1_score. [Accessed 30 April 2020].

[42] J. Brownlee, “An Introduction to Feature Selection,” 27 April 2020. [Online].

Available: https://machinelearningmastery.com/an-introduction-to-feature-

selection/. [Accessed 30 April 2020].

[43] T. Bock, “Display R,” 17 June 2019. [Online]. Available:

https://www.displayr.com/what-is-a-correlation-matrix/. [Accessed 06 May

2020].

[44] S. NICKOLAS, “What Does it Mean if the Correlation Coefficient is Positive,

Negative, or Zero?,” Investopedia, 07 Dec 2019. [Online]. Available:

https://www.investopedia.com/ask/answers/032515/what-does-it-mean-if-

correlation-coefficient-positive-negative-or-zero.asp. [Accessed 05 May 2020].

[45] W. Koehrsen, “Overfitting vs. Underfitting: A Conceptual Explanation,” 28 Jan

2018. [Online]. Available: https://towardsdatascience.com/overfitting-vs-

underfitting-a-conceptual-explanation-d94ee20ca7f9. [Accessed 03 05 2020].

[46] H. Goonewardana, “PCA: Application in Machine Learning,” Medium, 28 Feb

2019. [Online]. Available: https://medium.com/apprentice-journal/pca-

application-in-machine-learning-4827c07a61db. [Accessed 10 May 2020].

53

[47] A. M. S. Madhu S. Advani, “High-dimensional dynamics of generalization

error,” in HARVARD, 2017.

[48] M. Galarnyk, “PCA using Python (scikit-learn),” twards data science, 05 Dec

2017. [Online]. Available: https://towardsdatascience.com/pca-using-python-

scikit-learn-e653f8989e60. [Accessed 07 May 2020].

[49] P. O. S. S. a. J. B. D. Carlin, “Detecting Cryptomining Using Dynamic Analysis,”

in IEEE, Belfast, 2018.

[50] A. C. N. N. a. Y. E. D. Nahmias, “Trusted Malware Signature Generation in

Private Clouds Using Deep Feature Transfer Learning,” in International Joint

Conference on Neural Networks (IJCNN), Budapest, 2019.

[51] A. M. a. O. C. G. Hăjmăşan, “Dynamic behavior evaluation for malware

detection,” in 2017 5th International Symposium on Digital Forensic and

Security (ISDFS), Tirgu Mures, 2017.

[52] M. N. Y. A. J. W B T Handaya, “Machine learning approach for detection of

fileless cryptocurrency,” in Journal of Physics: Conference Series, Bali, 2020.

[53] P. R. Hyrum S. Anderson, “EMBER: An Open Dataset for Training Static PE

Malware,” 2018.

[54] S. N. Priya B Gadgil, “Hunting advanced volatile threats using memory

forensics,” International Journal of Advance Research, Ideas and Innovations in

Technology, vol. 4, no. 4, pp. 943-948, 2018.

[55] J. N. Y. T. D. I. K. N. K. T. Yu Tsuda∗, “A Lightweight Host-Based Intrusion

Detection,” in Asia Joint Conference on Information Security, Kanagawa, 2018.

[56] C. Erlich, Fileless Command Lines, Github, 2018.

[57] anyrun, Interactive malware hunting platform, any.run.

[58] VirusShare, “VirusShare.com,” VirusShare, [Online]. Available:

https://virusshare.com/. [Accessed 11 03 2020].

[59] S. Chakkaravarthy, “Volatility: The open source framework for memory

forensics,” Opensource, 12 Oct 2016. [Online]. Available:

https://opensourceforu.com/2016/10/volatility/. [Accessed 18 April 2020].

[60] S. Chakkaravarthy, “Volatility: The open source framework for memory

forensics,” 16 October 2016. [Online]. Available:

https://opensourceforu.com/2016/10/volatility/. [Accessed 03 May 2020].

[61] M. K. A, “Finding Advanced Malware Using Volatility,” eForensics, 29 June

2016. [Online]. Available: https://eforensicsmag.com/finding-advanced-malware-

using-volatility/. [Accessed 18 April 2020].

[62] M. K. A, “Finding Advanced Malware Using Volatility,” [Online]. Available:

https://eforensicsmag.com/finding-advanced-malware-using-volatility/.

[Accessed 23 February 2020].

[63] Volatility, “Command Reference,” GitHub, 2019.

[64] S. Asiri, “Machine Learning Classifiers,” Towards Data Science, 2018.

[65] A. Navlani, “Understanding Random Forests Classifiers in Python,” DataCamp,

[Online]. Available: https://www.datacamp.com/community/tutorials/random-

forests-classifier-python#comparison. [Accessed 15 April 2020].

[66] javaTpoint, “Random Forest Algorithm,” javaTpoint, [Online]. Available:

https://www.javatpoint.com/machine-learning-random-forest-algorithm.

[Accessed 21 April 2020].

54

[67] D. Dey, “ML | Bagging classifier,” [Online]. Available:

https://www.geeksforgeeks.org/ml-bagging-classifier/. [Accessed 29 April 2020].

[68] A. Chauhan, “What Is Variable Importance and How Is It Calculated?,” 15 June

2017. [Online]. Available: https://dzone.com/articles/variable-importance-and-

how-it-is-calculated. [Accessed 14 May 2020].

[69] Lockheed Martin, “The Cyber Kill Chain,” [Online]. Available:

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html.

[Accessed 30 April 2020].

[70] S. Khandelwal, “New Fileless Malware Uses DNS Queries To Receive

PowerShell Commands,” The Hacker News, 06 March 2017. [Online]. Available:

https://thehackernews.com/2017/03/powershell-dns-malware.html. [Accessed 25

April 2020].

[71] Microsoft, “What is a DLL?,” 18 Dec 2019. [Online]. Available:

https://support.microsoft.com/en-us/help/815065/what-is-a-dll. [Accessed 02

May 2020].

[72] PC Matic Malware Research, “Running DLL Files for Malware Analysis,” 30

November 2017. [Online]. Available:

https://techtalk.pcmatic.com/2017/11/30/running-dll-files-malware-analysis/.

[Accessed 02 May 2020].

[73] M. Cohen, “Hunting Malware using Mutants,” [Online]. Available:

https://medium.com/velociraptor-ir/hunting-malware-using-mutants-

ea08e86dfc19. [Accessed 02 May 2020].

[74] A. HAYES, “Variance,” Investopedia, 02 Sept 2019. [Online]. Available:

https://www.investopedia.com/terms/v/variance.asp. [Accessed 03 May 2020].

[75] U. Malik, “Implementing PCA in Python with Scikit-Learn,” 04 Nov 2017.

[Online]. Available: https://stackabuse.com/implementing-pca-in-python-with-

scikit-learn/. [Accessed 12 May 2020].

[76] J. VanderPlas, “In Depth: Principal Component Analysis,” in Python Data

Science Handbook, O'Reilly Media, 2016, p. 541.

[77] L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press,

2009.

[78] N. N. Aviad Cohen, “Trusted detection of ransomware in a private cloud using

machine learning methods leveraging meta-features from volatile memory,”

Expert System with Application, vol. 102, no. ScienceDirect, pp. 158-178, 2018.

[79] tutorialspoint, “ML - Support Vector Machine(SVM),” [Online]. Available:

https://www.tutorialspoint.com/machine_learning_with_python/machine_learnin

g_with_python_classification_algorithms_support_vector_machine.htm.

[Accessed 26 April 2020].

[80] A. S. P. V. Shijoa, “Integrated static and dynamic analysis for malware

detection,” in International Conference on Information and Communication

Technologies (ICICT 2014), India, 2014.

55

Appendix 1 – Data set used for the analysis

These tables table illustrates the dataset used for the analysis in this research.

Program Label
Feature List

1 2 3 4 5 6 7 8 9 10 11

1 Baseline 0 100 568 2635 467 130 78 78 78 156 10 7

2 Legitimate word document 0 97 497 1484 504 103 68 68 68 155 9 1

3 Wireshark 0 98 502 2133 492 117 75 75 75 156 12 2

4 Procmon 0 97 523 2242 476 114 62 62 62 156 9 2

5 Avast antivirus 0 98 514 2746 496 144 94 94 94 155 9 1

6 MS word doc with macro 0 98 512 2585 519 131 87 87 87 154 10 1

7 Spotify 0 97 509 2432 506 106 79 79 79 154 9 1

8 7Zip 0 98 504 2114 483 137 81 81 81 156 9 2

9 Zoom 0 98 521 2493 502 121 98 98 98 154 10 2

10 Google chrome 0 98 516 2123 523 129 83 83 83 154 10 1

11 WhatsApp web 0 97 507 2653 502 132 78 78 78 156 9 1

12 Outlook 0 98 493 1728 521 118 73 73 73 154 9 2

13 Adobe Reader 0 97 526 2343 483 138 89 89 89 154 10 2

14 Microsoft store 0 97 573 2534 443 119 63 63 63 154 9 1

15 Firefox 0 98 512 2013 424 138 71 71 71 156 9 1

16 Skype 0 97 501 2404 502 129 63 63 63 154 10 1

17 Microsoft Excel 0 97 523 2371 478 118 76 76 76 154 10 2

56

18 VMware 0 98 507 2236 521 136 69 69 69 155 9 2

19 iTunes 0 98 546 2115 496 109 73 73 73 155 9 1

20 Microsoft Edge 0 97 512 2132 501 131 59 59 59 156 10 2

21 KeePass 0 97 513 2112 523 112 78 78 78 154 10 1

22 Windows Defender scan 0 98 486 1833 496 136 83 83 83 154 9 1

23 Notepad++ 0 97 521 2341 467 127 66 66 66 156 10 2

24 PowerShell 0 98 532 2058 504 106 71 71 71 154 10 1

25 Emotet 1 98 609 2337 538 111 70 70 70 155 9 1

26 GZipDe 1 95 671 2561 675 152 99 99 99 155 10 2

27 Macros 1 98 532 2482 551 134 90 90 90 154 10 7

28 Valyria 1 98 526 2534 538 140 95 95 95 156 9 1

29 LokiBot 1 98 506 1776 115 113 72 72 72 156 9 2

30 August 1 99 576 1261 490 104 74 74 74 157 10 2

31 JS_POWMET 1 98 608 2514 502 127 79 79 79 157 9 1

32 Keybase 1 97 525 2936 1016 795 755 755 755 156 9 2

33 Kovter 1 98 579 2316 492 126 84 84 84 154 12 0

34 Rozena 1 98 623 2418 556 133 73 73 73 156 9 2

35 Phase Bot 1 98 556 2569 543 136 93 93 93 156 9 2

36 Silence 1 98 513 1767 498 196 89 89 89 154 10 2

37 CryptoWorm 1 97 569 1892 623 113 90 90 90 157 9 1

38 CodeFork 1 98 591 2317 517 172 69 69 69 154 9 2

39 PowerWare 1 98 616 1483 639 118 70 70 70 155 9 1

40 Poweliks 1 98 668 2463 548 126 86 86 86 155 10 2

57

Program Label
Feature List

12 13 14 15 16 17 18 19 20 21 22

1 Baseline 0 5 60 60 60 0 393 139 254 15453 446 791

2 Legitimate word document 0 5 47 47 47 0 393 134 256 16060 443 965

3 Wireshark 0 5 45 45 45 0 392 139 253 13222 420 637

4 Procmon 0 5 47 47 47 0 393 134 259 14352 423 702

5 Avast antivirus 0 5 52 52 52 0 391 132 253 16122 413 769

6 MS word doc with macro 0 5 47 47 47 0 393 137 258 13900 410 722

7 Spotify 0 5 43 43 43 0 393 134 259 13432 412 672

8 7Zip 0 5 53 53 53 0 393 139 254 12257 463 712

9 Zoom 0 5 47 47 47 0 393 137 258 14463 421 748

10 Google chrome 0 5 55 55 55 0 393 140 253 13874 411 698

11 WhatsApp web 0 5 44 44 44 0 393 137 258 13921 416 643

12 Outlook 0 5 56 56 56 0 393 134 259 13280 412 709

13 Adobe Reader 0 5 52 52 52 0 393 137 258 12421 428 631

14 Microsoft store 0 5 46 46 46 0 392 139 253 12318 434 718

15 Firefox 0 5 52 52 52 0 393 134 259 13426 463 728

16 Skype 0 5 49 49 49 0 393 137 256 12798 421 673

17 Microsoft Excel 0 5 43 43 43 0 393 134 259 13248 410 702

18 VMware 0 5 59 59 59 0 393 140 253 12287 449 673

19 iTunes 0 5 46 46 46 0 393 137 256 14321 407 724

20 Microsoft Edge 0 5 51 51 51 0 393 134 259 13871 421 697

21 KeePass 0 5 58 58 58 0 392 139 253 16548 422 713

22 Windows Defender scan 0 5 49 49 49 0 393 137 258 12874 417 648

23 Notepad++ 0 5 55 55 55 0 392 133 259 15489 443 721

24 PowerShell 0 5 47 47 47 0 393 134 259 13651 491 786

25 Emotet 1 5 43 43 43 0 393 136 257 12624 469 635

58

26 GZipDe 1 5 56 56 56 0 393 140 253 16741 552 790

27 Macros 1 5 52 52 52 0 393 135 258 13301 488 679

28 Valyria 1 5 47 47 47 0 393 136 257 15073 446 822

29 LokiBot 1 5 46 46 46 0 393 140 253 13878 445 809

30 August 1 5 40 40 40 0 393 134 259 12917 407 798

31 JS_POWMET 1 5 50 50 50 0 393 138 255 14536 427 793

32 Keybase 1 5 43 43 43 0 393 137 256 14245 429 793

33 Kovter 1 4 43 43 43 0 393 136 257 12259 419 609

34 Rozena 1 5 47 47 47 0 393 138 255 13876 443 798

35 Phase Bot 1 5 50 50 50 0 393 137 256 14423 479 806

36 Silence 1 4 43 43 43 0 393 137 256 15646 484 688

37 CryptoWorm 1 5 47 47 47 0 393 138 255 13775 492 811

38 CodeFork 1 5 48 48 48 0 393 140 253 13423 434 613

39 PowerWare 1 5 43 43 43 0 393 136 257 12624 469 720

40 Poweliks 1 5 51 51 51 0 393 136 257 12241 413 673

Program Label
Feature List

23 24 25 26 27 28 29 30 31 32 33

1 Baseline 0 25 24 1 0 0 0 0 0 0 12 44

2 Legitimate word document 0 1881 915 911 55 0 2 0 0 0 12 47

3 Wireshark 0 1709 812 796 63 0 0 1 4 2 12 45

4 Procmon 0 396 377 19 0 0 0 0 0 0 14 48

5 Avast antivirus 0 1251 1035 579 0 0 0 1 0 0 13 52

6 MS word doc with macro 0 1015 1033 525 57 0 0 0 0 0 12 47

7 Spotify 0 1123 1025 503 41 0 0 0 0 0 12 45

8 7Zip 0 1286 1196 623 0 0 0 0 0 0 12 48

59

9 Zoom 0 1344 789 478 0 0 0 0 0 0 13 45

10 Google chrome 0 1886 1504 342 0 0 0 0 0 0 12 47

11 WhatsApp web 0 1621 1128 421 6 0 0 0 0 0 12 44

12 Outlook 0 1104 1016 445 3 0 0 0 0 0 13 48

13 Adobe Reader 0 1498 996 512 0 1 0 0 0 1 13 48

14 Microsoft store 0 1023 894 517 0 0 0 0 0 0 12 45

15 Firefox 0 1115 1021 529 0 0 1 0 0 0 12 44

16 Skype 0 1017 653 322 3 1 0 0 0 0 13 44

17 Microsoft Excel 0 1151 1006 536 0 0 0 0 0 0 12 44

18 VMware 0 1089 1034 486 0 0 0 0 0 0 13 45

19 iTunes 0 991 967 511 13 1 0 1 3 2 12 48

20 Microsoft Edge 0 1610 1542 394 0 0 0 0 0 0 12 45

21 KeePass 0 336 114 756 62 0 0 0 0 0 12 44

22 Windows Defender scan 0 1249 1428 313 42 1 0 0 0 0 13 44

23 Notepad++ 0 1076 776 602 0 0 0 0 0 0 13 48

24 PowerShell 0 1468 1026 416 4 0 0 0 0 0 12 45

25 Emotet 1 2414 1639 703 72 2 5 13 15 5 16 51

26 GZipDe 1 1271 926 344 1 0 1 1 1 0 14 56

27 Macros 1 1955 1236 649 70 1 5 1 1 1 14 52

28 Valyria 1 1808 1149 604 55 1 2 3 6 5 15 49

29 LokiBot 1 1165 1039 121 5 3 2 0 1 25 14 53

30 August 1 2063 1310 697 56 1 11 4 8 5 14 47

31 JS_POWMET 1 310 231 79 0 1 0 0 2 2 16 50

32 Keybase 1 2006 877 124 5 0 0 0 1 1 15 54

33 Kovter 1 393 302 90 1 0 0 1 17 0 13 52

34 Rozena 1 1844 1183 604 57 0 2 0 0 1 13 50

35 Phase Bot 1 1424 923 588 13 0 0 3 7 17 14 49

60

36 Silence 1 2191 1317 728 41 0 3 7 8 21 13 46

37 CryptoWorm 1 1871 1631 113 7 4 2 4 12 7 14 52

38 CodeFork 1 2023 1121 623 12 1 7 5 4 6 16 46

39 PowerWare 1 2413 1643 721 73 2 5 14 12 5 16 51

40 Poweliks 1 1637 1061 453 31 0 2 3 8 2 15 52

In the above three tables, feature list denoted by numeric values from 1 to 33. Feature name corresponding to each numeric value mentioned in the

below table.

Number Feature Description Type

1 handles_num Number of handles Integer

2 hiveList Number of registry hives Integer

3 dlls_ldrmodules_num Number of DLLs used by all processes Integer

4 dlls_ldrmodules_unique_mappedpaths_num Number of unique DLLs used by all processes Integer

5 dlls_ldrmodules_InInit_fales_num Number of DLLs with InInit false Integer

6 dlls_ldrmodules_InLoad_false_num Number of DLLs with InLoad false Integer

7 dlls_ldrmodules_InMem_False_num Number of DLLs with InMem false Integer

8 dlls_ldrmodules_all_false_num Number of DLLs with all false Integer

9 modules_num Number of modules Integer

10 callbacks_num Number of kernels callbacks Integer

11 processes_privs_enabled_not_default_num Number of processes with enable and without default Integer

12 processes_psxview_exited_num Number of processes completed before taking the snapshot Integer

13 processes_psxview_false_columns_num Number of process listing techniques that do not detect at least one process Integer

61

14 processes_psxview_false_rows_num Number of processes that are not detected by at least one process listing techniques Integer

15 processes_psxview_num Number of processes detected by psxview Integer

16 processes_psxview_pslist_true_num Number of processes detected by pslist Integer

17 processes_psxview_psscan_true_num Number of processes detected by psscan Integer

18 services_svcscan_num Number of services Integer

19 services_svcscan_running_num Number of running services Integer

20 services_svcscan_stopped_num Number of stopped services Integer

21 dlls_dlllist_unique_paths_num Number of dlls Integer

22 mutex_mutantscan_num Number of mutexes Integer

23 threads_thrdscan_num Number of threads Integer

24 pslist Number of processes Integer

25 tcp/udp_connections Number of TCP/UDP connections Integer

26 total_reg_events Number of registry events Integer

27 read_events Number of read operations Integer

28 write_events Number of write operations Integer

29 del_events Number of delete operations Integer

30 executable_files Number of executable files Integer

31 unknown_types Number of unknown files Integer

32 http(s)_requests Number of HTTP requests Integer

33 dns_requests Number of DNS requests Integer

