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INTRODUCTION

In most countries, the generation, transmission, distribution and sale of
electricity have been a monopoly for a long time. Until quite recently, electricity
transmission and distribution have been a natural monopoly and there has been
no economical reason to create a market or boost competition between different
grid operators. But over the few past decades, electricity generation and selling
have gone through significant changes and today there are functioning power
exchanges and open retail markets throughout the world. The European Union
directive 2003/54/EU [1] requires that every European Union Member State
should have an open electricity market.

In 2013, Estonian electricity market opened fully and it opened up
possibilities for an open retail market as well. Today, participants in the Nord
Pool Spot include Estonia, Latvia, Lithuania, Finland, Sweden, Denmark and
Norway. In the Nord Pool Spot exchange, every trader can offer the electricity
he produces.

In the competition-governed market economy conditions, the increase of
electricity prices is expected to decelerate. The price is formed on competitive
terms and depends on the cost of production. In Estonia, a functioning retail
market is still under completion. For example, in 2013 the state-owned Eesti
Energia AS held 71.9% of the balanced electricity portfolio, and in January
2014, its share was 60.0% [2]. So, the size of Eesti Energia’s portfolio is
decreasing and that of various retailers is increasing as seen in Table 1,
Appendix A. Therefore, one can note that competition in the retail electricity
market is gradually growing.

In Europe, the transition to an open electricity market began in 1990. Similar
patterns in the market have been encountered with and similar concerns endured
by early openers, as well as by those that have opened in recent years. In most
cases, the electricity price has increased and problems with implementing
competition have occurred. The consumers are often not sufficiently informed
and, as a consequence, they do not actively participate in the retail market, i.e.
they are not choosing between different retailers. As a result of liberalization in
the open market, retail electricity prices not always fall in nominal terms. In
some countries, regulated prices were inefficiently low, discouraging
investment and encouraging wasteful consumption. In these cases, liberalization
led to higher prices and better incentives [3].

In theory, an open market enables consumers to choose from different
retailers. In the open market, price formulation rules are changed. In case of
power exchange, the principle is that the better the availability of generation the
lower the price. In case of a closed electricity market, all the consumers buy
electricity with a fixed tariff, while the electricity price is submitted by the
producer to the relevant government agency for approval that eventually
approves it (in Estonia the Estonian Competition Authority). In case of power
exchange, the price is changing every hour and in theory, the consumers are can
affect the price.



In an open market situation, the price of electricity depends on many factors.
Unlike ordinary products available on store counters, electricity is a unique
product, which is characterized by the following:

e Electricity is produced and consumed synchronously at the same time
and rateand proportionally, continuously and uninterruptedly all the
time.

e [t is not possible to store electricity in large quantities in an
economically feasible way.

e Power consumption depends on the time it takes place (day/night,
weekend, season, year) and is characterized by the respective
consumption patterns.

e Electricity cannot be traced, i.e. one cannot determine the station where
the electricity consumed was produced.

e There is always the possibility of large-scale power system failure the
power system management needs to take into consideration.

The main factors affecting the price of electricity in the open electricity
market and power exchange are the adequate capacity available and electrical
connections, both domestic and with neighbouring areas, to ensure the
movement of electricity. In Nordic countries, for example, hydropower’s
availability has a significant impact on Nord Pool Spot prices.

Despite the liberalization of electricity market, there are no new tariff
systems for consumers and all the existing tariff systems or price packages are
based on the tariff systems used earlier. Since the latter systems do not take into
account costs of electricity production at the moment of consumption, it is
necessary to create a tariff system which considers such costs. In short, prices
should reflect the short-run marginal cost of production [4, 5]. In other words,
byers’ electricity costs should not exceed the production and delivery costs of
electricity [6]. The term “real-time tariff system” has not been properly defined.
To avoid misinterpretation, this has to be done well. In addition, it needs to be
determined how and how often the price should change.

The purpose of the thesis
The main purpose of this thesis is to propose an algorithm for real-time tariff
system, to find out possibilities of forecasting electricity consumption by using
historical measurement data as input and to evaluate the potential of real-time
pricing (RTP) for smoothing the load curve. The thesis gives a description of
RTP and offers a solution to implement it.

The more specific goals of the applicant’s doctoral studies were:

e to propose the definition of RTP;

e to develop an algorithm for RTP system for retail market;

e to propose a method for retailers for forecasting household electricity
consumption (by retailers siin on veidi eksitav, kui siis for, aga voib ka
ettepoole viia.) and to analyze its possibilities;

e to analyze the potential of RTP for smoothing the load curve;

e to analyze the economic feasibility of the RTP system for households.



This doctoral thesis is based on six published papers written by the author of
the thesis. The respective researches were carried out among Estonian
consumers during the years 2009-2014.

Outline of the thesis

The current thesis includes a summary chapter and six appended published
papers. In the Summary chapter, the related author’s publications, methods and
results are described. The thesis includes additional analyses, which have not
been previously published.

In Chapter 1 Material and Methods, the background information, calculation
methods and description of load-weather dependence are given. RTP is
compared to conventional tariff systems, and its advantages and disadvantages
are shortly described. Price-managed electricity consumption is described. An
overview of the methods for forecasting electricity consumption is given. An
overview of the modeling software used is presented.

In Chapter 2 Results, the outcomes of the current work are presented. The
definition of RTP system is formulated. The description of the algorithm
proposed for RTP according to current power exchange rules is given. The
method (regression analysis of time series method) for forecasting load is
presented. The electricity consumption data gathered in Estonia as well as load-
weather dependence are analyzed. The method proposed for correcting the
regression analysis of time series method is described. The results obtained
using the regression analysis of time series method for load forecasting and the
respective correction method are presented. Estimation of the influence of RTP
on smoothing the Estonian load curve is performed.

In Chapter 3 Discussion, issues arisen during the study are analyzed and the
critical assessment of the results is made. Data used for the analysis originated
from the database of Statistics Estonia, as well as from papers published in
scientific journals, other pertinent research works, legal acts of Estonia, and
doctoral theses.

The study was carried out performing calculations in Excel and using the
modeling software to verify the results obtained and to evaluate the accuracy of
the forecasting models used.

Metering systems and necessary communication solutions, related financial
aspects included, are not considered in the thesis. This is because according to
the Estonian Grid Code, new metering systems should be installed by the
distribution network operator (DNO) only by 2017 [7] and the respective issues
on the State level have not been decided yet. According to the Electricity
Market Act, the remote read meter is a measuring device that stores information
on consumed electricity for trading periods, and enables readings to be
automatically forwarded [8].

Contribution of the thesis

This thesis includes theoretical approaches, and methodological as well as
practical recommendations for the further development of RTP systems. The
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originality of the thesis consists in theoretical and practical results. The majority
of studies carried out before have been based on theoretical knowledge and
assumptions or on using system load or part of system load information as study
input [9-12]. In the present work, actual consumption data were used as input to
carry out necessary analyses.

Theoretical originality includes methodological recommendations for
developing an algorithm for RTP. The results obtained expand the existing
knowledge about the definition of RTP and estimation of its positive effects.
Theoretical methodology includes an approach proposed for forecasting
household electricity consumption, using the real-time algorithm developed.

Practical originality of the thesis includes results obtained employing the
proposed approach for forecasting household consumption by using actual
weather and household consumption data. The results of the thesis can be used
by retailers to develop new forecasting methods to offer real-time price
packages, employing the proposed algorithm.

The current relevance of the thesis is related to the recently liberalized retail
market in Estonia, as well as new metering systems being installed and possible
smart grids to be developed. The proposed algorithm and development of
forecasting models could help solve the problem of how to offer consumers
real-time price packages. The results will be useful for retailers and the
researchers concerned. Currently, uncertainty in the economy and rising energy
costs are requiring new approaches to offer consumers the flexibility and
opportunities to control their costs.
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1. MATERIAL AND METHODS

1.1. Overview of Estonian electricity market and different tariff
systems

In papers [I] and [II], the different tariff systems used earlier and available
currently in Estonia, as well as various conditions applicable in Estonian closed
and open electricity markets, including power market (Nord Pool Spot) pricing
rules, are analyzed.

Wholesale and retail electricity markets have been free for some time
already and function without problems. Since April 1, 2010, an open consumer
has had the right and obligation to choose an electricity seller from among other
retailers. Back then, an open consumer was a consumer that used at least 2 GWh
of electricity a year at consumption sites through one or more connection points.
Until 2013, open consumers accounted for about 30% of Estonia’s electricity
consumption. From January 1, 2013, all consumers are open and purchase
electricity at the liberalized electricity market [I].

In Estonia, oil shale-based electricity still constitutes a major part of the total
electricity produced (Figure 11, Appendix A) and consumed. Therefore it can
be stated that the rate of electricity largely depends on oil shale-based electricity
generation. However, the use of oil shale for power generation is gradually
decreasing. In 2010, the oil shale percentage in electricity production was 92%,
in 2011 it was 85% and in 2012, 81% [13]. One reason for the decrease is
definitely the increasing use of renewable energy sources. However, oil shale-
based electricity is still competitive in the open electricity market. Since 2010
its export to Latvia has increased from 1555 GWh to 2500 GWh, and to
Lithuania, from 1140 GWh to 2022 GWh until 2012. The export to Finland has
decreased from 1659 GWh to 428 GWh but this drop is due to Finland’s lower
electricity price compared to Estonia’s.

In the open electricity market, the price of electricity is no longer controlled
by the State. Instead, it is formed on the market and power exchange.
Unfortunately, the opening of the market was also accompanied by the increase
of electricity price since for the home user the regulated market price was lower
than the current power exchange price. In 2012, the Estonian Competition
Authority set the average sales price limit of the electricity produced by Narva
Power Plants to 29.4 EUR/MWh [14]. There were 36 power companies in the
closed electricity market in Estonia and the average approved price of electricity
was 32.9 EUR/MWh [14]. However, in 2012 and 2013, the average price of
electricity in the Elspot Estonian region was 39.2 EUR/MWh and 43.14
EUR/MWh, respectively, i.e. on average over 25% higher than the Estonian
Competition Authority approved average price. At the same time the average
system price on the Nord Pool Spot was 31.2 EUR/MWh in 2012 and 38.10
EUR/MWh in 2013. In Finland area, the respective prices were 36.64
EUR/MWh and 41.16 EUR/MWh.

Since in the retail market the sellers are competing with each other, the price
for households is determined on competitive terms. Today there are 12
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electricity sellers in Estonia. Although in the open market households may
choose between electricity packages offered by many retailers, it is unfortunate
that they have to choose only between different fixed electricity price packages
whose prices change monthly or even more seldom.

Conventional price packages currently offered to retail consumers do not
mirror actual costs of electricity production. Retailers offer price packages
which involve generally only two rates — daily and nightly. In [15] it was found
that time of use (TOU) rates capture only 20% of the efficiencies of RTP.
Regarding the development of future smart grid and increasing distributed
generation (including biomass, wind and solar energy use), it would be rational
that the users plan consumption and pay according to the actual costs of
electricity production.

The open power market introduced two additional price packages that are
based on conventional price packages. Retailers offer consumers an electricity
price that depends on one of the following:

e average power exchange price for the previous day, week or month,
which may include daily and nightly tariffs and the electricity price
applies to the period used in calculations;

e combined price in case of which 50% of the electricity consumed in the
billing period (month) is priced with a fixed price and the other 50% is
priced with an average power exchange price in the previous billing
period.

Naturally, there is a need for new metering systems, which are able to fix the
amount of electricity consumed during the respective interval. In [II] it is stated
that by the end of 2017, installation of remote read metering devices will be
finished, which should give a green light to many innovative possibilities, e.g.
electricity consumed can be measured within a desired interval or consumers
can be switched on or off the system. Hence, soon DNO should be prepared for
taking electricity meter readings during the required interval. Additionally, it
will be necessary to establish rules and work out information systems, which
could provide consumers with RTP.

RTP has several advantages over conventional price packages. In [II] it was
pointed out that RTP will possibly help achieve the following goals:

e reduction of consumer -electricity costs by managing electricity

consumption and moving load to off-peak price periods;

e motivation of consumers to manage consumption by a more volatile
price;

e increase of consumer electricity usage efficiency by managing electricity
consumption and introducing the latest technologies to the household;

e increase of consumer demand response (DR) according to changes in the
electricity price;

e approximation of load curve by moving load to off-peak price periods;

e limitation of peak load and smaller load minimum by moving load to
off-peak price periods;

13



e reduction of balancing electricity storage costs by moving load to off-

peak price periods;

e increase of wind and solar power integration by consuming more

electricity at the time of availability of wind and solar power.

In implementing the RTP system one may encounter various difficulties.
Paper [IV] gives an overview of problems accompanying the growth of the
information amount to be communicated. In addition to recording and
forwarding load and pricing information, new metering systems can also
forward information about power quality, automatic fault identification, etc. In
[VI], an overview of power quality issues in case of distributed generation is
presented. On the other hand, there are benefits regarding the additional
information gathered, such as a better overview of energy consumption
efficiency, monitoring of electricity consumption and related costs, finding
electricity wasting devices and controlling building’s electricity consumption.

Traditionally, information moves from the metering system to the network
operator. But new metering systems will allow sending information also to
consumers. Therefore, the new metering systems with data movement in both
directions likely require rebuilding of the existing grid communication systems
[16]. Bottlenecks, however, will be metering and communication systems,
which are still being developed and constructed and might not meet the needs of
the real-time tariff system once it is available. One solution would be using
power line communication (PLC) [17] which enables data to be forwarded
through electrical cables. The biggest DNO in Estonia, Elektrilevi, is planning
to use mostly the PLC technology and, to a lesser extent, meters which use
mobile communication channels [18]. DNOs have to continuously deal with the
problem and should also be prepared for future developments in order to avoid a
situation where, for example, the devices installed allow no functioning of the
new tariff system. An overview of different communication systems used in an
electrical grid can be found in [19] and [IV].

In addition to different communication systems, it is essential to pay
attention to security. A comprehensive overview of distribution grid security
issues is provided in [20-23]. Communication systems have become vulnerable
to cyber-attacks, and thereby the households’ privacy is violated. In addition to
recording and forwarding private information and consumption data, some of
the remotely accessed meters are also able to turn off the power. Furthermore,
the critical infrastructure system could also be jeopardized. Therefore, it is
essential to identify potential risks in order to work out necessary security
measures.

1.1.1. Real-time and conventional tariff systems
Consumers are accustomed to conventional tariff systems because these are
easy to manage and comfortable to use. The fixed tariff offered to consumers by
retailer for an agreed period is based on the following:

e average power exchange price in the previous month;

e retailer’s prognosis of the average price for the upcoming period.
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On the power exchange, the price is volatile and depends on various factors,
such as power demand, transmission capacity, weather conditions, fuel prices,
etc. In different geographical regions different factors influence the price on the
power exchange.

Power price volatility or spikes cannot be avoided even in perfect markets. It
is important to understand, from historical data, the formation of competitive
electricity prices in different power markets. For example, price volatility in the
electricity market varies hourly, daily, weekly, and seasonally. Most factors
contributing to uncertainty are reflections of the regular fluctuation of power
loads. The periodic fluctuation could be considered as the deterministic
component of electricity prices. Furthermore, electricity prices have a number
of instant price spikes with a long-term mean reverting trend, which is the
random component and results from the physical characteristics of the power
system, such as unusual demand, unexpected generator outages and
transmission constraints. Factors affecting the fluctuation of random price result
from not only load conditions, but also supply conditions [6].

In [24] it is stated that compared to fixed rates, RTP shifts price risk from the
utility to the customer. With such a change one has to ask if there is an optimal
time of advance notice of prices, whose fixing is necessary to avoid situations
where customer would pay for electricity consumed during an hour when prices
hit an extreme spike. The description of such situations can be found in [25].

Thus, for the customer the main difference between RTP and conventional
tariff system is in price volatility which he has to get used to and learn to take
advantage of. Analysis made in [I] showed that depending on consumer load
curve, RTP could help save costs and that even without planning consumption.
In addition, in Chapter 2.2 the dependence of fixed price and RTP on different
consumer load curves is analyzed.

1.1.2. Managing electricity consumption by price
The objective of demand response (DR) is to make users react to changes in
electricity system conditions. Usually, the purpose is to limit electricity
consumption during certain periods, e.g. periods of transmission system limits
or insufficient generation capacity availability.
DR can be classified as [26]:
e Incentive based programs (IBP)
o Classical
= Direct control
= Interruptible/curtailable programs
o Market based
= Demand bidding
* Emergency demand response
= Capacity market
= Ancillary services market
e Price based programs
o Time of use
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Critical peak pricing

Real-time pricing

Extreme day critical peak pricing
o Extreme day pricing

In the past, DR was accomplished by either direct load control (feeder
switching, by dispatch instruction) or frequency actuated relays. The end users,
in most cases, are not compensated for disruptions, which are generally caused
by connection failures. Deregulation and restructuring of markets has witnessed
a change to a more market based approach to DR that has increasingly focused
on incentive and price based DR [27]. TOU power price is widely applied in
many countries and is considered as one of important approaches of demand
side management [28].

In [VI], the potential spreading of dispersed generation in the future and
probable accompanying power quality issues are described and analyzed. Due
to the increasing spread of distributed generation, power quality issues will
emerge. On the other hand, different fuels will be used to produce electricity
and the price of electricity will vary even more on the power market. Paper [VI]
suggests that the potential of distributed generation relies mainly on using non-
fossil and renewable fuels, such as wind, litter oddments, wood, hydropower,
etc. The availability of renewable energy, such as wind and hydropower, is
inconsistent and unpredictable, which means that the electricity price on the
power market will also be more fluctuating. But RTP will enable consumers to
manage consumption by shifting it to a lower price period.

One of the goals RTP should help achieve is increasing DR since the fixed
rate tariff system does not motivate consumers enough to plan consumption.
This means that for the consumer, there is no difference between consuming
electricity during the high price (peak load) or low price (minimum load) period
on the power exchange. Thus, it can be said that the tariffs currently offered are
not attractive enough to control consumption. Therefore, it is important to offer
price packages which would take into account the system situation and make
consumers shift consumption away from peak load. Due to the potential
economic benefits the real-time electricity price could bring to the demand side,
consumers would optimally adjust the electricity consumption of residential
appliances by participating in the real-time price based DR program [29]. In
conclusion, to achieve a better DR it is important to offer more daily rate price
packages or a RTP package. Of course, the effect will also depend on the
consumer’s price sensitivity and on whether the consumer has the possibility to
shift consumption to a lower price period.

The real-time tariff system clearly increases the consumer DR. Therefore,
the real-time price smoothes the peak power demand and fills the low point of
power demand. This peak clipping could reduce the investment in power system
equipment and both peak clipping and low-point filling effect may improve load
rate [30]. Furthermore, there are studies like [29] which have concluded that
real-time DR can contribute to achieving lower electricity bill cost compared to
fixed rate electricity price. In addition, some studies [31, 32] have assessed the

O O O
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possible effect of DR on load forecasting accuracy. And finally, it can be
concluded that a smoother load curve means smaller overall costs of electricity
production and that grid operators can optimize the network capacity.

1.2. Methods for forecasting electricity consumption

In case of RTP retailers have to forecast electricity consumption for an
upcoming period. Forecasting of electricity consumption is difficult since there
are numerous factors that affect consumption and it is largely random in
addition. Moreover, different consumers have different consumption habits.

In constructing models for forecasting load it is necessary to take the
following load changes into account [33]:

e regular changes, like day-night, weekly and yearly fluctuations, trend
and nature of the load on national holidays;

e temperature dependence, including temperature dependence inertia,
nonlinearities and time variations, especially in case of electrical
heating;

e dependence on operating values, which is expressed as load voltage
and frequency sensitivity;

e randomness, which means random load changes that can not be
forecasted;

e manoeuvrability, which means basically transmission grid node load
changes that are caused by switching in distribution grid.

Random load changes are particularly noticeable in loads of small
distribution grids. In case of random changes the relationship of the square
deviation of small distribution grids loads towards mathematical load
expectations is quite high. In case of small loads, hard slopes can be present that
are not compatible with the normal distribution.

Load can be treated as a certain object, which can be characterized by
general data, load data and a mathematical model of load. General data consists
of the name of the load, connection point, marginal power, the type of the load,
electricity consumers composition, etc. Load data describes all kinds of
quantitative information about the load. Quantitative information includes, in
particular, active and reactive power and current as well as bus voltage, outdoor
temperature, and other values, which are used for load treatment. Load data may
be both regular (time series), and nonregular, single data (e.g., yearly energy,
minimum and maximum values, etc.). Load is often considered in a narrower
sense than power or current [34].

Until recently, forecasting consumption was necessary for utility companies
and network and system operators for constructing and maintaining the grid.
However, in a liberalized electricity market, there are electricity sellers
competing on the retail market. Thus, buying electricity from the power
exchange and reselling it to consumers requires good forecasting models for
electricity demand. Since retailers have a good overview of their consumers’
habits, forecasting should be easier and more accurate [V]. The accuracy of
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forecasting will improve even more with new metering systems, which allow
recording electricity consumption in a desired time interval.

In [V] and [35], different forecasting methods that are based on regression
analysis, time series, neural networks, Box-Jenkis models, expert system
approaches and artificial neural networks (ANN) are described. The most
commonly used forecasting techniques are neural network algorithms, time
series approaches, regression techniques and expert system approaches [36]. A
method is chosen primarily on the basis of the character and volume of source
data, and expected results (time and accuracy of forecasting, etc.). The time
series and regression techniques are the two major classes of conventional
statistical algorithms, and have been successfully applied in this field for many
years. The expert system based algorithm for short-term load forecasting uses a
symbolic computational approach to automating intelligence. This approach
takes advantage of the expert knowledge of the operator which is, however,
neither easy to elicit nor articulate. A major advantage of ANN over expert
systems is its nondependency from an expert. Furthermore, ANN performs
nonlinear regression among load and weather patterns and can be used to model
the time series method or as a combination of both [37]. During each forecast
ANN models learn and generalize and abstract information from data. ANNs
are strengthening or weakening interconnected weights during the forecasting
that connect processing inputs of the model

If weather conditions are taken into account in forecasting the load, then the
load is given in the following form [37]:

I(t) = lir.(t) + Ly, ind(t) + Ly, dep.(t) + lnoise(t): (1)

where ;- (t) — irregular load changes in the future,
Ly ina (t) — weather-independent component,
L. dep.(t) — weather-dependent component,
Lhoise (t) — noise residual or stochastic component.

Difficulty in forecasting load arises due to its nonlinear and irregular
variation [38] the predicting of which is complicated, if not impossible. In [39]
it is concluded that the temperature dependency model can be used for
calculating temperature influence in the load analysis and short-term forecast
processes, when the actual or meteorologically forecasted values of temperature
are known.

1.3. Data measured in Estonia and load-weather dependence

The current research is based on measurements taken in Loo village near
Tallinn during January 1-December 31, 2012. Altogether, the individual
consumption of eleven private houses and one apartment building with 65
apartments was measured. Measurements were taken every hour, using
remotely accessed single-phase electricity meters P515.23D — 1E1 ALNI. This
particular apartment building was a stone house with central heating; the
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apartments had a furnace or a fireplace and an oven. The main fuse of one
apartment was 25 A.

The aim was to create consumer load curves and analyze their behavior. It
was observed that the consumption started to rise on workdays at 1 p.m. and
achieved maximum by 3 p.m. Starting from 7 p.m. the consumption decreased
until 9 p.m. On weekends, the consumption began to rise at 7 a.m., increasing
till 9 a.m. and started to fall at 6 p.m., decreasing until 7 p.m. [I]. As shown in
Figure 1, the load curve for the monitored consumers and Estonian load curve
are quite similar, and the consumption peaks are in the higher price rate periods
of the market. The monitored consumption peaks occur with small delays
compared to system peaks.
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Fig. 1. Estonian whole power system load and measurements carried out in Loo village
during the period August 13-27, 2012.

In this thesis, the dependence of load on temperature is analyzed. For this,
meteorological data from the Estonian Meteorological and Hydrological
Institute’s meteorological station in Harku were obtained. In [III] and [V], load-
temperature dependence was preliminarily assessed. To find out whether load
really depends on temperature, the corresponding correlation was found. The
aim was to use these dependents as inputs for load forecasting. This is discussed
in Chapter 2.3 of the thesis.

The whole measurement period was one year, i.e. 8784 hours. After sorting
out various erroneous measurements, 6497 hours of data, i.e. 74%, could be
subjected to further processing. Most of the erroneous measurements were
caused by failures of remotely accessed single-phase electricity meters, because
occasional disturbances occurring in the building’s electrical installation
distorted the information sent through power cables. Usually, some readings of
individual meters were missing. However, all of the hourly data containing any
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missing information were excluded. Some of the measurements were eliminated
because of the missing outside temperature data.

1.4. Use of Statistical Package for Social Sciences for forecasting
electricity consumption

In this doctoral thesis, Statistical Package for Social Sciences (SPSS) software
was used, in addition to Excel, to model the dependence of apartment building
and household consumption on outside temperature. SPSS was mainly used to
test the equations created in Excel and to evaluate the accuracy of models.

SPSS is a software package used for statistical analysis. It is a forecasting
and modeling program that enables analysts to predict trends and develop
forecasts. SPSS helps create sophisticated forecasts that take into account
different variables, such as weather conditions, time of day, year, etc.
Experienced forecasters can use SPSS to validate the models they use. In
addition to statistical analysis, data management (case selection, file reshaping,
creating derived data) and data documentation are features of the base software.
SPSS provides operating model analysis accuracy reports. Statistics included in
the base software are:

e descriptive statistics: descriptives, frequencies, cross tabulation,
explore, descriptive ratio statistics;

e Dbivariate statistics: means, t-test, analysis of variance (ANOVA),
correlation (bivariate, partial, distances), nonparametric tests;

e prediction of numerical outcomes: linear regression;

e prediction of identifying groups: factor analysis, cluster analysis (two-
step, k-means, hierarchical), discriminant.
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2. RESULTS

2.1. Definition of real-time tariff system

One of the purposes of the thesis was to define RTP. The term “real-time
pricing” is not new and has been in use for decades. However, in this work it is
defined according to the proposed algorithm. Electricity tariffs were originally
intended for the taxation of the electricity consumed. In a closed electricity
market where the producer’s price for electricity is approved by the regulator, it
is perhaps not so important that at every moment of time the electricity price
correspond to the generation expenditure. Of course, in a closed market
situation the variable tariff system would increase DR. In Estonia, the
liberalized electricity market and power exchange, on the other hand, have
expanded the circle of producers who are using different fuels for electricity
production (Figure 11, Appendix A) and therefore their production costs are
different. This means that the electricity generation costs vary intraday
according to demand, which is a decisive factor in picking out producers that
generate electricity for the power market (Nord Pool Spot). In [I] it was pointed
out that in 2010, 92.3% of the electricity in Estonia was produced from oil
shale. By the end of 2013, in the Estonian electricity system 274 MW of wind
farms had been installed.

The term “real-time tariff system” may be somewhat confusing. One cannot
at any moment of time calculate current electricity production costs. However,
in the power exchange it is possible to calculate the regional electricity price for
the next time interval. Therefore, it can be said that "RTP" means retailer
charges for delivered electricity that vary hour by hour and are determined on
the basis of power exchange prices, using an approved algorithm.

The real-time tariff system is reflecting the cost of electricity production for
every consumer for an agreed time interval, to which network and other charges
are added.

The description of the RTP algorithm proposed for Estonia is given in [I]
and discussed in Chapter 2.2 of the current thesis.

2.2. Algorithm developed for real-time pricing

In this section, an overview of the elaboration of an algorithm for RTP is given.
The main objective of developing the algorithm was to minimize household
electricity costs, to take into account power exchange rules and to induce
stronger competition between retailers. For this, market and power exchange
rules were also analyzed. The proposed algorithm will not require extensive
changes in the rules of retail market or power exchange.

According to the current rules of the power market (Nord Pool Spot) the
retailer has to make the most accurate prognosis of consumption one-day-ahead
and purchase the desired amount of electricity from the day-ahead market,
Elspot. Then, during the day the retailer can make the consumption prognosis
one hour ahead and buy the necessary amount of electricity from Elbas, if
needed. Elbas is a continuous market and the trading takes place every day
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around the clock until one hour before delivery [40]. This means that one hour
prior to the delivery (real-time), the retailer has to make the last transaction.

Presently in Estonia, balancing electricity prices and amounts are calculated
on the second business day by TSO. TSO provides transmission services to
producers, DNOs and corporate consumers in Estonia. For example, there is a
balancing market in Finland, and the prices of the balancing power are
publicized primarily on Nord Pool Spot’s website no later than two hours after
the hour in question [41]. In addition, TSO provides the balancing service to
balance responsible parties. Therefore, the seller wanting to offer consumers a
tariff system whose electricity price changes in real time, will need to take into
account balancing electricity prices to calculate the price for households. The
prediction of balancing electricity prices clearly bears a risk for the seller and is
therefore included in the seller’s fee.

The proposed RTP system is a system which calculates household electricity
price and sends the respective information to the consumer at the beginning of
each time period. The interval is one hour as is the trading period on the power
market, i.e. the consumer price changes every hour. Therefore, the price of
electricity would reflect the network situation availability of wind power,
system load, generating capacity, temperature, etc. In addition, there are power
exchanges where the trading period is shorter, e.g. New Zealand’s electricity
market (NZEM), Australian electricity market and APX Power UK Spot have a
trading period of 30 minutes [42—44].

In the current thesis, the renewed algorithm is presented. In Figure 2, the
proposed algorithm and retailer’s steps in one day when providing RTP to
consumers are visualized. The first version of equations and the algorithm for
price formation are presented in [I]. If the trading period is one hour, then
according to the proposed algorithm, one day needs 24 models. If the trading
period is shorter than one hour, it would need even more models. Shorter
trading periods can help achieve higher load forecasting accuracy. In [45] it is
concluded that using a 15-minute interval for gathering consumption data
clearly provides higher forecasting accuracy than using a one-hour interval.

The algorithm starts with forecasting load for the next 24 hours. Then, the
retailers carry out transactions in the day-ahead market (Elspot). Then, the seller
determines the actual load information two hours before the ongoing price
period. Having the information on the difference between actual load and
previous forecast, the retailer can correct the forecast for the ongoing price
period, using the proposed correction method described in section 2.3.3.
Afterwards, the seller examines whether the power purchased from the day-
ahead market is sufficient, using the following equation:

Al(t) = Lyap(t, d) — Lp(2), (2)

where Al(t) — difference between one-day-ahead forecast and the two-hours-
ahead correction of forecast;
541 (t, d) — hourly consumption, depending on the time of day and the
weekday, kWh;
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l,n(t) — two-hours-ahead correction of the one-day-ahead forecast,

kWh;

t — ongoing price period.
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Fig. 2. Proposed principal one-day-ahead forecast algorithm for RTP.

If enough power was purchased, i.e. the condition Al(t) = 0 is satisfied,
then it is possible to calculate the price for the ongoing time period. If there is a
difference between one-day-ahead forecast and two-hours-ahead correction of
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the forecast, i.e. Al(t) > 0, then the seller will make an additional transaction
in the Elbas market and after that will calculate the price for the ongoing time
period. The price is calculated by the retailer using the equation:

S(t) = f(S2an; S2n; Scom)- 3)

where S(#) — price for the ongoing price period,
So4n — electricity price in the day-ahead market,
S, — electricity price in the intraday market,
Scom — seller’s fee, which includes expenses, profits and risk of
balancing electricity.

If t = 1, then the next trading period has started and the seller must notify
consumers about the ongoing period’s electricity price. After the consumers
have been notified, the seller can start calculating the price for the next period.

The main idea of the algorithm is that it takes into account the seller’s skills
to offer consumers the best price, including his ability to forecast consumer load
and carry out transactions on the power exchange. The seller’s goal is to provide
consumers with as low-cost electricity as possible. If the analysis shows that the
real-time electricity prices the retailer offers the consumers are not the cheapest,
they can choose another electricity seller.

In [II] it was shown that in most cases the fixed tariffs were cheaper than
power exchange based tariff systems. But it must be kept in mind that the
former were confirmed by the Estonian Competition Authority. Today, the
fixed tariff system means that the tariff is calculated on the basis of the average
power exchange price to which retailer margin is added. Figures 3 and 4 show
the percentage difference of household monthly electricity costs in case of the
fixed tariff system and real-time tariff system. It is clearly seen from the figures
that the monthly electricity costs of the 76 consumers under study depend on
their load. In some cases, RTP is cheaper and in some cases, the fixed tariff is.
In this study, the retailer margin is the same in both cases (0.25 cent/kWh).
However, it has to be emphasized that in this comparison the consumers did not
plan consumption and the comparison is made on the basis of the measured
load.

Figure 3 is based on Nord Pool Spot Elspot’s Estonian prices in November
2012, when the average price was 37.49 EUR/MWh. The analysis showed that
for 19 households RTP was on average 1.94% lower and for 57 households the
fixed tariff was on average 3.22% lower. Figure 4 is based on Nord Pool Spot
Elspot’s Estonian prices in June 2013, when the average price was 53.36
EUR/MWh and the analysis showed that for 33 households RTP was on
average 3.01% lower and for 43 households the fixed tariff was on average
4.41% lower. These two periods were selected due to the great difference in
average price between them. Revision of the Nord Pool Spot price history
shows that electricity prices are cheaper during rainy and windy periods. In
addition, during the summer planned maintenance works are conducted that are
affecting the available capacity of generation units The analysis employed fixed
price packages offered by retailers and whose price was based on the average
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price in the previous month. To have comparable results, comparison was made
between fixed and real-time prices for the same month.
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Fig. 3. The percentage difference in consumers monthly costs in case of RTP and

average power exchange price based on Nord Pool Spot Elspot’s Estonian prices in
November 2012.
20.00%

15.00%

10.00%

l }I | ”I ”
s |I| I || .||| ||I|| | |||I

4 10 |1L I16 I14 22 * 28| I31 34} 37 40 4 49 52 SS 58 61 70 73 76

R

-5.00%
-10.00%
-15.00%

-20.00%

Fig. 4. The percentage difference in consumers monthly costs in case of RTP and
average power exchange price based on Nord Pool Spot Elspot’s Estonian prices in June
2013.

For comparison, the analysis of closed-market prices made in [I] showed that
the KODUI1 tariff system proved to be the cheapest for all the 18 apartments
observed. It was on average 3.5% cheaper than Elspot’s Estonian area price
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based RTP system. It should be noted that the analysis of the electricity market
based tariff system did not include vendor’s commission. It also turned out that
during the observed period of time Nord Pool Spot’s Estonian area price was
21.6% and Finnish area price 29.4% lower than the average electricity prices in
these countries in 2011. Comparison of the price packages KINDEL and
MUUTUV offered by Eesti Energia in 2013 with the regulated market tariff
systems KODU1 and KODU2 shows that KINDEL was 28% more expensive
than KODU1 and 18% more expensive than KODU2. When comparing the
MUUTUYV package to regulated tariff systems, then the former was 13.6% more
expensive than KODU1 and only 4.6% more expensive than KODU2. The
comparison was based on Nord Pool Spot Elspot’s Estonian area prices during
the period December 13-19, 2011.

2.3. Method proposed for forecasting load

In previous studies, actual consumer consumption data have not been used [9—
12] and individual consumer load curves have not been analyzed. The current
study is not based on theoretical equations, instead, actual consumer
consumption data were employed, the measurement period being one year.
Invalid measurement data being excluded, analysis of usable data needed a huge
amount of work, since a one-month measurement period alone afforded over
56 000 readings.

The main idea was to develop an algorithm for RTP, considering current
retail and power exchange rules. Therefore, a model to forecast load, which
would also be easy to use and comprehend, was needed. The description of the
proposed algorithm is given in Chapter 2.2. According to the algorithm, first the
retailer has to forecast electricity consumption one-day-ahead. It is therefore
necessary to have a short-term load model for forecasting such consumption.

Changes of the load can be described by a mathematical model consisting of
three basic components [33, 46]:

() =E@®)+T(t)+06(), 4)

where E(t) — mathematical expectation of the load,
I'(t) — temperature-sensitive part of the load,
O(t) — stochastic component of the load.

Since the data consisted of load and outside temperature values for the whole
year, the regression analysis of time series method was used to demonstrate how
retailers could relatively easily forecast electricity consumption. This analysis is
described in Chapter 2.3.1. Being suitable for analyzing historical time series
data and relatively easy to comprehend, the regression analysis of time series
method was preferred to other similar approaches. Although ANN methods
have been very often applied to load forecasting, it has to be kept in mind that
ANN works best in nonlinear data analysis [47], and is also difficult to describe.
Retailers will always be free to develop the proposed regression analysis of time
series method further and combine it with other related techniques.
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2.3.1. Regression analysis of time series method
Being suitable for forecasting loads on the basis of time series, the regression
analysis was chosen. The analysis allows creating models in such a way that the
dependencies involved are properly taken into account. For retailers the
regression analysis of time series method is easy to use and they can also
improve it by adding different variables.

Time series analysis is used for many purposes such as:

e Dbudgetary analysis;

e stock market analysis;

e workload projections;

o utility studies;

e Census analysis;

e vyield projections;

e cconomic forecasting.

For load forecasting, it is necessary to create a mathematical model to
describe load. In the current thesis, the load is described as a general model:

lo(0) = I5(t,C,) + 6(0), (5)

where [, (t) — actual load,
g (t, C) — mathematical load expectation,
6(t) — stochastic component,
C — temperature.

Mathematical load expectation describes regular changes in the load, such as
overall growth, seasonal, intraweek and intraday periodicities. Stochastic
component describes a random load change that cannot be estimated. It is
possible to reduce the proportion of the stochastic component by taking into
account more variables. However, it is not possible to eliminate the stochastic
component completely.

2.3.2. Use of regression analysis of time series method to forecast household
electricity consumption
In this section it is shown how it is possible to achieve a reasonably high
forecasting accuracy by using relatively simple forecasting models. The first
objective was to determine the variable to be used as input when constructing a
model. Model output, i.e. mathematical load expectation, will depend on
different inputs. A mathematical model describes principal changes of load. The
model considers regular changes, temperature dependency, and the stochastic
nature of load. Regular changes are load, trend, sessional, weekly and daily
periods; and load level on certain days (e.g., holidays) [34].

In this work, the following three variables, which are likely to influence
consumption most, were chosen as inputs:

e day (weekend, working day, etc.);

e time;

e temperature.
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The distinction between days and times of day is necessary as results from
Figure 1 where load variations are clearly depicted.

In order to determine whether household load depends on temperature, the
corresponding correlation was found. Overall, the consumption data of 72
households during 6497 hours and concurrent outside temperature values were
used. Figure 5 clearly shows that there is a strong correlation between load and
outside temperature. Additional related figures are given in [III] and [V].

The load-outside temperature correlation has also been analyzed previously.
However, so far it has not been possible to distinguish between individual
consumers and analyses have been limited merely to different consumer groups.
In [48], the correlation between outside temperature and residential and
commercial customer load in Taiwan was found, but no dependence between
temperature and industrial customer load was established. Unfortunately, the
aforementioned study gives no correlation figures.

When analyzing the load-temperature correlation in this study, a strong
correlation between the electricity consumption of private houses and outdoor
temperature was observed. At the same time, there was practically no
correlation between apartment consumption and outdoor temperature. This is
likely due to the fact that the apartment building had central heating and the
weak correlation depicted in Figure 5 can be explained by daylight hours,
because in Estonia a colder season means less daylight. Nevertheless,
apartments were not excluded from the study. Thus, it can be concluded that
mainly private houses accounted for the dependence of load on temperature
established in this research. Based on Figure 5 one can also state that in Estonia,
the relationship between measured temperature and load is negative, i.e. the
increase in temperature leads to a decrease in consumption, and vice versa.
However, depending on geographic location this relationship may also be
positive, as shown in [49, 50]. This, for example, has been observed in regions
with milder climatic conditions where with increasing temperature consumption
also increases, and vice versa.

From Figure 1 it can be seen that the measured consumer load curve differs
from the Estonian load curve. This is explained by the fact that neither
industries nor businesses were involved in the study.

Also, an assumption was made that temperature and load have a linear
relationship, which depends on the time of day and weekday. In addition, to
establish the temperature-load relationship for holidays, different functions were
found. Thus, for a total of 24 hours per day, 7 days a week and additional 24
hours per grouped public holidays in separate functions, in all 192 functions to
determine load dependence on temperature were created. For the observed
customers, daily load curves on the basis of time series were created, in which
temperature dependence was included. Each function can be expressed as
follows:

L (t,d) =a(t,d)-C+ b(t,d), (6)
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where [y, (t, d) — forecast for the next 24-hour consumption that is used for

making transactions in Elspot;

a(t,d),b(t,d) — parameters which depend on the time of day and
weekday;
C — temperature.
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Fig. 5. Correlation between consumption and temperature on Wednesdays at 1 p.m.

To assess the accuracy of the model, SPSS software was used. The results
are depicted in Figure 6. When using outside temperature as one of the inputs in
the model, the accuracy on Wednesdays at 7 p.m. is 79.2% and studentized
residual has rather a good distribution. The overall accuracy of the proposed
methods is assessed in Chapter 2.3.4.
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2.3.3. Correction of one-day-ahead forecast using the regression analysis of
time series method

In this section, the results of correction of the forecast using the regression
analysis of time series method are presented. According to the proposed
algorithm described in Chapter 2.2, the retailer has the possibility to make a
correction of the one-day-ahead forecast to minimize the difference between
one-day-ahead forecasted and actual loads. Therefore, the minimization
equation is given as:

min Al(t) = Ly (8, d) — Ly (), (7)
where Al(t) — difference between one-day-ahead forecasted and actual loads,
kWh;
l,n(t) — correction of one-day-ahead forecast used for making

transactions in Elbas.

Thereafter it was necessary to find a way to use recent actual load
information as input and then optimize the number of hours of recent
information to be used as input. The aim was to develop a straightforward
function that compares the previous hours correction difference between one-
day-ahead forecast and actual load. The optimization revealed that recent four-
hour information gave the most accurate results. The corresponding function
can be expressed as follows:

5 la(t—i)—lz4h(t—i;d)'at_i

i=2 —i
Lp(t) = lgn(t, d) + ly4n(t, d) - lzzh(t ° > 3)

where [, (t — i) — actual load at time t;
a;_q — coefficient that takes into account the previous hours correction
difference;
i — previous hours of actual time.

It is important to prefer newer data to older values. For this purpose, the co-
efficient a; was used in order to minimize the difference in two-hours-ahead
correction error. In the current work, a;_s =04, a;_4 =06, a;_3 =
0.8, and a;_, = 1.0. a; was not readjusted for every day but was calculated for
the whole measurement period.

The comparison of measured consumption, one-day-ahead forecast and two-
hours-ahead correction of forecast is illustrated in Figure 7. From the figure it is
clear that the loads calculated using equation (4) reduce the difference between
the one-day-ahead forecast and the actual measured load. In [III] it is stated that
in certain situations, using equation (4) can cause a greater difference between
the actual and forecasted loads. In other words, the equation reduces the error
made by forecasting load one-day-ahead.
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Fig. 7. Measured consumption, one-day-ahead forecast and two-hours-ahead correction
of forecast during the period November 12—19, 2012.

2.3.4. Accuracy of forecasting
In this section, the results of using the regression analysis of time series method
and the correction of forecast are presented. In order to evaluate the accuracy of
forecasting and the proposed correction function, the mean absolute percentage
error (MAPE) was used. MAPE is a measure of accuracy of a method for
constructing fitted time series.

MAPE is calculated by the following equation [11, 12]:

N |[le(®—-15()]-100

1
MAPE = S35 === )

where [, (t) — actual load,;
l.(t) — mathematical load expectation (in case of [l,,, and ly,, 24-
hours-ahead forecast and accuracy of two-hours-ahead forecast
correction, respectively, was evaluated);
N — population of the evaluation set.

In [III], MAPE was assessed. The MAPE for one-day-ahead forecast was
14.2% and for the two-hours-ahead correction of the forecast 10.7%. It was
concluded that despite the relatively large MAPE of prediction, the results of
the current work are reliable. It is also clear that the one-day-ahead forecast
information is in agreement with real load data and the correction made two-
hours-ahead reduces the error made in the one-day-ahead forecast.

2.4. Estimation of the influence of real-time pricing on smoothing the
Estonian load curve

In Estonian distribution grid there are about 554 000 measuring points that have
an electricity contract, and about 160 000 measuring points that have not.
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Consumers with no electricity contract are consuming electricity under the
generic service provided by DNO [51]. Nevertheless, most Estonian consumers
are price sensitive.

From Figure 8 it can be seen that during the winter, the daily consumption
peak is 1500 MW and minimum 950 MW. As seen in Figure 9, during the
summer, the daily consumption peak is 900 MW and minimum 500 MW. This
means that the difference between the daily peak and minimum load is
relatively large. As results from Figure 10, household consumption has been
approximately one-third of total consumption over the past years. Therefore, it
can be assumed that household DR will not have a strong influence on
smoothing the Estonian load curve. Thus, it would be necessary to offer RTP to
other economic sectors as well, for instance, the industry sector.

The difference between peak load and off-peak periods could increase even
more. For example, Estonian TSO, Elering, has assessed that in 2030 the
percentage of electrical cars may be 10-30%, and has proposed two different
scenarios [52]:

a. managing car charging;

b. not managing car charging.

Depending on the number of cars, the system load will increase 30-75 MW
during off-peak load periods. The load will increase even more during the night,
and therefore, with the addition of electric vehicles planned charging will have a
smoothing effect on system load. Additional daily consumption of electricity
during peak demand will increase by 2—5%. If car charging is not managed, the
load during peak load hours could increase from 40 to 100 MW. [52]

In Figures 8 and 9, theoretical load curves in case of increasing use of
electrical cars and whether load is managed or not, are visualized. It is assumed
that if load is managed, the daily load peak will increase 5% and off-peak 10%.
If load is not managed, then it is assumed that the daily load will increase 10%
and off-peak 5%. Household load curve is calculated on the basis of
measurements taken in Loo village in 2012 and the 30% share of household
consumption in the total consumption. It is clearly seen that in case of load
nonmanagement the difference between off-peak and peak load will increase.

In addition to electrical cars, managing the use of heat pumps has a great
potential for increasing DR. In the beginning of 2013, heat pumps with a total
capacity of 250 MW were installed by the members of the Estonian Heat Pump
Association'. These pumps are estimated to produce approximately 760 GWh of
thermal energy extracted from the ground and air, using approximately 250
GWh of electricity [53]. Therefore, it can be expected that the use of electricity
for heating or cooling will increase.

! Eesti Soojuspumba Liit
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Fig. 8. Estonian electricity consumption during one day in winter in case of managed
(left) and nonmanaged load (right) [54].
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Figure 9. Estonian electricity consumption during one day in summer in case of
managed (left) and nonmanaged load (right) [54].

Due to the increasing use of electrical cars and heat pumps it is possible that
with a better electricity consumption management, its effect on DR will
increase. Therefore, RTP can motivate consumers to plan charging electrical
cars or to automate heating/cooling control. With the residential load control
systems proposed in [55], processing the real-time price information by
automatically managing the power usage for the households in the most
preferable and economical way, DR will be more effective. Overall, enabling
price responsiveness can help mitigate price spikes and market power [5]. In
[56] it was concluded that when water heating is rescheduled to off-peak time,
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then it leads to a relatively high financial saving. In addition to traditional
devices, battery energy storage systems [57] must not be forgotten because they
can be charged during off-peak hours and the electricity stored can be used
during peak hours. Furthermore, there are papers that point out that electrical
cars could be used as power storage units [58]. Still the power storage units are
relatively expensive and other alternative DR methods are more economical.
RTP is definitely an advantageous method to raise DR.
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Figure 10. Estonian net production, system consumption, and consumption in
households [13].
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3. DISCUSSION

In the current study, the real-time tariff system was defined and an algorithm for
RTP was proposed. Real-time tariff can be defined as follows: retailer charges
for delivered electricity that vary hourly and are determined by power exchange
prices by using the algorithm approved and verified by the regulator. Since it is
not possible to calculate prices in real time, calculations have to be made
according to the determined time interval. The proposed algorithm is based on
current power exchange rules and it would be difficult to change the rules. The
trading interval, however, could be easily changed. To protect consumers and to
have retailer’s credibility, it is necessary for someone to verify that the retailers
trade according to the approved algorithm and these verifications can be made
by the Estonian Competition Authority.

Algorithms for real-time tariff systems have also been published previously
and they all have their advantages and disadvantages. For example, in [59] an
algorithm that is based on utility maximization is described. [60] proposes an
RTP algorithm for the electricity provider and the subscribers to compute
optimal price, demand and generating capacity simultaneously. The electricity
provider announces two prices of electricity in real time based on the total load
demand. The provider announces the price to the residential subscribers and
they announce their optimal power consumption to the provider based on the
announced price. The same scenario applies to the commercial subscribers but
with another price. Finally, the electricity provider announces a price to the
residential subscribers and another price to the commercial subscribers [60].
These examples are theoretical algorithms which are difficult to realistically
implement. Also, the use of these theoretical algorithms would mean that one
control centre would be created, which would manage all the different utilities.
However, it would be a step backwards and the question of how the power
markets and exchanges would operate in these theoretical algorithm conditions
would be unclear. The algorithm proposed in the current thesis, however, is
logical and meets current power exchange rules.

In this study, the suitability of the proposed algorithm for RTP was
investigated taking into account current power exchange rules and technology
available. Conventional tariff systems do not raise DR, but DR is one of the key
elements of smart grids. The costs of electricity generation are rising and
consumers should have more possibilities to control and plan their consumption.
Power saving and more sustainable household appliances and respective
developments have been issues of concern/discussion for a long time. The next
step would be developing real-time tariffs. This study also assessed the
economic feasibility of RTP or conventional pricing packages for consumers. In
[II] it was concluded that the fixed tariffs that were confirmed by the Estonian
Competition Authority were in most cases more beneficial to consumers than
RTP. Also, when liberated market prices were compared to theoretical RTP,
then it appeared that in most cases conventional tariff systems were
economically more feasible despite the fact that in the closed market situation
the electricity prices were cheaper and confirmed by the Estonian Competition
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Authority. Still, it has to be taken into account that in case of both studies the
consumers did not plan consumption and comparison was based on measured
load. In case of managing consumption and moving load partly to off-peak
hours, economic savings can be greater. In addition, the development plan of
TSO predicts that the use of electrical cars will increase [52]. Therefore,
planning the charging time of electrical cars will definitely give additional
benefits to customers.

The proposed algorithm provides retailers the opportunity to correct the one-
day-ahead forecast by buying electricity from or selling it to Elbas.
Unfortunately, Elbas is currently not very active in Estonia. In 2013, on average
89% of the electricity consumed in Estonian electricity system was purchased
from Elspot and 92% of the electricity generated was sold to Elspot [40].
Therefore, using the proposed RTP algorithm should have a positive effect on
trading on Elbas and different retailers would start using Elbas, which will
increase retailers’ flexibility to offer the best price.

In the current study, the possibility of using outside temperature information
as input in a load forecasting model was investigated. For this purpose, the
respective measurements were carried out during one year. It was found that
private household load strongly correlated with outside temperature, while the
opposite was observed with apartment load. Despite these findings, retailers
will always be free to analyze consumer load curves and determine whether it is
reasonable to use temperature as one of the inputs. This study demonstrated that
it depended on consumers’ habits whether the use of correlation between load
and temperature as an input in short-time load forecasting was justified. In
addition, when including the thermal inertia as input in forecasting the load, the
accuracy decreased (data not shown). It can be assumed that just like
temperature sensitivity, the thermal inertia also depends on the consumers’
habits. This will need further study to improve also the forecasting method.

When using electricity for heating, a better thermal insulation of buildings
will substantially decrease correlation between load and temperature. The use of
electricity for heating houses depends on various factors. There are also devices
which raise load-temperature relationship, like air conditioners, outdoor area
heating installations, electrical cars. In the United States, residential electricity
consumption survey showed that space heating and water heating contributes
most to total household electricity consumption [61], but of course it depends
on the geographic location. The country’s geographical location lets one assume
that the same applies also to Estonia.

The final issue of discussion is whether the chosen forecasting method,
regression analysis of time series method, is suitable for short-term load
forecasting. This method was preferred to other methods because it is relatively
easy to describe, is suitable for analyzing historical time series data and is
relatively straightforward. The use of ANN methods was also considered,
because these methods have been very often applied to forecasting load [37, 60,
62]. In addition, the ANN models are able to learn and generalize information
during each forecast, and strengthen or weaken interconnected weights that
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connect the processing inputs of the model. However, these methods are
difficult to describe and they work best in nonlinear data analysis. After the
method selection, time, day and outside temperature were chosen as inputs.
Next, the regression analysis of time series method was supplemented with the
two-hours-ahead correction of the forecast made using the regressionanalysis,
according to the proposed RTP algorithm. The MAPE for one-day-ahead
forecasting was found to be 14.2% and for two-hours-ahead correction of the
forecast 10.7%. When the ANN method was used for forecasting load one-day-
ahead, then the MAPE was found to be from 7.09% to 11.33%, depending on
the number of input variables/volume of the historical data used [63]. Despite
the relatively large MAPE of prediction obtained in the current study, it can still
be satisfied with the results of the current work and it is clear that the one-day-
ahead forecast coincides with real load and the correction made two-hours-
ahead reduces the error made by one-day-ahead forecasting. The relatively large
forecasting error is mainly caused by the very small number of surveyed
consumers, since the stochastic variation in the consumption of each consumer
has a strong effect on the entire load curve of a set of consumers. With a greater
number of consumers the resulting prediction error of the proposed method will
probably be significantly reduced as also indicated by other studies. For
example, when using a larger amount of power system information as input, the
accuracy will increase. In [12], historical electricity load data of the ISO New
England market were used and with the ANN method employed for forecasting,
the MAPE varied from 0.9% to 3.87%. [45] showed that inclusion of all the
available information about energy consumption on working days, weekends
and national holidays improves the forecasting accuracy. Also, information
gathered at 15-minute intervals seems to be more reliable than data collected at
one-hour intervals. Nevertheless, in the current study a relatively high accuracy
was achieved, despite the fact that only 76 households were involved, whose
load was measured at one-hour intervals. Based on this work, retailers can
develop the proposed forecasting method further by adding different inputs and
combining it with other similar methods.
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CONCLUSIONS AND FUTURE WORK

The first objective of the thesis was to propose RTP for retail market. The
conventional price packages offered today to retail consumers do not mirror the
actual costs of electricity production. Retailers offer price packages which
involve generally only two electricity rates — daily and nightly. In this study,
RTP is defined as retailer charges for delivered electricity, which vary hour by
hour and are determined by power exchange prices by using an approved and
verified algorithm.

In the current work, an algorithm developed for RTP based on current power
exchange rules was proposed. It is necessary to work out an optimal time
interval for changing the price. In this study, it was based on the power
exchange trading intervals, but shorter or longer intervals could result in
additional benefits. For instance, it has been found that using the 15-minute
interval clearly affords higher accuracy than the one-hour interval when
forecasting the load to make transactions in the one-day-ahead market.

A regression analysis of time series method was proposed for forecasting
consumption one-day-ahead. The analysis showed that there was a correlation
between outside temperature and household electricity consumption. Therefore,
in addition to day and time, this correlation was also employed as input in
forecasting. Also, an equation for correcting the one-day-ahead forecast two-
hours-ahead was developed. As stated, in certain situations, using the proposed
equation may lead to a greater difference between the actual and forecasted
loads. Therefore, it is necessary to develop the method further to exclude the
possibility when in certain situations, using the proposed equation can cause a
greater difference. The greater difference means additional costs for the retailer
which could mean higher retailer margin, i.e. higher electricity price for
consumers. Overall, the analyses showed that using the regression analysis of
time series method the electricity consumption in households forecasted one-
day-ahead was sufficiently accurate. The mean absolute percentage error for
one-day-ahead forecasting was 14.2% and for two-hours-ahead correction of the
forecast, 10.7%. This is a very good result considering the proportion of the
stochastic component in the study. With the proposed algorithm, it is possible to
correct the accuracy of one-day-ahead forecast. The retailer could use the
proposed method and add different variables or combine it with other
forecasting methods. Thus, the results of this thesis showed that the regression
analysis of time series method is accurate enough and that the proposed
algorithm can be successfully applied to RTP.

The development of RTP depends on Estonia’s electricity and open market
policies. Furthermore, the electricity market price and investment costs of
metering and communication system technologies are important factors for
future developments. Since RTP involves larger communication capacities,
reliability requirements and security, the need for guidelines is high as well.

The study showed that in case of RTP it is clear that consumers’s monthly
costs depend on their load curve. In some cases the RTP is cheaper and in some
cases the fixed tariff is cheaper. Of course it has to be noted that in the present
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study consumption was not managed. When consumption would have been
managed, then RTP could in most situations have been cheaper than fixed
tariffs.

In the current study, the potential of RTP for smoothing the load curve was
analyzed. With the implementation of RTP, the overall DR will increase and
consumers will have more opportunities to choose between. With the growth of
distributed generation, even higher electricity price volatility is expected, which
is, however, not necessarily disadvantageous. RTP shifts price risk from the
utility to the customer and therefore the question of what is the optimal time of
advance notice of prices emerges. In this work it is proposed that the customer
should be notified about price at the beginning of the trading period. Despite the
emergence of different new technologies, it can be assumed that RTP has a
good prospect for smoothing the load curve. The price difference between peak
and off-peak time intervals has to be great enough to motivate consumers to
plan their consumption, and automated control of electricity consumption will
contribute to their welfare.

In addition, the future work should focus on elaborating the approved
algorithm of RTP. Although this thesis involved mainly Estonian consumers, its
findings as well as the methods and models used can also be employed in other
countries. Literature about RTP in the Estonian language is needed. Finally,
field legislation should be renewed, i.e. the Electricity Market Act and the Grid
Code have to be reviewed and necessary modifications made. In conclusion, the
current research may serve as a basis for further related studies that may
eventually lead to the emergence of an effective real-time charging system.
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ABSTRACT

Due to the liberalization of electricity markets, consumers have the opportunity
to choose among different electricity sellers. Unfortunately, creation of the
power exchange and open electricity market was not accompanied by
completely new electricity packages. Current electricity packets are divided into
three packages — packages depending on power exchange price, fixed-price
packages and the generic service package.

The main objective of this thesis was to develop an algorithm for retail
electricity sellers to provide consumers with a real-time tariff system. In
addition, it was aimed to define the real-time tariff system and propose a
method, which would be suitable to predict consumer load one day in advance,
using the real-time pricing algorithm developed.

The real-time pricing algorithm based on current market rules was worked
out and as a result, real-time tariff system was defined as retailers charges for
delivered electricity that vary hour by hour and are determined by power
exchange prices by using an approved and verified algorithm.

In the present work, during one-year measurement period the consumption
of 76 consumers was monitored, and subsequently, consumer-specific load
curves were generated. When monthly costs of monitored consumers in case of
fixed and theorethical real-time tariffs were analyzed, it could not be firmly
concluded that real-time pricing was economically feasible for all the
consumers. Nevertheless, the analysis revealed that for those consumers whose
consumption took place during system off-peak load periods, the real-time tariff
system would lower monthly costs. In addition, it has to be taken into account
that during the research, the consumers did not manage their consumption.
Thich means that if costs are managed, consumers’ expenses will likely
decrease even more. Furthermore, the study attempted to find it out whether
there was a correlation between household load and outdoor temperature. The
analysis showed that even though the apartment load had no correlation with
outside temperature, the private households load was tightly linked to the
outside temperature and thus could be used for forecasting load.

Another aim of the study was to provide a method for forecasting load in
accordance with the proposed algorithm. In this work, the time series regression
method for forecasting load one day in advance was used. The SPSS software
was employed to assess the accuracy of models. In addition to the day-ahead
forecasting, a method to correct the one-day-ahead forecast error was proposed.
The method takes into account the difference between the previous four-hour
forecast and the actual load, and this information can be used to correct the one-
day-ahead forecasting difference in a transaction in the intraday market. The
mean absolute percentage error of one-day-ahead load forecasting was 14.2%
and for the two-hours-ahead correction, 10.7%. Despite the very large content
of the stochastic component, it can still be regarded as a good outcome.

As a result of this work the algorithm for and the definition of real-time tariff
system which retailers could use and consumers benefit from were presented.
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KOKKUVOTE

Elektriturgude liberaliseerimisega on tarbijatel tekkinud vdimalus valida
erinevate elektrienergia miilijate vahel. Elektriborsi ja elektrituru loomisega ei
kaasnenud aga tidiesti uute elektripakettide kasutuselevottu. Praegused
elektrienergia paketid jagunevad kolmeks — bdorsihinnast sdltuvad paketid,
fikseeritud hinnaga paketid ja iildteenuse pakett.

Kéesoleva doktoritod peamiseks eesmirgiks oli vilja tootada algoritm,
millega jaeturu elektrimiitijad saaksid tarbijatele pakkuda reaalajas muutuvat
elektrienergia paketti. Lisaks oli eesmérgiks defineerida reaalaja tariifislisteem
ja pakkuda vilja meetod, millega on vdimalik prognoosida tarbijate koormust
iiks pdev ette ning mis sobiks viljatootatud reaalaja elektrienergia paketi
algoritmiga.

Kéesolevas to0s pakuti vélja algoritm reaalaja tariifi siisteemile, mis pohineb
praegustel turureeglitel, ning selle tulemusena defineeriti reaalaja tariifi siisteem
kui jaemiiiija poolt miitidud elektrienergia hind, mis varieerub tund-tunnilt ja on
médratletud elektrituru hindadega, kasutades heakskiidetud ja verifitseeritud
algoritmi.

Kéesolevas t60s mdddeti iihe aasta viltel 76 tarbija elektrienergia tarbimist
ning selle tagajirjel tekitati iga tarbija pdhine koormusgraafik. Kui analiiiisiti
nende tarbijate kuukulusid fikseeritud ja teoreetilise reaalaja tariifi korral, siis
polnud vdimalik ammendavalt oelda, et reaalaja tariif on tarbijale
majanduslikult otstarbekam kui fikseeritud tariif. Samas selgus analiilisi kéigus,
et nendele tarbijatele, kelle tarbimisest suurem osa langes siisteemi
tipukoormusevilisele ajale, oli reaalajas muutuva tariifisiisteemi pdhjal
arvutatav kuukulu siiski vdiksem. Siinjuures tuleb rohutada, et kdesolevas t60s
ei planeerinud tarbijad oma tarbimist, mis tdhendab, et koormust planeerides
oleks tdendoline moju kulutustele veelgi suurem ja seega elektrienergia arve
kuu 1dikes wveelgi vidiksem. Lisaks uuriti kdesolevas td0s, kas esineb
korrelatsioon majapidamise tarbimise ja vilisdhu temperatuuri vahel. Analiiiis
nditas, et kuigi korterite tarbimise ja vélisGhu temperatuuri vahel puudub
korrelatsioon, siis eramajade tarbimine ja vélisdhu temperatuur on omavahel
tihedalt seotud ja seega sobib koormuse prognoosimiseks.

Teine t60 eesmidrk oli vastavalt esitatud algoritmile pakkuda vilja iiks
voimalik koormuse prognoosimeetod. Kdesolevas t60s kasutati liks pdev ette
koormuse prognoosimiseks aegridade regressiooni meetodit. Mudelite tdpsuse
hindamisel kasutati ka SPSS tarkvara. Lisaks péev ette prognoosimisele pakuti
toos vilja ka meetod, millega oleks vdimalik pdev ette tehtud prognoosi viga
parandada. Selleks on vaja leida eelneva nelja tunni prognoosi ja tegeliku
koormuse vaheline erinevus ning leitud koormuse erinevust arvestades teha
vajalikud tehingud péevasisesel turul. Koormuse prognoosimisel {iks péev ette
oli keskmine absoluutne protsentuaalne viga 14.2% ja kaks tundi ette prognoosi
korrigeerimisel 10.7%, mida vaatamata védga suurele stohhastilise komponendi
sisaldusele voib pidada heaks tulemuseks.

Kéesoleva t66 tulemusena todtati vélja ja defineeriti algoritm, mida miiiijad
saavad reaalaja tariifisiisteemi luues kasutada ja millest saavad kasu ka tarbijad.
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Fig. 11. Different fuels used to produce electricity in Estonia based on information in
[13].

Table 1. Electricity sellers’ and balance providers’ proportion in the electricity
consumed, % [2]

Proportion of electricity consumption Je;rz)u&ry De;grlr;ber aigrlag’ge
Eesti Energia AS balance portfolio 60.0 71.6 71.9
Elektrum Eesti OU balance portfolio 14.6 9.6 10.7
I]i;ilz‘g‘ghoEnergy Services OU balance 10.2 93 9.1

incl 220 Energia OU percentage 2.1 2.0 1.7
incl VKG Energia percentage 1.7 2.3 1.9
incl TS Energia OU percentage 1.2 1.3 1.2
oUp érrlsimage VKG Elektrivorgud 11 12 11
incl Sillamée SEJ AS percentage 0.7 0.8 0.8
incl AS Loo Elekter percentage 0.3 0.2 0.2
Iljg)rrt(;(l)iioPower Management OU balance 6.3 24 24
incl Imatra Elekter AS percentage 2.1 1.5 1.4
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incl Eesti Gaas AS percentage 0.1 0.1 0.1
Elektrimiitigi AS balance portfolio 2.0 1.9 1.4
Inter Rao Eesti OU balance portfolio 1.5 0.6 0.2
Elering (TSO) grid losses balance portfolio| 5.4 4.6 4.3
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REPLACEMENT OF THE REGULATED PRICE OF OIL
SHALE-BASED ELECTRICITY WITH OPEN-MARKET
PRICE AND REAL-TIME TARIFF SYSTEM
OPPORTUNITIES

TANEL KIVIPOLD", JUHAN VALTIN

Department of Electrical Power Engineering
Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia

Abstract. The Estonian retail electricity market opened on the Ist of January
2013. The wholesale electricity market has been operating open successfully
for some time already. The liberalized electricity market creates new
opportunities for consumers. From 1 January 2013, all electricity producers
compete on power exchange. This means that the price of the electricity
produced from oil shale is no longer regulated by the State and Narva Power
Plants, like other power companies, are competing in the open electricity
market.

The liberalized electricity market and new remotely readable meters enable
retail dealers to offer consumers more flexible packages. For example, a new
pricing system could be developed that takes into account actual costs of
electricity production at the exact time these are made.

The aim of this article is to give an overview of possibilities of real-time
pricing and compare the existing tariff systems to the hourly variable pricing
tariff system.

Keywords: open retail electricity market, power exchange, tariff systems,
electricity price, oil shale, real-time tariff system.

1. Introduction

Up until 2013, the electricity price was mainly shaped by oil shale-fired
power plants and the sales price limit was confirmed by the Estonian
Competition Authority. The Estonian Competition Authority confirmed the
price limit of electricity sold to the regulated retail market according to the
Electricity and oil shale production price regulation principles drawn by the
Authority on the basis of the Electricity Market Act [1].

* Corresponding author: e-mail tanel. kivipold@gmail.com
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In Estonia, oil shale-based electricity constitutes the major part of total
electricity produced and consumed, therefore it can be stated that until
recently the rate of electricity to consumer depended on oil shale-based
electricity generation. In 2010, for example, the overall production of
electricity was 12 962 GWh and 92.3% of it was produced from oil shale [2].
In the open electricity market, the price of electricity is no longer controlled
by the State, instead, it is formed on the market and power exchange.
Unfortunately, the opening of the market was also accompanied by the
increase of electricity price, since to home user the regulated market price
was lower than the current power exchange price.

The open electricity market and remotely readable electricity meters will
offer new possibilities for everyone. For decades, there have been talked
over real-time tariffs. Although some researches have been made and
algorithms developed offering real-time pricing system, until now there have
not been appropriate technologies. No meters have been available that could
measure the energy consumed at a sufficient interval, i.e. as frequently as its
price changes. Technologies that could send real-time pricing information to
consumers have been lacking either. But today, such a technology finally
exists. Different AMI meters allow the distribution network operator [3]:

. to measure the consumed energy at the desired interval;

b. to communicate with the consumer through various communication
channels (power line carrier PLC, Wi-Fi, GPRS, 3G, WiMax, etc.);
to switch consumer on or off the system,;
to limit consumer consumption;
to monitor power quality;
to send consumer power outage information.

By today, many developed countries around the world have deregulated
their electricity markets. This is aimed at creating conditions for competition
among electricity producers to ensure a fair electricity price to consumers, as
well as producers. Now that the electricity market is fully open, the oil shale-
based electricity is competing with that generated by other modes. In 2012,
the Estonian Competition Authority set the average sales price limit of the
electricity produced by Narva Power Plants to 29.4 €/ MWh [4]. There were
36 power companies in the closed electricity market in Estonia and the
average approved price of electricity was 32.9 €/ MWh [4]. However, in
2012, the average price of electricity in the Elspot Estonian region was
39.2 €/ MWh, i.e. over 19% higher than the Estonian Competition Authority
approved average price.

The competitiveness of Estonian oil shale-based electricity in the open
market depends on various factors, but largely on CO, quotas. If Narva
Power Plants would purchase the required CO, quotas, it may raise
electricity production costs even more. Oil shale-based electricity production
releases much more CO, compared to the other methods of electricity
generation. The production of 1 MWh of electricity from oil shale emits
around 1.2 tons of CO, (the new Narva Power Plant unit releases
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1.07 YMWh and the old units 1.22-1.40 t/MWh). Whether the oil shale-
based electricity is sustainable and also competitive in the open market and
secures Estonia’s electricity supply depends on the amount and price of the
needed CO,; quotas.

The EU energy policy’s objective is to create one single electricity
market. At the moment there are 13 power exchanges in the European
Economic Area [5], with IPEX of Italy, EEX in Germany and Nord Pool
Spot in Norway as the biggest.

In the Estonian closed electricity market conditions, the Estonian
Competition Authority confirmed all electricity prices, taking into account
the costs of capital, fuel, transmission, etc. In an open market the price of
electricity will depend on the point on the consumption curve at which the
supply and demand curves intersect. In other words, the price is derived
from market equilibrium. At Nord Pool Spot, purchase orders constitute the
demand curve and sale offers the supply curve (Fig. 1). The intersection of
two curves generates the market price for the next hour [6]. The uniform
price is the price level at the intersection of aggregated demand and supply
curves and is called market clearing price. It provides a maximum trade
volume, also called market-clearing trade volume [7].

Since in retail market sellers are competing with each other, the price to
households is determined on competitive terms. Although in the open market
households may choose between electricity packages offered by many
retailers, it is unfortunate that they have to choose only between different
fixed electricity price packages whose prices change monthly or even more
seldom. Therefore, it is time that consumers should have the possibility

price
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Fig. 1. Aggregated supply and demand curves [7].
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to take a real-time price packet, which reflects the current market price and
costs of electricity generation.

At the moment, price packages offered to consumers do not mirror actual
costs of electricity production. Retailers offer price packages which involve
only two rates — daily and nightly. However, this two-tariff system does not
motivate consumers enough to plan consumption. Thus, it can be said that
the tariffs currently offered are not attractive enough to control consumption.
It is important to offer price packages which take into account the network
situation and make consumer shift consumption away from peak load.
Therefore, to achieve a better demand response it is important to offer more
daily rate price packages, or a real-time pricing package.

Eesti Energia AS had in 2012 different price packages — KODU1, KODU2,
KODU3, KODU4 and a heating package; it was also possible to choose green
energy. Users having the main fuse over 63A had the possibility to select
between six different price packages and it was also possible to select green
energy. Nevertheless, most consumers are primarily interested in price,
followed by origin of electricity, and manufacturer or seller.

In Finland, the Vatenfall energy company offers consumers a price
package whose price changes according to the electricity exchange price
(Nord Pool Spot, Norway). Unfortunately, the average price for the preced-
ing month is adjusted only once a month. Besides, 3.04 €/month and
commission fee of 0.25 € cents/kWh are added. Such an arrangement is
actually quite similar to that of the proposed real-time pricing system. The
price depends on the exchange price, changing at certain intervals, and the
seller takes a fixed commission fee. However, the interval is too long and the
price does not entail the production costs at the moment the energy is
consumed.

2. Description and objectives of the retail electricity market

Electricity tariffs are not just there, so the seller could benefit from the goods
(electricity) sold. Different tariffs could help achieve the desired goals. The
main objectives the retail market tariff systems will help achieve are:
reducing consumer electricity costs;
motivating consumer to regulate consumption;
educating consumer;
increasing consumer electricity usage efficiency;
increasing consumer demand response;
approximating load curve;
limiting peak load and decreasing load minimum;
reducing balancing energy storage costs;
i. increasing integration of wind and solar power.

In Estonia, over 90% of electricity is produced from oil shale. Un-

fortunately, it is difficult to regulate power production in Narva Power Plants.

PR Mmoo a0 o



Replacement of the Regulated Price of Oil Shale-Based Electricity with Open-Market Price... 199

Thus, it is vital to adjust the load curve and it is most likely achieved through
the price of electricity. For instance, electricity at night should be considerably
cheaper to motivate consumers to move consumption on the nighttime.

The wholesale and retail electricity markets have been open for some
time and work without problems. Since April 1, 2010, an open consumer has
had the right and obligation to choose his own electricity seller. An open
consumer was a consumer that used at least 2 GWh of electricity a year at
consumption sites through one or more connection points. Until 2013, open
consumers formed about 30% of Estonia’s electricity consumption [8]. From
1 January 2013, all consumers are open and purchase electricity at the
liberalized electricity market, which in turn should boost an open retail
market.

Estonia was until 2013 undergoing a period of transition from the closed
regulated market to the open retail electricity market. So, users that were not
open consumers had to buy electricity from their network operator and had
no right to change the seller. In the closed retail market, the biggest market
share carrier was Eesti Energia AS with 87% in 2009 [9]. In the regulated
market, the price was always approved by the Estonian Competition
Authority, depending on the costs of oil shale mining, electricity generation,
transmission, distribution and sale. In 2010, household consumption accounted
for 27% of total consumption and despite increasing energy prices, since
2006 electricity consumption in Estonia has been growing.

The open market consists of many different parties, like end-users,
producers, traders, brokers, regulators [6]. Also, there are a transmission
system operator (TSO), a distribution system operator (DSO) and a market
operator.

There are about 600 000 households in the Estonian retail electricity
market, most of them being price sensitive. In addition, there are
approximately 100 000 commercial users. Most consumers make no distinc-
tion between kW and kWh and they purchase comfort (lighting, heat, etc.). It
is important to offer consumers as clear and transparent packages as
possible. All consumers should understand which elements contribute to the
electricity price. In addition to households, there are bigger consumers (busi-
ness customers) in the retail market, with consumption >10 MWh. Thus, the
sellers should provide electricity to various customers, offering the most
suitable and cheapest tariff packages. The sellers should also differentiate
between domestic and commercial users. Domestic users include apartments,
apartment buildings, detached houses, smart-homes, etc.

Similarly to the closed market electricity price, the price in the open retail
market also forms through Formula 1. The only difference is that in the open
retail market the price is shaped on competitive terms and is not approved by
the Estonian Competition Authority. Grid service (transmission and distribu-
tion) is a natural monopoly whose tariffs will be continuously approved by
the Estonian Competition Authority.
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One of the bases of retail market is remote metering and a well-operating
information system. However, a well-working retail market can only be
shaped through competition. Thus, many sellers need to find their way to the
retail market. Table 1 presents different possible retail-market tariff
packages, their description and target groups.

Table 1. Possible tariff systems in open electricity market

Price package Description Target group
Fixed-price The seller offers consumers a Consumers who are accustomed to
tariff system traditional tariff system at a fixed |conventional tariff systems. They are

electricity price. It may also not interested in controlling/planning
include different daily and nightly | consumption, or this is not possible.
tariffs, for example, KODUI, Also consumers who want to plan

KODU2, etc., packages that were | expenses.
offered by Eesti Energia AS in
closed electricity market. The
agreed rates apply for an agreed
period — a year or longer.

Power The seller offers consumers an Customers who are accustomed to
exchange price | electricity price that depends on | traditional tariff systems. They are not
dependent the average power exchange price |interested in controlling/planning
for the previous day, week or consumption, or this is not possible.
month. It may also include daily | At the same time, they are willing to
and nightly tariffs. Electricity sense the exchange price volatility. It
price applies for a calculated is expected that the price is the lowest
period. in summer and the highest in winter.
Real-time The seller offers consumers Customers who are able and who want
variable electricity prices according to the | to regulate consumption. The main
electricity price | power exchange prices and the target group could be smart-home

trading period. Fees are added to | owners.
the exchange prices.

The yearly sales-based income of an electricity retailer is calculated by
the formula:

Sr=2 4 Si(T). (1)

where S; is the retailer income;
S; is the income from one consumer;
T 1s the time period;
n is the number of consumers;
j is the number of tariffs.

Renewable energy charge is calculated by Elering AS in accordance with
the Electricity Market Act [1] and approved methodology. Elering AS is the
Estonian transmission system operator (TSO) and publishes next calendar
year’s renewable charge every Ist of December. The charge is calculated on
the basis of evaluations of the next year’s subsidiaries for renewable energy,
and consumed network service. Renewable energy charge is meant to
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support those who generate electricity from renewable energy sources or use
efficient cogeneration regime [1].

Electricity excise duty and value added tax (VAT) are decided by the
parliament in accordance with the Alcohol, Tobacco and Fuel Excise Act
[10].

Electricity bill may be calculated differently according to Table 1:

1. Fixed basic tariff:

Sgi =Sg, - W, 2)

where SEl is the electricity tariff, €/kWh;
W is the electricity consumption, kWh.
2. Two fixed tariffs (daily and nightly):

S, =S, Wi +S; - W,, 3)

where S; - and S are electricity tariffs, €/kWh;
W, and W, are amounts of electricity consumed, kWh.
. Tariff based on the average power exchange price for the previous
period:

W

Sz = SE‘,1 W, “)

where S is the average exchange price for the previous period (day,
week, month, year, etc.), €/kWh;
W, is the electricity consumption during the period, kWh.

4. Real-time pricing system:

Sia = SEH W, ®)

where S imer+1 18 the price for the next period (15, 30, 60 minutes),
notified at the beginning of the next period and which applies during
the next period, €/kWh;

W, is the electricity consumption during the period, kWh.

3. Real-time pricing system

The proposed real-time pricing system is a system that calculates the
electricity price to consumer and sends him the respective information at the
beginning of each time period. The interval may be 15 minutes, one hour or
any of the currently suitable electricity market trading periods. The con-
sumer price changes in real time and applies during the agreed interval. The
price of electricity should reflect the network situation, i.e. availability of
wind power, system load, generating capacity, temperature, etc.

For end-user the volatility of electricity price will remain a concern. Most
consumers are accustomed to fixed prices and know how to plan
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expenditures. But when electricity price fluctuates within a large range a
day, expenditure planning will be much more complicated. The real-time
tariff system could effectively help achieve objectives considered in the
chapter Description and objectives of the retail electricity market.

According to the current order in the energy market the seller has to make
the most accurate prognosis of consumption one day ahead and purchase the
desired amount of electric power from the day-ahead market (Elspot). Then,
during the day the seller has to make consumption prognosis one hour ahead
and buy the necessary amount of electric power on the intraday market
(Elbas) if needed. This means that one hour before delivery (real-time), the
seller has to perform the last transaction.

Elspot is a day-ahead market. 12:00 central European time (CET) is the
time of market closure for bids with the delivery for the next day. Simply
put, the price is set at the point on the consumption curve at which the
selling and buying price curves intersect. The price is typically announced to
the market between 12:30 and 12:45 CET with a 3-minute warning, after that
trades are settled. From 00:00 CET the next day, contracts are physically
delivered hour by hour according to the contracts entered into. Elbas is a
continuous intraday market and trading takes place every day around the
clock until one hour before delivery [11].

At the moment in Estonia, the balancing energy prices and amounts are
calculated on the second business day by Elering. Elering provides trans-
mission services for producers, distribution networks and corporate con-
sumers in Estonia. In addition, Elering provides the balancing service for
balance responsible parties. Therefore the seller who wants to offer con-
sumers the tariff system whose electricity price changes in real time has to
predict balancing energy prices to calculate the price to households. The
prediction of balancing energy prices clearly bears a risk for the seller and is
therefore included in the seller fee.

Thus, the energy price calculated by the retailer consists of three compo-
nents:

SE”I = St,e]sp0t+ St,e]bas+ scomission’ (6)
where S, is Elspot’s electricity price;
Siciwes 18 Elbas’ electricity price;
comission 15 the seller fee, which includes the seller’s expenses,
profits and risk of balancing energy.

So, theoretically, the retailer needs 25 different models for load fore-
casting, considering the present organization of the electricity market. There-
fore, if the trading period is one hour, then one day needs 24 models. If the
trading period is shorter than one hour, even more models would be needed.

A seller for Elspot prognosticates consumer consumption in his portfolio
by Formula 7 and, based on these predictions, makes necessary transactions
in Elspot:
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P

t,cons,elspot

=1(X5X,..X,), @)

where P o 18 the predicted consumer consumption for each next day
trading period;
t is the trading period (24 periods in Elspot);
X1;X...X, are factors that influence consumption (time, temperature,
electricity price, etc.).
Thus, the price based on Elspot will be calculated by the formula:

st,elspol = f(Pdem ;Psup )7 (8)

where Py is the power demand;
Py is the power supply.
In addition, there is another model to predict the intraday load to be
employed for trading in Elbas:

Pt,cons,elbas = f(xl;XZ“'Xn) - Pt,cons,elspot > (9)
where P, as 18 the required power from Elbas;
X1;X...X, are factors that influence consumption (time, temperature,
electricity price, etc.); here the factors are adjusted during the
forecast;
f(x;X,...X,,) is the predicted load for the next hour.

When f(x;5X,...X,) = Py oneeispor> the prognosis is the same as the pre-
dicted load for the next hour. Therefore, an additional transaction will not be
necessary.

The price based on Elbas will be calculated by the formula:

St,clbas = f(Pdcm ;Psup ) . (1 0)

Electricity price calculation and consumer notification should therefore
be in accordance with the algorithm shown in Figure 2. The algorithm starts
with checking the time, i.e checking the next trading period. On the previous
day, the seller has carried out deals in the Elspot market. So, the seller knows
how much power he has bought from Elspot for the next trading period and
at which price. Then the seller determines the current consumption and
forecasts consumer consumption in his portfolio for the next trading period.
Next, the seller examines whether the amount of power purchased from
Elspot is sufficient. If there is enough power, then time is checked and if
needed, the seller re-forecasts and performs an additional control. If the
amount of power is not sufficient, the seller will make an additional
transaction in the Elbas market, check the time again and if needed, re-
forecast and perform an additional control. If t = i—1, Elbas is closed for the
next hour trading period. The seller checks consumption until t =1i. If t = i,
the next trading period has begun and the seller must notify consumers of the
ongoing period's electricity price. After the consumers have been notified,
the seller can start calculating the price for the next period.
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Fig. 2. Algorithm for calculating the electricity price and notifying the consumer.
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With that kind of system, the price will depend on the seller's skills, i.e.
his ability to forecast consumer load and carry out transactions on the power
exchange. The seller’s goal is to provide as low-cost electricity to consumers
as possible since concurrently consumers are interested in sellers who
provide the cheapest electricity. If in a consumer’s opinion the seller does
not offer the lowest real-time electricity price, he can choose another seller
on the retail market.

4. Apartment building consumption analysis

During the period December 13-19, 2011, electricity consumption by an
apartment building with 15 apartments was measured (Fig. 3). The purpose
was to compare tariffs valid for the analyzed period to the tariffs of the pricing
system which change on the basis of the power exchange price. Readings were
taken every hour, using remotely accessed single-phase electricity meters NP
515.23D — 1E1ALNI (ADD GRUP, Moldova). This particular apartment
building was a stone house with central heating, the apartments also had a
furnace or fireplace, and an oven. The main fuse of one apartment was 25 A.

The aim was to create consumer load curves and determine whether the
tariff system based on the market price would be more consumer friendly than
the KODU1 and KODU?2 tariff systems that were offered, and the price
packages KINDEL and MUUTUYV currently offered by Eesti Energia AS.

As expected, apartment consumption varied and was quite random.
Therefore, exact load curve schedules for workdays or weekends could not
be generalized. However, it may be pointed out that on workdays, consump-
tion rose from 1 pm to 3 pm, reaching maximum, and fell from 7 pm to
9 pm. On weekends, consumption increased between 7 am and 9 am and
dropped between 6 pm and 7 pm. Since the period of measurements was
relatively short, it would be necessary to monitor consumers during a longer
period of time to determine their consumption habits and obtain a more
detailed load curve. Figure 3 gives a good overview of how random house-
hold consumption was during the day. Figure 4 shows power consumption
and power exchange prices during the period December 13-19, 2011.

The load curve for the apartment building monitored was quite similar to
the Estonian load curve, consumption peaks fell on higher price rate periods.
Also, it became obvious that due to the timing of the main electricity con-
sumption, the electricity bills of individual consumers tend not to decrease if
the electricity price is based on the market price.

For all apartments, the KODUI1 tariff system proved to be the cheapest. It
was on average 3.5% cheaper than Elspot’s Estonian area price based real-
time pricing system and 4.4% cheaper than the Finnish area price based real-
time pricing system. The KODU?2 tariff system was more expensive than
KODUT for all apartments. However, prices of the Estonian and Finnish area
price-based real-time systems were lower than the KODU2 tariff system
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price, by 4.7 and 3.9%, respectively. It should be noted that the analysis of
the electricity market based tariff system did not include vendor’s
commission. Considering the vendor’s commission, the market based pricing
system would be even more expensive than KODU1 and may even surpass
KODU?2. It also turned out that during the observed period of time Nord
Pool’s Estonian area price was 21.6% and Finnish area price 29.4% lower
than their average prices in 2011.

Comparison of the price packages KINDEL and MUUTUV offered by
Eesti Energia in 2013 to regulated market tariff systems KODUI and
KODU?2 shows that KINDEL is 28% more expensive than KODU1 and 18%
more expensive than KODU2. When comparing MUUTUV to regulated
tariff systems, then MUUTUYV is 13.6% more expensive than KODU1 and
only 4.6% more expensive than KODU2. The comparison for the MUUTUV
package was made on the basis of NordPool's Estonian area prices during
the period December 13—-19, 2011.

When moving the measured load curves to March 1-7, 2011 (during this
period Nord Pool’s Estonian and Finnish area prices were higher than the
average electricity price in these regions, by 22.4 and 25.9%, respectively),
KODUL expectedly turns out to be the cheapest; Nord Pool’s Estonian area
price-based real-time pricing system is 24.2% and Finnish area price based
real-time pricing system 32.5% more expensive. Also, compared to the
KODU?2 package the Nord Pool Estonian area price based real-time pricing
system is 14.3% and the Finnish area price-based real-time pricing system
22.1% more expensive. However, once again it should be noted that the
price based on the power exchange price does not take into account the
seller’s fees.

5. Conclusions

1. Currently the price packages offered to consumers do not reflect actual
electricity production costs. It is important to offer price packages which
take into account the network situation and make consumer move
consumption away from peak load and fulfill minimum load. Therefore,
to achieve a better demand response it is important to offer more daily
rate price packages, or a real-time pricing package. The opening of the
electricity market and application of remotely readable meters allow
sellers to offer tariff systems whose electricity price will change hourly
according to the power exchange price.

2. The apartment building consumption analysis showed that the electricity
price based on the power exchange’s hourly changing price may at times
be lower than the price of regulated market’s electricity price packages.
For example, during the period December 13-19, 2011 NordPool’s
Estonian area price was 21.6% and Finnish area price 29.4% cheaper
than their average prices in 2011. During the period in question, for all
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apartments the KODUI1 tariff system proved to be the cheapest, and the
KODU?2 tariff system was more expensive than KODUT1 for all of them.
However, the prices of Estonian and Finnish area price-based real-time
systems were lower than that of the KODU?2 tariff system. It should be
noted that by analyzing the electricity market based tariff system
vendor’s commission was not included. However, considering vendor’s
commission, the market based pricing system would be even more
expensive than KODU1 and may even surpass KODU2. It should be
taken into account that KODU1 and KODU2 packages were based on
the regulated electricity price. However, when comparing the currently
offered price packages KINDEL and MUUTUYV to the previous tariff
systems of Eesti Energia AS, it appears that current price packages are
up to 28% more expensive than price packages based on the regulated
electricity price. Considering the appreciation of electricity in the open
market, the energy price based on the hourly changing power exchange
price will at times be lower than the price of fixed-price packages in the
open retail market.

3. The electricity price on the power exchange is volatile and it is
impossible to forecast the next year's electricity price since it depends on
many different factors. It is clear that the intraday exchange market price
fluctuates and during some periods of time the prices may be lower than
regulated market tariffs and in other periods, higher. This means that the
real-time tariff system will enable customers to regulate consumption in
order to keep their electricity costs as low as possible.

REFERENCES

1. Electricity Market Act. The State Gazette, 1, 2003, 25, 153. Available at
https://www.riigiteataja.ce/akt/830279?leiaKehtiv [in Estonian]. 2012.

2. Statistics Estonia. Available at http://www.stat.ee. 2012.

3. Kivipdld, T., Niitsoo, J. Overview of information and communication issues for
smart grid solutions. /0th International Symposium “Topical Problems in the
Field of Electrical and Power Engineering”, Parnu, Estonia, January 10-15,
2011, 108-112.

4. Estonian Competition Authority. Available at http://www.konkurentsiamet.ee.
2012.

5. Integrating Electricity Markets through Wholesale Markets: EURELECTRIC
Road Map to a Pan-European Market. Union of the Electricity Industry,
EURELECTRIC, 2005. 41 pp.

6. The Nordic Electricity Exchange and The Nordic Model for a Liberalized
Electricity Market. Available at http://www.nordpoolspot.com/Global/
Download%?20Center/Rules-and-regulations/The-Nordic-Electricity-Exchange-
and-the-Nordic-model-for-a-liberalized-electricity-market.pdf. 2, 10 pp. 2012.



210 Tanel Kivipéld and Juhan Valtin

7. Madlener, R., M. Kaufmann, M. Power exchange spot (market trading in
Europe): theoretical considerations and empirical evidence. OSCOGEN,
Deliverable 5.1b, 2002. 10 pp.

8. Estonian Electricity and Gas Market. Report 2011. Estonian Competition
Authority, Tallinn, 2012.

9. European Energy Regulators. Available at http://www.energy-regulators.eu/
portal/page/portal/EER._HOME/EER_PUBLICATIONS/NATIONAL REPOR
TS/National%20Reporting%202010/NR_nl/E10_NR_Estonia-LL.pdf. 2012.

10. Alcohol, Tobacco and Fuel Excise Act. The State Gazette, 12007, 45, 319.
Available at https://www.riigiteataja.ce/akt/12906565?1eiaKehtiv [in Estonian].
2012.

11. Nord Pool. Available at http://www.nordpoolspot.com/. 2012.

Received October 24, 2012



Paper II

Kivipéld, T. Overview of Intraday Variable Tariff System. 13" International
Symposium "Topical problems in the field of electrical and power engineering.
Doctoral school of energy and geotechnology. II": in memoriam of professor
Juhan Laugis. Parnu, Estonia, January 14-19, 2013, pp. 236 — 237

75






Overview of Intraday Variable Tariff System

Tanel Kivipdld
Tallinn University of Technology (Estonia)
Tanel.Kivipold@gmail.com

Abstract— The Estonian retail electricity market is opening
on the 1st of January 2013. Remotely readable meters will be
installed by the end of 2016. The liberalized electricity market
creates new opportunities for sellers and consumers. Sellers can
offer consumers more flexible pricing packages. For example, a
new pricing system could be developed that takes actual
electricity production costs into account at the exact time they
are done. The aim of this article is to give an overview of the
current situation in the electricity market and its future
possibilities, like intraday variable pricing system, based on
Estonian example. An overview is given about research and
development in the particular field, and future studies by the
author.

I. INTRODUCTION

The sales price limit of electricity sold to the regulated
retail market so far has been confirmed by the Estonian
Competition Authority (ECA) according to the Electricity and
oil shale production price regulation principles drawn by the
ECA on the basis of the Electricity Market Act
(Elektrituruseadus RT I 2003, 25, 153 (ES)).

From the 1% of January 2013, however, all the customers
are obligated to purchase electricity from the open electricity
market. Unfortunately the opening of the retail market will
also be accompanied by the increase of the electricity price,
since for home users the regulated market price is currently
cheaper than the power exchange price. The average price of
electricity in Elspot’s Estonian region in 2011 was 43,3
€/MWh, i.e. over 31% more expensive than the average price
approved by the ECA. [1] [2]

In Estonia, new remotely readable meters are going to be
installed by the end of 2017. In an open retail market,
remotely readable meters will give rise to many innovative
possibilities, for example consumed energy can be measured
within a desired interval or consumers can be switched on or
off. [3] Although there has been talk about real-time tariffs
for decades and some researches and algorithms have been
made and offered for real-time pricing systems, currently, no
one offers intraday (hourly) variable price packages.

II. TARIFFS IN ESTONIA AFTER MARKET OPENING IN
JANUARY 2013

At the moment, the Estonian retail market has only six
electricity sellers:
1. Eesti Energia AS

2. 220 Energia OU

3. Imatra Elekter AS

4. VKG Elektrivérgud OU
5.  Elektrum Eesti OU

6. Elektrimuiigi AS
Unfortunately, there are no signs of different approaches for
the pricing systems. All electricity sellers are basically
offering the same pricing systems for home users with only
minor differences. It is possible to group them as:

a. Fixed single tariff price, monthly fee may be added;

b. Fixed two-tariff (day and night) price, monthly fee

may be added;

c. Price based on the monthly average exchange price.

Fixed single tariff and two-tariff pricing systems are
suitable for consumers who are accustomed to conventional
tariff systems. These customers are not interested in
consumption controlling/planning or it is not possible for
them. Also, fixed pricing systems are intended for consumers
who want to plan their expenses.

Price based on the monthly average power exchange price
is meant for consumers, who are accustomed to traditional
tariff systems. Although they are not interested in
consumption controlling/planning or lack this kind of
possibility, they are still willing to sense the exchange price
volatility. It is expected that this price is the cheapest during
summer and the most expensive during winter.

The author is recognizing an additional target group of
electricity consumers that has been excluded so far. This
group includes consumers, who are able and who want to
manage their electricity consumption. These consumers are
smart home owners or in other words smarter consumers.

Since remotely readable meters are going to be installed in
Estonia, it is necessary to work out algorithms and methods
so the electricity sellers could offer their consumers packages
where the price would be changing on a hourly basis. In order
to offer the cheapest price for the consumers, the sellers
would have to be able to forecast the consumption as
precisely as possible.

A real-time price package is a part of smart grids and could
for example help to achieve the following goals:

Reduction of consumer electricity costs;
Motivation of consumers to manage consumption;
Increase of consumer electricity usage efficiency;
Increase of consumer demand response;
Approximation of load curve;

Limitation of peak load and smaller load minimum;
Reduction of balancing energy storage costs;
Increase of wind and solar power integration.

Fr Mmoo o

III. FORECASTING THE LOAD

There have been a lot of ideas how to predict the load.
Forecasting of the load is mostly based on statistical analysis
that entails past consumption, separating the standard days,
hours, holidays, weekends etc. and at the same time linking
the past statistics with a parameter characterizing the current
situation, for example weather (wind, temperature etc).

There are a lot of studies on short-term load forecasting and
they may be classified as follows [4]:

a. Regression models

b. Kalman filtering

c. Box & Jenkins models
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d. Expert systems

e. Fuzzy inference

f.  Artificial neural network (ANN)

g. Chaos time series analysis

In Fig. 1, the dependence of the consumption of ten private
residences on the outdoor temperature during the period
January 31st - February 4th of 2012 measured at 7:00 AM is
shown. As it seems, there is a strong correlation between
temperature and consumption. Of course it is necessary to
take into account that these are private residences that have no
district heating, so the dependence could be affected by using
electricity for heating. It is necessary to analyze the
dependence more thoroughly and to engage more consumers
into the study. Also, it is necessary to conduct this study for a
longer period of time and in different temperatures.
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Fig. 1. The dependence of consumption of ten private residences on outdoor
temperature during 5 work-days (from January 31st until February 4" 2012)
measured at 7:00 AM.

IV.FUTURE STUDIES

The author will soon publish an article where a suitable
algorithm for calculating the electricity price on an hourly
basis is proposed.
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Fig. 2. Consumption of the private residences and outdoor temperatures
during the period January 31st - February 6th of 2012.

The author’s ongoing studies include a more in-depth
analysis of the dependence of consumption and weather, the
main focus being on model studies for correlation and
regression analysis. These studies will help build a model for
forecasting electricity demand on short or medium time scales
and shaping electricity price for the consumer. In Fig. 2,
where consumption of the apartment building and outdoor
temperatures is shown, a correlation between the electricity
demand and outdoor temperature can be seen. The main aim
is to thoroughly analyze one-year consumption of various
private residences and an apartment building and based on the
gathered information propose a base model suitable for
Estonian electricity sellers to forecast load.

V. CONCLUSIONS

The paper has given a brief overview on the situation of the
open electricity market in Estonia and discussed the
importance and complexity of forecasting electricity demand
on short or medium time scales. In addition to the author's
soon to be published algorithms for electricity price
calculation in case of hourly variable pricing systems, this
paper shortly introduced author’s ongoing studies in the field
of forecasting an electricity demand model. Once completed,
these studies will give vital data on algorithms and load
forecasting models which in the future will help construct a
real time pricing system. A real time pricing system will be
able to take actual electricity production costs into account
and therefore undoubtedly form an important part in the
development of smart grid projects.
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Abstract: - Short-term electricity load forecasting is required for many functions, for example managing and
controlling power systems, planning loads for power stations etc. In an open electricity market, load forecasting
is necessary for electricity sellers, who have to buy necessary amounts of electricity from power exchange.
Therefore, forecasting accuracy affects the seller’s economic results. Also, accurate load forecasting could help
retail electricity sellers to offer consumers real-time variable electricity tariff packages. A lot of different
methods have been used for load forecasting and many novel methods have been proposed and designed.

The aim of this article is to analyze dependence of load of a small group of residences in Estonia on
temperature and to show how it is possible to forecast electricity consumption one day ahead with a simple
regression analysis of time series method. In addition, it gives an overview of the accuracy of regression
analysis of time series method, and shows how to correct the day-ahead forecast error when forecasting two
hours ahead. The results of this study demonstrate that regardless of a very large stochastic component, a
relatively accurate load forecasting is possible when using the regression analysis of time series method. This
article also shows how electricity sellers could use regression analysis of time series method to forecast load in
order to offer consumers a real-time electricity pricing system. In addition, the regression analysis of time series
method based forecasting model proposed in this article can also be used by electricity sellers to make optimal
purchases from power exchange and increase their rate of profit.

Key-Words: - regression analysis, real-time pricing, time series forecasting, short-term load forecasting, load
forecasting based on temperature.

1 Introduction moment of consumption, it is necessary to create a
The electricity market in Estonia was finally opened tariff system where electricity production costs are
in the beginning of 2013. On the retail market, there being considered. This tariff system is called real-

time pricing system. When considering the design of
Nord Pool power exchange and the purpose of retail
electricity sellers to sell electricity that is calculated
on the basis of the same time interval and price as in

are ten electricity sellers who shape electricity
prices for consumers. Government-owned Eesti
Energia AS, the biggest energy company in Estonia,
currently possesses the largest market share which is

approximately 70%. All the retail sellers are buying power _exchange, an  appropriate ) model for
electricity either from the power exchange Nord forecasting one day ahead and an additional model
Pool or directly from producers. Although there for forecasting at least one hour ahead would be
were some expectations that more different tariff necessary. Currently, electricity sellers can buy the
systems would be introduced to open electricity necessary amount of power from day-ahead market
retail market, it unfortunately did not happen. All (Elspot) based on one day ahead forecasting and
the retail sellers offer basically the same tariff correct their forecasting errors in intraday market
systems as they did before, only with different fixed (Elbas). The Workmg prlnglples of Elspot and Elbas
contract periods. These tariff systems are: are described in more dptall in [1]. )
a. Fixed price tariff system, The authgrs haye .preV10usly proppsed an algorithm
b. Tariff system based on the average power fo.r real-time pricing system, which could be used
exchange price of the previous month. with curr.ent mark§t and power exchange rule;. In
Since these tariff systems do not take into account the mentl(?ned article, the aqthors ?1§0 explamgd
costs that are spent on electricity production at the more specifically why a real-time pricing system is
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necessary and showed how electricity retailers could
offer consumers real-time prices based on the
algorithm and current market/power exchange rules
[1].

To initiate a real-time pricing system, it would also
be necessary to install remotely readable electricity
meters that are able to fixate electricity consumed
during the desired time interval. As from 2017, there
should be remotely readable meters at all Estonian
consumers’ supply points. For this study, we used
already installed remotely readable meters.

Weather undoubtedly affects consumer load. There
are a lot of meteorological factors that affect
consumption like for example temperature, wind,
etc [2]. However, since the effects of these factors
on load are difficult to assess, only temperature
dependence was chosen to be the basis of this
research.

The aim of this article is to analyze the dependence
of load on temperature, and to show that the
regression analysis of time series method is accurate
for short-term load forecasting and that it would
allow the retail sellers to offer consumers a real-time
electricity tariff system.

2 Forecasting consumption
Forecasting of electricity consumption is very
difficult since there are a lot of consumers, their
consumption is largely random and there are
different variables that affect their consumption. A
lot of different methods have been proposed for
forecasting consumption.
Naturally, it is necessary to estimate electricity
consumption to assure efficient operation of the
electricity system. In the system, a balance between
generation and consumption needs to exist. It is not
possible to produce more than is consumed.
Load forecasting can be usually divided into:
a. Short-term load forecasting, ranging from
one hour to one week;
b. Medium-term forecasting, ranging from one
week to one year;
c. Long-term load forecasting, ranging from
one year to longer time periods.
Up until recently, consumption forecasting was
necessary for utility companies, and network and
system operators for planning and controlling.
However, in a liberalized energy market, there are
also electricity sellers competing on the retail
market. Thus, buying energy from power exchange
and reselling it to consumers also requires good
forecasting models. Since retail sellers have a good
overview and statistics of their consumers’ habits,
forecasting should be easier and more accurate.
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In load forecasting models, it is necessary to take
the following load changes into account:

a. Regular changes, like day-and-night,
weekly and yearly periodicity, trend and
nature of the load on national holidays;

b. Temperature dependence, which is for
example quite high in case of electrical
heating. In models, temperature dependence
inertia, nonlinearitiecs and time variations
are taken into account;

c. Dependence on operating values, which is
expressed as load voltage and frequency
sensitivity;

d. Randomness, which is  particularly
noticeable in loads of small distribution
grids. The relation of this kind of loads’
square deviation towards mathematical
expectations is quite high. In case of small
loads, hard slopes can also be present that
are not compatible with the normal
distribution;

e. Maneuverability - The load is managed
mostly indirectly through electricity tariffs.
However, some kind of direct control by the
power grid operator can also take place.
Maneuverability is basically transmission
grid node load changes that are caused by
switching in distribution grid [3].

There are many different methods for load
forecasting that are based on regression analysis,
time series, neural networks, box-jenkis models,
expert system approaches, artificial neural networks

(ANN), etc [4]. The most commonly used
forecasting  techniques are neural network
algorithms, time series approaches, regression

techniques and expert system approaches [5]. A
method is chosen primarily by taking into account
the character of source data, their volume and the
necessary results (forecasting time, accuracy etc.).

The time series and regression techniques are the
two major classes of conventional statistical
algorithms, and have been applied successfully in
this field for many years. The expert system based
algorithm for short-term load forecasting uses a
symbolic computational approach to automating
intelligence. This approach takes advantage of the
expert knowledge of the operator which is, however,
neither easy to elicit nor articulate. A major
advantage of using ANN over expert systems is its
non-dependency on an expert. Furthermore, ANN
also performs non-linear regression among load and
weather patterns, and can also be used to model the
time series method or as a combination of both [6].
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Difficulty in load forecasting arises due to its
nonlinear and irregular variation [7], which
forecasting is complicated, if not impossible.

If weather condition is taken into account in
forecasting load, then the load is given in the
following form:

1(@) = 1o () + [;(0) + g (8) + 1 (0) (M
where [, (t) stands for irregular load changes in the
future, [;(t) for weather independent component,
l4(t) for weather dependent component, and [,,(t)
for noise residual or stochastic component [6].
Independent and stochastic components can be
further divided into different components. Similarly,
weather dependent component can be divided into
different components depending on different
weather conditions.

The load may be influenced by different weather
parameters such as temperature, humidity, wind
speed, cloud cover and other abnormal situations
such as thunderstorms, etc [2] [6]. Nevertheless, it is
important that a forecasting model is simple,
accurate and convenient to use. In particular, it is
necessary to distinguish what is affecting the load
the most and then build a forecasting model, which
takes that parameter into account. Studies have
shown that the main influence in most situations is
temperature [6]. Therefore, in this study we
analyzed whether and how much loads in Estonian
households depend on the outside air temperature.
In addition, we examined whether the proposed
regression analysis of time series method is suitable
and sufficiently accurate for electricity sellers to use
for forecasting.

3 Overview of the proposed approach

of regression analysis

For this study, the authors have chosen regression
analysis for load forecasting because this is suitable
for forecasting loads based on time series. For
forecasting, it is necessary to establish a
mathematical model for describing the load. In
general, the load can be described as a simple
model:

I(t) =1l.(t,C,b) +6(t) 2)
where [(t) stands for actual load, [.(t,C) for
mathematical load expectation, 6(t) for stochastic
component, t for time, C for temperature, and b for
wind.

Mathematical load expectation describes regular
changes in the load, for example overall growth,
seasonal, intra-week, intra-day  periodicity.
Stochastic component describes a random load
change that cannot be estimated. It is possible to
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reduce the proportion of the stochastic component
by taking into account more variables. However, it
is not possible to eliminate the stochastic component
completely. Naturally, when using weather
(temperature, wind, etc) as an input in load
forecasting, then the weather forecasting precision is
affecting load forecasting accuracy. However,
weather forecasting is not a subject of this work.
Mathematical load expectation depends on different
influences as described above. In this work,
however, we are taking into account three main
factors that affect load:

a. Day (weekend, working day etc.),

b. Time,

¢. Temperature.
Our study is based on measurements taken in Loo
village near Tallinn during 1** of January — 31% of
December 2012. Altogether, individual consumption
of eleven private houses and one apartment building
with 60 apartments was measured. Meteorological
data were obtained from Estonian Meteorological
and Hydrological Institute’s meteorological station
in Harku. The measurement period was 1 year long,
i.e. 8784 hours. After sorting out various erroneous
measurements, 6497 hours of data, i.e. 74% of the
data remained.
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Fig. 1. Estonia’s whole power system load and
measurements carried out in Loo village during the
period of January 23™ — 29" 0f 2012.

Fig. 1 shows a comparison of Estonia’s power
system’s whole consumption, based on Elering’s
measurement data, and measurements carried out in
Loo village. Elering AS is an Estonian transmission
system operator (TSO). The figure shows that, in
general, the load curves are similar, however, in
case of measurements carried out in Loo village, the
consumers and all the unpredictable changes are
strongly affecting the load curve. This means that in
the models developed in this study, the stochastic
component will likely play a large role.

In theory, forecasting should take into account
temperature sensitivity and inertia, which are more
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sensitive in winter than during summer [3]. Inertia
and temperature sensitivity are different for every
customer and depend on the heating system and on
the construction of the building. In this work,
however, separate inertia is not taken into account.
Fig. 2 shows customers’ load dependence on
temperature surveyed on weekdays at 1 p.m.
Despite the fact that the weekdays are not
distinguished separately, this figure shows a strong
correlation between temperature and consumption.
Surely, it should be mentioned that when looking at
private houses and apartments separately, there is
practically no correlation between electricity
consumption of apartments and  outdoor
temperature. Although the apartment building has
central heating and the weather factors that affect
consumption are mostly daylight hours, apartments
were not excluded from this study. Thus, it can be
concluded that load dependence on temperature was
mainly caused by private houses.

60
. 50
; +
* ; . o 0 ¢ .
2 R ...‘{, y=-0,7055x +29,75
5 R SRS _::: = R?=0,8191
2 : 20 A .*;."0? ’; s apte, *
" ,’& el o
10
0
-20,0 -10,0 0,0 10,0 20,0

temperature, C

Fig. 2. Correlation between load and temperature
during working days at 1 p.m.
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Fig. 3. Correlation between load and temperature on
Mondays at 1 p.m.

For Fig. 3, different working days were separated
and a correlation between load and temperature on
Mondays at 1 p.m. was analyzed. The coefficient of
determination R? shows how a large part of the
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measurements is explainable with the proposed
method. This figure also shows that the actual loads
on different days varied and the consumers had
different habits. Thus, differentiating weekdays
results in a much stronger dependence between
temperature and load.

The Fig. 2 and 3 clearly show that the relationship
between the measured temperature and load is
negative, i.e. the increase in temperature leads to a
decrease in consumption, and vice versa. The
relationship may also be positive depending on the
geographic location. A positive correlation for
example has been observed in regions with warmer
climatic conditions, where the increase in
temperature leads to an increase in consumption,
and vice versa [8] [9].

To distinguish between the time of day and day of,
we created a model for each day and hour on the
basis of obtained measurements. In this work, we
assumed that temperature and load have a linear
relationship, which depends on the time of day and
day of. In addition, we calculated separate functions
for holidays. Thus, for a total of 24 hours per day, 7
days a week and public holidays in separate
functions, in all we created 192 functions to
characterize load dependence on temperature. For
the observed customers, we actually created daily
load curves on the basis of time series to which we
included temperature dependence. The general
shape of each function can be provided as:

lElspot(t' d) = a(tv d) O+ b(t' d) (3)
where  lgspoc(t, d) stands for hourly consumption
depending on the time of day and day of (unit kWh);
a(t,d) and b(t, d) for parameters, which depend on
the time of day and day of; and C for temperature
(unit °C).
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Fig. 4. Measured and one-day-ahead forecasted
consumption during the period of January 23" — 24"
of 2012.
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Fig. 4 shows the measured and one-day-ahead
forecasted loads. For load forecasting, we used
actual  temperatures measured in  Harku’s
meteorological station. The figure shows that on a
large scale, the predicted and the actual load curves
coincide. The load, however, is affected by irregular
changes, which cannot be forecasted in advance.
In order to compensate the one-day-ahead
forecasting error, we used the function:
lgipas(t +2) = lElspot(LL +2)+ lElspot(tL +2)-

. Tia—ala®—lgispoe (£) )

4‘lElspat(t) (4)
where lgpas(t +2) stands for two-hours-ahead
forecast (unit kWh), lpepee(t +2) for one-day-
ahead forecast (unit kWh), l,(t) for actual
load at time t, and a; for coefficient that takes into
account the importance of the previous hour’s
difference.
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Fig. 5. Measured, one-day-ahead forecasted and
two-hours-ahead forecasted consumption during the
period of January 23™ — 24" of 2012.

In order to give a higher priority to the newest data
against the oldest values, we use coefficient a;. It
was found to minimize the two-hours-ahead
forecasting error difference, in our case a;_, = 0.4,
a;_3=0.6,a;_, =0.8,a,_; = 1.0. We did not re-
adjust it for every day, just calculated it for the
whole measurement period.

Fig. 5 shows the loads calculated with formula 4
two hours ahead, as well as the actual load and the
forecast one day ahead. It is clear that the formula 4
is reducing the difference between the day-ahead
forecast and the actual load.

At the same time it should be noted that in certain
situations, using the formula 4 can cause a larger
difference between the actual and the forecasted
load. However, all in all the formula reduces the
error made by forecasting one day ahead.

Based on these results, we can summarize that in
case of day-ahead forecasting, use of the proposed
forecasting method resulted in an average below
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error of -12.52% and in an average above error of
+15.48% regarding the actual load. When using the
formula 5 for forecasting two hours ahead, we got
an average below error of -11.52% and an average
above error of +9.97%. Meanwhile, the mean
absolute percentage error (MAPE), which is used
for evaluating model performance, for day-ahead
forecasting was 14.17% and for two-hours-ahead
forecasting was 10.70%. MAPE is calculated with
the following formula:

[Le(®)=L(t)]-100
MAPE = 9’ ' rr— (5)

where l(t) stands for actual load, [,(t) for
mathematical load expectation, and N for population
of the evaluation set [10] [11].
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Fig. 6. MAPE for one-day-ahead forecast and two-
hours-ahead forecast during the period of January
23" 24" of 2012.

Despite the relatively large MAPE of prediction, it
is clear that the day-ahead forecasting coincides
with the real load and the forecast made two hours
ahead reduces the error made with day-ahead
forecasting. The relatively large forecasting error is
mainly caused by the very small number of
surveyed consumers, since the stochastic variation
in consumption of each consumer has a strong effect
on the entire load curve of a set of consumers.

4 Conclusion

In this article, we used regression analysis of time
series to analyze a small group of consumers in
order to create a model for forecasting load one day
ahead and two hours ahead. Usually, research has
been carried out based on the whole system or on a
part of the system. The current study, however, was
carried out with the help of remotely readable
meters and analyzed individual consumption
dependency on temperature of eleven private houses
and one apartment building with 60 apartments in an
Estonian village during 2012. Despite the fact that
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some articles point out that methods based on
weather conditions are not suitable for short-time
horizon load forecasting [12], we still used
temperature in the present work for load forecasting.
Our work showed that in Estonia, the load of home
users and the outside temperature have a strong
correlation. Surely, there are a lot of other factors
that affect consumption of consumers like for
example wind, daylight etc. However, since the
effects of these factors on load are even more
difficult to assess, temperature dependence was
chosen to be the basis of this research.

In regards of forecasting accuracy, the results of this
work cannot be compared with results of studies
where models and forecasting are based on whole
power system load or on a large part of the power
system load. Although whole power system load is
affected by a large number of different stochastic
changes, the system load is not strongly affected by
load changes of individual consumers and that
makes the forecasting more accurate compared to
smaller systems.

Based on this study, we can conclude that in case of
two-hours-ahead forecasting, the use of regression
analysis of time series model resulted in a slightly
lower average below error and average above error
regarding the actual load than when forecasting one
day ahead. MAPE for two-hours-ahead forecasting
was also lower compared to forecasting one day
ahead. Regardless of the fact that a very small group
of customers was analyzed and their effects on load
curves were quite significant, we are very pleased
with the results. We believe that with a greater
number of consumers, the resulting prediction error
of the proposed method will probably be
significantly reduced.

References:

[1] T. Kivipdld and J. Valtin, Oil Shale-Based
Regulated Electricity Price Replacement With
Open Market Price and Real-Time Tariff
System Opportunities, Oil Shale, in press.

[2] Y.-X.JIN and J. SU, Similarity Clustering and
Combination Load Forecasting Techniques
Considering the Meteorological Factors,
WSEAS  International Conference on
Instrumentation, Measurement, Circuits &
Systems, Hangzhou, 2007.

[3] M. Meldorf, H. Tammoja, U. Treufeld and J.
Kilter, Jaotusvérgud, TTU Kirjastus, 2007.

ISBN: 978-1-61804-189-0

[4] M. Hayati and B. Karami, Application of
Neural Networks In Short-Term Load
Forecasting, 7th  WSEAS  International
Conference on Mathematical Methods and
Computational — Techniques in  Electrical
Engineering, Sofia, 2005.

[5] J. Y. Fan, A Real-Time Implementation of
Short-Term Load Forecasting for Distribution
Power Systems, /IEEE Transactions on Power
Systems, vol. 9, no. 2, pp. 988- 995, 1994.

[6] P. Dash, H. Satpathy, A. Liew and S. Rahman,
A Real-Time Short-Term Load Forecasting
System Using Functional Link Network, /EEE
Transaction on Power Systems, Vol. 12, No 2,
pp. 678 - 680, 1997.

[71 C. W.C, Y. Chen, Z. Xu and W. Lee,
Multiregion Short-Term Load Forecasting in
Consideration of HI and Load/Weather
Diversity, [EEE Transactions on Industry
Applications, vol. 47, no. 1, pp. 232 - 237,
2011.

[8] Nahid-Al-Masood, M. Z. Sadi, S. R. Deeba and
R. H. Siddique, Temperature Sensitivity
Forecasting of Electrical Load, The 4th
International ~ Power  Engineering  and
Optimization Conference, Shah Alam, 2010.

[9] S. Moghaddas-Tafreshi and M. Farhadi, A
Linear Regression-Based Study for
Temperature Sensitivity Analysis of Iran
Electrical Load, IEEE International Conference
on Industrial Technology, Chengdu, 2008.

[10] G. Tsekouras, F. E. C. N. Kanellos, V. T.
Kontargyri, C. D. Tsirekis, 1. S. Karanasiou, A.
D. Salis, P. A. Contaxis, A. A. Gialketsi and N.
E. Mastorakis, Short Term Load Forecasting in
Greek Interconnected Power System using
ANN: a Study for Output Variables, WSEAS
International Conference on Circuits, Systems,
Electronics, Control & Signal Processing,
Puerto De La Cruz, 2008.

[11] M. B. Tasre, V. N. Ghate and P. P. Bedekar,
Hourly Load Forecasting Using Artificial
Neural Network for a Small Area, IEEE-
International Conference On Advances In
Engineering, Science And Management, pp.
379 - 385, 212.

[12]J. Taylor, Short-Term Load Forecasting With
Exponentially Weighted Methods, [EEE
Transactions on Power Systems, vol. 27, no. 1,
pp. 458 - 464, 2012.



Paper IV

Kivipold, T., Niitsoo, J. Overview of information and communication issues for
smart grid solutions. 10" International Symposium “Topical Problems in the
Field of Electrical and Power Engineering”, Doctoral School of Energy and
Geotechnology II, Parnu, Estonia, January 10-15, 2011, pp. 108-112.

87






10th International Symposium
» Topical Problems in the Field of Electrical and Power Engineering*
Pirnu, Estonia, January 10-15, 2011

Overview of information and communication issues for smart grid
solutions

Tanel Kivipdld, Jaan Niitsoo
Tallinn University of Technology
tanel.kivipold@gmail.com, jaan.niitsoo@ttu.ce

Abstract

Shortage of conventional energy supplies force us
discover new energy sources. Despite the global
economy crisis started in 2008 the energy
consumption is still growing. Construction of new
energy plants is very expensive and therefore may
be reasonable to optimize the consumption. Smart
grid’s one goal is to that with wise control of
client’s appliances. That should be done
beneficially as for utility and customer. Smart
client is essential in this process. This paper
describes benefits of greater amount of information
and communication solutions to provide this all.
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Introduction

European Union has decided to deal with smart grid
solutions quite intensively. There are many
definitions for smart grid, but most of them contain
idea of using new and innovative solutions to
enhance the energy grid and it’s parts.

Essential in this development is a costumer who
should be aware of the need for innovation and
understand those new solutions. On another hand
utility can gain from getting information about
client’s load profile and smarter clients in their grid.

Therefor it is crucial to work out solutions to
communicate  with customers and manage
information reasonably. It all must be done
economically beneficially and at same time
guarantee client’s privacy.

Also is important to figure out which kind of
information different parties need. It is necessary to
optimize information capacity and frequency of
delivery and choose right communication solutions.

1 Information for smart consumer

Some smart meters installed over the world
nowadays already allow bidirectional
communication for controlling household devices,
monitor electricity consumption and investigation of
power quality. In Estonia there are only few
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remotely readable meters which yet do not have any
extra features but electricity consumption metering.

It is possible to build smart system with possibility
to switch on/off consumer’s equipment and
compensate it to client in some way. It may be
helpful for reducing demand peaks, but his solution
might not be economical if price signal is delivered
to consumer’s apparatus and they react accordingly
to that. In that instance a demand curve will be
enhanced in real-time by market situation. On 1st of
April 2010 Estonia opened its electricity market by
35 % and it will completely open in 2013 which
creates good basis for implementation of market
price based controlling systems.

Costumers should have as much information as
possible about situation of grid and his own
apparatus. Data should be easily accessible and
analyzable for all parties. On another hand amount
of information should not exceed optimum. In other
words information costs should not raise energy
price. It puts boundaries to information’s capacity
and accuracy.

Gathered information from different clients has great
potential for utility and third parties to help reduce
costumer’s energy use, avoid costly outages and
restorations. Also optimize complexity of modern
household full of complicated and interactive
appliances.

2 Benefit of information

All parties gain by adding intelligence to appliances
(heating-, cooling-, lighting systems etc.) in
buildings and households [1]. It also simplifies
integration of distributed generators and diminishes
emission of carbon dioxide.

Costumers direct gains and prospects could be
following [1, 2]:

e monitoring of energy consumption and of
costs;

e compensation for optimizing demand (if
utility offers any); quality;

e simpler overview of energy efficiency;
e simpler overview of energy profile;

e casier management, distribution and
analysis



e benchmarking opportunity;

e finding energy wasting devices;

e controlling building’s energy consumption;
e foresee maintenance of appliances;

e reduce environment pollution by saving
energy;

e improved transparency of electricity bills.

Implementation of real-time measurement systems
and delivering the price signal to costumer would
reduce Estonian peak demand approximately 5-8 %
[3]. Peak demand decrease would smooth a load
curve. It can be characterized by load factor. Load
factor is calculated as following:

k. = P‘Wg — 4 — Tmax
P TP, T

max

M

where k is the load factor, P,,, — the average load,
P — maximal load, W — consumption during the
period, T — time period, P, — maximal load, T, —
maximal load duration.

Therefore it is important to investigate how real-time
measurement systems will affect market demand.

Traditionally low voltage network management has
been in complete off-line mode. On-line information
has been available only from primary substations.
The integration of Automatic Meter Reading (AMR)
makes it possible to cost-effectively monitor a low
voltage network and analyze fault situations since
AMR communication infrastructure can be used.
Network monitoring in Supervisory Control and
Data Acquisition/ Distribution Management System
(SCADA/ DMS) requires that events from meters
are received in a near to real-time manner. [4]

Management of a low voltage network may create
following functions [2]:

e automatic fault or interruption
identification;

e fault location identification;

e accurate fault data transmission;

e real-time power quality measuring;

e meter control;

e integration of distribution generators.

3 Power quality monitoring

Power quality at client’s connection point has been
measured only occasionally. Power quality
measuring constantly all over the grid would help to
plan and prioritize investments.

Comprehensive quality measurements would give
information about many processes in a grid. The
development of systematic procedures for power
quality data management supports in general [4]:

e customer services (e.g. quality reports,
clarifying customer requests, planning of
compensation of reactive power,
instructions for the use of various
equipment);

e  distribution network design and operation
(e.g. investment plans and management of
voltage drops and fluctuations, harmonics
and other disturbances);

e  outage statistics (e.g. needs of the Energy
Market Authority).

In Estonia sum of claim damages has been
decreasing, but numbers are still quite large. Hence
it is still huge problem to deal with. Exact figures are
shown at Table 1.

Table 1. Statistics of customer’s claim damages [5]

Claim Compensated damage,
damages MEEK
2008/2009 1229 3,4
2009/2010 817 1,5
2010/2011* 782 0,6

* First 10 months of financial year

Usually 80 % of all claim damages are matter of
voltage quality and 30 % of them are compensated
[5]. Other claim damages are not clarified because of
different reasons.

It probably would be wise to begin with evaluating
new smart meters project’s profitability and
sustainability by using net present value method:

NpV:Zn:ch:Z”:(B,—c)(P/F,i,z) @)

t
i=0 (1 +i )t i=0

where NPV — is net present value, C, — is a total
costs, B, — is a total revenue, n — is the evaluation
period (meters life time), i — is interest rate or
discount rate.

Comprehensive monitoring of customers’ power
quality may create new billing opportunities. For
instance it would be easier to charge costumers
dependently on power quality. Also is prospect to
tax all costumers for using reactive energy.

4 Interactive communication

For developing distribution management and the
functionality of the electricity market, one essential
objective is to make the customer active for
improving and provide:

e interconnection of distributed generation;

e efficient use of energy;

e market-based demand response;

e  quality of supply enhancement;

e management of active distribution

networks.

The interactive customer gateway enables [4]:

e more efficient and flexible network
interface, e.g. for Distributed Generation
(DG) and plug-in hybrid cars;

e on-line market (price) oriented load and DG
control management;
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e frequency based load control during local
or system level load and generation
unbalance situations;

e services for energy savings and efficient
use of energy;

e on-line management and control of
customer voltages, also including
elimination of short interruptions (i.e.
reclosing’s and voltage dips);

e more reliable constructions in distribution
networks and advanced management of
active distribution networks using data on
interactive customer gateway.

5 How to manage information

Individual consumer data usually belongs to the
consumer or to a data carrier company. In addition,
it is possible for network companies, subcontractors
or third parties to access collected data. There could
be a number of benefits for the latter. Therefore,
third parties should be considered when making
laws. Other ways, it may happen that the new laws
exclude their participation. [6]

If the information additionally includes geographic,
demographic and meteorological data, then the data
could be even more useful and more desirable for
analysis. The third parties would be able to examine
how consumers use electricity (even by separate
devices), how consumption is related to price, family
income, family size, etc. [6]

Intelligent metering system provides us with real-
time information about various groups of consumers,
it enables to detect whether some device is on or off,
the changes in temperature, air, etc. This kind of
monitoring system allows us to identify devices that
are wasting energy, such as computers and TV-s at
stand-by mode [2]. Thereby each consumer profile is
developed, which facilitates the overall analysis.
Secondly, it will simplify forecasting load in
electricity market.

Under “real-time” concept various time intervals are
meant, for example 5, 10, 15, 30, etc. minutes. The
question is to whether a 5 minute information
interval is necessary or is the 15 minute information
interval also sufficient to make change in demand
curve.

The usage of smart meter enables to research voltage
peaks and dips, transients or current waveforms and
harmonic contents in order to identify sources that
cause problems in networks. Some common faults
have their own pattern of failure that can be used for
identification. For example in case of a voltage dip
should be controlled [2]:

e voltage dip magnitude and duration;

e current waveform;

e waveform of second transformer (in case
there is more than one supply transformer);

e other equipment and their transformations;
e power flows.
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6 Communication solutions

Intelligent communication solutions are the
inseparable part of smart grid. High performance
smart  grid  applications  require  two-way
communications, and should take place almost in
real-time between centralized control system and
millions of smart grid devices. Communication
network, that is designed for the smart grid and must
have highest reliability, is certainly a critical part. It
has to be optimized and almost certainly constitutes
a large part of smart grid construction costs. [7]
There should be a two-way communication [8]
meaning that smart metering data are transmitted to
grid operator and grid operator sends price signals to
smart metering system.

The key issue in finding communication solutions
lies in the structure of smart grid. Based on smart
grid structure, the communication solutions,
standards and security requirements will be selected
and worked out.

The security of communication solutions is one of
the most important topics that should be researched
in depth. Smart meters could be one of the weakest
links in smart grid security. The users have physical
access to the meter and its wireless connection
interface could potentially attract malicious users
trying to break through and inflict damage.

When building a smart grid, various communication
solutions are to be considered. In case of existing
communication solutions, it is important to use
already installed solutions if possible. The most
common possible communication solutions are
optical, wireless, PLC, WiMax, GPRS, Ethernet,
radio, etc. When considering various communication
solutions, bandwidth, security and response time
need to be taken into account. Although many
different solutions are in use for reading metering
data, it would be important to investigate which
communication channels are feasible.

In addition to the conditions above, the data rate,
which passes through the communication system,
must be taken into account. It is likely that typical
smart devices measure line voltages and currents.
Assuming that the parameters are measured 16 times
per 50 Hz cycle, 960 measures will be produced per
second for each measured parameter, approximately
1 Ksample/s/parameter. If the analog to digital
conversion uses a 16 bit word, the acquisition results
in a 2 Kb/s/ parameter throughput. Such a sampling
rate results in a built-in delay of 1 ms for any
process in need of sampled data. For example
3 voltages and 3 currents are to be sampled, a basic
12 Kb/s is required to broadcast the raw data
samples. It is expected that besides raw data,
computed quantities (i.e. phase amplitude, phase
angle, sequence components, etc.) will increase the
bandwidth requirement to around 200...500 Kb/s or
to 2...5 Mbits/s. Of course, these data rates must be
supported by a communication protocol which will
make use of additional information, such as node



addresses, data error detection/ correction, packet
and message routing, etc., resulting in an increased
bit rate. The 2.5 Mbits/s data rate should be
considered indicative of an application with a
relatively low to medium data rate production and
may be used as a guideline. [9] Necessary data rates
must be researched more adequately to make

Currently Eesti Energia Jaotusvork OU has installed
different remotely readable meters. Different meters
use different kind of communication solutions. Some
of them have additional features e. g. AIMI can
record voltage interruptions (time, durability),
current and voltage limit disruptions. All the
information about installed remotely readable meters

absolute conclusions.

is in Table 2.

Table 2. Eesti Energia Jaoutsvdrk OU remotely readable meters [5]

Meter name Installed | Where How system works
meters
Treng 18 000 Installed in Meter pulse outputs are collected through intermediate
(approx. panels to stairwell terminals. Connection between meters
240 pc) and terminals is mediated through cables. Terminals are
apartment connected to a substation concentrator by PLC.
buildings in | Concentrators send information to the control station by
Tallinn GSM. In some cases, information is sent directly from
stairwell terminals to control station using GSM. The
reading takes place once a month.
Ektaco 17 000 Installed in Meters pulse outputs are connected to a taxer that is
TAXERNET apartment connected by a communications cable to concentrator.
buildings in | 20 % of concentrators use GSM communication to send
Tallinn information to control station and 80 % use cable
television network.
Data are collected once a month, whenever Eesti Energia
Jaoutsvérk OU wants.
Enermet 514 Installed all | Information is sent to concentrator by 0.4 kV power line
over Estonia | carrier and concentrator sends information to control
station by GSM. Data are collected once a month.
AIM1 (Lamndis 11 000 Installed in Most of them are P2P meters, which means that meters
and Gyri’s commercial | have integrated modems and data are sent by GPRS. Data
modern system, buildings are sent directly from meters to control station and once a
nowadays new day hourly data is read. In this case, depending on the type
measuring points of meter, it is possible to record voltage interruptions
are added) (time, durability), current and voltage limit disruptions.
AIM 2 (Lamndis | 9 000 Installed in Communication between meters and concentrators uses
and Gyri’s apartment power line carriers. Concentrators use GSM to send
modern system) buildings information to control station and are located in
and private substations.
houses
Kamstrup 68 Installed in Inside the building radio-mesh is used to collect data into
one master meter, which sends information to control station
apartment by GSM. Readings are collected once a month.
building

In addition, Televdrk AS internet solution called
KOU could be considered for data transferring from
smart meters or other grid measuring devices. KOU
covers almost all of Estonia and is a Code- Division
Multiple Access (CDMA) network. More than
95 base stations are installed all over Estonia and it
uses low radio frequency 450 MHz. KOU bit rate is
up to 2 Mbit/s, which is enough to send electricity
meter readings. In addition, it is possible to use
wireless links in Estonia:

e  GPRS - spreads all over Estonia, speed is
up to 50 Kbit/s;

e 3G - asmall coverage area, speed is up to
2 Mbit/s;

e  WiMax — spreads all over Estonia, but
needs direct line of sight with a

communication mast, speed is up to
2 Mbit/s.

Communication infrastructure is a very complex
task. Smart grid is accompanied by combined
implementation of various renewable sources,
consumer behavior adds indeterminacy, and new
technologies (e.g. electric cars) take the complexity
of the system to a whole new level. [10]
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When choosing communication solutions, different
parts of the electrical system should be observed
separately and it should be considered how
important the information is and how fast the
information should be transmitted from one point to
another.

Teleprotection requires extremely high network
reliability. Errors in teleprotection may cause
electricity system failures and risk to human lives.
Therefore, such systems should use reliable
communication links, for example power line carrier
(PLC) or optical cables. [11]

In distribution system there is a very wide range of
different devices, which means that there are
thousands of different measurement and control
points. One way to collect all the data from
thousands of points is to use wireless
communication solutions.

Development of communication system architecture
is one of the most important parts of smart grid.
Development mistakes in communication
architecture may cause a lot of problems in a later
stage. For example it could prevent smart grid
development into a fully integrated system. [10]
Fixing mistakes can later cost several hundreds or
even millions. That is why it is vital to think
through, how the communication system
architecture should turn out to be.

Conclusion

Smart grid involves vast amount of information that
needs to be transmitted, monitored, recorded,
analyzed, etc. This means a great amount of
different data and that the system must operate
continuously. Therefore reliable communication
networks need to be chosen. In addition, consumers
should be able to understand all the information
which they are given and at the same time they
should be able to orient and make the right
decisions. Thus, building a smart gird is merely not
enough, it is also important to have a smart
consumer.

Increased amount of information may give a lot of
advantages, but it must be properly managed, in
order to avoid risks to consumer privacy. Also it is
necessary that reliability of system increases while
costs do not rise.
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There is variety of remotely readable meters
installed in Estonia, but most of them cannot
measure anything but electricity consumption. It is
therefore essential to estimate whether their further
installation is cost-effective and sustainable.

It is important to provide as much information as
possible to consumer and at the same time
distinguish ~ significant and insignificant data.
Communication solutions have to be reliable and
already installed solutions should be used if
possible.
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The use of regression analysis of time series for
forecasting electricity consumption of
consumers and the proposal of an algorithm for
calculating the electricity price

T. Kivipdld and J. Valtin

Abstract—The liberalized electricity markets, power exchanges
and new metering systems create a new environment where electricity
sellers could offer new opportunities for electricity consumers. With
utilization of smart-grids and smarter consumers there ought to be
higher expectations. For example, a new pricing system could be
developed that takes actual electricity production costs into account
at the exact time they are done. If smarter consumers could
participate in management of electricity grid, higher demand response
would develop and this would help to smooth the load curve.
Smoother load curve would consequently lead to reduction of overall
costs of the system.

The aim of this article was to first analyse dependence of load of a
small group of residences in Estonia on temperature and to show how
it is possible to forecast electricity consumption one day ahead with a
simple regression analysis of time series method; secondly, to show
how to correct the day-ahead forecast error when forecasting two
hours ahead and to evaluate the accuracy of regression analysis of
time series method; and thirdly, to propose an algorithm for
calculating real-time price packages based on current market/power
exchange rules.

The results of this study show that regardless of a very large
stochastic component, a relatively accurate load forecasting is
possible when using the regression analysis of time series method,
and that the proposed algorithm would be a step closer to creating
real-time pricing systems.

Keywords—Algorithm for real-time pricing, load forecasting
based on temperature, regression analysis, time series forecasting.

I. INTRODUCTION

HE electricity market in Estonia was finally opened in the

beginning of 2013. On the retail market, there are ten
electricity sellers who shape the electricity prices for the
consumers. Eesti Energia AS currently possesses the largest
market share which is approximately 70%. Eesti Energia AS is
the largest energy company in Estonia and all of its shares
belong to Estonian government. All the retail sellers are

T. K.. Author is with the Department of Electrical Power Engineering,
Tallinn University of Technology, Tallinn, 19086 Estonia (phone: +372-50-
333-357; e-mail: tanel.kivipold@gmail.com).

J. V. Author is with the Department of Electrical Power Engineering,
Tallinn University of Technology, Tallinn, 19086 Estonia (e-mail:
juhan.valtin@ttu.ee).

buying electricity either directly from producers or from the
power exchange Nord Pool. At Nord Pool, electricity sellers
can buy the necessary amount of power from day-ahead
market (Elspot) based on one-day-ahead forecasting and
correct their forecasting errors in intraday market (Elbas).

Although there were some expectations that more different
tariff systems would be introduced to the open electricity retail
market, it unfortunately did not happen. All the retail sellers
offer basically the same tariff systems as they did before only
with different fixed contract periods. These tariff systems are:
1) Fixed price tariff system,

2) Tariff system based on the average power exchange price
of the previous month.

Since these tariff systems do not take into account costs that
are spent on electricity production at the moment of
consumption, it is necessary to create a tariff system where
electricity production costs are being considered. This tariff
system is called real-time pricing system.

To initiate real-time pricing it would be necessary to install
remotely readable electricity meters that are able to fixate
electricity consumed during the desired time interval. As from
2017, there should be remotely readable meters at all Estonian
consumers’ supply points.

The aim of this article is to analyse the dependence of load
on temperature [1], to show that using regression analysis of
time series method for short-term load forecasting is accurate
and that it would allow the retail sellers to offer consumers a
real-time electricity tariff system, and finally to propose an
algorithm by which retail sellers could offer dynamic pricing
systems for consumers without any need to change current
power exchange rules. In this article, we will study only short-
term forecasting.

II. FORECASTING CONSUMPTION

Forecasting of electricity consumption is very difficult since
there are a lot of consumers, their consumption is largely
random and there are different variables that affect their
consumption. A lot of different methods have been proposed
for forecasting consumption.

Naturally, it is necessary to estimate electricity consumption
to assure efficient operation of the electricity system. In the
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system, a balance between generation and consumption needs

to exist. It is not possible to produce more than is consumed.

Load forecasting can be usually divided into:

1) Short-term load forecasting, ranging from one hour to one
week;

2) Medium-term forecasting, ranging from one week to one
year;

3) Long-term load forecasting, ranging from one year to
longer time periods.

Up until recently, forecasting consumption was necessary
for utility companies, and network and system operators for
planning and controlling. However, in a liberalized energy
market, there are also electricity sellers competing on the retail
market. Thus, buying energy from power exchange and
reselling it to consumers also requires good forecasting
models. Since retail sellers have a good overview and statistics
of their consumers’ habits, the forecasting should be easier and
more accurate.

In load forecasting models, it is necessary to take the
following load changes into account [2]:

1) Regular changes, like day-and-night, weekly and yearly
periodicity, trend and nature of the load on national
holidays;

2) Temperature dependence, which is for example quite high
in case of electrical heating. In models, temperature
dependence inertia, nonlinearities and time variations are
taken into account;

3) Dependence on operating values, which is expressed as
load voltage and frequency sensitivity;

4) Randomness, which is particularly noticeable in loads of
small distribution grids. The relation of these kinds of
loads” square  deviation towards mathematical
expectations is quite high. In case of small loads, hard
slopes can also be present that are not compatible with the
normal distribution;

5) Maneuverability - The load is managed mostly indirectly
through electricity tariffs. However, some kind of direct
control by the power grid operator can also take place.
Maneuverability is basically transmission grid node load
changes that are caused by switching in distribution grid.

There are many different methods that are based on
regression analysis, time series, neural networks, box-jenkis
models, expert system approaches and artificial neural
networks (ANN) [3]. The most commonly used forecasting
techniques are neural network algorithms, time series
approaches, regression techniques and expert system
approaches [4]. A method is chosen primarily on the basis of
the character of the source data, their volume and the
necessary results (forecasting time, accuracy etc.). The time
series and regression techniques are the two major classes of
conventional statistical algorithms, and have been applied
successfully in this field for many years. The expert system
based algorithm for short-term load forecasting uses a
symbolic computational approach to automating intelligence.
This approach takes advantage of the expert knowledge of the
operator which is, however, neither easy to elicit nor articulate.
A major advantage of using ANN over expert systems is its

non-dependency on an expert. Furthermore, ANN also
performs non-linear regression among load and weather
patterns and can also be used to model the time series method
or as a combination of both [5].

Difficulty in load forecasting arises due to its nonlinear and
irregular variation [6], which forecasting is complicated, if not
impossible.

If weather condition is taken into account in forecasting the
load, then the load is given in the form of [6]:

()= 1,(0)+ L) + 1, () +1,(1) (M
where [ (t) stands for irregular load changes in the future,

1.(2) for weather independent component, / (D for weather

dependent component, and ING) for noise residual or stochastic

component.

Independent and stochastic component can be further
divided into different components. Similarly, weather
dependent component can be divided into different
components depending on different weather conditions. The
load may be influenced by different weather parameters such
as temperature, humidity, wind speed, cloud cover and also
abnormal situations such as thunderstorms, etc. [1], [5].

Nevertheless, it is important that a forecasting model is
simple, accurate and convenient to use. In particular, it is
necessary to make clear what is affecting the load the most and
then build a forecasting model, which takes that parameter into
account.

Studies have shown that the main influence in most
situations is temperature [5]. Therefore, we set out to
determine whether and how much the household load depends
on the outside air temperature. We decided to use regression
analysis for load forecasting because this is suitable for
forecasting loads based on time series. So, we needed to
ascertain that the proposed regression analysis of time series
method is suitable and sufficiently accurate for the electricity
sellers to use it for forecasting.

III. OVERVIEW AND USE OF THE PROPOSED APPROACH OF
REGRESSION ANALYSIS

For forecasting, it is necessary to establish a mathematical
model for describing the load. In general, the load can be
described as a simple model:

1(t)=1,(t,C,b)+ 0(1) )
1(t,C,b) for
for stochastic

where l(z)stands for actual load,

load 0
component, t for time, C for temperature, b for wind.
Mathematical load expectation describes regular changes in
the load, for example overall growth, seasonal, intra-week,
intra-day periodicity. Stochastic component describes a
random load change that cannot be estimated. It is possible to
reduce the proportion of the stochastic component by taking
into account more variables. However, it is not possible to
eliminate the stochastic component completely. Naturally,
when using weather (temperature, wind, etc.) as an input in
load forecasting, then the weather forecasting precision is
affecting load forecasting accuracy. However, weather

mathematical expectation,
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forecasting is not a subject of this work.

Mathematical load expectation depends on different
influences that are described above. In this work, we are taking
into account the three main factors that affect load:

1) Day (weekend, working day etc.),
2) Time,
3) Temperature.

In order to determine the dependence of household load on
outside temperature and to test the proposed regression
analysis of time series method, we analysed measurements
taken in Loo village near Tallinn, Estonia during Ist of
January — 31st of December 2012. Altogether, individual
consumption of eleven private houses and one apartment
building with 60 apartments was measured. Meteorological
data were obtained from Estonian Meteorological and
Hydrological Institute’s meteorological station in Harku. The
measurement period was 1 year long, i.e. 8784 h. After sorting
out various erroneous measurements, 6497 hours of data, i.e.
74% of the data remained.

System load Measured load
(MwW) (kW)
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1400
1200 1 \ '\\/4 »\
1000 J \, \V \j
800 40¢System load
600 30..- Measurements
400 20
200 10
0 0

23'01.201224'01.201225'01.201226 01, 20122 01 201228 01.201229'01.201 5

Fig. 1 Estonian whole power system load and measurements carried
out in Loo village during the period January 23" — 29" of 2012.

Fig. 1 shows a comparison of Estonian power system’s
whole consumption, based on Elering’s measurement data, and
measurements carried out in Loo village. Elering AS is an
Estonian transmission system operator (TSO). The Fig. shows
that, in general, the load curves are similar, however, in case of
measurements carried out in Loo village, all the consumers are
strongly affecting the load curve and all the unpredictable
changes are also affecting the load curve. This means that in
the models developed in this study, the stochastic component
will likely play a large role.

In theory, forecasting should take into account temperature
sensitivity and inertia, which are more sensitive in winter than
during summer [2]. Inertia and temperature sensitivity are
different for every customer and depend on the heating system
and the construction of the building. In this work, a separate
inertia, however, is not taken into account.

Fig. 2 shows customers’ load dependence on temperature
surveyed on weekdays at 1 p.m. Despite the fact that the
weekdays are not distinguished separately, this Fig. shows a
strong correlation between temperature and consumption. Fig.
3 shows customers’ load dependence on temperature surveyed
on the days off (weekends and holidays) at 1 p.m. Surely, it

should be mentioned that when looking at private houses and
apartments separately, there is practically no correlation
between electricity consumption of apartments and outdoor
temperature. Although the apartment building has central
heating and the weather factors that affect consumption are
mostly daylight hours, apartments were not excluded from this
study. Thus, it can be concluded that load dependence on
temperature was mainly caused by private houses.
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Fig. 2 correlation between load and temperature on working days at 1
p.m.
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Fig. 3 correlation between load and temperature on days off at 1 p.m.

The Fig. 2 and Fig. 3 clearly show that the relationship
between the measured temperature and load is negative, i.e.
the increase in temperature leads to a decrease in consumption,
and vice versa. The relationship may also be positive
depending on the geographic location. A positive correlation
for example has been observed in regions with warmer
climatic conditions, where the increase in temperature leads to
an increase in consumption, and vice versa [7], [8].

For Fig. 4 and Fig. 5, different working days were separated
and a correlation between load and temperature on Mondays
and Tuesdays at 1 p.m. was analysed. For Fig. 6 different days
off were separated. The coefficient of determinant R? shows
how a large part of the measurements is explainable with the
proposed method. As shown on Fig. 4, Fig. 5 and Fig. 6, the
actual loads on different days varied and the consumers had
different habits on different days. The figures also show that
differentiating weekdays results in a much stronger
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dependence between temperature and load.
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Fig. 4 correlation between load and temperature on Mondays at 1
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Fig. 6 correlation between load and temperature on Saturdays at 1
p.m.

To distinguish between the time of day and day of, we
created a model for each day and hour on the basis of obtained
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measurements. In this work, we assumed that the temperature
and load have a linear relationship, which depends on the time
of day and day of. In addition, we calculated separate
functions for holidays. Thus, for a total of 24 hours per day, 7
days a week and public holidays in separate functions, in all
we created 192 functions to characterize load dependence on
temperature. For the observed customers, we actually created
daily load curves on the basis of time series to which we
included temperature dependence. The general shape of each
function can be provided as:

Lo (t:d) = a(t.d)- C + b(t,d) 3

where /., (c.d)
depending on the time of day and day of (unit kWh); a(z,d)
and p(z,d) for parameters, which depend on the time of day

stands for hourly consumption,

and day of; and C for temperature (unit °C).

Fig. 7 shows the measured and one-day-ahead forecasted
loads. For load forecasting, we used actual temperatures
measured in Harku’s meteorological station. The Fig. 7 shows
that on a large scale the predicted and the actual load curves
coincide. The load is also affected by irregular changes, which
cannot be forecasted in advance.

Consumption
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Fig. 7 measured and one-day-ahead forecasted consumption during
the period of January 23" — 24™ 0£ 2012.

IV. CORRECTION OF REGRESSION ANALYSIS OF TIME SERIES
METHOD AND EVALUATION OF ITS ACCURACY

Use In order to compensate the one-day-ahead forecasting
error, we used the function:

lEIbnsr(t + 2) =L pgpor (E+2) + gy (t + 2)'
—4
S0 =1, (1) a,]

=1
4- l[fl)‘pot(t)
where /,, (t + 2) stands for two-hours-ahead forecast
(unit kWh), /

kWh), 1,(0) for actual load at time t, and a, for coefficient

“)

pipor (1 +2) for one-day-ahead forecast (unit

that takes into account the importance of the previous hour’s
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difference.
In order to give a higher priority to newer data against older
values, we used coefficient a,- It was found to minimize the

two-hours-ahead forecasting error difference, in our case
a,,=04, a,,=0.6,a,,=08,2,,=1.0. We did not
re-adjust it for every day, just calculated it for the whole
measurement period.

Fig. 8 shows the loads calculated two hours ahead by using
(4), as well as the actual load and the forecast one day ahead.
It is clear that (4) is reducing the difference between the day-
ahead forecast and the actual load.

Consumption Price
(kwh) (EUR/MWh)
%0 y 0 ~+Measured
50 f 130wk
20 § /\\\ ;(1)0 Forecast for
Wf J > Elspot (kWh)
30 wﬂc v 70 ~Forecast for
20 M 50 Elbas (kwh)
30 —Elspot price
10 10 (EUR/MWh)
0 -10

23, 23,
L2013 12013 1y 2010120121 013,

Fig. 8 Measured and forecasted consumption and Nord Pool prices
during the period of January 23" — 24™ 0f 2012.

At the same time it should be noted that in certain situations,
using (4) can cause a larger difference between the actual and
the forecasted load. However, in general the formula reduces
the error made by forecasting one day ahead.

Based on these results, we can summarize that in case of
day-ahead forecasting, the use of the proposed forecasting
method resulted in an average below error of -12.52% and in
an average above error of +15.48% regarding the actual load.

The mean absolute percentage error (MAPE) is used for
evaluating performance of the model. MAPE is calculated with
the following formula [9], [10]:

[,()—1(H)]-100 )
where [(¢) stands for actual load, 1,(2) for mathematical

MAPE = — Z

i=1

I(®)

load expectation, and N for population of the evaluation set.

When using (5) for forecasting two hours ahead, we got an
average below error of -11.52% and an average above error of
+9.97%. Meanwhile the MAPE for day-ahead forecasting was
14.17% and for two hours ahead 10.70%.

The Fig. 9 shows how volatile the MAPE actually is.
Despite the relatively large MAPE of prediction, it is clear that
the day-ahead forecasting coincides with the real load and the
forecast made two hours ahead reduces the error made with
day-ahead forecasting. The relatively large forecasting error is
mainly caused by the very small number of surveyed
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consumers, since the stochastic variation in consumption of
each consumer has a strong effect on the entire load curve of a
set of consumers.

MAPE (%)
25
20

‘ ~+two hours ahead
15 A MAPE
10 \ one day ahead
: r\HJ /\ q 0 /\ ; MAPE

| | | ¥ A /

j oY f v Lv )’

23 23, 4 4 25
01, 20 01 20121201 2012031 20121202012000

Fig. 9 MAPE for one-day-ahead forecast and two-hours-ahead
forecast during the period of January 23" — 24™ 0f 2012.

V. PROPOSED ALGORITHM FOR REAL-TIME PRICING SYSTEM

When considering the design of Nord Pool power exchange
and the purpose of retail electricity sellers to sell electricity
that is calculated on the same time interval and price as in
power exchange, an appropriate model for forecasting one day
ahead and an additional model for forecasting at least one hour
ahead would be necessary. In this section we propose an
algorithm that electricity sellers could use to offer consumers
an electricity price on an hourly basis.

In case of a proposed real-time pricing system, the
household’s electricity price is calculated and sent to the
consumer at the beginning of each time period. The interval
may be 15 minutes, 1 hour or any of the currently suitable
electricity market’s trading periods. The consumer price
changes in real time and lasts during the agreed interval. The
price of the electricity would reflect on the network situation —
the availability of wind power, the system load, generating
capacity, temperature etc. Naturally, one important issue
remains for end-users — the volatility of the electricity price.
Most consumers are accustomed to fixed prices and know how
to plan their costs. However, when electricity prices fluctuate
within a large range per day, the planning will become much
more complicated.

The differences between the load maximums and minimums
are very big. In order to align and reduce the load curve and
overall costs of the system, it would be necessary to move load
from maximums to minimums. This would most likely be
achieved through the price of electricity because the price will
always remain the main interest of the consumer.

The development of the smart grids will mean a drastic
change in power use and administration. Users will become
active participants in energy management and will be able to
control their consumption. On the other hand, utilities will be
able to control demand peaks and manage the grid efficiently
from generation to distribution [11].

A real-time pricing system would help consumers to plan
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their consumption in order to reduce their expenses on electric
energy. The intelligent appliances and chargers can be
controlled by the home controller in response to the
distribution grid conditions and dynamic prices [12].
Concurrently, this would also help to smooth the load curve,
meaning that a stronger demand response is accompanied. It is
called the incentive-based demand response program if it
is designed for the purpose of improving supply reliability
and is called as the price-based demand response program for
the purpose of preventing price spike [13].

Fig. 8 shows clearly that power exchange price is high
exactly at the same time period when load is high and vice
versa. Therefore when consumers would really sense the
higher price during higher load periods they may move their
consumption to lower load periods, which could lead to
smoother load curve.

According to the current order in the Nord Pool energy
market, the seller has to make the most accurate prognosis of
consumption one day ahead and purchase the desired amount
of electric power from the day-ahead market (Elspot). Then,
during the day the sellers have to make the consumption
prognosis 1 hour ahead and buy the necessary amount of
electric power from intraday market (Elbas), if needed. This
means that an hour before the delivery (real-time), the seller
has to make the last transaction.

In Elspot, 12:00 central European time (CET) is the time of
market closure for bids with the delivery for tomorrow. Simply
put, the price is set where the curves for sell price and buy
price intersect. The price is typically announced to the market
between 12:30 and 12:45 CET with a 3-minute warning, after
that the trades are settled. From 00:00 CET the next day,
contracts are physically delivered hour by hour according to
the contracts entered. Elbas is a continuous market and the
trading takes place every day around the clock until one hour
before delivery.

At the moment in Estonia, the balancing energy prices and
amounts are calculated on the second business day by Elering.
In addition, Elering provides the balancing service for balance
responsible parties. Therefore the seller, who wants to offer
consumers the tariff system, where the electricity price
changes in real-time, will also need to predict balancing energy
prices to calculate the price for the households. The prediction
of balancing energy prices clearly bears a risk for the seller
and is therefore included in seller’s fee.

Thus, we propose that the energy price calculated by retailer
would consist of three different components:

N B — St.elspor + Sy etbas + S comission (6)

where S, eipo Stands for Elspot’s electricity price, Sqeipas for
Elbas’ electricity price, Scomission fOr seller’s fee, which includes
their expenses, profits and risks of balancing energy.

A seller for Elspot would prognose the consumption of
consumers in their portfolio by using (3) and based on these
predictions would make the needed transactions in Elspot.
Thus, the price based on Elspot would be calculated by the
formula:

St,elsput = [ Liom> ]sup) (7)
where lge, stands for power demand, 1y, for power supply.

Check time
t

v

Take St,elspot

e

Check
consumption
Pt, cons

e

If Pt, cons, elbasz0 -~ Check
<_Pt,cons, elbas = Pt,cons, >
“_elspot-Pt,cons

kf Pt,cons,elbas=0

A

A

Buy Pt,cons, elbas

Check time
g . )

If t#i-1
l If t=i-1
Pt,cons

——

<_ Checkt

A

Ift#i

‘ l If t=i

Calculate price
SEt+1

e

Send ongoing
period price to
consumer

Fig. 10 proposed algorithm for calculating the electricity price and
sending it to the customer.

In addition, a seller for Elbas would prognose the
consumption of consumers in their portfolio by using (3) and
based on these predictions would make the needed transactions
in Elbas. Thus, the necessary amount required to be purchased
from Elbas would be calculated by the formula:
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Litpasiv2 = Letpas C+2) = Lpgpor i ®)
where £, . stands for required power from Elbas,
Lipas (E+2) for predicted load for the next hour.

When lElha,v(t +2)=1

stay the same as the predicted load for the next hour.
Therefore, an additional transaction would not be necessary.

Electricity price calculation and notification of the customer
would therefore take place in accordance with the algorithm
shown in Fig. 10. The algorithm starts by checking the time, i.e
checking the next trading period. On the previous day, the
seller has carried out deals in Elspot market. So, the seller
knows how much energy and at which price they have bought
from Elspot for the next trading period. Then, the seller
determines the current consumption and forecasts the
consumption of consumers in their portfolio for the next
trading period. If there is enough power, then time is checked
and if needed, the seller can re-forecast and perform an
additional control. If the power does not suffice, the seller will
make an additional transaction in Elbas market, check the time
again and if needed, the seller can re-forecast and perform an
additional control. If t=i—1, then Elbas is closed for the next
hour’s trading period. The seller checks the consumption until
t = 1. If t=i, then the next trading period has started and the
seller must notify consumers about the ongoing period's
electricity price. After the consumers have been notified, the
seller can start calculating the price for the next period.

Eiporas2 then the prognosis would

VI. CONCLUSION

In this article, we used regression analysis of time series to
analyse a small group of consumers in order to create a model
for forecasting load one day ahead and two hours ahead.
Usually, the research has been carried out based on the whole
system or on a part of the system. The current study, however,
was carried out with the help of remotely readable meters and
analysed individual consumption of eleven private houses and
one apartment building with 60 apartments in a village in
Estonia during 2012.

Our work shows that in Estonia, the load of home users and
the outside temperature have a strong correlation. Surely, there
are a lot of other factors that affect consumption of consumers
like for example wind, daylight etc. However, since the effects
of these factors on load are even more difficult to assess,
temperature dependence was chosen to be the basis of this
research.

Based on this study, we can conclude that in case of two-
hours-ahead forecasting, the use of regression analysis of time
series model resulted in a lower average below error and
average above error regarding the actual load than when
forecasting one day ahead. MAPE for two hours ahead
forecasting was also lower compared to forecasting one day
ahead. Regardless of the fact that a very small number of
customers were analysed and their effects on load curves were
quite significant, we are very pleased with the results. We

believe that with a greater number of consumers, the resulting
prediction error of the proposed method will probably be
significantly reduced.

In regards of forecasting accuracy, the results of this work
cannot be compared with results of studies where models and
forecasting are based on whole power system load or on a
large part of the power system load. Forecasting based on the
entire power system load, which has a large number of
different stochastic changes in the load, implies that the system
load is not strongly affected by individual consumer load
changes.

The electricity price at the power exchange is volatile and it
is impossible to forecast next year's electricity price, since it
depends on many different factors. It is clear that intraday
exchange market price fluctuates and during some time periods
the prices may be cheaper than current open market fixed or
power exchange average price tariffs and on other periods they
could again be more expensive [14]. This means that the real-
time tariff system gives customers the opportunity to manage
their consumption in order to keep their electricity costs as low
as possible.

Currently, the price packages offered to consumers do not
reflect on actual electricity production costs. However, it is
important to offer price packages which take the network
situation into account and move consumption away from peak
load and fulfil minimum load. Therefore, to achieve a better
demand response it is important to offer either more daily rate
price packages or a real-time pricing package. The algorithm
proposed in this work could be used to offer consumers real-
time price packages, without the need for any changes in
power exchange rules.
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Abstract—The world today is moving toward smart
distribution grids and dispersed generation. Those tendencies
are caused by different reasons. These include the decrease of
fossil fuel consumption, EU directives of CO, emissions and
climate objectives etc. Innovation and change in technology is a
highly welcomed trend but one must not forget that there are
drawbacks as well as benefits. One of the most important issues
in future grids are the power quality and supply reliability
issues. This paper describes how the change to dispersed
generation and smart grids should look like and what are the
main problems, that need quick and active solutions, so that
future grids would be fully functional and reliable.

Index Terms—Power distribution faults, smart grids, power
system dynamics, harmonic distortion.

L

If centralized generation is characterizing factor for
nowadays energy systems, then smart grids of the future
mean also the spreading of dispersed generation. The cause
of these changes is the strict environmental norms and
liberalization of electricity markets [1].

Dispersed generation has been recommended as one of the
environmentally friendly solutions for improving the energy
system, decreasing the losses and increasing effectiveness
[2]. In addition increasing the ratio of small producers in
electricity generation has been proposed.

Connecting new producers and generators to the
distribution network can drastically change the working
parameters of the grid. This situation is extremely important
when the new connected power plant is equal to or even
greater than the load in this particular area. In such case the
new power plant affects the voltage adjustment and power
flux. It is important to evaluate the existing grid, capacity
and loads in this certain area of the distribution network [2].

Dispersed units affect the current quality and through the
grid also the voltage quality as experienced by other
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customers [2]. Power quality concerns the electrical
interaction between the network and its customers. It
consists of two parts: the voltage quality concerns the way in
which the supply voltage impacts equipment; the current
quality on the other hand concerns the way in which the
equipment current impacts the system [3].

For these reasons it is important changing of the loads
have to be observed in smart grids as well as the growth of
dispersed generation. In addition loads are getting more and
more nonlinear which means that the cooperation of
untraditional generation and loads affect the grid in
unpredictable ways.

One of the key aspects of electricity production and
distribution is the power quality and supply reliability for the
customers. Traditionally the problems have been solved but
as the world is moving towards smart grids and dispersed
generation, those problems need more active and precise
control.

As it can be expected, a great number of small generation
units will be connected to distribution grids in quite near
future. Most probably it would require certain online
diagnostic systems to secure the full functionality and
reliability of those units.

As due to the rise of harmonics in the grid, the machines
would become more vulnerable, their faults become even
more difficult to detect, so one could expect a growing
number of unexpected downtimes due to different faults of
the generators. This is the issue why real time condition
monitoring is of utmost importance in the dispersed
generation situation.

II. DISPERSED GENERATION

Dispersed generation is the production of electricity at or
near the point of use. Most or part of consumed energy is
produced at point of use and rest of the electricity goes into
the distribution grid [3].

In most cases it is assumed that the electrical current and
voltage have a sinusoidal wave shape. But if hundreds or
thousands of small power production plants are connected to
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a grid, it could mean that the sinusoidal current and voltage
waveform are distorted and the waveform is no longer
sinusoidal. Also, all small generators themselves produce
harmonics. So the large-scale use of renewable energy
sources for the production of electricity will bring major
challenges for the electricity network.

Generators are typical electrical devices that are usually
setup together with frequency converters to drive them and
different inverters to synchronize their work with the grid.
Not only generators themselves but also frequency
converters and other electronic devices produce a vast
number of harmonics that can be a problem to electrical
machines they are set up with and also the grid they are
working in. Due to financial benefits usually no additional
filters are used to lessen the amount of induced harmonics. A
typical harmonic distortion of a frequency converter is
shown on Fig. 1.

As dispersed generation means also a growing number of
small power plants such as small hydro and wind
applications, this harmonic problem can become a serious
issue for the power quality and supply reliability in smart
grid or dispersed generation situation.

100 ¢
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30Hz
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7 9
Fig. 1. Typical harmonic distortion of frequency converter.

For showing the probability of large extent of distributed
generation in near future the potential is pointed out. The
Estonian potential for dispersed generation, which currently
is greater than the annual electricity consumption, is chosen
as the example [3]. The potential of different energy sources
in Estonia are shown in Table I.

TABLE I. ESTONIAN POTENTIAL OF DISPERSED GENERATION [3].

Name Energy MWh/year %

Wind energy 6224 400,00 53

Litter oddments (biomass) 1280 400,00 11
Wood (biomass) 1279 800,00 11

Boiler plant reconstruction to CHP 1179 000,00 10
Energy brush (biomass) 1079 133,30 9
Solar Energy 224 000,00 2

Dung (biogas) 185 435,20 2
Hydropower 102 514,00 1

Reed (biomass) 50 000,00 0
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Name Energy MWh/year %
Landfill gas (biogas) 25974,40 0
Wastewater sludge (biogas) 21201,60 0
Total: 11651 858,50 100

III. POWER QUALITY

Connection of dispersed resources and changing dispersed
generation to the distribution grid can affect the power
quality in a great amount [2]. Smart distribution grid must
secure the end users with power that has the demanded
quality [4]-[6]. This is why the modern control systems, that
are monitoring the important components of the distribution
grid, must react precisely to the changes in power quality.

Power quality can be controlled and improved in whatever
point of the electric system beginning from the means in the
system or the grid and ending with single devices at the
consumer level.

Connection of the dispersed generation of renewable
energy to distribution grid can have both positive and
negative effects to the power quality. It depends on
possibilities of information and communication systems to
control and maintain voltage in the feeders, turn the loads in
or out and replace lost power with the reserves.

For example small amounts of wind power have
negligible effects on electricity networks, but when
electricity generation from wind power exceeds a certain
threshold level, investments in the power system will be
required. This threshold level is known as the hosting
capacity [4].

The principle of hosting capacity is explained at Fig. 2.
Hosting capacity does not say anything about how much
generation from renewable energy sources that is connected
to the grid, only how much can be connected without having
to invest in measures to strengthen the grid.
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Fig. 2. The principle underlining hosting capacity [5].

IV. HARMONIC DISTORTION DUE TO DIFFERENT LOADS

Electrical devices, which are coming onto market, are
becoming more and more complex. They may help to reduce
energy consumption, but their performance regarding power
quality is still rather improper.

The problem is that their current curve is not a perfect
sinusoid. The widespread use of nonlinear loads may
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implicate significant reactive power and problems with
higher harmonics in a grid [6].

Harmonic currents produced by nonlinear loads are
injected back into the supply systems. These currents can
interact adversely with a wide range of power systems
equipment causing additional losses, overheating and
overloading. These harmonic currents can also cause
interference with telecommunication lines and errors in
power metering [7]-[9]. That problem may come more
important when smart grid solutions where communication is
very important are adapted.

Typical current curves of nonlinear loads are shown at
Fig. 2. While the applied voltage is almost perfectly
sinusoidal, the resulting current is heavily distorted.

- currents

voltage

Fig. 3. Currents of typical nonlinear loads versus voltage.

Harmonics generated by consumer’s appliances must not
cause voltage rise in the connection point [6]. Fixing limits
may become important before using numerous harmonics
emitting devices together. In some papers [8] measurements
with nonlinear loads are done when 5% current’s total
harmonic distortion value at connection point is followed.
For example most of the common compact fluorescence
lamps have the total harmonic distortion over 100% [9].

Harmonic currents injected from individual end users on
the system should be limited. These currents propagate
toward the supply source through the system impedance,
creating voltage distortion. Thus by limiting the amount of
injected harmonic currents, the voltage distortion can be
limited as well. This is the basic method of controlling the
overall distortion levels proposed by IEEE standard 519-
1992. Example for illustrating nonlinear loads influence on
distribution grid a study with compact fluorescence lamps
(CFLs) is made [8], [9].

V. POSSIBLE SOLUTIONS FOR POWER QUALITY FALL IN
SMART GRID

Equipment responds very differently to harmonic
distortions, depending on their method of operation. For
example incandescent lights and different household heaters
are not affected by them. On the other hand, induction motor
windings are overheated by harmonics, causing accelerated
degradation of insulation and so the lifetime of the machine
can shorten in an abrupt way. The problem is that harmonic
voltages can give correspondingly higher currents than do
50 Hz voltages and one can easily underestimate the degree
of additional heating in the motor [10].

It is a widely known fact that faults such as the broken
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rotor bars induce sideband harmonic components to the
stator current spectrum of the induction machine. Those
harmonics can be used for detecting the faults. As most of
electrical machines today are used in hand with frequency
converters, then those converters add additional variables to
the problem. Frequency converter causes supply frequency
to vary slightly in time and, as a result, some additional
harmonics in the current spectrum are induced and sidebands
are reduced [11] or even hindered. This phenomenon also
raises the amount of noise in the test signals, which makes
the faults more difficult to detect.

In that sense it could prove to be useful to use a certain
on-line diagnostic system in the grids with dispersed
generation and the wind generators that are integrated to this
system. This could be a helpful tool to detect the faults at an
early stage where the repairing of the machines is still
possible and reasonable. Also it would help to differentiate
the deviations and harmonic distortions in the grid from the
faulty cases of the machines.

VI. CONCLUSIONS

Irrespective of how the term smart grid is defined, one can
safely state that electricity networks will face new challenges
in the future, and that current and future challenges can be
solved by a set of technologies that either exist today, or are
being actively developed.

If more and more dispersed generation is going to be
installed all over the power networks like it seems to go then
it is most important to find measures for guarantying quality
and security of supply.

From the example of Estonia we can see that the potential
of dispersed generation is extensive. The impacts of using
distributed generation may be massive even if bulk of that
potential will not be installed.

In the situation where generation as well as consumption
produces decrease of power quality in the grid, it is essential
to analyze both generation and consumption in a very
thorough way. If it proves to be necessary it might make
sense to limit the usage of new plants and appliances or use
some other methods to decrease their negative effect to
power quality.

Usage of nonlinear loads like compact fluorescent lamps
has risen rapidly in the last decade, but their harmonic
emission, reactive power consumption and other drawbacks
have been ignored.

Beside the problem that harmonics are extremely
dangerous to electrical motors, distorted supply makes the
diagnostics of them more difficult. A growing number of
machines are driven through frequency converters. This
means that also diagnostic for appropriate setups with
frequency converters should be investigated. Frequency
converters add additional noise and harmonics to the
traditional current spectrum of the machines and thus such
drives need a slightly different approach in diagnostics than
traditional grid supplied machines. Nevertheless, appropriate
on-line diagnostics of dispersed generation units must be
applied to guarantee sufficient power quality, supply
reliability and overall safety of customers and different



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 8, 2012

facilities connected to the grid.
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