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Abstract 

Cyber threats are increasing at a fast rate and security professionals are struggling 

to respond in time to protect the assets of their organizations. There are tools to ease the 

process such as threat feeds and threat intelligence sharing platforms. However, these 

mostly provide threat data in textual format, which is hard to navigate when there are 

thousands of threat attributes, emerging new threat actors and information about their 

complicated ways. Cyber threat data is highly interconnected, and this feature makes it a 

perfect match for graph databases. Graph databases are those that typically represent 

information in a directed graph with nodes and edges. For example, a threat actor, a 

malware and a target organization would be called nodes whereas the relations, such as 

in the sentence “threat actor uses malware” are called edges. Graph databases are 

inherently very intuitive as they use a similar structure to how we learn things around us. 

The importance of representing threat data in a manner that is meaningful to both humans 

and computers is that only the collaboration of both will give the maximum effect in 

fighting against emerging threats. There are complicated campaigns carried out by APTs 

(Advanced Persistent Threat) that take months or even years to complete. In order for 

security professionals to realize that there is even a possibility of such a campaign exists, 

it is necessary to represent the interconnectedness of threat data. This paper discusses the 

importance of representing data on a NoSQL (Not Only Structured Query Language) 

graph database and its benefits as well as a development process of a graph threat 

intelligence platform for project ECHO (European Network of Cybersecurity Centres and 

Competence Hub for Innovation and Operations). ECHO is a European Commission 

initiative under H2020 (Horizon 2020) that aims to bring together organizations from 

different sectors to collaborate on strengthening the cybersecurity of EU (European 

Union). One of the main outcomes of four years of effort from ECHO partners will be an 

Early Warning System that will help organizations from different sectors share threat 

information between each other. There will be plugins to help overcome some of the 

biggest issues within threat intelligence sharing and a knowledge graph will be one of 

them. 
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This thesis is written in English and is 39 pages long, including 7 chapters, 10 

figures and 1 table. 
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Annotatsioon 

Küberohuteadmuse esitamine teadmusgraafi abil 

Küberohtude hulk laieneb tänapäeval väga kiiresti ning koos sellega ka 

küberspetsialistide tööpõld. On loodud spetsiaalsed vahendid turbeseisundi jälgimiseks, 

nende seas ka küberteadmuse jagamise platvormid. Paraku esitavad nimetatud 

platvormid infot vaid tekstina, milles on sageli raske orienteeruda kui turbeatribuute on 

sadu. Küberturbe-alased andmed on tihti tugevas seoses, mis teeb otstarbekaks graafi-

põhiste andmebaaside kasutamise nende esitamisel. Näiteks ründaja, pahavara ja 

rünnatav organisatsioon võivad kujutuda graafi sõlmedena, ning ründetegevused graafi 

kaartena. Graafi-põhised andmebaasid on intuitiivselt lihtsasti hoomatavad, kuna 

kasutavad analoogset struktuuri inimese tajuga põhjuslikest seostest. Struktuuride 

kujutamine sellisel kujul, mis on hästi mõistetav nii inimesele kui ka arvutile, on 

äärmiselt oluline efektiivse kaitse loomiseks küberohtude vastu. 

Käesolev bakalaureusetöö keskendub küberturbealaste andmete salvestamisele 

NoSQL-tüüpi andmebaasis, aga ka küberohuteadmuse platvormi arendamise projektile 

ECHO (European Network of Cybersecurity Centres and Competence Hub for 

Innovation and Operations). Üheks tähtsamaks ECHO eesmärgiks on varajase 

hoiatamise süsteem, mis aitab erinevatel organisatsioonidel jagada omavahel 

küberohtude-alast teavet. Projekti käigus luuakse erinevaid pistikuid küberohuteadmuse 

jagamiseks ning teadmusgraaf on üks neist. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 39 leheküljel, 7 peatükki, 

10 joonist, 1 tabelit. 
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1 Introduction 

A great example of the importance of seeing the bigger picture when it comes to 

cyber threat intelligence is the attacks carried out against one of the biggest U.S retailers 

Target in 2013. According a report on the case [1], the attack could have been prevented 

if only Target security professionals could see where it was leading and treated it as a 

major threat. The graph representation could have been very helpful in this regard as it 

would connect all the dots for security professionals to easily make sense of what is 

happening. It is evident that threat intelligence sharing currently has lots of issues [2] and 

it has a long way to go. Improving the efficiency of threat intelligence sharing will only 

help in one of many issues that experts from different parts of the world try to solve.   

When it comes to cybersecurity, data correlation and granularity are important 

terms. As threat actors and cyber threats created by them are getting more sophisticated, 

it becomes easier to get lost in hundreds of pages of threat reports and harder to make any 

sense of them. Using a knowledge graph, we can introduce new types of attacks, 

observables, threat actors etc. easily by just a few lines of simple queries and they will 

become immediately available as nodes. Then, we can also give attributes to our newly 

created node and create relations with other nodes.  

One other very useful aspect of knowledge graphs is that the data is visualized in 

a structured way. This helps cybersecurity teams respond more quickly to threats as they 

can immediately see what the threat comprises of, what observables were seen etc. They 

can then run a quick scan on their network as in any other event to see whether their assets 

have been compromised.  

Bigger organizations, such as MITRE [3] have recently started offering graph 

services for cyber threat intelligence paired with machine learning technologies to better 

fight against rapidly emerging threats. Chapter 2 will discuss these tools as well as the 

research conducted in this area and how this paper will bring added value to the topic at 

hand.  
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In chapter 3, an overview of the development of a cybersecurity ontology that will 

eventually be used as a data model for the graph, will be given. An ontology is a 

representation of knowledge in a certain domain and the relations between them. 

Chapter 4 will be dealing with the project, within which the representation of 

threat intelligence on knowledge graphs will be used, namely ECHO and EWS (Early 

Warning System), as part of it. The aim is to develop a pluggable application to ECHO 

Early Warning System to help ease the process of identifying and analysing threats for 

security professionals within the ECHO consortium.  

Chapter 5 will discuss the development methodology, used for the development 

of such application, including its technology stack, architecture, backend and frontend 

development. As the Early Warning System is still under development, main threat 

intelligence sharing platform of interest will be the commonly used Malware Information 

Sharing Platform. MISP [4] (Malware Information Sharing Platform) is a threat 

intelligence sharing platform project that is co-financed by the European Union. It aims 

to simplify the process of sharing threat intelligence between organizations through the 

use of certain standards. The application will be designed and developed in such a way 

that it can accept threat information from multiple feeds, creating a common graph for all 

threat intelligence sharing platforms. This will be helpful to identify false positives, which 

is another problem in threat intelligence sharing that is important to tackle.  

Chapter 6 will identify work that could be done in order to further contribute to 

the solution to the issues mentioned. Finally, a summary of the work done during the 

writing of this thesis will be given in Chapter 7. 
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2 Related Work 

In order to better understand what a graph database is and why it might be so much 

better to store cyber threat intelligence in a graph database rather than traditional 

relational database, it is a good idea to look at some formal definitions. In their book 

named “Graph Databases” [5] Ian R., Jim W. and Emil E. explain graphs as “just a 

collection of vertices and edges or … a set of nodes and the relationships that connect 

them”. The keyword here is edges or rather relationships. Graph databases take two 

arbitrary kinds of nodes – which are entities represented as nouns – and connect them 

through edges, which give the nodes a context and help us understand their meaning. This 

representation also makes modeling graph databases much easier. For comparison, let us 

try to model a small cybersecurity database using both relational and graph data modeling 

techniques. Data modeling is the structuring of data in a way that brings them together to 

represent a domain of interest.  

Entities within this model will be Threat Actor, Organization and Malware. In order 

to properly model these three entities, some example queries that could be asked from the 

database should also be written. Examples can be seen below:  

• Which threat actor targeted which organization?  

• Which malware has been used by the threat actor to target the organization?  

• Which organization is compromised by which malware?  

• Which organizations did a threat actor target in the past?  

First, these three entities will be modelled using a Unified Modeling Language 

diagram. The relational model of the data can be seen below: 
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Figure 1: Relational Data Model Representation 

 

As can be seen in the above figure, it is a simple data model containing 3 

entities. However, what is missing from this diagram are the relations. Relational 

databases generally lack relationships unless they are specifically embedded into them. 

Even then, they require a lot more join operations to query, which are very expensive. 

Imagine a new entity comes into play that relates to all of the entities defined. This 

means a new table and new join operations and makes the database very unscalable. In 

today’s cyberspace where everything changes very quickly, using a relational database 

for cyber threat intelligence could be cumbersome and inefficient at best if not 

impractical.  

Now for the same model on a graph database, the only things needed are a few 

circles and the relationships between them as can be seen from the figure below: 
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Figure 2: Graph Data Model of a Simple Cybersecurity Domain 

 

The above figure not only looks better but also represents the relationships between 

entities quite clearly. That is because graph databases natively support relations. This 

figure already represents what the graph database would look like and in fact it is 

already a graph itself. This particular one is called a labeled property graph where there 

are nodes, relationships, properties and labels. In this case, the nodes are colored circles, 

relationships are the arrows coming into and out of the nodes, labels are the texts within 

circles and properties are those that are within the bubbles. Labeled property graphs are 

very intuitive and have proven to be one of the best ways to represent interconnected 

data. There is no overhead of joining tables and making sure everything fits perfectly. 

Some other properties of a labeled property graphs are given below:  

• Nodes have properties such as IDs (identifiers), names etc. Properties are usually 

stored as key-value pairs.  

• Relationships must have a direction, in other words a start and an end node. 

They are also given names for semantic clarity.  

• Node labels are typically made of nouns, whereas relationships are verbs.  
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Moreover, the efficiency of graph databases is significantly higher than relational 

databases when it comes to interconnected data. A study conducted by Partner and 

Vukotic [6] shows that graph databases, Neo4j in this particular case, are notably faster 

for connected data than their relational counterparts. They have used a friends-of-friends 

social network database to demonstrate this. With a social network of one million 

people with about fifty friends each, the results are clearly better for graph databases as 

can be seen in the table below: 

 

Depth  Execution time – MySQL  Execution Time - Neo4j  

2  0.016  0.010  

3  30.267  0.168  

4  1.543.505  1.359  

5  Not finished  2.132  

Table 1: Neo4j vs. MySQL Comparison Over Interconnected Data 

 

The reason graph databases perform so much faster compared to relational 

databases in terms of interconnected data lies in the fact that join operations in relational 

databases tend to be computationally expensive. Therefore, when a user tries to look up 

a friend-of-a-friend-of-a-friend-of-a-friend-of-a-friend query, relational database 

application has to do lots of index look-ups, hence it cannot finish the task in a 

meaningful time to be used in production. On the other hand, graph databases generally 

do not use indexes and instead all nodes in the database are linked to their neighbors 

directly. 

The above analysis shows the main differences between relational and graph 

databases. For another example, graph databases will now be compared against another 

popular type of NoSQL database, called document databases (or document stores). The 

main difference between document stores and graph databases can be explained as 

follows: 

• Graph databases are better at traversing highly interconnected information, that 

does not necessarily have to be structured beforehand. Examples of this can be: 

o Social relationships (as demonstrated by Facebook’s Open Graph [7]) 

o Roadmaps 

o Cyber threat intelligence, where connectedness plays an important role 

• Document stores perform much better when a user wants to store information 

that is initially structured. 
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In the end, there is no one-size-fits-all solution for databases and it highly depends 

on how the data is structured, if at all. In case of cybersecurity related threats, the data 

seems to be a perfect fit for graph databases as connectedness plays a very important 

role. 

Using graphs as a means to increase the efficiency of threat intelligence sharing, 

hence of security professionals, has been attempted by multiple significant 

organizations. For example, U.S.-based MITRE Corporation has done some wonderful 

work in this area, mainly on their proprietary cyber threat intelligence tool CyGraph [3]. 

CyGraph is a cybersecurity focused graph analytics and visualization tool that aims to 

reduce the response times of security professionals by giving them a visual 

representation of both actual and potential threats as well as tools to easily identify and 

analyze them. In the related research paper [8], it is stated that CyGraph can also build a 

predictive model of potential attack paths and that it provides decision support and 

situational awareness. As stated in MITRE website, it is currently only a prototype tool. 

In his CyGraph paper, S. Noel mentions the problem with threat intelligence sharing is 

not the lack of available information but the ability to assemble seemingly irrelevant 

information into a meaningful picture. As it seems, this is exactly what CyGraph is 

about.  

 

STIX (Structured Threat Information Expression) [9] is a standardization attempt 

for a structured language for threat intelligence sharing. It makes contributing to and 

sharing cyber threat intelligence much easier and worry-free. At the time of writing, the 

latest version of STIX is STIX 2.1 and it identifies 18 objects to represent threat data, 

these are: 

• Attack Pattern: the ways in which the threat actors try to compromise their 

targets  

• Campaign: a set of malicious activities that happen over a period  

• Course of Action: what the organizations should do against such an attack  

• Grouping: asserts that referenced STIX objects share a context  

• Identity: represents individuals, organizations, threat actors as well as their 

classifications  

• Indicator: is a pattern that leads to a malicious cyber activity  

• Intrusion set: the behaviors and resources of an adversarial organization  
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• Location  

• Malware  

• Malware Analysis  

• Note: denotes a note about the object in question  

• Observed Data: represents information about the attributes of a cyber event  

• Opinion: is an assessment of the information to provide higher quality CTI 

(Cyber Threat Intelligence)  

• Report  

• Threat Actor  

• Tool: represents the tools that can be used in a cyber attack.  

• Vulnerability  

 

A cyber-attack can be represented as a STIX bundle, meaning that all the 

information relating to the attack is represented as one of the STIX objects. STIX can be 

stored as JSON (JavaScript Object Notation) or visualized for an analyst to better 

understand what a single attack comprises of. An example STIX visualization, that is 

made through OASIS STIX visualizer [10] can be found below: 

 

Figure 3: STIX Visualization Example 

 

The difference between visualizing STIX and cyber knowledge graph will be 

that STIX does not keep a database of events. The visualizer simply parses the JSON 

given and comes up with a very basic visual representation of it. Users cannot query or 

correlate any of the data.  
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3 Ontology Development 

An ontology is a representation of knowledge in a specific domain using 

domain-specific terms and the relations between those terms. For example, in case of 

cybersecurity this could be as depicted in the following: 

 

 

Figure 4: An Example of a Semantic Triple Related to Cybersecurity 

 

In ontological terms, this would be called a “semantic triple”, which as indicated 

means three entities that are respectively called subject, predicate and object. Subjects 

and objects can also have instances as in “Microsoft Windows 10” can be an instance of 

“Operating System” whereas relations cannot. In order to create an ontology, one must 

first select a domain. In this case, the domain that will be represented using semantic 

triples is cybersecurity. But as cybersecurity comprises of vast amount of knowledge, it 

is best to split it into sub-domains, such as offensive security, digital forensics etc. To 

represent threat intelligence data meaningfully, a comprehensive data model is needed. 

Therefore, during the development phase, an ontology that represents sub-domains of 

cybersecurity will be used as a data model. As for the ontology language that is 

comprehensible by both humans and computers, OWL (Web Ontology Language) will be 

used. According to World Wide Web Consortium Semantic Page wiki [11], OWL has 

been developed by OWL Working Group [12] and it is “a semantic web language 

designed to represent rich and complex knowledge about things, groups of things, and 

relations between things.” OWL can also be supported by data and relationship properties, 

it is very suitable for the schema of a graph database as they follow a similar approach. 

Although a language would be enough, it is better to use a supporting product that 

leverages the capabilities presented by OWL. For this purpose, protégé [13] will be used. 

Protégé is a suite of tools that helps its users build semantic applications and domain 

models. It was originally developed by Stanford Center for Biomedical Informatics 

Research [14] and has a growing user community. Although its original purpose was to 
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help in bioinformatics research, it grew big enough to support any type of domain 

modeling.  

In order to develop an ontology that will help generalize the cybersecurity domain 

and be used in a production-ready solution for a graph database threat intelligence 

platform, many data sources have been used. These include large taxonomies published 

by multiple cybersecurity-focused organizations, data models of existing tools, as well as 

earlier ontology development attempts. Some of the sources include: 

• MISP taxonomies (includes broad range of taxonomies) [15]  

• Structured Threat Information Expression (STIX) data model  

• Unified Cybersecurity Ontology by University of Maryland, Baltimore County 

[16]  

The list is not exhaustive. After relevant information and terms were gathered, 

duplications were removed. The remaining terms were grouped into sub-domains and 

relations between them were created. A concise language was used in order not to cause 

any confusion. The current version of the cybersecurity ontology consists of more than 

400 nodes and around 500 relations. The following shows a visual representation of a 

small portion of the cybersecurity ontology using the online WebVOWL [17] tool: 

 

Figure 5: Cybersecurity Ontology Visualization 
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The way the ontology will be used in the application that will be developed as 

part of the whole project is that it will serve as an extension of domain models that are 

already implemented (namely, EWS and MISP data models) to enrich the information 

that is contained in the database. In a way, it will be a superset of these data models. For 

example, a MISP entry can have an IP (Internet Protocol) address as an attribute of an 

event. The application will dissect the information contained within this attribute and 

through analysis, it will enrich this information in a way that makes it more valuable to 

the user while maintaining relevancy. One of the key points in this project is that the 

information must be rich as well as relevant to the event in question. As stated in a 

research report published by ESG [18], 72% of cybersecurity professional think that 

half of the intelligence within threat feeds is irrelevant while 74% believe that it is 

difficult to determine their quality. Therefore, the thin balance between quantity and 

quality must be kept.  

Later on, this ontology will be converted into Java objects and used as a 

common domain model for all threat feeds that the user wants to enable. Using an 

ontology helps in creating a broad knowledge base that encapsulates all data related to 

threat intelligence ranging from malware types to finer details such as the likely 

geolocation of the threat actor that uses the malware.
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4 ECHO / H2020 Introduction 

The application that will eventually be developed will be utilized as a plugin to the 

Early Warning System that is being developed as part of the ECHO project. European 

Network of Cybersecurity Centres and Competence Hub for Innovation and Operations 

[19] is a European Commission initiative under H2020 [20], an EU Framework 

Programme for Research and Innovation, that comprises of more than 40 organizations 

from different sectors, in which Tallinn University of Technology also takes part. 

ECHO aims to strengthen the cybersecurity stance of EU organizations with state-of-

the-art products such as EWS. It mainly focuses on the following sectors:  

• Energy  

• Defense  

• Maritime  

• Healthcare  

Throughout the lifetime of the project as well as until the consortium is fully 

established, there will be new partners joining. Therefore, new sectors will be added to 

the list, eventually covering all key sectors.  

As mentioned above, the software that is mentioned in this paper will be used as an 

Early Warning System plugin. EWS is a tool that helps security professionals within 

organizations manage cyber events relating to their organizational network as well as 

share them within their constituencies of trusted partners. There are many tools that help 

organizations manage this type of information, typically called SIEMs (Security 

Incident and Event Management). However, the power of EWS will come from its 

architecture that allows organizations employ plugins that will improve the efficiency of 

their security operations. The plugins will be enabled or disabled by users’ choice. 

Initial plan is that when the graph plugin is enabled, users will have the ability to view a 

representation of the textual threat information as well as to query the underlying graph 

database for more information on what the threat comprises of. The goal is to eventually 

allow users, according to their permissions, query the EWS database along with MISP 

database and a database that has events from different threat feeds. This way, users will 

be able to see the threat landscape much better and distinguish false positives easier. 
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The visualization component will be highly intuitive as it will show how the threat came 

to be in simple terms with a colorful force-directed graph. Another goal of the project is 

to show how the threat evolved by means of a temporal graph representation. This will 

be helpful in pointing out the crucial points of the attack. 
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5 Development Methodology 

This section will elaborate on the development stage of the application, main 

goal of which is to represent threat data on a knowledge graph and help security 

professionals analyze and respond to those threats quickly. With this goal in mind, the 

next steps are to define the requirements, after which an architecture as well as the user 

stories will be drawn up before the actual development starts.  

5.1 Software Requirements 

Developing a robust, enterprise-ready application requires well-defined software 

requirements. And in order to derive those requirements, first step is to define the 

capabilities of the software that is under development. The capabilities of the cyber 

knowledge graph shall be:  

• Visualization of Cyber Threat Intelligence: visualization will help the users of 

the application have a better, quicker overview of what the threat comprises of  

• Granularity: the aim is to use a data model as granular as possible while 

maintaining relevancy  

• Data correlation: simple graph traversal queries will help users correlate data 

and act on the available data faster, reducing response time to threats  

• Behavior analysis: the application will be constructed in such a way that, as the 

more data goes into it, the more apparent behaviors of threat actors will be.  

In light of all of these required capabilities, software requirements were categorized 

into two:  

• Functional Requirements: the requirements that relate to the functionalities of 

the application such as its database querying feature  

• Non-functional requirements: the requirement that relate to the user experience 

and ease of operations including security  

This categorization helps in establishing borders and order while developing. Also, 

it is useful when defining user stories. User stories are definitions derived from 

requirements that developers can use to implement that requirement. The following 
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diagram shows the requirements defined for the Cyber Knowledge Graph in UML 

(Unified Modeling Language): 

 

Figure 6: Software Requirements for Cyber Knowledge Graph 

 

These requirements were then used to derive user stories that show the basic 

functionalities of the application as well as how the user will interact with the 

application. 

5.2 User Stories 

 User stories in Agile software development methodology are short and simple 

descriptions of a feature that the users of a system will use in order to perform an 

operation. They are generally written as “As <user type>, I want to/I can <feature> so 
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that <purpose>”. As explained above, the requirements were used to derive user stories. 

As an example, two of the user stories can be seen below with their short overviews: 

 

Figure 7: First User Story Example 

 This is a very simple core functionality that is relatively simple to implement. In 

this case, the EWS user wants to be able to see the graphical representation of a threat 

that he/she found through EWS interface. The components that will be involved in as 

well as their communication pattern for this task can also be seen in the above sequence 

diagram. 
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Figure 8: Second User Story Example 

 The above user story is about querying the underlying graph database, which is 

another core functionality. The components involved and their foreseen communication 

can be seen in the figure. 

5.3 Software Architecture 

The architecture of the application needs careful work, evolvability and 

scalability. After thorough research on how to architecture the whole application, it was 

decided that the database be abstracted from all the other components as to avoid vendor 

lock-in. When it comes to graph databases, there are many choices within the industry 

and all of them offer different appealing features. However, in order to avoid licensing 

issues when it comes to deployment, the choice must be done carefully. Therefore, an 

abstraction layer is implemented with a TinkerPop Server. Apache TinkerPop [21] is an 

open source project licensed under Apache2 License. According to their documentation 

[22], TinkerPop is a graph abstraction layer over different graph databases and different 

graph processors. It allows developers to change the underlying graph database without 

much refactoring to their code base. This is one of the major features in the architecture 

of Cyber Knowledge Graph. As the cyber threats are changing and evolving faster, the 

goal is to have an application that can evolve and scale fast enough to keep up the pace. 
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The following UML diagram shows the container architecture of Cyber Knowledge 

Graph: 

 

Figure 9: Container Architecture Diagram for Cyber Knowledge Graph 

 

 

A brief explanation regarding all the components within the application is given below:  

• Frontend application: This is one of the most important components in the whole 

application as this is what the user will be interacting with for the whole duration 

they are using the application. Also, this is where the visualization will take 

place. For visualization, d3.js library [23] will be used. According to their 

website, d3.js is a JavaScript library that helps its users visualize data using 

HTML (Hyper Text Markup Language), SVG (Scalable Vector Graphics) and 

CSS (Cascading Style Sheets). D3.js includes an extension to represent labeled 

property graphs in a collapsible force-directed format. What this means is that 

the user will be able to collapse the relationships of a node and open them back 

again. This way, the user will have the ability to see the most relevant 

relationships between entities. One other use of this feature is that they can start 

with a simple query and take it from there to find their own way to meaningful 

information contained within the database. Force-directed means that users can 
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change the view as they like by clicking and dragging certain nodes. This feature 

could help users in grouping certain nodes together to form a better picture. The 

nodes will also be color-coded. Certain types of nodes will be colored with the 

same color so as to allow users to differentiate between entities better. Nodes 

and relationship will be labeled and bi-directional relationship will be 

represented using curved links.   

• Administrator CLI (Command-Line Interface) application: A CLI application 

will be developed for administrators of the cyber knowledge graph as the 

application will not be hosted on a central server, complying to what EWS will 

implement. EWS will eventually be a peer-to-peer network of instances that 

each organization will host on their premises. The deployment of each plugin 

will be optional. Users can decide whether or not they want to enable or disable 

a certain plugin. Therefore, an administrator application will be helpful in 

managing the database. It is understandable that this might not be very appealing 

to organizations as they would have to deal with two databases. However, the 

value this plugin will provide greatly surpasses the overhead it will cause. 

Administrator CLI application will support Create, Read, Update, Delete 

operations in the database and help administrators enable or disable certain 

feeds, e.g. MISP, and configure them accordingly with specific URLs (Uniform 

Resource Locator) the API (Application Programming Interface) calls should be 

made and their respective API keys.  

• API Service: This service was designed to allow users to send their queries to 

underlying server. There will be an endpoint exposed to handle incoming queries 

and send a response back to the application in JSON format that will be rendered 

in the frontend accordingly.  

• Listener: As one of the key components within the whole application, a listener 

will be the one to send 3rd party API calls to the feeds the user has subscribed to. 

For example, in case of MISP, this will be sending API calls at certain points 

during the day and passing the response, if any, from the call to the respective 

parser. In case of EWS, the architecture includes a webhook which all plugins 

can interface with using the SDK (Software Development Kit) provided. 

Therefore, it is fairly easier and not very expensive as whenever there is new 

information, EWS will trigger a new event for the plugin, which in turn will 

fetch the information and parse it accordingly. There will be multiple listeners 
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and parsers to handle the incoming information as all 3rd party APIs provide 

information in a different manner.  

• Graph Abstraction Layer: An abstraction layer is deemed necessary to avoid 

vendor lock, meaning that it will be possible to change the underlying database 

without much refactoring to the code base. As mentioned above, Apache 

TinkerPop graph computing framework is used for this purpose. This not only 

prevents a lot of unnecessary work, when and if the database is changed, but also 

provides a common way to write queries with Gremlin query language that 

comes pre-packaged with TinkerPop.  

• Graph Database: The database chosen for this application is Neo4j [24]. Neo4j 

was chosen as the underlying graph database as it is already TinkerPop-enabled 

meaning that it natively supports TinkerPop and the Gremlin server that is used 

to implement the graph abstraction layer already includes Neo4j configuration 

files, therefore it is very easy to get started. Moreover, Neo4j is one of the oldest 

and most robust graph databases in the industry. It has a great community and a 

selection of tools to complement it.  

• 3rd Party Threat Feeds. As the aim is to bring as many threats together as 

possible, and MISP includes more than 60 threat feeds in itself [25], it is a great 

choice to begin with, alongside EWS. 

5.4 Technology Stack 

 

The technologies to be used for this project needed to be robust, compatible and also 

open for improvement so as to allow for the application to evolve in different ways. 

Also, there needs to be a well-established community using these technologies so that 

the users of the application will not have to learn much from scratch. Therefore, the 

selected technologies are the following:  

• Underlying graph database: Neo4j 

• Graph Abstraction layer: Apache TinkerPop Gremlin server 

• Back-end development framework: Java Spring Boot [26] 

• Front-end development framework: d3.js 
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All of these technologies have great support for developers and are commonly used for 

this kind of graph database applications. 

5.5 Backend Development 

 

 As mentioned above, the backend development for Cyber Knowledge Graph is being 

carried out with Java Spring Boot 5 framework. For the development process, agile 

software development methodology was used. What this means is that the development 

process was split into certain timeframes, called sprints, all of which had a certain goal 

that needs to be achieved. The goals were pre-defined at the beginning of each sprint 

week. Since EWS is still in development phase as well, the focus for the first sprints 

was more on MISP rather than EWS. Some of the sprint goals can be found below:  

• Goal: Implement graph abstraction layer on top of underlying graph database  

• The goal here was to avoid vendor-lock by using a certain graph database 

application, which will definitely be helpful in the future when, for any 

reason, the database needs to change. For this goal, a Gremlin server with 

embedded Neo4j database was used. The server runs when the application 

starts through a Docker container image.  

• Goal: Fully synchronize the underlying graph database with MISP database 

when the application starts  

• Focus on this goal was on how the data, that comes through MISP REST 

(Representational State Transfer) API, will be requested. The solution was 

to develop a component that would send requests to certain MISP instance 

REST endpoints continuously until all the data that is in that certain MISP 

instance was also in the graph database. However, the data was put directly 

into the database, hence there were no relations between any of the data 

points.  

• Goal: Keep the databases synchronized throughout the lifecycle of the 

application  

• This goal was selected solely based on the fact that there was a need to 

update the database whenever there was new data within the MISP instance. 

This was planned to be achieved with a scheduler task and continuous API 
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calls as MISP does not provide users with a webhook mechanism that would 

trigger an event when subscribed as EWS will.  

• Goal: Convert EWS relational data model to graph data model  

• Considering the fact that EWS has been built on a relational data model, 

there was a need to convert this data model into a labeled property graph 

model in order to efficiently use it within cyber knowledge graph before the 

ontology was integrated.  

• Goal: Create a parser to convert EWS DTOs (Data Transfer Object) to graph 

data model representation  

• This goal is the code implementation of Sprint 4 goal where the EWS 

relational data model was converted to a graph data model. 

5.6 Frontend Development 

 

Currently, frontend development for the cyber knowledge graph has not started. 

The initial idea is to start from an open source visualizer for Gremlin databases, such as 

the GraphExp project Benjamin Ricaud [27] that can be found on GitHub software 

development platform. Another nice option is Gremlin Visualizer by Umesh 

Prabushitha Jayasinghe [28], which is a project to visualize a graph network 

corresponding to a Gremlin query. 

For now, Neo4j graph visualizer server the purposes as visualizer is the next step 

in development. As mentioned above, the ECHO project lasts about 4 years and not 

even the 1st version of EWS has been released at the time of this writing. An example 

Neo4j representation of a cyber threat can be seen in the following figure: 
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Figure 10: Representation of a Cyber Threat on Neo4j Graph Visualizer 

 

The above figure is a representation of an example 3-node cyber threat with the 

relations in between. This is a limited view as the end goal is to represent the strength of 

a connection in between the nodes with scores. However, all of these foreseen features 

will be addressed in the next section. 
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6 Further Work 

 The idea could be improved in many ways, mainly relating to the analysis of the 

information. One way to do this is to include temporal information within all the 

vertices and show different types of graphs based on, for example, when a malware was 

first seen and how long it has been in use etc. This could prove helpful in the case that if 

the threat has been seen before many times in other sources, there is most likely a 

solution to it. Since security professionals will not waste time on looking for a novel 

solution, this could reduce their response times dramatically. 

 The ontology that has been created to serve as the data model of the underlying 

graph database must be improved in order to keep the balance between quantity and 

quality. The work on this is already ongoing. 

 As most of the threat intelligence feeds or applications, such as EWS or MISP, 

is using a relational data model, they mostly lack the analytical and visualization 

features of graph databases. Therefore, the data models and the databases of these 

applications must be duplicated. However, this creates many security loopholes as the 

applications have different architectures and might be working on different principles 

when it comes to user authentication and authorization. In order to avoid the security 

issues, such as a user querying data through Cyber Knowledge Graph that he/she is not 

authorized to see, the necessary precautions must be taken and tested carefully.   
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7 Summary 

This paper has analysed a new way of representing cyber threat intelligence using 

graph databases. Threat intelligence data is highly interconnected, which makes it a 

perfect match for graph databases. Graph databases has many advantages compared to 

the other database solutions when the initial data is unstructured. Whenever a new concept 

appears or an existing one dramatically changes, it can be represented easily in graph 

databases without much overhead. Also, they perform much better when the data is 

interconnected as shown in the analysis part of this paper. 

A cybersecurity ontology has been created to serve as a data model for graph 

database applications. It currently includes 450 nodes and around 500 relationships 

between those nodes. It needs to be improved over time. Also, the development of a graph 

database application that will eventually be used as an Early Warning System plugin for 

ECHO Project has started and well ongoing at the time of this writing. It will serve as 

both an analysis and a visualization tool for threats shared between EWS partners and 

from other feeds, such as MISP. 
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