
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

IDN40LT

Eduard Gorodnjov 103944 IABB

ANDROID-BASED PROTOTYPE OF

E-SHOP ORDER SUBSYSTEM AND ITS

RESPONSE TIME OPTIMIZATION

Bachelor's thesis

Supervisor: Tarmo Veskioja

 PhD

 Research Scientist

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Informaatikainstituut

IDN40LT

Eduard Gorodnjov 103944 IABB

E-POE TELLIMUSE ALLSÜSTEEMI

ANDROIDI-PÕHINE PROTOTÜÜP JA

SELLE REAKTSIOONIAJA

OPTIMEERIMINE

Bakalaureusetöö

Juhendaja: Tarmo Veskioja

 Doktorikraad

 Teadur

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Eduard Gorodnjov

15.12.2016

4

Abstract

The goal of this work is to create an android and web-based prototype of an order

subsystem which should perform filtering of the products in constant time on average

with 1 concurrent request, i.e. the response time should be independent of the number of

products. The need of optimization of response time is due to the fact that for the past

few decades the users’ requirement for performance of performed operations has greatly

increased.

To make requests return results in constant time it has been decided to pre-calculate

results and cache them. The proposed method implies the construction of composite

keys from all combinations of a set of input parameters and the association of composite

keys with prepared results. This method has been compared with the widely used

solution where DB response is associated with user’s input parameters to identify its

strengths and weaknesses [1]. The ways to overcome limitations of implemented

method have been suggested. To ensure that the running time of requests for product

filtering is constant the measurement of system performance has been performed on

different volumes of test data.

The thesis includes a description of the process of prototype development. Web

application implements interfaces for 2 workspaces: seller and client. Android chapter

contains an explanation of how the responsive design has been implemented, how it is

possible to add support for old devices and also the possibility of executing tasks in the

background has been selected.

This thesis is written in English and is 50 pages long, including 6 chapters, 22 figures

and 3 tables.

5

Annotatsioon

E-poe tellimuse allsüsteemi androidi-põhine prototüüp ja selle

reaktsiooniaja optimeerimine

Käesoleva töö eesmärgiks on luua androidi- ja veebipõhine prototüüp, mis peaks

teostama keskmiselt muutumatu aja jooksul toodete filtreerimist 1 paralleelse

ühendusega, mis tähendab, et aeg ei tohiks toodete hulgast sõltuda. Vastamise aja

kiiruse optimiseerimise vajadus on tingitud sellest, et viimase paari aastakümne jooksul

on kasutajate nõudmised teostatud päringute kiiruse vastu tunduvalt suurenenud.

Selleks, et päringute vastuseid oleks tagastatud muutumatu aja jooksul oli otsustatud

eelnevalt arvutada vastuseid ja hoida neid vahemälus. Pakutud meetod eeldab

komposiitvõtmete konstrueerimist kogu siseparameetrite kombinatsioonide hulgast ning

nende vastavusse viimist valmistatud vastustega. Seda meetodit on võrreldud laialt

kasutatava lahendustega, kus andmebaasi vastus on sisendparameetritega vastavusse

viidud, et tuvastada pakutud meetodi tugevused ja nõrkused [1]. Samuti on ka välja

pakutud võimalusi, kuidas implementeeritud meetodi piiranguid ületada. Veendumaks,

et päringute käivitamise aeg on muutumatu, olid süsteemi jõudlustestid teostatud

testandmete erinevate mahtudega.

Lõputöö sisaldab prototüübi arendamise protsessi kirjeldust. Veebirakendus realiseerib

kasutajaliideseid kahele töökohale: müüja ja klient. Androidi peatükk sisaldab selgitust,

kuidas sai paidlik kujundus rakendatud, kuidas on võimalik lisada toetust vanadele

seadmetele ja kuidas on võimalik käivitada protsessi taustal.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 50 leheküljel, 6 peatükki, 22

joonist, 3 tabelit.

6

List of abbreviations and terms

ANR Application Not Responding

API Application programming interface

CPU Central processing unit

DB Database

dp
Density independent pixel, that will result in the pixel with the

same physical size on any android device

dpi Dots per inch

IPC Inter-process communication

M Million

ms Millisecond

MVC Model-View-Controller design pattern

OOM Out of memory

OS Operating system

Page Smallest unit of data that can be read or written

UI User interface

7

Table of contents

1 Introduction ... 11

1.1 Background and problem.. 11

1.2 Thesis objectives... 12

1.3 Methodology ... 12

1.4 Thesis structure ... 12

2 Analysis ... 13

2.1 Use cases... 13

2.2 Non-functional requirements .. 15

2.3 Business rules ... 16

2.4 Conceptual data model ... 16

2.4.1 Entity-relationship diagram ... 16

2.4.2 Definition of entity types ... 16

3 Design .. 18

3.1 Technology selection and systems architecture .. 18

3.2 Description of real use cases .. 19

3.3 Database diagram ... 27

3.4 Denormalization ... 29

3.5 Response time optimization .. 31

4 Proposed method ... 34

4.1 Implementation details ... 34

4.2 System performance measurement ... 37

5 Implementation of android application.. 39

5.1 Responsive design .. 39

5.1.1 Layout design .. 39

5.1.2 Image handling .. 42

5.2 Support Library... 44

5.3 Data loading .. 45

6 Summary .. 47

6 Kokkuvõte ... 48

8

References .. 49

Appendix 1 – Entity-relationship diagram of registers that are used by order functional

subsystem ... 51

Appendix 2 – Example of generated pdf file with order details 53

Appendix 3 – Trigger for updating refCount column .. 54

Appendix 4 – Test data for catalogs’ attributes .. 54

Appendix 5 – Resulting composite keys from the example ... 56

Appendix 6 –Function for generation of composite keys and the PLPGSQL functions

for maintaining arrays of product ids ... 57

Appendix 7 – Example of test results with 4M products ... 61

Appendix 8 – Android user interfaces .. 61

9

List of figures

Figure 1. Use case model. ... 13

Figure 2. Systems architecture. .. 19

Figure 3. Login form. ... 20

Figure 4. Search form. .. 20

Figure 5. Product’s details form. .. 21

Figure 6. Delete from cart form. ... 22

Figure 7. Product’s update form. .. 23

Figure 8. Create order form. ... 24

Figure 9. Order history form... 25

Figure 10. Order submit form. .. 26

Figure 11. Order reject form. .. 26

Figure 12. Logical database diagram. ... 29

Figure 13. Diagram with denormalized tables. .. 30

Figure 14. Example of product’s attribute values... 34

Figure 15. Function that returns the binary representation of a decimal number. 35

Figure 16. Example of generated bit strings. .. 35

Figure 17. Example of constructed composite keys. .. 36

Figure 18. Table schema for storing cached data. .. 36

Figure 19. Example of querying cached data. .. 37

Figure 20. Responsive layout for smartphones (a) and tablets (b). 42

Figure 21. Stretched background image. .. 43

Figure 22. Replacement of recreate function on older devices. 44

10

List of tables

Table 1. Definition of entity types. ... 17

Table 2. Independence of requests for filtering products from data volume. 38

Table 3. The difference in physical sizes of image. ... 41

11

1 Introduction

Over the past few decades, the online shopping has been developing quickly and there

are many reasons for this. Firstly, the customer does not need to go to a physical store

anymore and can perform the purchase from any location. The delivery of purchased

item can also be managed remotely. Secondly, since more and more shops started to

create their own representation online, the customer can easily compare the prices for

products and delivery conditions from different stores and he does not need to visit

every store to gather information on this. Thirdly, the price is usually lower for

customers who buy online and there are many reasons for this, e.g. since purchase

happen online, the payment is registered inside info system, which results in less

paperwork. Because of this, the online shops have become one of the most popular

types of web-based information systems.

1.1 Background and problem

One of the most important things that affect user experience with online shopping is the

speed of performing operations. During shopping, the users spend most of their time on

searching the product. The problem is in reducing the response time of requests that are

related to seeking the product.

With the development of mobile technologies, over a half of customers use mobile

phones for shopping [2]. This means that if a system does not provide either web or

mobile-based interface to interact with them, then it is losing potential customers. As

the mobile platform, the android OS has been chosen because in 2015 it was the most

popular OS for mobile devices.

Because the creation of the whole internet shop is a hard and time-consuming task, the

thesis is limited to the creation of order functional subsystem, which corresponds to the

main process of whole infosystem.

12

1.2 Thesis objectives

The goal of this work is to create an android and web-based prototype of an order

subsystem which should perform filtering of the products in constant time on average

with 1 concurrent request, i.e. the response time should be independent of the number of

products.

To achieve the selected goal, the following objectives has been set.

1. To analyze and design subsystem which should return results of filtering

requests in constant time.

2. To implement the prototype with android and web user interfaces.

3. To measure system performance.

1.3 Methodology

The system will be developed using waterfall methodology, where development phases

happen sequentially (analysis, design, implementation, etc.), i.e. the next phase does not

start before previous is complete. The incremental approach has been taken which

implies the creation of one subsystem at a time, which in this case is the order

subsystem.

1.4 Thesis structure

In the second chapter, there is an analysis of requirements for order subsystem. The

third chapter is dedicated to the design, where a solution for the defined requirements is

found. Also, it contains a description of the proposed method for achieving performance

requirement. The fourth chapter presents implementation details of the proposed method

and the results of system performance measurements. Fifth chapter explains how the

android application has been created.

13

2 Analysis

This chapter contains the functional and non-functional requirements for order

functional subsystem as well as conceptual data model.

2.1 Use cases

Figure 1 presents use case diagram where each use case correspond to some feature of

the system. Each use case consists of a sequence of steps (functional requirements),

which the actor needs to make in order to reach some goal. Below is a brief description

of each use case.

Figure 1. Use case model.

Visitor

Reject order Submit order

Seller

View history of
orders

User identification

Client

Filter of products

Add product to cart

<<include>>

Delete product from
cart

Change amount of
product in cart

Create order

User

14

Use case: User identification

Actors: Client, Seller (User)

Description: User can enter the system using name and password to perform allowed

operations.

Use case: Filter of products

Actors: Visitor, Client (User)

Description: User can choose catalog to get a list of products for that catalog. The

catalog have its own set of attributes and each attribute can have many attribute values.

All products in catalog need to define some value for each attribute. User can select

only 1 attribute value from each attribute in order to perform products’ filtering. When

user enters catalog, only those attribute values should be displayed for which at least 1

product exists. Products can be sorted by price. User should be able to move between

pages. Searching for products by text is not required.

Use case: Add product to cart

Actors: Visitor, Client (User)

Description: User can add a product to his cart.

Use case: Delete product from cart

Actors: Visitor, Client (User)

Description: User can delete a product from a cart when he observes details of his cart.

Use case: Change amount of product in cart

Actors: Visitor, Client (User)

Description: User can set the exact amount of product while observing his cart content.

Use case: Create order

Actors: Visitor, Client (User)

15

Description: User can place his order by specifying recipient’s info. After the order has

been created the system should send an email with order details.

Use case: View history of orders

Actors: Client

Description: Client can observe the list of previously made orders by him. Can select a

particular order to view its details.

Use case: Submit order

Actors: Seller

Description: Seller can submit orders by changing the order’s status from unpaid to

submitted.

Use case: Reject

Actors: Seller

Description: Seller can reject orders by changing the order’s status from unpaid to

rejected.

2.2 Non-functional requirements

The properties, which are expected from this system to have, are described below.

 The system should return results of filtering requests in constant time.

 There should be web and android-based user interfaces.

 The Web and Android application should support English, Estonian and Russian

languages (only labels).

 Android application should have responsive design, should run on devices

starting from Android OS version 2.3.3 and also shouldn’t crash on screen

rotation.

16

2.3 Business rules

A business rule is a constraint statement that defines or constrains behaviour of some

subject. In databases, business rules are implemented through the usage of triggers,

constraints or stored procedures.

 Person may not have Address, First name, Last name or Phone

 Each order has 0 or 1 client

 Each product have positive non-zero price

 There can be registered only 1 person with certain nick

 Client can be Seller at the same time

 Each Person should be Client or Seller and can be both of them at the same time

 Each Recipient should be associated with 1 Order

2.4 Conceptual data model

Conceptual data model consist of a description of entities (registers), their attributes and

relationships between them, which are used by order subsystem. The conceptual model

is not tied to any database model, e.g. relational model.

2.4.1 Entity-relationship diagram

To visualize the conceptual model, an entity-relationship diagram has been modeled that

will be used in design chapter to construct database logical diagram. Because the ERD

doesn’t differ much from database diagram that is presented in next chapter, it has been

moved to Appendix 1.

2.4.2 Definition of entity types

Table 1 presents clearly defined entities.

17

Table 1. Definition of entity types.

Name of the entity type Register of the entity type Definition

Person_status Classifier register Determinates, whether person is active/blocked

Person Person register Physical person who is registered in system

Employee Employee register Hired person who participates in systems

processes

Position_type Classifier register Represents the position type of employee in

system

Client Client register Person who participates in order creation

process

Orders Order register Summary information for goods that customer

wishes to buy

Recipient Order register The person who will receive the goods

Order_status Classifier register Determinates, whether the order is unpaid,

submitted or rejected

Order_item Order register Contains additional information for every item

in the order

Product Product register Item which can be bought

Cart Order register Cart stores all products that were selected by

user

Cart_product Order register Contains additional information for every item

in the cart

Detail Product register Property of item

Stock Stock register Supplies of concrete item

Shop Stock register Represents information about one of the

affiliates

Shipment_type Stock register Defines time boundaries required shipping

product

attribute Attribute register One of product’s characteristics

attribute_value Attribute register Value of some characteristic

catalog Catalog register Contains list of products that belong to the same

group

18

3 Design

In this chapter, there will be an explanation of the technologies that were used to create

the system. The previously created entity-relationship diagram was used to create

logical database model that is suitable for creating a database for any relational

database, i.e. implementation independent, which then can be used to create a physical

design for a specific database. In addition, there is a description of the method for

achieving the performance requirements.

3.1 Technology selection and systems architecture

The system should have a client-server architecture, i.e. the client should interrogate

with server application and not directly with the database. As programming language

for server-side application Java was chosen because it allows to write platform

independent code, i.e. it will not depend on CPU architecture, OS libraries and could be

run on any lower version of bytecode interpreter than the one that was targeted. Also, in

java it is possible to perform remote debugging whereas in some scripting languages

like PHP, the debugging is reduced to printing out variables. As a web server, Jetty was

used. It was needed to select MVC framework that is used to decouple the code of data

access layer from view layer through using controllers. Spring framework was chosen

because the whole author’s experience of writing web applications in Java was

associated with this framework. Because the system deals with payments, there can be

some sequence of operations that form single logical operation, which in turn requires a

database that supports acid compliant transactions [3]. As such database, PostgreSQL

was selected because it is free and open source. Lastly, because the functionality of

order creation requires sending an email with order details, it was decided to send them

asynchronously. A messaging system based on message queue was used, which is

useful in situations where it is possible to postpone some task without requiring from

user to wait for it to end, e.g. media file processing or email sending. The choice was

between ActiveMQ and RabbitMQ, but because there is a problem with running

ActiveMQ on Linux Ubuntu [4], the RabbitMQ was selected. For android, it was

19

decided to develop application using native android’s java framework because the

android’s native c++ framework doesn’t provide even half of functionality compared to

the first one and all 7 API releases are improving the support for OpenGL library, which

was not needed [5]. One of the non-functional requirements was for the prototype to

have a web-based interface, i.e. the user should be able to interrogate with the system

using a regular web browser. For this, the web application receives HTTP requests and

outputs HTML files as a response. The android application receives JSON responses

using restful web service. The resulting systems architecture is shown in Figure 2.

Figure 2. Systems architecture.

3.2 Description of real use cases

Real use cases describe a sequence of steps that user needs to perform in order to use

some part of the subsystem. All following real use cases reference the web-based

interface of the prototype. The demo of the web application is available at

https://testshop11.herokuapp.com/. Credentials for seller workspace: seller01/123456.

There are many client accounts that differ only by the last number in their name and all

of them have the same password, e.g. test1/123456.

https://testshop11.herokuapp.com/

20

Figure 3. Login form.

Use case: User identification

Actors: Client, Seller (User)

Scenario:

1. User enters his credentials and clicks button (A)

2. System grants access to allowed operations

Extensions:

2a. If nick or password doesn’t match the notification is displayed

Figure 4. Search form.

21

Use case: Filter of products

Actors: Visitor, Client, Seller (User)

Scenario:

1. User chooses one of the catalogs (B)

2. System displays some products from specified catalog along with available

attribute values

3. User selects some attribute values for filtering (C)

4. System displays products that match criteria (D)

5. User clicks on product to see its details

User can repeat steps 1–4 as many times as he wants

Extensions:

4a. If there is no product that meets all specified attribute values at once then

product list will be empty.

Figure 5. Product’s details form.

Use case: Add product to cart

22

Actors: Visitor, Client, Seller (User)

Scenario:

1. User finds product (starts Filter of products use case)

2. User specifies the amount and hits a button (E)

3. System updates summary of user's cart (F)

Figure 6. Delete from cart form.

Use case: Delete product from cart

Actors: Visitor, Client, Seller (User)

Preconditions: User have products in cart

Scenario:

1. User clicks cart at the top right corner (G)

2. User selects product that he wants to delete (H)

23

3. System updates cart’s info

User can repeat steps 1–3 as many times as he wants

 Figure 7. Product’s update form.

Use case: Change amount of product in cart

Actors: Visitor, Client, Seller (User)

Preconditions: User have products in cart

Scenario:

1. User clicks cart icon at the top right corner (I)

2. User enters required amount and presses a button (J)

3. System updates cart’s info

User can repeat steps 1–3 as many times as he wants

24

Figure 8. Create order form.

Use case: Create order

Actors: Visitor, Client, Seller (User)

Preconditions: User have products in cart

Scenario:

1. User clicks cart at the top right corner (K)

2. System displays order details and total prices

3. User overviews information, enters recipients information (L) and clicks

button (M)

4. The system saves order with status “unpaid”, associates this order with user’s

account (if any) and sends generated invoice to recipient’s email. Example of

generated file with order details is shown in Appendix 2.

25

Figure 9. Order history form.

Use case: View history of orders

Actors: Client, Seller (User)

Scenario:

1. User asks system to display all his orders by clicking a link (N)

2. System displays all orders of that user

3. User chooses one of the orders (O)

4. System displays order details (P)

26

Figure 10. Order submit form.

Use case: Submit order

Actors: Seller

Scenario:

1. Seller asks system to display all orders with status unpaid by clicking a link

(Q)

2. System displays all orders

3. Seller finds order and clicks a button (R)

Figure 11. Order reject form.

Use case: Reject order

Actors: Seller

Scenario:

1. Seller clicks a link (S)

2. System displays all orders with status unpaid

3. Seller clicks a button to reject the order (T)

27

3.3 Database diagram

Because Rational Rose was used to create database diagram that does not have support

for PostgreSQL, the presented logical database diagram in Figure 12 will be ANSI SQL

92 compliant and will not contain PostgreSQL-specific data types. To improve

readability, the diagram was divided into 2 parts.

The generalization between client, employee and person entities can be implemented as

single table, where client’s and employee’s attributes can be null [6]. The table for cart

entity is absent because it is stored in web server’s session. To represent the hierarchy of

catalogs, an adjacency list model was used [7]. The advantage of this model is that

there’s no performance overhead when inserting a new element. The disadvantage is

that in order to traverse hierarchical data, it requires to make a slow self-join for every

level in a tree. In this case, it is acceptable because the catalog table is small. The data

diagram is fully normalized and because of this, an EAV data model is used for catalog

and product tables to represent their attributes. EAV model stores columns’ names of

entity table as a rows in the attribute table and columns’ values as rows in the value

table. The most typical implementation of EAV uses 3 tables. In this project, 4 tables

were used because any attribute as well as any attribute value can be associated with

many catalogs. With EAV, it is easy to manage selection, insertion and deletion of

entity’s attributes. The drawback is a bad search performance of entities by attributes.

This is because it inevitably leads to at least one join of relations for each attribute and

attribute value pair. The recipient entity will form a single table with order entity

because according to business rules, each recipient should be associated with 1 order

entity.

28

29

Figure 12. Logical database diagram.

3.4 Denormalization

Denormalization is a technique that implies adding redundant data to the DB and

usually is used to increase speed of reads in exchange for reduced write speed. The time

of write queries increases because in order to ensure data consistency it is needed to

update redundant data when base data have changed [8].

The first denormalized table is catalog_attribute that can be seen in Figure 13, where the

refCount column was added in order to achieve performance requirement. The filtering

requests that should return results in constant time also should return the set of available

attribute values. According to one of the functional requirements, when user selects

catalog, only those attribute values should be displayed for which at least 1 product

exists. A naive implementation would be to scan all products for distinct attribute values

that will obviously make the running time dependent on the number of products. This

was solved by using refCount column, which is a counter that shows how much

products reference particular attribute value. In order to make the update process of the

30

correct row in the refCount column easier, there is a reference from product table to

attribute_value table for each possible attribute. The trigger for maintaining this column

is shown in Appendix 3 and the example of test data insertion for catalogs’ attribute

values is available at Appendix 4.

The second denormalized table is product table. The flat table design replaced EAV

model and the main reason for this was because there is no faster way to query product

and its details than keeping all of its data in a single table. One of the disadvantages is

the need to store many null values because each product type has its own set of

attributes. Another problem is the inability to put constraints on attribute columns to

restrict its values because each product type has its own set of allowed attribute values.

Also, such design requires from DB for support of multi-column indexes to be able to

restrict the index scan by catalog_fk. If single attribute column is indexed, it leads to

many unnecessary disk I/Os and additional computations. Another disadvantage is that

in PostgreSQL there is a limit for the amount of columns there could be [9]. Using the

concrete table inheritance design, i.e. creating a separate table for each product type, the

problems with constraints and indexes can be avoided [10].

Figure 13. Diagram with denormalized tables.

31

3.5 Response time optimization

The response time of filtering requests depends on running time of DB queries because

the server application itself is just a thin layer between client and database. One of the

most effective solutions for making the running time of queries independent of a

number of products is to return cached results.

According to functional requirements, each product in a catalog must define some valid

attribute value for each attribute. This means that each product has some number of sets

(attributes) where each of them contains a variable number of elements (attribute

values) and it is possible to select only 1 element from each set. In other words, each

product has a set of its own attribute values and each of them may be selected or not.

The idea is in a construction of composite keys where each of them will match certain

selection from a set of product’s attribute values. These composite keys should then be

associated with the results. In order to count all possible selections, it was needed to

decide whether to count the selection of elements in different order as unique selection

or not. If the order of selections is important, then the number of selections equals to all

k-permutations for all k and can be expressed as ∑
𝑁!

(𝑁−𝐾)!
𝑁
𝐾=0 , where N is the number of

attribute values. In another case, the number of selection possibilities equals to all k-

combinations (subsets) of a set of attribute values and equals to (1 + 1)𝑁 = ∑ (𝑁
𝐾
)𝑁

𝐾=0 =

2𝑁 [11]. This equation is a special case of Binomial theorem that is used to expand the

power of (𝑎 + 𝑏)𝑁 into n+1 terms [12]. In combinations, the number of keys grows

exponentially, i.e. when the number of parameters doubles the number of keys squares.

The second way was chosen because it results in less number of keys that need to be

stored and kept up to date. Combinations have strict order of elements, so if the user

inputs parameters in different order, then they should be brought to a “valid” order that

can be, e.g. hardcoded.

In addition, a user should be able to sort products by price. This requires the creation of

3 sorted versions of every composite key: unsorted, in ascending and descending order.

This means, that the number of keys that will be generated by single product is 3 ∗ 2𝑁,

where N is the number of product’s attribute values. Based on this it is assumed that the

space complexity of proposed method depends on 2 variables and its growth is

32

proportional to 𝑂(3 ∗ 2𝑁 ∗ 𝑀), where M is the total number of products because each

product will duplicate its data into each of his own composite keys.

As the data that should be associated with composite keys, product’s id was selected. If

all product’s details were stored, it would take up more space without giving any

significant performance increase in return. This ids should be stored inside an array

because the user should be able to move between pages and this, in turn, requires data

structure where the element access complexity is O(1). Strictly speaking, the access to

different data items cannot be constant because they should be physically located on

different distance from the CPU. The information cannot travel faster than a speed of

light so the time will differ. But for simplicity, the speed of element access is thought as

constant. Because the difficulty of a write operation at the end of an array is usually

O(n), it is not advisable to use it with frequently updated data. The set of composite

keys should rely on data structure that allows performing a constant search operation.

It was decided to use PostgreSQL for persisting resulting set of key-value pairs for

several reasons. First, the PostgreSQL has an advanced caching algorithm that makes

sure that the most frequently used data like pages of tables or indexes are not evicted

from the memory. To do it, it maintains a usage counter for every page and will not

evict any page if its counter is higher than 0 [13]. This will make possible for this

method to work effectively in an environment with limited resources. Second, because

the base data and cached results are stored in single data storage, it is easy to prevent

them from being desynchronized by updating them in single transaction. This type of

caching is called write-through caching [14].

One of the most widely used method for improving running time of DB read queries is

to associate the query results with user’s input parameters and cache them [1]. By this,

in the next time when user inputs same parameters, the results can be returned from the

cache. If database change occur, the query results should be evicted. This standard

method can be implemented using any key-value data storages, e.g. Ehcache, Guava,

etc. The proposed solution that implies manual preparation of results and maintenance

of them is better in several ways than the method described above. First, it allows to

achieve 100% cache hit rate because all the answers are preliminary prepared at product

insertion time and immediately updated after database change. In standard method, the

cache miss occurs every time when an entry becomes irrelevant. Second, it allows to

33

adjust the number of composite keys that will be generated by 1 product. This can be

done through deciding the set of parameters from which the combinations will be

generated. For other parameters, the results will be calculated at runtime. In other

words, it is possible to decide what data should be cached that may require further

processing. For example, it is possible to preliminary prepare sorted results or perform

sorting dynamically at runtime. In standard method, such set contains all parameter

values (even page number) and this results in a much bigger number of combinations.

Third, it allows to enhance the running time of different operations on the cached data.

This is possible through selecting the data structure for the cached data that should be

processed dynamically, i.e. it allows to decide how to cache the data. For example, for

range operator, some type of tree data structure would be more suitable or if the data are

constantly changing, the usage of a linked list can be considered. Fourth, the update of

results happens faster because in a case of product insertion or update, the changes are

merged with 2𝑁 results. For standard method, this means that all DB responses that

might have changed need to be evicted, which will proceed with cache misses and

repeated execution of slow DB queries. The advantage of the standard method is that it

is easier to implement.

The drawback of proposed method is that it is not usable with a big number (30+) of

input parameters because the number of all combinations grows exponentially. This will

not only consume a big amount of space but also the complexity of a process of

updating the composite keys, will be in the order of 𝑂(2𝑁 ∗ 𝑒), where E is the number

of elements in an array and N is the number of product’s attribute values. One possible

solution is to build an inverted index, which is a mapping between parameter and a

collection of corresponding entities. In this case, the number of keys that should be

stored is equal to the number of parameters. However, the intersection of 2 or more sets,

as well as sorting, are needed to be done at runtime which will make the running time

dependent on the number of entities (products) in the set. The time of update process in

the worst case will be O(N*e). PostgreSQL has its own implementation of an inverted

index that is called GIN and it can be used to index many data types [15]. In current

project, the number of attributes should be small, so initial method was selected.

34

4 Proposed method

In this chapter, there is a description of how the data that should be cached are being

prepared. Also, it contains the performance measurement results of improved products’

filtering requests.

4.1 Implementation details

As it already has been mentioned, the proposed solution implies preliminary generation

of composite keys from all k-combinations of a set of product’s attribute values and

association them with the arrays of products’ ids. These composite keys should be

cached in PostgreSQL. The construction of these keys happens at web application layer

at product insertion time. There are many recursive and iterative algorithms to generate

all combinations, but in this project, to do it, all numbers from 0 to 2𝑁 − 1 is

represented in binary form, where N is the number of product’s attribute values. For this

example, let product have 4 attributes and attribute values that are showed in Figure 14.

1)'brand' => 'Samsung'

2)'size' => '17'''

3)'resolution' => '1024x768'

4)'resp time' => '5 ms'

Figure 14. Example of product’s attribute values.

Figure 15 shows the function that is used to get the binary representation of a decimal

number. It is visible, that the supported number of attribute values is limited to the

number that fits into 4 bytes. At each iteration, it constructs bitmask by doing a right

shift on a leftmost bit that is set to 1. This bitmask is used in bitwise AND operation to

get the value of n-th bit.

35

private int[] binary_form(int number){

 int[] binaryString = new int[32];

 for(int i = 0;i<32;i++){

 if(((0x80000000>>>i)&number)!=0){

 binaryString[i]=1;

 }else{

 binaryString[i]=0;

 }

 }

 return binaryString;

 }

Figure 15. Function that returns the binary representation of a decimal number.

Figure 16 shows the resulting bit strings that are build. The first subset is the empty

subset that is also required, because the user may not pick any attribute values.

0)00000000000000000000000000000000

1)00000000000000000000000000000001

2)00000000000000000000000000000010

3)00000000000000000000000000000011

4)00000000000000000000000000000100

5)00000000000000000000000000000101

6)00000000000000000000000000000110

7)00000000000000000000000000000111

8)00000000000000000000000000001000

9)00000000000000000000000000001001

10)00000000000000000000000000001010

11)00000000000000000000000000001011

12)00000000000000000000000000001100

13)00000000000000000000000000001101

14)00000000000000000000000000001110

15)00000000000000000000000000001111

Figure 16. Example of generated bit strings.

There are many unnecessary bits, and they will be cut off leaving only N rightmost bits.

The position of bit tells whether the attribute value at this position should be included in

the subset or not. As identifiers, the names of attributes and attribute values have been

used. The author is aware that it may lead to several problems, e.g. in case if there are 2

attributes in a catalog with the same name and attribute value, it will lead to incorrect

results, but for human readability their names are used. Figure 17 shows the results of

replacement bits with names of parameters, appendage of catalog id are following.

36

0)catalog:9

1)catalog:9:resp time:5 ms

2)catalog:9:resolution:1024x768

3)catalog:9:resolution:1024x768:resp time:5 ms

4)catalog:9:size:17''

5)catalog:9:size:17'':resp time:5 ms

6)catalog:9:size:17'':resolution:1024x768

7)catalog:9:size:17'':resolution:1024x768:resp time:5 ms

8)catalog:9:brand:Samsung

9)catalog:9:brand:Samsung:resp time:5 ms

10)catalog:9:brand:Samsung:resolution:1024x768

11)catalog:9:brand:Samsung:resolution:1024x768:resp time:5 ms

12)catalog:9:brand:Samsung:size:17''

13)catalog:9:brand:Samsung:size:17'':resp time:5 ms

14)catalog:9:brand:Samsung:size:17'':resolution:1024x768

15)catalog:9:brand:Samsung:size:17'':resolution:1024x768:resp time:5 ms

Figure 17. Example of constructed composite keys.

These composite keys will be used to store arrays of unordered products. There will be

2 more sorted versions added for each of them. A full list of resulting 48 keys is

presented in Appendix 5.

Because there are much more attribute names and values that can be used by other

products, there will be much more keys. The formula that counts the number of keys

that will be generated by all products, assuming that there will be at least 1 product for

each attribute value is 3 ∗ (𝑎1 + 1)(𝑎2 + 1)… (𝑎𝑛 + 1). As an example, a catalog with

4 attributes that have 3, 5, 4, 13 different values have 3 ∗ (3 + 1)(5 + 1)(4 + 1)(13 +

1) = 5040 composite keys.

These keys are stored inside table with the schema that is shown in Figure 18. The

total_amount column is used to avoid counting the size of the array. The hash index

type is used to perform searches of keys in O(1) time. Its also possible to zip all results

and store them compressed, which is a tradeoff between memory and CPU time [16].

CREATE TABLE cachedtb(

id INTEGER NOT NULL DEFAULT nextval('cachedtb_id'),

key VARCHAR(255),

total_amount INTEGER,

value integer[],

CONSTRAINT cachedtb_pk PRIMARY KEY(id)

);

CREATE INDEX cachedtb_idx2 ON cachedtb USING hash (key);

Figure 18. Table schema for storing cached data.

37

The function that generates composite keys for products and stores them in DB is shown

in Appendix 6. All combinations have single order of elements, so when user inputs

attributes in arbitrary order, the “valid” order of parameters is selected from DB by

ordering them by identifier. The correctly ordered set of parameters is used to construct

valid composite key from user’s input. Figure 19 shows an example of resulting query

that uses subarray function from Intarray module and selects first 5 products.

SELECT total_amount, unnest(subarray(value,0,5)) prodids FROM cachedtb WHERE
key='catalog:9:price:asc:brand:Samsung'

Figure 19. Example of querying cached data.

4.2 System performance measurement

In order to ensure that the running time of filtering requests is independent of the

number of products, their performance was measured using JMeter. All requests were

sent sequentially, i.e. 1 request at a time. Requests were sent to the web application that

outputs rendered html. The test plan consists of 5 http requests which cover different

parts of filtering functionality and 500 samples were made for each request. There are 4

sample sizes: 0,5M, 1M, 2M and 4M. Below is a list of requests.

1. Selection of first 5 products. This happens when a user selects one of the

catalogs.

2. Filter of products by 1 attribute. Filtering parameter was set to Resp time=5

ms, which have only 4 distinct values.

3. Sort of all the products by price.

4. Usage of the last page number in conjunction with sorting. The number of

page depends on sample size.

5. Selection of 4 filters with sorting by price and usage of latest page.

PostgreSQL was configured with 2 parameters: shared_buffers = 2024MB; work_mem

= 100MB. The first parameter determinates the amount of shared_memory that

PostgreSQL is used to store data like tables and indexes. Also, it is used to speed up the

write operations by not immediately flushing updates to disk, but waiting until the

whole input data is stored in a buffer. The second parameter is responsible for storing

38

intermediate results of operations such as order by or group by. The work_mem is

allocated separately for each request, so in a case of 100 current requests, this will

require 10GB RAM. This can cause lots of disk’s page in/outs that will result in a slow

database. In this case, there is enough of memory and no concurrent requests was made.

Hardware specifications are AMD Phenom x4 965, 8 GB RAM, HDD SATA 2 3GB/s

7200rpm, Linux Ubuntu.

Table 2 shows that the average running time of all product filtering requests doesn’t not

grow with the number of products because everything is read from the cache. An

example of results for the sample with 4M products is shown in Appendix 7, where it is

seen that the same operation can be 4x slower in the worst case. This may be explained

by some freezing effects that were going in the system. The numbers in brackets shows

that the space that is required to store all cached data grows linearly. They include the

size of rows, indexes and toast tables where the latter is used to store values of wide

fields [17]. This numbers correlate with the assumed space complexity because the

number of attributes was the same for all sample sizes and only the number of products

was growing.

Table 2. Independence of requests for filtering products from data volume.

Amount of

products

/query

First 5

prodcuts

(ms)

Apply 1

filter (ms)

Sorting by

price (ms)

Last page +

sorting (ms)

4 filters +

last page +

sorting (ms)

500K(106MB) 21 24 25 26 24

1M(205MB) 22 25 26 26 23

2M(409MB) 25 24 28 28 23

4M(820MB) 24 23 27 27 20

39

5 Implementation of android application

During the development an android application, the author has followed these

requirements: the app should have a responsive design, should support 3 languages, it

should run on old devices starting from android OS version 2.3.3 and should not crash

when a screen is being rotated. The following is the description of the android

application creation process. Appendix 8 contains screenshots of the user interface.

5.1 Responsive design

Responsive design is such design that adds more elements on the screen when enough

width is available. This element can be anything like an additional column at the left

side of a screen or more elements at toolbar. In order to implement a good-looking

responsive design that provides a good user experience, the layout for different screens

should be designed and also the images should be handled [18].

5.1.1 Layout design

The layouts for different screen widths were created. For mobile developers, the devices

are divided into 2 main groups by their width: phones and tablets. The design of layout

should be based on the width of a screen because for the user it is much easier to scroll

all the content that does not fit in a vertical direction. The problem comes from the fact,

that in 2015, there were registered over 24000 different devices that were using android

OS, with their own screen resolutions and screen sizes [19]. Each of these devices has

their own dpi (ppi). DPI stands for dots per inch and is the ratio of resolution to screen

size [20]. In this project, 2 layouts were adapted for tablets: order list and product list

layouts. This was implemented by adding the additional pane with its own layout so that

on left side of the screen there is a list of products and on the right side is a pane with

product’s details. There are two rules that were followed when designing layout

regardless of the width [18].

40

1) The layout should be stretchable, i.e. a dead space should be added that should fill all

available width. The layout of most of UI widgets that were used (Toolbar, TextView,

etc.) were made stretchable, i.e. their width became dependent on screen width. In

android, the stretching of layout elements can be easily achieved using match_parent

and wrap_content values for layout_width and layout_height parameters. Match_parent

will resize the element to the parent size and wrap_content will make its size depend on

child element(s). The stretching helps to avoid creation of different layout for every

possible screen width and it will look visually better if all available size is occupied

(even when its a dead space). However, not every layout can be stretched. An example

is the layout of calculator that have only buttons and space for displaying results. Such

layout does not contain stretchable dead space [21].

2) UI elements like buttons, images, checkboxes and even font of text should not

depend on screen width, i.e. their size should be physically the same. In a mobile world,

when the user owns a larger screen, he does not want to see big elements, but instead he

expects for more elements to be visible. The screens that are intended to be read from a

certain distance should have UI elements with the same physical size. For example, it is

assumed that an element from a phone or tablet will be observed from a distance around

0.5 meters that requires an equal size of elements and font size and, at the same time,

the same elements should be physically bigger on TV.

There are several ways how to make elements have same size. First, their sizes can be

defined in dp. DP is a virtual pixel that takes physically the same size on any screen. In

android, 160 dp approximately equals to 1 inch. The devices with 160 dpi are

considered as a baseline, which means that on such devices 1 dp will equal to 1px. The

larger the resolution of a screen and the bigger size in inches, the more dp units the

device will have.

𝑝𝑥 = 𝑑𝑝 ∗
𝑑𝑝𝑖

160

 (1)

Formula (1) shows that dp can be multiplied by screen dpi in order to be translated into

pixels. This results in more pixels for higher densities. The problem is that in Android

the size of elements can differ even when using dp. This is because of instead of

device’s real dpi, a value of predefined density bucket is used in calculations [18], [22].

41

First reason for using density buckets is that it increases the speed of rendering because

the values of a bucket are defined as integer values whereas device’s real dpi is always

float. The second advantage is that developer does not need to target every possible

screen density and only the range of dpis. From Table 3 it is seen that although, the 1st

and 3rd device belong to different density buckets, they have same resulting physical

size of an element since they are equally distant from constant that is used as dpi.

Device 2 and 4 belong to the same bucket but will have different element length. Each

bucket contains around 40 dp unit, e.g. mdpi contains dpis in a range from around 140

to 180, so the physical length of elements which are specified in dp can differ no more

than 25%. Second way is to define element size manually through programming code

and use device’s real dpi. Because a small inaccuracy in size is acceptable, elements’

sizes were defined in dp.

Table 3. The difference in physical sizes of image.

Resolution(px) Size(inch) Density

(px/inch)

Image

size(dp)

Scale

ratio

Result

image

size(px)

Physical

size(inch)

480x800 4,0 233 200x200 1,5 300x300 300/233=1,28

854x480 5,4 181 200x200 1,0 200x200 200/181=1,1

1280x720 4,7 312 200x200 2,0 400x400 400/312=1,28

240x480 3,8 141 200x200 1,0 200x200 200/141=1,4

Figure 20 shows how all mentioned above were used to design layout on the example of

product list layout. It is visible that all elements fit into the smallest available screen size

(320dp). There are 3 elements and 2 of them (product’s image and button) are not

stretchable. The TextView at the middle that displays product’s name was made

stretchable using layout_weight parameter. Because stretching of this TextView would

look too inappropriate on big screens, there has been separate layout created. All static

layout elements were defined through XML file, and dynamic elements like basket

summary bar at the bottom of the page, are added through code.

42

 (a) (b)

Figure 20. Responsive layout for smartphones (a) and tablets (b).

5.1.2 Image handling

Some UI widgets like buttons can be easily resized by adding more pixels. The images

can also be scaled up, but this approach is unacceptable because it results in quality loss.

There are two types of images that were handled.

1) Images with known physical dimensions (dp). When a size of an element that

contains image is known it is possible to preliminary create an image in higher

resolution for different screen densities. This is the case for images that is used e.g. as

background for fixed-size buttons.

In this project, there were 4 images with predefined size in use for UI. The general steps

that were done in order to deal with such images are the following [23]:

1. The physical size of an image were decided (in dp).

2. Resolution of an image for highest density was calculated, using decided dp and

scale factor for highest density (4.0).

3. Image of calculated pixels was produced and inserted into a folder with xxxhdpi

resource qualifier.

4. Images for lower densities (mdpi, hdpi, xhdpi, xxhdpi) was produced and

inserted into an appropriate folder.

43

The third step is the hardest because images tend to have their own aspect ratio, i.e. an

image can be horizontal or vertical orientation and it cannot change its orientation

without being squeezed or stretched. The fourth step is optional and is needed to not let

the android scale down the image by himself, which will slow down rendering process.

The revert situation where android needs to scale up the image is also possible and if the

resolution is high enough the app can crash with OOM exception. It is worth to mention

that the more images there are in a project, the bigger app size will be.

2) Images with unknown dimensions like background images. In this case, the

resolution of image is not known in advance because image needs to fill the whole

screen and resolution of screens differs. There are several ways how this problem can be

solved. First, is to provide an image for the largest supported resolution [24]. This

solution inevitably leads to cropping, i.e. the image will not be fully visible. This is

because the image, as well as the screen, have their own aspect ratios and in order to

preserve it and at the same time for the image to fill all width, it should be cropped.

Second, is to use method called 9 patch, which allows to limitlessly stretch the image. It

works by defining areas that can be stretched and also the areas that should be static by

adding 1px borders to the image. The drawback is that image should have a monotonous

background color, so the user would not notice the stretching. The 2nd way was selected,

because the logo that was used as background image on the main screen have white

background. In Figure 21 it is visible that when an image is stretched in the y-direction,

the logo keeps static resolution and the same thing happens when it is stretched

horizontally. Of course, for the logo to have an equal physical size it is required to

produce an image for different densities in a way it has been described above.

Figure 21. Stretched background image.

44

5.2 Support Library

Each new release of Android OS most of the time contains an updated version of java

framework APIs, which consists of new classes, functions, etc., which are intended to

be used by developers to access android's core features. When an application calls API

function that requires a newer version of OS than the one is installed on a device, the

application will crash. In order for an application to work on android version 2.3.3, the

following was done.

1) Support library was used.

Android Support Library is a collection of libraries, which contain functions from a

newer version of framework and also of all UI widgets which are intended to be used to

create layout [25]. For example, Toolbar is a new widget that has been added to

AppCompat v21 library and now is available on older devices [26]. The functionality of

components that are provided by support library may differ from what is presented in

java framework.

2) Support library includes most but not all functionality. For the functionality, which

had not been presented in support library, the author provided its own implementation.

In this case, there is a check for the version of OS that device has. If this version is

lower than needed, then the code that does not use that new feature will be executed.

For example, it was required to reset the activity and to do it a function recreate was

used from Activity class that is not included in support library. In order to virtualize this

function on older devices, the code that is presented in Figure 22 was written.

MainActivity mainActivity = ((MainActivity)context);

if(Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {

 mainActivity.recreate();

}else{

 mainActivity.finish();

 mainActivity.startActivity(mainActivity.getIntent());

}

Figure 22. Replacement of recreate function on older devices.

Another problem was in the absence of UI widget in the support library called

NumberPicker. To overcome this it was decided to use third-party implementation [27].

45

5.3 Data loading

In android, all long running tasks need to be run in a separate thread, since doing this in

process’ main thread will cause ANR notification. This separate thread may crash with

access violation exception because when a user rotates the screen the activity is

recreated and the thread will be delivering results to non-existing activity. In this

project, the background task is http request to a server. The choice was between 3

components that can be used to solve the screen rotation problem.

1) AsyncTask is almost the same as normal java’s thread class. Asynctask provides two

methods (onPreExecute, onPostExecute) that are be called in a main thread and

doInBackground method are called in a separate thread. In order handle screen

rotations there are several steps that need to be done. Firstly, the Activity that is

about to be killed needs to unset pointer in the AsyncTask, so that it would not try to

return results to non-existing Activity. Secondly, it needs to save the pointer to this

instance of AsyncTask, so the recreated Activity will be able to communicate with

the old instance of AsyncTask. Thirdly, the newly created Activity needs to update

the pointer to itself in AsyncTask. It is also theoretically possible so that AsyncTask

will finish processing before this pointer is updated which means that the task

should probably be repeated. Another disadvantage of using AsyncTask is that all

existing AsyncTasks gets executed sequentially, i.e. if Activity or Service start

different AsyncTasks from different threads, only 1 will be executed at a time [28].

One of the advantages of using AsyncTask is that it will not stop the background

task if the caller component (Activity/Service, etc.) is stopped. So in a situation

when a user switches to another app like an incoming phone call, the AsyncTask

will continue executing a task. Of course, if android OS will kill the whole process,

the AsyncTask’s thread will be also terminated. The biggest problem of using

AsyncTask is that the developer needs to manually handle all the issues that might

occur during screen rotations.

2) Services are one of the standard component of android framework that can mark a

process as re-creatable. This means that if a process that was hosting this service

will be killed, android will automatically schedule a restart of this process. Of

course, the main Activity that loads by default will not be called in recreated process

because it is not required. Starting from API 19 (KitKat) the services are required to

http://developer.android.com/reference/android/os/AsyncTask.html#onPreExecute%28%29
http://developer.android.com/reference/android/os/AsyncTask.html#onPostExecute%28Result%29
http://developer.android.com/reference/android/os/AsyncTask.html#doInBackground%28Params...%29

46

draw a notification icon at a status bar. In this way, the user always aware of some

foreground services running. There are several ways how service can report results

to Activity. One way is using a database. The second way is to use

LocalBroadcastManager, but this may cause a problem in a situation when activity

unregisters itself from receiving broadcasts and new activity will be too late to

register itself to listening for events. Having the ability to restart process makes

Services an ideal candidate for tasks that should be running in the background, like

music player or keylogger. Using Services for simple http requires is overkill

because files and databases are used for achieving IPC.

3) Loaders can be used to load any arbitrary data types. Loaders consists of 3

components: LoaderManager, LoaderCallbacks and AsyncTaskLoader.

AsyncTaskLoader internally relies on AsyncTask, which means that the task will be

done in a separate thread. In contrast to AsyncTask, it is possible to execute many

AsyncTaskLoaders in parallel. The disadvantage is that the LoaderManager is

bounded to Activity’s lifecycle, i.e. it will cancel the task if an Activity is stopped. If

an Activity is going to be recreated, the loading will not be cancelled. It is very easy

to work with Loaders, because the newly recreated Activity only needs to call

initLoader method of LoaderManager. The LoaderManager will deliver results to

LoaderCallbacks instance.

Loaders was chosen to execute http requests because LoaderManager automatically

resolves all issues that arise during screen rotation. To perform http requests, the

Retrofit library is used. After the data is loaded it is needed to preserve it across

rotations and death of process to avoid loading in repeatedly. To do this, an

onSaveInstanceState method is used, where all needed data is saved into Bundle that

will be serialized and delivered into new app’s process if the old one will be killed

by android OS.

47

6 Summary

The speed of an information system has a huge impact on user experience and this is

why it is important to keep server's response time low. The goal of this work was to

create an android and web-based prototype of an order subsystem which should perform

filtering of the products in constant time on average with 1 concurrent request.

The proposed solution for achieving performance requirement implies manual

preparation of results for all combinations of product’s attribute values and caching

them in PostgreSQL. The results of performance test prove that filtering happens in

constant time. This solution has many advantages over the widely used method where

database query results are associated with user’s input parameters. Firstly, it is possible

to adjust the number of stored results through deciding a set of parameters from which

all combinations should be generated, while for other parameters, the results should be

calculated at runtime. For example, it is possible to store sorted results or perform

sorting on the fly. Secondly, it allows to improve the speed of operations that are

performed on the cached data through using different data structure(s) for cached data.

In this way, the cached data have been stored in an array to be able to select the

products for any page in constant time. The disadvantage of such method is that it is not

suitable for use with a big number (30+) of input parameters because the number of

combinations that should be stored and maintained grows exponentially. One possible

solution is to use a data structure that is called inverted index. This however will make

the running time dependent on the number of parameters and products.

During the creation of the android application, attention has been paid to three things.

Firstly, the responsive design has been created that requires the creation of separate

layout for different screen widths and also maintenance of pixel perfection of images.

Secondly, the support for older devices has been added by using support library in

conjunction with third-party libraries. Thirdly, the problem with crashes during screen

rotation has been resolved through using the Loaders component because the

LoaderManager automatically resolves any arising issues.

48

6 Kokkuvõte

Infosüsteemi kiirus mõjutab kasutajakogemust väga ja seetõttu on tähtis, et serveri

vastamise aeg oleks lühike. Eesmärgiks oli luua androidi- ja veebipõhine prototüüp, mis

peaks teostama keskmiselt muutumatu aja jooksul toodete filtreerimist 1 paralleelse

ühendusega.

Pakutud lahendus jõudluse saavutamiseks eeldab manuaalselt ette valmistamist ja

puhverdamist PostgreSQL’isse toodete atribuutväärtuste kõikide kombinatsioonide

tulemusi. Jõudluse testi tulemused kinnitavad, et filtreeritakse muutumatu aja jooksul.

Sellel lahendusel on palju eeliseid laialt kasutatava meetodi ees, kus kasutaja sisestatud

parameetrid viitavad üheselt andmebaasi päringutulemustele. Esiteks, sellega saab

reguleerida talletatud tulemuste arvu nii, et määratakse kindlad parameetrid, mille alusel

luuakse kõik kombinatsioonid ning ülejäänud parameetrite puhul arvutatakse tulemused

dünaamiliselt. Näiteks on võimalik talletada sorteeritud tulemusi või sorteerida töö ajal.

Teiseks, tänu erinevatele andmestruktuuridele on sellega võimalik vahemälus olevaid

andmeid kiiremini läbi töötada. Näiteks, vahemällu talletatud andmeid hoitakse

masiivis, et toodete valimine igal lehel toimuks muutumatu aja jooksul. Ent see meetod

ei sobi suure hulga (30+) sisendparameetrite korral, kuna talletatavate ja hallatavate

kombinatsioonide arv kasvab eksponentsiaalselt. Üheks võimalikuks lahenduseks on

kasutada andmestruktuuri, mida nimetatakse inverted index. Ent see paneb tööaja

sõltuma parameetrite ja toodete arvust.

Androidi rakenduse loomisel on rõhku pandud kolmele asjale. Esimene on paidlik

kujundus, mis nõuab erineva laiusega ekraanide puhul erinevat kujunduse loomist ja

piltide haldamist. Teiseks, on Support Library ja kolmanda osapoole teekide abil lisatud

toetus vanadele seadmetele. Kolmas, ekraani pööramisel tekkinud rakenduse kokku

jooksmise probleem on lahendatud kasutades Loaders komponenti, kuna

LoaderManager lahendab kõiki ilmnenud vigu automaatselt.

49

References

[1] Make your node server faster by caching responses with redis [WWW]

http://www.sohamkamani.com/blog/2016/10/14/make-your-node-server-faster-

with-redis-cache/ (21.12.2016)

[2] Over half of consumers use mobile for shopping [WWW]

http://newsok.com/article/5472139 (14.12.2016)

[3] ACID [WWW] https://en.wikipedia.org/wiki/ACID (10.12.2016)

[4] ActiveMQ fails to start on Ubuntu [WWW]

https://bugs.launchpad.net/ubuntu/+source/activemq/+bug/1361831

(09.12.2016)

[5] Android NDK Native APIs [WWW]

https://developer.android.com/ndk/guides/stable_apis.html (08.12.2016)

[6] Favre, L. UML and the Unified Process IRM Press, 2003 (09.10.2016)

[7] Storing Hierarchical Data in a Database [WWW]

https://www.sitepoint.com/hierarchical-data-database/ (11.10.2016)

[8] Adaptive Server Enterprise 12.5.1 [WWW]

http://infocenter.sybase.com/help/topic/com.sybase.dc20020_1251/html/databas

es/databases233.htm (12.12.2016)

[9] General PostgreSQL limits [WWW] https://www.postgresql.org/about/

(12.12.2016)

[10] Concrete table inheritance [WWW]

http://www.slideshare.net/billkarwin/practical-object-oriented-models-in-sql/17-

EntityAttributeValue_Concrete_Table_Inheritance_Dene (13.10.2016)

[11] Number of k-combinations for all k [WWW]

https://en.wikipedia.org/wiki/Combination#Number_of_k-

combinations_for_all_k (14.09.2016)

[12] Binomial theorem [WWW] https://en.wikipedia.org/wiki/Binomial_theorem

(14.09.2016)

[13] Inside the PostgreSQL Shared Buffer Cache [WWW]

https://2ndquadrant.com/media/pdfs/talks/InsideBufferCache.pdf (15.12.2016)

[14] Write-through, write-around and write-back cache [WWW]

http://www.computerweekly.com/feature/Write-through-write-around-write-

back-Cache-explained (15.12.2016)

[15] Built-in Operator Classes [WWW]

https://www.postgresql.org/docs/current/static/gin-builtin-opclasses.html

(07.12.2016)

50

[16] PostgreSQL Columnar Store for Analytic Workloads [WWW]

https://www.citusdata.com/blog/2014/04/03/columnar-store-for-analytics/

(21.12.2016)

[17] TOAST [WWW] https://wiki.postgresql.org/wiki/TOAST (08.12.2016)

[18] Supporting Multiple Screens [WWW]

https://developer.android.com/guide/practices/screens_support.html

(09.12.2016)

[19] Android Fragmentation Visualized [WWW]

http://opensignal.com/reports/2015/08/android-fragmentation (09.12.2016)

[20] Pixel density [WWW] https://en.wikipedia.org/wiki/Pixel_density (09.12.2016)

[21] Automatically Scaling Android Apps For Multiple Screens [WWW]

http://www.vanteon.com/downloads/Scaling_Android_Apps_White_Paper.pdf

(10.12.2016)

[22] Android: Some Screen Densities, Sizes, Configurations, and Icon Sizes [WWW]

http://dbrodersen.com/CIT_238/AndroidScreens.html (11.12.2016)

[23] Multiple screens and scaling Android UI images [WWW]

http://dexxtr.com/post/50327457086/multiple-screens-and-scaling-android-ui-

images (11.12.2016)

[24] Tips for Designers: from a Developer [WWW]

http://vinsol.com/blog/2014/11/20/tips-for-designers-from-a-developer/

(13.12.2016)

[25] Support Library Features [WWW]

https://developer.android.com/topic/libraries/support-library/features.html

(14.12.2016)

[26] Using the App ToolBar [WWW] https://guides.codepath.com/android/Using-

the-App-ToolBar (17.12.2016)

[27] A backport of the Android 4.2 NumberPicker [WWW]

https://github.com/SimonVT/android-numberpicker (18.12.2016)

[28] AsyncTask [WWW]

https://developer.android.com/reference/android/os/AsyncTask.html

(22.12.2016)

51

Appendix 1 – Entity-relationship diagram of registers that are

used by order functional subsystem

52

53

Appendix 2 – Example of generated pdf file with order details

54

Appendix 3 – Trigger for updating refCount column

CREATE OR REPLACE FUNCTION insrt_amount() RETURNS TRIGGER

LANGUAGE plpgsql

AS $$

BEGIN

 UPDATE catalog_attribute AS ca SET refcount=refcount+1

 WHERE ca.attribute_value_fk IN
(NEW.brand_fk,NEW.resolution_fk,NEW.screen_fk,NEW."Resp time_fk",NEW.color_fk,NEW."Battery
Life_fk")

 AND ca.catalog_fk=NEW.catalog_fk;

 RETURN NEW;

END;

$$;

CREATE TRIGGER tr_insrt_prod

AFTER INSERT ON product

FOR EACH ROW

EXECUTE PROCEDURE insrt_amount();

Appendix 4 – Test data for catalogs’ attributes

INSERT INTO attribute(name)

VALUES ('brand');

INSERT INTO attribute(name)

VALUES ('resolution');

INSERT INTO attribute(name)

VALUES ('screen');

INSERT INTO attribute(name)

VALUES ('Resp time');

INSERT INTO attribute(name)

VALUES ('color');

INSERT INTO attribute(name)

VALUES ('Battery Life');

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (1,'Apple',1);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (1,'Asus',2);

...

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (1,'HP',23);

55

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (2,'400×800',1);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (2,'1024x768',2);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (2,'1280x720',3);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (2,'1280x800',4);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (2,'1920x1080',5);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (3,'10''''',1);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (3,'15''''',2);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (3,'17''''',3);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (3,'19''''',4);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (3,'22''''',5);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (3,'27''''',6);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (4,'5 ms',1);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (4,'6 ms',2);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (4,'7 ms',3);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (4,'8 ms',4);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (5,'black',1);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (5,'white',2);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (5,'red',3);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (5,'green',4);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (5,'blue',5);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (6,'1 hour',1);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (6,'2 hour',2);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

VALUES (6,'4 hour',3);

INSERT INTO attribute_value(attribute_fk,attributeValue,orderby)

56

VALUES (6,'111 hour',4);

INSERT INTO catalog_attribute(catalog_fk,attribute_fk,attribute_value_fk)

VALUES (9,1,1);

INSERT INTO catalog_attribute(catalog_fk,attribute_fk,attribute_value_fk)

VALUES (9,1,2);

INSERT INTO catalog_attribute(catalog_fk,attribute_fk,attribute_value_fk)

VALUES (9,1,3);

...

INSERT INTO catalog_attribute(catalog_fk,attribute_fk,attribute_value_fk)

VALUES (9,4,38);

INSERT INTO catalog_attribute(catalog_fk,attribute_fk,attribute_value_fk)

VALUES (3,1,10);

...

INSERT INTO catalog_attribute(catalog_fk,attribute_fk,attribute_value_fk)

VALUES (3,6,47);

Appendix 5 – Resulting composite keys from the example

0)catalog:9

1)catalog:9:resp time:5 ms

2)catalog:9:resolution:1024x768

3)catalog:9:resolution:1024x768:resp time:5 ms

4)catalog:9:size:17''

5)catalog:9:size:17'':resp time:5 ms

6)catalog:9:size:17'':resolution:1024x768

7)catalog:9:size:17'':resolution:1024x768:resp time:5 ms

8)catalog:9:brand:Samsung

9)catalog:9:brand:Samsung:resp time:5 ms

10)catalog:9:brand:Samsung:resolution:1024x768

11)catalog:9:brand:Samsung:resolution:1024x768:resp time:5 ms

12)catalog:9:brand:Samsung:size:17''

13)catalog:9:brand:Samsung:size:17'':resp time:5 ms

14)catalog:9:brand:Samsung:size:17'':resolution:1024x768

15)catalog:9:brand:Samsung:size:17'':resolution:1024x768:resp time:5 ms

16)catalog:9:price:asc

17)catalog:9:price:desc

18)catalog:9:price:asc:resp time:5 ms

19)catalog:9:price:desc:resp time:5 ms

20)catalog:9:price:asc:resolution:1024x768

21)catalog:9:price:desc:resolution:1024x768

22)catalog:9:price:asc:resolution:1024x768:resp time:5 ms

23)catalog:9:price:desc:resolution:1024x768:resp time:5 ms

24)catalog:9:price:asc:size:17''

25)catalog:9:price:desc:size:17''

57

26)catalog:9:price:asc:size:17'':resp time:5 ms

27)catalog:9:price:desc:size:17'':resp time:5 ms

28)catalog:9:price:asc:size:17'':resolution:1024x768

29)catalog:9:price:desc:size:17'':resolution:1024x768

30)catalog:9:price:asc:size:17'':resolution:1024x768:resp time:5 ms

31)catalog:9:price:desc:size:17'':resolution:1024x768:resp time:5 ms

32)catalog:9:price:asc:brand:Samsung

33)catalog:9:price:desc:brand:Samsung

34)catalog:9:price:asc:brand:Samsung:resp time:5 ms

35)catalog:9:price:desc:brand:Samsung:resp time:5 ms

36)catalog:9:price:asc:brand:Samsung:resolution:1024x768

37)catalog:9:price:desc:brand:Samsung:resolution:1024x768

38)catalog:9:price:asc:brand:Samsung:resolution:1024x768:resp time:5 ms

39)catalog:9:price:desc:brand:Samsung:resolution:1024x768:resp time:5 ms

40)catalog:9:price:asc:brand:Samsung:size:17''

41)catalog:9:price:desc:brand:Samsung:size:17''

42)catalog:9:price:asc:brand:Samsung:size:17'':resp time:5 ms

43)catalog:9:price:desc:brand:Samsung:size:17'':resp time:5 ms

44)catalog:9:price:asc:brand:Samsung:size:17'':resolution:1024x768

45)catalog:9:price:desc:brand:Samsung:size:17'':resolution:1024x768

46)catalog:9:price:asc:brand:Samsung:size:17'':resolution:1024x768:resp
time:5 ms

47)catalog:9:price:desc:brand:Samsung:size:17'':resolution:1024x768:resp
time:5 ms

Appendix 6 –Function for generation of composite keys and

the PLPGSQL functions for maintaining arrays of product ids

private List<String> retoSetOfAttrValues(Product prod) {

 List<String> aVS = new ArrayList<>();

 aVS.add(":price:asc");

 for(String attrKey:prod.getAttrs().keySet()){

 String attrValue = prod.getAttrs().get(attrKey);

 aVS.add(":"+attrKey+":"+attrValue);

 }

 return aVS;

}

58

private int[] binary_form(int number) {

 int[] binaryString = new int[32];

 for (int i = 0; i < 32; i++) {

 if (((0x80000000 >>> i) & number) != 0) {

 binaryString[i] = 1;

 } else {

 binaryString[i] = 0;

 }

 }

 return binaryString;

}

private int[] cutNulls(int[] binaryString, int nbImportantBits) {

 int[] newBinaryString = new int[nbImportantBits];

 for (int i = 0; i < nbImportantBits; i++) {

 newBinaryString[i] = binaryString[32 - nbImportantBits + i];

 }

 return newBinaryString;

}

public void genSetOfKVpairsForProducts(List<Product> products) {

 Map<String, List<Integer>> cachedResults = new LinkedHashMap<>();

 for (Product product : products) {

 List<String> aVs = retoSetOfAttrValues(product);

 List<List<String>> subsets = new ArrayList<List<String>>();

 int N = aVs.size();

 int nbOfAllSubsets = (int) Math.pow(2, N);

 //gen all subsets by getting binary representation of numbers between
0 and (2^n)-1

 for (int i = 0; i < nbOfAllSubsets; i++) {

 int[] binaryString = binary_form(i);

 binaryString = cutNulls(binaryString, N);

 List<String> subset = new ArrayList<>();

 int found = 0;

 for (int j = 0; j < binaryString.length; j++) {

 if (binaryString[j] == 1) {

 subset.add(aVs.get(j));

 found = 1;

 }

 }

 if (found == 0)

 subset.add("");

 subsets.add(subset);

 }

 String compositeKey = "";

59

 for (List<String> subset : subsets) {

 String compositeKeyDescPrice = "";

 //construction of composite key and creation of 3 sorted versions of the
key

 compositeKey = "catalog:" +
Integer.toString(product.getCatalog().getId());

 for (String element : subset) {

 compositeKey+=element;

 }

 if(compositeKey.contains("price"))

 compositeKeyDescPrice = compositeKey.replace("price:asc",
"price:desc");

 if (!cachedResults.containsKey(compositeKey)) {

 cachedResults.put(compositeKey, new ArrayList<>());

 if(!compositeKeyDescPrice.isEmpty())

 cachedResults.put(compositeKeyDescPrice, new
ArrayList<>());

 }

 //associate product ids with composite key

 List<Integer> prodIds = cachedResults.get(compositeKey);

 prodIds.add(product.getId());

 if(!compositeKeyDescPrice.isEmpty()){

 prodIds = cachedResults.get(compositeKeyDescPrice);

 prodIds.add(product.getId());

 }

 }

 }

 String SQL = "SELECT insrt_or_append(?,?);";

 //save in DB

 jdbcTemplate.batchUpdate(SQL, new BatchPreparedStatementSetter() {

 @Override

 public void setValues(PreparedStatement ps, int i) throws SQLException {

 String key = (String) cachedResults.keySet().toArray()[i];

 Array results = ps.getConnection().createArrayOf("integer",
cachedResults.get(key).toArray());

 ps.setArray(1, results);

 ps.setString(2, key);

 }

 @Override

 public int getBatchSize() {

 return cachedResults.size();

 }

 });

60

}

CREATE OR REPLACE FUNCTION insrt_or_append(i_pids INTEGER[],i_key TEXT)

RETURNS VOID AS

$$

DECLARE

exist TEXT;

BEGIN

 SELECT key INTO exist FROM cachedtb WHERE key = i_key;

 IF CHAR_LENGTH(exist)>0 THEN

 UPDATE cachedtb SET value = value || i_pids WHERE key = i_key;

 ELSE

 INSERT INTO cachedtb(key,value) VALUES (i_key, i_pids);

 END IF;

END

$$

LANGUAGE 'plpgsql' SECURITY DEFINER;

CREATE OR REPLACE FUNCTION sort_keys()

RETURNS VOID AS

$$

DECLARE

tb_row cachedtb%ROWTYPE;

BEGIN

 FOR tb_row IN

 SELECT *

 FROM cachedtb

 LOOP

 IF tb_row.key LIKE '%price:asc%' THEN

 UPDATE cachedtb SET value =

 array(SELECT p.id pid

 FROM product p

 WHERE p.id IN (SELECT unnest(tb_row.value))

 ORDER BY price ASC)

 ,total_amount = icount(tb_row.value)

 WHERE key = tb_row.key;

 END IF;

 IF tb_row.key LIKE '%price:desc%' THEN

 UPDATE cachedtb SET value =

 array(SELECT p.id pid

 FROM product p

 WHERE p.id IN (SELECT unnest(tb_row.value))

 ORDER BY price DESC)

 ,total_amount = icount(tb_row.value)

 WHERE key = tb_row.key;

 END IF;

61

 IF tb_row.key NOT LIKE '%price:desc%' AND tb_row.key NOT LIKE '%price:asc%' THEN

 UPDATE cachedtb SET total_amount = icount(tb_row.value)

 WHERE key = tb_row.key;

 END IF;

 END LOOP;

END

$$

LANGUAGE 'plpgsql' SECURITY DEFINER;

Appendix 7 – Example of test results with 4M products

Appendix 8 – Android user interfaces

62

Signup form.

63

Product search flow.

Order creation form.

Order overview form.

