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1 Introduction

1.1 Electrical Machines

Electrical machines are one of the most crucial components of the current era. Their wide
range of residential and industrial applications has made life simpler, safer and more
convenient. With the introduction of Industry 4.0 [1], there is a further increase in the
importance of electrical machines due to their reliability, speed range, efficiency, power
density, low cost, etc. They are also one of the critical components of renewable energy
resources, as in the case of wind turbines [2], which are essential for a sustainable future.
There are several types of electrical machines with unique characteristics and
applications. Some of the most commonly used electrical machines are listed below in
Table 1.1.

Table 1.1. Common types of electrical machines

Type of Electrical

. Description Applications
Machine P PP
DC motors convert electrical energy into . .
mechanical energy through a rotatin Robotics, automation,
DC motors gy & & electric vehicles,

shaft. They can provide precise speed

- industrial machiner:
control and better efficiency. y

AC motors use alternating current to
create a rotating magnetic field, which

AC motors generates mechanical energy. As a result,
they are highly efficient and reliable, with
low maintenance requirements.

Industrial machinery,
pumps, fans,
compressors, HVAC
systems

Transformers are wused to transfer

. L Power generation and
electrical energy from one circuit to

Transformers . . distribution, electrical
another without changing the frequency of .
equipment
the current.
Generators convert mechanical energy .
. . . Power generation,
Generators into electrical energy through a rotating .
backup power supplies
shaft.
Alternators are similar to generators but L .
. . Automotive, industrial
Alternators produce alternating current instead of

. machinery
direct current.

Stepper motors provide precise control
over position and speed, making them
Stepper motors ideal for robotics and automation systems.
They operate by moving in small, precise
steps rather than rotating continuously.

Robotics, automation,
industrial machinery

Servo motors provide precise control over
Servo motors position and speed. They are designed to
provide smooth, accurate movement.

Robotics, automation,
industrial machinery

Besides these standard electrical machines, specialized electrical machines are used
for specific applications, such as linear motors, magnetic bearings, and piezoelectric
motors. Therefore, for designing and optimizing systems for various industrial and
commercial applications, it is necessary to understand the unique characteristics of each
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electrical machine. The importance of electrical machines in modern society cannot be
overstated. They are essential components of daily life, powering various applications,
from small appliances like fans and refrigerators to large-scale industrial machines like
pumps, compressors, and turbines. Moreover, many systems and devices usually relied
on for industrial and residential applications would be impossible without electrical
machines.

The industrial applications of electrical machines range from power distribution to
transportation, manufacturing, automation and many more because they are highly
efficient and reliable. Electrical machines are designed to operate continuously
and reliably over long periods, making them ideal for industrial applications where
downtime can be costly and disruptive. Hence, the downtime of electrical machines in
an industrial environment due to stress and load can result in economic losses, wastage
of resources and even threats to human life in the worst case. Therefore, maintenance
of these electrical machines is a big question, current practices of scheduled maintenance
result in a lot of resources being used. That is why with the recent advancements in
information technology, most of the industry is moving towards predictive maintenance.

1.2 Internet of Things

The Internet of Things (IoT) [3] is a rapidly growing technological paradigm transforming
how we interact with the world around us. At its core, the IoT refers to the network of
interconnected devices, sensors, and systems that collect and exchange data, often in
real-time, without requiring direct human input. The concept of the loT has been around
for several decades, but it is only in recent years that it has gained widespread attention
and adoption. Advances in wireless communication, data analytics, and cloud computing
have created highly interconnected and intelligent systems that can respond to real-time
data inputs and adapt to changing conditions.

The Internet of Things (loT) is the communication of different intelligent devices
over the internet. Technological advancement has not only made our life easier but
has also paved new ways to be more efficient. The data from devices can be used to
predict results, diagnose the machine and predict faults. Hence, cutting time on the
maintenance of a single machine and making it cost-efficient to remove unnecessary
maintenance checks. IoT has a lot of applications in the industrial area, including
predictive maintenance of industrial equipment [1]. As manufacturing has been
advancing, loT applications related to industrial development and monitoring have been
increasing rapidly too. The inclusion of data collection from machines to monitor them
and run predictive analytics for maintenance [2] is becoming a norm in the industrial
field.

loT architecture [4—6] refers to the structure of an loT system [7,8], including the
various components and how they interact with each other to collect, process, and
transmit data. There are several layers to an loT architecture, each with its own set of
functions and responsibilities. The most commonly used loT architecture model is the
5-layer architecture shown in Figure 1.1, which includes the following layers:
Perception layer: The perception layer is the bottom layer of the loT architecture and is
responsible for sensing the physical world. It includes various sensors and devices that
collect environmental data, such as temperature, humidity, and motion. The data
collected at this layer is raw and unprocessed.

14



Network layer: The network layer transmits the data collected at the perception layer to
the cloud or the edge computing layer. It includes various communication protocols such
as Wi-Fi, Bluetooth, and Zigbee. In addition, the network layer ensures that the data is
transmitted securely and efficiently.

Processing layer: The processing layer is responsible for processing the data collected at
the perception layer. It includes various edge computing devices such as gateways,
routers, and servers. In addition, the processing layer is responsible for performing tasks
such as data filtering, aggregation, and analysis.

Application layer: The application layer is responsible for providing end-users with
various applications that utilize the data collected by the IoT system. It includes various
applications such as monitoring applications, control applications, and analytics
applications. The application layer makes the data collected by the loT system
meaningful and valuable to end users.

Business layer: The business layer manages and controls the loT system. It includes
various management and control applications such as billing, security, and device
management. In addition, the business layer ensures that the IoT system is secure,
efficient, and cost-effective.

Business Layer H
business models i.e., for end user 1

Application Layer
graphic data presentation or smart application
management

|

E Processing Layer
! store and process data i
|

Communication

|

i Network Layer :
! Internet / Network Gateways i
|

Perception Layer
Physical layer where sensors are present |

Figure 1.1. Architecture of loT
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The 5-layer loT architecture provides a framework for building scalable and efficient
loT systems. However, other IoT architecture models have been proposed, such as the
4-layer architecture, which excludes the processing layer, and the 3-layer architecture,
which excludes the perception layer. The choice of architecture model depends on the
specific requirements of the loT system and the available resources.

The loT has enormous potential to transform various industries and applications, from
healthcare [9,10] and agriculture to transportation and manufacturing. By enabling
real-time data collection and analysis, 0T systems can help organizations optimize their
operations, reduce costs, and improve the quality of products and services. One of the
key benefits of the loT is its ability to enable more efficient and sustainable use of
resources. For example, intelligent energy systems that use loT sensors and data
analytics can help organizations optimize their energy usage, reduce waste, and minimize
their carbon footprint [11].

In addition, the IoT is playing an increasingly important role in the development of
smart cities [12,13], which use interconnected systems to improve the quality of life for
residents and make urban environments more sustainable and efficient[14]. From smart
transportation systems that use real-time data to optimize traffic flow and reduce
congestion to intelligent buildings that adjust lighting and heating based on occupancy
patterns, the loT is enabling a new era of urban design and management.

Despite its many benefits, the loT presents several challenges and risks, particularly
regarding data privacy and security. With so many interconnected devices and systems
exchanging data, sensitive information can fall into the wrong hands or be used for
malicious purposes. As such, organizations must take proactive steps to ensure that their
loT systems are secure and that data privacy is maintained. Some of the most common
loT protocols are listed in Table 1.2.

MQTT: MQTT [15,16] is a lightweight messaging protocol widely used in loT applications
for telemetry and messaging. It uses TCP/IP for communication and can provide data
transfer rates of up to 256 Kbps. In addition, it has low power consumption and supports
SSL/TLS encryption for security.

XMPP: XMPP [17] is a custom protocol commonly used in industrial automation. It is
designed for high-speed communication and can provide up to 1 Gbps data transfer
rates. In addition, it has low power consumption and supports custom encryption
methods for security.

CoAP: CoAP [18] is a lightweight protocol commonly used for loT messaging and RESTful
web services. It uses UDP for communication and can provide data transfer rates of up
to 20 Kbps. In addition, it has low power consumption and supports DTLS encryption for
security.

The choice of protocol for an loT application depends on the specific requirements of
the application, including data transfer rates, power consumption, and security
needs [19]. Table 1.2 provides a brief comparison of some popular loT protocols, but
there are many other protocols available that may be better suited to specific
applications.
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Table 1.2. loT protocols

Protocol Apolication Communication  Data Transfer Securit Power
Name PP Protocol Rate ¥ Consumption

Smart

WiFl o homes,  TCo/p Mbpe . enertion  consumption
offices P s P
Wearables, Bluetooth Low AES Low power

Bluetooth  smart Energy (BLE) Up to 1 Mbps encryption consumption
homes 8y yp p
Smart

Zighee .homes,. IEEE 802.15.4 Up to 250 AES—12§ Low powevr
industrial Kbps encryption consumption
automation
Smart

7-Wave homes, 7-Wave Up to 100 AES-12§ Low powe.r
home Kbps encryption consumption
automation

Ultra-low
iti AES-12

LoRaWAN Smgrt cities, LoRa Up to 27 Kbps > 8 power

agriculture encryption .
consumption

loT Up to 256 SSL/TLS Low power

MarT messaging, TCP/IP KI:F: S encryption consEm tion
telemetry P P P
| ial L

XMPP ndustrla‘ Custom Up to 1 Gbps Custom' ow powe.r
automation encryption consumption

1.3 Fault Diagnostics using Artificial Intelligence

Artificial Intelligence (Al) and Machine Learning (ML) are two rapidly growing fields in
computer science that have gained significant attention in recent years. Al is the
simulation of human intelligence in machines, while ML is a subset of Al that involves the
development of algorithms that enable machines to learn from data without being
explicitly programmed. These technologies have enormous potential to revolutionize
many industries and change the way we live and work.

Al and ML have made significant progress in recent years, thanks to advances in
hardware and software technology, as well as the availability of large datasets. Al
systems can now perform a wide range of tasks, including speech recognition, image
recognition, natural language processing, and decision-making. ML algorithms can learn
from data to recognize patterns and make predictions, which has led to breakthroughs
in fields such as healthcare, finance, and transportation.

One of the critical advantages of Al and ML is their ability to automate tasks previously
performed by humans, leading to greater efficiency and productivity. For example,
in healthcare, Al and ML are being used to develop diagnostic tools that can detect
diseases such as cancer at an early stage, leading to better patient outcomes [9,10].
In finance, Al and ML are used to develop trading algorithms to make faster and more
accurate investment decisions. In transportation, Al and ML are being used to develop
self-driving cars that can reduce accidents and traffic congestion.

Fault diagnosis is a critical aspect of many engineering systems, as it is essential for
ensuring their reliable and safe operation. However, the conventional methods of fault
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diagnosis involve manual inspection and testing, which can be time-consuming and
prone to errors. To overcome these limitations, artificial intelligence (Al) techniques are
increasingly being used for fault diagnosis.

Al-based fault diagnosis systems [20] can automatically detect faults and provide
recommendations for maintenance and repair. These systems are typically based on
machine learning (ML) algorithms that learn from the data collected from sensors and
other sources. First, the data is pre-processed to remove noise and irrelevant
information, and then the ML algorithms are trained on this data to recognize patterns
and anomalies that indicate faults.

Another key advantage of Al-based fault diagnosis systems is their ability to learn and
adapt to new situations. As a result, they can detect faults that may not have been
identified before and provide more accurate and timely recommendations for
maintenance and repair. Al-based systems can also analyze large amounts of data in
real-time, which is particularly important for systems operating in complex and dynamic
environments.

There are several Al techniques that are commonly used for fault diagnosis, including
neural networks, fuzzy logic, genetic algorithms, and support vector machines. Neural
networks are particularly useful for fault diagnosis, as they can model complex
relationships between inputs and outputs and learn from examples. Fuzzy logic is
another technique that is commonly used for fault diagnosis, as it can deal with imprecise
and uncertain information. Finally, genetic algorithms can be used to optimize the
parameters of a model for fault diagnosis, while support vector machines can be used
for binary classification problems.

1.4 Hypotheses

The research field of fault diagnostics in electrical machines have taken a turn with the
integration of information technology. This has paved way for development of condition
monitoring and data acquisition systems, yet it is still lacking in multiple aspects like low
sampling rates, mobility, complex etc. Most prominently, is the lack of a cost-effective
system that can monitor and detect faults in real-time. Based on the current available
data acquisition systems and diagnostic algorithms, we propose the following hypothesis:

e  Microcontroller cards can be utilized as an alternative to PLC and SCADA based
systems for a stable data acquisition system which can be flexible, scalable and
reliable.

e A combination of Raspberry Pi with micro-controller card can help overcome the
limitation of network connectivity and scalability for future implementations.

e Synthetic data can be generated using statistical equations to compensate the
lack of data for training the machine learning models.

e The reliability of incoming data can be improved by analyzing the frequency
spectrum.

e It would be possible to predict the probability of fault occurrence based on the
frequency spectrum of an electrical machine.

e Machine learning techniques could be simplified to reduce training time and
utilized for the detection and prediction of electrical machines faults in
real-time.
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1.5 Objectives of the Thesis

The main aim of the research work is to design and develop a cost-effective data
acquisition tool that can be used to detect and predict faults in electrical machines
utilizing machine learning methods. The system needs to be reliable, flexible, economical
and can be scaled later on to run diagnostic algorithms in real-time. At the same time,
the development of machine learning models and predictive algorithms for fault
diagnostics is also important. Most of the currently available diagnostic algorithms do
not have the capability to detect faults in real-time. The research goals for this work are:

Development and implementation of a cost-effective data acquisition system
based on micro-controller cards utilizing loT.

Fine-tuning the data acquisition setup so it can gather samples at high frequency
which can also be used to train machine learning models.

Deployment of custom machine learning methods to reduce training time.
Develop and implement a method to generate synthetic signals using
improvised statistical equations for the training of fault detection models.
Development and implementation of fault prediction algorithm based on
frequency spectrum for electrical machines.

1.6 Scientific Contributions

1.6.1 Scientific Novelty

Designing the structure of the data acquisition system so that it is scalable and
flexible for future implementations. In most data acquisition systems, only one
of the microcontroller cards is considered and there is nothing about a local
backup/node or anything about the hardware on-premise implementation of
fault detection.

The proposed data acquisition system is made compatible with analog sensors
by utilizing a level shift circuit and calibration of sensors.

The method was developed to derive improvised statistical equations from
signature fault frequency equations of electrical machine faults and the
generation of synthetic signals for training machine learning models to
compensate for the lack of available data regarding faults.

Development of custom machine learning algorithms with the simplest form
and different activation functions to reduce training time and focus solely on
electrical machine faults.

Implementation of the method to recover missing data points and improve
spectrum resolution of the current spectrum gathered through low-power
signal processing devices.

A signal spectrum-based machine learning algorithm was developed for fault
prediction of electrical machines. As there are not many predictive algorithms
present, the proposed technique can help reduce shutdowns and fault
occurrences in electrical machines.
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1.6.2 Practical Novelty

e Development and implementation of the data acquisition system in the lab with
different test benches.

e Development of the test rig to gather and test the data acquisition system for
different faults.

e Development of a web-based panel for displaying and analyzing the stored data
in the cloud for end-user.

e Implementation of synthetic signals based trained model to endorse their
accuracy and validation against the trained models using measured signals.

e Comparative analysis of custom machine learning trained models based on
different variants.

e Implementation of the signal spectrum-based machine learning technique to
check the accuracy of fault prediction using signals gathered from physical setup
for BRB and bearing faults.

1.7 Outline of the thesis

The thesis is structured into five subsections which are as follows.

Chapter 2 focuses on the survey of related work. This mainly focuses on electrical
machines faults, loT devices, microcontroller boards, loT communication protocols and
machine learning techniques.

Chapter 3 covers the design and implementation of condition monitoring and data
acquisition system for electrical machines. It includes the measurement setup and the
data acquisition system with its validation and fault detection in real-time using machine
learning based trained models.

Chapter 4 describes details regarding to the improvement of data sets which can be used
for training of machine learning models. The first half of the chapter covers generation
of synthetic signals to compensate for lack of measured data related to different faults.
The middle half covers the improvement technique for frequency spectrum resolution
which can help cover components lost due to discontinuity or network interruptions.
The chapter closes with a comparative analysis between two different variants of a
custom machine learning algorithm which is solely focused on faults of electrical
machines.

Chapter 5 covers the details regarding fault prediction algorithm based on frequency
spectrum. The first half of the chapter gives an overview of the algorithm and the second

half validates the algorithm with trained models on measured readings.

Chapter 6 presents the conclusion and future work of this study.
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2 Literature Review

2.1 Electrical Machines Faults

Electrical machine faults [21] can be broadly classified into two categories: electrical and
mechanical faults. Electrical faults are related to the electrical components of the
machine, while mechanical faults are related to the mechanical components of the
machine. Electrical faults can be further subdivided into stator faults and rotor faults.
Stator faults are faults that occur in the stationary part of the machine, while rotor faults
are faults that occur in the rotating part of the machine. Some common types of stator
faults include:

e Short-circuits: A short-circuit occurs when the winding insulation breaks down,
causing the winding to become electrically connected to another winding or
machine frame. Short-circuits can cause overheating, which can lead to
insulation breakdown and failure of the winding.

e Open-circuits: An open-circuit occurs when the winding is physically broken,
causing a break in the electrical path. Open-circuits can result in reduced
machine performance, overheating, and insulation breakdown.

e Ground faults: A ground fault occurs when one of the winding’s insulation
breaks down, causing the winding to become electrically connected to the
machine frame. Ground faults can cause overheating, as well as safety hazards,
such as electric shocks.

Rotor faults can be further subdivided into broken rotor bars and rotor eccentricity.

e Broken rotor bars: They occur when one or more rotor bars break, leading to
unbalanced currents and increased vibration.

e Rotor eccentricity: It occurs when the rotor's centerline is not aligned with the
stator’s centerline, leading to increased vibration and reduced performance.

Mechanical faults can be further subdivided into bearing faults and coupling faults.

e Bearing faults: These occur when the bearings that support the rotating
components of the machine fail, leading to increased vibration and potential
catastrophic failure.

e  Coupling faults: They occur when the coupling between the motor and the
driven load fails, leading to increased vibration and potential catastrophic
failure.

Various factors, including environmental conditions, manufacturing defects, and
operating conditions, can cause electrical machine faults. Some common causes of
electrical machine faults include:

e Environmental conditions: Environmental conditions, such as temperature,
humidity, and dust, can affect the insulation of the winding and the bearings,
leading to insulation breakdown and bearing failure.

e Manufacturing defects: Manufacturing defects, such as poor quality control
and material defects, can lead to insulation breakdown, bearing failure, and
other faults.
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e Operating conditions:

Operating conditions,

such as overloading and

unbalanced currents, can lead to increased vibration, insulation breakdown,

and other faults.

Diagnosis and prevention of electrical machine faults are critical to ensuring machine
performance and reliability. There are various methods for diagnosing electrical machine
faults, including visual inspection, vibration analysis, and electrical testing. An overview
of different types of electrical faults with their causes and detection techniques is given

in Table 2.1.

Table 2.1. Different types of electrical faults with causes and detection techniques

Type of .
. i Detection
Electrical Description Causes . References
Techniques
Fault
Turn-to-turn insulation  Park's vector
breakdown caused by approach, high
thermal or electrical frequency signal
Shorted turns . frequency sig [1], [2], [3]
stress, leading to a short injection, motor
circuit between two or current signature
more turns analysis
Stator B'reakage ' or
- disconnection of a turn, Voltage and
winding N L . .
faults Open circuits resultingin a breakinthe current signature [2], [4], [5]
current flow and loss of analysis
motor function
Occurs when one or
more turns of the stator  Current signature
winding come in contact analysis, leakage
Ground faults . 1], [3], [6
! Y with the ground or the reactance [1], (3], 61
motor housing, leading measurement
to a short circuit
Breakage or cracking of
rotor bars due to
. Motor current
Broken rotor mechanical stresses, . .
. . signature analysis, [2], [4], [7]
bars leading to an imbalance . . .
. . . vibration analysis
in the rotor and vibration
in the motor
Rotor -
faults Misalignment of the
rotor with respect to the
. Motor current
stator, leading to an . .
Rotor signature analysis,

eccentricity

uneven air gap between
the rotor and stator and
resulting in vibration and
increased losses

magnetic flux
analysis

(2], 8], [9]
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Table 2.1. Different types of electrical faults with causes and detection techniques (continued)

T
ype ?f . Detection
Electrical Description Causes . References
Techniques
Fault
Contact between the
Motor current
rotor and stator due to sienature analvsis
. misalignment or bearing _g : y_ ! [2], [10],
Rotor rubbing . vibration analysis,
problems, leading to [11]
. _ eddy current
increased friction and testin
vibration in the motor J
Misalignment between
Motor current
Rotor the motor shaft and the signature analysis
Shaft driven equipment, .g . y. ! [12], [13],
faults L . L vibration analysis,
misalignment resulting in increased . [14]
. . shaft alighment
vibration and wear on
. measurement
the bearings
Misalignment between Motor current
the driven equipment signature analysis,
Load guipment - signat VSIS [12], 113],
L and the load, resulting in  vibration analysis,
misalignment M ) [14]
increased vibration and load alignment
wear on the bearings measurement
Momentary voltage
drops or complete
Voltage sags interruptions in  the Power quality
and power supply, leading to  analysis, voltage [1], [3], [15]
interruptions fluctuations in  the monitoring
motor’'s  performance
and possible damage
Non-sinusoidal
waveforms
Electrical . superimposed on the Power qualit
Harmonic perimp . quaity [1], [16],
supply . . power supply, leading to  analysis, harmonic
distortions e . [17]
faults additional losses and analysis
overheating of the
motor
Voltage spikes or surges
due to lightning strikes
switchin go ergtions o; Voltage
Transient & op . monitoring, [18], [19],
other causes, leading to . .
voltages insulation [20]

insulation  breakdown
and damage to the
motor

resistance testing

2.2 loT Devices

The Internet of Things (loT) [22,23] has become an increasingly popular technology in
recent years. It involves connecting physical devices, appliances, and even vehicles to the
internet, allowing them to communicate and exchange data with each other. 10T devices
have the potential to revolutionize industries such as healthcare, transportation, and
manufacturing by enabling real-time monitoring and data analysis.

One of the key advantages of 10T devices is their ability to collect and analyze vast
amounts of data in real-time. This data can be used to improve efficiency, reduce costs,
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and enhance safety. For example, loT-enabled sensors can monitor temperature and
humidity levels in @ manufacturing facility, allowing workers to identify potential issues
and prevent equipment failure before it occurs [24]. Similarly, 10T devices can be used in
healthcare to monitor patients remotely, providing doctors with real-time data on their
condition [25].

However, the widespread adoption of IoT devices has also raised concerns about
privacy and security [26,27]. As more and more devices are connected to the internet,
there is an increased risk of cyberattacks and data breaches. In 2020, the FBI issued a
warning about the security risks associated with loT devices, highlighting the importance
of implementing strong security measures to protect sensitive data. Another challenge
facing the widespread adoption of loT devices is interoperability. With so many different
devices and communication protocols, ensuring that they can all work together seamlessly
can be a significant challenge. This has led to the development of standardization efforts
such as the Open Connectivity Foundation and the Thread Group, which aim to create a
common framework for loT devices to operate within.

Despite these challenges [28], the adoption of loT devices is expected to continue to
grow in the coming years. According to a report by Statista, the number of connected loT
devices is expected to reach 75.44 billion by 2025. This growth is driven by the increasing
availability of low-cost sensors and wireless connectivity, as well as the growing demand
for real-time data analysis in a variety of industries.

loT devices have the potential to transform industries by enabling real-time monitoring
and data analysis. However, challenges such as security risks and interoperability must
be addressed to ensure their widespread adoption. As the technology continues to
evolve, it will be important to balance the potential benefits of oT devices with the need
for robust security and privacy measures.

The infrastructure of loT devices also involves various supporting technologies,
such as cloud computing, big data analytics, and artificial intelligence (Al). Cloud
computing provides a scalable and cost-effective platform for data storage, processing,
and analysis. Big data analytics enables the processing and analysis of large and
complex datasets generated by loT devices. Al techniques, such as machine learning and
deep learning, enable intelligent decision-making based on the data collected by loT
devices.

However, the infrastructure of loT devices also presents several challenges, such as
data security and privacy, interoperability, and scalability. The massive volume of data
generated by loT devices requires robust security measures to protect sensitive
information and prevent unauthorized access. Interoperability refers to the ability of
different loT devices and systems to communicate and work together seamlessly, which
requires standardized protocols and interfaces. Scalability refers to the ability of the
infrastructure to handle a growing number of devices and data without performance
degradation. The infrastructure of loT devices is complex and involves multiple layers
and supporting technologies. The infrastructure presents both opportunities and
challenges for the development and deployment of loT devices. It is crucial to address
the challenges and ensure a secure, interoperable, and scalable infrastructure to fully
realize the potential of 10T devices.
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2.3 Microcontroller Boards

Microcontroller cards, also known as microcontroller development boards or
microcontroller units (MCUs), are electronic devices that consist of a microcontroller,
a clock oscillator, input/output pins, and various other components [29]. These devices
have become increasingly important in the field of electrical machines due to their ability
to control and monitor machine operations in real-time. They are particularly useful in
applications where precise control of electrical machines is necessary, such as in motor
control, power electronics, and automation systems [30].

One of the key advantages of using microcontroller cards in electrical machines is
their ability to provide real-time monitoring and control of machine operations. By
integrating sensors with the microcontroller card, it is possible to monitor machine
parameters such as speed, temperature, and vibration and adjust the machine’s
operation accordingly. This allows for more precise and efficient control of the machine,
which can lead to improved performance, reduced energy consumption, and increased
reliability [31].

Another advantage of microcontroller cards is their flexibility and versatility. These
devices can be programmed using a variety of programming languages and development
environments, allowing for customized control and monitoring of machine operations [32].
Additionally, many microcontroller cards are designed to be modular, with various
add-on modules available to expand their capabilities. This allows for easy customization
of the device to meet specific application requirements.

Despite the advantages of microcontroller cards, there are also some challenges
associated with their use in electrical machines. One of the key challenges is the need for
specialized knowledge and skills to program and use these devices effectively. This can
be a barrier for some users, particularly those without a strong background in electronics
or programming.

Overall, microcontroller cards are an important and efficient tool for controlling and
monitoring electrical machines [33]. They offer real-time monitoring and control
capabilities, flexibility, and versatility and can lead to improved performance, reduced
energy consumption, and increased reliability. As the field of electrical machines
continues to evolve and become more advanced, the use of microcontroller cards is likely
to become even more widespread. A comparison of different microcontroller cards is
shown in Table 2.2.
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Table 2.2. Comparison of microcontroller cards

Operating Price

Board Processor Memory 1/0 Pins Reference
Voltage
Arduinouno ATmega328P ?éSK: 20 5V $23 [34]
Arduino ATmega2s60  2>°KB 54 5V $38  [35]
mega flash
ARM Cortex- 2MB
Teensy 4.1 M7 flash 46 3.3v $27  [36]
Raspberry Pi 6040 2M8 26 3.3V $4  [37]
pico flash
ESP32 devkit 4MB
Vi ESP32 flash 38 3.3V $8 [38]
STM32 512KB
nucleo-64 STM32F401RE flash 64 3.3V $13 [39]
Raspberry Pi  Broadcom 2GB
4 model B BCM2711 RAM 40 >V »35 [40]
Tl Sitara
BeagleBone )\ 1335887c7  O12MB o, 5V $55  [41]
black RAM
100
ESP8266 4MB
nodeMCU V3 ESP8266EX flash 11 3.3V s7 [42]
Adafruit >MB
feather M4 ATSAMD51J19 flash 21 3.3V $22 [43]
express
Particle Nordic 1MB
argon nRF52840 flash 18 3.3V P15 44l

2.4 loT Communication Protocols

There are several loT communication protocols available, which can be divided into two
categories: wired and wireless. Wired protocols use cables or wires to connect loT
devices, whereas wireless protocols use electromagnetic waves to communicate wirelessly.
Wired loT communication protocols are used when the devices are located near each
other or when the devices are connected to the same network. Some of the popular
wired loT communication protocols are:
e Ethernet: Ethernet is a widely used wired communication protocol that is used

for local area networks (LANs). It provides high data rates and low latency,

making it suitable for real-time applications [45].

e RS-485: RS-485 is a differential serial communication protocol that is used for
connecting multiple devices over long distances. It is commonly used in
industrial automation and control systems [46].

e CAN: Controller Area Network (CAN) is a serial communication protocol that is
used in vehicles and industrial automation. It provides high reliability, fault

tolerance, and real-time performance [47].
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Wireless loT communication protocols are used when the devices are located far from
each other or when it is difficult to install wires. Some of the popular wireless IoT
communication protocols are:

Wi-Fi: Wi-Fi is a widely used wireless communication protocol that provides
high data rates and long-range connectivity. It is commonly used in home and
office networks.

Bluetooth: Bluetooth is a wireless communication protocol that is used for
short-range communication between devices. It is commonly used in wireless
headphones, speakers, and smartwatches [48].

Zigbee: Zigbee is a low-power wireless communication protocol that is used for
home automation, smart lighting, and industrial automation. It provides low
data rates and low power consumption [49].

Z-Wave: Z-Wave is a wireless communication protocol that is used for home
automation and smart homes. It provides low data rates and low power
consumption [48].

LoRaWAN: LoRaWAN is a long-range, low-power wireless communication
protocol that is used for loT devices. It provides long-range connectivity and low
power consumption, making it suitable for battery-powered devices.

Sigfox: Sigfox is a low-power, wide-area wireless communication protocol that
is used for IoT devices. It provides long-range connectivity and low power
consumption.

NB-loT: Narrowband loT (NB-loT) is a low-power, wide-area wireless
communication protocol that is used for loT devices. It provides long-range
connectivity and low power consumption.

LTE-M: LTE-M is a low-power, wide-area wireless communication protocol that
is used for loT devices. It provides long-range connectivity and low power
consumption.

RFID: Radio Frequency ldentification (RFID) is a wireless communication
protocol that is used for tracking and identifying objects. It provides low data
rates and short-range connectivity.

NFC: Near Field Communication (NFC) is a wireless communication protocol that
is used for contactless payments and data transfer. It provides short-range
connectivity and low data rates [50].

Thread: Thread is a wireless communication protocol that is used for home
automation and smart homes. It provides low data rates and low power
consumption.

6LOWPAN: IPv6 over Low-Power Wireless Personal Area Networks (6 LOWPAN)
is a wireless communication protocol that is used for loT devices. It provides low
power consumption and low data rates[51].

MQTT: Message Queuing Telemetry Transport (MQTT) is a messaging protocol
that is used for loT devices. It provides lightweight, low bandwidth, and reliable
communication between devices [52-55].

CoAP: Constrained Application Protocol (CoAP) is a protocol that is used for
resource-constrained loT devices. It provides lightweight and efficient
communication between devices [56,57].

XMPP: Extensible Messaging and Presence Protocol (XMPP) is a messaging
protocol that is used for loT devices. It provides real-time communication and
messaging between devices.
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2.5 Machine Learning Techniques

Machine learning (ML) is a subfield of artificial intelligence (Al) that deals with the design
and development of algorithms that can learn from data. These algorithms can be
broadly classified into three categories: supervised learning, unsupervised learning, and
reinforcement learning. In addition to these, there are also deep learning and
semi-supervised learning techniques. An overview of machine learning techniques is
shown in Figure 2.1.

l MACHINE LEARNING —l
r Basic Paradigms ? Neural Networks

Supervised Learning Unsupervised Learning Reinforcement Learning Deep Learning
Diagnostics, image processing, Segmentation, big data visualization, Real-time decisions, skill acquisition, 5
forecasting, process optimization, face recognition, planning. learning tasks, robot navigation, Algorithms:
predictions, risk assessment. i gaming, resource management. «  Autoencoder neural networks
1. Clustering
1. Classification 2. Association Algorithms: *  Convolutional neural networks
2. Regression 3. Generalization * Control Theory *  Perceptron neural networks
Algorithms: Algorithms: * Game Theory *  Probabilistic neural networks
Decision Trees - Fuzzy CMeans ¢ Genetic Algorithms *  Recurrent neural networks
*  Discriminant Analysis *  Principal Component ¢ Multi-Agent Systems
* Linear Regression *  Cluster Analysis * Simulation-Based Optimization
*  Logistic Regression *  K-Means * Statistics
Naive Bayes *  Swarm Intelligence

Nearest Neighbor *  Qlearning

Random Forest
Similarity Learning
*  Support Vector Machines

Figure 2.1. Machine learning algorithms [58]

Supervised learning is a type of machine learning in which an algorithm is trained on
labeled data [59,60]. The labeled data consists of input variables (features) and an output
variable (label or target) that the algorithm tries to predict. The goal of supervised
learning is to learn a mapping from input variables to output variables that can generalize
to new, unseen data. Linear regression is a popular technique used in supervised learning
for predicting a continuous variable based on one or more input variables [61]. Logistic
regression is used for predicting a binary or categorical variable based on one or more
input variables [62]. Decision trees are a popular technique used for classification and
regression problems [63]. Random forests are an ensemble learning technique that uses
multiple decision trees to improve accuracy [64]. Support vector machines are used for
classification and regression problems, and they work by finding the hyperplane that
maximizes the margin between different classes [65]. Neural networks are a powerful
technique used for a wide range of supervised learning tasks, including image
recognition, natural language processing, and speech recognition [65,66].

Unsupervised learning is a type of machine learning in which an algorithm is trained
on unlabeled data[ 67], [68]. The algorithm tries to find patterns or structures in the data
without any prior knowledge of the output variable. Clustering is a popular technique
used in unsupervised learning, where the goal is to group similar data points
together [69]. K-means clustering is a simple and widely used technique that partitions
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data into K clusters based on their similarity [70]. Hierarchical clustering is another
clustering technique that organizes data into a hierarchy of clusters [71]. Principal
component analysis (PCA) is a technique used for dimensionality reduction, where the
goal is to reduce the number of input variables while retaining as much information as
possible [72].

Deep learning is a subfield of machine learning that uses neural networks with multiple
layers to learn hierarchical representations of data [73]. Deep learning has achieved
state-of-the-art performance on many complex tasks, including image and speech
recognition, natural language processing, and playing games [74]. Convolutional neural
networks (CNNs) are a type of neural network commonly used for image recognition [75].
Recurrent neural networks (RNNs) are another type of neural network commonly used
for natural language processing [76]. Generative adversarial networks (GANs) are a type
of neural network used for generating realistic images [77].

Reinforcement learning is a type of machine learning in which an agent learns to take
actions in an environment to maximize a reward signal. The goal of reinforcement
learning is to find an optimal policy that maps states to actions [78,79]. Q-learning is a
popular reinforcement learning technique that uses a Q-function to estimate the
expected reward of taking action in a given state [80]. Deep reinforcement learning
combines reinforcement learning with deep learning techniques to learn complex
policies from high-dimensional inputs, such as images [79].

Semi-supervised learning is a type of machine learning in which an algorithm is trained
on a combination of labeled and unlabeled data. The goal of semi-supervised learning is
to use the unlabeled data to improve the performance of the model on the labeled
data [81]. Label propagation is a popular semi-supervised learning technique that
propagates labels from labeled data to unlabeled data based on their similarity [81].
Self-training is another semi-supervised learning technique that involves using a model
trained on labeled data to make predictions on unlabeled data and then adding the
confident predictions to the labeled data to train a better model [82].

Machine learning has many techniques that can be used for a wide range of
applications. Supervised learning is useful when labeled data is available, while
unsupervised learning is useful when only unlabeled data is available. Deep learning is a
powerful technique that can learn hierarchical representations of data, and
reinforcement learning can be used to learn optimal policies for decision-making
tasks. Semi-supervised learning is useful when there is limited labeled data available
and can improve the performance of models trained on labeled data. Understanding
the different types of machine learning techniques and their applications can help
researchers and practitioners choose the most appropriate technique for their
specific task. Table 2.3 lists a comprehensive overview of different machine learning
techniques.
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Table 2.3. Comparison of different machine learning techniques

Machine Learning

. Pros Cons References
Technique
Easy to interpret and Limited flexibility in
i i implement, efficient in modelling complex
Linear regression terms of training and relationships can be (60,61,83]
inference time. sensitive to outliers.
simol q Limited ability to capture
Logistic interpret, tworke el for | COMPIexreationshis,
regression binary cle;ssification tasks prone to overfitting in (60,62,84]
: high-dimensional data.
Easy to interpret and Pron.e.to overfitting,
. . sensitive to small
visualize, can handle both .
Decision trees categorical and numerical changes n the data, can  63,85-87]
data. produce biased trees if
the data is imbalanced.
ROblr‘]St Zglaitr:str?verfitting, | Less interpretable than
can handle both categorica L ;
Random forests and numerical data, it Ssrfwlizpa:;’s::il;t can be [64,88,89]
works well with high- expensive.
dimensional data.
Effective in high- Computationally
Support vector dimensional spaces, can expensive for large
machines (SVM) handle non-lln.ear data, dataset.s, sensitive to [90-92]
can be regularized to the choice of the kernel
avoid overfitting. function.
Simple and easy to Assumes that all
implement, works well features are [93-95]
Naive bayes with high-dimensional independent, can be
data, computationally sensitive to irrelevant
efficient. features.
Easy to implement, works ~ Computationally
Kenearest well with small datasets expensive for I_a.rge
K and non-linear data, can datasets, sensitive to the [65,96,97]
neighbors (KNN) handle both classification  choice of distance metric,
and regression tasks. requires careful pre-
processing of the data.
Can handle heterogeneous  Can be sensitive to noisy
data, produces accurate data, computationally
Gradient boosting  predictions, works well expensive, difficult to (98-100]
with imbalanced data. interpret.
Can handle complex Requires large amounts
relationships and high- of data to train, can be
dimensional data, can learn  computationally
Neural networks  features automatically, can  expensive, can be [66,101,102]

be regularized to avoid
overfitting.

difficult to interpret.
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Table 2.3. Comparison of different machine learning techniques (continued)

Machine Learning

] Pros Cons References
Technique
o . Can be sensitive to
Effective in modelling L .
] vanishing gradients, can
Recurrent neural sequential data, can handle .
. ; be computationally [76,101]
networks (RNN) variable-length inputs and . .
expensive, may require
outputs. R
careful initialization.
Effective in modelling .
i . Can be computationally
Convolutional images and other types of . .
> expensive, may require
neural networks spatial data, can learn e e s [73,101,103]
) . careful initialization and
(CNN) hierarchical o
. regularization.
representations.
. Reduces the dimensionality Information loss due to
Principal . . . . .
of the data while preserving  dimensionality
component - ) [64,67]
. most of the variability, reduction, can be
analysis (PCA) . L . .
computationally efficient. sensitive to outliers.
. . Sensitive to initialization,
Can discover underlying e
atterns and structure in can be difficult to
. ucture i . .
Clustering P determine the optimal [64,69]
the data, easy to
. number of clusters, can
implement. N .
be sensitive to outliers.
Can discover frequent co-
. occurrences and .
Association rule . . . Easy to implement,
. associations among items in [104]
mining . works well
a dataset, useful in market
basket analysis.
Effective in modelling .
) . Can be computationally
sequential data with long- . .
Long short-term . expensive, may require
term dependencies, can [76,92]

memory (LSTM)

handle variable-length
inputs and outputs.

careful initialization and
regularization.

2.6 Chapter Summary

This chapter provides an in-depth literature review regarding electrical machine faults,
loT devices, microcontroller cards, communication protocols and machine learning
algorithms. It can be concluded from the chapter that although the integration of
information technology with electrical machines is not new, it still has a long way to go
in terms of development and research. loT devices are becoming more and more
common in the industry to monitor the health of electrical machines, but it is still lacking
in terms of sampling frequency, data analysis, scalability, etc. Machine learning based
trained models are also useful tools for fault detection of electrical machines. However,
these required a large number of data sets and there is a lack of predictive algorithms in
terms of electrical machines.
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3 Condition Monitoring of Electrical Machines

Fault diagnostics and condition monitoring of electrical machines have always been one
of the primary concerns in the industry. With the advent of Industry 4.0, condition
monitoring and predictive maintenance have become the forefront of current research
areas. Electrical machines play a significant role in multiple domestic and industrial
applications, so keeping track of their health is essential. Due to the environment,
constant running, external and internal stresses and other parameters constantly
affecting electrical machines, there is a high chance of fault occurrence.

With the recent advancements in information technology, industries are moving
towards predictive and proactive maintenance from periodic and reactive maintenance.
As periodic and reactive maintenance costs time and money due to the shutdown of the
equipment, more and more research is being done into finding new ways for predictive
and proactive maintenance. This has seen a recent boost with the integration of
information technology with physical devices, also known as smart devices.

This helped monitor the electrical equipment in real-time and gather data from the
equipment to develop algorithms for fault prediction. As most of the fault detection
algorithms were running offline and it takes much more time to be able to implement
them in real-time, like Finite Element Method (FEM) Analysis [105,106]. This combination
of information technology with electrical devices changed the landscape of fault
detection and prediction in electrical machines. It not only gives way to real-time fault
detection but also further opens up research areas to enhance it into fault prediction,
which helps reduce cost and time for maintenance.

The implementation of smart devices for industrial applications has further
streamlined the industrial process and made it easier for end users to determine the
issues with the monitored electrical equipment, if any. These smart devices can
communicate with each other and implement logical decisions based on incoming data.
The setup of these smart devices over a network (e.g., the internet) is termed as Internet
of Things (loT) [7]. The monitoring of electrical equipment with the help of loT and cloud
in real-time is usually known as remote sensing or monitoring. The general
implementation of a condition monitoring system in an industrial application is shown in
Figure 3.1.

Here the data is read from the electrical machine through sensors which are then
forwarded onto the control center or cloud using a data acquiring system. The cloud then
runs any analysis that is needed to be done on the incoming data for the detection of
faults and the processed data is then shown on a GUI for the end user. This makes it
easier for the user or technician to monitor the health of the electrical machines and to
identify if those machines need maintenance or not. This is a general example of a
condition monitoring system in terms of an industrial application.

3.1 Data Acquisition System

A data acquisition system is one of the most fundamental and crucial parts of a condition
monitoring system as it helps collect data from the electrical machine. Most of the
condition monitoring system that has been developed are either using SCADA or PLC,
which are expensive, harder to transport and complex. With the recent advancements in
the technology of microcontroller cards, researchers are trying to develop condition
monitoring systems based on them, but these systems are still being improved and not
much analysis is being done on the collected data.
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These microcontroller boards are not only cost-efficient but also flexible and scalable
for future development. The overview of the proposed data acquisition system is shown
in Figure 3.2.

—rr

Raspberry Pi
: Cloud
IoT Card \ Read Sensor Femm——————— .

F-———-—-——- — | datausing SPI
Communication

Read Data from

Save Desired online database

information in

1
1

1

1

1

1

1

1
local database at | !
high frequency :
1

1

1

1

1

1

1

1

1

3

Use Al techniques
to detect fault and
predict values

Read Sensor Data
at high frequency

l

y

Transmit Data to Check agai es Sync Data with Project
. SCK agamn nl d t: b H }

Raspberry pi for next Data online database in . results
using SPI background .

]

L. 1
Communication .
[}

Figure 3.2. Overview of the data acquisition system (previously published in article VI)
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3.1.1 Measurement Setup
For experiments and gathering of data from electrical machines, a test rig is setup in the

lab. The setup consists of two motors where one acts as the loading motor and the other
is the test motor with different faults in it. The detailed specifications for the motors are
given in Table 3.1. The experimental setup for the test bench to collect data for different

faults is shown in Figure 3.3.
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Figure 3.3. Test rigs for data collection and testing of faults (previously published in article V)
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The data is collected from the electrical machine in a healthy state using both
Dewetron and the proposed data acquisition system. This is for verification of data
collected through the data acquisition system to make sure there are no errors. The data
for training was mostly collected through Dewetron, whereas the data acquisition system
was used in between to verify the transfer of data to the cloud. The data collected is at
different loads for both cases so as to diversify the collected data. The loading machine
is fed power through an inverter for better control at different load levels. The data is
collected at a sampling frequency of 20 kHz and the measurement time is for 5-6 minutes.
The data collected through Dewetron consists of values of voltage, current, speed,
torque and vibration.

Table 3.1. Specifications of motor

Parameter Value
Number of poles 4
Number of phases 3
Connection Delta
Stator slots 36; non-skewed
Rotor bars 28; skewed
Rated voltage 400V @50 Hz
Rated current 8.8A
Rated power 7.5 kW @ 50 Hz

3.1.2 Components

The proposed data acquisition system consists of a microcontroller card coupled with
raspberry Pi which will act as a local node and database backup. It will also sync data with
the online database in the cloud for further analysis and computations. There is a level
shifter in between the microcontroller card and raspberry pi as the output pins of the
microcontroller card give a 3.3 V output. Whereas, for Pi the input should be at 5 V. The
components of the data acquisition system are shown in Figure 3.4.

Logic Converter

Raspberry Pi

Teensy 4.0

Figure 3.4. Components of data acquisition system
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Technical specifications for the Teensy 4.0 (microcontroller card) and Raspberry Pi are
given in Table 3.2 and Table 3.3, respectively. Whereas the microcontroller card selected
is due to more processing power and less size.

Table 3.2. Technical specifications of Teensy 4.0

Feature

Specification

Microcontroller

ARM Cortex-M7 @ 600 MHz

Flash memory 2 MB

SRAM 512 KB

Digital 1/0 pins 40 (including 31 PWN outputs)
Analog inputs 14

CAN bus 3 (1 with CAN FD)

Serial 7

SPI 3

12C 3

Operating voltage 3.3V

Dimensions

62 mmx 18 mm x4 mm

Table 3.3. Specifications of Raspberry Pi

Feature Specification
Broadcom BCM2711, Quad core Cortex-A72
Processor .
(ARM v8) 64-bit SoC @ 1.8GHz
Memory 8 GB LPDDR4-3200 SDRAM

Connectivity

2.4 GHz and 5.0 GHz IEEE 802.11ac wireless,
Bluetooth 5.0, BLE

LAN Gigabit ethernet

USB ports 2 USB 3.0 ports; 2 USB 2.0 ports

HDMI 2 x micro-HDMI ports (up to 4kp60 supported)
1/0 pins Raspberry Pi standard 40 pin GPIO header
SD card Micro-SD card slot for loading operating system

and data storage

Operating voltage

5V DC via USB-C connector (minimum 3A*)

For the test purpose, two different microcontroller cards were used with different
communication protocols and the setup was run for multiple days to make sure the data
transmission was smooth and there was no loss of data. The comparison between
Arduino and Teensy 4.0 is shown in Table 3.4, whereas the sample rate per second for
different communication protocols is shown in Table 3.5, where there is no data loss at
high frequency, even when the communication span is for weeks.
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Table 3.4. Comparison of sample rate for different communication methods (previously published
in article V)

Communication Method Sample Rate/s
UART 1800
12C 2600
SPl interface 3600

Table 3.5. Time taken by IoT card for processing 10,000 samples data transmission without loss of
data (previously published in article VI)

Card Processing time for 10,000 samples in seconds
Arduino mega 45s
Teensy 4.0 0.75s

The steps of the algorithm running on teensy 4.0 (microcontroller card) are as follows:

e Set up the Arduino board and the current sensor.

o Thisinvolves connecting the current sensor to an analog pin on the Arduino
board and setting it up to measure current values.

e Initialize the SPI communication interface on the Arduino.

o The Serial Peripheral Interface (SPI) is a synchronous communication
protocol that allows devices to exchange data. In this case, the Arduino is
set up to use SPI to communicate with the Raspberry Pi.

e Enter an infinite loop.

o This ensures that the Arduino continues to read and send data until it is
stopped or turned off.

e Read the current sensor values using an analog pin on the Arduino.

o The analog pin on the Arduino is used to read the analog voltage output of
the current sensor, which is proportional to the current being measured.

e Convert the sensor readings into a format that can be sent over the SPl interface
to the Raspberry Pi.

o The sensor readings are typically in analog voltage values, which need to be
converted to digital values that can be transmitted over SPI. This is done by
performing analog-to-digital conversion (ADC) on the analog voltage values.

e Send the sensor data over the SPI interface to the Raspberry Pi.

o The ADC-converted digital values are sent over the SPI interface to the
Raspberry Pi for storage and analysis.

e Wait for a short period of time before repeating the process.

o This ensures that the Arduino does not send data too frequently and
overload the Raspberry Pi, and also allows time for the Raspberry Pi to
process the data before receiving more.

The data transmission between Teensy and Pi is done through Serial Peripheral
Interface (SPI), which is faster than other communication protocols but is also fragile and
needs to be set up with care. If the sample rate for data transmission is not much, other
protocols like 12C or UART can also be used. The data is received on Pi and saved inside
a local database synced with the cloud for further analysis and computation. The local
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database on Pi makes sure that no data is lost in between transmissions or due to
network issues. The local node can also be further expanded into a cluster of nodes with
multiple sensors attached to it and can act as a control unit. Different steps of the
algorithm running on Pi are:

e Set up the Raspberry Pi and the local and online databases.

o This involves installing any necessary software, configuring the databases,
and setting up the Wi-Fi connection to enable communication with the
online database.

e Initialize the SPI communication interface on the Raspberry Pi.

o This allows the Raspberry Pi to receive data from the Arduino over SPI.

e Enter an infinite loop.

o This ensures that the Raspberry Pi continues to receive and process data
until it is stopped or turned off.

e Read the sensor data sent over SPI from the Arduino.

o The Raspberry Pi reads the digital sensor data that was sent over SPI from
the Arduino.

e Store the incoming sensor data in the local database.

o The Raspberry Pi saves the incoming sensor data in a local database for
storage and easy retrieval.

e Sync the local database with the online database using Wi-Fi.

o The Raspberry Pi periodically sends the data stored in the local database to
the online database using Wi-Fi to ensure that the data is backed up and
accessible remotely.

Wait for a short period of time before repeating the process.

3.2 Cloud Computation

Cloud computation has helped reduce resources and make setups more accessible,
scalable and reliable. It allows the accessibility of data from anywhere at any time and
cost-effective use of resources. The data saved in the online database is accessed here
for pre-processing of signals. The data is further divided into samples which are then
pre-processed to remove noise and converted into the frequency domain. An example
of the sample data set frequency spectrum is shown in Figure 3.5. The frequency
spectrum is then used for the detection of any faults based on trained machine learning
models. If a fault is present, it is logged into the system, which is then shown to the end
user, whereas the algorithm keeps on running to detect faults in any other incoming data.

10 S R :
1 Winding Harmonics i

Current (A)

Figure 3.5. Frequency spectrum
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After denoising the signal and converting it to the frequency domain, the resultant is
then used for the detection of faults using machine learning trained models. The detailed
steps of the algorithm running on the cloud for detection are as follows:

e Connect to the cloud database and retrieve the data to be processed.

o This step involves establishing a connection to the cloud database and
retrieving the data that needs to be processed. Depending on the cloud
provider you are using, you might need to provide authentication details or
other credentials to establish the connection.

e Pre-process the data as needed to prepare it for the machine learning model.

o This step involves pre-processing the data to ensure that it is in a suitable
format for the machine learning model. This might involve tasks such as
cleaning, transforming, or normalizing the data. The exact pre-processing
steps will depend on the type of data you are working with and the
requirements of the machine learning model you are using.

e Load the trained machine learning model(s) into memory.

o This step involves loading the trained machine learning model(s) into
memory so that they can be applied to the data. Depending on the type of
model you are using, you might need to use a specific library or framework
to load the model.

e Apply the model(s) to the data to detect faults.

o This step involves applying the machine learning model(s) to the
pre-processed data to detect faults. Depending on the type of model you
are using, this might involve running predictions or classifications on the
data. The exact approach will depend on the requirements of the machine
learning model you are using.

e If faults are detected, log the relevant information and take appropriate action

(e.g., alert a human operator, reroute processing, etc.).

o This step involves logging relevant information about any faults that are
detected and taking appropriate action to mitigate the issue. Depending on
the severity of the fault and the requirements of your system, you might
need to alert a human operator, reroute processing to another system, or
take other corrective measures.

e If nofaults are detected, proceed with further processing as needed.

o If no faults are detected, you can proceed with further processing of
the data as needed. This might involve additional computations or
transformations of the data, depending on the requirements of your system.

e  Once all processing is complete, disconnect from the cloud database.

o Once all processing is complete, you should disconnect from the cloud
database to free up resources and ensure that your system is secure.
Depending on the cloud provider you are using, you might need to use a
specific method to disconnect from the database.

3.3 Machine Learning Trained Models for Detection

Machine learning models can be used for training models which are able to detect faults
in incoming signals. This will help detect faults in real-time and reduce the costs overhead
due to shutdowns and scheduled maintenance. There are different types of machine
learning models available, but due to the training time and accuracy combination, here
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recurrent neural networks or deep learning techniques are not utilized. Machine learning
algorithms try to map the data inputs to outputs based on patterns or different statistical
equations. It can be expressed in general by Eq. (3.1).

0 = argmin [L(y,f(x;0))] (3.1)

where, 8 represents the parameters of the model. [L(y, f(x; 8))] is the loss function,
which measures the difference between the predicted output f(x; 8)) and the actual
output y, x is the input data and argmin finds the values of 8 that minimize the loss
function.

The equation searches for the best fit value of 8 by minimizing the difference between
the original output and the predicted value of the output. Different techniques of
machine learning used different optimization techniques to achieve this purpose.
The most commonly used machine learning technique for the training of models is neural
networks. Neural networks make use of the hidden layers to train complex models with
high accuracy. Figure 3.6 shows the general schematics of the neural network training.
Similarly, Neural networks can also be expressed using the generalized form in Eq. (3.2).

W(t+1) = W(t) — aVL(W(1)) (3.2)

where, W(t) represents the weights and biases of the network at iteration t. L(W(t)) is
the loss function, which measures the difference between the predicted output of the
network and the actual output. Whereas, a is the learning rate, which controls the step
size taken in the direction of the negative gradient and VL(W(t)) is the gradient of the
loss function with respect to the weights and biases of the network, which represents
the direction of the steepest descent.

Weighted Layers

Output Label

Input Predictors

Hidden Layers

Figure 3.6. Neural network schematics (previously published in article VII)
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The biases and weights of the network are updated with every iteration based on the
gradient of the loss function. The process keeps on repeating itself until the total number
of iterations is met or the loss function converges to a minimum value. Neural networks
main aim is to get the most optimal value for the weights and biases so as to minimize
the loss function and get higher accuracy for predictions.

In this case, different machine learning algorithms are used to train models for fault
detection of the electrical machines. Here, the faults considered for the training of the
machine learning models are broken rotor bars with one broken rotor bar, two broken
rotor bars and three broken rotor bars. The trained model is implemented in the cloud
for the detection of faults. Table 3.6 shows a comparison result of accuracy and time took
for the training of machine learning models.

It can be seen that different machine learning models take different times for training
and have different accuracies based on their technique to find the optimal values. Here,
in this case, the wide neural network model performed best, but it might not be accurate
for another data set. That is why there is a need to create custom machine learning
models that are focused on electrical machine faults so as to get consistent results. Also,
there is a lack of sufficient data for training these models for different faults, so it is also
important to find an alternative way to get high quality data sets for different faults of
electrical machines in quantity. Among all of the present machine learning models,
neural network models give better results as compared with others.

Table 3.6. Comparison between different machine learning models

Machine Learning

Algorithm Accuracy (validation) Time (s)
Fine gaussian SVM 86.00 % 21.81
Fine KNN 85.80 % 9.48
Coarse tree 75.60 % 0.85
Linear discriminant 92.60 % 1.73
Gaussian naive bayes 60.60 % 2.22
Kernel naive bayes 80.80 % 291.94
Narrow neural network 95.90 % 47.11
Medium neural network 96.20 % 40.36
Wide neural network 96.60 % 27.61
Bilayered neural network 96.40 % 47.82
Trilayered neural network 95.50 % 49.74

3.4 Graphical User Interface (Dashboard)

Most of the techniques developed for the diagnosis of electrical machines are offline,
like FEM and take some time to analyze and diagnose the electrical machines. In this
case, the data is stored in the cloud and it is possible to detect faults in the incoming
signals in real-time. To show the results or the incoming data to the end user, a graphical
user interface (GUI) is designed. The GUI will not only present data but will also show
different markings, including warnings and suggestions to the end user, depending upon
the state of the motor and fault detection. An example of the GUI is shown in Figure 3.7.
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Figure 3.7. GUI dashboard (previously published in article I11)

3.5 Chapter Summary

IoT and cloud computing is becoming the new norm in the communication industry. This
chapter covers a low-cost plug-and-play setup that can transmit data from remote
locations or electrical machines. Furthermore, cloud computation can be used to detect
faults in incoming data using models trained by machine learning. This will help contain
the impact of faults on the machine and reduce overhead costs. The system is not only
cost-efficient but is also easy to transport and implement, which gives it an edge when
implemented in remote locations. This also helps the user to understand even a small
fluctuation in values so that a major disaster can be avoided and identify the fault in a
more systematic way.

42



4 Synthetic Signals & Custom Neural Network Algorithm

Machine learning algorithms need a large number of training datasets for an accurate
and efficient trained model both in quality and quantity, but there is always a lack of data
sets when it comes to the training of models for different kinds of faults. As it is difficult
to generate data sets of faulty conditions of an electrical machine, researchers are
looking into different areas to generate signals. Some are generating it through Simulink
models does not consider external parameters on the motor like stress, deterioration
over time, environmental effects, etc. Also, gathering data from actual setups not only
takes time but is also expensive. This issue can be resolved using synthetic signals, which
are generated through derived statistical equations of faults for electrical machines.
Table 4.1 shows the fault signature frequencies for the induction motor.

Table 4.1. Fault signature frequencies for induction motor

Fault Modulating Frequencies

L. fasym = fs istfs
Rotor winding

asymmetries k=123

fer1 = [ZE) 1-s) iS]fs

Broken rotor bars

=135,..

< | &=

fob = |fs imfi,ol
Bearing faults

Npp ba
fi,o = Tﬁ« [1 i a COSB]

focee = |Gy £ m) () 9]

Eccentricity & PSH For mixed eccentricity:

fecce = fs L kfr

where,

k: Harmonic order

v: Supply fed harmonics
fs: Supply frequency
fasym? Rotor winding
asymmetries
frequencies

fara: Broken bar
frequencies

fob: Bearing fault
frequencies

fii0 Characteristic
vibration frequencies
m: Positive integer

np: Number of rotor
bars

npp: Number of bearing
balls

ng: Dynamic
eccentricity (0 for static
and 1,2,3.... for
dynamic)

fr: Rotor frequency
fecce: Eccentricity
frequency

bg: Bearing ball’s
diameter

pa: Bearing pitch

¥: The angle between
bearing ball and race
s: Slip

p: Number of poles

P: Number of pole pairs
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Similarly, another issue that occurs when training models using machine learning
algorithms is that there is a chance that different algorithms can have different higher
accuracies based on the data set and the number of faults. Although the training is not
so complex but a different combination of faults can result in a different model
performing better. So, there is a need to keep the results consistent and get an optimal
trained model which is focused on electrical machine faults. As the future of this
development is to have self-learning models which are able to better themselves based
on new incoming data sets, machine learning algorithms are preferred for testing the
deep learning ones.

4.1 Synthetic Signals

To overcome the shortfalls, data sets for faults are generated using the derived statistical
equation for the fault signature frequencies. For testing purposes, the fault considered
is that of broken rotor bars of an induction motor. It is also possible to get the derived
statistical equations for different faults from the above table. The improvised equation
for the generation of the signals based on broken rotor bars is shown in Eq. (4.1).

y = a=*sin( 2nfit) + X b * sin ( 2mfzgt) (4.1)

where,  far=[kp (1-5)%s] fs
and kp=1,3,5,...

In the above equation, fs is the supply frequency, whereas t is the time period.
The variables a and b are multipliers for the generation of the amplitude of the generated
faulty frequency components, which are categorized in ranges based on the number of
broken bars. Whereas k is the harmonic order, s is the slip and p are the number of poles.
The data sets generated from the equation are generic, with a random multiplier
differentiating the amplitude of frequencies, especially the faulty frequencies inside the
equation.

The generated signals are also compared with the real ones and found to be not exact
but exhibit similar behavior. Although the synthetic signals need more processing
afterward, at the moment, general pre-processing for smoothing out with RMS and
normalization is taken into effect. A sample of generated synthetic signals in the
frequency domain is shown in Figure 4.1.
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Figure 4.1. (a) FFT of one of the healthy synthetic signal datasets (b) FFT of one of the faulty
synthetic signal datasets used for training
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4.1.1 Training of machine learning models for synthetic signals
The fault detection in real-time for incoming signals can also be divided into two parts.
The first is the training of models and the second consists of the detection of those faults
on the cloud. It is necessary to know about the distinctive features related to these faults,
which will help identify them. For the identification of faults, the frequency spectrum is
considered as there are distinctive frequency components present in the spectrum for
faults that are not presented normally. The samples are recorded in the time domain,
so first of all, they are converted to the frequency domain using a fast Fourier
transform (FFT). The processed data still undergoes some pre-processing and
normalization before it is passed onto the machine learning algorithm for training.
Here, the training data sets are divided into two categories: synthetic signals and
real-time signals. Both consist of around 14.4 million training data points with a sampling
frequency of 20k Hz and a blind validation set of 1.4 million. The validation set consists
of real-time signals and is compared and used after conversion to the frequency domain
and pre-processing. As this is still under consideration, here the training sets considered
are divided into four classifications and labeled as ‘0’ in case of healthy, 1’ in case of one
broken bar, ‘2’ in case of two broken bars and '3’ in case of three broken bars. Hence,
the data consists of one healthy case and three faulty cases for both synthetic signals and
signals collected from the experimental setup. The frequency spectrum for healthy and
faulty cases in a logarithmic scale for the real signal is shown in Figure 4.2.
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Figure 4.2. (a) FFT of one of the healthy real signal datasets (b) FFT of one of the faulty real signal
datasets used for training
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4.1.2 Synthetic Signal Results and Summary

As seen from the samples above, distinctive frequency components are present in the
faulty spectrum, which are not usually present in the healthy one. The case is similar for
synthetic signals, which are further smoothened out and processed with filters to only
consider the most prominent frequency components for training purposes. Here, for
comparison, five different types of neural network algorithms are considered to check
the accuracy of both cases. Table 4.2 shows the accuracy of the synthetic signal approach
when tested with real-time signals.

Table 4.2. Comparison between results of synthetic and original signals trained model

Accuracy
Machine Learning Model
Real Signals Synthetic Signals
Narrow neural network 63.60 % 44.20 %
Medium neural network 74.20 % 59.80 %
Wide neural network 70.80 % 66.70 %
Bilayered neural network 69.90 % 64.70 %
Trilayered neural network 70.70 % 63.60 %

As it can be seen from Table 4.2 that the accuracy of the trained model is still lacking.
To check the accuracy and working of the synthetic signals, the results are compared with
the current approach, i.e., utilizing real-time signals for the training model. Table 4.2
summarizes the accuracy for both cases with the synthetic signal approach and the
modern approach of using real-time signals. The accuracy can be further improved by
considering slotting and inherent eccentricity-based harmonics.

Here, the training data sets are divided into two categories: the synthetic signals and
the real-time signals. Both consist of around 14.4 million training data points with a
sampling frequency of 20k Hz and a blind validation set of 1.4 million. For a detailed
comparison between the two cases, validation results for both cases of Narrow Neural
Network is shown in Figure 4.3. The healthy state is labeled as 0, 1BRB as 1, 2BRB as 2
and 3BRB as 3 for the training of neural network model.

It can be seen that for real signals, at least for healthy case the correct detection is
90%+, which falls for other cases mainly because of multiple label classification and
insufficient dataset. Similarly, for synthetic signals, the detection is less than or around
50.0% in all cases except one, which is very low. This simplifies that if further
improvement can be done, it is possible to get similar or better results than real signals.
However, more research should be done by increasing the number of training datasets
and gathering data from multiple machines for similar faults.
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Figure 4.3. Validation results of narrow neural network in the case of (a) real signals (b) synthetic
signals
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4.2 Frequency Spectrum Resolution Improvement

The smart sensor-based low-power data acquisition and processing devices such as
Arduino cards are increasing due to the increasing trend of the internet of things (loT),
cloud computation and other Industry 4.0 standards. For predictive maintenance, the
fault representing frequencies at the incipient stage is very difficult to detect due to their
small amplitude and spectral leakage of powerful frequency components. For this
purpose, offline advanced signal processing techniques are used that are not possible in
small signal processing devices due to the required computational time, complexity, and
memory. This section an algorithm which can improve the spectrum resolution without
complex advanced signal processing techniques and is suitable for low-power signal
processing devices.

The accuracy and maturity of Al algorithms depend on the data size and its variety
under different loading and faulty conditions. Thanks to the research in the field of
mathematical modelling, data collection under different faulty and loading conditions for
a variety of different machines is possible using simulations. Moreover, the data storage
on the cloud can increase the training data set every day. The common point in all
conventional and advanced techniques is the input signal. Mostly the global signals
remain the same for all types of machines as the state variables of all machines are
almost the same. Now the paradigm shift is the measurement of all those signals using
low-cost data acquisition devices such as Arduino cards and sending the data in the
database without loss or any additional infiltrations such as noise.

4.2.1 The Effect of Discontinuities in the Signal

Although FFT is a very powerful tool that is extensively used in the field of signal
processing, for smooth, periodic, uniformly sampled points and long signals, FFT no
doubt gives accurate results. However, the results become significantly erroneous if
there are singularities or discontinuities in the signals. Thanks to the symmetrical and
sinusoidal distributed design and performance parameters of electrical machines, almost
all global signals such as current, voltage, and flux are periodic. The data discontinuities
are however possible due to the limitations of the data acquisition devices, particularly
if those are low power cards. This can be because of network limitations such as delay or
loss of data transfer from the device to cloud. Because of the high sample rate, there is
a high chance of data loss while data is being transferred from sensors to the low power
cards. This is mostly because of the delay in the clearance of the buffers when data are
being transmitted for a long time, i.e., a couple of days to weeks. The flow chart for such
a setup is shown in Figure 4.4.

Data loss can occur in two scenarios, while the data are being transferred from sensors
to the low powered cards and the other while the data are being transferred from the
cards to cloud. The protocols used for data transmission have their own limitations too.
The loss of data during transmission can be due to the limitation of network or delay/loss
of network while transferring. Another reason might be due to the buffers being
overloaded and not being properly cleared up before the next data come in, which can
result in a loss of data while in transmission. These sharp changes in the signal are the
potential cause of hiding the low power fault-based frequencies due to the increased
spectral leakage of significant harmonics. It also decreases the computational time of
FFT, decreases its efficiency, and increases the need for increased data length.
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Figure 4.4. Flow chart for the data acquisition setup (previously published in article Il)

The setup was run continuously for multiple days with different sampling rates to
generate data losses. At higher sampling rates, the data losses occurred more often as
the buffer became overloaded. Because of the limitation of the processing power of
Arduino (low powered cards), data loss became inevitable in these cases. This is why the
sampling rate tended to be on the lower side in most cases, but this also resulted in the
samples being too low and similar data loss issues could occur if it kept running for a
more extended period. The other scenario was also created by interrupting the network
connection. In this case, wi-fi was used to transmit data from Arduino to the cloud
database. Upon interruption of the network, as no data were transmitted, this resulted
in data being lost. For some protocols, it could result in a delay at the receiving end, but
this will still have components lost for the received signal. The setup was used to obtain
signals with data discontinuity to check the result of the proposed algorithm.

The data discontinuities are detected by making a moving subtraction filter. The
amplitude difference of every two consecutive samples defines the magnitude of
discontinuity in them. For example, in the test case nine discontinuities along with their
amplitude are discovered which needs correction.

dif f = |x[n]| = |x[n —1]| (4.2)

For correction the discontinuous sample is replaced with the average value of the
samples x[n-1] and x[n+1];

2[n] = IX[n+1]I;r|x[n—1]I (4.3)
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The integer number of cycles can be calculated using zero cross detection as shown
in Figure 4.5 below but in that case wrong computation can be occurred if there is any
data discontinuity in the signal.
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Figure 4.5. (a) The acquired stator current, (b) the result of moving subtraction filter for the
detection of discontinuities, (c) after the correction of discontinuous samples (previously published

in article 1)

4.2.2 Algorithm for Spectrum Improvement

Data discontinuities are detected in the samples and replaced using mean value
interpolation. After counting the integral number of cycles the sampling rate is improved
and fractional cycles at both ends are discarded. This will give a signal from first zero
crossing till last. The detailed steps for the implementation of the algorithm are shown

in Figure 4.6.

4.2.3 Results & Summary

The algorithm is first implemented on the FEM based simulation signals with low
sampling frequency. In Figure 4.7, it can be seen that even at high step size with a
sampling frequency of 4kHz, the spectrum with counting the integral number of cycles
increases the resolution significantly without the need of any truncating window.
Moreover, the effect of communication channel-based data discontinuities and their

correction is shown in Figure 4.8.
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Figure 4.6. The algorithm for the counting the integral number of cycles, removal of signal
discontinuities and fractional parts of the signal, data interpolation and repetition if necessary
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Figure 4.7. The simulated stator current spectrum showing stator winding and slotting harmonics
before and after counting integral number of cycles (INOC) (previously published in article )
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Figure 4.8. The effect of signal discontinuities on the spectrum resolution (previously published in
article 1)

For better comparison, it was then implemented on a practical setup consisting of
investigations two similar machines are back-to-back connected. One machine works as
loading machine while other is used as testing motor where the healthy and broken rotor
bar carrying rotor are tested. Figure 4.9 and 4.10 shows the improvement in the
spectrum resolution by removing the fractional parts of the signal and data
discontinuities without any truncating window. The tiny broken rotor bar harmonics near
the strong supply and spatial harmonics becomes well legible.
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Figure 4.9. The practical stator current spectrum showing stator winding, slotting and broken rotor
bar-based harmonics before and after counting integral number of cycles (INOC) (previously
published in article 1)
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Figure 4.10. The practical stator current spectrum showing stator winding, slotting and broken rotor
bar-based harmonics with and without discontinuities (previously published in article I1)

4.3 Custom Neural Network Algorithms

This section presents a simplified machine learning approach to neural networks with
two variations to work on the fault diagnostics of the electrical machine. This is a more
straightforward approach to get the result in a minimum number of layers and with
higher accuracy in the shortest time possible. This is also to check if the results can be
generated with higher accuracy using a small number of datasets. The first layer of the
neural network consists of a dot product of weights and the incoming inputs, whereas
the second layer is different for both variations. One variation includes a sigmoid function
on the second layer, whereas the second variation has a hyperbolic tangent function
present. Both are given in Eq. 4.4 and Eq. 4.5, respectively as previously published in
article IV.

1

f) = = (4.4
fn =S (4.5)

The variations are trained separately using 10,000 training data sets and then the
results are validated with a different set of 500 validation data sets. The model trained is
still under development to improve their results consistency as it may vary when the
model is retrained. The models are trained using Python with a custom neural network
defined class and without the use of tensor flow or any other third-party library.
The flowchart for the working and training of the neural network algorithm is shown in
Figure 4.11.

4.3.1 Custom Neural Network Results & Summary

The error is calculated after predicting the values after layer two and the weights are
adjusted accordingly in layer 1 for the following input. The training undergoes 10,000
iterations for the test data set and a mean square error for the trained model is
generated for both sigmoid and hyperbolic tangent variations. The results for the mean
square error for both variations are shown in Figure 4.12.
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Figure 4.11. Overview of training of machine learning model (previously published in article I1V)

From the above graphs, it can be seen that the model trained using the Sigmoid
function has a low Mean Square Error (MSE) compared with the one trained using
Hyperbolic Tangent Function. From the graphs of training algorithms, it is seen that the
model with the Sigmoid function is better off than the one with Hyperbolic Tangent
Function. For validation of the results, a validation data set for 500 sets was used and the
comparison results for both are summarized in Table 4.3.
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Figure 4.12. Mean square error (MSE) of model trained with (a) sigmoid function (b) hyperbolic
tangent function (previously published in article 1V)

Table 4.3. Comparison between sigmoid and hyperbolic tangent functions (previously published in
article IV)

Sigmoid Hyperbolic Tangent
Mean square error (MSE) 1.8 3.17
Accuracy 80.41 % 65.48 %

Artificial Intelligence is taking its place in different research fields and is advancing at a
rapid rate. Although there are a lot of machine learning algorithms present for
classification, there is not a specific one that can be altered to one domain. This paper
has presented two variations for a simplified machine learning algorithm with two layers
that are a work in progress but target electrical machines’ diagnostics. The proposed
algorithms are simple and easy to train; they do not need a heavy system or wait for
hours to get the trained model. Among the two variations of the presented approach,
the one with the sigmoid function outperformed the hyperbolic tangent function in
terms of performance.

The study is still a work in progress with future works, including the enhancement of
neural networks to multi-layered algorithms with testing of different functions and
having a consistent result in return. The future works also include further catering it
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towards fault diagnostics of electrical machines and adding some preprocessing, so it can
detect and predict specific faults for electrical machines at the start. This will be further
enhanced to make it a more generic approach.

4.4 Chapter Summary

This chapter covers the generation of synthetic signals using improvised statistical
equations, which can be used to train models for fault detection. This can also help
compensate for the lack of data as training of machine learning models requires big data
sets. The research shows promising results, as the comparative analysis with models
trained using measured signals is good. The accuracy of the trained models using
synthetic signals can be further improved by generating data sets with more
combinations. The chapter also covers the method for resolution improvement of the
frequency spectrum because of discontinuities. This will compensate for the loss of data
while transmission of signal and improve signal strength. Both of these methods will help
generate data sets with improved quality for the training of machine learning models.
The chapter also covers a comparative analysis of custom machine learning models based
on different activation functions to check their validity. It can be seen from the results
that it is possible to implement a simplified custom machine learning model that is solely
focused on electrical machines faults and can help reduce training times and enhance
accuracy for fault detection.
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5 Predictive Fault Detection Algorithm for Electrical
Machines

One of the most crucial parts of predictive maintenance or condition monitoring [108] is
the implementation of machine learning based trained models. The accuracy of these
models depends mainly on the quality of data that is being used for training and its
diversity. Hence, it is always instructed to utilize high quality data samples with all
possible scenarios and an optimal number of features to get better results. Artificial
Neural Networks (ANNs) are the most commonly used models for fault detection
classification. Although other offline models are available for the diagnostics of electrical
machines like FEM [109,110], they are primarily for offline implementation and take
much more time, which is unsuitable for real-time detection. ANNs models are usually
trained with high processing power systems or cloud systems [111,112] to get minimum
training time. However, there might be a chance that the model gets over-trained, so it
is always good to check out the optimal number of samples needed and optimize the
machine learning algorithm.

Data Acqusition Signal Processing Fault Prediction

Machine Learning

Electrical Machine Training for Predictions

Signal Pre-Processing

Identifying Frequency
Components

Comparison Results for
different Models

Identifying Range for
Transitioning State

Dewetron

|
|
|
|
|
|
|
Detection of Results l
|
|
|
|
|
|
|

Data Generation /
Preparation for Machine
Learning Algorithm

Figure 5.1. General overview of the proposed method (previously published in article 1)

Much work is being done on the condition monitoring of electrical machines and fault
detection in electrical machines and bearings. However, not much work is being done in
the field of fault prediction in electrical machines. Some researchers are working in this
domain, but some are utilizing the time domain while other systems are still being
developed or are primarily for offline analysis and diagnostics. Some of the other systems
used in this domain are only utilizing fault detection while gathering data for training, or
there are some commercialized products available, but they are not only expensive, but
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their technology is still not disclosed. This section of the article can be divided into three
parts: (i) Signal Processing, (ii) Data Preparation and (iii) Machine Learning Training and
comparison between trained models. The general overview of the technique is shown in
Figure 5.1.

5.1 Signal Processing

The first step is to process the gathered data and make it suitable for training. The data
gathered through Dewetron is in the time domain, which is converted into the frequency
domain using Fast Fourier Transform (FFT). The approach taken here is considering the
current signature of the electrical machines and the effect of faults on them. A frequency
spectrum of the current signal of electrical machine in logarithmic scale is shown in Figure
5.2.
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Figure 5.2. Frequency spectrum of current sample in logarithmic scale

As a wide range of frequency components are present in the spectrum, the first step
is to identify the most prominent frequency components and filter out the negligible
ones. This will give fewer frequency components and will make identifying distinct
components easier. In this case, the frequency range was decided to be up to 500 Hz as,
after this range, the frequency components amplitude is negligible and is not making any
significant difference. The frequency spectrum after applying the low pass filter for up to
500 Hz is shown in Figure 5.3.
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Figure 5.3. Narrowed down frequency spectrum example

After narrowing down the frequency components used for training, a comparison is
made between the healthy and faulty spectrums to narrow down the frequency
components that make a difference. This comparison is carried out for multiple cases
and data is collected from different induction motors to help identify the correct
frequency components. General spectrums and their difference for one of the samples
are shown in Figure 5.4. Once it is narrowed down, the most prominent components are
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selected to help determine the specific fault. This help simplifies the training more and
these components will be used as one of the basics to complete combinations for the
training of the predictive algorithm.
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Figure 5.4. Frequency spectrum (a) healthy case (b) faulty case (c) difference to identify frequency
components

The data is then further processed to check the amplitude of these frequency
components in healthy and faulty cases. This process is carried out for multiple samples
from different induction machines so that the identified components are universal for
this specific fault. All amplitudes are normalized to lie between the range of 0 — 1 to get
consistent results. Figure 5.5 shows an example of a frequency spectrum for both healthy
and faulty cases with frequency components and amplitudes.
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Figure 5.5. Frequency spectrum with normalized amplitudes (0 — 1) (a) healthy case (b) faulty case
(previously published in article 1)

After going through multiple samples, the changes in amplitude of the frequency
components for both healthy and faulty are singled out. After careful analysis, the
amplitude range for the prominent frequency components for fault occurrence is
determined. Some of the frequency components with their amplitude range for the
healthy case are shown in Table 5.1, whereas the faulty case is shown in Table 5.2. This
range will help specify the fault occurrence probability for the predictive algorithm.
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Table 5.1. Frequency amplitude range for fault occurrence (healthy signal) (previously published in
article 1)

Frequency component (Hz) Minimum amplitude (A) Maximum amplitude (A)
38.45 Hz 0.0031 0.0612
43.33 Hz 0.0022 0.0797
100 Hz 1.3004e-04 0.0460
125.73 Hz 7.5295e-05 0.0139
250.21 Hz 4.92e-05 0.0092
380.86 Hz 2.96e-06 8.56e-04
404.66 Hz 9.1363e-06 0.0049

Table 5.2. Frequency amplitude range for fault occurrence (faulty signal) (previously published in
article 1)

Frequency component (Hz) Minimum amplitude (A) Maximum amplitude (A)

38.45 Hz 4.72e-04 0.0633
43.33 Hz 6.8e-04 0.0841

100 Hz 8.6951e-05 0.0563
125.73 Hz 3.415e-04 0.0140
250.21 Hz 1.50e-04 0.0145
380.86 Hz 3.86e-05 0.0032
404.66 Hz 1.7432e-05 0.0083

After identifying the frequency components and their amplitude ranges for healthy
and faulty cases, the trend of change in amplitude is noted. This will help to generate
data and form combinations for the training of machine learning mode for fault
prediction.

5.2 Faults Considered for Training

The faults considered for training of machine learning models are based on current
signatures. As there are multiple phases of data being defined. After identifying the
ranges and combinations, the next step is to prepare the data for training the machine
learning model. In this case, the data gathered from the electrical machine is either for
the healthy or faulty case. The combinations present are for either of the cases and there
are no such data samples at this point that can predict the movement before fault
occurrence or chances of fault occurrence. To compensate for this lack of data points in
between, we will be using average to get the range value of range between the healthy
and faulty cases. Eq. 5.1 depicts the calculation of frequency amplitudes for the case
between healthy and faulty states.
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_ Yr+yn) (5.1)

t 2

here, y; is the higher average amplitude of the frequency component when it is
transitioning from a healthy to a faulty state. Let's say this is the transition state of the
motor. Whereas y, and y; represents the maximum amplitude of the frequency
component at healthy and faulty states, respectively. This will give the range of values
for the frequency component amplitude between the transitioning state, which can be
used further to determine which combinations can identify the faulty frequency
components. A general overview of the amplitude range of different frequency
components during the transitioning state is shown in Table 5.3.

Table 5.3. Frequency amplitude range for fault occurrence (transition state) (previously published
in article 1)

Frequency Component (Hz) Minimum Amplitude (A) Maximum Amplitude (A)
38.45 Hz 0.0612 0.0633
43.33 Hz 0.0797 0.0841
100 Hz 0.0460 0.0563
125.73 Hz 0.0139 0.0140
250.21 Hz 0.0092 0.0145
380.86 Hz 8.56e-04 0.0032

The difference in ranges for a specific frequency component is graphically shown in
Figure 5.6. This gives an idea about the specific ranges needed to generate combinations
for training a machine learning model as previously published in article I.

Transitioning
State

Overlapping Boundaries

Figure 5.6. Overlapping Frequency Amplitude Range for Three states. (previously published in article 1)
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It can be seen that the ranges might overlap a bit, but it is either on the minimum side
or maximum size of the transitioning state of the motor, which is to be expected. Once
all the ranges of each considered frequency component are determined, the next step is
to divide these ranges further into three parts, i.e., each part will be 30% of the range,
excluding healthy and faulty areas. This will give us some idea about how much of a
chance there is for the occurrence of a fault in the electrical machine. Table 5.4 shows
the division of one of the frequency component amplitudes in the transition state.

Table 5.4. Division of transition state frequency component range for 250.21 Hz frequency
component (previously published in article 1)

Minimum Amplitude (A) Maximum Amplitude (A) Fault Occurrence Probability
0 0.00828 0%
0.00828 0.01052 30 %
0.01052 0.01185 60 %
0.01186 0.01317 90%
0.01317 - 100%

Table 5.4 shows the division of the range for one of the frequency component’s
amplitudes. This will help define the probability of fault occurrence in the incoming signal
and will further enable to determine of the fault occurrence level. Once these are
established, data points are generated based on these ranges, which will then be used
for training the machine learning algorithm. Multiple combinations of these ranges are
created to avoid missing out on any possible scenarios. The generated data is then
combined with the data for healthy and faulty states for the specific frequency ranges
and used for training the machine learning algorithm. The probability of fault occurrence
is taken as an average with a weight of the ranges used in the combination. A weight is
assigned based on the critical value of the frequency component amplitude and in which
range it lies.

For example, for the initial combinations, the range values are the same, so similar
weightage is applied to each range value to determine the probability of the fault
occurrence and the average of those probabilities is taken. This will give us the same
probability of the urgency of the fault that is occurring. The ranges are divided into five
parts for simplicity, as shown in Table 5.4 above. The weightage assigned to each range
is shown in Table 5.5. The final occurrence probability percentage is decided by taking
the average for all frequency components, as shown in Eq. 5.2.

ai+az+az+--+a
— 3 n

f, = Gatazr oot an) (5.2)

n
here, f, is the probability of fault occurrence, whereas a; to a, are the assigned
probabilities to different frequency component amplitudes in the combination and n is
the total number of frequency components present in the combination. This will give an

average probability for the fault occurrence, which is then simplified on the basis of the
division shown in Table 5.5.
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Table 5.5. Division of transition state frequency component range for 250.21 Hz frequency
component (previously published in article 1)

Range Percentage of error Weightage Assigned (0 - 1) Range Percentage of error
0% 0 0%
30% 0.30 30%
60% 0.60 60%
90% 0.90 90%
100% 1.00 100%

This will determine the probability of fault occurrence in the electrical machine.
However, for this research, the probability is rounded off to 0%, 30%, 60%, 90%, and
100% to classify the data for these 5 cases. However, they can be further divided into
multiple options and a machine learning model can be trained based on it. Once the data
is prepared, different machine learning models are used for training the sample data.
The blind validation method was used to determine the accuracy of the trained model.

5.3 Predictive Model Results

After completing the data points, the next step is to train machine learning models based
on those data sets and validate the results to see if they predict the occurrence correctly
or not. To ensure we cover all possible cases, healthy and faulty data points for validation
were gathered from running electrical machines, whereas the data points for validation
for transitioning state were randomly generated from the defined ranges. For
comparison purposes, five different kinds of machine learning algorithms were selected
and models were trained using those models.

For machine learning, different neural network algorithms were trained to compare
purposes. As this is the initial stage of the proposed algorithm, the data points used for
training the machine learning based models were around 68,000 data samples with a
validation sample count of 6800 data samples. These initial tests were carried out on
smaller data sets and might need to be tested for bigger data sample sets. Each range
was assigned a classification label which is shown in Table 5.6.

Table 5.6. Classification assigned per range of error (previously published in article 1)

Range Percentage of error Classification Label Assigned
0% 1
30% 2
60% 3
90% 4
100% 5
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Machine Learning models were trained based on blind validation, i.e., the samples
used for validation were not used for the training of the models. A total of eight
models were considered, with the majority from neural networks for classification.
A comprehensive comparison between the accuracies of these models is given in Table
5.7. The confusion matrix for the validation results of the two models is shown in Figure
5.7.
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Figure 5.7. Machine learning results (previously published in article 1) (a) narrow neural network
(b) wide neural network
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As can be seen from Table 5.7, all of the neural network techniques performed well,
whereas the others were near. This might be because the data set is small and not too
big; further experiments need to be done with bigger data sets to confirm results.

Table 5.7. Comparison results (previously published in article 1)

Machine Learning Algorithm Accuracy (validation)
Course tree 93.9%
Gaussian naive bayes 88.6 %

Fine KNN 97.1%
Narrow neural network 99.3%
Medium neural network 99.3%
Wide neural network 99.6 %
Bilayered neural network 99.3%
Trilayered neural network 99.1%

5.4 Chapter Summary

This chapter proposes a novel technique for fault prediction of electrical machines.
The technique is based on frequency spectrum fluctuations of the signal from electrical
machines. As most of the electrical faults generate fluctuations in the current signature,
this technique utilizes those fluctuations to train machine learning models for the
prediction of electrical faults that occur in the incoming signals. This is a new concept
and might need some more research to validate and improve the method further.
The case study presents the result in the case of broken rotor bars; it can be seen from
the results that it is indeed possible to predict the occurrence of faults in the electrical
machine with higher accuracy based on the presented algorithm. The study shows
promising results and predictive maintenance can be achieved using the proposed
method. However, it would still be beneficial to test the algorithm with different complex
combinations of faults and for different data sets to improve and validate its results.
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6 Conclusion and Future Work

This chapter concludes the results of the research study based on the objectives.
Moreover, some suggestions are added related to future work for the advancement of
this study.

6.1 Conclusion & Summary

The main objective of this research was based on two points. The first was to develop a
cost-efficient data acquisition system that can be utilized for remote locations and is easy
to integrate. The second was to develop an algorithm for fault predictions in electrical
machines based on current signatures.

The main emphasis on the data acquisition system was that it should be cost-efficient
and reliable, with the ability to work in small places and remote locations. To achieve
these conditions, a data acquisition system consisting of microcontroller cards along with
the combination of Raspberry Pi was proposed so that there is a local backup of the
collected data at Pi and it is possible to scale it easily in the future. The proposed system
is also cost-efficient, scalable, reliable and flexible, as multiple microcontroller cards can
be attached to the local node. Each microcontroller card can have multiple sensors
attached to it; this can enable the formation of a cluster with one node acting as the
control unit. Different loT protocols were tested out to find the correct one and the data
transmission protocol between the microcontroller card and Raspberry Pi was also
verified over a period of weeks to make sure no data is being lost during transmission.
For the research study, the data acquisition card is linked with the cloud and the data is
synced online with the cloud database, which is then shown at the front end using a
dashboard system.

The other part of the objective was to develop an algorithm for fault prediction of
electrical machines, which does not take much time and could be implemented in real-
time. To achieve this part, machine learning models were considered for training models
to detect electrical machine faults. But as machine learning models require a large
quantity of data to train more accurate models, the research was further expanded to
see how the data can be generated using statistical equations. To reach this goal,
statistical equations for different signatures frequencies of faults were considered, but
as there was already broken rotor bars physical setup available in the lab, it was preferred
over others. The study shows that models trained using synthetic signals give comparable
results to that of models trained using real signals and if more data is generated covering
all the possible values of prominent frequency components for fault, it might even be
possible to give better results.

Another issue that came to light was the machine learning algorithm that was used for
training, as different datasets with different fault combinations might give a different
machine learning algorithm with higher accuracy. To resolve the issue, the study was
taken for the development of a custom machine learning algorithm with different
activation functions and different functions on hidden layers solely with a focus on
electrical machine faults detection. The initial results of the study show promising results,
with the accuracies still lower than that of the currently available algorithms, but the
training time is lower or comparable. This study is still in its earlier phases and needs
more time to develop.

On the signal processing side, for the development of an algorithm for the prediction
of faults, the current signature spectrum was analyzed with the most prominent
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frequency components singled out that show fluctuations during fault occurrence. Those
frequency components are then processed and utilized to determine a transit state
between a healthy and faulty state which is used for training machine learning models to
give a percentage prediction on the chances of fault occurrence in the incoming signal.
The technique proposed gives promising results for multiple faults combination, but
there is still a need to validate it further with more complex combinations and faults.

The test rig was used with broken rotor bars and bearing faults, where several
experiments were performed with the motor running under different control
environments and loads. The results for the data acquisition system were verified by
using Dewetron in the test rig and for algorithms trained were compared with real signals
that were needed for validation.

6.2 Future Work

The proposed model can be further validated with different combinations of faults and
can be shifted from in lab setup to the industrial environment. Especially the data
acquisition setup can be extended to implement hardware on-premises trained models
for real-time detection and prediction of electrical machine faults.

The trained models also need to be validated for bigger data sets and more complex
combinations of faults and in the industrial environment. The synthetic signals method
can open up new ways for the generation of faulty data for different faults of electrical
machines without much expense and further synthetic signals for different faults should
be generated for validation of the method. It might open up a whole new way for the
industry to get better trained models in less time and cut down the hassle of setting up
a physical setup for data gathering.

The custom machine learning model should be studied and developed more as it can
provide a consistent accuracy for faults involving electrical machines and yield a higher
accuracy as it can be developed into a self-learning model. This will help the
implementation of only one universal model in the industry with respect to fault
detection and prediction in the electrical machine.

The prediction model based on spectrum analysis and machine learning can further be
enhanced by validating it in the industrial environment and on larger datasets with
multiple combinations of faults. It should also be tested out in real-time scenarios by
implementing it on the node to see its performance for a longer period.
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Abstract

loT based tools and methods for electrical machine
diagnostics

The thesis aims to study the development of different cost-efficient tools and methods
based on the Internet of Things (IoT) that can be utilized for the predictive maintenance
of electrical machines, which should allow the implementation of diagnostics and
prognostics of the electrical machine in real-time. The purpose of doing so is to develop
a diagnostic system for remote or off-shore electrical machines so that the maintenance
of such electrical machines can be shifted from scheduled to predictive maintenance.
The second prime objective is to study different faults in the electrical machine that
generate unique current signatures and develop an algorithm using signal processing and
machine learning to detect and predict those faults at an early stage. Another prime
objective is to explore ways to generate or gather more data for different faults to train
machine learning algorithms, as building an in-lab setup with the faults physically
inflicted is expensive and it takes time to gather different faulty signals in such a way.

The data acquisition system based on microcontroller cards was considered as a
starting point. As the data acquisition cards available on the market are expensive and
they need a system separately to be able to extract data using them and also most of the
setups readily available were using either PLC or SCADA, microcontroller cards were
considered based on their flexibility, scalability and reliability. Different microcontroller
cards were compared based on their processing power and the ability to transmit data
to the cloud for a longer period of time using loT protocols, but they had a limitation with
respect to data transmission as loss of data was observed based on interruptions or
delays in the network. The data collected through the data acquisition system is also
compared with the one collected through Dewetron to validate data accuracy and to
make sure there is no loss of data.

To address this shortcoming of the system, Raspberry Pi was attached as a separate
node with the microcontroller card and the data is now transmitted to the Pi, where it is
stored in a local database as a backup and synced with the cloud in real-time. So even if
there is a network interrupt, the data can still be recovered from the local database and
synced with the cloud without any issue. This setup also gives the flexibility and
processing power to implement a machine learning model on-premises in the future and
can further be expanded into a cluster with one Raspberry Pi acting as the control unit
for different nodes.

Moreover, another scope was to train machine learning models for fault detection of
electrical machines. For this purpose, broken rotor bars and bearings faults were
considered for the case study. Test rigs were implemented in the lab with the faults
physically inflicted to gather data for the faulty state of the motor. The collected signal
was pre-processed to remove any noise that was present and fast Fourier transform (FFT)
was used to study the fluctuations of frequency components between healthy and faulty
states. The most prominent frequency components are extracted and then utilized for
the training of machine learning models for fault detection. The blind validation of
machine learning models gives different models with higher accuracy based on the
combination of faults. Thus, limiting the options for simpler combinations, as for complex
combinations, the neural network gives the best accuracy but takes more time for
training, similarly for recurring neural networks. This gave way to implement a simple
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custom machine learning algorithm focused on electrical machine faults to help compare
the accuracy with present algorithms. This study is still in development and is only in its
early stage.

Moreover, another issue that is faced is gathering enough data for the training of
machine learning algorithms. As the physical implementation of faults for in lab setup
takes time and is expensive so it is not possible to implement each fault of the electrical
machine in the physical setup. To address this issue, the method for the generation of
synthetic signals using statistical equations is proposed. The statistical equation for
signature faults of electrical machines is utilized to derive an improvised version of the
statistical equation to generate synthetic signals, including those faults. Broken rotor
bars (BRB) faults are considered for this study, the improvised statistical equations are
used to generate synthetic signals for one, two and three broken rotor bars along with a
healthy state. The trained model based on these synthetic signals is then used for blind
validation for real signals and a comparison is also made with a model trained with real
signals gathered from physical setup having BRB faults.

Moreover, the spectrum of current was further analyzed to develop an algorithm with
signal processing and machine learning to give a probable prediction of fault occurrence
in the electrical machine. The proposed method focuses on the most prominent
frequency components that show fluctuations in their current spectrum in the presence
of a fault and extract those features to define a transit state between a healthy and faulty
state. This transit state is further divided into three parts to define the probability of
fault occurrence in the electric machine. The algorithm is a step towards developing a
self-learning algorithm that can be deployed on nodes to implement fault prediction at
the hardware on-premises.
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Liihikokkuvote

Asjade interneti pohised tooriistad ja meetodid
elektrimasinate diagnostikaks

LOoputdod eesmdrk on uurida erinevate kuluefektiivsete vahendite ja meetodite
véljatodtamist, mis pdhinevad asjade internetil (10T), mida saab kasutada elektrimasinate
ennetavaks hoolduseks, mis peaks vdimaldama elektrimasinate diagnostika ja
prognostika rakendamist reaalajas. Selle eesmark on td6tada vadlja diagnostikasiisteem
keeruliselt ligipadsetavate elektrimasinate jaoks, et selliste elektrimasinate hooldus
saaks minna Ule plaaniparaselt hooldamiselt prognoositavale hooldusele. Teine peamine
eesmark on uurida erinevaid elektrimasinas esinevaid rikkeid, mis tekitavad unikaalseid
voolusignaale, ning to6tada vélja signaalitéotiuse ja masindppe abil algoritm, et neid
rikkeid varakult avastada ja prognoosida. Samuti uuritakse véimalusi, kuidas luua voi
koguda rohkem andmeid erinevate rikete kohta, et treenida masindppe algoritme, sest
flusiliselt tekitatud riketega laborististeemi loomine on kallis ja erinevate vigade
signaalide kogumine sellisel viisil vétab aega.

Lahtepunktiks vBeti mikrokontrolleri kaartidel p&hinev andmete kogumise siisteem.
Kuna turul saadaolevad andmekogumiskaardid on kallid ja nende abil andmete
kogumiseks on vaja eraldi siisteemi ning enamik kergesti kadttesaadavaid seadistusi
kasutas kas PLC v6i SCADA lahendust, kaaluti mikrokontrolleri kaarte nende paindlikkuse,
skaleeritavuse ja tookindluse alusel. Erinevaid mikrokontrolleri kaarte vorreldi nende
tootlemisvdimsuse ja vGime alusel edastada andmeid pilve pikema aja jooksul asjade
interneti protokollide abil, kuid neil oli andmete edastamise osas piiranguid, kuna vérgus
esinevate katkestuste voi viivituste tottu tdheldati andmekaotust. Andmete kogumise
slisteemi kaudu kogutud andmeid vorreldakse ka Dewetroni andmehdivesiisteemi kaudu
kogutud andmetega, et kinnitada andmete tdpsus ja veenduda, et andmeid ei ole
kaduma ldinud.

Selle susteemi puuduse kdrvaldamiseks kinnitati Raspberry Pi eraldi sdlmpunktina
koos mikrokontrolleri kaardiga ja andmed edastatakse niilid Raspberry Pi’le, kus need
salvestatakse varukoopiana kohalikku andmebaasi ja slinkroonitakse reaalajas pilvega.
Nii et isegi kui vorgus tekib katkestus, saab andmed ikkagi taastada kohalikust
andmebaasist ja slinkroonida pilvega ilma probleemideta. Selline llesehitus annab ka
paindlikkuse ja tootlemisvdoimsuse, et tulevikus rakendada masinGppe mudelit kohapeal,
ning seda saab veelgi laiendada klastriks, kus (iks Raspberry Pi tegutseb eri sGlmede
juhtimisiiksusena.

Lisaks sellele oli teine eesmérk koolitada masindppe mudeleid elektrimasinate rikete
tuvastamiseks. Sel eesmargil kasitleti juhtumiuuringu puhul purunenud rootori vardaid
ja laagrite rikkeid. Rikked tekitati fuusiliselt laboris asuvatele katseseadmetele, et koguda
andmeid mootori rikkeseisundi kohta. Kogutud signaali eelt6ddeldi, et eemaldada miira,
ja kasutati kiiret Fourier' teisendust (FFT), et uurida sageduskomponentide kdikumisi
tervete ja riketega olukordade vahel. Kéige silmapaistvamad sageduskomponendid
eraldati ja seejarel kasutati neid masinGppe mudelite treenimiseks rikke tuvastamiseks.
MasinOppe mudelite pime-valideerimise tulemusel saadakse erinevad suurema
tapsusega mudelid, mis pohinevad rikete kombinatsioonil. Seega on lihtsamate
kombinatsioonide puhul tuvastamisvéimalused piiratumad, kuna keerukate
kombinatsioonide puhul annab narvivork parema tdpsuse, kuid votab rohkem aega,
sarnaselt korduvate narvivorkude puhul, votab Oppimine rohkem aega. See annab
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vOimaluse koostada lihtne kohandatud masindppe algoritm, mis keskendub
elektrimasinate riketele, et vGimaldada vorrelda tapsust praeguste algoritmidega. See
uuring on veel algusjargus.

Probleemiks osutub piisavate andmete kogumine masinGppe algoritmide
treenimiseks. Kuna rikete flsiline tekitamine laboris votab aega ja on kallis, siis ei ole
otstarbekas iga elektrimasinaga seotud riket fllsilises seadeldises rakendada. Selle
probleemi lahendamiseks pakutakse vilja meetod sinteetiliste signaalide
genereerimiseks statistiliste vorrandite abil. Elektrimasinate rikkeid kasitlevat statistilist
vorrandit kasutatakse statistilise vorrandi improviseeritud versiooni tuletamiseks, et luua
suinteetilisi signaale, sealhulgas kasitletavate rikete puhul. Kdesolevas uuringus vBetakse
arvesse rootorivarraste rikkeid, improviseeritud statistilisi vGrrandeid kasutatakse
slinteetiliste signaalide genereerimiseks tihe, kahe ja kolme katkise rootorivarda puhul
ning riketeta rootori olukorras. Nende siinteetiliste signaalide pdhjal koolitatud mudelit
kasutatakse seejarel reaalsete signaalide pimedaks valideerimiseks ning seda
vorreldakse mudeliga, mis on koolitatud reaalsete signaalidega, kogutud varraste
riketega flilisilisest katseseadmest.

Lisaks analliUsiti tdiendavalt vooluspektrit, et to6tada valja signaalitdéotluse ja masinGppe
abil algoritm, mis annaks tdendolise prognoosi rikke esinemise kohta elektrimasinas.
Viljapakutud meetod keskendub kdige tugevamatele sageduskomponentidele, mis
naitavad rikke esinemise korral vooluspektri kdikumisi, ja ekstraheerib need omadused,
et maaratleda tGlemineku seisund terve ja rikke seisundi vahel. See lGlemineku seisund
jaguneb omakorda kolmeks osaks, et madratleda rikke esinemise t&endosus
elektrimasinas. Algoritm on samm isedppiva algoritmi valjatootamise suunas, mida saab
kasutada s6lmedes, et rakendada rikete ennustamist riistvaras kohapeal.
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Abstract: Industrial revolution 4.0 has enabled the advent of new technological advancements,
including the introduction of information technology with physical devices. The implementation
of information technology in industrial applications has helped streamline industrial processes and
make them more cost-efficient. This combination of information technology and physical devices
gave birth to smart devices, which opened up a new research area known as the Internet of Things
(IoT). This has enabled researchers to help reduce downtime and maintenance costs by applying
condition monitoring on electrical machines utilizing machine learning algorithms. Although the
industry is trying to move from scheduled maintenance towards predictive maintenance, there is
a significant lack of algorithms related to fault prediction of electrical machines. There is quite a
lot of research going on in this area, but it is still underdeveloped and needs a lot more work. This
paper presents a signal spectrum-based machine learning approach toward the fault prediction
of electrical machines. The proposed method is a new approach to the predictive maintenance of
electrical machines. This paper presents the details regarding the algorithm and then validates the
accuracy against data collected from working electrical machines for both cases. A comparison
is also presented at the end of multiple machine learning algorithms used for training based on
this approach.

Keywords: artificial intelligence; fault prediction; predictive maintenance; machine learning;
neural network

1. Introduction

The advancement in information technology and its integration with other fields have
opened up new research and development areas. This has also resulted in the revolution
of industrial standards with the massive turn of events along with the introduction of
industrial standards 4.0 [1]. This has helped industries streamline processes and make them
more efficient and cost-effective. The integration of information technology with physical
devices developed a whole new domain, which has become the core of the modern industry
and resulted in the advent of smart devices. This has made it easier for industries to reduce
shutdown times and help tackle issues in a more systematic way. Smart devices can
communicate with each other over the internet and make decisions or pinpoint the issues in
the system, which has made the industrial process smoother. This field of development of
smart devices and their communication over a network (or internet) is commonly referred
to as the Internet of Things (IoT) [2,3]. These devices can not only communicate with
each other, but they also can act as end nodes for data collection from electrical machines
using sensors. This process is known as condition monitoring of electrical machines as
the data are transmitted in real-time through smart devices and monitored in real-time.
This helps monitor the health of the electrical machine and reduces shutdown times in
case of fault occurrence. This collected data can further be used for training models for
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real-time fault detection, fault prediction, data analysis, and diagnostics of the connected
machine [4-7]. IoT has cemented its position in industrial applications, become one of the
fundamental pillars of modern industry [8], and further enhanced its importance due to
predictive maintenance research [9-13].

This advancement has helped the industry to switch from scheduled maintenance
towards predictive maintenance and real-time condition monitoring of electrical machines.
Condition monitoring of electrical machines is now a standard implementation in any
modern industry [14,15]. Data collection for further data analysis is a core part of this system
that helps develop predictive maintenance systems [10,16]. In general, electrical machine
maintenance can be divided into four phases: periodic, proactive, reactive, and predictive
maintenance. Most of the industry still works with periodic and reactive maintenance, i.e.,
scheduled maintenance or when a machine is down, as shown in Figure 1. There is an
uptrend to move towards proactive and predictive maintenance as it is more cost-efficient
and productive. This move is mainly possible because of the recent development in the
field of IoT and research on the development of more accurate machine learning-trained
models for electrical machines with high-quality data collected with the help of condition
monitoring systems.

Reactive
(Fix when the equipment is
dovwn)

>

Periodic

—
(Scheduled Maintenance)

Maintenance Stages
of
Electrical Machines Proactive

———»  (Eliminate defects on an
Early Stage)

Predictive
_— (Use Analytics to Predict
Machine Failure)

Figure 1. Maintenance phases of an electrical machine.

Condition monitoring systems are implemented concerning electrical machines and
making their way into other industries. Currently, most of the work related to classification
or detection using such systems is in the health domain [17-19]. Wearable devices are used
to monitor patients for any abnormal health conditions [16,17] so that doctors can react
quickly if a problem occurs. The development of such systems has also made its way into en-
vironmental control, where systems have been developed for monitoring air pollution [20],
carbon dioxide [21], and solar power [22]. Systems are also being developed to monitor
and control residential buildings, making them into smart homes [23] and monitoring
grids, and controlling network congestion. With the development of condition monitoring
systems, researchers are now looking at cost-effective systems, especially in the domain of
electrical machines, with more work being done on microcontroller boards. This can help
gather data, especially from off-shore electrical machines. Hence, condition monitoring
systems are being developed, which are particularly targeted toward weather sensors [24]
and wind turbines [25-27]. Researchers are also looking into a more portable approach
towards condition monitoring systems with the advancement of electrical machines, which
can give better mobility and less complexity [20,28-31].

The recent advancement in micro-controller boards has made way for the development
of condition monitoring systems [7,32,33] utilizing these boards as it is not only cost-efficient



Energies 2022, 15, 9507

30f16

but flexible and scalable too. This work is still in its early stages and is underdeveloped.
Most of the condition monitoring systems designed using this approach lack the sampling
frequency of data acquired through it, as generally, it is kept low. However, work is
being done for higher sampling frequency and more stable data acquisition systems based
on micro-controller boards [7,34]. These micro-controller boards are scaling at a rapid
pace with their safety, security, and power taken into account. Soon, it will be enough to
develop more stable and faster data acquisition systems utilizing these boards, with will
be cost-efficient and productive compared to currently available data acquisition systems.
Currently, most of the data acquisition systems in place are either developed with SCADA
or PLC [35-38], which are complex to use and expensive. Data acquisition cards are
available in the market but are expensive compared to micro-controller boards and need a
separate system to set up.

One of the most crucial parts of predictive maintenance or condition monitoring [39]
is the implementation of machine learning-based trained models. The accuracy of these
models depends mainly on the quality of data used for training and their diversity. Hence,
it is always instructed to utilize high-quality data samples with all possible scenarios and
an optimal number of features to get better results. Artificial Neural Networks (ANNs)
are the most commonly used models for fault detection classification. Although other
offline models are available for the diagnostics of electrical machines like FEM [40,41], they
are primarily for offline implementation and take much more time, which is unsuitable
for real-time detection. ANNs models are usually trained with high processing power
systems or cloud systems [42,43] to get minimum training time. However, there might be a
chance that the model gets over-trained, so it is always good to check the optimal number
of samples needed and optimize the machine learning algorithm.

Much work is being done on the condition monitoring of electrical machines [12] and
fault detection [44] in electrical machines and bearings [45,46]. However, not much work
is being done in the field of fault prediction in electrical machines. Some researchers are
working in this domain, but some are utilizing the time domain while other systems are
still being developed or are primarily for offline analysis and diagnostics [16,47]. Some of
the other systems used in this domain only utilize fault detection while gathering data for
training, or there are some commercialized products available. However, they are not only
expensive, but their technology is still not disclosed.

This article presents a new signal spectrum-based approach for fault prediction in
electrical machines based on signal processing and machine learning. Different machine
learning models are trained using the data generated through the proposed method to
check their accuracy and performance. A comparison between different neural networks is
also given to help choose the best suited for this case.

2. Methodology

This section of the article can be divided into three parts: (i) Signal Processing, (ii) Data
Preparation, and (iii) Machine Learning Training and comparison between trained models.
The method proposed here is a new approach to fault prediction of electrical machines
utilizing the frequency spectrum. This article includes the spectrum of an induction
machine with broken rotor bar faults. In this article, one broken rotor bar is used as a
reference for a faulty case. The method includes data gathered through Dewetron from
multiple induction motors for healthy and faulty cases. The general overview of the
data acquisition for the article, including the proposed method, is shown in Figure 2.
The acquired data are preprocessed to get distinct features in healthy and faulty cases,
which will be explained below. The processed data are then used for data generation
to cover expected cases, and a model is trained to test it with real-time data from the
induction machine.
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Figure 2. Data acquisition experimental setup.

As it is difficult to gather data for each scenario, primarily when the fault is generated
or is about to be generated, it is of utmost importance to consider all the possible cases
and the effect of fault frequency components. Researchers work on generating this data
using Simulink models or statistical equations to cover more situations and gather more
data samples. However, this approach usually does not consider the effect of external
parameters on the electrical machine. Here, a more straightforward approach is taken
to generate missing data in between or to cover all the expected outcomes. The general

overview of the paper is shown in Figure 3.

Data Acquisition Signal Processing Fault Prediction

Machine Learning

Electrical Machine Signal Pre-Processing - i Training for Predictions

ng Frequency | ; .
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Data Generation /
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Learning Algorithm

Figure 3. General overview of the proposed method in the article.
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2.1. Signal Processing

The first step is to process the gathered data and make it suitable for training. The data
gathered through Dewetron are in the time domain, which is converted into the frequency
domain using Fast Fourier Transform (FFT). The approach taken here is considering the
current signature of the electrical machines and the effect of faults on them. A compar-
ison between the entire frequency spectrum of both healthy and faulty cases is shown
in Figure 4a. The spectrum is also shown in the logarithmic scale in Figure 4b for better
understanding.
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Figure 4. Frequency spectrum of current sample (a) general scale (b) logarithmic scale.

As a wide range of frequency components are present in the spectrum, the first step is
to identify the most prominent frequency components and filter out the negligible ones.
This will give fewer frequency components and will make identifying distinct components
easier. In this case, the frequency range was decided to be up to 500 Hz as, after this
range, the frequency component amplitude is negligible and is not making any significant
difference. The frequency spectrum after applying the cut-off is shown in Figure 5.
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Figure 5. Narrowed down frequency spectrum example.

After narrowing down the frequency components used for training, a comparison is
made between the healthy and faulty spectrums to narrow down the frequency components
that make a difference. This comparison is carried out for multiple cases, and data are
collected from different induction motors to help identify the correct frequency components.
General spectrums and their difference for one of the samples are shown in Figure 6. Once
it is narrowed down, the most prominent components are selected to help determine the
specific fault. This help simplifies the training more, and these components will be used as
one of the basics to complete combinations for the training of the predictive algorithm.
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Figure 6. Cont.
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Faulty Frequency Spectrum
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Figure 6. Frequency spectrum (a) healthy case, (b) faulty case, (c) difference to identify

frequency components.

The data are then further processed to check the amplitude of these frequency com-
ponents in healthy and faulty cases. This process is carried out for multiple samples from
different induction machines so that the identified components are universal for this specific
fault. All amplitudes are normalized to lie between the range of 0-1 to get consistent results.
Figure 7 shows an example of a frequency spectrum for both healthy and faulty cases with
frequency components and amplitudes.
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Figure 7. Frequency spectrum with normalized amplitudes (0-1) (a) healthy case, (b) faulty case.

After going through multiple samples, the changes in amplitude of the frequency com-
ponents for both healthy and faulty are singled out. After careful analysis, the amplitude
range for the prominent frequency components for fault occurrence is determined. Some of
the frequency components with their amplitude range for the healthy case are shown in
Table 1, whereas the faulty case is shown in Table 2. This range will help specify the fault

occurrence probability for the predictive algorithm.

Table 1. Frequency amplitude range for fault occurrence (healthy signal).

Frequency Component (Hz)

Minimum Amplitude (A)

Maximum Amplitude (A)

38.45 Hz 0.0031
43.33 Hz 0.0022
100 Hz 1.3004 x 10~
125.73 Hz 7.5295 x 1075
250.21 Hz 492 x 107°
380.86 Hz 2.96 x 107
404.66 Hz 9.1363 x 10~°

0.612
0.0797
0.0460
0.0139
0.0092

8.56 x 10~4
0.0049
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Table 2. Frequency amplitude range for fault occurrence (faulty signal).
Frequency Component (Hz) Minimum Amplitude (A) Maximum Amplitude (A)

38.45 Hz 4.72 x 1074 0.0633
43.33 Hz 6.8 x 1074 0.0841

100 Hz 8.6951 x 1075 0.0563
125.73 Hz 3415 x 1074 0.0140
250.21 Hz 150 x 1074 0.0145
380.86 Hz 3.86 x 107° 0.0032
404.66 Hz 1.7432 x 1075 0.0083

After identifying the frequency components and their amplitude ranges for healthy
and faulty cases, the trend of change in amplitude is noted. This will help to generate data
and form combinations for the training of machine learning mode for fault prediction.

2.2. Data Preparation

After identifying the ranges and combinations, the next step is to prepare the data
for training the machine learning model. In this case, the data gathered from the electrical
machine are either for the healthy or faulty case. The combinations present are for either of
the cases, and there are no such data samples at this point that can predict the movement
before fault occurrence or chances of fault occurrence. To compensate for this lack of data
points in between, we will be using average to get the range value of range between the
healthy and faulty cases. Equation (1) depicts the calculation of frequency amplitudes for
the case between healthy and faulty states.

yr = W 1)

Here, y; is the higher average amplitude of the frequency component when it is
transitioning from a healthy to a faulty state. Let us say this is the transition state of
the motor, whereas y; and y represent the maximum amplitude of the frequency com-
ponent at healthy and faulty states, respectively. This will give the range of values for
the frequency component amplitude between the transitioning state, which can be used
further to determine which combinations can identify the faulty frequency components. A
general overview of the amplitude range of different frequency components during the
transitioning state is shown in Table 3.

Table 3. Frequency amplitude range for fault occurrence (transition state).

Frequency Component (Hz) Minimum Amplitude (A) Maximum Amplitude (A)
38.45Hz 0.612 0.0633
4333 Hz 0.0797 0.0841
100 Hz 0.0460 0.0563
125.73 Hz 0.0139 0.0140
250.21 Hz 0.0092 0.0145
380.86 Hz 8.56 x 1074 0.0032

The difference in ranges for a specific frequency component is graphically shown in
Figure 8. This gives an idea about the specific ranges needed to generate combinations for
training a machine learning model.
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Transitioning
State

Overlapping Boundaries

Figure 8. Overlapping frequency amplitude range for three states.

It can be seen that the ranges might overlap a bit, but it is either on the minimum side
or maximum size of the transitioning state of the motor, which is to be expected. Once
all the ranges of each considered frequency component are determined, the next step is
to divide these ranges further into three parts, i.e., each part will be 30% of the range,
excluding healthy and faulty areas. This will give us some idea about how much of a
chance there is for the occurrence of a fault in the electrical machine. Table 4 shows the
division of one of the frequency component amplitudes in the transition state.

Table 4. Division of transition state frequency component range for 250.21 Hz frequency component.

Minimum Amplitude (A) Maximum Amplitude (A) Fault Occurrence Probability
0 0.00828 0%
0.00828 0.01052 30%
0.01052 0.01185 60%
0.01186 0.01317 90%
0.01317 - 100%

Table 4 shows the division of the range for one of the frequency component’s am-
plitudes. This will help define the probability of fault occurrence in the incoming signal
and will further enable the determination of the fault occurrence level. Once these are
established, data points are generated based on these ranges, which will then be used for
training the machine learning algorithm. Multiple combinations of these ranges are created
to avoid missing out on any possible scenarios. The generated data are then combined with
the data for healthy and faulty states for the specific frequency ranges and used for training
the machine learning algorithm. The probability of fault occurrence is taken as an average
with a weight of the ranges used in the combination. A weight is assigned based on the
critical value of the frequency component amplitude and in which range it lies.

For example, for the initial combinations, the range values are the same, so similar
weightage is applied to each range value to determine the probability of the fault occurrence,
and the average of those probabilities is taken. This will give us the same probability of the
urgency of the fault that is occurring. The ranges are divided into five parts for simplicity,
as shown in Table 4 above. The weightage assigned to each range is shown in Table 5. The



Energies 2022, 15, 9507

11 of 16

final occurrence probability percentage is decided by taking the average for all frequency
components, as shown in Equation (2).

(a1 +ay+as+...+ay)
n

fr= @

Here, f, is the probability of fault occurrence, whereas a1 to a, are the assigned
probabilities to different frequency component amplitudes in the combination, and # is
the total number of frequency components present in the combination. This will give an
average probability for the fault occurrence, which is then simplified based on the division
shown in Table 4. The general overview of the data points combination example used for
training the machine learning mode is shown in Figure 9.

Table 5. The weightage assigned to the range of amplitude of frequency component.

Range %Age of Error Weightage Assigned (0-1)

0% 0
30% 0.3
60% 0.6
90% 0.9

100% 1

Random Generated
Value in one of the

Random Generated Random Generated

Value in one of the Value in one of the

Ranges Ranges Ranges

Probability of that range Probability of that range

Probability of that range

Average of Probabilities
- = for the generated

Sample

Final Probability of
Fault Occurence

Figure 9. Training data points example.

This will determine the probability of fault occurrence in the electrical machine. How-
ever, for this research, the probability is rounded off to 0%, 30%, 60%, 90%, and 100% to
classify the data for these five cases. However, they can be further divided into multiple
options, and a machine learning model can be trained based on them. Once the data are
prepared, different machine learning models are used for training the sample data. The
blind validation method was used to determine the accuracy of the trained model.
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2.3. Machine Learning Training and Comparison

After completing the data points, the next step is to train machine learning models
based on those data sets and validate the results to see if they predict the occurrence
correctly or not. To ensure we cover all possible cases, healthy and faulty data points for
validation were gathered from running electrical machines, whereas the data points for
validation for transitioning state were randomly generated from the defined ranges. For
comparison purposes, five different kinds of machine learning algorithms were selected,
and models were trained using those models.

For machine learning, different neural network algorithms were trained to compare
purposes. As this is the initial stage of the proposed algorithm, the data points used
for training the machine learning based models were around 68,000 data samples with
a validation sample count of 6800 data samples. These initial tests were carried out on
smaller data sets and might need to be tested for bigger data sample sets. Each range was
assigned a classification label, which is shown in Table 6.

Table 6. Classification assigned per range of error.

Range %Age of Error Classification Label Assigned
0% 1
30% 2
60% 3
90% 4
100% 5

Machine learning models were trained based on blind validation, i.e., the samples used
for validation were not used for the training of the models. A total of eight models were
considered, with the majority from neural networks for classification. A comprehensive
comparison between the accuracies of these models is given in Table 7. The confusion
matrix for the validation results of the two models is shown in Figure 10.

Model 2.25 (Narrow Neural Network)

1.8%

100.0%

100.0%

IS

True Class

o

0.7%

100.0% 100.0% 100.0%

FDR 0.7% 18%

3
Predicted Class

(a)

Figure 10. Cont.
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Model 2.27 (Wide Neural Network)

1.0%

99.6%

100.0%

100.0%

True Class

5 0.4%

100.0% 100.0% 99.0%

FDR 0.4% 0.1% 1.0%
1 2 3 4 5
Predicted Class

Figure 10. Machine learning results (a) narrow neural network, (b) wide neural network.

Table 7. Comparison results.

Machine Learning Algorithm Accuracy (Validation)
Course Tree 93.9%
Gaussian Naive Bayes 88.6%
Fine KNN 97.1%
Narrow Neural Network 99.3%
Medium Neural Network 99.3%
Wide Neural Network 99.6%
Bilayered Neural Network 99.3%
Trilayered Neural Network 99.1%

As can be seen from Table 7, all of the Neural Network techniques performed well,
whereas the others were nearby. This might be because the data set is small and not too big.
Further experiments need to be done with bigger data sets to confirm results.

3. Discussion and Conclusions

There has been much research in predictive maintenance, but it is still lacking a good
predictive maintenance algorithm. Most of the algorithms being utilized at the moment
are related to fault detection, and work is still under development in the area of the
prediction of faults. Some commercial products are available in the market, but they are
too expensive and company-dependent. Moreover, the technology included for these
products is confidential but includes both hardware and software. The algorithm presented
in this paper is a step towards a stable and general-purpose approach for fault prediction
in electrical machines, which can be implied to different faults.

This paper proposes a novel single-spectrum-based approach for the predictive main-
tenance of electrical machines. This is a new concept and might need some more refinement
and research. The method presented here is based on the current signature fluctuations
because of faults in electric machines and utilizing those changes to predict faults. There is
only one fault considered for this research, i.e., a broken rotor bar in the electrical machine
for reference.
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There are two different parts of the presented approach; one is signal processing,
whereas the other is the preparation of data samples for training a machine learning model
for fault prediction. The proposed method and experiment show a promising result. The
data set used for training is small, which might be one reason for the higher accuracy
of neural network models. Nevertheless, this shows that predictive maintenance can be
achieved using the proposed method. There is still a need to test the approach on a bigger
data set with more faulty scenarios and combinations. Although the method needs initial
processing to be processed on the incoming signals before giving it to detection, it does not
take much time, and the models can be implemented and tested in real-time scenarios.

However, there is still a need to improve the method and include different faults of the
electrical machines and also work on multiple combinations between transition, healthy
and faulty states. This will make the algorithm broader and will help with the predictive
maintenance of machines. Moreover, the algorithm can be improved in determining the
urgency of maintenance by adding more layers of transition state and combinations. It
might be possible in the future to utilize the presented approach for predicting different
faults of electrical machines in real time.

The presented algorithm /approach for fault prediction is still in its early phase. For
test purposes, only one type of fault was considered to validate the algorithm. This work
can be further extended by considering other faults and testing the algorithm to validate
their accuracy. It would also be beneficial to test out its general approach and to evaluate
its working with any fault of the electrical machine just by changing the faulty signal. The
future work also includes the implementation of this algorithm with bigger data samples
and more complex faults.
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Abstract: An algorithm to improve the resolution of the frequency spectrum by detecting the number
of complete cycles, removing any fractional components of the signal, signal discontinuities, and
interpolating the signal for fault diagnostics of electrical machines using low-power data acquisition
cards is proposed in this paper. Smart sensor-based low-power data acquisition and processing
devices such as Arduino cards are becoming common due to the growing trend of the Internet of
Things (IoT), cloud computation, and other Industry 4.0 standards. For predictive maintenance, the
fault representing frequencies at the incipient stage are very difficult to detect due to their small
amplitude and the leakage of powerful frequency components into other parts of the spectrum. For
this purpose, offline advanced signal processing techniques are used that cannot be performed in
small signal processing devices due to the required computational time, complexity, and memory.
Hence, in this paper, an algorithm is proposed that can improve the spectrum resolution without
complex advanced signal processing techniques and is suitable for low-power signal processing
devices. The results both from the simulation and practical environment are presented.

Keywords: electrical machine; machine learning; data acquisition; FEM; signal processing; Arduino;
artificial intelligence

1. Introduction

The research in the predictive maintenance of electrical machines is touching new
horizons. Cloud computation and distributed low-cost sensors are integral for Industry
4.0 standards. They can also be considered a paradigm shift in the predictive maintenance
of electrical machines. Low-cost data acquisition sensors are becoming essential as elec-
trical machines are becoming increasingly popular in small and medium-range electric
vehicles. The research in the field of condition monitoring of electrical machines using
stator currents [1-3], stator voltages [4-6], speed and torque ripples [7,8], stray flux [9-14],
vibration analysis [15-19], thermal analysis [20-23], acoustic analysis [24-27], work in
the steady-state interval [28], or transient regime [9,29-32] can be considered as mature
enough after over a century of research. The research path started with conventional signal
processing and harmonic estimation-based techniques. Here, the fundamental rule was
to discover the fault-based new frequency components in the machine’s global signal.
The signal processing techniques were explored by researchers extensively to secure or
protect the tiny, sensitive, fragile, and load-dependent fault-based information. For this
purpose, the improvement in the spectrum resolution both in stationary and transient
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regimes was the common point of interest. To remove the spectral leakage, the best practice
both in IEEE and industry standards is to obtain the coherent sampling to the maximum
extent [33,34]. A variety of other methods have also been explored in the literature, such as
filter banks [35], adaptive filters [36,37], 2D feature [38], optimization of truncating win-
dows [39,40], singular value decomposition [41-43], orthogonal matching pursuit [44—46],
interpolated DFT techniques [47], Taylor Fourier transforms [48], multiple signal classifi-
cation (MUSIC) [49,50], fault estimation using weighted iterative learning [51], auxiliary
classifier generative adversarial network [52], and estimation of signal parameters via
rotational invariance technique (ESPIRIT) [53]. The complexity of the required memory
and calculation time are, however, problems that can limit their application in low-power
data processing devices. The next major research domain is the mathematical modelling of
electrical machines, as those are essential for the design, control, analysis, and fault-based
simulations of electrical machines. The main task on which researchers put a lot of focus is
to reduce the approximations and the simulation time of the fault simulation-compatible
mathematical models. A large amount of research can be found in literature, ranging from
finite element method (FEM) [54] to analytical models such as modified winding function
analysis (MWFA) [55-57], reluctance network-based [58], and hybrid models [59,60]. As
these models should be detailed and able to simulate every kind of fault, the simulation
time and complexity are a big issue. The extended simulation time for fault diagnostics
is not acceptable, as in the most advanced diagnostic techniques the simulation should
run in parallel with the actual hardware, such as digital twin and hardware in the loop. A
considerable research effort regarding the minimization of the simulation time both in FEM
and analytical techniques can be found in literature, where [61] used piece-wise polyno-
mial function for model order reduction, [62] used Loewner matrix interpolation, [63,64]
used proper orthogonal decomposition, [65] used Krylov subspace techniques, etc. The
development of these models opened new research directions where they can be used in
the hardware in the loop environment [66], parameters estimation [67,68], digital twin [69],
and inverse problem theory [70]. The research in these domains is complicated though
due to the complex mathematical models, coupling effects in the motor variables, multiple
solution points of the same problem, etc. These problems then opened the field, such
as optimization theory [71], probability and stochastic analysis [72], non-linear control
theory [73], and statistical analysis [74] of the global signals for the predictive maintenance
of electrical machines. The development of these models paved the way towards another
more advanced field, artificial intelligence [75]. A significant number of Al-based research
articles can be seen in the literature and the number is increasing by leaps and bounds. The
accuracy and maturity of Al algorithms depends on the data size and its variety under
different loading and faulty conditions. Thanks to the research in the field of mathematical
modelling, data collection under different faulty and loading conditions for a variety of
different machines is possible using simulations. Moreover, data storage on the cloud
can increase the training data set every day. The common point in all conventional and
advanced techniques is the input signal. Mostly, the global signals remain the same for all
types of machines as the state variables of all machines are almost the same. Now there is
a paradigm shift in the measurement of all those signals using low-cost data acquisition
devices such as Arduino cards and sending the data in the database without loss or any
additional infiltrations such as noise.

In this paper, an algorithm is proposed that can improve the spectral resolution with
the help of the following contributions.

1. The integral number of cycles and the signal’s length whose prime factors are ap-
propriate are calculated first. The fractional parts of the signal in the start and end
reduce the spectrum’s resolution, and an inappropriate length of the signal with a
large number or size of prime factors decreases FFT’s efficiency by increasing the
complexity, required memory, and calculation time.

2. The low sampling frequency is the main problem when the data acquisition devices
are not very powerful and are intended to work online with systems such as Arduino.
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In Industry 4.0, those low-cost devices can have significant importance because of
Internet of Things (IoT), distributed smart sensors, and cloud computation. The
low sampling frequency leads to poor frequency resolution and increased spectral
leakage. The main reason for this is sharp changes in the acquired signal. Hence, those
sharp changes are proposed to be removed using data interpolation. This step is also
important when the diagnostic algorithms depend on the mathematical model of the
system. The most accurate models are the finite element method (FEM), based which
the computational complexity is always a challenge. By using data interpolation,
only the minimum number of steps can be simulated, and the rest of the values can
be approximated.

3.  Detecting any data discontinuity and removing it. In low power smart sensors,
the chances of data loss cannot be neglected. This data loss can happen during its
transmission from card to cloud due to network issues, due to some clock issues in
the data acquisition card itself, or due to limited memory to save the signal before its
transmission. This data loss is fatal for FFT-based spectrum analysis. This is due to
the resultant data discontinuities in the acquired signals. So, a method is devised to
remove data discontinuity, if any.

4. Repeating the cycles for the improvement in the resolution with minimal discontinuity.
The increased number of signal cycles lead to a better frequency resolution. As the
current and voltage cycles of the electrical machines working under steady state
regime are periodic, they can be repeated to increase the signal’s length. This repetition
of the signal should not be random, which can make the resolution worse. Hence, a
technique is proposed to repeat the cycles before frequency analysis if necessary.

2. The Theoretical Background

Almost all kinds of faults modulate the machine’s global variables with a particular
set of frequencies. The number and the amplitude of those frequency components are a
function of the fault type and severity. During the early stages of fault, these harmonics
are tiny in amplitude and difficult to detect. They tend to hide themselves under the
frequency lobe of the powerful neighboring frequency component. The strength of any
diagnostic algorithm is determined from its ability to detect those harmonics at the early
stage of the fault. For this purpose, the resolution of the frequency spectrum is of significant
importance, which increases with the decrease in the spectral leakage of the powerful fre-
quency components. To reduce the spectral leakage, a variety of advanced signal processing
techniques are available in the literature, but at the cost of increased computational time
and complexity. It makes those algorithms less suitable for low power signal processing
and controller boards. For low power smart sensor-based data acquisition and processing
devices, the following fundamental precautionary measures should be accounted for.

5. The signal frequency and sampling frequency must follow conditions of coherency.
The perfect coherent data is very difficult to obtain because of measurement equip-
ment limitations and noise. This non-coherency can be avoided by windowing
techniques [76]. However, the clever selection of the window is very important to
obtain a narrower main lobe with less leakage energy inside the lobes. So, specialized
knowledge about the windowing function and its impact on the spectrum is needed
to deal with the problems, which cannot be a very easy solution. The drawback of
FFT is that any mismatch between the sampling frequency and signal frequency can
cause spectral leakage.

6.  The signal should have an integer number of cycles. The fractional parts of the
signal in the start or end increase the spectral leakage and increase the requirement of
windowing function. This approach will increase the efficiency of FFT, will reduce
the dependency on windowing function, and will reduce spectral leakage, even if the
signal is noisy or its frequency is near the Nyquist rate. The quality of the frequency
spectrum can be checked by measuring the signal to noise ratio (SNR), total harmonic
distortion (THD), spurious free dynamic range (SFDR), signal to noise and distortion
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ratio (SNDR), effective number of bits (ENOF), etc. The number of cycles in a signal
can be calculated as

J=mln = sa 0
fs
In this equation, ] is the total number of cycles, fin is the frequency of the fundamental
component of the near sinusoid signal, f; is the sampling frequency, M is the recorded
signal’s length, J;,; are the integral number of signal cycles, and A is the fractional part. The
non-zero A leads to the spectral leakage.
A signal from time domain to discrete domain can be represented as

x(t) = Asin(2fint + 6) + Ith @
x[K] = Asin (an,-nj% + 9) Y hh @)
¥[k] = Asin <2n%k + 9) + @)
x[k] = Asin (m%k + e) Y b )
x[k] = xq[k] + x5, [k] (6)

where hh represents the higher order harmonics and can be defined as follows: a,, and b,
are the Fourier coefficients.

hh(t) =Y _,(ancos2mn fit + bysin27n fiyt) 7)

In squirrel cage induction machines, the main causes of these higher order harmonics
are the non-sinusoidal winding distributions, changing airgap reluctance due to rotor and
stator slot openings, inherent eccentricity, material saturation, harmonics coming from the
supply, and any fault if present in the machine. However, all these harmonics are tiny in
comparison with the fundamental component and the overall current signal remains near
sinusoidal. The initial purpose is to calculate J;;; in the acquired signal and discard the
fractional part A.

The integer number of cycles are calculated in the way that all values greater than the
RMS value both on positive and negative half cycle are marked as +1 and —1. All elements
are merged into one if the adjacent sign is the same to make a new signal say w[m]. We
merge adjacent same values into one element and take the absolute value.

3. The Effect of Discontinuities in the Signal

Although FFT is a very powerful tool that is extensively used in the field of signal
processing, for smooth, periodic, uniformly sampled points and long signals, FFT no doubt
gives accurate results. However, the results become significantly erroneous if there are
singularities or discontinuities in the signals. Thanks to the symmetrical and sinusoidal
distributed design and performance parameters of electrical machines, almost all global
signals such as current, voltage, and flux are periodic. The data discontinuities are however
possible due to the limitations of the data acquisition devices, particularly if those are low
power cards. This can be because of network limitations such as delay or loss of data
transfer from the device to cloud. Because of the high sample rate, there is a high chance
of data loss while data is being transferred from sensors to the low power cards. This is
mostly because of the delay in the clearance of the buffers when data are being transmitted
for a long time, i.e., a couple of days to weeks. An example of such a data acquisition
system is shown in Figure 1.
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Figure 1. The schematic diagram of data acquisition and transmission to the cloud using IoT.

Data loss can occur in two scenarios for the above data acquisition setup, while the
data are being transferred from sensors to the low powered cards and the other while the
data are being transferred from the cards to cloud. The protocols used for data transmission
have their own limitations too. The loss of data during transmission can be due to the
limitation of network or delay/loss of network while transferring. Another reason might
be due to the buffers being overloaded and not being properly cleared up before the next
data come in, which can result in a loss of data while in transmission. These sharp changes
in the signal are the potential cause of hiding the low power fault-based frequencies due to
the increased spectral leakage of significant harmonics. It also decreases the computational
time of FFT, decreases its efficiency, and increases the need for increased data length. The
experimental setup used to recreate such scenario is shown in Figure 2.

Figure 2. Experimental setup for data collection.

The induction motor is used to collect current signals for all three phases, and it is
then transmitted to the cloud using Arduino (low powered card). This is the most common
approach used for the data acquisition system when using a low powered card. There are
alternate systems that have been proposed that further consider data losses with a local
backup of collected data at a node [ref], but the following approach is still widely used. The
flow chart of the setup used for data collection for this experiment is shown in Figure 3.
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Electrical Machine Sensors

Arduino
(low powered card)

Cloud

Figure 3. Flow chart for the data acquisition setup.

The setup was run continuously for multiple days with different sampling rates to
generate data losses. At higher sampling rates, the data losses occurred more often as the
buffer became overloaded. Because of the limitation of the processing power of Arduino
(low powered cards), data loss became inevitable in these cases. This is why the sampling
rate tended to be on the lower side in most cases, but this also resulted in the samples being
too low and similar data loss issues could occur if it kept running for a more extended
period. The other scenario was also created by interrupting the network connection. In
this case, wi-fi was used to transmit data from Arduino to the cloud database. Upon
interruption of the network, as no data were transmitted, this resulted in data being lost.
For some protocols, it could result in a delay at the receiving end, but this will still have
components lost for the received signal. The setup was used to obtain signals with data
discontinuity to check the result of the proposed algorithm.

The data discontinuities were detected by making a moving subtraction filter. The
amplitude difference of every two consecutive samples defined the magnitude of disconti-
nuity in them. For example, in Figure 4, nine discontinuities along with their amplitude are
discovered that need correction.

diff = |x[n]| — |x[n —1]| ®)
50 AGO
5§ 0 2
E E-ZO !
UL
0 2 4 6 00 2 4 6
Samples x10* Samples w10t
(a) (b)
60
E Lt
‘T;lzo ’ o xlo242
<
% 2 4 6
Samples x10*
(©)

Figure 4. (a) The acquired stator current, (b) the result of moving subtraction filter for the detection
of discontinuities, and (c) after the correction of discontinuous samples.
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For correction, the discontinuous sample is replaced with the average value of the
samples x [n — 1] and x [n + 1]:

_ [x[n A 1]] + |x[n —1]|
®[n] = 3 )

The integer number of cycles can be calculated using zero cross detection, but, in that
case, wrong computation can occur if there is any data discontinuity in the signal. If there
are more than one consecutive missing data samples then there are some possible methods
of correction. Replace the missing samples with the samples from the same location of the
subsequent cycle. The other way is that the samples will be replaced by random values,
depending on the amplitude of the available samples at the start and end of the missing
segment and the amplitude will be iteratively corrected. The third way is that if the cycles
are affected in a worse manner, then it can be totally replaced with the healthy one from
the signal. This paper at the moment deals with only one discontinuity between two
healthy samples.

4. Counting the Integral Number of Cycles and Removing the Fractional Parts
The integral number of cycles are calculated in the following steps.

A. The samples of the acquired stator current are compared with the RMS value. The
samples with a magnitude greater than the RMS value for both the positive and

negative side are replaced with one, while all of the other samples are replaced with
zero as shown in the equation below and Figure 5b.

i’i .
1, Vi < i[k]
vl =1 0,25 > |ilk] (10)
1, = > ifK]
1
of A" A N A R
— 05
<
R O == —— - — = ]
3
-0.5
sy VOV WY N
0 0.02 0.04 0.06 0.08 0.1 0 0.02 004 0.06 0.08 0.1
Time (Sec) Time (Sec)
(2) (®)
1 1 # * A
0.8 0.8
0.6 0.6
> >
0.4 0.4
0.2 0.2
0 0 3
0 0.02 0.04 0.06 0.08 0.1 0 2 4 6 8 10
Time (Sec) Samples

(© (d)

Figure 5. (a) The stator current with red line representing the RMS value, (b) the samples validating
the conditions given in b, (c) the shifting of negative samples towards positive side by taking modulus,
and (d) merging the consecutive samples of same value in one.

B.  The modulus of the resultant vector is taken to shift the negative-sided samples to the
positive side, as shown in Figure 5c.

C.  The consecutive samples with same magnitude are merged into one and represented
in Figure 5d. The final number of samples on the zero or unity axis are equal to the
number of signal cycles.
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After counting the number of cycles, the data are saved until the index of steric
completing the integral number of cycles in Figure 5d. Now, two types of discontinuities
may still persist in the signal: the minor discontinuity due to low sampling frequency, as
shown in Figure 6, and the possible discontinuity at te starting and ending time.

50

Current (A)
<

&
S

0.3 0.31 0.32 0.33 0.34 0.35
Time (Sec)

Figure 6. The estimation of intermediate solutions using data interpolation.

Both problems can be solved by signal interpolation. It will not only improve the
smoothness of the signal, but also refine the zero crossing points, as shown in Figure 7.

3
60 k A o A X Envelope
Signal 2k &
40 *  Approximate Zero-Crossings ~ T Approxlmalc 20 crossing
2 20 <!
2 50
L £
S 20 ol \
40 2 | |
60 33
B - j - 03 031 032 033 034 035
03 035 Time (Sec) 04 045 Time (Sec)
(@ (b)
60 X T
Signal Envelope
40 *  Approximate Zero-Crossings *  Approximate zero crossing
. g ||l|||\| Hll ﬂllllllllll !
5 o 5 : :
= E
3 20 3- }
-40
-60

=3
W
o
b
by
o
w
o
o

0.32 0.33 0.34 035

035 04
Time (Sec) Time (Sec)

©) (d)

Figure 7. (a) The stator current and approximate zero crossings at a sampling frequency of 4 kHz,
(b) the corresponding envelope shifted across zero line with approximate zero crossings, (c) the
signal with improved sampling frequency and approximate zero crossings, and (d) the corresponding
envelope shifted across zero line with approximate zero crossings.

5. Algorithm

The proposed algorithm is shown in Figure 8. Its main parts include the removal of DC
offset which decreases the possibility of a frequency bin at 0Hz in the spectrum, detection
and correction of data discontinuities which increase the spectral leakage, removal of
starting and ending fractional parts and the repetition of the signal if necessary.
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Figure 8. The algorithm for counting the integral number of cycles, removal of signal discontinuities

and fractional parts of the signal, data interpolation, and repetition, if necessary.

6. Results
6.1. Simulation Results

The motor’s stator current harmonics can be broadly classified into three major cate-
gories: the winding and supply-based odd multiples of the fundamental component, the
slotting harmonics, and the fault generated harmonics. The mathematical description of
these harmonics is given in Table 1. The fault and slotting harmonics are the function of
slip and tend to move in the spectrum as the load varies, while the winding MMF and the
supply harmonics retain their position in the spectrum. Electrical machine simulations are
necessary for several reasons, such as design, control, analysis, and training of the fault
diagnostic algorithms, creation of digital twin, inverse problem theory, hardware in the
loop environment, and parameters estimation. However, the biggest drawback of finite
element method (FEM) models of electrical machines is the computational complexity
and the required simulation time. Moreover, the small step size and the simulation of
complete geometry is required for better resolution of the spectrum because for predictive
maintenance, the importance of wideband harmonics cannot be denied. For this purpose,
the algorithm is first implemented on FEM-based simulation signals with a low sampling
frequency. In Figure 9, it can be seen that even at a high step size with a sampling frequency
of 4 kHz, the spectrum counting the integral number of cycles increases the resolution signif-
icantly without the need for any truncating window. Moreover, the effect of communication
channel-based data discontinuities and their correction is shown in Figure 10.
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Table 1. Fault definition frequencies.

Fault

Modulating Frequencies

Principal slotting harmonic (PSH) and Eccentricity

Broken Rotor Bars

fBR = fs :t2ksfs, k= 1,2,3,. ..
fecce = {(kﬂb + Vld) (%) :I:v]fs
More precisely:
fecce = {1 ik(%)]fs
fecce :fs ikfr/ k= 1,2,3,...
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Figure 9. The simulated stator current spectrum showing stator winding and slotting harmonics
before and after counting integral number of cycles (INOC).
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Figure 10. The effect of signal discontinuities on the spectrum resolution.

6.2. Practical Results

For practical investigations, two similar machines were connected back-to-back. One
machine works as a loading machine, while the other was used as a testing motor where
the healthy and broken rotor bar carrying rotor were tested. Table 2 shows the nominal
parameters of the machine under investigation. Figures 11 and 12 show the improvement
in the spectrum resolution by removing the fractional parts of the signal and data discon-
tinuities without any truncating window. The tiny broken rotor bar harmonics near the
strong supply and spatial harmonics became well legible.
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Table 2. The machine specifications.

Parameter Symbol Value
Number of poles P 4
Number of phases 0] 3
Connection - Star
Stator slots Ns 48, non-skewed
Rotor bars Nb 40, skewed
Rated voltage \% 333 V@50 Hz
Rated power Pr 18 kW @50 Hz
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Figure 11. The practical stator current spectrum showing stator winding, slotting, and broken rotor
bar-based harmonics before and after counting the integral number of cycles (INOC).
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Figure 12. The practical stator current spectrum showing stator winding, slotting, and broken rotor

bar-based harmonics with and without discontinuities.

The frequency of slotting harmonics in the current spectrum in comparison with their
expected frequency according to the equations given in Table 1 as a function of slip is
shown in Table 3. It is clear that the amplitude of those harmonics decreases with the
decreasing slip, which makes their detection difficult when the machine is working under

low or no-load conditions.
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Table 3. The rotor slot harmonics (RSH).

Theoretical Theoretical

Slip RSH1 RSH2 RSH1 (Hz) RSH2(Hz) RSH1(A) RSH2 (A)
0.0030 947 1047 946.7 1046.8 0.00042 0.0005
0.035 915 1015 914.76 1014.76 0.00185 0.0008

0.05 900 1000 899.2 999.2 0.0021 0.0007

7. Conclusions

Low sampling frequency, fractional parts of the signal at starting and ending, and data
discontinuities in the time domain can lead to spectral leakage in the frequency domain
when applying the FFT (Fast Fourier Transform) algorithm. Spectral leakage refers to the
effect where energy from a signal at one frequency “leaks” into other nearby frequencies,
creating artifacts in the spectrum that are not present in the original signal. There can also
be interruptions between the transmitted signals due to limitations of the hardware used or
because of a loss of network. This can also lead to data loss or the receiving signal missing
some harmonics and having some junk values in between. This can further lead to an
incorrect analysis of the collected signal, and, in some cases, it might even be more fatal,
i.e., could lead to the machine being damaged if the issue occurs in the case of monitoring
an electrical machine.

One way to mitigate these effects is by applying a window function to the data before
performing the FFT. A window function can smooth out the signal at the edges of the
analysis window, reducing the abrupt changes and thus the spectral leakage. However,
even with a window function, some level of spectral leakage may still be present, depending
on the characteristics of the signal and the choice of window function. Moreover, the
application of advanced signal processing techniques makes it computationally complex
for low power data acquisition and processing devices.

This paper shows how a simple algorithm can improve the spectrum resolution by
removing the above-mentioned problems.
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Abstract—A cost-efficient condition monitoring and fault
diagnostic system are presented in this paper using the Internet
of Things and machine learning. Most condition monitoring
systems nowadays are either costly or used to monitor current
values without emphasizing the analysis part. On the other
hand, predictive maintenance of different electrical machines,
including BLDC motors, is becoming the need of the hour. It
reduces the cost needed for maintenance and can also be used to
evade more significant faults in the machine. The data is
transmitted in real-time using a data acquisition system onto the
cloud, which is further processed to determine if there is a
chance of any fault occurring in the motor. A short comparison
of the results of different machine learning algorithms is also
discussed related to predictive maintenance.

Keywords—condition monitoring, fault diagnostic, IoT,
Internet of Things

1. INTRODUCTION

Brushless Direct Current motors (BLDC) have a vast
implementation in industrial applications like electric
vehicles, military, medical and others because of the easiness
to control their speed and position. Therefore, maintenance of
BLDC motos is of utmost importance as it is an essential part
of these setups. Untimely failure of BLDC motor can halt
operations and may cause irreversible losses. Plant engineers
frequently inspect BLDC motors and the entire setup after a
specific time, also termed scheduled maintenance, but these
repeated checks are expensive. These scheduled maintenance
checks can cost from 15% - 40% of the production cost and
still might not prevent a more considerable expense in case of
some component failure. Moreover, most of the time, there is
no backup plan to check on the condition of the BLDC motor
in between those checks, which might result in a bigger
disaster if a fault occurs after a scheduled check as a person
cannot predict the occurrence of a fault [1][2]. Therefore,
automatic condition monitoring systems are being developed
to stay ahead of the failures and predict or at least check on
the machine in real-time [3][4].

With the advent of the industrial revolution in the form of
Industry 4.0, more research is being done on the automation
of the industry, including monitoring and predicting faults [5].
The continuous monitoring of electrical machines can help
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prevent the escalation of a fault in the machine, which can not
only cut costs but also help keep the system loss to a
minimum. [6][7][8]. These condition monitoring systems
need stable data acquisition systems that can be easily used
with different electrical machines. These systems are still
evolving with the advancement in sensors and circuits [9].
Most of the earliest systems developed for data acquisition and
monitoring electrical machines are in SCADA [10], which are
heavy and expensive but not feasible with the new trend of
portable devices. It is also difficult and expensive to add some
sensors into the already deployed system and any changes can
result in further costs [11]. Therefore, researchers are looking
for better ways to replace these systems.

This paper presents an alternate approach to such systems
with a cost-efficient data acquisition part and enables the end-
user to view the transmitted data in real-time. It also presents
a method to detect faults using a machine learning training
algorithm, although that is still done offline. However, future
prospects of this study include the implementation of the
system in the cloud.

II. RELATED WORKS

The Industrial Revolution gave way to multiple studies
related to fault detection and monitoring of electrical
machines, including BLDC motors [7][12]. These studies are
based on vibration signals to differentiate between healthy
and faulty bearings using frequency components [13]. In this
research, the authors provide a nonlinear model [14] for fault
diagnosis of BLDC motor based on the vibration frequency
spectrum. Whereas more proof has been provided that
vibration signals can discover bearing issues related to
variable speed [4]. Similarly, multiple other investigations
into faults based on the stator of BLDC motors have been
done [15][16][17]. However, most of this analysis has been
done offline and not in real-time.

The recent advancement in information technology has
also opened up ways for remote monitoring of electrical
machines using the Internet of Things (IoT). Different
systems are being developed to check the health of electrical
machines [18] in real-time and predict faults to reduce costs
[19]. This has helped move towards a new era away from
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heavy machines and expensive equipment. Researchers
adapted the recent methods developed on IoT [20][21] more
commonly due to ease of operation and access. Although this
system is still in development and has a slow sample rate,
further research is still ongoing with the increase in the
sample rate and decrease in data loss [22].

Therefore, this paper presents the approach based on the
data acquisition method using microcontroller boards which
are then pushed to the cloud and can be monitored in real-
time. The signal considered here is the current signal rather
than the vibration signal and the diagnosis is made in the
frequency domain. A model is also trained to detect faults
using up-to-date machine learning algorithms.

III. METHODOLOGY AND RESULTS

This research can be divided into three parts, the data
acquisition system at the start, detection of faults in the cloud
using the similarity principle and a machine learning based
trained model for fault detection. First, the data is transmitted
from the esp32 board to the cloud, where it is checked for fault
in real-time with a similarity function. After that, the approach
towards the signal is slightly different as the current signal is
considered for the training and detection of faults instead of
vibration signals. The experimental setup is shown in Fig. 1.

1. BLDC motor 2. Power supply 3. Laptop

4.ESP32 (Black Color) 5. Current Sensor 6. Motor Controller

Fig. 1. Experimental Setup

The experimental setup includes a BLDC motor and a
controller for speed, a current sensor, and an ESP32
microcontroller board. The data from the current sensor is read
through the ESP32 board, calibrated and sent over to the cloud
and the laptop for checking purposes. The transmitted data is
then saved in a database on the cloud and shown at the front
using a user interface. The general block diagram of the setup
is shown in Fig. 2.
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Fig. 2. Block Diagram

This research leading to these results has received funding from the
PSGA453, Digital twin for propulsion drive of autonomous electric vehicles”
and ETAG21001, “Industrial internet methods for electrical energy
conversion systems monitoring and diagnostics”.

The data is then preprocessed online to convert the time
domain into the frequency domain and compared with the
already collected data in the frequency domain for healthy and
faulty signals of BLDC motor. The similarity criteria
threshold is taken to be around 70%. If the similarity is
between 70% — 80%, then there is a mild chance of a fault
occurring in the electrical machine over some time. If it is
between 80% - 90%, there is a high possibility that the fault
will occur shortly and a check should be done on the machine
to be sure it is still in a good state. If the similarity is above
90%, then there is a high probability that the fault has occurred
and the motor is already faulty. This data is presented in a user
interface at the front for an end user to be relayed quickly and
in real-time. An example of the user interface is shown in Fig.

3.
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Fig. 3. Dashboard example

The faults considered here are the inner and outer faults of
bearings. A machine learning based model was also trained to
detect faults in real-time. However, at the time being, it is still
offline and will be implemented online next. The data was
collected through Dewetron in bulk to train the machine
learning model for both healthy and faulty BLDC motors. The
current signal was further preprocessed and its frequency
spectrum was considered while training for a machine
learning based algorithm. Fig. 4, Fig. 5 and Fig. 6 show the
three-phase BLDC motor current Fast Fourier Transform for
healthy, inner fault and outer fault signals, respectively.
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As it can be seen that in each case of healthy, inner fault
and outer fault signals, the frequency components with
prominent values differ. These components are taken as the
fundamental difference between these three signals and are
then used to train the machine learning model and are then
validated on a data set. The frequency components are further
processed to remove any low amplitude components and
further enhance the difference between them shown in Fig. 7,
Fig. 8 and Fig. 9.
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After processing the components further, the data is then
used to train different machine learning algorithms. A data set
containing 100,000 samples were used for training purposes
with a blind validation for 20,000 data sets. As a result, four
different types of machine learning algorithms were selected
for the training of the model, and the result of their accuracy
is shown in Table 1.

TABLE L. COMPARISON OF MACHINE LEARNING ALGORITHMS
Type of Algorithm Accuracy Error
Decision Tree 87% 13%
Random Forest Tree 93% 7%
Super Vector Control 97% 3%
K nearest Neighbor 40% 60%

The above table shows that the Super Vector Control
Algorithm performed the best among the four to classify the
incoming signal to detect a fault. The random Forest Tree
algorithm also gives a high accuracy, whereas K nearest
neighbor is the worst.

IV. CONCLUSION

The advancement in information technology has pushed
other fields to work towards integrating their fields with it.
Similarly, IoT and cloud computation is becoming the new
trend in industrial applications and the industry 4.0 revolution.
As a result, more emphasis is being done on the automation of
processes. This will also help detect faults in real-time and
contain any unpreceded losses if present in machines. This can
also help save up time during maintenance of the said machine
as the phase or place the fault is occurring can also be
identified and the maintenance team does not have to check
everything to identify the source of the fault.

The proposed method here helps detect the fault in real-
time using loT and the cloud. Although the machine learning
algorithm is still offline, its implementation in the cloud is not
far off. The study further enhances maintenance speed and can
help cut short the maintenance charges as it can help detect
whether maintenance is needed. In the same way, it can also
save up the cost of a significant loss if a fault occurs. The fault
can be taken care of as soon as it is detected and can help
prevent a bigger disaster. The setup is independent of any
specific needs or equipment regarding data generation points
or hardware requirements. It can be tailored to work anywhere
and with any sensor as desired.

Future works for this study include implementing machine
learning trained models on the cloud to detect faults in real-
time. It also includes creating an algorithm to predict faults
rather than only detecting such faults in an electrical machine.
This way, the machine can be saved even before going into a
faulty state and can help prevent further damage. It also
includes the remote controlling of the electrical machine,
including the BLDC motor and self-logic decision-making
implementation. Hence, if the algorithm decides that a fault is
expected to occur in the machine, the machine could be
automatically shut down and caution is generated for the end
user to send in a maintenance crew for a check-up.
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Abstract—With advancements in science, machine learning
and artificial intelligence integration with different fields have
opened up new horizons. In this paper, some simplified custom
machine learning algorithms are defined to train different faults
for electrical machines. The industry has been moving towards
predictive maintenance of machines rather than scheduled
maintenance with the new industry 4.0 revolution. It has also
paved the way for researchers to explore more in machine
learning and have specific machine learning training algorithms
catered to diagnose faults in electrical machines. Here, three
different variations of a simplified machine learning algorithm
are present for the training of faults of electrical machines. A
comparison of the results is presented at the end, along with
further studies carried out in this area.

Keywords—machine learning, artificial intelligence, neural
network

1. INTRODUCTION

With the advancement in information technology in recent
years, machine learning has also grown and advanced rapidly
within the domain of computing power and data analysis [1].
This growth has helped utilize software and computational
hardware in a more efficient way to solve complex problems
[2]. The core of this advancement lies with the methods and
tools that process massive data sets allowing physical devices
to learn and decide based on the previous data, resulting in the
new industry revolution [3,4], commonly termed Industry 4.0.
Industry 4.0 [5,6] is technically the automation of devices in
the industry that enables them to communicate with each other
and make a decision based on machine learning algorithms.
This broad area is also known as the Internet of Things [7].
The devices can communicate with each other in a confined
area and over a more extensive network and give suggestions
and make decisions based on machine learning algorithms.
The primary key to these decisions lies with machine learning
algorithms and how well they are used according to the
training data set. Machine learning algorithms are also
becoming more scalable and agile with time and are a critical
part of future information technology enhancement.

The machine learning algorithm can be divided mainly
into four major areas: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement
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learning [8], with each further divided into different
algorithms. These algorithms are becoming more common in
our daily lives with the advent of large data sets for different
fields being monitored and maintained online. There have also
been examples of implementing machine learning algorithms
in daily routine by big companies like google, facebook and
others. As machine learning is a data-driven approach, it needs
to keep learning with the recent data sets to get more accurate
results. Hence, a minimum optimal data set and a suited
algorithm are required to get the best outcome. Several
algorithms, including classification analysis, data clustering,
linear regression, linear discrement analysis, pattern
recognition, reinforced learning technique, and others, can
help build an efficient data-driven system [9,10]. Some of
these algorithms are used for classification, whereas others
can be used for prediction using regression or neural networks.

Although machine learning algorithms are divided into
different categories, it is crucial to know how to choose the
algorithm that best suits the scenario and data characteristics,
as each algorithm is unique. Their results may vary with the
other algorithms even of the same category [11]. As machine
learning algorithms also use high processing power and
storage [12,13], most processing has been moved to the cloud.
Choosing the best among them is also necessary according to
the need of the situation. Different research areas have
integrated with information technology and used machine
learning to automate or predict results in their respective areas
to enhance their fields' capabilities further. This has made the
application of machine learning broad, such as
implementation in cyber security, [oT systems, e-healthcare,
smart cities, sustainable energies, autonomous vehicles, etc.
This has also resulted in a simplified version of machine
learning algorithms that are best suited for the respective
fields. The machine learning algorithms are still developing
with the advancement in parallel to these fields and might
enhance further.

This paper presents a simplified custom machine learning
algorithm with two variations used to train a model for
diagnosis purposes. This machine learning algorithm is still
developing with further enhancements to multi-layered
custom neural networks. The paper further explains the
direction of research and its future prospects.
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Fig. 1. Categories of Machine Learning Techniques

II. TYPES OF MACHINE LEARNING TECHNIQUES

Machine learning algorithms are most commonly divided
into three categories: supervised learning, unsupervised
learning, and reinforcement learning. In addition, one other
category is also taken into account, i.e., semi-supervised
learning. A general overview of these four categories and a
brief description are shown in Fig. 1.

A. Supervised Learning

This is the most commonly used machine learning
category, as the machine learning algorithm devises a function
by mapping the input to output data sample pairs [9]. The
training data used here is labeled, i.e., the input and output are
defined beforehand and the machine learning algorithm trains
the model such that those input samples are paired with the
output. The trained function is then used to predict the output
for the new data set and is more of a task-driven approach [4].
The most common approach in supervised learning is
“regression”, which fits a function according to the data and
“classification”, which separates the data according to the
training data set.

B. Unsupervised Learning

This is quite the opposite of supervised learning; we know
the output for the input while training in supervised learning.
In unsupervised learning, the data sets are unlabeled and there
is no output. This approach is more suited to a data-driven
approach [9] than a task-driven. In this approach, the
algorithm extracts features from the data sets or trends and
groups the results together based on similar patterns, trends,
or features. The most common usage of unsupervised
techniques is feature learning, pattern recognition, clustering,
knn.

C. Semi-supervised Learning

This technique is a combination of both supervised and
unsupervised learning and can be known as a hybrid technique
[9]. The data used here for training is labeled and unlabeled
and primarily used where labeled data is rare, especially in
real-world implementation [8]. However, as unlabeled data is
quite in number, a combination of both labeled and unlabeled
data can generate better results in some scenarios. The most

common usage of semi-supervised learning is text
classification, fraud detection, machine translation and others.

D. Reinforcement Learning

Reinforcement learning is a self-learning technique in
which the algorithm enables the machine to evaluate the result
in a specific context and decide on the best possible outcome
to improve its efficiency [14]. This approach can also be
termed an environment-driven approach. This approach is
based chiefly on penalty or reward, with its main purpose to
minimize the risk by increasing the reward. This technique is
mostly used to train Al models for automation setups like
manufacturing, autonomous vehicles, robotics, and others.

There are different approaches to machine learning
techniques for different problem scenarios, which mostly
depend on the nature of data and where it will be implemented.
Similarly, they can be used either to classify the incoming data
or to predict values. Many classification techniques are
present, like Linear Discriminant Analysis, Naive Bayes,
Decision Trees, Regression Techniques, Support Vector
Machine. In this paper, a small custom machine learning
algorithm is presented with variation to work in diagnosing
faults in electrical machines. The presented technique is
simple and to the point and will be further enhanced in the
future to work with predictions of faults with high accuracy.

III. METHODOLOGY AND RESULTS

This research presents a simplified machine learning
approach to neural networks with two variations to work on
the fault diagnostics of the electrical machine. This is a more
straightforward approach to get the result in a minimum
number of layers and with higher accuracy in the shortest time
possible. This is also to check if the results can be generated
with higher accuracy using a small number of datasets. The
first layer of the neural network consists of a dot product of
weights and the incoming inputs, whereas the second layer is
different for both variations. One variation includes a sigmoid
function on the second layer, whereas the second variation has
a hyperbolic tangent function present. Both equations are
given in (1)(2), respectively.

fx) = €y

1+ e
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The variations are trained separately using 10,000 training
data sets and then the results are validated with a different set
of 500 validation data sets. The model trained is still under
development to improve their results consistency as it may
vary when the model is retrained. The models are trained using
python with a custom neural network defined class and
without the use of tensor flow or any other third-party library.
The flowchart for the working and training of the neural
network algorithm is shown in Fig. 2.
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Fig. 2. Overview of Training of Machine Learning Model

The error is calculated after predicting the values after
layer 2 and the weights are adjusted accordingly in layer 1 for
the following input. The training undergoes 10,000 iterations
for the test data set and a mean square error for the trained
model is generated for both sigmoid and hyperbolic tangent
variations. The results for the mean square error for both
variations are shown in Fig. 3 and Fig. 4.
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Fig. 4. Mean Square Error (MSE) of Model trained with Hyperbolic
Tangent Function

From the above graphs, it can be seen that the model
trained using the Sigmoid function has a low Mean Square
Error (MSE) compared with the one trained using Hyperbolic
Tangent Function. From the graphs of training algorithms, it
is seen that the model with Sigmoid function is better off than
the one with Hyperbolic Tangent Function. For validation of
the results, a validation data set for 500 sets was used and the
comparison results for both are summarized in Table 1.

TABLE L. COMPARISON FOR SIGMOID AND HYPERBOLIC TANGENT
Sigmoid Hyperbolic Tangent
Mean Square
Error (MSE) 1.8 3.17
Accuracy 80.41% 65.48%

IV. CONCLUSION

Artificial Intelligence is taking its place in different
research fields and is advancing at a rapid rate. Although there
are a lot of machine learning algorithms present for
classification, there is not a specific one that can be altered to
one domain. This paper has presented two variations for a
simplified machine learning algorithm with two layers that are
a work in progress but target electrical machines' diagnostics.
The proposed algorithms are simple and easy to train; they do
not need a heavy system or wait for hours to get the trained
model. Among the two variations of the presented approach,
the one with the sigmoid function outperformed the
hyperbolic tangent function in terms of performance.

The study is still a work in progress with future works,
including the enhancement of neural networks to multi-
layered algorithms with testing of different functions and
having a consistent result in return. The future works also
include further catering it towards fault diagnostics of
electrical machines and adding some preprocessing, so it can
detect and predict specific faults for electrical machines in the
start. This will be further enhanced to make it a more generic
approach.
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Abstract. Internet of Things (IoT) has become the need of the hour with the
recent advancement in technology. The emergence of new technologies has
helped to communicate between different machines and it has become easier to
interact with them. This has helped with the reduction of maintenance costs and
the time needed to fix the machine. Furthermore, it is necessary to monitor the
impact of surrounding factors on electrical machines and detect any faults as
soon as possible. With the integration of artificial intelligence and IoT, a system
can be built to help detect faults as soon as it happens and help contain the
impacts of such faults. In this research, a low-cost, efficient method to monitor
any electrical machine and detect faults in real-time is being explored, which
can help reduce maintenance charges. In addition, it can also help reduce the
impact of the generated fault. For the research purpose, the setup consists of an
induction motor and broken bars faults are considered for training models and
detecting faults in real-time.

Keywords: Internet of Things, IoT, Electrical Machines, Condition Monitoring,
Fault Detection.

1 Introduction

Recent advancements in technology have made day-to-day life much more convenient
and efficient. This has also made our current devices capable of communicating with
each other over the internet, thus forming a category of smart or intelligent devices.
Communication of different intelligent devices through the internet is referred as the
Internet of Things (IoT). The data collected from these devices can be used for many
things, including diagnosing, detecting and predicting faults within the device [1][2].
This will help reduce costs and time for maintenance of the machine, hence resulting
in a more cost-efficient maintenance method. Therefore, IoT plays a significant role
in industrial development and can further enhance its effectiveness in the industry by
utilizing predictive maintenance [3].

IoT applications in the industry have further increased from data monitoring
towards predictive maintenance with development in industrial equipment. After
condition monitoring [4][5] which has become quite common in the industry,
predictive analytics for maintenance [6] using the collected data for machines is the
next advancement. The maintenance of machines can be divided into reactive,



periodic, proactive and predictive phases (see Fig. 1). Predictive maintenance is both
cost and time efficient as it generates the most detailed report on the diagnostic of the
fault.

Use analytics to predict

Scheduled Maintenance machine failure

Reactive Proactive

v Periodic Predictive

Fix when the equipment Eliminate defects at an
is down early stage

Fig. 1. Maintenance stages of electrical machines

Machine learning algorithms are mainly used to train models for predictive analysis
and the accuracy of such models is highly dependent on the training data sets.
Therefore, these models require a high number of data sets to get accurate or near
accurate prediction and classification. Pattern recognition and deep learning
algorithms, categorized under Artificial Neural Networks (ANNs) [7], are also part of
machine learning algorithms. These models are mostly integrated on cloud storage or
isolated servers as they need high storage and processing power [8][9].

This paper presents a cost-effective method for data acquisition from remote
machines, including offshore plants and detection of faults in the recorded data set
utilizing trained models using machine learning algorithms. The paper further
explains the prospects and the direction of the research.

2 Related Work

With the advancement in technology and population, the need for more resources is
also escalating. At the same time, there is a decrease in conventional resources, so
there is an urgency to look for alternate resources and utilize the current resources
with care. Condition monitoring, paired with failure prediction or fault detection, is
crucial for the industry to cut costs and time. Detection of fault as it happens and
monitoring the electrical machine in real-time can help identify the origin of the issue
and solve it in minimal time. It can also help reduce the maintenance cost by shifting
it from scheduled maintenance to predictive maintenance. Researchers have already
started monitoring and controlling wind turbines to maximize their potential [10][11].



Researchers are looking into more cost-effective and stable condition monitoring
methods with the advancement in technology. Much work has been done in the health
sector using microcontroller boards. Most of the condition monitoring systems built
are for patients with a wearable device to detect any abnormality in their conditions
[12][13]. Systems have also been developed to monitor the temperature of infant
incubators which can be controlled remotely using an android application [14].
Researchers are also looking into the application of these microcontroller boards in
different fields of research like radiation monitoring systems [15], solar power remote
monitoring systems [16], noise and air pollution monitoring systems [17], along with
Carbon dioxide monitoring systems [18]. As microcontroller boards are easy to carry
and can finish the job, researchers are also taking them into account when developing
remote condition monitoring solutions for weather sensors [19] or wind turbines
[20][21].

These cost-effective microcontroller boards are impressive when considering their
scalability. These boards can also be used for condition monitoring of electrical
machines, as done here for an induction machine [22][23]. With the advance in
technology, more complex circuits are being introduced and used in different
applications like autonomous vehicles [24] and robotics [25][26]. Hence, it is needed
to monitor these machines and detect a fault in minimal time to reduce costs. The
current data acquisition systems are still not final and developing with time as the
safety circuit and sensors change [27]. The need is to have a stable data acquisition
system that can be used with different electrical machines without much issue.

There are already some of the condition monitoring systems developed before in
SCADA. However, it is not only hard to move them, but they are also expensive and
require complex installations [28]. Current methods based on IoT [29][30] are also
being introduced for condition monitoring. At the moment, they are only focused on
data acquisition, but their sample frequency is also pretty low. Such systems should
be able to gather information at a high sample frequency and should be able to help
out with the detection of the fault when it occurs to help minimize the loss. Therefore,
this paper presents a method to help cover the above points, which is still a work in
progress for further enhancements.

3 Methodology & Results

This research explores a method to connect electrical machines to a cloud system and
detect faults using cloud computing in a communicative [oT system. Cloud
implementation will also be used to transfer the readings from sensors to a frontend in
real-time. In comparison, trained neural network methods are used to detect faults in
the cloud. One of the main aims of this research is to train such models that can help
with the switch to predictive maintenance from scheduled maintenance which can
help reduce costs in the case of offshore facilities and help contain the impact of faults
in the case of local electrical machines. This will also help monitor the machines
remotely and can be further enhanced to control the machines. The general overview
of the experimental setup is presented below (see Fig 2).
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Fig. 2. General overview of the experimental setup

The research setup can be divided into three parts: data acquisition, which acts as the
pre-requisite for further processing for fault detection. The second part is the
condition monitoring of the electrical machines in real-time with a local backup,
which ensures no loss of data while transmitting it to the cloud. Finally, faults
detection can be considered the third part of the setup where models are trained and
then used to detect faults in the incoming data signals. A general flowchart of the
whole setup can be seen below (see Fig. 3).
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Fig. 3. Flow Chart for all three parts

3.1 Data Acquisition

The data is read through analog sensors from the electrical machine and transmitted
through Arduino to Raspberry Pi. Arduino collects the data from the sensors and
works as an analog to digital converter (ADC) in this case. A separate ADC can also



be used instead of Arduino. For comparison purposes, the data was also recorded with
Dewetron so that the recorded data signals could be compared and the setup could be
corrected if there were any issues. Also, the data recorded with Dewetron was further
used to train machine learning models for fault detection. The experimental setup for
an induction machine is shown below (see Fig. 4).

Fig. 4. Picture of Setup with induction machine

The Teensy board is used here instead of Arduino due to better speed and reliability.
The converted data is transmitted to Raspberry Pi through Serial Peripheral Interface
(SPI) for high data transfer rate. If the sampling rate is low, other methods such as
Inter-integrated Circuits (I2C) or Universal Asynchronous Receiver-Transmitter
(UART) can be used depending on the scenario. A general comparison of the data
transfer rate for these three interfaces without any drop in data with breaks during the
research is shown in Table 1.

Table 1. Comparison of Sample Rate for different Communication Methods

Communication Method Sample Rate per second
UART 1800
12C 2600
SPI 3600

These sample rates can be enhanced but drop data sets when run continuously for a
more extended period of time. In this case, the tests were done for up to 7 days of
continuous data transmission through the setup to get the optimal data transmission
rate. Compared to Arduino, Teensy was preferred for the data acquisition part because



of its advantage while collecting and processing data towards Raspberry Pi. If the data
rate is low, it does not matter which card is being used for data acquisition, but it
makes much difference for a high data rate. A general comparison between the
transmission of data between Arduino and teensy board is given in Table 2.

Table 2. Time taken by IoT card for processing 10,000 samples

10T Card Processing Time for 10,000 samples
Arduino Mega 4.5 seconds
Teensy 4.0 0.75 seconds

According to the tests, different IoT cards take up different times for data
transmission without any data loss for a longer period of time. Although the data rate
can be increased for the specific cards, they end up losing data while continuous data
transmission for a longer period of time. This data is then further processed inside
Raspberry Pi and transmitted to the cloud.

3.2 Condition Monitoring

The acquired data is transmitted from Arduino to Raspberry Pi, where it is stored
inside a local backup database on Pi before being transmitted to a database on the
cloud for further computing. Both threads are running side by side here, Wi-Fi is
being used to transmit data to the cloud, and a check is placed to make sure the data
already saved up in the cloud database is not sent again. Other IoT communication
methods for data transmission to the cloud are not used due to some limitations in
transmission time and delay in the network due to congestion.

The database in the cloud is cloned in real-time with the one on Raspberry Pi. The
values are projected on a frontend user interface in real-time. The raw values and
processed values are also updated there so the data can be interpreted more easily.
Each phase is represented differently, which can be further enhanced to show
different sensors and devices. The data representation inside the user interface can be
seen below (see Fig. 5).
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Fig. 5. Example User Interface with dashboard



The user interface shows the spectrum in the frequency domain and whether a fault is
present or not using knobs. It also shows a caution notification in red if an error is
detected in the incoming data signal. The frequency spectrum shown here is further
processed with a cut-off amplitude to omit low amplitude frequency components.

3.3  Fault Detection

The detection of faults in the incoming signal is also divided into two parts. The first
part contains the training of models, whereas the second part consists of the detection
of faults in the cloud. To detect faults in an electrical machine in the initial stages, it is
essential to consider small frequency components. These components or harmonics
can be seen in the frequency spectrum. Therefore, for the training of the model, large
data samples are collected using Dewetron (see Fig. 6) for different model training.
The samples were then recorded and exported for further processing.

Fig. 6. Data Acquisition using Dewetron

The incoming signal is converted into the frequency domain by taking the Fast
Fourier Transform (FFT) of the signal to identify the signal's frequency components.
The data collected for training consists of data samples from a healthy motor to data
samples consisting of faults due to broken bars. The data set consists of around 19.6
million dataset samples at a sampling frequency of 20k Hz. The collection of datasets
is not done on a specific load but by varying loads so that the detection of faults is not
limited to a particular load. The frequency spectrum is used to train the model, which
helps differentiate between healthy and faulty motors based on different frequency
components.
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Fig. 7. FFT of one of the collected signals for training

Time-domain is not given a thought for model training as in the frequency domain;
the frequency components are not dependent on the number of cycles. This helps out
a great deal when faults are detected in real-time, as the incoming signals might not
have a fixed number of cycles. For training of the model, the signals are classified
either as healthy ‘0’ or faulty ‘1’ signals and different machine learning algorithms
were used to get the optimal ones. Two trained models were selected for testing
purposes. The training results for such models are shown below (see Fig. 8). The
blind validation of the model was carried out on around 6 million data samples.
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Fig. 8. Training Results for Machine learning Algorithm



The trained models were then used to detect faults in real-time on a running system
with an induction motor. The results for detection for the faults are shown in Table 3.
Although the accuracy of the models dropped a little from the blind validation of the
trained models, that might be due to the initial samples giving false detection where
the transition was done from healthy to faulty motor state. Both trained models were
run with motor for a specific time ranging from minutes to hours to test the results.

Table 3. Trained Models’ accuracy

Trained Machine Learning Model  Accuracy

Linear Discriminant 98%
Wide Neural Network 97.33%

Although the trained models give pretty good accuracy, there might be a need to train
them using more scenarios and test cases to ensure that the accuracy remains valid.
Also, to test them for a more extended period to ensure their accuracy holds out.
However, the linear discriminant gives out the most accurate results, but with more
data samples and complex scenarios, a neural network might take over the linear
discriminant model.

4 Conclusion

IoT and cloud computing is becoming the new norm in the communication industry.
This research aimed to propose a low-cost plug-and-play setup that can transmit data
from remote locations or electrical machines. Further, it should detect different types
of faults in the incoming data signals to reduce maintenance costs, especially for
offshore locations. This will help reduce the cost and help contain the impact of fault
on the machine. As scheduled maintenance costs are expensive, they are sometimes
not needed for offshore locations. Also, in the case of remote electrical machines, if a
fault occurs and is not addressed simultaneously can result in a bigger disaster.

The proposed setup helps reduce the maintenance cost by limiting it to
maintenance when limited and helps limit the impact of the fault by detecting the fault
at once and identifying the part of the electrical machine that is generating the fault.
The study can be further enhanced to improve from maintenance when needed to
predictive maintenance that can help limit the fault further, saving up cost and the
time needed to fix and identify a more complex fault. This will also help to
understand even a slight fluctuation in values that can help predict the occurrence of
faults. The research is still being developed by enhancing different data generation
points, including the availability of a 3 MW wind turbine, autonomous vehicle, and
lab setup of a small wind generator.

Future works include the prediction of faults in real-time as they happen so the
machine can be saved before it goes into a faulty state which can help reduce the
maintenance costs. Also, controlling of the machine through Raspberry Pi so that as
soon as it detects a fault, the machine can be stopped so that no further impact of fault
occurs onto the machine. Also, remote control of the machine and self-learning



models for fault detection with implementation onto Pi for edge computing is
considered in future works.

The setup is independent of any specific data generation point or hardware
requirement to be used as a plug-and-play device with any electrical machine.
Although it does need calibration with different sensors, this is only needed once at
the start. The technology can be enhanced to use with different types of sensors and in
different research fields like robotics, electric transportation, vehicles, etc., and is
open for further enhancements.
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Abstract—Internet of Things (IoT) has seen rapid growth
along with the recent advancement in information and
communication area. With the introduction of new technologies,
it has become easier to interact with machines and communicate
with them. IoT cannot only be used to communicate and control
these machines but it can be used further in diagnostics related
to the detection or prediction of faults. As the infrastructure is
advancing at a rapid speed, it has also become a need of the hour
to update the way diagnostics and maintenance are carried out
over them, to not only save cost but also time. This paper is a
work in progress, where these opportunities will be explored in
the context of IoT industrial applications.

Keywords— Internet of Things, Data Acquisition, Condition
Monitoring.

1. INTRODUCTION

Internet of Things (I0T) is the communication of different
intelligent devices over the internet. The advancement in
technology has not only made our life easier but has also
paved new ways to be more efficient. The data from devices
can be used to predict results but can also be used to diagnose
the machine and predict faults [1], [2]. Hence, cutting time on
the maintenance of a single machine but also making it cost-
efficient to remove unnecessary maintenance checks. loT has
a lot of applications in the industrial area including predictive
maintenance of industrial equipment [3].

As manufacturing has been advancing, IoT applications
related to industrial development and monitoring have been
increasing rapidly too. The inclusion of data collection from
machines to monitor them [4], [5] and run predictive analytics
for maintenance [6] is becoming a norm in the industrial field.
Due to the advancement in this field, maintenance has been
divided into several stages as described in Fig. 1. Usually,
predictive maintenance is used, as it is not only cost-efficient
but also saves time, as it gives a detailed report on the
diagnostics of the fault.

Machine learning algorithms are used to train models for
predictive analysis. The accuracy of any such model highly
depends on the data set used for training. These models can be
used for prediction of faults based on previous patterns, but
they require a high number of data sets for accurate or near
accurate predictions. Deep learning algorithms and pattern
recognition algorithms also come in the subdomain of
machine learning and are commonly known as Artificial
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Fig. 1. Maintenance stages of electrical machines.

Neural Networks (ANN), which is inspired by the working of
a human brain [7]. As these trained models need high
processing power and storage, they are mostly integrated with
cloud computing [8], [9].

This paper presents an overview of the methodology used
for collecting data at high frequency and syncing it with the
cloud without data loss. The paper further explains the
prospects of the research and in what direction it is heading.

II. RELATED WORK

The main architecture that is considered in the power of
IoT related to a smart grid is mainly applied to the overall
transmission of power, perception of grid and fault diagnostics
architecture. The hierarchical structure is similar to that of a
traditional IoT system including the network, transmission,
perception and application layer [10]. The general overview
of the architecture is shown in Fig. 2.

<

Business Layer |
d

s T

Application Layer

Middleware Layer
" e |
Networl Layer |

Perception Layer

v

Fig. 2. Architecture for power Internet of Things
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Nowadays, as the requirements for human resources are
increasing with the growth in population, the need for energy
resources is also escalating, whereas the conventional
resources are decreasing with time. Hence, there is an urgency
to look for alternative energy sources and researches is being
done in different fields to find feasible energy sources. Among
these researches for alternative energy, wind energy is rising
as one of the preferred possibilities. Wind energy is being
widely used because of its advantages, like no greenhouse
effect, nonpolluting, availability, no gas emission, etc. [11].
Wind turbines are being used to convert wind energy into a
useful form of electrical energy but to get the maximum out
of this system, this process should be monitored and
controlled [12], [13].

Most of the time, wind turbines are in complex topography
with limited access and a difficult way of communication.
Therefore, much work has been done in controlling and
monitoring the wind turbines remotely and sending the
maintenance staff only when it is necessary. Monitoring the
condition of the wind turbines at regular intervals is applied
universally and is necessary to reduce the downtime of the
turbines and get the maximum out of them [14]. Examples of
work done, related to wind energy, utilizing wireless
technologies are given in [15], [16]. Some researchers have
also tried to deploy wind turbines on the roofs of buildings,
but the turbines deployed cannot be bigger in size and their
productivity is lacking with respect to cost [17], [18].

With time, more and more offshore wind turbines are
being erected, hence, giving in space for an urgent need for
predictive, proactive and commercial maintenance. Major
problems faced due to these wind turbines are in maintenance
and the downtime due to faults in bearings, gearboxes or other
electromechanical components. These can be overcome by
installing sensors [19] and continuous monitoring of the wind
turbine. The fault rate of a wind turbine is high, which also
results in a cost for maintenance of these wind turbines as
offshore maintenance teams must be deployed after a specific
number of days to check for faults, which also emphasizes the
need for reliable fault detection and monitoring system for
wind turbines [20].

Turbines transmit
sensor data

A <
4

«
S
®

Data is sent back t
the industrial mlems-l
fcr future use

With the current advancement in technology more
complex systems are also being used in robotics [21], [22]K
and autonomous vehicles[23]. The current systems used for
data acquisition in robotics are still developing and changing
over time due to the increase in the number of sensors and
safety circuits[24]. The need to process these readings in real-
time has also increased the need for higher sampling
frequency. More research is being done in this regard taking
into account different environmental effects too[25]-[28].

Some of these monitoring systems have already been
developed in SCADA but these systems are very expensive
and require more space and complex installation [29]. There
are some methods based on IoT [30], [31] but their sample rate
for collection of data is not only low but they are also solely
focused on the purpose of collection rather than premature
detection of faults and monitoring of turbines. Wind energy
monitoring based on IoT should have strong reliability,
accessibility, profitability and flexibility. It should include the
main aspects of real-time monitoring of wind turbines, real-
time collection of data from sensors, premature fault detection
based on patterns generated from data collection, prediction of
wind generation and other predictive analysis. Therefore, in
this paper, we are presenting research that is a work in
progress covering all the basics mentioned above.

III. METHODOLOGY

In this research topic, a method will be implemented to
connect electrical machines over the cloud, thus forming a
communicative [oT system. Apart from the implementation of
the [oT system, cloud computing will also be utilized to run
different machine learning and pattern recognition algorithms
to predict and detect faults in electrical machines. One of the
aims of this research area will be to switch electrical machines
over to predictive maintenance from scheduled maintenance
to make maintenance more time and cost-efficient for offshore
electrical machines. One of the other tasks will be monitoring
the incoming data and removing any noise if present. An
industrial example for such type of IoT system is represented
in Fig. 3.

T

Industrial IOT

The technician is equi
with the right knowledge
and tools to quickly an

efficiently complete the task

The data that is recewed

and recorded enal

the discovery of opporlunltles
to lower maintenance

and operating costs

ped

Data analysis reveals a need
for preventive maintenance

Fig. 3. Wind Turbine IoT Industrial implementation
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Fig. 4. Experimental setup for data gathering from wind turbine

Our research focuses on not only collecting data in real-
time for monitoring of the wind turbines but also a prediction
of the faults beforehand so that they do not propagate into a
major fault. This will also help to reduce the time taken by the
maintenance team on offshore turbines and help them identify
the fault beforehand. The research can be divided into two
parts with first being considered as a prerequisite for machine
learning and predictive analysis, and the second being
predictive analysis and fault diagnostics. For our first part, we
have set up an in-house test bench for the collection of data
sets using wind turbines and wind tunnel. The running
example of this setup is shown in Fig. 4. Also, we are
developing our own setup for collecting data from sensors,
which will be set up inside the wind turbines to detect different
parameters like vibration, wind speed, temperature, voltage,
etc. We are collecting data at high frequency to collect more
information for the dataset, hence, we will be able to identify
even a slight fluctuation and can predict the faults beforehand,
which will not only decrease the overhead caused by major
fault occurring later but also will reduce the downtime for the
wind turbine.

The setup used for collecting data comprises of two-part
with our sensors being attached to a Teensy card that can also
act as an analog to digital converter and forwards the data in
digital form to Raspberry Pi, which will not only act as a hub
for different sensors but will also keep a local database as a
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backup to the cloud. The setup we will use for the collection
of data from wind turbines is not only cost-effective as
compared with other equipment but also does not take much
space. Fig. 5 shows the setup of Raspberry Pi with an IoT card
for the collection of data from a wind turbine. This setup can
be used with any sensor for the collection of data and can be
placed with any electrical machine for monitoring.

Raspberry Pi with the card and sensor is used for gathering
data from the experimental setup and the values gathered at

Fig. 5. Experimental setup of the card for gathering data
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Fig. 6. Flow chart for data acquisition from a windmill to cloud

high frequency were accurate in accordance with the values
gather through the Dewetron data acquisition device.
Furthermore, the values recorded were also pushed into the
database at high frequency without any loss of data. The
sampling frequency attained until now by our setup is
approximately ~3400 samples per second from recording to
inserting it in the database in real-time, shown in Table I. The
flow chart of the whole setup is shown in Fig. 6. The aim of
our setup is also to explore different ways of communication
between machines and to see, which one of the current
methods is the most feasible and fastest way to transfer data
without any loss. This is the first part of the research that we
are currently working on, whereas for the second part we will
be doing predictive analysis along with different machine
learning and pattern recognition techniques to detect faults at
a premature level. This step will be further worked on once we
have enough data to train models and do predictions
accurately.

TABLE 1. SAMPLE RATE FOR DIFFERENT TYPES OF COMMUNICATION

METHODS

Communication Method Sample Rate / sec

UART 1800

SPI Interface 3600

TABLE II. PROCESSING TIME FOR DIFFERENT IOT CARDS PER 10,000
SAMPLES
Card Processing t{me for 10,000
samples in seconds
Arduino Mega 4.5 sec
Teensy 4.0 0.75 seconds
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Table II shows the time taken in the case for the processing
of 10,000 samples for different cards. The processing time
includes data acquisition from the sensors, processing of
incoming data inside the card and then transmission of data to
Raspberry Pi wusing either  UART or SPI Interface
communication.

IV. CONCLUSION

10T devices and cloud computing are becoming more and
more popular now a day as it gives the monitoring team more
control over the electrical machine. This research aims to not
only monitor offshore electrical machines but also to cut off
extra expenses and save time from unnecessary scheduled
maintenances. It will also help later to predict faults using
incoming signals and diagnosis to pinpoint the necessary
reasons for the generation of fault, which will further save
time on maintenance and removal of that fault. We will be
researching and implementing such an IoT system for offshore
wind turbines. We already have different points for data
generation, including the availability to monitor a real-life
3 MW wind turbine. Also, we have access to the TalTech
satellite ground control tracking antenna in addition to the in-
lab setup.

One of our future research aims is to extract data at 10000
samples per second in real-time on the cloud so that we can
have enough data to not only train our models efficiently but
also to determine even a slight fluctuation in values. The
sampling frequency of 10,000 is taken as reference, for now,
considering multiple sensors acquiring data at the same time,
with further testing this value will be optimized. This will also
help us to predict more accurate values in terms of power
generation and maintenance due dates. This will further help
our research aim to reduce the cost and time taken for offshore
maintenance and will help detect the faults remotely.

This research can be further enhanced for monitoring the
wind turbines remotely and predict whether a minor fault can
give way to a major one, later on, this will also help to send
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out maintenance teams when needed and not periodically even
where there is no need.

This research can also be applied in the field of robotics as
there are several sensors implemented in its circuit and there
is a high frequency for data acquisition in real-time. This setup
can be used to acquire data and process it in real-time to
predict movements and to keep remote maintenance of sensors
and circuits. This can also be further enhanced to control the
working of a robot remotely.

The technology developed is independent of any specific
data generation point or hardware so it can be further adapted
in other fields of research in electric transportation, vehicles,
medical equipment, robotics, etc., and is open for future
research.

741

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 12,2023 at 22:32:35 UTC from IEEE Xplore. Restrictions apply.



(1]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

B. Asad, T. Vaimann, A. Belahcen, and A. Kallaste, “Broken
rotor bar fault diagnostic of inverter fed induction motor using
FFT, Hilbert and Park’s Vector approach,” Proc. - 2018 23rd Int.
Conf. Electr. Mach. ICEM 2018, pp. 23522358, 2018, doi:
10.1109/ICELMACH.2018.8506957.

T. Vaimann, J. Sobra, A. Belahcen, A. Rassolkin, M. Rolak, and
A. Kallaste, “Induction machine fault detection using smartphone
recorded audible noise,” IET Sci. Meas. Technol., 2018, doi:
10.1049/iet-smt.2017.0104.

R. C. Parpala and R. Tacob, “Application of IoT concept on
predictive maintenance of industrial equipment,” MATEC Web
Conf., vol. 121, pp. 1-8, 2017, doi:
10.1051/matecconf/201712102008.

T. Vaimann, A. Kallaste, and A. Kilk, “Sensorless Detection of
Induction Motor Rotor Faults Using the Clarke Vector
Approach,” Sci. J. Riga Tech. Univ. Power Electr. Eng., vol. 28,
no. 1, pp. 16-21, 2011, doi: 10.2478/v10144-011-0007-9.

S. Sathyan, A. Belahcen, J. Kataja, T. Vaimann, and J. Sobra,
“Computation of stator vibration of an induction motor using
nodal magnetic forces,” Proc. - 2016 22nd Int. Conf. Electr.
Mach. ICEM 2016, pp. 2198-2203, 2016, doi:
10.1109/ICELMACH.2016.7732827.

H. Barksdale, Q. Smith, and M. Khan, “Condition Monitoring of
Electrical Machines with Internet of Things,” Conf. Proc. - IEEE
SOUTHEASTCON, vol. 2018-April, pp. 1-4, 2018, doi:
10.1109/SECON.2018.8478989.

A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh,
“Current methods and advances in forecasting of wind power
generation,” Renew. Energy, vol. 37, no. 1, pp. 1-8, 2012, doi:
10.1016/j.renene.2011.05.033.

M. Aazam, 1. Khan, A. A. Alsaffar, and E. N. Huh, “Cloud of
Things: Integrating Internet of Things and cloud computing and
the issues involved,” Proc. 2014 11th Int. Bhurban Conf. Appl.
Sci. Technol. IBCAST 2014, pp. 414-419, 2014, doi:
10.1109/IBCAST.2014.6778179.

J. H. Li, S. Zhao, and Y. R. Wang, “Using cloud computing and
the internet of things to construct vehicle condition fault
diagnosis platform,” in Applied Mechanics and Materials, 2014,
doi: 10.4028/www.scientific.net/ AMM.574.752.

R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern classification,”
New York John Wiley, Sect., 2001.

M. Mohanraj., R. Thottungal, and K. Jaikumar, “A CAN bus
based system for monitoring and fault diagnosis in wind turbine,”
2013 Int. Conf. Emerg. Trends VLSI, Embed. Syst. Nano
Electron. Telecommun. Syst. ICEVENT 2013, pp. 4-6, 2013, doi:
10.1109/ICEVENT.2013.6496547.

M. A. Sayyed, N. Ansari, and S. A. Mobeen, “a Can Bus Based
Fault Monitoring and Diagnosis System in Wind Turbine,” no. 3,
pp. 56-58,2014.

M. L. Wymore, J. E. Van Dam, H. Ceylan, and D. Qiao, “A
survey of health monitoring systems for wind turbines,” Renew.
Sustain. Energy Rev., vol. 52, no. 1069283, pp. 976-990, 2015,
doi: 10.1016/j.rser.2015.07.110.

F. P. Garcia Marquez, A. M. Tobias, J. M. Pinar Pérez, and M.
Papaelias, “Condition monitoring of wind turbines: Techniques
and methods,” Renew. Energy, vol. 46, pp. 169-178, 2012, doi:
10.1016/j.renene.2012.03.003.

P. Xie et al., “Sensing wind for environmental and energy
applications,” [ET Conf. Publ., vol. 2014, no. CP639, pp. 64—69,
2014, doi: 10.1049/cp.2014.0660.

D. O’Donnell, B. Srbinovsky, J. Murphy, E. Popovici, and V.
Pakrashi, “Sensor measurement strategies for monitoring offshore
wind and wave energy devices,” J. Phys. Conf. Ser., vol. 628, no.
1, 2015, doi: 10.1088/1742-6596/628/1/012117.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

742

M. Luleva, “The Green Optimistic Micro-Wind Turbine Array
Power’s Intel’s Headquarters,” 2015. [Online]. Available:
https://www.greenoptimistic.com/intel-micro-wind-turbiney/.
[Accessed: 16-Feb-2020].

T. Levesque, “Inhabitat Micro Wind Turbine: Small Size, Big
Impact,” 2007. [Online]. Available: https://inhabitat.com/micro-
wind-turbines-small-size-big-impact/. [Accessed: 16-Feb-2020].

S.J. Watson, B. J. Xiang, W. Yang, P. J. Tavner, and C. J.
Crabtree, “Condition monitoring of the power output of wind
turbine generators using wavelets,” IEEE Trans. Energy
Convers., vol. 25, no. 3, pp. 715-721, 2010, doi:
10.1109/TEC.2010.2040083.

Z.Fu, M. Zhao, Y. Luo, and Y. Yuan, “Self-healing strategy for
wind turbine condition monitoring system based on wireless
sensor networks,” ICCSE 2016 - 1 Ith Int. Conf. Comput. Sci.
Educ., no. Iccse, pp. 544-549, 2016, doi:
10.1109/ICCSE.2016.7581639.

V. Kuts, T. Otto, T. Tahemaa, K. Bukhari, and T. Pataraia,
“Adaptive industrial robots using machine vision,” in ASME
International Mechanical Engineering Congress and Exposition,
Proceedings (IMECE), 2018, doi: 10.1115/IMECE2018-86720.

V. Kuts et al., “Synchronizing physical factory and its digital
twin throughan iiot middleware: A case study,” Proc. Est. Acad.
Sci., 2019, doi: 10.3176/proc.2019.4.03.

N. Ahmad, S. I. S. Bajwa, S. Ahmad, S. L. Khan, T. A. Malik,
and Y. Tahir, “Autonomous Unmanned Surface Vehicle a
microcontroller based approach,” in 2011 International
Conference on Electric Information and Control Engineering,
ICEICE 2011 - Proceedings, 2011, doi:
10.1109/ICEICE.2011.5778076.

S. D. Pendleton et al., “Perception, planning, control, and
coordination for autonomous vehicles,” Machines, 2017, doi:
10.3390/machines5010006.

A. S. Jaiswal and V. Baporikar, “Embedded Wireless Data
Acquisition system for unmanned vehicle in underwater
environment,” in 2015 IEEE Underwater Technology, UT 2015,
2015, doi: 10.1109/UT.2015.7108223.

B. Lawal, S. S. A. Alj, and A. Bin Awang, “Massive MIMO
systems for underwater acoustic communication,” in USYS 2016 -
2016 IEEE 6th International Conference on Underwater System
Technology: Theory and Applications, 2017, doi:
10.1109/USYS.2016.7893912.

V. Mhatre, S. Chavan, A. Samuel, A. Patil, A. Chittimilla, and N.
Kumar, “Embedded video processing and data acquisition for
unmanned aerial vehicle,” in Proceedings - 2015 International
Conference on Computers, Communications and Systems, ICCCS
2015, 2016, doi: 10.1109/CCOMS.2015.7562889.

V. Djapic, G. Galdorisi, A. Jones, and M. Ouimet,
“Heterogeneous Autonomous Mobile Maritime Expeditionary
Robots,” in OCEANS 2016 MTS/IEEE Monterey, OCE 2016,
2016, doi: 10.1109/0CEANS.2016.7761092.

Y. Debbag and E. N. Yilmaz, “Internet based monitoring and
control of a wind turbine via PLC,” 2015 3rd Int. Istanbul Smart
Grid Congr. Fair, ICSG 2015, 2015, doi:
10.1109/SGCF.2015.7354935.

M. Fran, S. Anitha, and R. R. Mohan, “IoT BASED WIND
TURBINE MONITORING , FAULT DIAGNOSIS AND
CONTROL USING UART,” Int. J. Adv. Res. Manag. Archit.
Technol. Eng., vol. 3, no. 6, pp. 72-76, 2017.

B. Srbinovski, G. Conte, A. P. Morrison, P. Leahy, and E.
Popovici, “ECO: An loT platform for wireless data collection,
energy control and optimization of a miniaturized wind turbine
cluster: Power analysis and battery life estimation of IoT
platform,” Proc. IEEE Int. Conf. Ind. Technol., pp. 412417,
2017, doi: 10.1109/ICIT.2017.7913266.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 12,2023 at 22:32:35 UTC from IEEE Xplore. Restrictions apply.



Publication VII

Raja, H. A.; Kudelina, K.; Asad, B.; Vaimann, T. (2022). Fault Detection and Predictive
Maintenance of Electrical Machines. In: New Trends in Electric Machines - Technology
and Applications IntechOpen. DOI: 10.5772/intechopen.107167.

157






Fault Detection and Predictive Maintenance
for Electrical Machines

Hadi, Ashraf Raja, Tallinn University of Technology, Tallinn, Estonia, haraja@taltech.ee

Karolina, Kudelina, Tallinn University of Technology, Tallinn, Estonia,
karolina.kudelina@taltech.ee

Bilal, Asad, Tallinn University of Technology, Tallinn, Estonia, bilal.asad @taltech.ee

Toomas, Vaimann, Tallinn University of Technology, Tallinn, Estonia,
toomas.vaimann@taltech.ee

Abstract

Nowadays, most domestic and industrial fields are moving towards Industry 4.0 standards and
integration with information technology. To decrease shutdown costs and minimize downtime,
manufacturers switch their production to predictive maintenance. Algorithms based on machine learning
can be used to make predictions and detect timely potential faults in modern energy systems. For this,
trained models with the usage of data analysis, cloud, and edge computing are implemented. The main
challenge is the amount and quality of the data used for model training. This chapter discusses a specific
version of a condition monitoring system, including maintenance approaches and machine learning
algorithms and their general application issues.

Keywords: electrical machines, fault diagnostics, predictive maintenance, artificial intelligence, condition
monitoring, neural networks.

1. Introduction

The recent advancement in information technology, especially the integration of technology with
different fields of research, has made day-to-day life convenient and opened up new research areas. One of
these fields is the Internet of Things (IoT), which enables physical devices to communicate through the
internet. The advent of these smart or intelligent devices and their implementation in industrial
applications resulted in the industrial revolution, commonly known as industrial standard 4.0. These
devices are not only able to communicate with each other but also able to make decisions based on defined
logic or controlled remotely also referred as Cyber-physical systems. This has further paved the way for
condition monitoring of electrical devices, where these devices act as data acquisition points. The collected
data can then be used to monitor specific electrical machines. Further data analysis can be done on the
collected data to include fault diagnostics on these devices, including the prediction of faults [1,2].

Industrial standard 4.0 have given way to the implementation of condition monitoring [3.4] at a mass
scale in the industry, leading toward predictive maintenance [5, 6] of electrical machines in the near future.
Many companies are working on different predictive maintenance algorithms to reduce their scheduled
maintenance costs. This research will further improve the effectiveness of electrical machines in the
industry [7] and help reduce unforeseen errors and faults. Most companies are also researching finding the
lifespan of the equipment based on previous patterns and external environmental variables to get the best
results out of their setup. Researchers have already implemented different condition monitoring setups to
maximize the potential of different electrical machines, including offshore wind turbines [8, 9], but most of
this equipment is expensive and heavy.

At the moment, the industry is trying to move towards predictive and proactive maintenance to help
reduce costs due to unexpected errors and faults that could have been handled before they become a more
significant issue. The maintenance of electrical machines is usually divided into four phases: reactive,
periodic, proactive, and periodic, as shown in Figure 1. Among the four phases, most of the industry is still



on scheduled maintenance but is trying to move towards predictive maintenance as it is not only cost
efficient but also generates a more detailed report on fault diagnostics.

Maintenace Stages of Electrical Machines

Reactive Periodic Proactive Predictive
(Fix when the (Seheduled (Eliminate (Use analytics to
equipment is Maintenance) defects at an predict machine
down]) early stage) failure)

Figure 1. Maintenance types of electrical machines.

With the move towards predictive maintenance, researchers are also looking for ways to utilize newer
technology to get better results. The research is not only going on in this area but also in other areas like
wearable devices for condition monitoring of patients to check on any abnormality [10, 11], solar-powered
condition monitoring systems [12], air and noise pollution monitoring systems [13], and much more. This
is because of the advancement in the technology of microcontroller boards that have given researchers
more options to explore. More researchers are including these boards in their research because of their
scalability. There have already been researches going on like the development of a condition monitoring
system for wind turbines [14], weather sensors [15], electrical machines [16-18], autonomous vehicles
[19], and robotics [20, 21]. Most of these condition monitoring systems are still in development and might
need much more improvement before they can become stable and be used on a large scale. One of the most
common issues is the sample rate at which data is gathered using these devices and its transmission
without any data loss.

Most of the systems already in place use SCADA / PLC which are not only complex and expensive but
also harder to transport [22]. One of the other issues with these systems is that although they are data
acquisition points, there is no data analysis of the collected data. Hence, it is just lying there and not being
utilized anywhere for fault diagnostics or being used to deduce any results. For the analysis of the collected
data, cloud computation is used along with edge computing, which helps analyze the data and deduce
results from it. For the analysis part, machine learning algorithms are mainly used to train models based
on collected data from these machines. These trained models are implemented on the cloud to get near
accurate classification and prediction related to incoming data from the electrical machines. These models
mainly were implemented on cloud storage or isolated servers as they need high processing power and
storage space. However, now things are moving towards edge computation from the cloud. This will result
in these models being implemented at the edge node where the data is being collected rather than on the
cloud, which will help identify errors on the edge and further reduce the time needed to make a decision.
This will also result in reduced bandwidth needed to transfer the data over the network.

This chapter discusses a concise overview of a condition monitoring system using microcontroller
cards, following a small data pre-processing and analysis. Further, some light is shown on the machine
learning algorithms and the training of data sets for different faults, and a short detail related to predictive
maintenance is given, how it can help, and at what stage it is currently at, followed by a short conclusion.

2. Condition Monitoring System

This section will discuss a particular approach on condition monitoring system based on micro-
controller boards and cloud resources. The condition monitoring system technically consists of three parts:
the data acquisition system, the edge node and the cloud. Usually, the researchers do not consider an edge
node system. However, it is always better to have a local backup, computation power, and space to run
some analysis if needed. The data acquisition part will consist of the microcontroller board, with the edge
node being the one that helps in case of any data loss over the network.



The data acquisition part will gather data from the electrical machine using sensors. The incoming data
is calibrated before transferring it through the micro-controller board to the edge node. In most cases, as
the industry uses analog sensors, this part also acts as an analog to digital converter (ADC). The acquired
data is then transmitted towards the second part i.e., the edge node. The edge node acts as a local backup
where the incoming data is stored in a mysql database. The database is synced in real-time with the
database present in the cloud. Some pre-processing can also be done on edge, including digital filtering.
The third part of the system, which is in the cloud, runs the frontend UI for the end user. It also runs
diagnostics in the background on the latest synced data to look for faults. As the time difference between
data acquisition from the electrical machine to showing the diagnostic results on the frontend is not much,
this system can also be referred to as a real-time condition monitoring system. Figure 2 shows a rough flow
chart of the implementation of a condition monitoring part.
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Figure 2. Flow chart of a condition monitoring system.

The data is collected from the electrical machines using a microcontroller, an Arduino or a teensy. One
of the microcontroller cards (i.e., Arduino) is shown in Figure 3. The collected data is read through one of
the analog or digital pins on the micro-controller card, depending on the sensor used for data collection. If
the sensor is [oT compatible, the data can be read over on the digital pin. In contrast, the general analog
sensors used in the industry need to be calibrated and their output adjusted before they can be passed onto
the micro-controller board. As the pins on the microcontroller boards do not allow a negative voltage or
more than a specific voltage, before providing the data to the pins of the board, it is necessary to make sure
that the sensor output is calibrated correctly. If by any chance, there is a negative voltage or higher voltage
than the one pin can handle, there is a high chance that the board will short circuit. So, it is essential to
make sure that this is handled correctly; otherwise, might end up in a short circuit of the board and with
the data collected being junk without any real meaning.

Figure 3. Arduino board.



Once the data is received on the board, it is then forwarded to the edge node, which is made up of
Raspberry Pi. The data read here through the analog pin is at high speed. To ensure it is transmitted at the
same speed without any loss of data Serial Peripheral Interface (SPI) connection is used between the
microcontroller board and Raspberry Pi. Also, to be sure, the voltages for both the microcontroller board
and Pi are different as some microcontroller boards give an output of 5 Volts at high. In contrast, Pi works
with a voltage of 3.3 Volts when high, so it is also needed to ensure the transmitted values do not go over
it. If a high sample rate is not needed, then UART communication should be preferred. A short description
of different communication methods and their sample rate for a longer period of time is shown in Table 1.

Table 1. Comparison of Sample Rate for different Communication Methods

Communication Method Sample Rate per second
UART 1800
12C 2600
SPI 3600

The above sample rate per second is just a comparison between the speed for different communication
methods for a specific micro-controller board. In this case, the micro-controller board considered is
Arduino Mega. The communication devices and other specifications, including the buffer capacity of the
logger device, are the same in all three cases, i.e. Arduino Mega and Raspberry Pi. The results shown in
Table 1 are approximately maximum sampling rates of an Arduino Mega that can be achieved when run for
over a couple of days with the specific communication method without any data loss during transmission
from Arduino Mega to Raspberry Pi. These specific results are hardware dependant and changing the
micro-controller board will change the speed range, e.g. teensy has a far better range. An experimental
setup with an induction motor and analog current sensors for data acquisition is shown in Figure 4.

Figure 4. Experimental setup of induction motor with analog sensors.

The communication method for data transmission between the microcontroller board and Pi can be
decided based on the sample rate needed for the transmission. These sample rates are based on continuous
data transmission from a couple of hours to days without any data loss between the transmission. Similarly,
the choice of microcontroller board might also impact the sample rate for transmission, as the newer board
having better computation power gives better results. Once the data is transmitted to Pj, it is saved up in a
local database and synced online simultaneously to ensure that every bit of data is synced online with the
cloud without any loss. Pi also acts as a node that is capable of running analysis (like digital filtering) if
needed going forward. The transmitted data is then analyzed on the cloud and based on different trained



models; results are deduced whether any fault is present or not. As it is harder to understand incoming
data in numerical form, the deduced results are then shown at a front end hosted on the cloud. The
graphical user interface (GUI) is user-friendly and helps the end user understand the result without much
information related to the system. An example of such a GUI is shown in Figure 5.

original signal in Time Domain single-Sided Amplitude Spectrum of X(t)
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Figure 5. Example of GUL

The GUI shown in Figure 5 runs on the cloud with scalable resources. It mainly consists of two parts, the
GUI and the diagnostic analysis running in the background. The GUI is built using PHP, whereas the
diagnostic analysis primarily uses Python as the primary language, with the results saved in a Mysql
database. The saved results are then projected on the GUI as soon as they are updated in the database. The
cloud resources used here are scalable. With low data processing, i.e., only one or a couple of diagnostic
analysis running in the background, resources with 4 vCPU cores, 16 GB RAM and 128 GB Disk are good
enough. This can be further scaled up depending on the number of diagnostic analysis and edge devices
connected with the cloud, i.e., increased incoming data flow.

Further analysis results can also be shown on the GUI including the chance of a fault occurring in each
phase and the option to control the electrical machine remotely if power to the machine is routed through
the micro-controller board. Hence, there are multiple ways this system can be extended further. This can
help the end user understand the situation of the electrical machine in more detail. This can also help
identify which phase of the electrical machine or which part of the machine is generating issues which can
further reduce the time taken to identify the root cause of the fault. This helps maintenance teams in
reducing the time needed to fix it and decide whether the fault needs to be fixed urgently or can be done
later.

3. Data Pre-processing and Analysis

The incoming data needs to be pre-processed before it can be used for analysis. In this chapter, the
analyses are focused on steady state operation. As the data is coming in the time domain and is raw, it is
needed to make sure whether it can be utilized for the need or not. To detect faults in the early stage, it is
reasonable to consider small frequency components by taking Fourier transforms of the incoming signal.
For effective fault detection, different operating conditions must be considered, such as control
environment, load, ambient environment, etc. Figure 6 presents the current frequency spectra of a motor
with broken rotor bars in several control modes - grid fed, scalar, and direct-torque control. As seen, a
significant shifting in frequency components occurs between the signals in different control modes. This is
important to be considered during the model training.
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Figure 6. Current frequency spectra of a faulty motor under different control modes.
At the same time, load also should be considered. Figure 7 presents the current frequency spectra of a
motor with broken rotor bars under different loads. It is seen that the behavior of the signal changes as the
load increases.
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Figure 7. Current frequency spectra of a faulty motor under different loads.

In both cases, there are two regions to be studied to make predictions. Firstly, the frequency range of 0-
500 Hz, where the impact of the fault is the highest on even harmonics. Specifically, the most prominent
are harmonics on 50, 250, and 350 Hz. Besides, harmonics at 750 Hz can be important to be studied and
considered for fault prediction.

The data is first converted into the time domain and sampled according to the sampling frequency to
make sure we have enough cycles. Figure 8 shows an example of sample data set in the frequency domain.
As the time domain does not have significant components based on which healthy and faulty data can be
distinguished; hence, the data is converted into the frequency domain first and the frequency spectrum is
analyzed to find the specific difference between the healthy and the faulty electrical machines.
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Figure 8. The frequency spectrum of the signal to be trained.

The frequency spectrum of a faulty electrical machine includes different frequency components usually
not present in a healthy electrical machine frequency spectrum. Identifying those components and utilizing
different analyzing techniques to identify them in the incoming data is part of fault detection. Including
those frequency components to extract as features for training different machine learning models can help
identify electrical machines' faults. Fault detection can be divided into two parts: signal processing and
machine learning trained algorithms. Different analyses based on fast Fourier transforms can be used for
the signal processing part.

4. Machine Learning Algorithms

The most common technique used for the detection of faults at the moment is utilizing machine learning
trained algorithms. With the advent of artificial intelligence, making self-learning or systems with the
aptitude for the decision has helped streamline multiple processes. Machine learning algorithms help
create a complex weighted combination based on training data that can be used later to deduce results for
the incoming data. Figure 9 presents the mostly spread machine learning algorithms [23].
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Basic Paradigms Neural Networks
Supervised Learning Unsupervised Learning  Reinforcement Learning Deep Learning
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Figure 9. Machine learning algorithms [23].

One of the primary drawbacks of machine learning algorithms is that they need a lot of data to train a
high-accuracy model. However, it usually depends on the complexity of the model. Suppose the model will
be used for classification, with classification being divided into two labels. In that case, the accuracy will be
pretty high even with a low training data set. But suppose that is to be changed by classifying the
classification into four different labels. In that case, the system's complexity will increase, resulting in the
algorithm needing more data to make an accurate model. Figure 10 shows the general working of a machine
learning or neural network model, to be precise.

There are different types of machine learning algorithms based on specific logic. The training data set
results in a statistical complex function based on the selected algorithm that gives a trained model. Among
the machine learning algorithms, the most used are neural networks. Neural networks are further divided
into three main types:

e Artificial Neural Network (ANN),
e Recurrent Neural Network (RNN),
e  Convolution Neural Network (CNN),

ANN and RNN are primarily used for training for models related to detection or prediction. Most ANN
models are regression-based or feed-forward models, whereas RNN is feed backward neural network
models. Neural network model training is divided into three layers: the input layer, the hidden layer, and
the output layer. The hidden layer is where the weighted nodes are set up, as the weight of these nodes is
adjusted with each training data set. Once the model is trained using the training data set, a blind validation
can be carried out to test the accuracy of the model before implementing it in a real-time scenario.
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Figure 10. Neural network schematics.

These models, after training, are usually implemented in the cloud and are used to detect faults in the
incoming signals. Although they can be trained to be precise, the data needed for it is usually great. That is
why researchers are looking into generating such data programmatically based on the real-time collected
data and frequency harmonics. If this is reached, it will be possible to mass produce faulty data according
to the need of the electrical machine for training a machine learning model according to the need. In the
future, it might also be possible to implement these models onto the edge or nodes to move the computation
from the cloud toward edge computing.

Training of machine learning models also has other issues with accuracy based on the complexity of the
system. Table 2 shows an example results from a set of experiments that confirms that changes in
complexity or size of a database do impact the accuracy of different machine learning models. In this
specific example, the algorithms were run with specific conditions to compare them under similar training
and validation processes. However, the results can still be optimized as the training process (i.e., epochs,
..) and the test approach (i.e., v-fold cross-validation, holdout validation, ...) can also result in different
results. Hence, changing approaches can result in better or, even in some cases, worst performance, for
example, a trilayered neural network with two categories and a smaller training set can result in an
overfitted model.

Table 2. Accuracy comparison of different neural network models.

Neural Network Algorithm Smaller Training Set Bigger Training Set
Two Categories  Four Categories Two Categories Four Categories
Narrow Neural Network 88.30% 65.00% 70.00% 38.50%
Medium Neural Network 82.50% 63.30% 73.50% 46.50%
‘Wide Neural Network 88.30% 73.30% 76.20% 51.50%
Bilayered Neural Network 82.10% 62.10% 75.20% 43.10%
Trilayered Neural Network 95.40% 64.20% 73.3% 53.40%

As the system becomes more complex, a larger number of data is needed, but this also shows that there
is a chance that another machine learning algorithm can perform better for the same scenario. Hence, these



trained models are still flexible and there is a need to either get the optimal number of data sets for the
training of the machine learning-based models or implement a custom-made machine learning model that
can help identify faults related explicitly to electrical machines with high accuracy.

5. Predictive Maintenance

As the industry is moving towards predictive maintenance from scheduled maintenance, there is still
much research to be done in this area. Most of the research going on is related to fault detection rather than
fault prediction, but there are companies working in this specific area. The most important thing in this
field is to identify the faulty frequency components in the early stage of the fault and the behavior of the
signal and its frequency components when the signal is shifting from a healthy state to a faulty state. Once
these things are identified, the next step is to train such a model that will be able to predict whether the
fault is going to occur and in how much time. This will depend based on pre-processing of data and
classification of the components. This is not a small task and needs dedication and time.

Researchers are looking for better ways to get a prediction model for faults to help identify them even
before they occur. This leads us towards predictive maintenance, there might be some companies that are
already running some kind of predictive maintenance algorithms with their systems, but at the moment,
the hardware setup they have to use alongside it is quite expensive. So, another main issue in this area is to
make it such that it is not only cheap but no specific hardware setup is needed in this regard. There are also
multiple directions in which predictive maintenance trained algorithms can be utilized. There can be a
combination of different algorithms to get higher accuracy or more accurate results. Similarly, fuzzy logic
systems can also be used in accordance with machine learning algorithms and signal processing to get a
more accurate system for predictive maintenance.

Another issue that the researchers commonly face in this aspect is the lack of data. As the data collected
in an industrial environment is limited, especially in the case of faults, training a model with quality data
and testing it out is quite difficult. Also, the data required to train models properly should be good in quality
and quantity. Some researchers are working on observing the pattern in different faults to generate a
statistical equation for the faults so that synthetic signals can be generated, which can help cover up this
issue. The main issue in this aspect is to correctly identify the range of amplitude of frequency components
that are generated when a fault is present in the electrical machine. This is not easy as it requires much
data analysis and robust testing, but immense research is taking place in this direction.

6. Conclusion

The industrial revolution and information technology advancements have opened up new research
areas to make things more convenient for industrial applications. [oT, with its usage in condition
monitoring, fault detection, and remote controlling, is already becoming the norm for the industry. It will
be more important in the near future to implement predictive maintenance for the industry to move away
from scheduled maintenance to cut short on losses. Hence, fault diagnostics and predictive maintenance
are the need of the hour. Here, a concise overview of a condition monitoring system is given along with the
issues in the machine learning algorithm and the possibilities of predictive maintenance are discussed.

Although there are still many limitations, such as micro-controller boards are still in development, fault
prognostics, limitation of available data, lack of statistical and predictive models. However, much research
is being done in these areas, with the micro-controller boards being advanced rapidly, making them more
reliable and stable. An increase in their computational power will also result in a more stable and quicker
transmission of data. The bigger problem is still related to lack of data, resulting in trained models not being
up to the mark. However, researchers are currently developing statistical models by reengineering. By
observing the signals for different faults from an electrical machine, researchers are trying to develop
statistical models that can generate signals similar to the fault. Although the process takes much time and
concentration, researchers are getting near and it might be possible in the near future to generate faulty
signals based on statistical models.

This chapter discusses a specific version of a condition monitoring system with discussion related to
maintenance approaches, machine learning algorithms and some of the issues faced in this aspect.
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