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1 Introduction

The mobile network data traffic has grown by 40% reaching to 118 Exabytes (EB) per month
by the end of 2022 and is predicted to reach to 472 EB per month by the end of 2028 [5].
Notably, different applications impose varying demands on network traffic. Approximately
10% of users, largely utilizing multimedia services, account for a significant 70% of network
traffic.

Low-complexity, cost-effective devices with moderate throughput requirement are con-
nected to the cellular network in increased numbers, having reached to 500 million at
the end of 2022 [5]. Internet of Things (loT) connections to 5G networks are on the rise,
driven by the phasing out of older 2G and 3G technologies. The broadband and critical
loT (4G/5G) are predicted to be 60% of all cellular loT connections by the end of 2028 [5].

The 5th generation (5G) mobile network is meant to satisfy different requirements of
new applications and services by using a single infrastructure. Each service has a service
level agreement (SLA), which describes quality of service (QoS) requirements.

The services and use-cases are divided into three verticals [6]:

e The enhanced mobile broadband (eMBB) vertical collects all services, applications
and use-cases that require high data rate (in Gbps) such as multimedia on big screens,
smart offices, videostreams for virtual reality (VR) or augmented reality (AR) etc.

e The massive machine type communications (mMTC) vertical contains Internet of
Things (10T) network. The "things" have a massive count (million devices per km?)
of user equipments (UE) of varying complexity, energy consumption, cost, trans-
mission power and latency requirements [7]. The smartphones, cameras, sensors,
actuators etc. can be used in smart grid, agriculture, healthcare and other commu-
nication use-cases.

e The ultra-reliable low latency communication (URLLC) vertical has strict require-
ments of latency (< 1 ms) and reliability [7]. The URLLC human-centric applications
are for example in health, safety and entertainment, and machine-centric URLLC
application examples include industry automation, self-driving cars, emergency and
disaster response, e-health and smart grids.

The single network cannot satisfy all these very different requirements, all with the
same infrastructure and at the same time. In 5G, network slicing is introduced to build
multiple logical networks, called slices, on top of physical infrastructure. Each slice con-
tains a specific set of the aforementioned requirements to serve UEs, which need a specific
subset of requirements to be met in a service vertical. The network slicing enables to es-
tablish mobile virtual network operators (MVNO), which do not need to build their own
separate physical network infrastructure. Instead, an MVNO can use a slice of resources
obtained from the infrastructure provider as an MVNO slice.

The top use cases to benefit from network slicing in 5G come from the industry seg-
ments of healthcare, government, transportation, energy & utilities, manufacturing and
media & entertainment. These six industries make up 90% of the market revenues [8].
The first commercial network slicing in 5G was launched in 2022 by Singtel in Singapore.
Lessons learned that the network slicing in 5G, if deployed properly, has a strong business
potential for service providers and supports new use cases in limited geographical areas
for customers [5].

The general architecture of 5G system (5GS) is shown in Fig. 1. 5G core network (CN)
has a service-based architecture. For each network service there is a network function
(NF), e.g. access and mobility management function (AMF), session management func-
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tion (SMF), etc. UE connects to radio access network (RAN) and via user plane function
(UPF) it has access to data network (DN) outside 5GS, the internet. For network slicing
these functions are virtualized, that is, abstracted. Resources are computing, storage,
networking. The goal is the resource usage efficiency with all services’ requirements sat-
isfied.

UPF
‘(Gateway)

UE

Network

[Slice i

/ CN NFs &
resources

RAN NFs &
resources

Figure 1: Architecture of 5GS

To satisfy the rate requirement of eMBB vertical, sufficient networking resources are
allocated. In a radio access network (RAN), bandwidth parts (BWP) using higher frequen-
cies in frequency range 2 (FR2, 24.25-52.6 GHz [9]) are more suitable because wide bands
with subcarrier spacings of 120 kHz are available. In addition, larger subcarrier spacing
enable to use wide bandwidths. The vertical MMTC requires massive connectivity, while
the rate and reliability requirements are low. The low frequencies, small BWPs and sub-
carrier spacing are used for UEs in this vertical. The resources allocated must guarantee
the requested rates and satisfy low latency. This is done by prioritizing resource allocation
to this slice type.

14



In RAN, the base station (BS) called gNB contains software and specific hardware. The
software, which does not require specific hardware, can be implemented as VNFs, similar
to core virtualization. For virtualization of the gNB, its control plane and user plane are
separated, and the gNB can be functionally split into a central unit (CU) and a distributed
unit (DU), the latter can contain the radio unit (RU) or it can be a separate unit. RU is a
specific hardware that uses radio resources to enable radio communication for UEs. The
radio resource allocation within a single cell or multiple cells is done by schedulers.

Optimization on radio resource allocation is the most relevant research direction in
RAN slicing as it affects the performance most. As parts of gNB are placed on different
physical locations, the VNF placement optimization is one research direction. VNF place-
ment contributes to the efficient use of computing, storage and networking resources
available on different physical locations, called points of presence (PoP), where the re-
sources are available. Resource allocation is an NP-hard optimization problem. It has
been shown for computing, storage and networking resources in [10] and [11], and for
radio resources in [12] and [13], among others. Slice scheduler allocates radio resources
to slices, UE scheduler allocated radio resources for UEs according to the requirements
of the corresponding slice. The goal is to accomplish efficient radio resource allocation
which satisfy given requirements.

The VNF requirements can directly translate to the need of computing, storage and
networking resources. The requested rate in RAN cannot be translated directly to the
number of resource blocks (RBs). The achieved rate in RAN depends on the signal quality
parameters achieved by UE, which is stochastic in its nature.

The slice has a life cycle specified in TS28.530 [14]. Life cycle management (LCM) is an-
other research direction. When the slice is needed, then it is created. This can be triggered
by the new slice request. During the slice operation, its performance is monitored. Slice
monitoring can be done by using closed control loop. When the need to modify the slice
is detected (e.g. resource utilization overload or underload), then the slice is modified.
When the slice is not needed (e.g. no UEs left), it is deleted.

The VNF placement for efficient computing, storage and networking resource alloca-
tion, scheduling optimization for radio resource allocation and slice life cycle management
are all different aspects of resource allocation optimization.

1.1 Motivation

The motivation of this thesis is the difficulty of answering the question of how many RAN
slices can be present in the 5G network. In 5G standards there are specified three standard
slice types for three verticals in Rel-15, fourth for vehicle to everything (V2X) in Rel-16, fifth
for High-Performance Machine-type Communications (HMTC) in Rel-17 and sixth for High
Data rate and Low Latency Communications (HDLLC) in Rel-18 [15]. Additionally, there is
an option to create custom slices that can be used by MVNOs when their service require-
ments do not match any of the standardized slices.

To evaluate the possible number of slices in the RAN, the simulations were done where
one RAN BWP was sliced into 2 to 10 slices. The performance results showed that the
bandwidth utilization, network throughput and goodput and block error ratio (BLER) in
both uplink (UL) and downlink (DL) were not constants. Results are shown in my publica-
tion 1 [1]. This motivated the investigation of how many RAN slices can be present from
the performance perspective. This is investigated by subslicing the slice, which uses the
RAN bandwidth part.
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1.2 Problem Statement

The slice performance depends on how many subslices it contains; however, the slice per-
formance dependence on the slice size is an open issue which needs to be investigated as
a first step. If the slice performance dependence on the slice size can be formulated, then
the next open issue to investigate is how this knowledge can be used to split the slice into
suitably sized subslices to improve slice performance. Slice performance improvement
means that bandwidth utilization has decreased, goodput per one RB increased and slice
average UE BLER decreased. The next issue to investigate is how this knowledge can be
used for slice performance improvement on fixed slice bandwidth; the last issue to investi-
gate is how a management closed control loop can automatically detect the need for RAN
subslicing, configure the subslices, and monitor the slices and subslices performance.

1.3 Research Questions

In this PhD thesis, | address the following research questions (RQ).

RQ1: how many subslices can be in the RAN slice? Standards do not specify the upper
limit to the number of slices. Thus, it depends on the performance of the RAN.

RQ2: how much radio resource can be allocated to the slice and subslice to achieve
the best performance? Resources must be sufficient to satisfy the requirements of the
slice. However, when the RAN slice performance depends on the allocated BWP size, then
it can be used to find best sizes for subslices, what slice can consist of.

RQ3: How users should be clustered, and slice bandwidth be allocated to subslices
to improve RAN slice performance? RAN subslicing process includes division of UEs in
the groups and allocate slice bandwidth subpartitions to the UE groups.

RQ4: What is the impact of RAN subslicing under the management closed control
loop framework? Management closed control loop must detect the need for RAN sub-
slicing, create configuration for subslices and monitor the performance of subslices and
slice.

1.4 Contributions

The thesis contributes to advances towards RAN slicing, particularly analyzing how and
when the performance can be improved while doing subslicing. Further, the thesis pro-
poses several subslicing algorithms and finally proposes management closed control loop
automation for RAN slice by subslicing.

| have simulated 5G-NR using MATLAB 5G Toolbox system-level simulation tool called
NR Cell Performance Evaluation with Physical Layer Integration [16], version R2021b. Based
on this simulated network, | investigate the RAN slice performance on fixed bandwidth
constraint on RAN.

For RQ1, | discovered that if there are too many subslices, the slice performance in
terms of high bandwidth utilization and low achieved goodput is poor because the sub-
slices are too small. This is published as my publication 1[1]. To improve slice performance,
the subslice cannot be too small. This is the starting point for the rest of the research.

For RQ2, | simulated all possible sizes of subslices. For each RB allocated, | have a UE
which requests the rates such that it is able to consume that RB. This gives the perfor-
mance of one UE if it can use one RB in subslices at different sizes. Simulation results
show subslice performance dependence on subslice size.

The RQ3 deals with subslicing algorithms. Subslicing contains 2 activities - group UEs
and divide slice bandwidth. UEs can be grouped randomly or clustered using some al-
gorithms by some feature. | propose UE clustering algorithm which can cluster UE into
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multiple clusters if the feature has single value. Moreover, the minimum subslice size
limit is in bandwidth units, RBs. For creation of subslices in desired size, it must be con-
verted into minimum cluster size. In my publication 2 [2] all UEs request the same rate,
the minimum subslice size is converted to minimum cluster size before starting UE cluster-
ing. The proposed subslicing algorithm called user clustering with bandwidth allocation
(UCWBA) creates given number of subslices with minimum subslice size not exceed the
set constraint. In my publication 4 [4] the UEs request different rates, and minimum sub-
slice size is converted to cluster sizes by calculation of cluster’s sum rate. The proposed
subslicing algorithm called dynamic subslicing by BLER (DSbB) splits slice or subslice into
two and both splits are greater than set minimum subslice size requirement.

For RQ4 | implement known Monitor-Analyze-Plan-Knowledge (MAPE-K) closed con-
trol loop for introducing subslicing if it is able to improve slice performance. The closed
control loop is published in my publication 4 [4]. For Plan function, the classifier neural
network is trained to decide the operation "merge", "split" or "no change" operation for
each subslice. The two methods to compose training data for neural network (NN) are
proposed. The first method proposes performance data clustering in my publication 3 [3]
and the second method proposes to solve optimization problem to find best subslice sizes
in my publication 4 [4].

The first novelty of this work is the improvement in slice performance without addi-
tional bandwidth resources. Second, the subslicing has not implemented in the manage-
ment closed control loop. Third, subslicing has been proposed to collect more similar UEs
according to their requirements into one subslice, and the slice performance improve-
ment has been noticed. This work proposes subslicing to collect similar UEs by their BLER
into one subslice to improve slice performance.

1.5 Thesis Organization

The rest of the thesis is organized as follows (see Fig. 2):

e Chapter 2 provides the overview of RAN slicing, bandwidth allocation to slices and
RAN slice management.

e Chapter 3 presents the slice performance dependence on slice BWP size. For each
RB allocated, a UE is admitted, which is able to consume it by its requested rates.
Two datasets, which are simulation results of subslices at all possible sizes in RBs
are used as training data for deciding subslice operation in Chapter 5.

e Chapter 4 presents the proposed RAN subslicing algorithms, which can be used in
Execute function of management closed control loop (MCCL) in Chapter 6.

e Chapter 5 presents the method to decide subslice operation for automatic subslice
reconfiguration in Decide/Plan function of the MCCL implementation proposed in
Chapter 6.

e Chapter 6 describes the MCCL implementation and evaluation.

e Chapter 7 concludes the thesis.
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Figure 2: MCCL and thesis organization.
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2 Background and State of the Art

In this chapter, | begin by providing an overview of network slicing, followed by an explo-
ration of RAN slicing specifics and RAN resource allocation. | then explain the slice life-
cycle, followed by the overview of subslicing. Finally, | discuss the capabilities of 5G-NR
simulators and emulators in supporting RAN slicing.

2.1 Network Slicing

Network slicing enables to create multiple logical networks, called slices, on top of phys-
ical infrastructure that allows a 5G network to be partitioned into multiple logical and
independent networks, each optimized to serve a particular use case. 5G system consists
of core and RAN, while the transport network (TN) provides the connectivity. The network
slice consists of core slice and RAN slice, and resource slices in other domains if needed.

2.1.1 Core Slicing

The 5G core network has a service based architecture. The network service is realized us-
ing network functions. The network service consists of virtual network functions (VNFs),
VNF Forwarding Graphs and Virtual Links. VNF Forwarding Graph represents the topology
of the network service, i.e. connections of constituent VNFs used in the network service.
Virtual Links define requirements for connections specified in VNF Forwarding Graph. The
VNFs need computing, storage and networking resources to run on. The VNF runs on a
Network Function Virtualization Infrastructure (NFVI) node, whose architecture is spec-
ified in ETSI NFV-EVE 003 [17]. NFVI node consists of computing, storage and network
nodes. The resource management and orchestration (MANO) mechanism (specified in
ETSI NFV-MAN 001 [18]) is used to manage the dependencies of resource nodes and their
placements. On the physical infrastructure, the Data Centers (DC) are located in differ-
ent geographical locations. DC contains racks with provided power and cooling to the
resource devices. The connectivity inside DC is provided by switches and to other DCs by
gateways. The resource devices are computing hardware (CPUs, etc with network inter-
face) and storage hardware (hard disks, Direct Attached Storage (DAS), Network Attached
Storage (NAS), or Storage Area Networked (SAN)). Further information can be obtained
from ETSI GS NFV-INF 003 [19]. Research areas in core slicing include efficient utilization
of computing, storage and networking resources and VNF placement, among others.

TN slicing is implemented using software-defined networking (SDN) by defining links
and their capacities and requirements. Edge resources are incorporated as an edge slice
subnet if services need edge access. Without SDN, the network provides best-effort data
transmission. SDN decouples the control and data planes. A controller implemented in
the software controls all physical routers and switches. It is possible to specify certain
quality of service (QoS) requirements for packet flows specified by their criteria, for ex-
ample, source or destination address and contained protocols. One example SDN protocol
is OpenFlow [20].

2.1.2 RAN Slicing

The RAN slice is defined as a network slice subnet in RAN domain. Network slice subnet
contains NFs and resources. The core network primarily comprises NFs that are hardware-
agnostic, allowing for the core to be composed solely of VNFs. RAN has specific hardware
- antennas that use physical resource - frequency bandwidth. Therefore, RAN slice subnet
must contain both VNFs and physical network functions (PNF).

19



3GPP

3G/4G
Monolithic, split, cloudified 3GPP O-RAN
SD- RAN
BS | I
= CP UP
cu ggu| |[BBU
s pool Opt. 2 Opt 2 Opt 2 Opt 2
DU BS | L 1 V \D,u 2 AP - DC/ Cloud
Opt. 8> Opt. 8 Opt. 6
........ [ o Opt 7 2
0] t 8 A
RU RRH| {|[RRH . > ’ ,8, <
! Site Site

(a) (b) (e)

Figure 3: Base station decomposition - CUPS and functional splits. (a) possible decomposition of a
BS, (b) BS split and cloudifying by 3GPP and used in 3G/4G RAN, (c) CUPS and CU-DU split used in 5G
RAN, (d) SD-RAN split into 3 units by O-RAN, (e) possible physical placement of BS components

The decomposition of a BS enables to place some of its higher level functions imple-
mented as VNFs into DC or cloud to increase the reliability and security. The DCs have
better power and connectivity, and cloud has better network accessibility. The BS decom-
position options are specified in 3GPP TR 38.801 [21] and are shown in Fig. 3a. The BS
can be split horizontally into up to three units - central unit (CU), distributed unit (DU)
and radio unit (RU). If BS is split into two units, then DU and RU are together in one DU.
There exist 8 horizontal (functional) split options. The CU can be further split vertically
into control plane and user plane, referred to as control plane and user plane separation
(CUPS). This enables to reduce UE delay by placing some components of gNB geographi-
cally closer to UE and to provide better reliability to place some BS components into data
center providing higher capacity.

The Fig. 3b illustrates used split options starting from 3rd generation (3G) cellular com-
munication when the BS was split into Base Band Unit (BBU) for computing tasks and Re-
mote Radio Head (RRH) that needs to be placed next to the antenna. The Cloud/Centralized
RAN (C-RAN) uses BBUs in cloud environment and this solution is used in 4G as well. In
Fig. 3c the split of 5G BS is presented. 5G as defined by 3GPP uses CUPS and CU-DU split
option 2 (pass RLC channels). The O-RAN’s Software Defined RAN (SD-RAN) splits gNB
into 3 parts - CU, DU and RU as it is displayed in Fig. 3d. In O-RAN solution there exist 3
different splits between DU and RU - option 6 (pass physical channels), option 7-2 (pass
antenna symbols) and option 8 (pass in-phase and quadrature (IQ) data, a complex signal
representation). O-RAN specifies open interfaces between CU, DU and RU to enable in-
teroperability between devices from different vendors [22]. The RAN intelligent controller
(RIC) controls the RAN nodes. The Fig. 3e shows possible physical placements of different
units of RAN base station. The PoP DC is located closer to the antenna site for shorter
delay of user plane traffic. This enables to find optimal physical placement of RAN VNFs
for different slices.
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The network node in RAN is a base station (BS), called gNB in 5G. The virtualization
and splitting of BS, enables to place computing nodes into geographical locations where
it is more convenient to provide a power, storage, security and have only minimal needed
computing tasks near the antenna’s physical location. Slicing the RAN enables handling of
different QoS Flows by different RAN architecture elements.

The upper protocol layers of gNB i.e. gNB-CU can be implemented as VNFs with vir-
tual resources and lower layer protocols down to physical antenna are implemented us-
ing PNFs with physical resources such as frequency bandwidth to transmit and receive UE
data. The connections between VNFs and PNFs are done using TN with specified TN re-
quirements. The lower protocol layers of gNB i.e. gNB-RU or gNB-DU depend on physical
hardware and must be implemented as PNFs.

There are no VNFs defined for RAN, and RAN is not required to be virtualized by 3GPP
standards. The main idea of virtualization of gNB (base station) is to separate (disaggre-
gate, split) computing and storage tasks from radio transmitting and receiving tasks and
place the antenna hardware with minimum required computing and storage in the nec-
essary geographic location.

The O-RAN alliance has the RAN virtualized. The Near-Real Time RAN Intelligent Con-
troller (RIC) enables control and optimization of all gNB units via interface E2 [23].

2.1.3 Network Slice Template
GSM Association (GSMA) has defined a Generic Network Slice Template (GST). Versions
1.0 and 2.0 [24] dated 2019 are compatible with 3GPP Rel-15. Versions 3-9 (v9 [25] are
compatible with 3GPP Rel-16.

In the template, various slice attributes are defined. The attributes have the follow-
ing parameters defined: name, description, typical values, parameters (parameter unit,
allowed values, tags) and attribute presence (mandatory, conditional, optional). GST At-
tribute categories are: character attributes (to characterize a slice), scalability attributes
(about the scalability of the slice), performance related (KPIs supported by a slice), func-
tion related (functionality provided by slice), control and management related (which
methods are provided for the network slice consumer in order to control and manage
the slice). NEtwork Slice Type (NEST) is a GST filled with values.

Usually, UEs with similar requirements can work in the same slice. A new feature in-
troduced in GST v5.0 allows defining some slice attributes for different service categories
within the slice, i.e., UEs that operate in the same slice and belong to different service
categories can have different requirements related to uplink (UL) and downlink (DL) max-
imum UE throughput and supported data network. In addition, by using slice attributes
it can be defined whether the network is simultaneously used by other slices. The com-
bination of these attributes enables to define one slice for each MVNO with different per
UE QoS requirements in one slice.

2.1.4 Network Slice Identifier

The network slice identifier is called Single Network Slice Selection Assistance Information
(S-NSSAI) and it consists of two fields (3GPP TS 23.501 [15], 3GPP TS 38.300 [26]):

¢ mandatory Slice/Service Type (SST), field length is 8 bits (256 different values)

e optional Slice Descriptor (SD), field length is 24 bits (16777216 different values). If
SD does not exist, then SD has a value of FFFFFF (TS 23.003 [27]).

The standardized SST values are defined in 3GPP TS 23.501[15]:
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SST=1 enhanced Mobile Broadband, eMBB

SST=2 massive Internet of Things, MloT (to serve mMTC vertical)

SST=3 Ultra Reliable Low Latency Communication, URLLC

SST=4 Vehicle to everything, V2X (added in Rel-16)

SST=5 High-Performance Machine-type Communications (HMTC) (added in Rel-17)

The Network Slice Selection Function (NSSF) is a dedicated function to select the ap-
propriate slices (3GPP TS 23.501 [15], TS 29.531 [28]) using network slice selection policy
(NSSP). The information about all slices is called Network Slice Selection Assistance Infor-
mation (NSSAI) that consists of up to 8 S-NSSAI-s, i.e., slice identifiers. A UE is able to use
at most 8 slices simultaneously. The proper slice is selected in process of RRCSetupCom-
plete. If UE does not request the slice, then it will be connected to the default Access and
Mobility Management Function (AMF), otherwise it will be connected to the AMF that
supports the requested slice.

If a non-standard S-NSSAl is used, then this S-NSSAl is used only on the Public Land Mo-
bile Network (PLMN) to which it is associated. Slicing supports roaming in case standard
values for SST and optionally SD are used. Then the same values can be used in Visited
PLMN otherwise it is complicated - AMF selects suitable numbers for slice identifier or
with the help of other core functions the proper network functions are mapped to the
visited slice (3GPP TS 23.501 [15]).

2.1.5 Management of Slices
Network management in general is Fault, Configuration, Accounting, Performance and
Security (FCAPS) management. In addition, a lifecycle of a slice is also managed.

There are 3 management functions defined in 3GPP TS 28.533 [29] and ETSI GR NFV-
EVE 012 [30]:

e Communication Service Management Function (CSMF) - translates and maps ser-
vice and slice related requirements

e Network Slice Management Function (NSMF) - manages Network Slice Instances
(NSI) and their lifecycle

¢ Network Slice Subnet Management Function (NSSMF) - manages Network Slice Sub-
net Instances (NSSI) and their lifecycle. There are separate NSSMFs for core and
RAN.

The lifecycle of NSl is defined in TS 28.530 [14]. The example of life cycle management
(LCM) of a slice with one subnet in CN and one subnet in RAN is shown in Fig. 4. First,
the SLA between slice provider and slice consumer is agreed. Then agreed slices are de-
signed, onboarded by CSMF and the network environment is prepared to use the slice.
The result of preparation is that the system has a database (DB) of possible slices and slice
constituents. Now, when the slice is needed to work, then the slice lifecycle begins with
creation of NSI that is put together from constituent NSSIs by NSMF and NSSMFs at each
domain. Next, the NSI and constituent NSSls are activated. During the operation phase,
NSI can be modified according to the requirements and resource usage. The NSI modi-
fication means that the constituent NSSI is modified; NSI or NSSI reconfiguration means
that NSI or NSSI as a logical network has been reconfigured, NSI or NSSI scaling means
that the resources can be added (scale up) or removed (scale down) from the NSI or NSSI
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Figure 4: Slice LCM example in case of slice consists of one CN slice subnet and one RAN slice subnet.

respectively. The data about slice performance and overall performance from NetWork
Data Analytics Function (NWDAF) can be collected for deciding if slice modification is nec-
essary. The closed control loop (CCL) with monitor, analyze, decide and execute functions,
defined in 3GPP TS 28.535 [31] can be used to monitor the performance and trigger NSI or
NSSI modification. When the working slice instance is not needed, no UE uses it or other
conditions are true, the NSI can be deleted (deactivated and terminated). For dynamic
slicing, the slice instances can be created, modified and deleted automatically.
According to 3GPP TS 28.541 [32] the states of (NSI and) NSSI are:

e operational state (Enabled/Disabled) - if physically installed and working;
e usage state (Idle/Active/Busy) - if actively in use and if so then if it has spare capacity;

e administrative state (Locked/Unlocked/Shutting down) - describes the permission
to use.

Network slice subnets are managed in collaboration with 3GPP Management System
and ETSI NFV-MANO: 3GPP Management System manages PNFs and ETSI NFV-MANO man-
ages VNFs. 3GPP management system manages NFVI collaboratively with NFV-MANO as
defined in 3GPP TS 28.500, [33]:

e Fault Management: 3GPP management system receives NFVI and VNF and virtu-
alized resource alarms (type, severity, possible cause), from NFV-MANO. 3GPP can
request NFV-MANO to recover VNF.

e Configuration Management: 3GPP management system manages the configuration
of physical and virtual 3GPP entities (with objects and attributes), and reconfigures
physical and virtual entities (and neighbor 3GPP entities) due to LCM operation of
VNF or service from NFV-MANO. VNF instance scaling will not modify existing con-
nections with other network entities. 3GPP management system is able to request
NFV-MANO to modify VNF instance managed by NFV-MANO.
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e Performance Management: KPIs are applicable for both physical and virtualized en-
tities. 3GPP management system supports performance measurements and results
for virtualized entity and virtualized resources. NFV-MANO provides VNF PM data
to 3GPP management system, which can request VNF LCM operation to mitigate
VNF performance bottleneck.

¢ Life Cycle Management: 3GPP management system can request the service and
VNF LCM operations, and service, service descriptor and VNF management oper-
ation and VNF Healing from NFV-MANO. NFV-MANO sends notifications to 3GPP
management system about service, service descriptor and VNF management and
VNF LCM change. 3GPP management system can enable or disable autoscaling of
corresponding VNF instances in NFV-MANO.

NFV-MANO has standards to specify information model, NFV infrastructure, compo-
nents of service templates, and interfaces. Network functions are virtualized using virtual
machines or container platform.

OSM is an open source NFV-MANO software stack development using open source
tools and working procedures. There exists ETSI OSM group and the OSM software is
hosted by ETSI [34].

2.1.6 Management of Resources

The resources are computing, storage and networking resource. Resources can be phys-
ical, logical or virtualized. Logical resources are not limited to physical resources, virtual-
ized resources have mapping to physical resources.

In RAN, there are radio resources - bandwidth. The radio frequency (RF) spectrum is
divided into frequency ranges (FR). 5G uses 2 FRs: FR1is 450-7125 MHz and FR2 is 24250-
52600 MHz [9]. FR contains operating bands, denoted as n1 to n100. Operating bands
contain bandwidth parts (BWPs) that can be assigned to a slice with GST. BWP contains a
number of Physical Resource Blocks (PRB). The 3GPP TS 38.211 [35] explains the PRB size
in frequency and time scales.

The constituents of Resource Block (RB) in the time and frequency scale are shown in
Fig. 5. One PRB contains 12 subcarriers that are resource elements on the frequency di-
mension. On the frequency dimension, the mapping of PRB to a frequency unit depends
on subcarrier spacing (SCS) configuration, denoted as u € {0,1,2,3,4}. The SCS can be
calculated as follows: Af = 2" - 15 [kHz]. The stated length on time dimension is a frame
duration that is 10 ms and can be divided into 2 half frames. The frame contains 10 sub-
frames. There are 2 slots in one subframe. The slot contains 12 or 14 Orthogonal Frequency
Division Multiplexing (OFDM) symbols if extended or normal cyclic prefix is used accord-
ingly. The duration of a slot can be calculated from duration of a subframe (1 ms) and a

count of slots in subframe, that depends on SCS configuration u and can be calculated as
Nsubframe,u —ou

slot
The RAN-specific resource to be managed in the RAN is the RF spectrum. Spectrum
sharing means that the same frequencies can be used by many slices but at different times.
Resource allocation determines the time at which frequencies are used by the slice. Re-
source isolation means that the frequency used at this time by this slice does not interfere
with other slices, and other slices do not interfere with this slice.
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Figure 5: The constituents of resource block according to 3GPP TS 38.211[35]. On the time dimen-
sion, it contains the 12 or 14 symbols that form a slot. On the frequency dimension, it contains 12
subcarriers that form a resource block.

2.1.7 Automation in Management

The management closed control loop (CCL) described in 3GPP TS 28.535 [31] and ETSI ZSM
009-1[36] is used for automation in the management of resources used by the commu-
nication system. An overview of the control loop architectures can be found in ETSI GR
ENI 017 [37]. The control loops are used for adaptive and cognitive systems which adapt
to the recognized changes in their environment.

Examples of well known CCLs are MAPE-K (Monitor-Analyze-Plan-Execute, Knowledge)
and OODA (Observe-Orient- Decide-Act) [38].

One implementation of CCL is in [39]. UEs are ships in real-world seaport testbed. The
signal quality parameters are monitored along with UE movement. When UE is behind
the large objects, the signal quality deteriorates more than its stochastic variance. The
prediction of UE movement enables to predict its signal conditions for longer term, which
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enables the large-scale network reconfiguration. When the radio link failure predicted,
then the beam adjustment of its power and tilting is performed to avoid the radio link
failure.

In slice resource management, the CCL works as follows: the slice load is monitored.
If slice overload occurs, then additional resources are allocated. If slice underload occurs,
then some resources are removed from the slice.

2.1.8 Summary

3GPP has defined the 5GS and support of network slicing in RAN. ETSI has defined NFV-
MANO system to manage network services. 3GPP has defined the management of net-
work slices that provide logical network to run for services or tenants. 3GPP management
system uses ETSI’s NFV-MANO to manage VNFs. Both 3GPP and ETSI management sys-
tems support the slice template that is defined by GSMA. O-RAN Alliance has developed
its own solution of SD-RAN that uses 3GPP-defined RAN and has some additional features.

2.2 RAN Schedulers (Radio Resource Allocation)

The 3GPP TS 38.300 [26] states that the scheduler assigns resources between UEs by con-
sidering the UE buffer status, QoS requirements, and associated radio bearers. In ad-
dition, the scheduler may consider UE radio conditions measured at the gNB and/or re-
ported by the UE. Measurements include uplink buffer status for UE to provide QoS-aware
packet scheduling and power headroom report (measured difference between UE maxi-
mum transmit power and estimated uplink transmission power) to provide power-aware
packet scheduling. In LTE QoS-based schedulers exist that can schedule UEs depending on
QoS requirement in uplink [40] and in downlink [41].

Traditional schedulers must schedule UEs to use the available infrastructure. Without
slicing, all UEs are equal with equal SLAs, or there can be UEs with different values of
one QoS parameter in the SLA relevant to the scheduler. With slicing, schedulers need to
schedule slices to use infrastructure resources (inter-slice scheduling) and schedule UEs to
use slice resources (intra-slice scheduling). In addition, slices and UEs can have different
types of requirements, for example, both throughput and latency.

The information about schedulers is in Tab. 2.

There are three types of scheduling approach for RAN slicing:

¢ [nter-slice schedulers - schedule slices to use infrastructure resources

e UE schedulers - schedule UEs in slices to use infrastructure resources or slices re-
sources

e Puncturing - allocate one RB for two UEs belong to different slices

A simplified scheme of inter- and intra-slice schedulers for latency, fixed, throughput,
and best-effort slices is shown in Fig. 6. The scheduling process is illustrated from left to
right. The packets are labeled as follows: letters as different slices (B - best-effort slice;
L - latency-constrained slice; T - throughput-oriented slice; M - uses fixed resources) and
numbers as different UEs in that slice. On the left side, the packets arrive. At the inter-
slice scheduler, the queues for each slice are formed, and the L-slice sends its packets
with priority. Flexible resources are allocated to the L-slice according to the queue length
during the cycle. Then, the T-slice can have the resources that it needs. The remaining
resources are allocated to the B-slice. The M-slice uses a fixed resource count for each
cycle. On the right-hand side, a simplified resource grid with resources allocated to slices
is shown.
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Figure 6: Simplified scheme of inter- and intra-slice scheduling of latency (L-slice), fixed (M-slice),
throughput (T-slice) and best effort (B-slice). Request or packet notation contains a letter to identify
the slice and number to identify UE in that slice. The figure shows a snapshot at a given time instant.

Slicing adds another layer of complexity and requirements from the scheduler; thus,
a scheduler should be able to fulfil certain requirements in terms of scheduling level, do-
main, checked SLA, scope, and complexity. The complete scheduler for the RAN slicing is
defined as follows:

¢ Schedulinglevel: The complete scheduler can schedule both slices to use the infras-
tructure and the UEs in the slices. It can be modular, such that one is an inter-slice
scheduler, and in each slice, a different slice-specific intra-slice scheduler is work-
ing. The other option is that it is a UE scheduler, for example, for MVNO slices that
schedules UEs with each UE having a different SLA in terms of rate, latency, and
reliability.

e Domain: The complete scheduler works in both the time and frequency domains
and manages the transmission power.

e SLA checked: The complete scheduler considers the rate, latency, and reliability
requirements from slice SLA.

e Optimization goal: All slice and UE SLAs are satisfied with efficient bandwidth and
energy utilization.

e Scope: One or multiple cells. To minimize inter-cell interference, the scope of mul-
tiple cells is required.

e Complexity: Asthe optimization problem is NP-hard [12], [13], the complexity should
be as low as possible to achieve sufficient results for the optimization goal. The
time required to solve the optimization problem must be less than the length of
the scheduling interval.
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¢ When there are more requests than available resources can serve: more stricter
SLAs are satisfied, and others are served with fairness.

In the literature, the proposed schedulers do not satisfy all the aforementioned re-
quirements and capabilities. Hence, we compare the schedulers and list their limitations
or completeness in terms of what a complete RAN slicing scheduler should be able to do.

2.2.1 Schedulers comparison

The schedulers described in this section are selected based on the allocation of radio re-
sources and the satisfaction of multiple requirements. The schedulers are compared in
Tab. 2. The inter-slice schedulers are [42], [43] and [44]. All of these schedulers allocate
RBs to slices according to rate and latency or delay. Using inter-slice schedulers, separate
intra-slice schedulers can be used in each slice. Both inter- and intra-slice schedulers are
proposed in [45], [46], [47], [48] and [49]. These schedulers schedule both the slices to in-
frastructure and UEs to slice resources. These have the most complex optimization goal,
which is usually different for each slice (UE group). This motivates the scheduler archi-
tecture to be multilevel or hierarchical: first, schedule slices with stricter or demanding
requirements and then others, or first schedule slices and then UEs in their corresponding
slice. In [48] and [49], both inter- and intra-slice scheduling decisions are learned using
DRL and multi-agent RL, respectively. UE schedulers are proposed in [50], [51], [52] and
[53]. The UE scheduler, which schedules UEs in different slices, considers the UE QoS re-
quirements regarding its slice. RBs are allocated to the UEs with UE or BS transmit power
management.

Most schedulers used for LTE enable one QoS requirement to be satisfied with dif-
ferent values, either the data rate or latency [41]. The schedulers used for RAN slicing
must satisfy different QoS requirements, such as throughput and latency at once. In ad-
dition, more QoS requirements should be satisfied, as the slice SLA defines several QoS
requirements. The eMBB slices are known to have high-throughput requirements. The
achieved throughput depends on the number of allocated RBs and signal quality. URLLC
slices are known to have low latency requirements. Latency depends on the amount of
time the packet spends on the transmission queues, and this time can be reduced using
proper scheduling algorithms. The parameters for slice traffic QoS requirements can be
extracted from 5G QoS Identifier (5Ql) and other QoS flow parameters to obtain the data
rate, latency, priority, and packet error rate requirements [54]. Slices with low delay and
latency requirements are handled by a scheduler with priority, and then other slices and
slice UEs are scheduled. In [42] first URLLC slice is scheduled, and in [43] a slice with fixed
resources, an on-demand (URLLC) slice, and a third dynamic (eMBB) slice is scheduled. In
[46] the URLLC slice that has UEs that require radio resources for communication with gNB
and D2D UEs is scheduled first. MVNO slices have UEs with different QoS requirements in
the same slice.

Time domain scheduling is the allocation of time to satisfy latency and priority require-
ments. The slices/UEs with latency, delay, and priority requirements (e.g., URLLC slice)
should be scheduled first or have less waiting time in the queue. The earliest deadline
first (EDF) scheduler [55] prioritizes UEs which required delay ends sooner. With slicing,
the URLLC slice has priority over others in [46], or in [43] fixed slices are first followed by
URLLC slices and then others.

Frequency domain scheduling is the allocation of frequency to satisfy the through-
put and data rate requirements in the SLA. The achievable throughput is usually calcu-
lated using Shannon’s formula [56] from the bandwidth and signal-to-noise ratio (SNR) or
signal-to-interference-plus-noise ratio (SINR). The throughput achieved depends on the
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number of bits transmitted/received within one PRB and the number of PRBs allocated.
The number of bits per PRB that can be transmitted depends on the selected modulation
and coding scheme (MCS), which in turn depends on the signal parameters, particularly
the SNR or SINR. The bandwidth required to satisfy the data rate requirement is primar-
ily calculated from the measured SINR or SNR. An example of a scheduler is presented in
[45], where allocated RBs are adjusted later using UE CQl and MCS values.

All schedulers discussed allocate RBs, that is, work in both the time and frequency
domains. Power management is closely related to the energy efficiency and the number
of bits that can be transmitted within a PRB. If the SINR is too low and a power headroom
exists, the transmit power can be increased; thus, a better SINR can be obtained, a higher
MCS can be used, and more bits can be transmitted within one PRB. If the signal quality
is good, then the transmission power can be reduced.

Schedulers for DL with transmit power management for BS are proposed in [13], [44],
[48], [52]. In [13] the BS transmission power is reduced when different slices use match-
ing RBs on adjacent cells. In [44] power management is in the optimization problem to
calculate the power allocation factor for each slice as a fraction of the available power
on the BS. Their utility maximization problem is formulated using stochastic geometry
and Ljapunov optimization. The simulation results show that a tradeoff exists between
throughput and delay in the slices. In [48] DRL is used to optimize the RAN configuration,
including the optimal transmit power on the BS towards each active UE for the RB. Sim-
ilarly, in [52] transmit power to the UE is calculated using joint subcarrier allocation as a
result of solving the optimization problem. In [53] the transmit power of the BS is equally
shared over RBs and used to evaluate the achievable rate via evaluation of the SNR and
MCS.

Schedulers for UL with transmit power management for UEs are proposed in [50] and
[51]. In [50] the UEs use eMBB and URLLC slices, the latter for gNB and D2D communica-
tion. Rate maximization with a delay constraint is formulated as a constrained MDP and
relaxed using the equivalent Bellmann equation. The results demonstrate the ability to
converge and improve UE performance. In [51] MINL stochastic optimization problem is
solved using Lyapunov optimization. An asymptotically optimal resource allocation im-
proves network capacity. A trade-off exists between the capacity and latency.

The optimization goal is to satisfy all SLAs with efficient resource usage. When radio
resources are insufficient to satisfy all requirements, the slices or UEs should be selected,
which does not have strict requirements and can be left unsatisfied. In this case, the
service reliability or UE drop-rate values in the slice template are used.

SLA satisfaction with efficient resource usage is achieved by solving the optimization
problem. Latency is attempted to guarantee using priorities and by solving the optimiza-
tion problem to minimize delay. In [45] the optimization goal is to maintain the latency
below the set threshold. The other optimization goal is to maximize the rate [42], [53],
throughput, or capacity [51]. Rate or throughput maximization is achieved by selecting
suitable RBs for UEs that can achieve maximum throughput. Different slices have differ-
ent requirements, thus minimizing the delay for one slice and maximizing throughput for
the other slice, which are defined as constraints of the optimization problem to maximize
utility [44]. Multiagent RL is used in [49] to find the equilibrium of RB allocation to mini-
mize the delay for URLLC slice and maximize the throughput for eMBB slice.

Efficient resource usage is the optimization goal in [43], QoS and spectral efficiency
in [48], and URLLC reliability and spectral efficiency in [52]. In [52] the spectral efficiency
maximization problem is relaxed to a convex optimization problem and solved by apply-
ing the Powell-Hestens-Rockafellar and branch-and-bound methods. Their simulation re-
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sults show that the eMBB and URLLC slice requirements are satisfied, and the spectral
efficiency improves. In [43] the dynamic slices have requested rate and requested guar-
anteed rate requirements. The first is served when more resources are available in the
resource-allocation cycle. This enables to serve more slices.

In [13] the number of RBs to be allocated to MVNOs has already been determined, and
the proposed algorithms determine which RBs are allocated to which MVNO to minimize
inter-cell interference. To increase the throughput in the slice, multiple RBs must be linked
(adjacent to each other), and the same RBs must be assigned to the same slice at different
Base Stations (BS) to reduce the interference between signals belonging to different slices.

The situation in which the resources may not be sufficient to serve all slices are con-
sidered in [53] with the following assumptions: URLLC UEs create bursts of small packets
and eMBB UEs create continuous traffic. Their proposed scheduler handles URLLC traffic
with priority and a constraint that at least one RB for each scheduling period is scheduled
for URLLC traffic to transmit at least one complete data packet. Each scheduled eMBB UE
can transmit the number of bits in each frame.

The resources to be scheduled can be located on a single cell or multiple cells/BSs. In
an unsliced network, there is a relationship between UE and gNB. The gNB serves cells
and the UE connects to the cell with the strongest signal. Resources of gNB are allocated
to the UE. This relationship is more complex in slicing situations. The gNB serves slices
and cells. A slice can be served by several gNBs in several cells. The slice uses the fraction
of the cell bandwidth. The UE can connect to the cell with the strongest signal but only
if a suitable slice for the UE is served by that cell. Therefore, after UE admission, the cell
bandwidth for the UE and the slice must be managed. The optimization over multiple cells
require cell cooperation.

2.2.2 Summary

The schedulers are capable of efficient radio resource allocation within a specific standard-
ized slice and a slice that serves the UEs with different QoS requirements. The schedulers
for RAN slicing can satisfy one to four different QoS requirements, and the number of op-
timization goals are one or two. Efficient bandwidth allocation indicates that the slice is
most of the time in the close-to-slice overload condition. In addition, if the bandwidth
can be allocated by the granularity of the RB to the slice, the slice will always be in a
close-to-slice overload condition.

2.3 Slice Life Cycle (Slice Provision)

2.3.1 Slice preparation and creation (provision)

First, the SLA between the slice provider and slice consumer is agreed upon. Then, the
agreed slices are designed and onboarded, and the network environment is prepared for
the slice. The result of the preparation is that the system contains a database (DB) of
possible slices and slice constituents.

After the preparation phase, the work with slice instances is initiated. These working
slices are automatically created, modified, and deleted according to the need and speci-
fied lifecycle of a slice instance. The architecture required for implementing the automatic
lifecycle of a slice instance is described in [57]. The RAN slice subnet has two types of re-
sources: physical and virtual resources. The physical resources considered are specific
hardware and frequency bandwidth. A specific hardware can use a specific frequency
bandwidth. A promising solution is implemented with points of presences (PoPs). PoP is
a geographical location that contains data centers and antennas that enable the use of
different frequencies to serve UEs in selected geographical areas. The slices are created
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or modified by deploying gNB VNFs to work using resources at DCs on PoPs and existing
gNB-RUs as PNFs in cell site PoPs. Cells use fixed BWPs that can be switched on or off as
a result of the slice LCM operation. For each cell, the slices it serves, and the fraction of
radio resources allowed for each slice is set up.

At the slice creation context, the slice provisioning is to provide a new slice if a new
slice is requested from slice provider. Slice provisioning is joint slice admission and slice
resource allocation on scheduling. This ensures that the SLA is guaranteed. The QoS pro-
visioning scheduler is only possible if slice admission is implemented [41].

In the slice preparation phase, a slice is described in the system. The slice design plat-
form demonstrated in [58] functions as part of a slice orchestrator. The [59] proposes
a slice design scheme that consists of slice descriptors such as slice size (count of RBs) to
meet the data rate requirement and slice shape (count of consecutive RBs to be allocated)
to meet the latency requirement of a slice. The traffic types considered are deterministic
aperiodic, deterministic periodic, and non-deterministic traffic.

To decide whether to create a new slice or scale up an existing slice, [60] proposed a
service admission algorithm that compares the cost of creating a new slice for the service
with the cost of using the existing slice for the service. First, the cost of satisfying the
requirements of a new slice is calculated. The cost is then calculated for each slice if it is
extended to fit the new requirements to the existing slice. The minimum cost determines
whether a new request is satisfied by the creation of a new slice or by using an existing
slice. If the operator-defined cost threshold is smaller than the slice cost, then a new
service is not admitted to the network.

Al/ML is used to predict resource requirements [61] or traffic [62]. In [61], big data
analytics (BDA) is used to predict slice resource requirements and to estimate if a new
slice request is accepted, then no service degradation will take place for incoming slice
request and already working slices. In [62], cell load is predicted by forecasting UE mo-
bility and traffic periodicity. The UE mobility is modeled using the self-similar least-action
human walk (SLAW) and the probability for the UE to belong to a specific cell. Traffic is
random, but is modeled to have periodic components. Slice requests are accepted within
the predicted overall capacity for future time window. Performance analysis shows a more
effective forecast if the observation window is larger; however, this requires more stor-
age and computing resources. When the future time window is increased, the predictions
become less accurate but require fewer resources. When a tenant’s UEs are spread over
fewer cells, the predictions are more accurate.

One solution is to consider provision queues if the resources for slices are not avail-
able now, but later. In [63] a queuing model is used for slice admission for impatient ten-
ants. Multiple queues are modeled, with request balking (reluctant to join the queue) and
reneging (leave queue after waiting). The results show that slice performance depends on
the admission strategy.

Slice instantiation, that is, the creation of a slice instance, is covered in [64] and [65].
The 3GPP management-based architecture, called the E2E slicer [65] uses 3GPP defined
CSMF, NSMF, and NSSMF. The authors evaluated the slice VNF instantation time in the
case of uncached, cached, and container images of the VNF. The results showed that im-
age caching and containers were the fastest to instantiate. Second, the UE attachment
time was measured, and an additional message exchange with NSSF added 36 ms. This
is acceptable performance. However, if the workload of the E2E Slicer reaches over 120
concurrent connections, the UE attachment time increases significantly, the NSSF work-
load needs to be monitored, and CPU resources should be added to save delay on UE
attachment. In [64] a framework was proposed for automatic slice creation that enables
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the creation of more than one slice per service vertical. The test platform emulates LTE
using OpenAirinterface with a FlexRAN controller. The results show that slice instantiation
delay does not depend on how many slices are requested, the delay of UE handover to
another slice does not depend on the number of slices exist and the UE attach time with
dynamic slice instantiation is less than 3 s.

2.3.2 Slice modification (performance assurance)

The prepared RAN network slice subnets can overlap the existing resources many times.
In the creation of the slice instance, it must be considered that resources are sufficient
for all running slices. The performance of the infrastructure and performance of each
slice must be monitored to gather information about resource usage and the fulfilment
of requirements. In [66], the KPIs to monitor, how often to collect data, and the recom-
mended thresholds for KPIs to detect the need for slice reconfiguration are presented.
This threshold-based approach is also used by [67]. For slices that detected a low load
(below the lower threshold) for a predefined time (more than one measuring cycle), a
decision to downscale (scale-in) is made to decrease BS resources. For slices that de-
tect a high load (above the upper threshold) for a predefined time, a decision to upscale
(scale-out) is made to increase the BS resources. The parameter values for lower thresh-
old, upper threshold and target load threshold for “breathe” of overloaded slice can be
defined manually or in future authors proposed they can be learned automatically using
decision trees in game theory.

Slice reconfiguration can be caused by a situation in which the infrastructure has to fit
a new RAN slice; then, the existing RAN slices must provide some of their resources to a
new RAN slice. As all slices must satisfy their SLA, the orchestrator selects slices that can
provide resources to the new slice without violating their own SLA. Another cause of slice
reconfiguration is the overload of one or more RAN slices. Slice overload can be detected
by NSSMF, which can then trigger the overloaded slice to be scaled up and other slices to
be scaled down. The other option of slice scaling is to handover the UEs in an overloaded
slice into another not overloaded slice as proposed in [68] for V2X. The process of deciding
what needs to be recond is complicated and time-consuming.

Slice provisioning includes slice admission with resource allocation. The slice descrip-
torsinlayers1(L1), 2 (L2), and 3 (L3) can be used to characterize the slice features, policies,
and resources in RAN nodes [69], [54]. The L3 slice descriptor specifies the capacity allo-
cation, radio resource management (RRM) policies, and configurations of radio resource
control (RRC) protocol. The proposed configuration parameters are Slice Authorized Ca-
pacity and Slice Allocation Priority. For scheduling, the L2 descriptor defines L2 configura-
tion parameters, such as slice scheduling priority and slice resource utilization (percentage
of overall resources to be allocated to the slice). The L1 slice descriptor provides informa-
tion regarding the radio resource structure of the cell.

A slice can be admitted to infrastructure (inter-slice admission) if resources are avail-
able. The slice admission decision depends on the resource availability. The resource
requirement is evaluated from the SLA, and a new QoS flow for the tenant can be admit-
ted if its SLA can be satisfied [70]. In [71] the UEs are admitted until sum-throughput with
the best potential spectral efficiency found.

The optimization goal of resource allocation is to allocate the least resources as possi-
ble and use them as much as possible, with all slice SLAs satisfied. When there are more
requests than existing resources can serve, then the acceptable requests must be chosen.
The optimization goals can be spectral efficiency, maximized throughput, and SLA satis-
faction. These objectives can be translated into profit (revenue) vs. loss, or reward vs.
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penalty, and maximize profit or reward and minimize loss or penalty. In [70] the proposed
admission control algorithm increased the overall throughput and profit by evaluating the
penalty for not accepting flow and the extra revenue for accepting flow over slice SLA.

The amount of resources is fixed; however, the throughput that can be achieved de-
pends on the radio signal quality, which can be considered stochastic in nature. The
stochastic optimization is used to maximize slice throughput: in [71] UEs are admitted
until sum-throughput with best potential spectral efficiency found, and in [72] the PRBs
are allocated to the UE that is able to achieve maximum rate from this PRB at this slot.

In [73] the two-time-scale resource allocation is proposed. The inter-slice resource al-
location includes resource reservation for groups of UEs (slices) with profit maximization,
and the slot length is one hour. The short timescale slot length is 1-5 s, and contains intra-
slice resource allocation under CSI uncertainty and traffic variation. The resource man-
agement lifecycle is one day to observe periodicity in UE traffic. To cope with stochastics
in RAN resources, [74] propose resource overbooking for admission control and resource
reservation to slices in a multi-operator core and shared RAN. Algorithms with resource
overbooking with an optimization goal to minimize cost (penalty - reward) are proposed
(one uses the Benders method; another heuristic algorithm uses knapsack problem solv-
ing). The simulation results show an increase of up to three times revenues increase com-
pared to resource non-overbooking.

Multiple slice types are considered for the slice provision in [75]. The SLA mapping
layer for joint slice admission and packet scheduler is proposed. The slices with strict
requirements, the constant bit rate (CBR) and minimum bit rate (MBR) slices, obtain UEs
admitted according to available resources, and the best-effort slice admits all UEs while
the UE dropping rate is below the threshold specified by slice SLA. Resources are first
allocated to the CBR slice, and the remaining resources are shared with MBR and BE slices
with iterations until all MBR slices have their SLA met. The network resilience to slice traffic
anomalies has been improved when centralized adaptation of slice traffic anomalies was
used. Similarly, in [76] UEs are grouped into GBR, constant bit rate (CBR), minimum bit
rate (MBR) UEs, and best effort (BE) UEs, and the UEs of each group are admitted with
different criteria. The neural network is composed with inputs of request arrival rates
and SINR parameters for each slice and slice control parameters. The output is KPIs for
each slice: admission rate, dropping rate, average throughput are predicted. The UEs
that request best-effort (BE) slices are all admitted to their slice, and if their active time is
longer than the specified threshold, then the UE is dropped. For constant bit rate (CBR)
slices, the UEs is admitted if the admission rate is above the threshold. For Minimum Bit
Rate (MBR) slices, the KPIs should be below the average throughput and admission rate.
A neural network consisting of three hidden layers with 50 nodes in each layer is used to
predict the traffic.

For increasing the automation the slice life cycle is monitored continuously. For run-
time slice LCM the continuous loop of pre-adaptation, pre-processing, multiplexing, allo-
cation, and monitoring phases is proposed in [77]. This works on O-RAN’s architecture.

2.3.3 Slice deletion

A slice will be deleted if its configuration is deleted from the slice database. The slice in-
stance is deleted when it is decommissioned. The slice does not participate in admission,
resource allocation, and scheduling, and these algorithms can work faster. Depending on
the slice LCM KPIs proposed in [66], such as the slice deployment time and slice termina-
tion time, the decision to delete the slice when it is not needed is made.
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2.3.4 Summary

The slice instantiation delay is achieved less than 1 min in [78] and approximately a minute
in [64]. The slice handover delay is 2 s, which was achieved in [64]. The automation
enables a significant decrease in the duration of slice LCM operation.

The management system manages the services and slices, and guarantees slice SLA
satisfaction. The LCM determines what needs to be done if the SLA is not met. The RAN
slice subnet is a logical network; thus, FCAPS management is applied. In the slice prepa-
ration phase, possible slices with RAN slice subnets are defined. At runtime, the slice
instances must fit into the infrastructure and their SLAs are satisfied. When there are
more slices than infrastructure is able to serve, then the decisions on what slice instances
to run, are needed. The optimization goals are the efficiency of resource usage, provide
maximum overall throughput, satisfy SLAs of all slices, and maximize revenue. The latter is
a universal goal, as other goals can be transformed into monetary values. Performance is
the key to trigger the slice modification LCM operation, and the slice configuration deter-
mines the NFs and resources allocated to the slice. Slicing enables dynamic modification
of the network configuration to satisfy the slice SLA.

2.4 Subslicing

In the literature, the term subslice is often referred to as slice subnet in core, RAN, or other
domains. | use the term subslice for a smaller part of the slice, which contains a subset of
slice resources and subset of slice UEs. In 3GPP TS 23.501[15] the slice identifier consists of
two parts, slice/service type (SST) and slice descriptor (SD). The slices, with same SST and
different SDs, can be considered as subslices, if they share the radio resources (band).
In [79] the subslices are slices with same SST and different SD. The UE can connect to
multiple slices. They evaluated the performance in core, and RAN was simulated. RAN
had unlimited resources and physical layer not implemented, which means ideal radio
quality and immediate transmission in the RAN is assumed.

The work in [80] proposed an algorithm to calculate how many UEs can be admitted
to the subslice to achieve optimal subslice throughput. The number of UEs to admit is
calculated based on optimal UE throughput, considering radio signal path loss, fading and
shadowing. They report average cell throughput and signal-to-noise ratio many times
higher than baseline results. However, the input UEs had variable requested rates, such
that the requested sum rate for slice can be in the range of below and above theoretical
capacity of 80 MHz BWP.

In [81] the UE is connected to multiple subslices. The subslices are a logical grouping
of services with similar SLA values (throughput, delay, etc). The purpose is to maximize
energy efficiency per UE per service. Their optimization results show that on average, 4 or
5 services are in one subslice. However, similar to previous work of the same authors, the
requested sum rate of a slice is variable between capacity underload and overload. The
usage of MIMO is not known, but still the achieved cell throughputs seem approximately,
15000 times higher than theoretical maximum throughput 1.33 Mbps per one RB (15 kHz
subcarrier spacing).

In [82] authors propose to optimize services into subslices with maximum capacity and
throughput. Two slices considered, which contain up to 40 and 91 subslices, respectively.
The goal is the optimal service allocation for UE to achieve maximum capacity of the slice.
System throughput was at least 5 times higher than compared resource allocation meth-
ods.
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In [83], networks (packet core, core cloud, edge cloud, RAN) are divided into smaller
NSSls (network slice subnets called subslices) and each UE selects many suitable subslices
to use. UE creates a slice which contains all selected subslices. If UE uses multiple appli-
cations, it can attach to e.g. multiple core and edge subslices. This architecture enables
UE to be connected to multiple slices simultaneously, which has been an open issue in
research. They proposed a subslicing method where a subslice in a RAN is treated as a
virtual cell that includes multiple physical cells. This approach aims to improve the slice
performance by reducing the signalling required for cell handovers within the RAN sub-
slice. Simulations are done with RAN subslices, called virtual cells, which are in radius of
number of physical cells. Performance improved because signalling required to perform
physical cell handover, caused by UE mobility, has reduced. However, the performance im-
provement is indirect, the latency and throughput can be improved because UE handover
is done faster.

The work presented in [84] proposed a promising subslicing method. First, the UE
features were selected using a support vector machine (SVM). Secondly, the UEs were
clustered by these selected features using k-means into several numbers of clusters. The
quality of cluster was evaluated by using the Silhouette coefficient, and the best number of
clusters was selected as the number of subslices. However, this approach did not consider
the performance when creating the subslices, which can lead to a poor performance for
small subslices. Their simulations were conducted using Android UEs in Wi-Fi, and the
performance of 5G-NR RAT was not evaluated. The performance improvement is reported
in decrease in bandwidth consumption, improved load balancing, latency, throughput and
energy efficiency.

The bandwidth subpartitioning has some works which are related to subslice band-
width allocation. The flexible placement of allocated radio resources on resource grid is
considered in [85], [86] and for multicell in [87]. The objective is to efficient bandwidth
use and move used BWPs close to each other to save bandwidth. However, the BWP size
from the slice performance perspective is not considered.

2.41 Summary

Network slice subnets are often called as subslices. Sometimes slices with same SST but
different SD are called subslices. RAN subslicing in the context of this thesis is a slice
bandwidth subpartitioning and slice UE grouping. One research article has done similar
subslicing. They focused to group UEs by their requirements and to efficient allocation of
multiple resource types in RAN.

The RAN slice performance dependence on RAN slice BWP size is not researched in
context of subslicing for slice performance improvement.

2.5 5G RAN NR Emulators and Simulators

2.5.1 Emulators

The emulator duplicates 5GS software and hardware features. The hardware is emulated
by software defined radio (SDR) hardware and software is 5G RAN emulator. For research,
the small-scale emulated RAN is needed to study gNB-UE links and RAN system with slices.
This can be implemented with SDR that must be compatible to 5G standards to enable
emulated one or multiple UEs or Commercial off-the-shelf (COTS) UEs to connect to em-
ulated gNB-RU or multiple gNB-RUs. The gNB nodes should support controlling by RAN
controller such as RIC and provide data used to FCAPS management. The overview of
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Table 3: 5G RAN emulators

RAN
Pa- Supported | slic- Open Suppor
Name | per, | Features SDR hard- | ing License | sour-| ted
year ware sup- ce (0]
port
O- .
RAN 5GS, network slic-
soft- ing in CN and RAN, | Commercial Apache
cloud, gNB virtual- | O-RU hard- | Yes P Yes | Linux
ware N i 2.0
for ization and splitting | ware
RAN into CU, DU and RU
NSA and SA gNB, .
gi‘f”' (gg), | ©NB. 4G and 56 | Ettus USRP \é\zg‘ g:\l')”c
Inter- 202’0 UEs, 4G core, 5G | B210, X310 con- License Yes Linux
core, COTS UE | and N310
face . troller | V1.1
connection
4G core, 5G core, Ettus USRP AGPLv3
B2x0/X3x0
srsRAN [89], | eNB, gNB, 4G UE, families No and Yes | Linux
2016 | 5G UE, COTS UE ! com-
connection BladeRF, mercial
LimeSDR
free5G-| [90],| 5G UE, cell search, Ettus USRP Apache .
. B210, N210 | No Yes Linux
RAN 2021| band scanning 2.0
and X310

5GS emulators and software is given in [91]. The information about mature 5G emulators
such as O-RAN software for RAN [92], OpenAirinterface [93] and srsRAN [94] and one new
emulator free5GRAN is included in Tab. 3.

O-RAN Software community has full stack of software [92] to emulate/deploy 5GS.
Current latest release is G release (December 2022) has basic RAN slicing support. The
gNB has been split into three parts, O-CU as central unit, O-DU as distributed unit and
O-RU as radio unit. The control plane and user plane are separated in central unit as O-
CU-CP communicates in CN with AMF and O-CU-UP communicates in CN with UPF. The
SMO and near-real-time RIC control all RAN entities via interfaces O1 and E2 respectively.

The OpenAirinterface (OAI) [93], presented in [88] is an open source project to imple-
ment LTE and 5G NR on general purpose computers and SDR hardware. The gNB, a 5G
base station, is implemented for EN-DC (E-UTRA-NR Dual Connectivity) non-standalone
(NSA) mode. The base station is split into CU (implements RRC and PDCP layers), DU (im-
plements physical, MAC and RLC layers and RU (antenna). The interfaces between CU
and DU is F1 defined by 3GPP, inside DU the interface between physical and MAC layer is
Functional Application Platform Interface (FAPI). The DU is split into DU and RU by O-RAN
7.2 split option. The SDR hardware used are Universal Software Radio Peripheral (USRP)
B210, X310 and N310. The gNB supports 3GPP Rel-15 physical layer, uses static scheduler
with a single preconfigured UE and statically allocated resources. A "noS1" mode to work
without the support of core network is implemented. In the core 3 main NFs are in devel-
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opment - AMF, SMF and UPF and interfaces to support minimal functionality of 5G. COTS
UE Oppo Reno 5G phone was used successfully to connect gNB. 5G core implementation
is work in progress [95].

Although srsLTE, presented in [89], implements LTE, it is widely used to evaluate pro-
posals for 5G. The srsLTE, is an open source LTE-compliant platform for SDR to experiment
with LTE or LTE and Wi-Fi coexistence in unlicensed bands. In 2022 srsLTE has been re-
named to srsRAN and it has LTE Rel-10 compatible UE with features up to Rel-15 and eNB
with Rel-10 aligned with 5G non-standalone support. The lightweight implementation of
LTE core, srsEPC is available. So srsRAN is now free open source full suite of LTE and 5G net-
work [94]. The srsRAN supports carrier aggregation, multicast/broadcast traffic, NB-IoT,
can run on Raspberry Pi, can receive and decode c-V2X signals, connect COTS UE to eNB
and enables to simulate IQ samples between UE and eNB without physical SDR hardware.

For 5GC implementation a free5GC [96], one lightweight free open source software
has been used. The 5G RAN emulator named free5GRAN, presented in [90], is developed
for studying 5G RAN. It currently has UE implemented to be connected with SDR hardware
and is able to detect 5G NR cell and decode some signals.

For a conclusion, there exist strong 5GS emulation platforms such as O-RAN software,
OpenAirinterface and srsRAN. The latter two do not support RAN slicing, but necessary
MANO entities and RAN controllers can be developed on top of those emulators.

2.5.2 Simulators

The simulator mimics the behaviour and configuration of real 5GS. The simulators are
mainly needed for radio network planning to estimate number, location and configuration
of RAN nodes [97]. The coverage, capacity and cost are evaluated.

Network
simulator

~

System
level
simulator

End-to-end
simulator

Link level simulator j/

Figure 7: Types of simulators

The different types of simulators are shown in Fig. 7. The simulator types are system
level simulator to evaluate networking issues and link level simulator to evaluate the link
issues. Hybrid simulator combines both link and system level simulators. End-to-end (E2E)
simulator simulates the communication channel from transmitter to receiver. Network
simulator mimics the whole network.

The simulator suitable for evaluation of RAN slicing solutions should not just be ca-
pable to simulate 5G with its variety of verticals and use cases, but also be capable to
simulate simultaneously working multiple logical networks on top of simulated physical
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infrastructure for MANO of the both slices and infrastructure. The relevant KPIs for RAN
slicing are performance KPIs. The simulator that enables to simulate RAN slicing in 5G
should be able to create delays and additional control data stream related to RAN slicing.
In addition to performance of each slice, the overall performance data is needed.

Simulators can be simpler than emulators. The packet level simulation is too slow to
simulate in real time for example the mMTC traffic with short packets and long transmis-
sion cycle. Often the whole core is not needed when only RAN is in interest. These sim-
ulations can be replaced statistical models of mMTC traffic and statistical model of delay
caused by core NFs [98].

There exist one slicing simulator and several 5G simulators that are promising to enable
RAN slicing in future. Comparison of simulators is in Tab. 4.

The network slicing simulator Slicesim [106] enables to define slices with slice settings,
BSs and amount of resources for each slice, UE settings and UE mobility patterns. The
output is a graph with overall network statistics. This is a simple RAN slicing simulator,
that enables to simulate slices of RAN resources present on RAN BSs. The output data
gives overall statistics, but not per slice statistics.

The well-known network simulators ns-3 and OMNeT++ have extensions and libraries
that enable to simulate 5G. The 5G LENA [107] is a ns-3 extension to support 5G NR [103]
and NFV and SDR on physical layer [108]. The support of RAN slicing is currently imple-
mented by BWP management. The other ns-3 based simulator, 5G K-Simulator [109], pre-
sented in [102] includes SDN architecture for virtualization and mmWave module. RAN
slicing is not supported; however, the virtualization makes it promising. The simulation of
disaggregated gNB placed on multiple PoP DCs enables to evaluate utilization of comput-
ing, storage and networking resources of gNB, slices and overall resources.

Simu5G, introduced in [105] is an OMNET++ library to simulate 5G gNB and 5G UE,
however no slicing simulation is implemented. But its ability to support real-time emula-
tion makes it useful to be part of the emulation system of network slicing in 5G.

The system level simulator Wireless Simulator Evolution (WiSE) for 5G mobile net-
works is proposed in [101]. It can simulate 5G verticals such as eMBB, URLLC, mMTC.
If multiple simulators are running simultaneously and a framework on top of it collects
statistics, then a slicing simulator can be composed. Another system level simulator called
5G-air-simulator [110] proposed in [104] is useful to watch as RAN slicing is planned for fu-
ture work.

The Matlab-based Vienna 5G Simulators contain system level [99] and link level [100]
simulators enable to simulate multiple BSs, UEs with movement and evaluate perfor-
mance of large networks. However, the slicing in RAN is not supported. The Matlab has a
5G Toolbox [16] with link level, system level and E2E simulators but no RAN slicing imple-
mented.

For RAN slicing support, simulators need to implement a gNB with dynamic resource
partitioning to slices and UE association with slice and base station. In addition to overall
performance data, the slice and UE performance data should be available as output. If
more resources and time available one should consider emulating the 5G RAN with slicing
enabled as most of the gNB and UE consists of software and by modification of software
the new features can be implemented and evaluated.
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Table 4: Simulators

Pa- | Type of Slicing Open Suppor
Name per, | simula- Features sup- Licence | sour-| ted
year | tor port ce oS
Proprie- Win-
Vienna System Large scale networks tary,
[99], . . dows,
5G level with multiple types of free for .

. [100] . . No Yes | Linux,
Simu- 2018 and link | BSs and moving UEs for acade- Ma-
lators level performance evaluation mic OS

use
Supports
Multiple BSs and UEs, | eMBB, . Win-
WISE [101], System scenarios, ITU-R channel | URLLC Proprie No dows,
2018 | level tary .
models and Linux
mMTC
56 K- :-el?/(lf:l Network simulator Free
simu- [102}; and based on ns-3; BSs, UEs; No no Y Yes | Linux
2018 PHY, MAC, RLC, PDCP, .
lator system license
RRC;
level
Win-
. . dows,
Slicesim | 2019 Discrete Slices, UEs, BSs Yes MIT - Yes | Linux,
event cense
Ma-
cOS
Imple-
System 5G NR extension to ns-3 | mented
>G [103] level tllzti,\lr? g,\é?/\sl’PUE:r;asrf:eedr_ II.ZKINP GPLv2 Yes Linux
LENA 2019 | and link ) g ’ license
level multiple numerologies; | man-
PHY, MAC, RLC, PDCP. age-
ment
5G-air- Event PHY, MAC, RLC, PDCP; | Planned

. [104]] driven cells, sectors, UE mo- | as fu- | GNU .
simu- . Yes Linux
lator 2020| system bility, path loss models, | ture GPL

level MIMO, NB-loT work
Svstem OMNeT++-based model
Ieyvel library for 5G; gNBs, Win-
[105]] and link UEs; PHY, MAC, RLC, dows,
Simu5G PDCP; channel model, | No LGPL Yes | Linux,
2020| level; . .
discrete carrier aggregation; Ma-
UPF, EN-DC; D2D, MEC; cOS
event . .
real-time emulation
Matiab || 0T dows
5G ) 5G NR simulator of PHY Proprie- .
Tool- link layer signals No tar Yes | Linux,
box level y & y Ma-
and E2E cOS
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2.5.3 Summary

In implementations of the O-RAN-compatible architecture, it is preferred and developed
to be interoperable with 3GPP/ETSI management system architecture. O-RAN has stan-
dardized open interfaces as this enables to deploy architecture with multivendor compo-
nents.

The OSM concentrates more on service and VNF management, and TN is left out of
scope. The SMO, ONAP and Aether all use architecture defined by O-RAN. ONAP has de-
veloped explicit TN that connects all nodes of disaggregated RAN, into TN slice subnet.
The ONAP is the most flexible to enable each of 3GPP’s management function to work as
native or external with its implementation.

The RAN controller is the node that directly controls the RAN nodes to configure RAN
infrastructure to enable E2E network slicing in RAN domain. RAN controllers have built-in
intelligence that can be implemented with microservices and applications. To implement
network slicing in RAN, the two-level schedulers are controlled by RIC. All RICs fit into
O-RANSs architecture, with open interfaces A1 on NBI and E2 on SBI.

All RAN emulators discussed support SDR hardware and are able to work without SDR
hardware to simulate physical layer of 5G NR and LTE. Both RAN simulators and emulators
are needed for evaluation of different system components at the other end of the interface
to RAN.

2.6 Conclusion

In this chapter, an overview of the network and RAN slicing architecture in 5G was pre-
sented. In order to ensure efficient resource utilization while maintaining QoS require-
ments, resource allocation plays a critical role.

The resource allocation and scheduling for RAN slicing has been extensively researched.
The efficiency of resource utilization, bandwidth allocation, and energy efficiency from
one side and the SLA satisfaction on the other side can be achieved by optimized resource
allocation. This leads to the close-to-slice-overload situation. The slice resources can be
adjusted by slice LCM while the slice instance is running and during the modification phase
of the slice life cycle.

Radio resources are allocated by using RAN schedulers. New schedulers can satisfy
both throughput and delay requirements for same and different slices/UEs. The slice BWP
size depends on the amount of radio resources that required to be allocated. The slice
performance dependence on the slice BWP size is not investigated, moreover it is not
considered affecting the slice performance.

The service categorization into verticals enables to allocate different resources to dif-
ferent types of services. Similarly, the subslicing tries to group UEs into subslices by their
SLA QoS requirements. However, it has not been investigated whether other UE features
could be used for grouping UEs into subslices.

There are several 5G NR simulators and emulators available, however only a few sup-
port RAN slicing.
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3 Evaluation of the RAN Slice Performance

In this chapter, the performance dependence on a slice or subslice size is investigated. In
the context, the slice can contain subslices, but if the slice does not contain subslices, the
performance dependence on slice size is the same as for subslice. In my publication 1[1] it
was discovered that slice performance depends on the number of subslices within a slice.
The subslices are smaller if the slice is split into more subslices. This leads me to further
investigate the subslice performance dependence on the subslice size.

Subslice performance was evaluated for all possible subslice sizes, and two datasets
were collected. Dataset 1 was used to propose methods to improve slice performance
by subslicing in my publications 2 [2] and 3 [3], and dataset 2 was used to find the best
subslice sizes and training data labeling for subslice decisions in my publication 4 [4]. If
the performance of 5G-NR network depends on BWP size, then we can use subslices of
appropriate size to improve RAN slice performance on limited slice BWP. These results are
the base for development of methods proposed for subslicing in next chapters.

3.1 Simulation Planning

The goal of bandwidth allocation optimization is resource usage efficiency and satisfac-
tion of SLAs. Each RB allocated to a subslice must be consumed by a UE to evaluate the
performance of a subslice of any size.

3.1.1 Simulation Tool
The tool to simulate subslices is MATLAB 5G Toolbox system-level simulation tool called NR
Cell Performance Evaluation with Physical Layer Integration [16]. The performance depen-
dence on BWP size lies on the physical layer. Channel quality indicator (CQl) is measured
using demodulation reference signals (DM-RS) and channel state information reference
signals (CSI-RS). Based on CQl, the modulation and coding scheme (MCS) is selected from
table 5.2.2.1-3 from 3GPP TS 38.214 [111]. From MCS, the transport block size (TBS) is cal-
culated as in Section 5.1.3.2 (DL) and 6.1.4.2 (UL) of 3GPP TS 38.214 [111].

The user needs to specify the BWP and UEs. The results are collected from simulation
logs and metrics.

3.1.2 Simulation Time

The radio resources do not have 1:1 mapping to achieved rate, because radio signal quality
has stochastic nature. In [66] it is recommended to collect performance data for 30 s as
base for evaluation.

The simulation time of 30 s for a slice of maximum size serving a UE per RB takes up
to one week on computers with specification of i5-4570, CPU @ 3.20 GHz, 8 GB RAM. To
simulate one second of a slice working, the simulation takes 12-14 h.

The simulation time 1s (100 frames) is selected as a tradeoff between time it takes to
simulate and quality of the achieved results.

3.1.3 Subslice Sizes
All possible subslice sizes in granularity of one RB in frequency scale are simulated.

The minimum 5G-NR BWP size requirement is not specified in 3GPP standards. In [112]
it is claimed that if the BWP is smaller than 20 physical RBs, then the different control
blocks can puncture each other and increase the coupling loss in 5G NR. This degrades
the performance for UEs. From this, it can be concluded that larger BWPs are better. But
for the UE, the smaller bandwidth to use, the more energy efficient it is [113].

42



The maximum subslice size is 275 RBs. This is 50 MHz, if subcarrier spacing is 15 kHz [9].
If a specific BWP is used, then its maximum size is the maximum subslice size.

In MATLAB, it is possible to simulate subslices in size of 4-275 RBs. For each RB allo-
cated, the UE is admitted which is able to consume the RB by its requested rate.

3.1.4 Carrier Frequency
For dataset 1the carrier frequency is 3 GHz, an arbitrary frequency in FR1.

For dataset 2 the real band from FR1is used, n28 (FDD, UL 730-748 MHz, DL 758-803
MHz) [9], subcarrier spacing is 15 kHz thus maximum subslice bandwidth is 250 RBs. The
band n28 can be used for both machine to machine (M2M) loT and vehicle to everything
(V2X) service types.

3.1.5 UE Requested Rates
To calculate the requested rate for UE to be able to consume the RB, the well-known
Shannon’s formula [56] can be used.

C=B-p, (1)

where C is the channel capacity in bps, B is bandwidth in Hz and p is spectral efficiency in
bps/Hz.

In 3GPP TS 38.214 [111] the spectral efficiencies for 5G-NR are shown. The theoretical
maximum spectral efficiency for DL is 7.4063 bps/Hz as shown in table 5.1.3.1-2 and for UL
is 5.5547 bps/Hz as shown in table 6.1.4.1-1. Considering the subcarrier spacing 15 kHz, the
maximum theoretical capacity of one RB, with bandwidth 180 kHz, is 1.33 Mbps for DL and
1.00 Mbps for UL.

Simulation results in my publication 1 [1] show that if each UE requests the 50% of
theoretical maximum rate of RB, then the allocated RBs are consumed in close to slice
overload at maximum slice size without subslicing.

3.1.6 UE Packet Sizes
Typical packet size examples for verticals are 1500 Bytes for eMBB, 160 Bytes for URLLC
and 40 Bytes for mMTC vertical [24], [25].

Packet sizes of 1500, 500, 15, 50 and 40 Bytes were selected for simulations.

3.1.7 UEBLER
The UE position can be set in 3-D space, where gNB is located in coordinates (0,0,0). By
setting the values of x-coordinate, the distance from gNB can be set.

The distance has the effect on signal quality, which has the effect on BLER. Thus, by
setting UE’s position, | can affect its achieved BLER in the simulations. However, the MCS
is selected to target the UE BLER below 0.1. On the other hand, the UE distance alone
does not determine BLER, but used BWP size has its effect on UE BLER as well in addition
to channel characteristics.

3.1.8 Other Settings
Other simulation settings are shown in Tab. 5. | will not evaluate the scheduler and select
the common scheduler Round Robin. This scheduler suits for a group of UEs with similar
requested rates and BLER [41].

The simulation is run once because | do not prove that the 5G-NR performance is sim-
ilar to this but show what can be done if the 5G-NR performance is similar to this. The
proposed methods and algorithms presented in this thesis are based on these simulation
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results of slice performance dependence on the slice BWP size. If the actual RAN slice
has a different slice performance dependence on slice BWP size, the new training dataset
must be collected and labeled for the NN described in Section 5.

Table 5: MATLAB Toolbox settings

Parameter Value

Channel model (for both UL and DL) CDL-C

PUSCH preparation time for UEs 200 us

Logical channels per UE 1

RLC entity type UM bidirectional

Duplex mode FDD

Scheduler strategy Round Robin

Length of scheduling cycle 1frame

RB allocation limit UL same as RBs for subslice

RB allocation limit DL same as RBs for subslice
Simulation time 1s

Subslice simulation tool from MAT- | NR Cell Performance Evaluation with Physical
LAB 5G Toolbox Layer Integration [16] R2021b

3.1.9 KPIs to be Collected

For performance evaluation, the utilization of any resource is the KPI [66]. | collect values
of subslice RB utilization in UL (utilUL) and sublsice RB utilization in DL (utilDL). The used
RBs are counted and utilization is calculated as the ratio of used RBs to allocated RBs.

The throughput is one KPI, often used. However, | collect goodput, that is application-
level throughput, to evaluate the transmitted useful data without packet headers and
retransmissions. In MATLAB R2021b implementation, the throughput contains all retrans-
missions, while goodput does not. Packet headers (RLC header is 4 bytes) are counted in
both throughput and goodput. To make the goodput results comparable for all subslice
sizes, the goodput per one RB is calculated by dividing subslice goodput to number of sub-
slice RBs. Goodput KPIs are goodput per one RB in UL (gdp1UL) and goodput per one RB
in DL (gdp1DL).

The subslice BLER is the average of all UE BLERs in UL (blerUL) and in DL (blerDL),
respectively.

In addition, the spectral efficiency was measured, but it follows the pattern of goodput
per one RB and thus not collected. The buffer size at the end of simulation can measure the
delay indirectly. Delay is another relevant KPI along with throughput/goodput; however,
more engineering work is required to obtain the latency or delay values from the MATLAB
5G-NR simulator, and it was not collected.

3.2 Results

| present two datasets which are used as subslice performance dependence on subslice
size to propose methods for decisions in MCCL in Chapter 5. The results are shown in
Fig. 8; left column contains dataset 1, right column contains dataset 2, both are described
in following subsections.

44



1 1
— =
5 09 5 0.8 R
= 08 = 0.6 N
= 0.7¢ I \ ! = !
4 37 73 145 275 4 37 73 145 250
(a) Bandwidth utilization in uplink (utilUL) (b) Bandwidth utilization in uplink (utilUL)
1 ‘ : 1
A w3
2 09F f - 1 209 1
5 0.8 | 1 Fo. | ]
4 37 73 145 275 4 37 73 145 250
(c) Bandwidth utilization in downlink (utilDL) (d) Bandwidth utilization in downlink (utilDL)
I [ e ey e 7 Q
= N ] 2
= 0.5 W = =
50 ! ! \ 50 0 L il
4 37 73 145 275 4 37 73 145 250
(e) Goodput per one RB in uplink (gdp1UL) (f) Goodput per one RB in uplink (3dp1UL)
- 1F W ] — ]
a a
2 0.5 r@ = 0.5 ]
o) e
an O on 0 A | | | |
4 37 73 145 275 4 37 73 145 250
(g) Goodput per one RB in downlink (3dp1DL) (h) Goodput per one RB in downlink (3dp1DL)
0 - 0 -
. 191 E E R 191 s
2 10 M 1 g0 -
= 1072 %,j 4 =2 1072 L | E
4 37 73 145 275 4 37 73 145 250
(i) Slice BLER in uplink (blerUL) (j) Slice BLER in uplink (blerUL)
100 T T E
2 107! — 7
B 1072 T 1 3
© 1073 EF \ \ 5 © ! \ I E
4 37 73 145 275 4 37 73 145 250
Subslice size in RBs Subslice size in RBs
(k) Slice BLER in downlink (blerDL) () Slice BLER in downlink (blerDL)
—— 1500B — 500B — 150B — 50B 40B ‘ ‘ —— Good-BLER —— Medium-BLER —— Poor-BLER ‘

Figure 8: Subslice size simulation results. Left column contains dataset 1 from my publication 3 [3],
right column contains dataset 2 from my publication 4 [4].

3.2.1 Dataset 1

This dataset has carrier frequency for BWP start selected arbitrary, 3 GHz. The maximum
subslice size is 275 RBs. UEs are expected to achieve good BLER with the distance from
gNB is set in range of O to 174 m according to simulation trials. The requested rate for
each UE is 500 kbps in UL and 667 kbps in DL. Dataset contains 5 sub-datasets where the
requested rate is served using packets in sizes of 1500, 500, 150, 50 and 40 Bytes.
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3.2.2 Dataset 2

This dataset uses 3GPP band n28, its maximum size is 45 MHz (250 RBs, subcarrier spacing
is 15 kHz). This can be used for the mMTC or V2X vertical. Each UE requests 200 kbps in
both UL and DL using packet size of 40 Bytes. Dataset contains 3 sub-datasets where the
UE BLER is expected to be achieved good, medium and poor by setting UE distance from
gNB in range of 1-250 m, 1000-1250m and 6000-6250 m, respectively.

3.2.3 Findings
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Figure 9: Performance zones based on slice size and performance.

From the results shown in Fig. 8 it can be seen several performance zones. Small sub-
slices, in size of 4-36 RBs are in Zone 1. Within this zone there are three distinct perfor-
mance zones, where the BLER has great differences: in Zone 1a the BLER is high, in Zone
1b, the BLER is low, and the BLER has intermediate values in Zone 1c, see Fig. 9a. The
goodput is low in both zones 1a and 1b, but it starts to increase in zone 1c. Utilization is
high, with low peaks on zone boundaries. Other performance zones are shown in Fig. 9b.
The Zone 4 is a high goodput zone, but only if UE BLER is good. The Zone 3 is a zone of
high goodput, but BLER is lower. The Zone 2 is the best utilization zone with a reasonable
goodput.

The more detailed overview of the ranges in KPI values in percentages is given by
Fig. 10. By selection of the size of the subslice the utilization in UL can be changed up
to +26% and utilization in DL up to £12%. The utilization does not change much for
larger subslices because it is close to slice overload, as was evaluated at the selection of
UE requested rates (see Fig. 10a and 10b). The goodput per one RB in the subslice can
be changed by up to +46%. Similar to utilization, the goodput changes less in Zones 2, 3
and 4, except if UE BLER is other than good (see Fig. 10c and 10d). The average BLER of
subslice UEs can be changed by up to ££50% by selection of the subslice size. The highest
BLER is in Zone 1a, and the lowest BLER is in Zone 1b. The BLER changes the least amount
in Zone 4 (see Fig. 10e and 10f).

The dataset 1 performance depends on used packet size as follows. With smaller pack-
ets, both utilization and goodput are higher. BLER does not depend on packet size. The
dataset 2 performance depends on UE BLER as follows: If UE BLER is higher, then utiliza-
tion is higher and goodput is lower.

I investigated the cause of poor performance of small slices in both 3GPP TS 38.214 [111]
and MATLAB implementation of 5G-NR. Smaller BWP has less reference symbols to use for
channel estimation and channel is not estimated correctly to select proper TBS. If channel
is better than estimated, then too small TBS is selected and achieved rate is low. If the
channel is worse than estimated, then block error occurs. The performance pattern de-
pendent on BWP size can be repeated if average MCS of UEs is calculated for each BWP
size and excluding MCSs for first 3 slots when CSlI is not available.
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3.3 Conclusion

In this chapter, the performance dependence on slice or subslice size was investigated.
The subslices of all possible sizes were simulated using MATLAB 5G toolbox tool. For each
RB allocated, the UE is admitted which is able to consume the RB by its requested rate.
The utilization, goodput per one allocated RB and BLER were evaluated for both UL and DL.
By selecting the subslice size, the utilization can be changed by up to 26% in UL and 12% in
DL, the goodput per one RB can be changed by up to 46% in both UL and DL, and the BLER
can be changed by up to 50% in both UL and DL. The subslice performance dependence
on subslice size is documented in this chapter for next contributions.
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4 RAN Subslicing Algorithms

To perform subslicing | need to group UEs into smaller groups and divide slice bandwidth
between these smaller UE groups. In the state of the art it is not known how the UE group-
ing into subslices affects slice performance. The subslicing does not create any new RBs,
thus the overall RBs should be divided to UE groups such that groups which need more
RBs will get more, but groups which have sufficient RBs, will not lose significant number
of RBs. Otherwise, the UEs with poor performance will improve their performance in sub-
slices at the cost of UEs with good performance. In any case, this cost should not be too
high.

In the previous chapter, it was discovered that small subslices exhibit poor perfor-
mance. In this chapter, the proposed subslicing algorithms should prevent to create too
small subslices. The subslicing algorithm called user clustering with bandwidth allocation
(UCWBA) is based on dataset 1 and published in my publication 2 [2]. The subslicing al-
gorithms called dynamic subslicing by rate (DSbR) and dynamic subslicing by BLER (DSbB)
are based on dataset 2 and published in my publication 4 [4].

4.1 Minimum Subslice Size Requirement

Clustering is a grouping of a set of objects by their similarity.

The minimum subslice size requirement is the minimum subslice size in RBs which can
achieve a reasonably good performance. For UE clustering, it needs to be converted to
minimum cluster size.

If all UEs request the same rate, then the minimum subslice size, S,,;, can be converted
to minimum cluster size, C,,;, using the equation:

NWE)
Cmin = ’VSmin : ]\](RB)-‘ 3 (2)
where NVE) is the number of slice UEs and N®B) is the number of slice RBs.

If UEs in the slice request different rates, the requested sum rate is used. The slice
requested sum rate is a sum of requested rates of the slice UEs, and it is used to calculate
the cluster minimum requested sum rate, R,,;, as follows:

R)
Rmin = \‘Smin : AN(RB)J ) (3)

where R®) is the slice sum rate. When the sum rate of UEs in the cluster is greater than
the minimum requested sum rate, then this cluster has sufficient number of UEs.

In subslicing algorithm, if RBs are allocated proportional to the cluster BLER, then N
is the number of slice RBs, which are allocated initially to the subslices either proportional
to the number of UEs or proportional to the sum rate.

(RB)

4.2 UE Clustering

The purpose of UE clustering is to have multiple smaller groups of slice UEs. The UEs in
one group do not need to be similar to each other (if it is not possible), but the size of
the UE group must be sufficient to allocate the number of RBs as subslice minimum size
constraint.
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The purpose of the clustering algorithm is to group similar objects into the same clus-
ter. For subslicing, the first objective is to divide the slice UEs into groups with sizes not
less than a size constraint and the second objective is to group similar UEs in the same
group as possible.

The k-means [114] is a well-known clustering algorithm based on centroids. Centroid
is in the center of the cluster and its location is calculated as the mean of all data points
in the corresponding cluster. Initially, the locations of centroids are random. The k-means
algorithm consists of three steps: distance calculation, cluster assignment, and a new
centroid calculation. The algorithm finishes at convergence when the centroids do not
move. Cluster size means that how many data points are close to the centroid of the
cluster. The cluster size depends on the number of data points that are closer to the one
centroid and not to the other centroids. The cluster size is not limited. It can be empty or
contain all data points. Furthermore, there are no outliers as each data point is assigned
to a cluster.

K-means has many modifications, ranging from unsupervised (no number of clusters
given [115]) to balanced (all clusters of the same size [116]). The constrained k-means [117]
algorithm enables the definition of constraints such as the minimum cluster size, and the
optimization problem is solved using a linear programming method.

| propose modified k-means in my publication 2 [2], which creates the required number
of clusters which size is at least the specified minimum cluster size. Contrary to original k-
means, where a data point selects a cluster whose centroid is the closest, in the proposed
modification, the cluster selects the data point which is the closest to its centroid. This
modification works until all clusters have their minimum size requirement satisfied. The
rest of data points are clustered using original k-means. The Fig. 11 illustrates both original
and modified k-means algorithms.

4.3 Bandwidth Allocation

The scheduler allocates RBs to the UEs. The bandwidth allocation for subslices allocates
RBs to the groups of UEs inside the slice. If subslice contains UEs with poor BLER, it needs
more RBs for retransmission. From my simulation results in my publication 1 [1], it can
be seen that although the requested sum rate is the same, if more UEs are in the slice
then the slice utilization is higher compared to if less UEs are in the slice. The RBs needed
by certain subslices are reallocated from other subslices. The smaller the slice, the more
sensitive it is to RB reallocation. The adjustments can be really small, because one RB is
180 kHz in bandwidth.
The slice RBs are allocated in 3 steps (see Fig. 12):

1. initial allocation,
2. second allocation,
3. third allocation.

Initial RB allocation is different in subslicing algorithms UCwWBA from my publication
2 [2] and subslicing algorithms DSbR and DSbB from my publication 4 [4]. In subslicing al-
gorithm UCwBA initially RBs are allocated proportionally to number of UEs because all UEs
requested same rates. In subslicing algorithms DSbR and DSbB initially RBs are allocated
proportional to subslice requested sum rate. About 95-99% of RBs are allocated initially.
Second RB allocation is proportional to subslice BLER. The third allocation is for leftover
RBs which are allocated to the subslice where is the UE with the highest BLER. Details
about proposed subslicing algorithms can be found in my publications 2 [2] and 4 [4].
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(a) Original k-means clustering into 3
clusters, cluster 2 is empty

Data points

‘ Cluster centroid

(b) Proposed algorithm clustering into
3 clusters with minimum cluster size

of 2 points

Cluster assigned by original k-means algorithm
Cluster assigned by proposed algorithm first step

Figure 11: An example of how the proposed clustering algorithm clusters data points into three clus-
ters with a minimum cluster size of 2. The data points cluster well into two clusters (green and
orange). Figure from my publication 2 [2].

Bandwidth
allocation in
subslicing
algorithm:

DSbR,
DSbB

First Second Third
allocation: allocation: allocation:
proportional proportional leftover
to... to... RBsto ...
T umber of ... subslice sub.slice whi.ch
<ubslice UEs —»| UE’s average [ contains UE with
BLER highest BLER
... Subslice ... subslice ... subslice which
requested » UE’s average [-»{ contains UE with
sum rate BLER highest BLER

Figure 12: Bandwidth allocation to subslices in different proposed subslicing algorithms.

4.4 Evaluation of the Subslicing Algorithms

The slice performance evaluated by collecting values of 6 KPIs: utilization of UL (utilUL)
and DL (utilDL), goodput per one RB in UL (gdp1UL) and DL (gdp1DL), and average BLER
in UL (blerUL) and DL (blerDL). The slice utilization is calculated as a mean of all subslice
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utilizations. The slice goodput per one allocated RB is calculated by a sum goodput of all
subslices divided by the number of allocated RBs to the slice. The slice BLER is calculated
as a mean of subslice BLERs which are means of subslice UE BLERs.

The detailed results of slice performance evaluation with subslicing is in my publica-
tions 2 [2] and 4 [4]. The following subsections contain some excerpts of the most notable
results.

4.4.1 Effect of the Minimum Subslice Size

Slice utilization change Slice goodput per RB change
|
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Figure 13: Slice performance change compared if no subslicing (NoSS), equal sized subslices (Equal),
UEs clustered using k-means, and proposed subslicing algorithm UCwWBA from my publication 2 [2]
were used. The slice contained all good-BLER UEs and UE packet size was 40 B.

Let us consider the minimum subslice size requirement 37 RBs which is a start of best
utilization zone with reasonable goodput from the Chapter 3. If the slice size is 275 RBs,
then with this constraint the number of subslices could be 275/37 = 7.43 ~ 7. The sub-
slice sizes of different algorithms are shown in Tab. 6. If equal grouping subslicing algo-
rithm is used then the average subslice size is 275/7 = 39.3 = 39 RBs. The slice consists
of 5 subslices in size of 39 RBs and 2 subslices in size of 40 RBs. The algorithm called K-
means has no limit on cluster size, and UEs are clustered by UE BLER. The slice consists
of the smallest subslice in size of 21 RBs, and the largest subslice in size of 65 RBs. The
algorithm called user clustering with bandwidth allocation (UCwBA) from my publication
2 [2] has UEs clustered by UE BLER and the minimum subslice size constraint is 37 RBs. The
slice which is subsliced using UCWBA consists of subslices in size of in the range of 37-43
RBs.

Algorithm Range of sizes of subslices
Equal grouping: subslice sizes as equal as possible 39-40 RBs
K-means: UEs into subslices by UE similarity 21-65 RBs
UCWBA: uses minimum subslice size constraint 37 RBs 37-43 RBs

Table 6: Sizes of subslices created by different subslicing algorithms.

In Fig. 13 the slice performance is compared, if it is subsliced into 7 subslices by using
algorithms equal grouping (Equal), UE clustering using k-means, and UCWBA. The utiliza-
tion has decreased in UL by 7% if k-means was used, and twice as more if subslices were
not smaller than 37 RBs. The utilization decrease is the greatest, 14% or 16% in UL if equal
grouping or UCWBA algorithms were used, respectively. The goodput increase is the great-
est in UL, 16% and 15% if equal grouping and UCWBA algorithms were used, respectively.
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4.4.2 Effect of Subslicing for Slice Containing Set of UEs With Different BLERs
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Figure 14: Slice performance change compared if slice contained all good-BLER, medium-BLER or
poor-BLER UEs and UE packet size was 40 B. The proposed subslicing algorithm UCwWBA from my
publication 2 [2] was used.

Let us consider sets of slice UEs with different BLER. The good-BLER, medium-BLER
and poor-BLER slice is a slice which contains all UEs with good, medium or poor BLERs,
respectively. The slice size is 275 RBs and all UEs request equal rates. The performance
of the slice is evaluated if it is subsliced into 3, 7, 14, 25 or 68 subslices with the minimum
subslice size requirement of 73, 37, 19, 11 and 4 RBs, respectively, for subslicing algorithm
UCwBA from my publication 2 [2].

Slice simulation results are shown in Fig. 14. The slice utilization in UL was decreased
only if the slice contained only good-BLER UEs up to 16%. The slice utilization in DL did
not change and always the value of 0.998 was achieved. The slice goodput increased for
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good-BLER slice the most, 24% in UL, if it contained 3 subslices. The slice goodput for
medium-BLER slice increased 56% in UL and 36% in DL, if it contained 7 subslices. For
poor-BLER slice, the best goodput increase was 84% and 63% in UL and DL, respectively,
if it contained 14 subslices. Thus, the worse BLER, the smaller subslices will improve slice
performance. The goodput improvement is greater when slice contains the set of UEs
with worse BLER.

4.4.3 Effect of UE Clustering by Rate and BLER
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Figure 15: Slice performance change compared if no subslicing (NoSS), UEs clustered by requested
rate (DSbR) and UEs clustered by achieved BLER (DSbB). Algorithms are from my publication 4 [4].

Let us consider the slice with size of 250 RBs containing UEs with different BLERs and
requested rates of 100 kbps, 200 kbps or 400 kbps from my publication 4 [4]. In this
publication, the subslicing works as follows: slice is split recursively until no split required
for subslice. The subslicing algorithm called dynamic subslicing by rate (DSbR) did split the
slice and further split one of the subslices resulting to 3 subslices. Subslice 1 contained
UEs requesting 100 kbps, subslice 2 contained UEs requesting 200 kbps and subslice 3
contained UEs requesting 400 kbps. The subslicing algorithm called dynamic subslicing
by BLER (DSbB) did split the slice, then split one of the subslices and then split one of its
subslices resulting to 4 subslices. Subslice 1 contained good-BLER UEs and was the largest,
subslices 2 and 3 contained medium-BLER UEs, and subslices 4 and 5 were the smallest
and contained poor-BLER UEs.

The slice simulation results are shown in Fig. 15. The slice performance is compared if
it was subsliced using DSbR and DSbB algorithms. The former subslicing algorithm clus-
ters UEs by their requested rate, the latter clusters UEs by their achieved BLER. The slice
utilization in UL has decreased up to 4% and in DL it did not change. The slice goodput in
UL has increased by 28% and 44% if algorithms DSbR and DSbB were used, respectively.
The slice goodput increase in DL was lower.

4.5 Conclusion

The subslicing algorithm contains three steps:

1. conversion of the minimum subslice size requirement for the UE clustering algo-
rithm;

2. UE clustering;

3. RB allocation to UE clusters.
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The minimum subslice size requirement prevents too small subslices by setting an ad-
ditional constraint to the clustering algorithm. The clustering algorithm fills all required
clusters with required number of UEs, otherwise the subslices are too small because too
few RBs are allocated to the UE cluster. The bandwidth allocation runs in 3 steps. First, the
majority of the RBs are allocated proportional to the number of UEs or subslice requested
sum rate. Secondly, minority of the RBs are allocated proportional to group BLER. Finally,
the leftover RBs are allocated, which may remain due to rounding in previous steps.

The slice simulation results show that subslicing improves slice performance the most
by goodput increase in both UL and DL, and smaller utilization decrease is achieved in UL.
The application of the minimum subslice size criterium in subslicing reduces the slice uti-
lization an additional 7-8 % and increases the slice goodput in UL three times. If the slice
contains UEs with other than good-BLER, then the subslicing can increase slice goodput
up to 61% and 84% in UL for medium-BLER slice and poor-BLER slice, respectively. The
increase in DL slice goodput is up to 36% and 65% for medium-BLER and poor-BLER slice,
respectively. The peak increase values were achieved in slice containing more subslices if
UE BLER was worse. The subslicing with UE clustering by achieved BLER reduces slice uti-
lization in UL 3% more than UE clustering by requested rate. The increase in slice goodput
was 16% greater, if subslicing contained UE clustering by achieved BLER than requested
rate.
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5 Enhanced Decision Mechanisms for RAN Subslicing

Based on subslice performance, a decision is needed for a subslice: whether it should be
split, merged or not changed. The subslice performance data that are used in this chapter,
are Dataset 1 described in Section 3.2.1 or Dataset 2 described in Section 3.2.2.

5.1 Training Data Labeling

The inputs are values of six KPIs: bandwidth utilization in UL (utilUL) and DL (utilDL), slice
goodput per one RB in UL (gdp1UL) and DL (gdp1DL), BLER in UL (blerUL), and DL (blerDL).
The output is the decisions for subslice: "split", "merge" or "no change".

The output decision "split" is for subslice which is too large and splitting into two can
improve its performance. The subslice splitting is described in Chapter 6. The decision
"merge" is for subslice which is too small and needs to be merged with another too small
subslice. The subslice merging is described in Chapter 6. The decision "no change" is for
subslice which has suitable size and performance.

For Dataset 1, performance data clustering is proposed, and for Dataset 2, the opti-
mization problem is solved for data labeling.

5.1.1 Performance Data Clustering

Let us use the Dataset 1, described in Section 3.2.1, which contains slice performance re-
sults at subslice sizes 4-275 RBs and packet sizes were different in five subsets.There are
three decisions; therefore, three clusters are necessary. Based on the results presented
in my publication 3 [3] the performance data contains all 6 KPIs and is clustered using
k-means into 3 clusters. The clustering result is shown in Fig. 16a.

5.1.2 Discussion of Deciding Subslice Operation by Clustering Result

The decision method described in the previous subsection uses subslice performance data
if subslice contained all good-BLER UEs.

Now, | attempt to apply this method to Dataset 2, described in Section 3.2.2, which
contains slice performance results at subslice sizes of 4-250 RBs, and UE BLERs were differ-
ent in three subsets. In the subsets, the subslice contains all good-BLER, all medium-BLER
or all poor-BLER UEs. All three subsets were clustered by six KPIs together, and clustering
results are shown in Fig. 16b. The subset containing good-BLER UEs contained data in three
clusters, where too small and too large subslices can be distinguished. The subset contain-
ing medium-BLER UEs contained data in two clusters ("merge" and "no change"), and the
subset containing poor-BLER UEs contained data in one cluster ("merge"). This shows that
subslices containing poor-BLER UEs should be merged; however, my simulations results
in my publication 2 [2] have shown that for poor-BLER UEs, better slice performance is
achieved if there are many small subslices.

If clustering each BLER subset separately, then the results are shown in Fig. 16c. The
clustering results do not depend on UE BLER; however, the performance of a subsliced
slice was better if poor-BLER UEs could be in smaller subslices as the results in my publi-
cation 2 [2] had shown.

The conclusion is that the best subslice sizes should be found for each BLER subset
separately, they are different and cannot be found by clustering the performance data.
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Figure 16: Training data obtained by (a), (b), (c) performance data clustering and (d) solving an
optimization problem.

5.1.3 Optimization Problem to Find Best Subslice Size

Let us use the Dataset 2 which was described in Section 3.2.2 (three sets of UEs - good-
BLER, medium-BLER, and poor-BLER; subslice size 4-250 RBs, packet size 40 B) from my
publication 4 [4].
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The optimization problem was solved for each BLER subset separately. Objective func-
tion defined as root-mean-square error (RMSE) of KPI value differences from best values of
the subset. The best subslice size is when the objective function has the minimum value.
In Fig 17 it can be seen that the best subslice sizes are 52, 40 and 10 RBs for good-BLER,
medium-BLER and poor-BLER UEs, respectively.
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Figure 17: Results of optimization problem of each BLER subset, from my publication 4 [4].

The e-neighbourhood of sizes which had objective value close to the best objective
value were decided as "no change". The greater € value results more subslice sizes to be
in suitable size, thus less slice reconfiguration operations needed. On the other hand, in-
sufficient number of subslice splitting cannot reach subslices of the best size and too many
splits can create too small subslices. Simulation results of initialization shown in [4], that
€ = 0.1 was too small and created too many and too small subslices while € = 0.2 cre-
ated less subslices and dynamic subslicing algorithms created slice which outperformed
the slice of static subslicing algorithm from [84].
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5.2 Neural Network and Search of Hyperparameters

The machine learning tools suitable for multi-class classification are k nearest neighbour
(KNN), supporting vector machine (SVM) and neural network (NN). A neural network
was selected as the tool for classification. NN has the flexibility and can work with large
datasets.

The decision mechanism contains classifier NN, which is shown in Fig. 18. Both in my
publication 3 [3] and 4 [4] the fully connected feedforward classifier NN were trained to
learn the decisions of subslice operation. Number of hidden layers and neurons (nodes)
on hidden layer was selected by trials considering 1-2 layers and 2-22 neurons. Neurons
used the rectified linear unit (ReLU) activation function.

Subslice Input Hidden Output _
KPIs Layer Layer Layer Decision
utilUL —( 1
utilDL —( 2
C: 1 — ”mergeu
gdplUL —(3
2 )— “no change”
gdpIDL —(4 /
blerUL —(5
blerDL —(6

Figure 18: Classifier NN for subslice decisions.

Considering cross entropy losses in graphs, it was visually detected the minimum num-
ber of neurons where the losses did not increase further to avoid overfit. The selected
hidden layer configuration consists of one hidden layer consisting of 7 neurons and 9 neu-
rons, for training data shown in Fig. 16a and 16d, respectively.

5.3 Conclusion

In this chapter, the performance data labeling methods for subslice size simulation results
are proposed whether the slice or subslice should be split, merged or not changed. The
performance data clustering did not work if the slice contained UEs with different BLERs.
The optimization problem to find best subslice sizes was proposed to solve separately for
each BLER group dataset - if slice contains all good-BLER, medium-BLER and poor-BLER
UEs, respectively. The objective value is calculated as the sum of RMSE of differences
between the best value of KPI and current value of KPI.

The NN has the values of six KPIs as inputs and the output is the decision "split",
"merge" or "no change". The NN is used in the management CCL for subslicing which
is described in the next chapter.
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6 Subslicing in Closed Control Loop to Improve Slice Perfor-
mance

In this chapter, it is discussed how subslicing can be used automatically when it is able to
improve slice performance without additional bandwidth allocation. The proposed MCCL
uses the MAPE-K [118] architecture. It has the goal to improve slice performance on fixed
bandwidth by subslicing. It uses the decision mechanism proposed in Chapter 5 and sub-
slicing algorithms proposed in Chapter 4. The proposed MCCL implementation for sub-
slicing is published in my publication 4 [4].

6.1 Management Closed Control Loop Architecture

In the next subsections, the 4 functions of MAPE-K and a database are described. The used
architecture is shown in Fig. 19. The goal of the MCCL is to improve slice performance by
subslicing.
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Figure 19: Management closed control loop architecture

6.1.1 Monitor

The monitor function collects slice data: slice BWP size, number of UEs, slice requested
sum rate, subslices and their settings, and 6 KPIs. It calculates averages for KPI values per
time period. In [66], the length of time period is recommended 30 sec. For UEs, the
requested rate and achieved BLER are collected, and to which subslice it belongs.

The monitor function produces the knowledge about slice performance.
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6.1.2 Analyze

Analyze function creates training data for neural network (NN). Analyze function con-
sumes knowledge about slice performance and produces the knowledge about labeling
the slice performance data whether the slice or subslice should be split, merged or not
changed.

The NN is trained using slice KPI values. This can be done periodically or on request. It
is desired to retrain NN when the slice performance does not improve by subslicing, but
as this takes time and energy, then retraining should be done not too frequently.

6.1.3 Decide (Plan)

The Decide function uses trained NN to decide the operation for each subslice in the slice,
whether it should be split, merged or not changed.

6.1.4 Execute

The execute function processes the slice and subslice decisions. First, the subslices with
"no change" decision are processed, followed by "merge" and "split".

Subslice merging creates an ordered list of subslices with the decision "merge". If odd
number of subslices the smallest 3 are merged, else the smallest is merged with the largest
until all subslices are merged pairwise. The sets of UEs and number for RBs are combined.

Subslice splitting is done one-by one for each subslice to be split. subslicing algorithms
are used for subslicing into 2 subslices.

6.2 Evaluation

The slice configuration is initialized as shown in my publication 4 [4]. | compare the slice
performance in proposed MCCL if slice is split using three algorithms: static 3 subslices
(53S), dynamic subslicing by rate (DSbR) and dynamic subslicing by BLER (DSbB). The first
is adopted from [84] and the latter two subslice splitting algorithms are proposed in my
publication 4 [4].

6.2.1 Simulation Setup

The slice BWP is n28 (FDD, UL 730-748 MHz, DL 758-803 MHz) which is a 5G-NR band
specified in 3GPP TS 38.104 [9]. The subcarrier spacing is 15 kHz, thus maximum subslice
bandwidth is 250 RBs.

The slice UEs are the set of 250 UEs and their details are shown in the Tab. 7. The UE
BLERs and requested rates are both combinations of different 3 values. This set of UEs
is expected to achieve the similar performance, as the dataset 2 which was described in
Section 3.2.2. Both the slice in this section and the subslice of its maximum size in dataset
2 had 250 UEs and sum rate is 50 Mbps.

6.2.2 Scenarios
First, the subslicing initialization is done. This means that the slice will reach to the stable
configuration where all subslices have a decision "no change". When the initialization is
done, then the scenario starts.

Two runtime scenarios are considered: traffic increase and traffic decrease. Traffic
change can be implemented by addition or removal of UEs. The greatest effect is when
the UE requested rate and achieved BLER are both high.
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Table 7: The combinations of three requested rates and three different BLERs for a set of 250 UEs in
a slice, which requested sum rate is 50 Mbps.

BLER Requested rate Number of UEs
Any 100 kbps 110
Any 200 kbps 85
Any 400 kbps 55
Total 50 Mbps 250
Good-BLER 100 or 200 or 400 kbps 83
Medium-BLER | 100 or 200 or 400 kbps 84
Poor-BLER 100 or 200 or 400 kbps 83
Total 50 Mbps 250
Good-BLER 100 kbps 36
Good-BLER 200 kbps 28
Good-BLER 400 kbps 19
Medium-BLER 100 kbps 37
Medium-BLER 200 kbps 29
Medium-BLER 400 kbps 18
Poor-BLER 100 kbps 37
Poor-BLER 200 kbps 28
Poor-BLER 400 kbps 18
Total 50 Mbps 250

The trafficincrease scenario is implemented for these simulations such that the 5 poor-
BLER UEs which request 400 kbps rates each, are admitted to the slice. The slice requested
sum rate increases at each such event by 2 Mbps (+4%). The UEs are admitted to the sub-
slice with the least bandwidth utilization. Similarly, the traffic decrease is implemented
for these simulations that 5 UEs, which request 400 kbps rate are removed from their
respective subslices. The leaving UEs have achieved worst BLER values in the last simu-
lation. The slice requested sum rate decreases at each such event by 2 Mbps (-4%). The
slice should adapt to the change of requested sum rate by the reconfiguration of subslicing
which achieves the best slice performance.

The workflow of the discrete event simulator is shown in Fig. 20. In initialization, the
event does not happen and second simulation of the slice is not needed. In scenarios 1
and 2 if the subslicing configuration did not change then the second run of slice is skipped.
The run MCCL means that the mean values of KPIs are the input of decision NN which
decides for each subslice in the slice whether it needs to be split, merged, or not changed.
Next, the execute function processes the subslices and executes the decisions. The output
of MCCL is the new slice configuration regarding subslicing - which UE belongs to which
subslice and how many RBs are allocated for each subslice in the slice.

The slice is simulated 10 times and KPIs are calculated as mean values with error bars
in the graph showing confidence interval of 95%.

6.2.3 Results of Initialization

The detailed slice performance data and configuration regarding subslicing at the end of
initialization is shown in my publication 4 [4]. The Algorithm S3S created three subslices
because the set of UEs had three different requested rates. DSbR algorithm also created
three subslices after two MCCL runs. The difference between S3S and DShR is that if UEs
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Figure 20: Discrete event simulator for evaluation of the slice performance during the scenario.

Simulate slice

are added or removed, then S3S adjusts the RB allocation. DSbR does not adjust RB alloca-
tion, if the decision for subslice is "no change”. Algorithm DSbB created three subslices for
good- and medium-BLER UEs. For poor-BLER UEs, one subslice has an infinite split-merge
loop: in one round, the splitting is required, and in the next round, the splits need to be
merged. The initialization results are the starting point for runtime scenarios, of which
simulation results are presented in the next subsections.

6.2.4 Results of Runtime, Scenario 1

The slice performance results of scenario 1 are shown in Fig. 21 left column. The slice
requested sum rate will increase by 4% at each event, reaching to 44% increase at the last
event.

The utilization in UL and DL remains full (100%) if no subslicing. The splitting algorithms
$3S and DSbR reach to 100% in UL utilization after first and second event. For DSbB 100%
utilization is reached in UL at event 5 and in DL at event 2. The goodput per RBin UL and DL
slowly decrease. The best goodput per one RB in UL is achieved if the splitting algorithm
is DSbB. In DL initially S3S and DSbR achieve best goodput per RB, however after event
2 DSbB has the highest goodput per RB in DL. When the splitting algorithm DSbR was
used, the 3 subslices worked until event 3 (see Fig. 23), when the subslice with id = 3 was
decided to be split. Later on, after the next event, the one subslice needs to be merged,
but it is a single subslice with decision of merge. This affected BLER, which decreased in
both UL and DL. The slice configuration if splitting algorithm S3S was used has always 3
subslices and minor RB adjustments proportional to subslice sum rate (see Fig. 22). When
the splitting algorithm DSbB was used, then the two poor-BLER subslices with id = 8 and
id = 9 are split and merged in the cycle (see Fig. 24). When there are total six subslices
in the slice at event 2 and 5, then the goodput and BLER values are lower and when the
slice consists of four subslices, then the goodput and BLER values are higher. This split-
merge cycle ends after event 7 when there are two subslices, each in size of 20 RBs for
poor-BLER UEs. The performance of those subslices balance on the boundary of decisions
of "no change" and "merge".

At the end of scenario 1the utilization is 100%, best goodput per on RB is achieved by
using splitting algorithm DSbB, lowest BLER is in UL with DSbB and in DL with DSbR. No
subslicing had the worst values for all six KPls.

6.2.5 Results of Runtime, Scenario 2
The slice performance results are shown in Fig. 21 right column. The slice requested sum
rate will decrease by 4% at each event, reaching to 44% decrease at the last event.

The decrease of requested sum rate has the following effects for slice KPIs. If no sub-
slicing then the utilization does not change. If subslice splitting algorithms are used, then
UL utilization decreases. The utilization of a slice, if splitting algorithm DSbB was used,
depends on the number of poor-BLER subslices.
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Figure 21: Slice performance runtime. (a), (c), (e), (3), (i), (k), (m) scenario 1. (b), (d), (f), (h), (i), (1),
(n) scenario 2.
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Scenario 1

initialization Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8 Event 9 Event 10 Event 11
id=1 - - - - - - - - - - -
110 RBs id=1 id=1 id=1 id=1 id=1 id=1 id=1 id=1 id=1 id=1 id=1
55 UBs [ 114 RBs [— 120 RBs [— 125 RBs — 129 RBs | 133 RBs [ 137 RBs [~ 141 RBs |~ 144 RBs|—| 147 RBs [ 150 RBs [— 153 RBs
(@00 kb‘ps) 60 UEs 65 UEs 70 UEs 75 UEs | | 80 UEs 85 UEs | | 90 UEs| | 95UEs | |100 UEs| |105UEs| |110 UEs
S3S id=2 - - - - - -
250 RBs 85 RBs id=2 id=2 id=2 id=2 id=2 id=2 id=2 id=2 id=2 id=2 id=2
250 UEs g5 UEs [|82 RBs|[—{78 RBs [—75 RBs [— 73 RBs 70 RBs [— 68 RBs |— 66 RBs [— 64 RBs — 63 RBs — 61 RBs — 59 RBs
e y . 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs| |85 UEs| |85 UEs 85 UEs 85 UEs 85 UEs 85 UEs
split (200 kbps)
id=3 - - - - - - - - - - -
55 RBs id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3
110 UEs [ 54 RBs [ 52 RBs [ 50 RBs [~ 48 RBs [~ 47 RBs [~ 45 RBs [~ 43 RBs [—f 42 RBs [—| 40 RBs |— 39 RBs —| 38 RBs
(100 kbpsy| L110.UEs| [110 UEs| | 110 UEs| [110 UEs| |110 UEs| |[110 UEs| |110 UBs| |110 UEs| [110 UEs| [110 UEs| |110 UEs
Figure 22: Slice configuration, scenario 1, splitting algorithm S3S.
Scenario 1
initialization . Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event § Event 9 Event 10 Event 11
id=3 id=3 id=3
57 RBs 57 RBs 57 RBs
110 UEs [ | 110 UEs [ | 11043 UEs
(100 Kbps) | - [no change | | split (10) 42 RBs 42 RBs 42 RBs 42 RBs 42 RBs 42 RBs 42 RBs 42 RBs 42 RBs
87 UEs | | 87 UEs | | 87 UEs | '| 87 UEs [ | 87 UEs [ | 87 UEs | | 87UEs | | 87 UEs | | 87 UEs
P no change | [no change| |no change| [no change| [no change| |no change| |no change| |no change| |no change
250 RBs id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4
250 UEs 86RBs | | 86RBs | | 86RBs | | 86RBs | | 86RBs | | 86RBs | | 86RBs | | 86RBs | | 86RBs | | 86RBs | | 86RBs | | 86RBs
Split (52) 85 UEs 85 UEs 85 UBs | |85+1 UEs| |86+5 UEs | | 91+5 UEs| | 96+5 UEs [ | 101+5 UEs| | 106+5 UEs [ | 111+5 UEs| | 116+5 UEs| | 12145 UEs
(200 kbps) | |no change| |no change| |no change| [no change| |no change| |no change| | no change | | no change | | no change | | no change | | no change
id=5 id=5 id=5 id=5 id=5 id=5 =5 id=5 id=5 id=s id=s id=5
107 RBs 107 RBs 107 RBs 107 RBs | | 107 RBs | | 107 RBs |_| 107 RBs 107 RBs 107 RBs 107 RBs 107 RBs 107 RBs
55 UEs | | 55+5 UEs| | 60+2 UEs [ | 62+4 UEs || 66 UEs | | 66 UEs | '| 66 UEs | '| 66 UEs | | 66 UEs | | 66 UEs | | 66 UEs | | 66 UEs
(400 kbps) | |no change| |no change| |no change| [no change| |no change| |mochange| |mo change| |no change| |no change| |no change| |no change
Figure 23: Slice configuration, scenario 1, splitting algorithm DSbR.
Scenario 1
initialization Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8 Event 9 Event 10 Event 11
id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3
88 RBs | | 88RBs | | 88RBs | | 88RBs | | 88RBs | | 88RBs | | 83RBs | | 83RBs | | 88RBs | | 88RBs | | 88RBs | | S8 RBs
90 UEs 90 UEs 90 UEs 90 UEs 90 UEs 90 UEs [ |90+5 UEs[ | 95 UEs 95 UEs 95 UEs | ] 95+5 UEs [ ] 100+5 UEs
Good BLER| |no change| [no change| |no change| |no change| [no change| |no change| [no change| |no change| |no change| [no change| | no change
id=5 id=5 id=5 id=5 id=5 id=5 id=5 id=5 id=5 id=5 id=5
8IRBs | | 8IRBs | | 81RBs | | 8IRBs | | 81RBs | | 8IRBs | | 81RBs | | 81RBs | | 81RBs | | 81RBs | | 81RBs
77 UEs 77 UEs 77 UEs 77 UEs 77 UEs 77 UEs 77 UEs 77 UEs 77 UEs 77 UEs 77 UEs
no change| [no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| [no change| |no change
id=6 id=6 id=6 id=6 id=6 id=6 id=6 id=6 id=6 id=6 id=6
4IRBs | | 41RBs | | 41RBs | | 4IRBs | | 41RBs | | 41RBs | | 41RBs | | 41RBs | | 41 RBs | | 41RBs | | 41 RBs
DSOE 44 UEs 44 UEs [ ] 44+5 UEs[ |49+5 UEs [ | 54 UEs 54 UEs 54 UEs | |54+5 UEs[ | 59 UEs 59 UEs 59 UEs
250 RBs no change | [no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| [no change| |no change
250 UEs M=
Split 11 RBs
id=8 id=s / ‘rf‘:rjis
24RBs | | 24 RBs L id=20 id=20 id=23 id=23
21 UEs 21+5 UEs =12 =13 20RBs | | 20 RBs 20RBs | | 20 RBs
Poor-BLER | | split (10) 13 RBs 40 RBs ) 25+5 UEs 30 UEs 30 UEs 30 UEs
13+5 UEs [} 49 UEs 40 RBs |/ |0 change| | no change no change | | no change
merge split (10 .
L plit (10) Wa=15 o =22 =22 =)
09 =10 24 RBs split (10) 20 RBs 20RBs | | 20 RBs
16 RBs 16 RBs 28 UEs 29 UEs 34 UEs 34 UEs
18 UEs 18 UEs split (10) merge no change | | no change | [no change| |no change
Poor-BLER merge

Figure 24: Slice configuration, scenario 1, splitting algorithm DSbB.

At the end of this scenario, all UEs with requested rate of 400 kbps have left. The
S3S splitting algorithm achieves 100% utilization again. This happened, because the sub-
slice, which contained UEs which request 400 kbps, had earlier low utilization and now
become empty (see Fig. 25). The subslice with id = 1 had sufficient resources for good
performance before. The splitting algorithm DSbR achieved at the end of the scenario
100% utilization, but the cause is different (see Fig. 26. The 107 RBs, which were allocated
to subslice with id = 10, are freed from the slice.
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The goodput per RB in UL initially increases and then decreases. Initial increase means
that when some UEs have left the slice, then the free RBs enabled additional transmis-
sions. Later on, after event 5, the UEs do not have enough data to be transmitted. If
subslice splitting algorithm DSbR was used, then at event 9 the goodput in UL is lower
than when no subslicing done. This is caused by the MCCL algorithm where if subslice has
decision "no change" then its number of RBs is not changed (see Fig. 26). The UEs are
leaving one of the subslices and this subslice has resource surplus. The splitting algorithm
DSbB changes poor-BLER subslice configuration (see Fig. 27). If more subslices then lower
utilization, goodput and BLER achieved if this subslice splitting is used. The lowest BLER is
when splitting algorithm DSbB was used; however, depending on the number of subslices
for poor-BLER UEs the slice BLER was comparable to that achieved by using other subslice
splitting algorithms.

Scenario 2
initialization Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8 Event 9 Event 10 Event 11
id=1 - - - - - - - - - -
110 RBs id=1 id=1 id=1 id=1 id=1 id=1 id=1 id=1 id=1 id=1
55 UEs | | 105 RBs — 96 RBs [—89 RBs —{ 81 RBs — 74 RBs — 64 RBs — 54 RBs — 43 RBs — 30 RBs [—{ 16 RBs
X 50 UEs 45 UEs 40 UEs 35 UEs 30 UEs 25 UEs 20 UEs 15 UEs 10 UEs 5 UEs
(400 kbps)
S38 d=2
250 RBs 8; RBs id=2 id=2 id=2 id=2 id=2 id=2 id=2 id=2 id=2 id=2 id=2
250 UEs || 85 UEs | | 87 RBs [ 93 RBs —1 96 RBs —{ 101 RBs —{ 106 RBs — 112 RBs — 119 RBs — 126 RBs [— 133 RBs [— 142 RBs — 152 RBs
R X 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs
split (200 kbps)
id=3 - - - - - - - -
55 RBs id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3
110 UEs [ 38 RBs | 61 RBs (= 65 RBs (= 68 RBs = 70 RBs = 74 RBs = 77 RBs = 81 RBs [— 87 RBs — 92 RBs —| 98 RBs
(100 kbps) 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs

Figure 25: slice configuration, scenario 2, splitting algorithm S3S.

Scenario 2
initialization  Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8 Event9  Event10.  Event 11
id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3
57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs
110 UEs [ 110 UEs [ 110 UEs [ 110 UEs [ 110 UEs [ 110 UEs [] 110 UEs [ ] 110 UEs [ 110 UEs [ ] 110 UEs [] 110 UEs [ ] 110 UEs
(100 kbps)| [no change | |no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change
DSbR id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4
250RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs
250UEs 85 UEs [ | 85 UEs || 85 UEs [ | 85 UEs [ | 85 UEs | | 85 UEs | | 85UEs | | 85 UEs | | 85 UEs | | 85 UEs | | 85 UEs | | 85 UEs
split(52) |\ | (200 kbps)| [no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change
id=s id=s id=s id=s id=s id=s id=s id=6 id=7 id=8 id=9
107RBs | | 107RBs | | 107RBs | | 107RBs | | 107RBs | | 107RBs | | 107RBs| |107RBs| |107RBs| |107RBs| | 107 RBs
55 UEs | | 555 UE || 50-5 UEs [ | 45-5 UEs | | 40-5 UEs [ | 35-5 UEs [ | 30-5 UEs| | 25-5 UEs| | 20-5 UEs| | 15-5 UEs[ | 10-5 UEs
(400 kbps)| [no change | |no change| |no change| |no change| |no change| | merge merge merge merge merge

Figure 26: slice configuration, scenario 2, splitting algorithm DSbR.

6.2.6 Discussion of Possible Improvements

The subslice merging process needs improvement on the case when just one subslice
needs to be merged. In current MCCL implementation, the single subslice which requires
merging, is waiting for another subslice which requires merging. The another subslice
to be merged will appear on next MCCL run as if subslice splitting algorithm DSbB was
used. If subslice splitting algorithm DSbR was used, then the single subslice to be merged
waits merging for along time. The better decision for the single subslice requiring "merge"
would be merging this subslice with the smallest subslice which had decision "no change".
This is a potential configuration conflict and needs a tradeoff between not merging the
subslice, which requires to be merged, and changing the subslice, which does not require
its configuration change.
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Scenario 2

initialization Event 1| Event2  Event3.  Event4  EventS  Event6  Evenmt7  Event§  Evemt9  event 10, event 11
=3 =3 =3 id=3 =3 =3 id=3 =3 =3 =3 id=3 =3
88 RBs | | SSRBs | | SSRBs | | 85RBs | | S3RBs | | SSRBs | | 8 RBs | | 83RBs | | S8 RBs | | SSRBs | | 85RBs | | 8 RBs
90 UEs 90 UEs [ | 90 UEs [ | 90 UEs || 90-1 UEs [ | 89 UEs | | 892 UEs | | 87-4 UEs [ | 83-5 UEs | | 78-4 UEs [ | 74-3 UEs | | 71-1 UEs
Good-BLER | [no change| |no change| |no change| |no change| |no change| |mo change| |no change| |no change| |no change| |no change| [no change
id=5 id=5 id= id=5 id=5 4= id= id=5 id=5 id= id=5
SIRBs | | SIRBs | | 8IRBs | | SIRBs | | 81RBs | | 8IRBs | | $IRBs | | 8IRBs | | $IRBs | | 81RBs | | 81RBs
77-4 UEs [ ] 73-2 UEs | | 71 UBs [ | 71-1 UEs | | 70-5 UEs | ] 65-3 UEs [ | 621 UEs [ | 61 UEs [ 61-1 UEs | | 60-1 UEs [ 59 UEs
no change | | no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change| |no change
— id=6 id=6 id=6 =6 id=6 id=6 =3 id=6 id=6 id=6 =3
DSHE P 41RBs | | 41RBs | | 41RBs | | 41RBs | | 41RBs | | 4IRBs | | 41RBs | | 4IRBs | | 41RBs | | 41RBs | | 41RBs
250 RBs L] 44 bos [ | 44-1 UBs [7]43-1 UBs [ 42 UBs [7] 42 UBs [7| 42 UBs [7] 42UBs [7| 42 UBs [ 42UBs [ 42 UBs [7]42-1 UBs [7]414 UBs
250 UEs a no change | | no change| [no change| |no change| [no change| |no change| |no change| |no change| |no change| |no change merge
Split
L =23
26 RBs
id=8 id=10 [Cia=16 | =22 18 UEs
24 RBs 40 RBs 40 RBs 40 RBs merge
21 UEs oL id=13 2o s id=19 2 U id=24
Poor-BLER split (10) 20 Ris split (10) 40 RBs split 10)| \| 14 Res
= = 323 UBs 2 ks 1 UEs
16 RBs 16 RBs split (10) merge split (10) merge
18 UEs 18 UEs
PoorBLER| | merge merge

Figure 27: Slice configuration, scenario 2, splitting algorithm DSbB.

Another idea for improvement is the training data labeling for the NN. The boundaries
between decision "merge" and "no change" could be adjusted such that all subslices which
objective value is within e-neighborhood (see Fig. 17) could have the decision "no change"
regardless of the subslice size greater or less than the best subslice size. Currently, all
subslices with the size smaller than best subslice size are labelled "merge".

The first improvement idea avoids the subslices with "merge" decision left unchanged,
and the second improvement avoids "merge" decisions if the performance can match "no
change" decision.

6.3 Conclusion

In this chapter, the MCCL implementation was proposed, which improves slice perfor-
mance by subslicing. The decision function used the proposed decision mechanism pre-
sented in Section 5.1.3 and the execution function used the proposed subslice splitting
algorithm DSbB.

The subslicing improves slice performance in MCCL. The splitting algorithms, which
cluster UEs by requested rate (S3S, DSbR), had similar slice performance and did not
change slice configuration frequently. If DSbB, which clusters UEs by UE BLER, was used
for slice splitting, the slice had lower bandwidth utilization and BLER, and higher goodput
per one RB than other splitting algorithms. However, slice reconfiguration was done at
each MCCL run. Not all subslices were reconfigured, but only those which contained UEs
with poor BLER. This is caused by training data labeling, where poor-BLER dataset had
very few "no change" decisions. The size of £-neighbourhood was the same for each BLER
dataset, but it seems to be too small for poor-BLER dataset.

If having training data for both good-BLER subslices and subslices with worse BLER,
the slices containing mixed-BLER UEs can be subsliced in MCCL with the slice performance
improvement.
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7 Conclusion and Future Works

This chapter summarizes the research presented in this thesis, provides answers to re-
search questions, and suggests future research directions.

71 Summary

In this thesis, the RAN slice performance dependence from the RAN slice size was investi-
gated. Based on the slice performance dependence on slice size, the subslicing was pro-
posed. Moreover, an automatic subslicing was implemented in the management closed
control loop with the goal of RAN slice performance improvement on fixed slice band-
width.

RAN slice was simulated using MATLAB version R2021b 5G toolbox tool called NR Cell
performance evaluation with physical layer integration. Contrary to common research,
where the set of UEs are modelled, in this work for each RB allocated it was consumed by a
UE by its requested rate in both UL and DL. This created a close-to slice overload situation.
The RAN slice performance was evaluated in UL and DL by bandwidth utilization, goodput
per one allocated RB, and average UE BLER.

First, the slice performance dependence on slice size was discovered. Based on this
RAN slice performance data, the RAN subslicing was proposed to improve slice perfor-
mance on fixed slice bandwidth. RAN subslicing means that slice UEs are grouped, and
slice bandwidth divided to the UE groups. Slice performance improvement means that
bandwidth utilization has decreased, goodput per one RB increased and slice average UE
BLER decreased.

Secondly, based on the slice performance dependence on the slice size, the subslicing
algorithms were proposed. The higher slice performance improvement can be achieved
if UEs were clustered by BLER than clustered by requested rate. One constraint to subslic-
ing is that subslices should not be too small. The minimum subslice size depends on the
average BLER of UE group. Simulation results show the minimum subslice size could be
52, 40 and 10 RBs for good-BLER, medium-BLER and poor-BLER UE group, respectively.

Thirdly, the decision mechanism based on subslice performance for subslice splitting
or merging is proposed, which works for UEs with any BLER. The training dataset for NN
should contain training examples of KPIs for both good-BLER subslices and poor-BLER sub-
slices. The data labeling for decisions should be done separately for both datasets.

Fourthly, the subslicing algorithms and decision mechanism are building blocks of man-
agement CCL for automatic subslicing with the goal to improve slice performance on fixed
bandwidth by subslicing.

7.2 Research Questions Answered

The research questions are answered based on this thesis as follows.

RQ1: How many subslices can be in the RAN slice? The maximum number of subslices
in RAN slice depends on slice performance. The subslices must not be too small, because
too small subslices have low goodput per one allocated RB. This deteriorates RAN slice per-
formance. RAN subslicing can improve the slice performance in a close-to-slice overload
situation. If the slice contains all good-BLER UEs, the number of subslices can be a few.
That is to 2-5 subslices, because the solution of the optimization problem in Section 5.1.3
is 52 RBs for the best subslice size, and the number of subslices depends on the size of the
slice BWP. For poor-BLER UEs the RAN slice needs more subslices for slice performance
improvement on fixed slice bandwidth.
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RQ2: How much radio resource can be allocated to the slice and subslice to achieve
the best performance? The sufficient radio resource should be allocated to the RAN slice
and subslice, and efficient resource allocation leads to the close-to-slice-overload situa-
tion. However, the BWP size allocated to the RAN slice or subslice affects performance.
Based on my simulation results of 5G-NR, there can be found a minimum subslice size
limit of 37 RBs. Too small BWPs exhibit poor performance, except if BLER of all UEs in the
subslice is other than good.

RQ3: How users should be clustered, and slice bandwidth be allocated to subslices
to improve RAN slice performance? In this thesis, the UE requested rate and achieved
BLER were considered. In the research, the UE clustering by their SLA is proposed, as the
service verticals were created. This enables to share multiple different types of resources
efficiently. In RAN, the resource is the bandwidth in number of RBs. The 5G-NR simulation
results in MATLAB R2021b show that the UE clustering by their achieved BLER resulted in
lower utilization in UL, higher goodput and lower slice BLER than UE clustering by their
requested rate. Subslicing does not create more bandwidth. It uses the performance
dependence on subslice size. RB allocation should be proportional to requested sum rate
and group BLER. Therefore, subslices with poor BLER need more RBs, but too many RBs
cannot be taken away from with good BLER.

RQ4: What is the impact of RAN subslicing under the management closed control
loop framework? The MCCL framework can be used to improve slice performance if the
dependence between slice size and performance exists and the decision mechanism has
matching training data. The training dataset needs to have samples of sets of UEs of differ-
ent BLERs. The UE BLER has been shown to affect the RAN slice performance dependence
from the slice size. Therefore, subslicing by BLER into subslices with different sizes has
been shown to improve slice performance the most. The subslice splitting into more than
two at the time requires more work on slice reconfiguration if one of the subslices re-
quire configuration change (merge or split) later. Therefore, the subslice splitting into two
is executed for subslices which require smaller size for improved performance. Decision
boundaries affect how much reconfiguration is done and if the best number and subslice
sizes are achieved.

7.3 Contributions and Limitations

This work has contributed to the RAN slicing as follows:

¢ How to find RAN slice performance dependence on its BWP size: The performance
was evaluated at all possible slice sizes in granularity of one RB. For this reason, the
considered requested rates should be able to consume the RB. The most straight-
forward approach is to map one UE per one RB.

Limitation: current work has not considered a situation if performance data is miss-
ing for one or multiple subslice sizes.

¢ How different slice/UE requirements and capabilities affect RAN slice performance
dependence on slice size: Training data should contain samples if slice contains UEs
with different requirements and capabilities, that are possible in actual slice.

Limitation: current work has considered only packet sizes and UE BLERs as UE re-
quirements and capabilities.

¢ How to find the subslice size with its best performance: the current KPI values are
compared with the best achieved KPI values. If the sum difference is small, then
this subslice size is better.
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Limitation: current work has considered bandwidth utilization, goodput per one
allocated RB and average BLER of all UEs; other KPIs are not studied.

¢ How to decide the subslice operations (increase/decrease its size): If subslice size
must be increased, then another subslice should be found. If subslice size must be
decreased, then the maximum sizes of splits are when subslice is split into two.

Limitation: if subslice needs to be split, then it was not investigated whether the
performance would be better when it should be split into more than two. It was
assumed that if split into more than two will improve performance more, it will be
done in multiple MCCL runs.

¢ Performance data labeling for decisions: The slice performance pattern is plotted
in slice size (x) and objective value (y) plane. If there is one minimum, then the
horizontal boundary determined by the e-neighbourhood distinguishes subslices,
which need changes in their configuration and which do not. The vertical boundary
distinguishes subslices to be changed, into split or merge decisions.

Limitation: current work covers situation when only one minimum value for an ob-
jective function exists.

e When to start/stop the MCCL: The slice performance was investigated in close-to
slice overload conditions.

Limitation: it is assumed that RAN slice bandwidth resources are sufficient and not
excessive.

7.4 Future Work

Based on the limitations described in the previous section, future research directions can
be proposed:

¢ Training data collection for classifier NN to create decisions for subslices: In this
thesis, the subslicing solutions were proposed based on a complete simulated RAN
slice performance dataset, i.e. performance data exists for each possible BWP size
and fixed rate requirements per one RB. In actual RAN slice, the performance data
collection at each possible BWP size is not possible. It needs the further investiga-
tion what data could be used for training the NN which decides subslice configura-
tion changes.

¢ Investigation of dependencies between subslice size and UE requirements and
capabilities: Currently, the effect of UE BLER to the best subslice size was noticed.
Subslicing by UE BLER improves RAN slice performance more than subslicing by UE
rate. For poor-BLER UEs the smaller subslices exhibit better performance. It needs
further investigation in actual RAN slice if there are more dependencies between
UE requirements/capabilities and better subslice sizes and how to use them for RAN
slice performance improvement by subslicing.

¢ Proposal of new KPIs: Currently, the RAN slice performance improvement is mea-
sured by increase in goodput per one RB, while bandwidth utilization and average
UE BLER decrease. The latency is a critical requirement to satisfy, and it needs fur-
ther research how latency can be affected by RAN slice BWP resizing.

¢ Training data labeling: If it is discovered in RAN that multiple BWP sizes are optimal,
then how to choose between them and how to reconfigure subslices of other sizes.
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Abstract
Radio Access Network Subslicing in Closed Control Loop for Im-
proved Slice Performance Management

The network slicing feature in 5G enables multiple different service level agreements (SLA)
to be satisfied using a single physical infrastructure, such that each service vertical or mo-
bile virtual network operator (MVNO) obtains a slice of infrastructure resources. Network
slicing enables resource usage efficiency and satisfaction of different SLAs, for example,
low latency in one slice and high throughput in another. In a radio access network (RAN),
the signal quality of user equipment (UE) determines how much throughput is achieved.
Bandwidth allocation methods enable optimization in satisfaction of throughput and de-
lay requirements, and spectral efficiency. Thus, the slice is in a close-to-slice-overload
situation. It is not researched, how the size of the bandwidth part (BWP) available to the
slice can be used to optimize the slice performance. If there exists the dependence be-
tween BWP size and slice performance, subslicing can improve slice performance. Slice
performance improvement means that bandwidth utilization has decreased, goodput per
one RB has increased, and slice average UE block error ratio (BLER) has decreased.

5G-NR technology is used for the 5G RAN slice. The dependence of slice performance
on slice size is investigated by simulating slices of all possible sizes in MATLAB version
R2021b. The BWP size is increased by one resource block (RB) which is 180 kHz, if the
subcarrier spacing is 15 kHz. For each RB, a UE that can consume the RB is admitted.
The UE requested rates in UL and DL are determined by the trials of simulation of slice
with maximum BWP size with the aim of achieving close-to-slice-overload situation. The
six key performance indicators (KPI) are evaluated: bandwidth utilization, goodput per
one RB and BLER, all for both uplink (UL) and downlink (DL). After the discovery of the
dependence of slice performance on slice size, subslicing algorithms are proposed. The
subslicing algorithm clusters the UEs and subpartitions the slice bandwidth. Bandwidth
subpartitions are allocated to UE clusters. For automatic subslicing, a decision mechanism
using a classifier neural network (NN) is proposed. The training data are labelled based
on solving the optimization problem with the objective of minimizing bandwidth utiliza-
tion and BLER and maximizing goodput per one RB. Based on subslice performance, NN
decides too large subslices to be split, too small subslices to be merged, and suitably sized
subslices to be not changed.

The slice simulation results show that slice performance depends on BWP size. The
dependence is different; for good-BLER UEs, the best subslice size is greater than for poor-
BLER UEs. The decision mechanism determines correctly if it has training samples of both
slices that contain all good-BLER UEs or all poor-BLER UEs. Based on the simulation re-
sults, subslicing can improve the slice performance if the subslice is not too small in RBs.
The proposed subslicing algorithms convert the minimum subslice size constraint to the
minimum cluster size constraint for UE clustering. The well-known k-means clustering al-
gorithm was modified to achieve clusters that are not smaller than the minimum cluster
size constraint. The subslice bandwidth is allocated proportionally to the number of UEs
or the requested sum rate, and the average UE BLER in the cluster.

The simulation results show that the greatest performance improvement by subslicing
can be achieved if the UEs are clustered by UE BLER, and larger subslices are created for
good-BLER UEs and smaller for poor-BLER UEs. Automatic subslicing in a management
closed control loop can improve the slice performance as follows: by selecting the size
for a subslice, the subslice bandwidth utilization can be reduced by up to 12%, goodput
increases by up to 36% in UL and 11% in DL, or BLER decreases by up to 60%.
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Kokkuvote
Raadiojuurdepaasu vorguviilu alamviilutamine suletud juhti-
misahelas

5G vorgu viilutamise funktsioon voimaldab (he fiidsilise taristu kasutamisega pakkuda
mitme erineva kvaliteedindudega teenust nii, et iga teenuste grupp (vertikaal) véi virtuaal-
ne vorguoperaator saaks kasutada ainult osa ressurssidest. Vorgu viilutamine voimaldab
efektiivset ressursikasutust ja erinevate kvaliteedinduete rahuldamist, naiteks Gihes vor-
guviilus on lihikest viidet ja teises suurt edastuskiirust vajavad teenused. Olemasolevad
sagedusriba jaotamise meetodid véimaldavad optimeerida spektraalefektiivsust ning ta-
gada labilaskevdime ja viite nduete taitmine. Raadiovorgu viilule antud sagedusriba laiuse
moju viilu jdudluse parendamiseks pole uuritud. Kui leitakse viilu sagedusriba laiuse ja viilu
joudluse vahel seos, siis saab viilu joudluse parandamiseks kasutada alamviilutamist. Viilu
joudluse parandamine tdhendab, et sagedusriba kasutus ja kasutajate keskmine blokivea
téendosus vahenevad ning saavutatud edastuskiirus suureneb.

Raadiovorgu viilus kasutatakse 5G raadiojuurdepiésu tehnoloogiat NR (New Radio).
Viilu joudluse séltuvus viilu suurusest tehakse kindlaks nii, et simuleeritakse MATLABIs
(versioon R2021b) raadiovorgu viil kdigis tema voimalikes suurustes Ghe ressursibloki (RB)
kaupa. Iga viilule maaratud RB-d kasutab (iks kasutaja, mis vajab sellist edastuskiirust tles-
ltlis ja allaliilis, mis suudab selle RB &ra kasutada. Kasutajale vajalikud edastuskiirused
maarati katseliselt, kui raadiovorguviilu suurus on maksimaalne ja viilu sagedusriba kasu-
tuskoormus ldhedane maksimaalsele. Parast seda pakutakse valja alamviilutamise algo-
ritmid. Alamviilutamise algoritm jagab kasutajad gruppidesse ja tiikeldab viilule antud sa-
gedusriba. Iga kasutajate grupp saab kasutusse (ihe sagedusriba tiiki viilu sagedusribast.
Automaatse alamviilutamise voimaldamiseks kasutatakse suletud juhtimisahelat. Kasuta-
des eeltreenitud tehisnarvivorku tehakse iga alamviilu kohta otsus alamviilu joudluse and-
mete pohjal, kas alamviil poolitada, liita teise alamviiluga v6i alamviilu seadistust pole va-
ja muuta. Treeningandmed margistatakse optimeerimistilesande lahenduse pohjal, mille
eesmaérk on vahendada sagedusriba kasutuskoormust ja blokivea téendosust ning suuren-
dada saavutatud labilaskevoimet ihe RB kohta. Tehisnarvivorgu sisendiks on alamviilu 6
peamist jdudluse naitajat (sagedusriba kasutuskoormus, saavutatud edastuskiirus tihe RB
kohta ja blokivea téendosus, kdik nii tleslilis ja allalilis) ja véljundiks on otsused.

Vorguviilu simulatsioonitulemused naitavad viilu jéudluse séltuvust viilule antud sage-
dusriba laiusest. Kui kasutajate blokivea tdendosus on viike (hea), siis parima joudlusega
alamviil on suurem, ja kui kasutajate blokivea téenaosus on suur (halb), siis parima jéudlu-
sega alamviil on viaiksem. Otsustusmehhanism teeb 6Gigeid otsuseid, kui treeningandme-
tes on viilu joudluse andmeid koikide vaikese blokivea tdendosusega kasutajate viiludest
ja koikide suure blokivea tdendosusega kasutajate viiludest. T66s valjapakutud alamvii-
lutamise algoritmid teisendavad alamviilu suuruse RB-dest minimaalse kasutajate klastri
suuruse piiranguks, mida kasutab muudetud klasterdamise algoritm. Alamviilule jaotatak-
se sagedusriba laius, mille suurus on vordeline kasutajate arvuga voi alamviilu summaarse
vajaliku edastuskiirusega ning vordeline kasutajagrupi blokivea tdendosusega.

Kasutajad tuleks grupeerida nende blokivea tdendosuse jargi, siis luuakse suuremad
alamviilud vaikese blokivea toenaosusega kasutajagruppidele ja vaiksemad alamviilud suu-
rema blokivea téendosusega kasutajagruppiele. Selline meetod on niidanud kodige suu-
remat viilu joudluse paranemist alamviilutamisega. Automaatne alamviilutamine suletud
juhtimisahelas voib parandada raadiovorgu viilu joudlust jargmiselt: sobiva suurusega alam-
viiludega voib sagedusriba koormust vahendada kuni 12%, saavutatud labilaskevoimet suu-
rendada kuni 36% Ulesliilis ja 11% allaliilis voi blokivea toendosust parandada kuni 60%.
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Abstract—Network slicing in 5G RAN enables building logical
networks on top of physical infrastructure. In case of RAN
spectrum resources are divided into small bandwidth parts then,
the network function in core network, namely Network Slice
Admission Control Function (NSACF) enables to limit the count
of user equipments (UE) and packet data unit (PDU) sessions
in a slice. This paper presents negative results and a practical
analysis of how many UEs and PDU sessions can be allowed
to use if available bandwidth is fixed and tries to evaluate the
optimal count of subslices at this bandwidth. In case of slice
resource overutilization there are 2 options: increase resources
or move UEs to another slice. In this paper, the feasibility of the
other option is evaluated in case of fixed overall bandwidth where
resource increase is not possible. Results show that infrastructure
can afford as few slices as possible and slicing does not help if
theoretical capacity is exceeded.

Index Terms—5G, RAN, slicing, subpartitioning

I. INTRODUCTION

The frequency resource is a scarce resource essential for
radio transmission. This paper contributes on evaluation of the
impact of slice bandwidth subpartitioning on slice performance
in case of a fixed frequency bandwidth resource has been
allocated to the slice.

If one slice is overloaded with traffic then the options
are to increase resources to be allocated to the slice or
create a new slice. The performance is measured via resource
utilization. There are different approaches in the literature
about resource allocation to the slice. In [1] it is recommended
to measure the utilization of each resource that the slice uses
and then determine the next slice lifecycle management (LCM)
operation (e.g. slice scaling, new slice creation, slice deletion).

Monitoring count of UEs can be easier than monitoring the
resource utilization. The generic slice template (GST) [2] has
attributes to provide allowed maximum number of Packet Data
Unit (PDU) sessions, and allowed maximum number of UEs.

Authors’ version of the paper accepted in 2022 International Wire-
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10.1109/IWCMC55113.2022.9825262 ©2022 IEEE. Personal use of this ma-
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These are scalability attributes and are optional. 3GPP has
defined a new function in core - Network Slice Admission
Control Function (NSACF) in Rel-17 [3]. NSACF provides
slice status reports and notifications for each slice maximum
count of UEs per slice and maximum count of PDU sessions
per slice. NSACF maintains list of UEs, count of UEs and
count of PDU sessions in slice.

The known problem in ultra-dense networks with Internet of
Things (IoT) UEs is Radio Access Network (RAN) congestion
problem with massive number of small packets [4]. The
massive count of UEs cause extra load on resource allocation
and massive small packets need finer granularity of resources
to be allocated. The solutions include grouping UEs and
allocate smaller resources to UE groups - to use the same
timeslots, to associate UEs with the suitable BS-s. According
to [4] it is more efficient to group UEs into smaller slices to
increase throughput and reduce resource utilization.

The achieved throughput is a parameter that has been eval-
uated to compare the performance of un-sliced network and
sliced network. Some different findings exist with relation to
throughput and count of slices. In [5] the optimal numerology
and optimal scheduler for each slice (generally a throughput-
oriented or latency-constrained) are proposed, and they discov-
ered that the un-sliced network served up to 20% more traffic
than throughput-oriented slice and latency-constrained slice in
combination while using their optimal schedulers and optimal
numerologies. Contrary, in [6], the achieved sum-rate can be
higher in sliced network than in un-sliced network. Their
slice admission with non-overlapping frequency bandwidth
and transmit power assignment has achieved up to 120% of
throughput compared to un-sliced network. Similarly, in [7] it
is shown that the more slices present, the less total bandwidth
is used.

In terms of performance, both results have been obtained
- higher throughput can be achieved either with or without
slicing.

The contributions of this paper are that the slice perfor-
mance is evaluated by bandwidth utilization and achieved
throughput and goodput (effective throughput). The slice with
fixed bandwidth is considered and the impact of slice subparti-
tioning to slice performance is evaluated. The slice bandwidth



is subpartitioned into subslices and UEs are grouped into
subslices. The performance of each subslice is measured and
results are combined to evaluate the slice performance.

II. RAN SUBSLICES PROVISIONING

A. Slice life cycle management and closed control loop

This paper uses inductive (test first and then make conclu-
sions) method to evaluate the best count of slices for using
specified bandwidth to serve given number of UEs with their
requested datarate.

For slice management the 3GPP management system has
defined the closed control loop (CCL) management system in
[8]. The CCL system contains monitor, analyze, decide, and
execute blocks. These blocks are used for automatic manage-
ment of working slice instances and are shown in Fig. 1. The
monitor block collects data about overall bandwidth utilization
and each slice bandwidth utilization. Analyze block detects
overload and underload. Decide block decides what slice to
create, modify or delete according to information about overall
utilization and utilization about each slice. Execution block
executes the decisions about slices.

LCM of working slice instances

create modify { delete
RAN slice |: RAN slice i RANslice '
instance | instance i instance

| monitor |—>| analyze |

| execute |<-| decide |

Fig. 1. Slice LCM with closed control loop.

The rules for analyze block are:

o if bandwidth utilization is above 80% then the slice is
overloaded, and

o if bandwidth utilization is below 20% then the slice is
underloaded

as recommended in [1].

It is recommended to assign UE with the required resources
to the slice i.e. apply slice provisioning [9].

The slice has been given a fixed slice bandwidth. The
maximum capacity is calculated for this bandwidth. Different
number of UEs are planned to use this capacity in the
simulations. The more UEs present, the less per-UE data rate
is requested. The sum of all per-UE datarates matches the
planned percentage of capacity usage. The slice performance
is evaluated in case the slice bandwidth is subpartitioned into 1
to N subslices. The UEs with their respective uplink (UL) data
rate and downlink (DL) data rate are grouped into subslices.
The sizes of UE groups are as equal as possible and UEs are
grouped randomly.

B. System model

The slice is a fixed bandwidth resource. The set of UEs are
defined with per-UE data rates for UL and DL and UE position
coordinates z, y and z are selected randomly within expected
coverage area. BS coordinates are (0,0, 0). The slice resource
can be subpartitioned into subslices. The bandwidth for a
subslice is calculated from count of subslices for the iteration
and count of UEs admitted to a subslice. The bandwidth
allocation scheme for subslices is shown in Fig. 2.

Iteration 1: ﬂ
1 subslice, I

[ I~
1setof UEs || bandwidih T f Hz
Iteration 2: @ Dum
2 subslices, 1 v ! Is
2 sets of UEs | T bandwidth If,HZ
Iteration N: D D D D m D u D D D
Nsubslices, L L L L L L L 1 | T
Nsets of UEs F——— l::a ndwidth — >

" Hz

Fig. 2. Bandwidth allocation scheme for subslices at each iteration.

The traffic model is on-off traffic model with the same per-
UE data rate for UL and DL. From the specified UE data rate
in kbps, the sufficient count of 1500-byte long packets are
generated per second. All UEs start transmitting and receiving
at the same time.

The scheduler Round Robin was selected to use because
this simulation does not measure the efficiency of scheduler
but the impact of count of subslices to the slice performance.

The simulation time selected is 100 frames. This is 1 second
with 15 kHz subcarrier spacing (SCS) and the snapshot of
traffic at time ¢ is simulated.

Other simulation parameters used are shown in table 1.

TABLE 1
OTHER SIMULATION SETTINGS
Parameter Value
Carrier frequency 3 GHz
Channel model (for both UL and DL) | CDL-C
PUSCH preparation time for UEs 200 ps
Subcarrier spacing 15 kHz

Logical channels per UE 1

RLC entity type UM bidirectional
Sheduler strategy Round Robin

Length of scheduling cycle 1 frame

Default packet size 1500 bytes

RB allocation limit UL same as RBs for subslice
RB allocatin limit DL same as RBs for subslice




The simulation algorithm divides the slice bandwidth and
groups the UEs as equally as possible into given count of
subslices starting from 1. This is the benchmark of unsliced
situation. Next there are 2 subslices and UEs and bandwidth
are divided into 2 subslices. The bandwidth for a subslice is
calculated from assigned count of RBs that is calculated from
count of UEs assigned to the subslice. The maximum count
of subslices to be tested is 10. The simulation algorithm is
presented as algorithm 1.

Algorithm 1 Simulation process
Set slice bandwidth
Set count of UEs
Set N < max count of subslices
for iteration n =1 to N do
divide UEs and slice bandwidth into n subslices
for i =1 ton do
simulate subslice 7 in Matlab
collect simulation results of subslice
end for
combine simulation results of iteration
end for
plot graphs

III. PERFORMANCE EVALUATION
A. Numerical results

The throughput capacity depends on bandwidth and signal-
to-noise (SNR) ratio according to Shannon’s law [10], equa-
tion 1:

C = B -logy(1+S/N) [€))

where C is channel capacity in bps, B is bandwidth in Hz,
S is signal power in mW, NV is noise power in mW.

The best and worst SNR values considered are -5 dB and
+25 dB accordingly (as done in [11]). Then the theoretical
channel capacity is between 17.1 Mbps and 359 Mbps ac-
cordingly for given bandwidth of 43.2 MHz.

The data rate depends on channel state and quality that is
measured based on reference signals. The UE measures SNR
and calculates channel quality index (CQI). According to CQI
the tables in 3GPP TS 38.214 [12] section 5.1.3.1 for DL
and section 6.1.4.1 for UL are used to select the modulation
and coding scheme (MCS) that determines how many data
bits are transmitted per symbol and consequently the spectral
efficiency.

Now if the spectral efficiency is known, the theoretical
capacity can be calculated by equation 2:

C=Bp @

where p is spectral efficiency in bps/Hz.

The theoretical maximum capacity of 5G RAN technology
NR can be calculated from spectral efficiency found in 3GPP
TS 38.214 [12]. In 5G NR the modulations used are QPSK and

QAMG64 for UL and QPSK, QAM64 and QAM256 for DL.
The best spectral efficiency is with modulation of 256QAM
and the worst spectral efficiency is with modulation of QPSK.

TABLE II
VALUES FOUND FOR SPECTRAL EFFICIENCY IN 3GPP TS 38.214 [12]

Spectral efficiency Capacity of 43.2 MHz

UL DL UL DL
max | 5.5547 7.4063 240 Mbps 320 Mbps
min | 0.0586 0.0586 2.53 Mbps | 2.53 Mbps

In case the bandwidth is 43.2 MHz and the best and the
worst spectral efficiencies are taken from table II left side,
then the maximum and minimum capacities can be calculated
for UL and DL using equation 2 and results are shown in
table II right side.

The percentage of capacities are calculated as percentage
of maximum capacity and UL and DL capacities in Mbps are
shown in figure 3.

100 Frrr=r==rr 240 Frrrr 320
80 p====== =1 192 p===n== =1 256 pmm===- -1
50p====== -1 120 p====== -1 160 p====== -1
20 p====== =1 48 p=mmm== =1 64 pmmmm=- =

( Elmlalalad d d 53 klalalalddd L] 9.53 blalaloldd 1L
12345678910 1234567890 12345678910
N N N
(a) Capacities (b) UL capacities (c) DL capacities
(%) (Mbps) (Mbps)
= == maxcap = - = ThHi === 50%cap - - = ThLo
mincap

Fig. 3. Calculated slice capacities: maximum capacity (maxcap), overload
threshold and 80% capacity (ThHi), 50% capacity (50%cap), underload
threshold and 20% capacity (ThLo), minimum capacity (mincap).

B. Simulation setup

The subslices are simulated in Matlab R2021b 5G Tool-
box system level simulator tool called NR Cell Performance
Evaluation with Physical Layer Integration [13].

The minimum bandwidth supported in 5G NR is 4.32 MHz
(24 resource blocks (RB) with SCS = 15 kHz [14]. The
slice bandwidth is planned to divide into a maximum of 10
subslices so for the simulations the slice bandwidth is fixed to
43.2 MHz.

Five different number of UEs are planned to simulate at
five different percentages of maximum capacity of a slice. The
more UEs the less per-UE data rate is requested such that the
sum of per-UE datarates equals to the planned percentage of
maximum capacity of a slice.

The maximum number of UEs was selected such that at
each slot time at least one RB can be allocated to UE i.e.
each UE will have an opportunity to send and receive. The



bandwidth of 43.2 MHz in SCS setting 15 kHz is 240 RBs
and therefore 240 UEs as a maximum number of UEs are
selected to be allowed on the slice bandwidth.

The minimum number of UEs will be 10, because the
maximum count of subslices to be tested will be 10 and then
each subslice can have at least one UE.

Other number of UEs that will be tested are 192 UEs (80%),
120 UEs (50%) as the middle setting for sake of approximation
and 48 UEs (20% of maximum number of UEs). 10 UEs is
4.2% of maximum number of UEs.

Next, the datarate for each UE for UL and DL is calcu-
lated in case of theoretical maximum capacity and theoretical
minimum capacity. The capacity settings 80% of maximum
capacity as overload threshold and 20% of maximum capacity
as underload threshold settings are calculated, and for sake of
approximation a middle setting 50% of maximum capacity is
calculated for each number of UEs setting. The 25 test-cases
are calculated and shown in table III.

TABLE III
CALCULATED SETTINGS FOR UES
UL capacity | DL capacity
Capacity settings :)1;131]:::1' and data rate | and data rate
per UE per UE

max capacity (red”) 240 Mbps 320 Mbps
max UEs 240 1000 kbps 1333 kbps
80% UEs 192 1250 kbps 1667 kbps
50% UEs 120 2000 kbps 2667 kbps
20% UEs 48 5000 kbps 6667 kbps
min UEs 10 24000 kbps 32000 kbps

80% capacity ("violet”) 192 Mbps 256 Mbps
max UEs 240 800 kbps 1067 kbps
80% UEs 192 1000 kbps 1333 kbps
50% UEs 120 1600 kbps 2133 kbps
20% UEs 48 4000 kbps 5333 kbps
min UEs 10 19200 kbps 25600 kbps

50% capacity ("blue”) 120 Mbps 160 Mbps
max UEs 240 500 kbps 667 kbps
80% UEs 192 625 Kkbps 833 kbps
50% UEs 120 1000 kbps 1333 kbps
20% UEs 48 2500 kbps 3333 kbps
min UEs 10 12000 kbps 16000 kbps

20% capacity ("teal”) 48 Mbps 64 Mbps
max UEs 240 200 kbps 267 kbps
80% UEs 192 250 kbps 333 kbps
50% UEs 120 400 kbps 533 kbps
20% UEs 48 1000 kbps 1333 kbps
min UEs 10 4800 kbps 6400 kbps

min capacity ("green”) 2.53 Mbps 2.53 Mbps
max UEs 240 10.5 kbps 10.5 kbps
80% UEs 192 13.2 kbps 13.2 kbps
50% UEs 120 21.1 kbps 21.1 kbps
20% UEs 48 52.7 kbps 52.7 kbps
min UEs 10 253 kbps 253 kbps

C. Results

The results of bandwidth utilization and achieved through-
put and goodput (effective throughput i.e. achieved throughput
except retransmissions) are collected at each subslice and com-
bined for all subslices at each iteration. The sllice utilization
is average of all subslice utilizations. The slice throughput

and goodput is sum of subslice throughputs and goodputs
respectively.

1) Bandwidth utilization: The bandwidth utilization is mea-
sured by counting RBs that were allocated to UEs divided by
all RBs available. The Fig. 4 shows the bandwidth utilization
against varying count of subslices that slice has been subpar-
titioned into. Graphs from (a) to (e) show different number of
UE:s that use the percentage of planned capacity such that if
more UEs then less per-UE data rate requirement and if less
UEs then more per-UE data rate requirement.

Simulation results of slice bandwidth utilization show that
actual bandwidth utilization is higher than planned. For exam-
ple if 50% of capacity (50% cap, blue lines) was planned to
use then the resource utilization achieved is about 80%. The
more UEs present, the higher the bandwidth utilization is at
higher capacities.

If maximum UEs (maxUEs) use 43.2 MHz then the best
count of subslices could be 4 as there is the lowest utilization.
Same for 80% and 50% of UEs on 43.2 MHz. If less UEs then
the best count of subslices could be 5. However, the trend lines
are not straight but fluctuating. Many packets UEs wanted,
were not sent. Small subslices must have certain amount
of control plane information to be included for transmission
and then UE data has no opportunity to be transmitted. All
testcases had more data in buffer at the end of simulation if
count of subslices increased.

2) Throughput and goodput: The throughput and goodput
of a slice is a sum of throughputs and goodputs achieved in
subslices. The Fig. 5 shows UL data in upper row of graphs
and DL data in lower row of graphs. Similarly, the left side
graphs show the capacity with more UEs and less per-UE data
rate and right side graphs show the capacity with less UEs
and more per-UE data rate requested. The dashed lines show
calculated planned capacities for maximum, 80%, 50%, 20%
and minimum utilizations.

Results of throughput and goodput in UL show in Fig. 5
that with more subslices there is less overhead (smaller gap
between throughput and goodput). The overhead contains
packet retransmissions. The achieved goodput is no higher
than calculated maximum capacity in UL. This means that
theoretical calculated capacity matches the simulation results.

In DL the achieved goodput does not exceed 80% limit of
DL capacity if planned capacity use is maximum or 80% as
seen in Fig. 5 second row graphs. The theoretical maxmium
capacity was not reached in simulations. The overhead in DL
is much smaller than overhead in UL. This means that the DL
had less retransmissions and therefore it is more effective.

If more planned capacity used, then with more UEs the
throughput is higher than with less UEs. If less planned
capacity used then with less UEs the throughput and goodput
are higher than with more UEs. (In Fig. 5 graphs the red and
violet lines are higher in left side graphs, but teal and green
lines are higher on right side graphs.)

3) Summary: Simulation results show that if UEs use
planned capacity then bandwidth utilization is higher than
planned capacity (as the test results shown using the same



color exceed the dashed lines in graphs). The utilization
overhead is remarkable. The gap between throughput and
goodput decreases, if more subslices are used. The best count
of slices from bandwidth utilization is 4 or 5 if more UEs and
5 or 6 if less UEs present at fixed bandwidth of 43.2 MHz. The
best count of slices from achieved throughput and goodput is
3 or 4 if more UEs and 4 or 5 if less UEs present at fixed
bandwidth of 43.2 MHz.

When looking at all results, then the increase in count of
subslices cause the trend to decrease the values of all measured
performance metrics.

IV. CONCLUSION

This paper evaluated the impact of slice bandwidth subpar-
titioning to slice performance on fixed slice bandwidth. Slice
performance was evaluated by bandwidth utilization and slice
throughput and goodput. The simulation algorithm evaluates
the slice performance in case of slice bandwidth subpartition-
ing into up to 10 subslices. The UEs and bandwidth resource
were assigned to subslices proportionally - if UE is admitted
to the subslice, then RBs were allocated to that subslice as
well i.e. slice provisioning was applied.

In [5] it was observed that un-sliced network performed
better. In [6] the achieved rate was higher in sliced network and
in [7] less bandwidth was used in sliced network. The results
of this paper show that bandwidth utilization depends on
number of subslices, UEs and per-UE data rate. Generally, the
throughput and goodput are decreasing, if count of subslices
is increased.

The count of UEs to be allowed to use the slice is not
a constant but depends on the requested per-UE data rate.
Better performance is obseved with less UEs with higher per-
UE rate requirement than more UEs with lower per-UE rate
requirement are using the slice. More UEs with more per-UE
rate requirement generate slice overload situation and require
more bandwidth. This cannot be solved by bandwidth subpar-
titioning. Less UEs with less per-UE rate requirement cause
bandwidth wastage and this cannot be solved by bandwidth
subpartitioning either.

Future work includes simulations with different packet
sizes and evaluation of different UE grouping methods for
subslices.
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Abstract: In 5G and beyond, the network slicing is a crucial feature that ensures the fulfillment
of service requirements. Nevertheless, the impact of the number of slices and slice size on the
radio access network (RAN) slice performance has not yet been studied. This research is needed
to understand the effects of creating subslices on slice resources to serve slice users and how the
performance of RAN slices is affected by the number and size of these subslices. A slice is divided
into numbers of subslices of different sizes, and the slice performance is evaluated based on the slice
bandwidth utilization and slice goodput. A proposed subslicing algorithm is compared with k-means
UE clustering and equal UE grouping. The MATLAB simulation results show that subslicing can
improve slice performance. If the slice contains all UEs with a good block error ratio (BLER), then a
slice performance improvement of up to 37% can be achieved, and it comes more from the decrease
in bandwidth utilization than the increase in goodput. If a slice contains UEs with a poor BLER, then
the slice performance can be improved by up to 84%, and it comes only from the goodput increase.
The most important criterion in subslicing is the minimum subslice size in terms of resource blocks
(RB), which is 73 for a slice that contains all good-BLER UEs. If a slice contains UEs with poor BLER,
then the subslice can be smaller.

Keywords: 5G; RAN; slicing; UE clustering; performance evaluation

1. Introduction

Network slicing in 5G cellular communication network is used to guarantee the
service-level agreement (SLA) of a variety of user equipment (UE) instead of providing a
best-effort networking service. Slices of network resources as logical separate networks can
be created, modified and deleted automatically. The network configuration is dynamically
adjusted to serve different groups of UEs. There are no upper bounds on the number of
slices and slice size in the network.

Slice performance management is performed in the network slice lifecycle [1] by
evaluating the slice performance. If a slice overload occurs, more resources are allocated to
the slice. The computing, storage, and networking resources can be mapped to the QoS
requirements by the orchestrator. The radio resources are limited and scarce. If additional
resources are not available, then a slice overload can be avoided by not serving some UEs;
however, then the slice SLA cannot be guaranteed. The mapping of radio resources to the
QoS requirements is more complex. With subslicing the slice bandwidth is sub-partitioned
into smaller parts to serve smaller UE groups.

From our previous work [2], it is known that the slice performance depends on how
many subslices it is divided into. Given that different numbers of subslices affect the slice
performance, a suitable number of subslices and subslice sizes exist. A subslicing algorithm
can be created that uses found criteria on the subslice size and number of subslices that
contribute to the slice performance improvement on a fixed slice bandwidth.

Sensors 2023, 23, 4613. https:/ /doi.org/10.3390/523104613 https:/ /www.mdpi.com/journal/sensors
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1.1. Related Work

The network slice subnet defined by 3GPP TS 28.530 [1] is a group of network functions
that can be managed independently. It is easy to replace the words “network slice subnet
instance” (NSSI) with a shorter word, “subslice”. The NSSI is a part of the core, RAN, edge,
cloud, etc. network resources that can be separately incorporated into a slice to represent
its part of network.

The slice identifier defined in 3GPP TS 23.501 [3] consists of a slice/service type (SST)
that denotes standardized verticals or custom numbers and a slice descriptor (SD) that is
optional and distinguishes multiple slices with the same SST. Reference [4] defined subslices
as slices with the same SST but different SDs and evaluated the end-to-end performance
with hundreds of slices in the system. The UE can connect to multiple slices, and slices
can be created and deleted. However, RAN resources are assumed to be infinite, and the
RAN is simulated using UERANSIM (where the physical layer is not implemented, and
the radio interface is simulated over a UDP protocol), which means ideal radio quality and
immediate transmission in the RAN is assumed.

Another study [5] proposed a subslicing method where the UE features were selected
using a support vector machine (SVM) and the UEs were grouped based on the selected
features using k-means. The number of subslices was determined based on the clustering
quality measured with the Silhouette coefficient. However, this approach did not consider
the performance when creating the subslices, which can lead to a poor performance for
small subslices. Their simulations were conducted using Android UEs in Wi-Fi, and the
performance of 5G-NR RAT was not evaluated.

On the other hand, Ref. [6] proposed a subslicing method where a subslice in a RAN is
treated as a virtual cell that includes multiple physical cells. This approach aims to improve
the slice performance by reducing the signaling required for cell handovers within the
RAN subslice.

Lastly, a series of studies [7-9] attempted to address subslicing and its impact on
performance. In [7], subslices were created for each vertical to include groups of UEs based
on their similar SLA values. In [8], the focus was on optimizing the resource allocation for
services, where UEs can connect to multiple subslices within a slice. The system load was
defined as the range of the number of packets and packet sizes that will not fully utilize the
allocated bandwidth. The related work on subslicing is compared in Table 1.

While all studies aimed to improve performance through subslicing, none of them
considered the design of subslices that would achieve this goal in the RAN. It is impor-
tant to note that the simulations used in these studies had a simplified RAN, and the
requested rates were too variable to achieve a controlled load that would fully utilize the
available bandwidth.

Key performance indicators (KPI) are used to evaluate the slice performance and
trigger slice modification. The utilization of each resource as slice run-time KPIs are
proposed in [10] to measure the slice performance. If the resource utilization exceeds a given
high threshold (e.g., 80 %), then a slice overload can be detected, and slice modification can
be triggered to add more resources or drop UEs. Similarly, in [11] high and low thresholds
of computing resource utilization are used to trigger slice scaling, which is performed by
adding or removing resources. Different values of slice overload thresholds are used. If
new resources can be allocated, the slice overload threshold is 80-90%. If no resources
are available and resources are taken from another less-loaded slice, the slice overload
threshold is 60%. The slice overload threshold is useful for detecting slice overload earlier
than it happens to avoid slice malfunction due to insufficient resources.

For subslicing, it is necessary to determine which UE should be served by which
subslice. This can be achieved by clustering the UEs. UE clustering has been applied in
several studies. In [12] the resource allocation scheme contains the allocation of a resource
block (RB) on a time-frequency scale to a cluster of massive machine-type communications
(mMTC) UEs in a MIoT slice; however, there are no details about how the UEs are clustered.
As for the scheduler, one RB may be sufficient; however, one RB is too small for a subslice
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as a logical network on physical layer of 5G-NR. In [13] the UEs are clustered using the
k-means clustering algorithm into inner-cell UEs and cell-edge UEs using the UE distance
from the base station (BS). The bandwidth allocation is different for UE clusters: cell-edge
UEs are allocated many smaller-bandwidth parts served by multiple close BSs, whereas
inner-cell UEs are allocated bandwidth parts served only by the associated BS. In [14] the
UEs are clustered by the UE position to decide how many small-cell BSs are needed to
switch on or off to maximize the energy efficiency of the network. The clustering algorithm
is based on fuzzy c-means clustering. Similarly, in [15] UEs are clustered by the UE position,
and the optimal route for the flying BS is calculated for UE clusters. UE grouping or
clustering has rarely been used for network slicing. In [16] a deep neural network is trained
to classify UEs into enhanced mobile broadband (eMBB), MIoT, or ultra-reliable low-latency
communication (URLLC) slices. In [17], the slice mobility is discussed. The UEs are grouped
by the values of parameters that can indicate the UE behavior pattern in the network, that
is, related to the association of the moving UE with different BSs. The operations with
groups of UEs are related to slice life cycle management (LCM) and group handover, which

is faster than triggering and performing the handover of each UE separately.

Table 1. Comparison of related work in subslicing.

Paper How Subslicing Is Performed Benefits Limitations
The planned use of capacity varies
Three verticals each contain Performance improvement achieved  between underload and half of the
[7] subgroups of services. UEs grouped by subslicing: increased SNR full load. The effect of the number
by similar SLA values and throughput. of subslices on slice performance
has not been evaluated.
A subslice is a logical group of . -
services that is associated with a The performance improvement The planned use of capacity is
[8] sinele UE. The UE can connect to achieved by subslicing: increased variable between underload and
& m1'11 tiple subslices throughput and energy efficiency. close to full load.
One subslice can serve not only UEs The performance improvement
with similar SLAs, but also a mixed pert proy The planned use of capacity cannot
[9] . achieved by subslicing: . .
set of UEs with increased throughput be evaluated using the given data.
different throughputs. crease oughput:
Subslicing results in decreased Planned underload, RAN simulated
UEs are clustered by the similari bandwidth consumption, improved as Android UEs in Wi-Fi. The
[5] of their 1o uizements ty load balancing, improved latency proposed subslicing method does
4 ' and heterogeneity, and improved  not avoid creating subslices that are
energy efficiency. too small.
In the RAN subslice, the virtual cell Evaluation of just signalling for
6] covers multiple physical cells, and ?;e itfg;}é:?ig;rg%gﬁfﬁgj;?s handover. The UE can select
the UE by mobility allocates the P subslices without constraints on the
. performed faster. .
virtual cell. subslice performance.
The slice with identifier SST Performance improvement was
[4] contains all slices with the same SST achieved b P ubslicin. The RAN was simulated as ideal.
and different SDs as subslices. chieved by substicing.
The slice bandwidth is Slice performance can be improved
subpartitioned, slice UEs are by reducing bandwidth utilization Simulations were performed under
grouped, and bandwidth and increasing goodput if the the assum tionsl::hat all UEs are
subpartitions are allocated to UE subslices are not too small. imilar tI})1 ir requirements and
This paper groups. The number and sizes of ~ Simulations were performed using s O Fhelr fequirements

subslices are determined with the
aim of achieving better
performance than
without subslicing.

5G-NR and close to the full

capacity of the allocated bandwidth.

UE requested rates are sufficient to
utilize one RB per UE.

capabilities. The proposed
algorithm requires significant
computational resources.
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After initialization, the original k-means clustering algorithm [18] consists of three
steps: distance calculation, cluster assignment, and a new centroid calculation. The algo-
rithm finishes at convergence when the centroids do not move. The cluster size depends
on the number of data points that are closer to the specific centroid and not to the other
centroids. The cluster size is not limited. It can be empty or contain all data points.
Furthermore, there are no outliers as each data point is assigned to a cluster.

K-means has many modifications, ranging from more unsupervised (no number of
clusters given) to more constrained and balanced (all clusters of the same size). If an
unsupervised k-means algorithm [19] is used, the algorithm determines the number of
clusters to be created. This is based on data point similarity; however, we need to specify
the desired number of subslices. The constrained k-means [20] algorithm enables the
definition of constraints such as the minimum cluster size, and the optimization problem
is solved using a linear programming method. Balanced k-means [21] results in clusters
of equal size by defining artificial points close to the centroid and using the Hungarian
algorithm to pair the data points with artificial centroid points. Agglomerative clustering
algorithms begin with small clusters and attempt to merge similar clusters in each step.
Finally, some clusters may include only one data point.

The subslicing has been implemented by grouping the services and UEs by their
similarities. The effect on performance improvement has been noticed. The state of the art
does not consider the following aspects:

e Regarding slice performance evaluation, most studies have considered throughput
and/or delay as the main metrics. However, goodput (application-level throughput)
should be taken into account, because throughput alone does not provide details about
overheads (packet headers and packet retransmissions).

e  Slice performance evaluation does not consider resource utilization, which is needed
to understand the number and size of subslices to achieve the best performance.

1.2. Motivation and Problem Description

From our previous work, it can be seen that the slice performance depends on the
number of subslices. The more subslices there are, the smaller one subslice is. How does
the subslice performance depend on the subslice size?

When we see that subslices at some size have a better performance than others, then the
slice could be subsliced into subslices of suitable size. What size and how many subslices
could be created in the slice to improve the slice performance on a fixed slice bandwidth?

To evaluate how subslicing affects the slice performance, the following research prob-
lem is defined:

e Input: 275 UEs, 50 MHz (275 RBs), number of subslices in a slice, slice performance
data (utilization, throughput, goodput, BLER) when the slice is not subsliced.

*  Decision: Select the number of subslices to create and select the subslicing method.

e  Objective: Improve the slice performance (reduce the bandwidth utilization and
increase the slice goodput).

1.3. Contributions

The contribution is to answer the above-mentioned research questions and the specific
outcome is as follows:

*  Present the dependence of subslice performance on the subslice size.

*  Propose a subslicing algorithm that prevents creating too-small subslices.

¢ Compare the slice performance, if it is subsliced using the proposed algorithm, equal
UE grouping, or k-means UE clustering algorithms.

The remainder of this paper is organized as follows. In Section 2, the concept of
subslicing is described and the performance of a subslice, depending on its size, is evaluated
to determine the minimum subslice size. The proposed UE clustering algorithm is described
in Section 3. Section 4 contains the slice simulations and slice performance-evaluation
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results when the slice is subsliced using three different subslicing algorithms. Finally,
Section 5 concludes the paper.

2. Subslice Performance Evaluation at Different Subslice Sizes

In this section, the performance of the subslice at different sizes for the selected test
case is evaluated.

2.1. Subslicing

Network slicing is a feature of 5G that is applicable to the 5G RAN with a stand-
alone architecture. The RAN slice subnet, or the RAN slice, consists of a gNB, which is
implemented as virtual network functions (VNFs) that use computing and storage resources
to run and networking resources to enable connectivity between VNFs. The RAN slice
also utilizes radio resources (frequency bandwidth) to transfer the UE data and control
information using physical network functions, e.g., antennas [1].

To monitor the performance of the operational slices, a management closed control
loop is utilized [22], which decides when the slice needs to be modified, and in case of slice
overload, more resources can be added during the slice-modification phase [1]. This paper
proposes subslicing as a means of slice modification to address a slice overload at a fixed
slice bandwidth.

Subslicing is a technique where the original slice bandwidth is divided into smaller
parts. The slice UEs are grouped into smaller groups, and these smaller BWPs are allocated
to these smaller UE groups. Figure 1 illustrates this approach. It is important to note that
all subslices of a slice use slice VNFs and other slice resources.

(Internet)

All slice UEs use
full slice bandwidth
[ ) 1S
I |
fHz
Two subslices:
Group 1 Group 2
i ) i 1S
I L
BWP | Bwp2 [ Hz

Figure 1. RAN architecture with slicing and subslicing.



Sensors 2023, 23, 4613

6 of 25

To address a slice overload when there is insufficient bandwidth available, subslicing
can be applied. The benefit of subslicing is that it can reduce the slice bandwidth utilization
while simultaneously increasing the slice goodput, without requiring additional bandwidth
allocation, thus ensuring rate requirements and serving more UEs.

The life cycle of a working slice instance and the proposed RAN subslicing are illus-
trated in Figure 2. Similar subslicing has been carried out in [23], where dynamic inter-slice
radio resource partitioning in the time-frequency plane is proposed. The optimization goal
is to find the largest unallocated space. The bandwidth parts of the slices can be placed
freely inside the time-frequency plane of the infrastructure radio resources.

Life cycle management of working instances

create modify delete
Tl
NSI 1| NSI 1 Lt
[ e | [ran cN [nRAN|1i: _
i| NSsSI NSSI NSSI | 1| NSSI |

S - e

Slice modification by subslicing

Group 1 Group 2 Group n
[ a— —
BWP1 BWP2 BWPn f Hz

Figure 2. The subslice consists of a subset of slice UEs and a fraction of the slice bandwidth.

The slice resource placement on the time-frequency plane is performed by inter-slice
schedulers, but our subslicing framework resides on top of schedulers to subpartition the
fixed bandwidth allocated to a slice to improve the slice performance.

2.2. Subslice Simulation Setup

The aim of this simulation is to study the dependence of subslice performance on the
subslice size. The one-second working time of the subslice is simulated using the MATLAB
5G toolbox tool “NR Cell Performance Evaluation with Physical Layer Integration” [24].
The subslice has one RB of bandwidth resources allocated per UE in a subslice. In the
simulations, the number of RBs and UEs in a subslice starts at four and increases by one
until 275. All UEs are similar. The UE request rates are 500 kbps in the UL and 667 kbps
in the DL. With these rates, it is possible to achieve approximately 80% utilization, and
it allows seeing both an increase and decrease in utilization when subslicing. Each UE is
positioned within 174 m (each of the three coordinates within 100 m) from the gNB and is
expected to achieve a good BLER below 0.1. A value of 1500 bytes is the default value of the
maximum supported packet size if the packet size is not specified in the slice template and
40 bytes is a short packet suitable for the MIoT slice [25]. The subslice simulation settings
are presented in Table 2.
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Table 2. Subslice data.

Parameter Value
Number of UEs in a subslice ~ {4-275}
Number of RBs allocated {4-275)

to subslice

Subslice modification for Increase UEs by one and increase RBs by one

next step
Subcarrier spacing 15 kHz
UE rate requirements UL 500 kbps, DL 667 kbps
Subband size
Sucorvwinss  SPEzied Sitband o v
4-23 - 4
24-72 4,8 8
73-144 8,16 8
145-275 16, 32 16

One parameter is the subband size, which depends on the allocated bandwidth part
(BWP) in the RBs. The values of the subband size are defined in 3GPP TS 38.214 [26]. The
subband size is used in the channel state information reporting. The other simulation
parameters used in MATLAB are listed in Table 3. The subslice performance is measured
by means of bandwidth utilization, subslice throughput (thr), and goodput (gdp) for UL
and DL, and BLER for UL and DL.

Table 3. MATLAB Toolbox settings.

Parameter Value
Carrier frequency 3 GHz
Channel model (for both UL and DL) CDL-C
PUSCH preparation time for UEs 200 ps
Logical channels per UE 1
RLC entity type UM bidirectional
Duplex mode FDD

Scheduler strategy Round Robin

Length of scheduling cycle 1 frame

RB allocation limit UL same as RBs for subslice

RB allocation limit DL same as RBs for subslice

1s

Simulation time

Subslice simulation tool from
MATLAB 5G Toolbox

NR Cell Performance Evaluation with Physical
Layer Integration [24] R2021b

2.3. Subslice Simulation Results

The subslice performance evaluation results, depending on the subslice size, are shown
in Figure 3. The subslice bandwidth utilization, throughput, and goodput per RB and the
average BLER are collected in both UL and DL. Regarding the packet size, longer packets
result in lower bandwidth utilization, whereas shorter packets result in higher throughput
and goodput. The BLER does not depend on the packet size, because the block size does
not depend on the packet size.
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There are four different ranges of subslice sizes, called zones, in which the subslice
performance is similar. The performance zones are shown in Figure 4 and the averages of
the zone performance data are listed in Table 4.

The graph in Figure 3a displays the subslice performance in terms of the bandwidth
utilization. The utilization is higher in DL than in UL, and with short packets, the utilization
is higher than with long packets. For small subslices with sizes between 4 and 36 RBs
(Zone 1), the bandwidth utilization is high. When the subslice size is between 37 and
72 RBs (Zone 2), the utilization drops to its lowest point. The utilization sharply increases
to the slice overload threshold when the subslice size is between 73 and 144 RBs (Zone 3).
Finally, when the subslice size is greater than 145 RBs (Zone 4), there is a significant boost
in utilization.

o
©

Utilization
o
[oe]

\ —— UL (1500B) —— DL (1500B) —e— UL (40B) —— DL (40B)

145 275
Subslice size in RBs

(a) Bandwidth utilization

UL rate (Mbps)

‘ —o— thr (1500B) —e— gdp (1500B) —e— thr (40B) —e— gdp (40B)

| |
41119 37 73 145 275
Subslice size in RBs

(b) Throughput and goodput per RB in UL

B
s}
2
]
g
A \ —«— thr (1500B) —=— gdp (1500B) —— thr (40B) —=— gdp (40B)
0 1 1 | 1 T
41119 37 73 145 275
Subslice size in RBs
(c) Throughput and goodput per RB in DL
10° E
o 107ty 3 &
2 1072 7
10-3 ‘+UL (1500B) —— DL (1500B) —e— UL (40B) —— DL (40B) | |
145 275
Subslice size in RBs
(d) Subslice BLER

Figure 3. Subslice performance depending on subslice size in RBs. (a) Subslice bandwidth utilization,
(b) UL and (c) DL throughput (thr) and goodput (gdp) per RB, (d) subslice BLER.
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4 37 73 145 275

Subslice size in RBs

Figure 4. Performance zones depending on subslice size.

Table 4. Average subslice simulation results for subslice size ranges. Best values of each parameter
are shown in bold.

Average Utilization Average Throughput Average Goodput Average BLER
Zone Subslice 1500 B 10B 1500 B 10B 1500 B 10B 1500 B 10B
Size (RBs)
UL DL UL DL UL DL UL DL UL DL UL DL UL DL UL DL
1 4-36 0949 0988 098 0998 0522 0571 0485 0586 0493 0566 0457 0.581 0.081 0.056 0.079 0.053
2 37-72 0675 0.777 0.831 0998 0.726 0804 0.896 1.044 0.68 0791  0.838 1.031 0.057 0.015 0.061 0.013
3 73-144 0.815 0923 0993 0998 0915 1000 1115 1.082 0.796 0.975 0.97 1.057 0122 0.024 0122 0.024
4 145-275 0.905 0978 0993 0998 1014 1065 1113 1.087 0786 0.994 0.863 1.015 0.205 0.064 0.206  0.064

Figure 3b,c illustrate the throughput (thr) and goodput (gdp) per RB for different
packet sizes in UL and DL, respectively. The simulation results indicate that DL achieves a
slightly higher throughput and goodput than UL. Additionally, the same requested data
rate with short packets results in a higher goodput. The gap between the throughput and
goodput contains the retransmission overhead, which is larger in UL than in DL. The small
subslices in Zone 1 have a low throughput and goodput. As the subslice size increases to
Zone 2, the throughput and goodput increase to a steady level, with short packets having
higher throughput and goodput. In Zone 3, the throughput and goodput increase further,
except for DL and short packets. In Zone 4 the goodput decreases in the UL.

The subslice BLER is shown in Figure 3d. Between subslice sizes of 19 and 37 RBs, the
BLER gradually decreases before increasing slowly with increasing subslice size. The UL
BLER is higher than that of the DL BLER. For the DL, the BLER is below 0.1 for subslice
sizes in Zones 2—4. The UL BLER is also below 0.1 in Zones 2 and 3, but in Zone 4, the BLER
increases gradually.

The zone boundaries refer to the BWP sizes where the value of a performance metric
changes abruptly. This boundary coincides with the size of the RB group (RBG) changes, as
specified in Configuration 1 in 3GPP TS 38.214 [26]. The Round Robin scheduler allocates
RBGs for each UE for a slot time. The modulation and coding scheme (MCS) and code rate
are selected based on the reported channel quality indicator (CQI). The transport block size
(TBS) is calculated as specified in Sections 5.1.3.2 (DL) and 6.1.3.2 (UL) of 3GPP TS 38.214.
The UEs in slices with smaller BWPs achieve a lower CQI. This is because a smaller BWP
has fewer reference symbols available for channel estimation, which can lead to incorrect
channel estimation and inappropriate TBS selection. If the channel is estimated to be better
than its actual value, then a smaller TBS is selected, resulting in a lower achieved rate. If the
channel is worse than the estimated value, a block error occurs. The performance pattern
dependent on the BWP size can be repeated if the average MCS of the UEs is calculated
for each BWP size, excluding the MCSs for the first three slots when the channel state
information (CSI) is unavailable.

The Zone 1 subslice shows poor performance due to its high utilization and low
goodput. Zone 2 has the lowest utilization and BLER. Zone 3 has a high goodput with
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short packets, and Zone 4 has a high goodput with long packets, but a high BLER in UL
with both packet sizes. The selected minimum subslice size values are 37 and 73 RBs for
the proposed subslicing algorithm, respectively. The former has better utilization, whereas
the latter has better goodput.

Ref. [27] conducted a measurement campaign on a 5G-NR gNB using n78 (60 MHz
TDD 4:1) with 4 x 4 MIMO for DL and 2 x 2 MIMO for UL. The results showed that a
comparable result achieved without MIMO per RB is 0.8 Mbps for DL and 0.9 Mbps for UL.
According to our simulation results, a slice with a size of 275 RBs (50 MHz) can achieve
a throughput of around 1.1 Mbps per RB and a goodput of 0.8 Mbps per RB in UL and
1 Mbps per RB in DL.

3. Proposed User Clustering and Bandwidth-Allocation Algorithms for Enhanced
Slice Performance

In this section, the proposed UE clustering with a bandwidth-allocation algorithm for
subslicing is presented. The subslice performance results show that subslices that are too
small will degrade the overall slice performance. The proposed clustering algorithm avoids
creating clusters of UEs that are too small to allocate too few RBs for a subslice. In addition,
a bandwidth-allocation algorithm for UE groups to allocate RBs proportional to the UEs in
a group and a group BLER is proposed.

3.1. System Model

The slice is described as a bandwidth resource, a BWP in RBs, N (RB) and number of
UEs, N(UE),| The minimum subslice size requirement is denoted by S,,;,. The number of
subslices requested is K.

The slice UEs are clustered for subslices. Each subslice k contains a subset (group)

of shce UEs such that NUE) ZK UE)

=yK, RB) holds. All UEs are assumed to request the same rates. The given
number of subshces and minimum subslice size constraint are assumed feasible. That is,

with a given minimum subslice size constraint it is possible to create at least the requested
N(RB)

and allocates a number of slice RBs such that

number of minimum size or larger subslices, K <
For clustering UEs into smaller groups for subshces the minimum cluster size can be
calculated from the slice RBs and slice UEs:

N(UE)
Mipin = ’VSmin : W—‘ . 1)

Then UEs are clustered into K clusters with minimum cluster size m,,,;,.

The slice bandwidth N(RB) is allocated to UE clusters N,EUE) in three steps: initially
proportional to the number of UEs, secondly proportional to the number of UEs in a group
and group BLER, and finally to subslices that are still too small.

The group BLER for UEs u; belonging to a cluster Cy is calculated as the average of

UE BLERs:
Y BLER,,
u;€Cy
= e)
N,EUE)

BLERc,

3.2. Proposed UE Clustering Algorithm

The proposed algorithm is based on k-means clustering. The principle of the algorithm
is illustrated using the example shown in Figure 5. In this example, the data points cluster
well into two clusters, but it is necessary to cluster them into three clusters with a minimum
cluster size of two. The proposed clustering algorithm is described next. In the first
assignment step, each cluster takes the required number of data points closest to the cluster
centroid. In the second assignment step, the unassigned data points are assigned to the
cluster with the closest centroid (connections with arrows).
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Let u; be the value of the metric used to cluster UEs, here UE BLER of the ith UE,
i=1,..,N and ¢, be the centroid of cluster Cy, k = 1, ..., K. The distances are calculated
using the Euclidean distance formula, (3),

dii = 1/ (u; — )2 ®3)

The distance matrix (4) is specified as follows:

D = [|dgll, . ywe)- 4)

where dy ; is the distance between UE i and the centroid of cluster k.

W A

(a) Original k-means clustering into 3 clusters,
cluster 2 is empty

X,

(b) Proposed algorithm clustering into 3 clusters with
minimum cluster size of 2 points

Cluster centroid

@ © Data points
Cluster assigned by original k-means algorithm
Cluster assigned by proposed algorithm first step

Figure 5. An example of how the proposed clustering algorithm clusters data points into three
clusters with a minimum cluster size of 2. The data points cluster well into two clusters (green
and orange).
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The original k-means algorithm [18] goes through the columns of the distance matrix
and finds the minimum value of the column, and the row index designates the cluster to
be assigned to the UE. This algorithm can leave some clusters empty in the worst-case
scenario. To avoid empty clusters, the proposed algorithm goes through the rows and finds
the minimum of each row for the column vector M and the index of UE, which has the
minimum distance.

M = It = min [ | ©)

In each round, each cluster must select one UE from the column vector of minimum
distances M. First, the UE with the minimum distance is selected by the cluster, and this
cluster does not select another UE in this round.

u; € C, if min ||my|| = di;. 6)

The value of the kth row in the column vector M is set to co to prevent this value from
being selected again as the minimum. The distance values of UE i in the distance matrix D
are set to oo to prevent the UE from being assigned to another cluster.

The pseudocode for the modified k-means cluster assignment step is shown in
Algorithm 1.

Algorithm 1 Modified k-means cluster assignment step.

1: repeat

2:  repeat

3 Construct vector M from distance matrix D using Equation (5)
4 Find minimum in M and assign UE i to cluster k

5. until All clusters have a UE
6: until All clusters have minimum number of UEs assigned

Next, when all clusters have collected the minimum number of UEs, the regular
k-means cluster assignment is processed for the rest of the UEs still unassigned to a cluster:

u; € Cy, if mkin(Hdk,z‘H) = di,- @)

After cluster assignment, the new centroids are calculated as the mean of all points in
the cluster. The convergence criterion is that the new centroid values remain the same as at
the end of the previous iteration, as in the original k-means algorithm.

The complete proposed UE clustering algorithm is shown in Algorithm 2.

Algorithm 2 Proposed algorithm for UE clustering.

1: Initialization: Set K random centroids

2: repeat

3:  Calculate distance matrix D

4 repeat

5 Cluster assignment with modified k-means (Algorithm 1)
6:  until All clusters have minimum number of UEs assigned
7. if unassigned UEs exist then
8

9

repeat
Cluster assignment with original k-means (Equation (7))
10: until All UEs have cluster assigned
11:  end if

12:  Calculate new centroids
13: until convergence
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3.3. Proposed Group Bandwidth-Allocation Algorithm

The slice bandwidth is allocated to the UE groups proportionally to the number of
UEs in a group and the group BLER and taking into account that no subslice has a size
smaller than the minimum subslice size criteria. Thus, the slice bandwidth part is allocated
in three steps:

N (KD (B (R0 ®
and for subslices
NGB = NP 4 N+ NGR). ©)

Initially, all RBs are divided for the subslices and each subslice receives at least the
initial number of RBs per UE. The initial allocation factor is calculated as follows:

(NRB)/K) - (N(RB) /S, i)

P = R ) ) (10)
which can be simplified to
1 K- Spin
P NwE N a

and the initial number of RBs of a subslice is
RB UE
N = [N Py, (12)

The second allocation is proportional to the group BLER and the number of UEs in
a cluster. The cluster with the better (smaller) BLER obtains fewer RBs per UE, and the
cluster with the worse (larger) BLER obtains more RBs per UE in a cluster.

The BLER factor for a group is calculated from the group BLERs calculated using
Equation (2) and the maximum BLER of group, which obtains a BLER factor of 1:

BLERc,

forer, = max(BLERc,)’ 13

The UE groups are not equal in size; therefore, the allocation factor P,, which notes
the RBs per UE proportional to BLER, is required. This is calculated from the group BLER
factor and the number of UEs in a group.

(RB) _ py(RB)
P, = u (14)

K UE
Y. fBLER, N;E )
k=1
All required factors are calculated, and the remaining RBs from the first allocation are
allocated to the groups using the following equation:
RB UE
Nz(,k ) = LN;E ) - fBLERe, * P2l (15)
Finally, still too-small subslices will receive additional RB:

(16)

. RB RB
N3(1;B) _ {1 if (Nl(,k )Jer(/k >) < Swins

0 otherwise.

The pseudocode of the bandwidth-allocation algorithm for the UE groups is shown in
Algorithm 3:
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Algorithm 3 Proposed RB allocation for UE groups.

1: Calculate initial allocation factor P; using Equation (11)

2: Calculate RBs to subslices proportional to number of UEs in a cluster, Nl(’l;B)
(Equation (12))

. if N(RB) — N1<RB) > 0 (unallocated RBs exist) then

Second allocation proportional to group BLER:

Calculate group BLERs (Equation (2))

Calculate group BLER factors (Equation (13))

Calculate allocation factor P, (Equation (14))

Calculate RBs to subslices proportional to group BLER and number of UEs in a

cluster, Nz(iB) (Equation (15))
9: end if

10: if N(RB) — Nl(RB) — NZ(RB) > 0 (unallocated RBs exist) then

11:  Add RB to too-small subslices, Equation (16)

12: end if

P N> D kW

3.4. Proposed Subslicing Algorithm

The full UE clustering with the bandwidth-allocation algorithm is as follows: first,
the minimum cluster size for UE clustering is calculated using Equation (1). Then, UEs
are clustered using Algorithm 2. Finally, the slice RBs are allocated to the UE groups
using Algorithm 3.

4. Slice Performance Evaluation

We used the same simulation methodology as our previous work [2], described in
Section 2.2, where the MATLAB tool is utilized to simulate individual subslices with
specified parameters, including the number of RBs and UEs. In the first step, the slice UEs
are all in one subslice, and all slice bandwidth is allocated to this one subslice. The slice
performance and the block error ratio (BLER) for each UE are measured.

When the minimum subslice sizes are 73 and 37 RBs, three and seven subslices can
be created, respectively. Otherwise, when there are more subslices, one or more subslices
must be too small to degrade the slice performance. Smaller subslice sizes are tested to
verify their effects on the poor slice performance.

4.1. Simulation Setup

Simulations are used to compare the slice performance if it is subsliced using equal
UE grouping, k-means UE clustering, and the proposed subslicing algorithm. The equal-
grouping algorithm groups the UEs into groups of as equal a size as possible and allocates
RBs to the UE groups proportionally to the number of UEs in a group. This does not
consider the diverse bandwidth requirements of UEs with different BLERs. K-means
clusters the UEs into clusters of different sizes, and group-specific bandwidth allocation is
not implemented. A subslice that is too small has a poor performance, which affects the
slice performance, and the SLA of the UEs in a subslice that is too small will not be satisfied.
The subslicing using k-means could be similar to [5], where the features are selected using
SVM and the UEs are clustered using k-means. Although the number of features (clusters)
is determined using SVM, the same weakness of k-means still remains: the cluster may be
too small for achieving a good slice performance. The proposed algorithm uses modified
k-means to create clusters that are not smaller than the minimum size requirement and
allocates the bandwidth to the UE group proportionally to the number of UEs in a group
and the group BLER. The subslices will not be too small, and the group BLER is considered
in bandwidth allocation to the group. The slice does not require additional bandwidth to
improve its performance.
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The test cases are presented in Table 5. The slice is described as a bandwidth resource
in RBs. The slice is allocated 275 RBs, as is the largest bandwidth 50 MHz or 100 MHz if
using a subcarrier spacing of 15 or 30 kHz, respectively. If a larger bandwidth is needed,
then carrier aggregation should be used. The slice resources are used by the UEs, and one
UE is assumed to consume one RB, as in the previous simulations. The test cases include
good-BLER, medium-BLER, and poor-BLER UEs. In order to obtain different BLER values
with the channel model used, the UEs are located at different distances from the gNB.

Table 5. Simulation settings.

Parameter Value
Slice bandwidth 275 RBs (49.5 MHz)
Subcarrier spacing 15 kHz
Number of UEs is the slice 275
3,if S;in =73
7,if Syyin = 37

Number of subslices and minimum

Lo 14,if S, = 19
subslice sizes 25,if Spipy = 11
68, if Sy = 4
Parameter to cluster UEs BLER
UE distance from gNB (m): .
all good-BLER UEs, 1-275
all medium-BLER UEs, 1001-1275
all poor-BLER UEs 6001-6275
UE rate requirements UL 500 kbps, DL 667 kbps
UE packet sizes {1500 B, 40 B}

From the previous section, it is clear that the subslice size should be at least 37 RBs to
achieve a sufficient performance. For the simulations, the following numbers of subslices
and minimum subslice sizes are selected for the proposed algorithm: three (S,,;, = 73,
the highest goodput expected), seven (S, = 37, the lowest utilization expected), 14
(Siin = 19), 25 (S,in = 11), and 68 (S,,,;,, = 4). The last three subslice sizes are simulated to
verify their effects on the poor slice performance. K-means is not used if 68 subslices need
to be created. MATLAB cannot simulate BWP < 4 RBs. Dividing 275 RBs into 68 BWPs,
the subslices are at least four RBs, and only three subslices can be five RBs. It is difficult to
achieve many small clusters of almost equal size by clustering.

The subslicing framework works on top of the scheduler, and the direct signal-quality
parameters may not be available. The parameter to cluster UEs was selected to use BLER
because it characterizes the signal quality for the UE better than the UE distance from the
BS. Similar UEs based on their signal quality in the same subslice could have fairness in
transmission. Any other parameter that characterizes the need for additional bandwidth
for packet retransmission can be used for UE clustering.

Other simulation parameters are listed in Table 3. Performance data is collected for
each subslice and combined to obtain the slice performance data. Each simulation is
performed ten times. The mean values and 95% confidence intervals are calculated using
MATLAB and its functions mean and fitdist, respectively.

4.2. Results

The slice performance is measured with the slice bandwidth utilization and achieved
slice throughput and goodput. In addition, the average slice BLER is collected. Finally,
the slice performance improvement achieved by subslicing compared to not subslicing
is discussed.



Sensors 2023, 23, 4613

16 of 25

The horizontal axis of the graphs show how many subslices the slice has been subsliced
into. The vertical axis shows the performance metric.

4.2.1. Slice Bandwidth Utilization

The slice bandwidth utilization in the UL is shown in Figure 6. If the slice is not
subsliced, the UL bandwidth utilization is 100%. The utilization decreases when the slice is
subsliced into a few subslices, but if there are more than seven subslices, then the utilization
in UL increases back to 100%. The slice bandwidth utilization in the UL decreases to 70% if
1500-byte packets are used, whereas 40-byte packet utilization decreases to 85%. Equal UE
grouping and the proposed subslicing algorithm decrease the slice utilization more than
k-means UE clustering. If the UE BLER is worse (dashed and dotted lines), subslicing does
not decrease the slice bandwidth utilization. To improve the slice bandwidth utilization in
UL by up to 41% by subslicing, the slice should contain good-BLER UEs that use longer
packets. Equal UE grouping and the proposed algorithm can be used to perform subslicing
into no more than seven subslices with a minimum subslice size of 37 RBs.

1 1
= 09 1 = 09 —
.8 8
] s
3 g
— =
= 08| 1= 08 -
—o— Equal —o— Equal
—o— K-means —o— K-means
—o— Proposed —o— Proposed
07 -] 1 1 | 07 1 1 1 1 | 1
7 14 25 68 1 3 7 14 25 68
Subslices Subslices
(a) UL utilization (1500 B) (b) UL utilization (40 B)

Figure 6. Simulation results on utilization in UL. Error bars show a confidence interval of 95%. Solid
lines show slices containing good-BLER UEs, dashed lines show slices containing medium-BLER
UEs, dotted lines show slices containing poor-BLER UEs.

The slice bandwidth utilization in DL is shown in Figure 7. If the slice is not subsliced,
the DL bandwidth utilization is close to 100%. The utilization decreases when the slice is
subsliced into a few subslices, but if there are more than seven subslices, then the utilization
in UL increases back to 100%. The slice bandwidth utilization in DL decreases to 80% if
1500-byte packets are used, whereas for 40-byte packets, the utilization does not decrease at
all. Equal UE grouping and the proposed subslicing algorithm decrease the slice utilization
more than k-means UE clustering. Similar to UL, if the UE BLER is not good, then subslicing
does not decrease the slice bandwidth utilization in DL. To improve the slice bandwidth
utilization in DL by up to 22% by subslicing, the slice should contain good-BLER UEs that
use longer packets. Equal UE grouping and the proposed algorithm can be used to perform
subslicing into no more than seven subslices with a minimum subslice size of 37 RBs.
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Figure 7. Simulation results on utilization in DL. Error bars show a confidence interval of 95%. Solid
lines show slices containing good-BLER UEs, dashed lines show slices containing medium-BLER

UEs, dotted lines show slices containing poor-BLER UEs.

4.2.2. Slice Throughput and Goodput

The achieved throughput and goodput for a slice in the UL are shown in Figure 8.
The slice throughput and goodput in the UL initially increase and then decrease when the
slice divided into more subslices. The rates achieve maximum values when the slice is
subsliced into three, seven, or 14 subslices if the slice contains good-BLER, medium-BLER,
or poor-BLER UEs, respectively. Subslicing increases the goodput even more if the packet
size is short, for example, 40 B. The achieved rates are higher when subslicing is performed
using equal grouping or the proposed algorithm. Subslicing increased the achieved UL
rates by up to 9%, 58%, and 84% if the UE BLER is good, medium, or poor, respectively.
To increase the slice goodput in the UL by subslicing, the equal UE grouping or proposed
algorithm should be used to subslice the slice into three, seven, or 14 subslices. Subslicing
improves the slice goodput more if the UEs have worse BLER and use short packets.

100

300 [

200 -

100 -

= 200 F T /@\ T
g2 g ol . |

@D

@
®

60 |
40 F X e
: e

|
UL rate (Mbps)
S
(==}
T
®
e
| |
UL rate (Mbps)
()
19+08 @
®

20/ ° @ i

0

| I N 1
14 25 68 1 3 7 14 25 6 1 3 7 14 25 68

Subslices Subslices Subslices

(@

(b) ()

Figure 8. Cont.



Sensors 2023, 23, 4613

18 of 25

300 [

200 -

UL rate (Mbps)

100 |-

Subslices

(d)

7 000 O B i 100
2 SR e 2 80| g s
& 50l /// \\\ \\\i | = o) -
- g <) t—,fﬂi- \ g 60 g ? ? N
2 . . \ 2 o @
s g & --0_ 7 \ s 40 g e -
S w00f 3N 5 & 4
. =] J D 201 i
.’ [ ]
| | | 50 | | | | | | 0 | | | | | |
14 25 68 1 3 7 14 25 68 1 3 7 14 25 68
Subslices Subslices
(e) ®

—o— thr (equal) —e— gdp (equal) —e— thr (k-means) —e— gdp (k-means) —e— thr (proposed) —e— gdp (proposed)

300

200

DL rate (Mbps)

100

Figure 8. Simulation results on throughput (thr) and goodput (gdp) in uplink (UL). Error bars show
a confidence interval of 95%. Solid lines show slices containing good-BLER UEs, dashed lines show
slices containing medium-BLER UEs, dotted lines show slices containing poor-BLER UEs. (a) UL
capacities (1500 B, good-BLER). (b) UL capacities (1500 B, medium-BLER). (¢) UL capacities (1500 B,
poor-BLER). (d) UL capacities (40 B, good-BLER). (e) UL capacities (40 B, medium-BLER). (f) UL
capacities (40 B, poor-BLER).

The achieved throughput and goodput for a slice in DL are shown in Figure 9. The slice
throughput and goodput in the DL change less than those in the UL. Similarly, in DL, the
rates achieve maximum values when the slice is subsliced into three, seven, or 14 subslices
if the slice contains good-BLER, medium-BLER, or poor-BLER UEs, respectively. Subslicing
increases the DL goodput if the packet size is short and when subslicing is performed
using equal grouping or the proposed algorithm. Subslicing increases the achieved DL
rates by up to 6%, 38%, and 66% if the UE BLER is good, medium, and poor, respectively.
To increase the slice goodput in DL by subslicing, equal UE grouping or the proposed
algorithm should be used to subslice the slice into three, seven, or 14 subslices. Subslicing
does not improve the slice goodput in DL if the UEs use long packets and have good BLER.
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Figure 9. Simulation results on throughput (thr) and goodput (gdp) in downlink (DL). Error bars
show a confidence interval of 95%. Solid lines show slices containing good-BLER UEs, dashed lines
show slices containing medium-BLER UEs, dotted lines show slices containing poor-BLER UEs.
(a) DL capacities (1500 B, good-BLER). (b) DL capacities (1500 B, medium-BLER). (c) DL capacities
(1500 B, poor-BLER). (d) DL capacities (40 B, good-BLER). (e) DL capacities (40 B, medium-BLER).
(f) DL capacities (40 B, poor-BLER).

4.2.3. Slice BLER
The slice BLER is the average of the UE BLERs. The slice BLER is shown in Figures 10 and 11

for the UL and DL, respectively. The slice BLER in both the UL and DL is decreasing if
the slice is subsliced into up to seven subslices. The slice BLER is similar for both packet
sizes, except for DL with k-means UE clustering, in which short packets and 14 subslices of
DL BLER are the lowest. The slice BLER in UL is a minimum if the slice is subsliced into
two, seven, or 25 using the proposed algorithm; however, if 14 subslices are used, k-means
achieves the best UL BLER. The slice BLER in DL is a minimum if the slice is subsliced into
25 using the proposed algorithm or equal UE grouping; however, if k-means UE clustering
is used, then seven or 14 subslices achieves the best DL BLER with 1500-B and 40-B packet
sizes, respectively. Subslicing enables a decrease in the BLER, especially for slices with
good-BLER UEs; however, to decrease the slice BLER, if the slice contains medium- or
poor-BLER UEs, more subslices are necessary. The slice BLER in the UL decreases with
subslicing. If seven or fewer subslices are needed for good-BLER UEs, then using the
proposed algorithm, the BLER in the UL improves the most. The slice BLER in DL can
be decreased by subslicing into at least seven subslices if the slice contains good-BLER
UEs. If equal UE grouping and the proposed algorithm are used for subslicing a slice
that contains good-BLER UEs, the number of subslices can be up to 25. Subslicing can
improve the slice BLER if equal UE grouping or the proposed algorithm is used to create
25 or 68 subslices for slices that contain medium-BLER or poor-BLER UEs, respectively.
The slice BLER in UL is above 0.1 and it decreases below this value if the slice contains
all good-BLER UEs and is subsliced into seven subslices. If the slice contains UEs with
worse BLER, then BLER < 0.1 is when 25 subslices are created using equal grouping or the
proposed algorithm. In DL, the BLER is mostly below 0.1, except when 25 subslices are
created using k-means UE clustering.
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Figure 10. Simulation results on UL BLER. Error bars show a confidence interval of 95%. Solid lines
show slices containing good-BLER UEs, dashed lines show slices containing medium-BLER UEs,
dotted lines show slices containing poor-BLER UEs.
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Figure 11. Simulation results on DL BLER. Error bars show a confidence interval of 95%. Solid lines
show slices containing good-BLER UEs, dashed lines show slices containing medium-BLER UEs,
dotted lines show slices containing poor-BLER UEs.

4.2 4. Slice Performance Improvement

The slice performance is improved by subslicing if the slice bandwidth utilization
decreases and achieved slice goodput increases. The percentage decrease in utilization is
added to the percentage increase in goodput and compared to a slice not subsliced; that is,
the number of subslices is one.

The slice performance improvement in the UL is shown in Figure 12. The results show
that the slice performance in UL can be improved another 6% more if a longer packet size
is used. Equal UE grouping and the proposed algorithm improve the slice performance
more than k-means UE clustering. Subslicing improves the slice performance in UL by up
to 37%, 63%, or 84% if the slice contains good-BLER, medium-BLER, or poor-BLER UEs,
respectively. To improve the slice performance in the UL by subslicing, equal UE grouping
or the proposed algorithm should be used to subslice the slice into seven or 14 subslices. If
UEs have worse BLER, more subslices can be recommended.
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Figure 12. Simulation results on performance improvement percentages in UL compared to slice not
subsliced. Solid lines show slices containing good-BLER UEs, dashed lines show slices containing
medium-BLER UEs, dotted lines show slices containing poor-BLER UEs. (a) UL performance (1500 B,
good-BLER). (b) UL performance (1500 B, medium-BLER). (c) UL performance (1500 B, poor-BLER).
(d) UL performance (40 B, good-BLER). (e) UL performance (40 B, medium-BLER). (f) UL performance
(40 B, poor-BLER).

The improvement in the slice performance in DL is shown in Figure 13. The slice
performance in DL can be improved to a lesser extent than that in UL. The slice performance
improvement in DL is similar for both packet sizes and is similar to UL and equal UE
grouping, and the proposed algorithm improves the slice performance more than k-means
UE clustering. Subslicing improves the slice performance in DL by up to 7%, 38%, or 66% if
the slice contains good-BLER, medium-BLER, or poor-BLER UEs, respectively. To improve
the slice performance in DL by subslicing, equal UE grouping or the proposed algorithm
should be used to subslice the slice into three, seven, or 14 subslices if the slice contains
good-BLER, medium-BLER, or poor-BLER UEs, respectively.
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Figure 13. Simulation results on performance improvement percentages in DL compared to slice not
subsliced. Solid lines show slices containing good-BLER UEs, dashed lines show slices containing
medium-BLER UEs, dotted lines show slices containing poor-BLER UEs. (a) DL performance (1500 B,
good-BLER). (b) DL performance (1500 B, medium-BLER). (c) DL performance (1500 B, poor-BLER).
(d) DL performance (40 B, good-BLER). (e) DL performance (40 B, medium-BLER). (f) DL performance
(40 B, poor-BLER).

4.2.5. Algorithm Performance

The performance of the proposed subslicing algorithm was compared with that of
equal UE grouping and k-means UE clustering. The evaluation of the subslicing algorithms
was based on the measurement of the slice performance improvement achieved and the
computational time required for the algorithm to calculate the subslice settings.

The performance improvement percentages for UL and DL, averaged across all UE
types, are presented in Table 6. The results indicate that creating seven subslices using
equal grouping or the proposed algorithm achieves the greatest improvement in slice per-
formance. On average, subslicing improved the slice performance by over 40% compared
to a non-subsliced slice.

To evaluate the complexity of different subslicing algorithms, we measured the time it
took to run the MATLAB implementation. Each algorithm ran 60 times, with ten runs per
test case. Figure 14 shows the measured average time, and the error bars indicate a 95%
confidence interval. When using equal grouping, the time required to calculate the subslice
configuration did not depend on the number of subslices. However, other algorithms
took more time as the number of subslices increased. Although the proposed algorithm
required the most time, the subslices it created outperformed those created using k-means
UE clustering.
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Table 6. The average slice performance improvement summed for UL and DL and compared with
that when the slice was not subsliced.

Algorithm 3 Subslices 7 Subslices 14 Subslices 25 Subslices 68 subslices

Equal 35.3 45 36.5 24.2 -32.7
K-means 34.6 34.8 18.4 —4.9 N/A
Proposed 34.8 443 35.5 24.3 —33.8
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Figure 14. Measured time it takes to create sublices—group/cluster slice UEs and subpartition slice
bandwidth. Error bars show a confidence interval of 95% from 60 runs.

In conclusion, subslicing can be recommended to improve the slice performance.
Subslicing is more effective in reducing the slice bandwidth utilization with long packets
and increasing the slice goodput with short packets. The UL benefits more from subslicing
due to a greater reduction in the UL bandwidth utilization. Both random UE grouping and
the proposed algorithm are suitable for subslicing, but k-means UE clustering creates a set
of clusters where some clusters are too small, which results in a poor subslice performance
and degrades the slice performance. Subslicing is more effective in improving the slice
performance in the UL and for UEs whose BLER is not good. The recommended number of
subslices to be created is higher if the slice contains UEs whose BLER is worse.

Dividing a network slice into suitably sized subslices can have positive system im-
plications, as it can improve the slice performance and provide service categories with
specific resource allocations to satisfy particular requirements. However, subslicing also has
negative implications. For example, it can increase the network management complexity
and require additional resources to calculate the subslice configurations.

5. Conclusions

In this paper, subslicing was investigated as a method to improve the RAN slice
performance. The present literature does not evaluate the number and size of subslices
required to achieve a slice performance improvement in 5G-NR. The slice bandwidth was
subpartitioned and allocated to smaller groups of slice UEs. The subslices were simulated
individually, and the performance data were combined to represent the slice performance.

Our work demonstrates the positive effect of subslicing on slice performance. More-
over, our work has determined the criteria to achieve a slice performance improvement. The
benefit of subslicing is the efficient use of radio resources; however, it requires computing
and storage resources to create subslices.

The simulations were performed with all UEs having similar rate requirements and
BLER. This enables the evaluation of how the performance of slice UEs can be improved by
subslicing. However, the subslicing algorithm can be improved for a realistic case in which
the UEs have different BLERs and requested rates. Then, the subslices for the UEs with
worse BLERs can be smaller.

The results show that the slice performance depends on the number of subslices and
the subslice performance depends on its size. The minimum subslice size requirement
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ranged from 11 to 73 RBs. The lower the UE BLER, the higher the minimum subslice size.
The number of subslices with which the slice performance can be improved is higher if the
BLER of the UEs is higher.

Future work will add the decision of subslicing to the toolbox for slice modification to
improve the slice performance without additional bandwidth.
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Abstract—5G radio access network (RAN) slicing enables bet-
ter satisfaction of different quality of service (QoS) requirements
than without network slicing. A handful of slice types are
specified for various service verticals; however, the number and
size of those slices is unspecified. Subslicing refers to grouping
slice users into smaller groups, subpartitioning slice bandwidth,
and allocating smaller bandwidth parts to smaller user groups.
State of the art subslicing has been done to better satisfy the
QoS requirements inside the service vertical. Slice performance
improvement was not the purpose of subslicing, but the positive
effect was noticeable. In this paper, the subslicing decision is
done with the aim of improving slice performance. The decision
mechanism for management closed control loop is proposed.
The input dataset consists of 6 key performance indicators,
namely slice bandwidth utilization, slice goodput (application
level throughput) per one allocated resource block (RB), and
slice block error ratio (BLER), both in uplink and downlink.
This dataset is clustered, and the result is learned by a classifier
to decide whether the slice is too large and should be split or
too small and should be merged with another too small slice or
subslice. The results show that by knowing the slice utilization
and goodput per one allocated RB, the slice reconfiguration action
regarding subslicing can be determined using machine learning
tools.

Index Terms—subslicing, performance, clustering, neural net-
work

I. INTRODUCTION

Network slicing in a 5G radio access network (RAN) guar-
antees service-level agreement (SLA) using logical networks
on the physical infrastructure. These logical networks, called
slices, can be configured to satisfy specific quality of service
requirements and connectivity. There are no limitations on the
number or size of slices set by standardization.

The slice provisioning solutions allocate sufficient resources
to user equipments (UEs) admitted to the slice. In RAN,
the radio spectrum resource is available in bandwidth parts
(BWP) of a fixed size [1], but can be allocated to the slice
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with the granularity of one resource block (RB). The RB is
defined in timescale as a slot time and in frequency scale as 12
subcarriers. The length of a slot time and width of a subcarrier
depend on subcarrier spacing configuration [2].

Given complete slice performance data, that is, the slice
performance at any slice size, the dependence of slice perfor-
mance on slice size can be determined. Subsequently, slices
that are too large can be split into subslices, and slices or
subslices that are too small can be merged. This decision
mechanism can be used in “Decide” step of management
closed control loop specified in 3GPP TS 28.535 [3].

How can we evaluate which subslice is too small and which
is too large? How can we determine which subslice can be
split and which one can be merged with another subslice
that is too small? In this paper, it is proposed the clustering
of subslice performance data into three clusters to determine
whether the subslice should be merged, split, or not changed.
Subsequently, the result of the performance data clustering
is learned as a classification to decide suitable actions to
reconfigure slices and subslices to improve the performance
of a slice and network. Subslicing enables to serve more UEs
if no additional bandwidth is available or if carrier aggregation
is not possible.

The remainder of this paper is organized as follows. In Sec-
tion II, the related work on slice and subslice size described.
The proposed slice performance data clustering algorithm is
described in Section III. Section IV contains the learning
of clustering result as a classification. Finally, Section VI
concludes the paper.

II. RELATED WORK

In RAN slicing, optimized resource allocation determines
the slice size. Optimized resource allocation to a slice is
expected to result in the best slice performance. In [4],
resources were allocated to subslices based on optimization,
and the channel bandwidth remained constant. Their results
showed that their proposed algorithm for resource allocation to
subslices outperformed the others multiple times if the number
of subslices was higher. However, the UE SLAs varied; thus,
the effect of the number of subslices on the cell performance
was not comparable. It is not known if the number of UEs



and average SLA for a slice were set equal among all number
of subslices the slice was divided into.

The subslicing presented in [5] includes UE features se-
lected using a support vector machine (SVM) and UEs clus-
tered by selected features using k-means. The number of
subslices was determined by evaluating the clustering quality,
and performance was not considered when creating subslices.
UEs with more similar requirements should work in one
subslice; however, if the number of UEs is low, then the
subslice is small and can exhibit poor performance.

Second, it is questionable to measure the effect of subslicing
on performance change if the planned use of capacity does not
match the allocated resources properly, that is, using requested
data rates that are not capable of consuming the given BWP,
or if the sum rate of UEs is too variable in time to evaluate
the slice performance at different slice sizes.

If there are many UEs in the slice, the slice BWP is large,
and if there are few UEs in the slice, the slice BWP is small.
However, BWPs that are too small cannot provide the same
SLA satisfaction for the UE as if the UE is admitted to the slice
that uses a large BWP. The performance of a small subslice
can be reduced, as discussed in [6]; if the BWP is smaller
than 20 physical RBs, then the different control blocks can
puncture each other and increase the coupling loss in 5G NR.

III. PERFORMANCE DATA CLUSTERING

The aim of clustering the subslice performance data is to
determine the action for subslice modification. The possible
subslice modification options are “merge”, “no change” and
“split”, thus three clusters are required. The execution of

subslice modification is beyond the scope of this paper.

A. Subslice performance data

The subslice performance data were collected from the
simulation results in the MATLAB 5G Toolbox system-level
simulation tool called NR Cell Performance Evaluation with
Physical Layer Integration [7]. The range of subslice size is
4-275 RBs (720 kHz—49.5 MHz, using subcarrier spacing of
15 kHz). Each RB in a subslice is expected to be consumed
by one UE, which requests rates of 500 kbps in the UL and
667 kbps in the DL. The requested rate is served using packet
sizes of 1500 bytes, 500, 150, 50, and 40 bytes. Each UE
is located up to a distance of 173 m from the gNB and is
expected to have good signal coverage. The key performance
indicators (KPI) are subslice bandwidth utilization in UL
(utilUL) and DL (utilDL), subslice goodput (application-level
throughput) per one RB in UL (gdplUL) and DL (gdpl1DL),
and the subslice average block error ratio (BLER) in UL
(blerUL) and DL (blerDL). Further information regarding the
dataset is provided in [8], section 2. Subslice performance
improvement means that subslice utilization decreases, while
subslice goodput increases. The subslice performance data is
shown in Fig. 1
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Fig. 1. Subslice performance data for all subslice sizes in range of 4-275
RBs, if packets of different sizes used. 6 KPIs: (a) bandwidth utilization in
UL and (b)in DL, (c) goodput per one RB (Mbps) in UL and (d) in DL, (e)
BLER in UL and (f) in DL.

B. Clusterability evaluation

Each data point in the dataset has values for six KPIs,
subslice size in RBs, and packet size. To evaluate the cluster-
ability [9] of subslice performance dataset, pairwise Euclidean
distances were calculated for all data points. The histogram
of all distances should be multimodal to expect the dataset
to contain clusters. The histograms of pair-wise distances
using combinations of KPIs are shown in Fig. 2. Histograms
that characterize six or four KPIs look visually promising to



be three-modal; thus, these should be explored further. The
subslice performance data could not be clustered into three
clusters by seven variables, consisting of the subslice size and
six KPIs. The subslice size variable is used for the recognition
of a data point, similar to the packet size variable in the dataset.
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Fig. 2. The histogram of pair-wise distances of all data points in subslice
performance dataset. Dimensions of each datapoint: (a) 6 KPIs and subslice
size in RBs, (b) 6 KPIs, (c) bandwidth utilization in UL and DL, (d) goodput
per one RB in UL and DL, (e) BLER in UL and DL, (f) utilization and
goodput, (g) utilization and BLER, (h) goodput and BLER.

C. Evaluation of clustering results

Four types of clustering algorithms exist: density-based,
distribution-based, centroid-based and hierarchical-based. One
algorithm of each type was compared for suitability in clus-
tering the subslice performance dataset into three clusters. K-
means [10] is a centroid-based, simple, and popular clustering
method. Gaussian Mixture Model (GMM) algorithm [11] is
a distribution-based clustering method. Agglomerative hierar-
chy clustering algorithm [12] is a hierarchy-based clustering

method. DBSCAN [13] is a density based method. The settings
for DBSCAN are recommended in [14]: the minimum number
of points, a parameter called minPts, and a small radius e,
that should contain the minimum number of points. Euclidean
distance was used as the distance function. DBSCAN can
identify outliers; however, a decision must be made for each
data point.

To evaluate clustering results, three types of statistics were
calculated. Davies-Bouldin index (DBI) [15] was calculated
using

k
1
DBI = — max{D; ;}, 1
k;#i{ i} Q)

where D; ; is the within-to-between cluster distance ratio for
the ith and jth clusters. The smaller values indicate better
clustering.
The Silhouette coefficient (SIL) [16] for each data point was
calculated using
bi — a;

=— @

5 maz(a;,b;)’

where a; average distance of point ¢ to the points in the same
cluster, b; is the minimum average distance of point 4 to the
points of all other clusters. High positive value means highly
separable clusters.

The third statistic calculated was sum of entropies (SEN)
of clusters by using

k
E=—=> pi-log(p:), ©)
=1

where k is a number of clusters, and p; is the proportion of
the points in the region . Large values of entropy indicate
poor clustering behaviour [17].

TABLE 1
EVALUATION OF CLUSTERS. *DBI WAS CALCULATED AFTER OUTLIERS
EXCLUDED.
Variables | DBI [ SIL [ SEN
k-means
6 KPIs 0.779 0.715 0.833
utilUL, utilDL, gdplUL, gdplDL 0.694 0.742 0.833
utilUL, utilDL, blerUL, blerDL 0.608 0.753 0.768
2dpIUL, gdpIDL, blerUL, blerDL. | 0.483 0.848 0.504
GMM
6 KPIs 0.944 0.608 0.649
utilUL, utilDL, gdp1UL, gdp1DL 1.20 0.696 0.571
utilUL, utilDL, blerUL, blerDL 0.536 0.723 0.398
gdplUL, gdpIDL, blerUL, blerDL | 0.461 0.861 0.457
Agglomerative
6 KPIs 0.409 0.566 0.0850
utilUL, utilDL, gdp1UL, gdp1DL 1.60 0.490 0.471
utilUL, utilDL, blerUL, blerDL 0.771 -0.348 0.0850
gdplUL, gdpIDL, blerUL, blerDL | 0.248 0.783 0.0850
DBSCAN

6 KPIs 0.675* 0.569 0.427
utilUL, utIDL, gdp1UL, gdpIDL | 0.602* 0.753 0.586
utilUL, utilDL, blerUL, blerDL 0.415* 0.775 0.0662
gdplUL, gdp1DL, blerUL, blerDL | NaN* NaN 0.0767




Better clustering is indicated if DBI is small, SIL is high
positive value and SEN is small. The results are presented
in Table I for all 6 KPIs and different combinations of 4 of
those KPIs. The DBI was the smallest when Agglomerative
clustering was used. Reducing the number of KPIs improves
DBI. The SIL was the highest when k-means was used.
Reducing the number of KPIs increased the SIL, except in
the case of Agglomerative. The SEN was the lowest when
Agglomerative clustering was used. If the performance data
were clustered by utilization and goodput KPIs or utilization
and BLER KPIs, then DBSCAN had the best statistical values.
If the performance data were clustered by goodput and BLER
KPIs, then GMM and Agglomerative had the best statistics,
but DBSCAN could not be evaluated.

Considering the statistics, the best clustering is possible
with Agglomerative hierarchical clustering, followed by k-
means clustering, DBSCAN, and GMM. If the number of KPIs
is reduced, then the statistics are improved for k-means and
GMM, especially when BLER is included in the KPIs.

D. Visualization of clustering results

The aim of the visualization is to confirm that too small,
too large, and suitably sized subslices are in three separate
clusters, and that some boundaries of subslice sizes between
the clusters are visible. The clustering results are presented in
Fig. 3. The clusters are numbered automatically, but matching
of the cluster to the decision is performed manually. The
cluster which contains the smallest subslice sizes is matched to
“merge” cluster. The cluster which contains the largest subslice
sizes is matched to “split” cluster. A cluster which contains
other subslice sizes is “no change” cluster.

Both algorithms, k-means and GMM, have similar results
(see Fig. 3a and 3b); however, k-means has subslices that
are too small to be smaller than 37 RBs, whereas GMM has
subslices that are too small with sizes of 7-9 RBs. The removal
of BLER KPI did not significantly change the clustering result
(see Fig. 3c and 3d); however, if goodput was removed, too
small and too large subslices were in the same cluster (Fig. 3e
and 3f. Agglomerative (Fig. 3i) and DBSCAN (Fig. 3j) had
most of the data points in one cluster.

K-means had the second-best statistics, as shown in Table
I, and it can identify subslices that are too small and suitable
size better, as shown in the visualization of clusters in Fig. 3a
and 3c.

IV. LEARNING THE CLUSTERING RESULTS FOR A
CLASSIFICATION

The k-means clustering results were selected for learning
by a classifier. The classification results of the two input
datasets are compared: all six KPIs and four KPIs (utilUL,
utilDL, gdp1UL, gdp1DL). This set of four KPIs had values of
statistics not worse than the set of 6 KPIs, and had meaningful
results in visualization.

A. Classifier

The machine learning tools suitable for multi-class clas-
sification are k nearest neighbour (KNN), supporting vector
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Fig. 3. Visualization of clustering results using different clustering algorithms
and dimensions of a data point: (a) k-means (6 KPIs), (b) GMM (6 KPIs), (c)
k-means (utilization and goodput), (d) GMM (utilization and goodput), (e) k-
means (utilization and BLER), (f) GMM (utilization and BLER), (g) k-means
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KPIs), (j) DBSCAN (6 KPIs). The vertical axis shows used packet sizes in
bytes, the horizontal axis shows subslice size in RBs.



machine (SVM) and neural network (NN). A neural network
(NN) was selected as the tool for classification. NN has the
flexibility and can work with large datasets.

The fully connected feedforward classifier NN consists of
input layer, hidden layers, and output classification layer. The
input layer contains 6 nodes, if 6 KPIs are used as inputs,
and 4 nodes, if 4 KPIs are used as inputs. The output layer
contains 3 neurons, one for each class (“merge”, “no change”,
“split”).

The rectified linear unit (ReLLU) activation function is suit-
able for the neurons in the hidden layers of the classifier
NN. The number of hidden layers and number of neurons
in the hidden layer need to be found by trials. The number
of neurons in the hidden layer, N}, can be determined using
some hints from [18] and options are shown in Table II. One
and two hidden layers were used in the trials, and the number
of neurons in each layer was set in the ranges of 1-22. The
training, validation, and testing set ratios were 0.8, 0.1, and
0.1, respectively.

TABLE II
OPTIONS FOR NUMBER OF NEURONS IN HIDDEN LAYER, N}, IF KNOWN
NUMBER OF INPUTS N; AND NUMBER OF OUTPUTS N, = 3

Number of neurons in hidden layer
Condition [18] 6 KPIs 4 KPIs
N, < N, < N; 3,4,5,6 3,4
Np =2 .N;+No 5 5
Np <2-N; 12 8

To evaluate the quality of classification, cross entropy
losses were calculated for training, validation, and testing.
Cross entropy loss shows the probability distribution difference
between the predicted and true classes for the multi-class
classifier. The cross entropy loss is calculated using

BN

where w; are normalized welghts, m; is a classification score
predicted for a true class, K is the number of classes, n is the
number of data points.

The minimum number of neurons and layers with small
losses of training, validation, and testing were selected.

B. Results of NNs

Two input datasets were considered. The k-means clustering
results if 6 KPIs were used, and if utilization and goodput
without BLER were used.

Each number of neurons in hidden layers are tested 100
times. Mean and confidence interval of 95% are calculated.
The results of NN are shown in Fig. 4. The NN performance
is evaluated by calculation of a cross entropy loss for training,
validation and testing, respectively.

For input dataset which contained 6 KPIs, if the number
of neurons is 7 or more, then the losses are not decreasing
further. Both the training and validation losses are lower if
one hidden layer is used than with 2 hidden layers. This means
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Fig. 4. Performance of a NN with one or two hidden layers (HL) and different
number of neurons (/N) in HL. (a) all losses for NN with one HL and input
layer consisting of 6 nodes and (b) 4 nodes; (c) all losses for NN with two
HLs and input layer consisting of 6 nodes and (d) 4 nodes, (e) training losses
for NN with input layer consisting of 6 nodes and (f) 4 nodes; (g) validation
losses for NN with input layer consisting of 6 nodes and (h) 4 nodes.



that one hidden layer with 7 neurons is sufficient configuration
of classifier NN for subslice performance data with subslice
sizes in the range of 4-275 RBs. The NN settings for a dataset
of six KPIs are NN-6-7-3. The notation used, is the number
of neurons in the input layer (6), the number of neurons in
each hidden layer (1 hidden layer with 7 neurons), and the
last number is the number of neurons in the output layer (3).

For input dataset which contained 4 KPIs, if the number
of neurons is 10 or more, then the losses are not decreasing
further. Similarly, all losses are lower when one hidden layer is
used. The NN settings for a dataset of 4 KPIs are NN-4-10-3.

V. EXPERIMENTS

The constructed classifier, NN, was evaluated using a dataset
of smaller subslices. Given the data of the six and four KPIs,
the constructed NN with one hidden layer consisting of 7
and 10 neurons, respectively, determined the action for the
subslice. The results are shown in Fig. 5. Generally, smaller
subslices are classified as “merge” and a few larger subslices
are “split”. If fewer KPIs are given as inputs, then some
subslices smaller than 37 RBs are classified as “no change”.
When using 1500-byte packet size then the subslice size range
of ”no change” is larger than if shorter packets are used.

It should be noted that these subslices were created by
clustering UEs using k-means by UE BLER, and RBs were
allocated proportionally to the number of UEs in the cluster.
Second, the classifier NN does not know the subslice size
in the RBs. Thus, the results are acceptable, and better
classification was achieved if the input dataset contained six
KPIs.

Decisions of NN-6-7-3 Decisions of NN-4-10-3

1500 1500
40 40
4 37 73 145 4 37 73 145
subslice size (RBs) subslice size (RBs)
(a) (b)

—— "merge” —e— "no change” —— "split”

Fig. 5. Classification experiments for smaller subslices using: (a) NN-6-7-
3, (b) NN-4-10-3. The vertical axis shows used packet sizes in bytes, the
horizontal axis shows subslice size in RBs.

VI. CONCLUSION

We have investigated the decision to modify slices using
ML tools. The slice performance data is clustered into three
clusters to match the slice or subslice configuration decisions.
The clustering results were used as training data for the
neural network, which determines the slice modification action
based on the slice performance. The KPIs used as inputs
were bandwidth utilization, goodput per allocated RB, and
slice BLER, all for UL and DL. None of these KPIs can
be omitted. This mechanism can help automatically decide

subslices configuration. Further work is required to investigate
the subslice performance dependence on the subslice size if
the UEs are not in a good signal coverage.
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ABSTRACT Network slicing offers the potential to enhance service satisfaction and optimize resource
utilization, particularly in scenarios where radio resources are limited. Subslicing has been shown to
improve the slice performance. In this paper, the monitor-analyze-plan-execute-knowledge (MAPE-K)-
type management closed control loop (MCCL) is implemented for slice performance improvement by
subslicing. The subslicing can improve slice performance if the slice performance depends on the size of
slice bandwidth part (BWP). For Plan function, the classifier neural network was trained to decide whether
the subslice should be split, merged or not changed by their performance. The training data contains slice
performance data of all possible subslice sizes. For Execute function, the subslice splitting algorithm was
proposed, which clusters UEs by their block error ratio (BLER) and allocates bandwidth proportionally
to group requested sum rate and group BLER. A realistic 5G new radio (NR) band serving a set of
user equipments (UE) of different values of their BLER and requested rates was a setup of radio access
network (RAN) slice simulated using MATLAB R2021b. Subslicing has reduced bandwidth utilization,
and slice BLER while increased slice goodput (application-level throughput). Proposed subslice splitting
algorithm when UEs are clustered by their achieved BLER, then the slice BLER reduces additional 20%
and slice goodput increases up to additional 9% compared to no subslicing when UEs are clustered by
their requested rates. This effect was larger for the uplink. In runtime scenarios for poor-BLER UEs the
smaller subslices improve slice utilization and BLER, while larger subslices improve goodput.

INDEX TERMS 5G New Radio simulation, performance management, radio access network subslicing,
reconfiguration automation

I. INTRODUCTION

Closed-loop network management plays a crucial role in
meeting the growing demands for mobile communication,
ensuring that cellular networks operate efficiently and ef-
fectively to provide a seamless experience for users. This
automated management approach is often referred to as
self-organizing networks (SON), zero-touch network and
service management (ZSM), and management and orches-
tration (MANO). SON, in particular, relies on closed control
loops (CCL) within the domains of self-configuration, self-
optimization, and self-healing [1]. This innovation was first

introduced for the management of cellular networks starting
from 3GPP release 8 [2]. While SON primarily concen-
trates on automating cellular network-specific functions like
configuration, optimization, and healing, ZSM extends these
principles to a broader range of network and service manage-
ment activities. MANO is a framework and set of functions
used to manage and orchestrate the various components and
services in a virtualized network environment. 3GPP has
specified management closed control loop in TS 28.535 [3].
It is an automated process that continuously monitors, ana-
lyzes, and adjusts various aspects of a network to maintain or

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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improve its performance, quality, and efficiency. It operates
in real-time or near-real-time, allowing for rapid responses
to changing network conditions.

3GPP has specified a life cycle of network slice in TS
28.530 [4]. During the slice modification phase, managing
slice performance involves two ways: the slice provision
system can admit the number of UEs for which the existing
resources are sufficient; the other way is to monitor perfor-
mance and react if slice overload occurs with allocation of
more resources or removing UEs.

Subslicing has been shown to improve slice performance
in [5] and [6]. If the slice performance depends on slice
size, then subslicing a slice into suitable-sized subslices can
improve the slice performance. This is applicable in close to
slice overload situation when no additional bandwidth avail-
able, that is fixed-bandwidth slice or bandwidth constrained
slice. In this paper we implement the monitor-analyze-
plan-execute-knowledge (MAPE-K) [7] management CCL
(MCCL) to introduce subslicing with the aim to improve
slice performance on fixed slice bandwidth.

The contributions of this paper are as follows:

o MAPE-K CCL exists, but not for automatic subslicing.
We describe it for automatic subslicing with the goal
to improve RAN slice performance on fixed slice band-
width.

e We propose a Plan function that decides based on
subslice performance whether the subslice should be
split, merged, or not changed. The subslice with the
best size has achieved the lowest utilization, highest
goodput per allocated RB, and lowest BLER.

e We propose an Execute function, where in the subslice
splitting algorithm, the UEs are clustered by their
achieved BLER and the slice bandwidth is allocated
proportionally to the group BLER and requested sum
rate. This improves the slice performance more than if
the UEs are clustered by their requested rate.

e The slice is simulated and its performance is evaluated
when MCCL-initiated subslicing is performed during
the initialization phase and traffic increase and decrease
scenarios. Slice performance improvement is shown
by a reduction in slice utilization and BLER with an
increase in slice goodput per RB.

The remainder of this paper is organized as follows. In
Section II, the related work on management CCLs and
subslicing described. The performance data at all possible
subslice sizes, which is the input data for subslicing decision
ML tool, is presented in Section III. The proposed MCCL is
described in Section IV and evaluated in Section V. Finally,
Section VI concludes the paper.

Il. RELATED WORK

For automation in management, the closed control loop
(CCL) operates autonomously to attain predefined objec-
tives without human intervention. The loop consists of four

functions and a shared database of knowledge. These func-
tions collect and analyze data, make decisions and execute
decided actions on the managed entity. Examples of well-
known CCLs are MAPE-K (Monitor-Analyze-Plan-Execute,
Knowledge) and OODA (Observe, Orient, Decide, Act) [1].

MAPE-K [7] is a management CCL used by autonomic
systems for self-management. It functions in a series of steps:
the Monitor function gathers performance data, the Ana-
lyze function analyzes this data, the Plan function decides
changes in configuration, and the Execute function imple-
ments these changes to the configuration of the autonomic
system. The Knowledge is a database containing information
accessible for all other functions.

Vision of closed loop automation in [8] uses MAPE
loop on O-RAN architecture for end-to-end (E2E) slice or-
chestration and network management. The CCL framework
described in [9] contains policy-driven CCL and uses intent-
based networking (IBN) to enable ZSM in a multidomain
environment. It covers service management model, and
presents policy generation algorithms for policy generation.
[10] presents framework of collaborating MAPE-K closed
loops used for end-to-end service management.

CCL types can be categorized as ready-made or made-to-
order CCLs. Ready-made CCLs are pre-integrated and made-
to-order CCLs are assembled on demand [1]. Our proposed
MCCL can be considered as a made-to-order CCL designed
to be assembled specifically for managing radio resources in
the mlIoT slice when a slice is in the close to overload state
and no additional bandwidth resources are available.

[11] proposes Al-driven MANO system for massive slic-
ing. They use their own CCL, which contains monitoring,
analytics and decision phases, while execution is outside
CCL. The monitoring and analytics components predict
the RAN resources under service level agreement (SLA)
constraints. The federated learning is used to improve the
prediction model. The system overhead and computation
load reduced, as well as slice SLA violation rate.

While we propose a CCL implementation for subslicing,
the full CCL is implemented in [12] to mitigate connection
loss for moving UE. UEs are ships in real-world seaport
testbed. The movement of UE is predicted using deep neural
network (DNN) consisting of 3 hidden layers, and radio
link failure predicted. In addition, the power of the beam
increased and beam down-tilted to avoid actual radio link
failure.

Network slicing monitoring framework in [13] was used
to measure the effect of polling interval to consumption
of computing and storage resources. The slice-specific data
collectors use more resources than if data collection servers
used. The smaller polling interval increases resource usage,
except storage resource consumption remains the same if
slice-specific data collectors used. The polling intervals of 5
s and 1 s were evaluated, however, in [14] the KPIs supposed
to be monitored over 30 s period.
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Data analytics is discussed in [15]. For RAN the relevant TABLE 1. MATLAB Toolbox settings
analytlcs can .be used for 1nterfer.ence Vhandlmg, channel Parameter Value
quality prediction, control of dynamic radio topology, energy - 128 (FDD. UL 730-748 MHz,
an

efficient improvements, multi-slice resource management
enhancement. Types of analytics are: descriptive, diagnostic,
predictive, and prescriptive.

The subslicing in [5] is done to group UEs with similar
features into one subslice inside the slice. The purpose of
subslicing was to better satisfy the requirements of UEs
by clustering UEs by UE features into subslices. They
evaluated clustering quality to determine the best number
of subslices. They claim that slice performance in terms of
throughput, power consumption and energy efficiency have
been improved when slice had subslices.

CCL has been used for automatic network configuration
adaptation to changes in service requirements or achieved
radio signal quality. The slice performance dependence on
slice BWP size is not researched. If the performance of the
RAN depends on the BWP size of the RAN, the automatic
change in the BWP size is not considered. The management
CCL has not been used for RAN subslicing with the aim of
improving slice performance under bandwidth constraints. In
this paper we fill these gaps and contribute to RAN subslic-
ing with slice performance improvement, and propose Plan
and Execute functions for management CCL for automatic
subslicing on fixed slice bandwidth.

lll. SUBSLICE PERFORMANCE DEPENDENCE ON
SUBSLICE SIZE (TRAINING DATA)

First, we discover and present the subslice performance
dependence from the subslice size by simulating the subslice
of all possible sizes and collecting its performance data. This
is needed for decisions in which subslice sizes provide better
performance and which subslices should be split or merged
to improve the performance of their UEs.

The subslice works on 5G band n28 (FDD, UL 730-748
MHz, DL 758-803 MHz) [16], subcarrier spacing is 15 kHz
thus maximum subslice bandwidth is 250 RBs. The band n28
can be used for both machine-to-machine (M2M) internet
of things (IoT) and vehicle to everything (V2X) service
verticals.

For each RB allocated to the subslice, a UE, which is
able to consume that RB, is admitted to the subslice. The
UE requests rates 200 kbps both in UL and in DL, and packet
size used is 40 bytes. The subslice is simulated three times:
if it contains all good-BLER, medium-BLER and poor-
BLER UEs. To achieve the desired BLER, the UE distance
from gNB should be set accordingly. BLER is assumed to
increase with distance; thus, UEs that should achieve poor
BLER are positioned far from the gNB. The used channel
model is clustered delay line C (CDL-C), which is non
line of sight (NLOS) model [18]. The smallest subslice to
simulate is 4 RBs, because into smaller BWPs the sounding
reference signal (SRS) necessary for channel estimation and
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DL 758-803 MHz)
UL 730 MHz, DL 758 MHz

Carrier frequency

Channel model (for both UL and
DL)

PUSCH preparation time for UEs

CDL-C

200 ps
Logical channels per UE 1
UM bidirectional

RLC entity type

Duplex mode FDD
Scheduler strategy Round Robin
Length of scheduling cycle 1 frame

RB allocation limit UL same as RBs for subslice

RB allocation limit DL

same as RBs for subslice

Simulation time 1 second

NR Cell Performance Evalua-

Subslice simulation tool from

tion with Physical Layer Inte-
MATLAB 5G Toolbox

gration [17] R2021b

scheduling, can not be fitted [19]. Other settings are provided
in table 1.

Six key performance indicators (KPI) are measured for
each subslice: bandwidth utilization in UL (utilUL) and DL
(utilDL), subslice goodput (application-level throughput) in
Mbps per one RB in UL (gdplUL) and DL (gdplDL),
and the subslice average block error ratio (BLER) in UL
(blerUL) and DL (blerDL). The total goodput is received,
but to compare the results of subslices of different size,
the goodput per allocated RB is calculated. One second of
working time is simulated using Matlab 5G toolbox tool
called NR Cell Performance Evaluation with Physical Layer
Integration [17]. Results are shown in figure 1.

In utilUL there are low peaks on size of 4, 11, and 19 RBs.
In the range of 37-73 RBs the utilization is lower. Larger
subslices have 100% utilization. If subslices are smaller than
37 RBs, the goodput is low. In UL there is the range of 37-
73 RBs when utilUL is lower and gdplUL is better than
in smaller subslices. Subslices larger than 37 RBs, downlink
utilization and goodput are both high. In UL, both utilization
and goodput are high if subslice is larger than 73 RBs.

BLER is initially high, then in subslice size of 10 RBs
BLER is low, because there is low goodput. Later, BLER
increases with subslice size increase. For small subslices,
the BLER is high because of incorrect channel estimation
caused by too less reference symbols in the subband.

In UL, the subslice size range 37-73 RBs is the lowest
utilUL and low BLER. The highest goodput in DL is in
range of subslice size 73-145 RBs and in DL 37-145 RBs.

With medium-BLER and poor-BLER UEs the utilization
was higher than with good-BLER UEs. Goodput was the
highest when subslice size was smaller than when good-
BLER UEs were in the subslice. Because the BLER is
high, packet retransmissions are necessary, which increases
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FIGURE 1. Subslice performance data for subslice size.

the bandwidth utilization to full, and because of bandwidth
shortage, the goodput will be low. Additional bandwidth
without additional UEs can improve the performance of the
subslice. If no additional bandwidth is available, the selection
of the best subslice size can improve the performance
achieved by the UE or RB.

IV. PROPOSED MANAGEMENT CCL

A. THE LOOP

The proposed CCL is the MAPE-K type and is similar to
the CCL specified in 3GPP TS 28.535 [3]. It consists of

four functions. Monitor collects performance KPIs. Analyze
function detects if subslicing is necessary. To obtain deci-
sions, the optimization problem is solved to provide training
data for neural network (NN). Plan (Decide) function uses
this classifier NN to decide whether the subslice should
be split, merged or not changed. Execute creates subslices
according to planned configuration. The Knowledge is a
shared database. Full CCL is shown in figure 2.

Currently, the CCL is reactive type, but it can be proactive,

if values of KPIs are predicted.

pan e

FIGURE 2. MAPE-K-type management CCL.

B. MONITOR

The Monitor function collects values of the six KPIs for
the slice and each subslice it may have. In addition to slice
bandwidth utilization, the goodput per one RB in Mbps and
BLER is collected. Mean values of KPIs are available for
other functions of the MCCL in the Knowledge database.
Now, values are calculated for the time after execute function
has changed the slice configuration.

C. ANALYZE
The poor performance of a slice or subslice is indicated by
high utilization and low goodput and high BLER. Authors of
[14] suggest that the high and low thresholds for bandwidth
utilization can be 80% and 20%. For BLER the target value
is below 0.1.

The Analyze function provides the pre-trained neural
network (NN) for Decide function. Training data is the
simulation results of six KPI values presented in section III.
The subslice performance at different subslice sizes needs
to be learned if subslice contains all good-BLER, medium-
BLER and poor-BLER UEs. Then it can work better for
slice which contains mixed-BLER UE:s. In our previous work
[20], the NN was trained using clustering result of a subslice
performance data of all possible sizes of a subslice, which
contained all good-BLER UEs. This approach does not work
correctly in more realistic situation with mixed-BLER UEs
in the slice. If poor-BLER UEs are in the slice, the slice
utilization is high and goodput is low, then operation "merge”
was decided. However, our other previous work has shown
that smaller subslices performed better, if UE BLER was
worse [6].

To find the respective output decision (“merge”, “no
change”, ”split”), the optimization problem is solved sep-
arately for good-BLER, medium-BLER and poor-BLER
simulation results.

>
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1) Optimization problem to find best subslice size
The best size for subslice is with the lowest utilization,
highest goodput per allocated RB, and lowest BLER.

Let = be the optimal size of a subslice in RBs.The relevant
predictors/KPIs K for good subslice size are utilization K (%)
in UL, K(UL) and DL K(PL) goodput per one RB K'(9)
in UL K'(9-UL) and in DL K (9-PL) block error ratio (BLER)
K® in UL, K®UL) and in DL K(*PL),

The goal is to find a subslice size where the utilization is
the lowest, goodput per one RB is the highest and BLER is
the lowest. The multi-objective integer optimization problem
can be formulated as:

max K9 (z),
min K® (z).

{ min K ) (z),
(
K(“ (x) € [0 1], )
@ (z) >
K(">( ) € [U 1],

x € {4,250}

This optimization problem needs to be solved for each
dataset separately for subslices containing good-BLER,
medium-BLER and poor-BLER UEs.

Instead of using multiple functions, the objective function
can be formulated as the sum of differences between KPI
values and the best (ideal) KPI values of the dataset. The
best values of KPIs are calculated for each of 3 datasets
separately as follows

subject to

K (wbest) — pyin, 4,...,250 K(u)
K(g:best) — max,_ 4,...,250 K1:(g)v @
K (0best) — min; =4,...,250 be)

The difference, AK, for each subslice size can be
achieved by calculation of root-mean-square error (RMSE)
between the current and best values of KPIs using the
following formula:

AKO) = /(KDY — KGbest))2 i =4, ..,250,j =1,...,m

3

The objective function is to minimize the sum of RMSEs

of utilization, goodput and BLER from the best values of
utilization, goodput and BLER.

Objective function can be written as:

min

i )
min Zl AKW, )
e

where the number of KPIs is m = 6.
The objective value a for each subslice ¢ is calculated

m

ai=» AKU. (5)
j=1

The optimization problem is solved for subslice size
performance data presented in section III. The objective
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values for each subslice size are calculated using equation 5
and results are plotted in figure 3.

The size of a subslice with minimum objective value is the
best size for a subslice. Smaller subslices will have decision
“merge”. Other subslices with a little greater objective value
could also be in a good size and have the decision “no
change®. The e-neighbourhood is considered as percentage
from the range of objective value shown on the vertical
axis of the plots in figure 3. The “merge” zone is on the
left side until the subslice size with the minimum objective
value, which is shown in the horizontal axis. The “split” zone
has bounds on horizontal axis starting the best subslice size
until maximum subslice size, if objective values are higher
than a “tolerance” threshold denoted by e-neighbourhood.
The good-BLER subslices have larger “merge” area, because
the best subslice size is 52 RBs (3a), while the poor-BLER
subslices have subslices to be merged at sizes below 10 RBs
(3c). If e-neighbourhood is larger, then more subslices are
in good size and can have “no change” decisions. Thus, less
subslices needed to split. More “no change* decisions mean
less reconfiguration, however it may miss better performance
which can be achieved by splitting or merging of subslices.

This formulation of the objective function and calculation
of the objective value enables to map the decisions to sub-
slice performance if the subslice size vs subslice performance
is different from our dataset. The subslices which have
small objective values calculated from their KPIs, have good
performance and their size is suitable. The objective value
was calculated as a RMSE between actual and best values
of KPIs of the dataset which contained the UEs in the same
BLER group.

The training data for NN is somewhat different for both ¢
values and output decisions for subslices at all sizes and all
BLER groups are shown in figure 4. NN will get the values
of six KPIs of the subslice sizes as the inputs and the output
decision for the subslice sizes.

D. PLAN (DECIDE)

The “Decide” function in the MCCL cycle contains a classi-
fier neural network (NN) which decides the slice operation,
whether it should be merged, split or not changed. The
training data is the simulation results, 6 KPIs, with the output
class determined by solving the optimization problems for
each BLER group.

The NN is trained using three datasets which have good-
BLER, medium-BLER and poor-BLER UE:s in the subslice.
The NN inputs are values of six KPIs and not the subslice
sizes nor UE BLERs. Then we assume that the NN is trained
for the decisions, if the slice contains UEs with any BLER.

Classifier NN is selected because it can learn any input
training data NN settings determined by trials. NN-6-9-3 was
selected: 6 inputs (6 KPIs), one hidden layer consisting of
9 neurons, and 3 outputs (one for each decision)

The NN settings of hidden layers are determined by trials.
The NNs with 1-2 hidden layers and 2-22 neurons on layer
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FIGURE 4. Training data output decisions for NN with (a) ¢ = 0.1 and (b) ¢ = 0.2 is used for deciding the change of subslice configuration.

are trained, validated and tested. Then the cross entropy loss
is calculated. The least number of layers and neurons where
the losses are not decreasing further, is one hidden layer
containing 9 neurons, thus the settings are NN-6-9-3. The
NN is shown in figure 5.

Each subslice is decided one-by-one by classifier NN. The
minimum subslice size is determined to be the best value of
the subslice size, and it must not be greater than a half of
the bandwidth part of a subslice to be split.

E. EXECUTE

Execute has subslice configuration data: UE data (UE IDs,
requested rate and achieved BLER) and subslice data (num-
ber of RBs, number of UEs and UE IDs in the subslice) and
decided operation for each subslice. The execute algorithm

is Alg. 1. First, subslices with decision “no change” are not
changed.

Secondly, subslices with decision “merge* are merged: the
smallest is merged with the largest and until all subslices are
merged pair-wise. This can avoid merged subslices being too
large. If there is an odd number of subslices then 3 smallest
are merged. The merged subslices should not become too
large, because too large subslice exhibits poor performance
again. If just one to merge, then its configuration will not
change. This will not change the subslices which should
not be changed. Subslice merging combines sets of UEs of
subslices to be merged, and combines the number of RBs of
subslices to be merged.

Thirdly, subslices with decision “split* are split: UEs are
clustered into two and slice bandwidth is split into two,
that is RBs are divided to UE groups proportional to group
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Algorithm 1 Execute function
1: Sub 1 > Process subslices with a decision “no change”

: The subslice UEs, RBs and id is not changed.

: Sub 2 > Process subslices with a decision "merge”

: Order subslices ascending

. n < number of subslices to be merged

- if n < 3 then

Merge all subslices

. else if n is odd then

Merge 3 smallest subslices

. else

repeat

12: Merge the largest subslice with the smallest
subslice

13: until Done

14: end if

15: Sub 3
(Smin)”

16: for Each subslice do

17: Split subslice into 2 with minimum subslice size
constraint

18: end for

© PN Y AW

=z

> Process subslices with a decision split

requested sum rate and group BLER. The subslice splitting
algorithm is Alg. 2.

The base algorithm for splitting a subslice is taken from
[6] and modified to fit to the UEs which request different
rates. First, the minimum subslice size in RBs, S, is
converted to minimum subslice sum rate using
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Algorithm 2 Split function

1: Convert Sy,in t0 Ronin

2: Sub 1 > Cluster UEs: if clustering algorithm is DSbR

then by UE Rate, if DSbB then by UE BLER

3: repeat
4 Modified k-means
5. until All clusters’ sum rate> R,
6: repeat
7
8
9

Original k-means

. until All UEs assigned to a cluster

: Sub 2 > Allocate slice RBs to UE groups
10: Initial allocation proportional to group sum rate
11: Second allocation proportional to group BLER
12: Third allocation
13: while leftover RBs do
14: Allocate leftover RB to the group consisting UE with

highest BLER, descending order

15: end while

R®) J

N(RB) ©)

Rmin = \‘Smin .
where R() is the slice sum rate, N%B) is the number of
slice RBs.

The modified k-means stops when the requested minimum
sum rate is reached. Sum rate is calculated as a sum of
requested rates of the UEs in the cluster. Minimum sum rate
is calculated from the sum rate of UEs of the subslice to be
split and number of subslice RBs.

V. PERFORMANCE EVALUATION

The aim is to investigate how the proposed MCCL works
and whether the slice performance is improved if subslicing
is done.

A. SIMULATION SETUP

Slice bandwidth is band n28, 45 MHz (250 RBs, subcarrier
spacing is 15 kHz). Slice has a set of 250 UEs which use
40-byte packet sizes. The requested rates are 100, 200 or
400 kbps, symmetrical for UL and DL. The slice sum rate
is 50 Mbps. With these UE settings, the slice SLA matches
the SLA of 250-RB subslice in section III by number of UEs
and requested sum rate. To have the same number of UEs
in the slice, and the same requested sum rate of the slice,
some UEs request 400 kbps to consume 2 RBs, and some
RBs are consumed by 2 UEs, each requesting 100 kbps.
The UE distances are such that one third can achieve good
BLER, one third can achieve medium BLER and one third
can achieve poor BLER. The UE parameters are shown in
table 2.

Slice is simulated using MATLAB 5G Toolbox tool called
NR Cell Performance Evaluation with Physical Layer Inte-
gration [17] R2021b. Settings are shown in table 1. The slice
is simulated 10 times in each setting.
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TABLE 2. Set of 250 UEs

BLER Requested rate | Number of UEs
Any 100 kbps 110
Any 200 kbps 85
Any 400 kbps 55
Total 50 Mbps 250
Good-BLER Any 83
Medium-BLER Any 84
Poor-BLER Any 83
Total 50 Mbps 250
Good-BLER 100 kbps 36
Good-BLER 200 kbps 28
Good-BLER 400 kbps 19
Medium-BLER 100 kbps 37
Medium-BLER 200 kbps 29
Medium-BLER 400 kbps 18
Poor-BLER 100 kbps 37
Poor-BLER 200 kbps 28
Poor-BLER 400 kbps 18
Total 50 Mbps 250

The slice performance is compared if the MCCL uses
following subslice splitting algorithms:

e “static 3 subslices” (S3S) is proposed in [5], where
subslices are created based on UE features. Our set of
UEs has 3 different rate requirements, thus the slice is
always subsliced into three;

e “dynamic subslicing with UE clustering by requested
rate” (DSbR);

e “dynamic subslicing with UE clustering by UE BLER”
(DSbB);

e no subslicing, i.e. slice is not split.

Subslice splitting algorithms contain RB allocation propor-
tional to the group sum rate and group BLER.

B. RESULTS OF INITIALIZATION

During the subslicing initialization, MCCL is run as many
times as it takes to reach a stable configuration of subslices
in the slice, a convergence, that is, when all decisions are
“no change”.

The initialization of algorithm S3S contains just one
iteration to group UEs by requested rate and allocate RBs
proportional to group sum rate and group BLER. Slice
configuration is shown in the figure 6. For dynamic sub-
slicing algorithms, the MCCL is run and subslicing is done
according to thedecisions provided by NN based on six KPIs
of the slice/subslice.

The training data for the NN were obtained from the op-
timization problem. There are different options for mapping
the decision to the subslice size based on its objective value.
The horizontal boundary between decision “no change” and
“split” depends on the selected size of e-neighbourhood,
see figure 3. Two values of €, 0.1 and 0.2 are selected for

iteration 1

id=1
110 RBs
55 UEs
(UE Rate=400 kbps)
S3S
id=1 id=2
250 RBs 85 RBs
250 UEs 85 UEs
split (UE Rate=200 kbps)
id=3
55 RBs
110 UEs

(UE Rate=100 kbps)

FIGURE 6. Initialization of subslicing algorithm S3S [5] (3 subslices, each
for different UE rate).

subslicing initialization for comparison. The training data
for NN of the selected ¢ values are shown in 4 (a) and (b),
respectively.

Next, the slice configuration is compared if dynamic
subslicing algorithms were used for initialization. The slice
configuration changes during initialization with DSbR split-
ting algorithm is shown in figure 7.

If ¢ = 0.1 the initialization using DSbR took six iterations
(see figure 7a). In the third iteration, it was decided two pairs
of subslices to be merged, and this resulted good subslices
with ¢d = 15 and id = 16. Subslice with id = 13 was
decided to split on iteration 3. Of its subslices in iteration 4,
one was decided to be merged, and one was decided to be
split. Finally, some subslices decided to be split into sizes of
four or five RBs. With greater € and splitting algorithm DSbR
the stable slice configuration was reached faster, within just
two iterations, as shown in figure 7b.

The algorithm DSbB needed 4 iterations with both ¢
values, as shown in figure 8. However, in both values
of ¢, there is a subslice with split-merge infinite loop in
configuration change. The infinite loop is that in one iteration
the subslice should be split, and in the next iteration both
subslices should be merged.

The initialization of the slice configuration required fewer
iterations, and the slice contained fewer subslices with a
greater value of ¢. If MCCL uses the splitting algorithm
DSbR, then the slice contains three subslices, as if the
splitting algorithm is S3S. When the splitting algorithm
DSbB was used, a split-merge infinite loop appeared for one
subslice.

The slice performance results during the initialization are
shown in figure 9. Left column contains slice KPI values
if ¢ = 0.1 and right column contains slice KPI values if
e=0.2.

The static algorithm S3S achieves better slice performance
than no subslicing: UL utilization has improved by 1.26%,
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iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6
id=9 id=9 id=9 id=9
46 RBs 46 RBs 46 RBs 46 RBs
id=4 44 UEs 44 UEs 44 UEs 44 UEs
86 l_QBs no change no change no change no change
<8f'tU§8 id=10 id=10 id=10 id=10
split (40) 40 RBs 40 RBs 40 RBs 40 RBs
id=2 41 UEs 41 UEs 41 UEs 41 UEs
193 _RBs no change no change no change no change
140 UEs —
split (52) id=11
55 RBs
Py 28 UEs
DSbR 107 RBs merge
e=0d > id=12 id=16 id=16 id=16
id=1 SPlit G2)] \|sorBs| | | 62RBs | | 62RBs | | 62 RBs
250 RBs 27 UEs 47 UEs 47 UEs 47 UEs
2510t EJSEZS) merge no change no change no change
spli
id=7 id=8 id=15 id=15 id=15
10 RBs 10 RBs 65 RBs 65 RBs 65 RBs
20 UEs 20 UEs 48 UEs 48 UEs 48 UEs
7(1 3 merge merge no change no change no change
1d=.
57 RBs id=14
110 UEs 10 RBs id=18 id=19 id=22 iteration 1: ' iteration 2
split (10) | s 20 UEs 10 RBs 10 RBs 20 UEs _
47 RBs merge 20 UEs 20 UEs 40 RBs id=4
90 UEs - merge merge split (10) 86 RBs
split (10) id=13 P 85 UEs
37 RBs id=21 193 RB no change
70 UEs 10 RB §
split (10) 20 UES, DSbR 140 UEs id=5
id=17 : id=23 | | £=02) [l 52) I
27 RBs merge 9 RBs id=1 107 RBs
50 UEs 0 14 UEs| |250 RBs 55 UBs
split (10) 0= split (4)| | 250 UEs no change
17 RBs split (52)
30 UEs id=24 id=3 id=3
split (8) 3 RBs 57 RBs 57 RBs
16 UEs 110 UEs 110 UEs
split (4) no change no change
(a) (b)

FIGURE 7. Initialization of scenario DSbR completed. (a) ¢ = 0.1 and (b) ¢ = 0.2.

goodput per one RB improved in UL by 28.4% and in DL
by 11.5%, and BLER reduced by 31% and 43.7% in UL and
DL, respectively.

Dynamic splitting algorithms achieve different perfor-
mance if different € values were used. The increase of ¢
improved slice goodput and BLER for DSbR, however with
DSbB the change of KPI values was small. However, despite
the split-merge infinite loop, DSbB achieved the best slice
performance improvement in reducing slice utilization by 6%
in UL, BLER by about 60% in both UL and DL, and im-
proved goodput per one RB in UL the most, 37%. The DSbB
had better goodput in iteration 3, but after subslice splitting,
the achieved gootput decreased. The dynamic algorithms can
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miss their peak goodputs if the decisions contain too much
splitting of the subslices.

For runtime simulations, the dynamic subslicing algo-
rithms were initialized using training data obtained with
€ = 0.2 because initialization requires fewer iterations and
slice performance is generally better.

C. RUNTIME SCENARIOS

Two scenarios were used to investigate how the proposed
MCCL works in the conditions when slice load increases
or decreases. It is expected that subslicing can improve the
slice performance on a fixed slice bandwidth. The starting
point of the scenarios is the initialized slice from the previous
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iteration 1 iteration 2 iteration 3 iteration 4

id=10
26 RBs
id=6 28 UEs
41 RBs merge
i b id=12
) Pt AN |\ | 15 rBs
81 RBs 13 UEs
83 UEs merge
split (40
plit (40) id=7 id=7
40 RBs 40 RBs
id=2 42 UEs || 42 UEs
162 RBs no change no change
160 UEs
split (52) id=8 id=8
DSbB 41 RBs 41 RBs
c—0.1 =5 39 :;TES 39 ISES
id=1 81 RBs no change no change
250 RBs 77 UEs - -
. id=9 id=9
> I(JSE;) split (40) \ 40RBs | | 40 RBs
P 38 UEs 38 UEs
no change no change
id=3 id=3 id=3 id=3
88 RBs 88 RBs 88 RBs 88 RBs
90 UEs 90 UEs 90 UEs 90 UEs
no change no change no change no change
()

iteration 1 iteration 2 iteration 3 iteration 4

id=6 id=6
41 RBs 41 RBs
44 UEs 44 UEs
no change no change
id=4
81 RBs id=8
83 UEs 24 RBs
split (40) 7 21 UEs
40 RBs mmerge
161;:1123 » U id=9
S split (10
160 UEs PILCT N 16 R
DSbB split (52) 18 UEs
merge
=02
id=1 id=5 id=5 id=5
250 RBs 81 RBs 81 RBs 81 RBs
250 UEs 77 UEs 77 UEs 77 UEs
split (52) no change| |no change| |no change
id=3 id=3 id=3 id=3
88 RBs 88 RBs 88 RBs 88 RBs
90 UEs 90 UEs 90 UEs 90 UEs
no change no change no change no change

(b)

FIGURE 8. Initialization of scenario DSbB completed. (a) ¢ = 0.1 and (b) ¢ = 0.2.

subsection. The slice load increase is performed in Scenario
1, in which a new UE comes into the subslice with the lowest
utilization. The slice load decrease is performed in Scenario
2, where one UE with the highest BLER leaves. The UE that
is coming or leaving has high requested rates and is expected
to achieve a high (poor) BLER.

The discrete-event simulator shown in figure 10 is created
to run the scenarios. Initially, in round O, the slice has 250
UEs, and the initial configuration of the subslices is based on
the splitting algorithms used in the previous subsection. At
the end of the round, an event occurs, which means adding
or removing one UE, as stated in the scenario. The next
round begins with the simulation of a slice to determine
the effect of the event. The MCCL then runs and possibly
changes the slice configuration for subslicing. The second
simulation of the slice in this round shows the effect of the
new configuration on slice performance.

D. RUNTIME RESULTS

The scenarios run seven events and each slice was simulated
10 times. The slice performance changes are shown in
figure 11. The runtime simulation results are shown in
figure 13.

1) Scenario 1
Let us consider the slice performance data of scenario 1
(figure 11a and 11c). Within 7 events, the slice requested
sum rate increases by 5.6% due to new UEs added. When
no subslicing done, the slice utilization did not change,
goodput per one RB decreased by 2% and 1% in UL and
DL, respectively, and BLER increased by 1% in UL and
decreased by 2% in DL. If subslice splitting by UE requested
rates (algorithms S3S and DSbR) were used, then utilization
in UL increased, goodput decreased and BLER increased
a few more percent. When subslice splitting by UE BLER
(algorithm DSbB) was used, then the change of performance
depends on how many subslices are in the slice. After the
initialization, the slice contained 5 subslices. After events 5,
6 and 7, the slice contained 4, 5 and 6 subslices, respectively
(see table 12. When less subslices, then UL utilization and
UL goodput per one RB increased more, up to 5%. In DL,
the utilization did not change and goodput increased 4% if
4 subslices, and decreased 2% if 6 subslices. The greatest
effect of number of subslices had BLER in both UL and DL.
The BLER increased up to 28% if 4 subslices, and decreased
up to 41% if 6 subslices were in the slice.

Details on figure 13 left column show dynamics of KPI
value changes during the events and MCCL runs. If no
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FIGURE 9. Slice performance during initialization of subslicing algorithms (a), (c), (e), (9), (i), (k) ¢ = 0.1 and (b), (d), (f), (h), (j), (I) £ = 0.2. Percentages
show how much better values were achieved compared to those without subslicing.

subslicing the utilization is full already. The UL utilization
increases to full utilization, if splitting algorithms S3S and
DSbR were used. If DSbB then utilization is lower than
others. The utilization in DL does not change, being full.
In a few events after MCCL run, the DSbB can achieve
slightly lower utilization in DL. The goodput per one RB in
UL slowly decreases, but DSbB achieves best values. In DL,
the values of goodput per one RB for DSbB changes, being
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sometimes better and sometimes worse than S3S and DSbR.
Splitting algorithms S3S and DSbR can achieve slice BLER
similar and not changing. If DSbB splitting algorithm used,
the slice BLER values depend on the number of subslices,
but still BLER is the smallest in UL and DL.

The slice configurations are shown in figures 14 for
SCS, figure 15 for DSbR and figure 16 for DSbB splitting
algorithm used in MCCL, respectively.
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Round starts

FIGURE 10. Discrete event simulator.

The slice configuration, when S3S was used as splitting
algorithm in MCCL, had always 3 subslices, each for UEs
with different requested rate. UEs are coming in to the largest
subslice and resource allocation increases the number of RBs
for this subslice by taking RBs away from other subslices.
When DSbR was used as splitting algorithm, then slice
configuration is stable, consisting of 3 subslices, similarly
each for UEs with different requested rate. New UEs come
to the subslice with id = 5 because this had the lowest
bandwidth utilization. The 7th UE comes to the subslice
with ¢d = 3 because now this had the lowest utilization.
The subslice splitting algorithm DSbB had created larger
stable subslices for UEs achieving good or medium BLER.
The two subslices with id = 8 and id = 9 contain UEs with
poor BLER and are split or merged at each MCCL run. When
the 4th and 7th UE added, then there were 6 subslices in the
slice, and both goodput and BLER were low. When the slice
contained 4 subslices then the goodput achieved the highest
values and so did BLER. The best goodput per RB in UL
and DL was achieved using splitting algorithm DSbB and 4
subslices.

When slice load increases, the achieved goodput will
not increase, however subslice splitting has saved on the
initialization few RBs, which will be utilized and a small
increase in utilization and goodput is achieved quickly.
BLER is lower if poor-BLER UEs are divided into more
subslices and this can be done by using subslice splitting
algorithm DSbB.

2) Scenario 2

Let us consider slice performance data of scenario 2 (see
figures 11b and 11d. Within 7 events, the slice requested
sum rate decreases by 5.6% due to UEs removed. When
no subslicing used, then after 7 events the slice utilization,
goodput and BLER did not change more than 1%, and slice
BLER in DL decreased by 4%. Subslice splitting by UE
BLER (DSbB), the values of KPIs depend on how many
subslices the slice contained. After the initialization, the slice

contained 5 subslices. After events 5, 6 and 7, the slice
contained 5, 6 and 4 subslices, respectively (see table 12. If
less subslices then all KPIs were increased compared to the
slice configuration containing 5 subslices at the initialization.
The BLER had the greatest change. If 6 subslices then
the BLER decreased by more than 40%, while utilization
decreased by 7% and 1% in UL and DL, respectively.

After 7 events, the slice utilization in UL decreases by
3-4% if subslice splitting algorithms were used, as shown in
figure 11b. It did not affect slice utilization in DL, which did
not change. Details in figure 13 right column show that the
slice bandwidth was fully utilized, and after 7 events the slice
utilization was still full. With subslicing the utilization in UL
slowly decreases, but it decreases the most when splitting
algorithm DSbB was used. In UL, the best goodput per RB is
achieved with splitting algorithm DSbB. In DL, the goodput
per RB of DSbB is sometimes the best and sometimes just
better than if no subslicing. The subslicing decreases the
slice BLER in both UL and DL compared to no subslicing,
but the splitting algorithm DSbB achieves the lowest BLER
regardless of the number of subslices.

The slice configurations are shown in figure 17 for SCS,
figure 18 for DSbR and figure 19 for DSbB splitting algo-
rithm used in MCCL, respectively.

The slice configuration by using S3S splitting algorithm
has always 3 subslices where UEs are clustered by requested
rate. UE leaves the subslice with id = 1.

The scenario with no subslicing has all KPIs unchanged,
however with subslicing the goodput per one RB increases
and BLER decreases. Resource allocation takes RBs from
that subslice and gives those to the others. Similarly, the
slice contains 3 subslices by UE rate, if splitting algorithm
DSbR was used. The UE always leaves the subslice with
id = 5 because this contained UEs which request 400 kbps.
The subslice splitting algorithm DSbB has stable subslices
for good-BLER and medium-BLER UEs. The 2 subslices
with id = 8 and id = 9 are for poor-BLER UEs and their
configuration changes on each MCCL run. Similarly, the
best goodput per one RB is achieved if these poor-BLER
subslices are merged to one, as in events 2, 4 and 7.

When slice load decreases then the goodput can increase
because there are more resources available for packets which
needed retransmission before. Similarly, as in slice load
increase, the poor-BLER UEs need more subslices and the
slice BLER can be decreased significantly.

VI. CONCLUSION

The management closed control loop for subslicing to im-
prove slice performance was implemented in this paper. For
slice simulations, the realistic BWP, n28, was used as the
fixed slice bandwidth of 50 MHz. The realistic set of 250
V2X or MIoT UEs are set to consume the allocated band-
width by their requested sum rate of 50 Mbps. The planned
slice load was close to slice overload. UEs were placed at
different distances from gNB to have UEs with different
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FIGURE 11. The KPI value changes after 7 events of runtime scenarios. Percentages show difference between KPI value of the initialization and the 7th
event if the splitting algorithm was used in runtime scenarios. In DL, the utilization did not change, being full.

Scenario 1 (sum rate increase)
Number of subslices | Event number | utilUL | utilDL | gdplUL | gdplDL | blerUL | blerDL

4 5 5% 0% 5% 4% 27% 28%
5 6 2% 0% 1% 0% 2% 6%
6 7 1% 0% 0% -2% -41% -33%

Scenario 2 (sum rate decrease)
Number of subslices | Event number | utilUL | utilDL | gdplUL | gdplDL | blerUL | blerDL

4 7 3% 0% 5% 5% 26% 25%
5 5 0% 0% 2% 1% 4% 0%
6 6 -7% -1% 1% 0% -42% -46%

FIGURE 12. The change of slice performance change if the splitting algorithm was DSbB. After initialization, the slice contained 5 subslices. After
events number 5, 6 or 7, the slice contained 4, 5 or 6 subslices.
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FIGURE 13. Slice performance on events of scenarios and effect of MCCL.

14 VOLUME,



= IEEE IEEE Open Journal of the
ComSoc communications Socie
Initialization ‘Event 1 ‘Event 2 ‘Event 3 Event 4 ‘Event 5 ‘Event 6 Event 7
id=1 - - - : - - -
110 RBs id=1 id=1 id=1 id=1 id=1 id=1 id=1
55 UEs — 110 RBs ¥ 111 RBs (| 111 RBs [—{ 113 RBs [—{ 114 RBs [—{ 115 RBs — 117 RBs
(UE Rate=400 kbps) 55+1 UEs 56+1 UEs 57+1 UEs 58+1 UEs 59+1 UEs 60+1 UEs 61+1 UEs
Scenario 1
S3S id=2 ; - - - - - -
250RBs 85 RBs id=2 id=2 id=2 id=2 id=2 id=2 id=2
250UEs 85 UEs — 85 RBs — 83 RBs — 83 RBs —— 82 RBs —— 82 RBs — 81 RBs —— 80 RBs
Split (UE Rate=200 kbps) 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs
id=3 - - - : - p -
55 RBs id=3 id=3 id=3 id=3 id=3 id=3 id=3
110 UEs > 55 RBs — 56 RBs — 56 RBs — 55 RBs —— 54 RBs [— 54 RBs [—| 53 RBs
(UE Rate=100 kbps) 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs
FIGURE 14. Slice configuration, scenario 1, splitting algorithm S3S, adopted from [5], first 7 events.
Initialization ‘Event 1 ‘Event 2 :Event 3 ‘Event 4 :Event 5 :Event 6 Event 7
id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3
57 RBs L 57 RBs L 57 RBs L 57 RBs L 57 RBs L 57 RBs L 57 RBs L 57 RBs
110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110+1 UEs
Scenario 1 UE Rate=100 kbps no change no change no change no change no change no change no change
DSbR
id=1 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4
250RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs
250UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs
Split (52) UE Rate=200 kbps no change no change no change no change no change no change no change
id=5 id=5 id=5 id=5 id=5 id=5 id=5 id=5
107 RBs N 107 RBs L 107 RBs L 107 RBs R 107 RBs L 107 RBs L 107 RBs N 107 RBs
55 UEs 55+1 UEs 56+1 UEs 57+1 UEs 58+1 UEs 59+1 UEs 60+1 UEs 61 UEs
UE Rate=400 kbps no change no change no change no change no change no change no change

FIGURE 15. Slice configuration, scenario 1, splitting algorithm DSbR, first 7 events.

BLERs in the slice. Actually, UEs with mixed BLERs cause
bandwidth overutilization due to packet retransmissions. The
MAPE-K management CCL was implemented to split or
merge subslices if it can improve slice performance on fixed
slice bandwidth. Using the discrete event simulator, it is
possible to show the dynamics of slice performance and the
effect of subslicing.

Slice performance was compared if different subslice
splitting algorithms were used in management CCL. For the
sake of slice performance, UEs with the similar BLER in
one subslice achieve better slice performance than UEs with
similar requested rates.

The subslicing enables to increase goodput about 30%
in UL and 10% in DL, reduce BLER at least 30% and
40% in UL and DL, respectively. Dynamic subslicing with
UE clustering by BLER enables to achieve up to 6% less
utilization and up to 10% more goodput, and reduce BLER
additional at least 20% compared to other subslice splitting
algorithms tried in the implemented management closed
control loop.

VOLUME ,

In runtime scenarios when slice sum rate was increased or
decreased, the subslice splitting algorithms where UEs were
clustered by UE rate (S3S and DSbR), the slice configuration
was stable. If subslice splitting algorithm where UEs were
clustered by UE BLER (DSbB) was used, the slice configura-
tion changed on each MCCL cycle for poor-BLER subslices.
However, the slice achieved higher goodput per one RB and
lower BLER than with other subslice splitting algorithms.
For slice utilization and BLER improvement, the splitting
algorithm should create more subslices for poor-BLER UEs,
and for goodput improvement less subslices for poor-BLER
UEs. Slice performance results have shown that BLER is
the most sensitive KPI, dependent on the number of poor-
BLER subslices. The more slice performance improvement
was achieved for UL.

The future work is to find the slice performance thresholds
when to start and stop perform subslicing to improve the
slice performance on fixed slice bandwidth. Other research
direction is to investigate how to decide the subslicing if the
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Initialization ‘Event 1 :Event 2 ‘Event 3 ‘Event 4 ‘Event 5 :Event 6 Event 7
id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3
88 RBs L 88 RBs L 88 RBs L 88 RBs L 88 RBs L 88 RBs L 88 RBs L 88 RBs
90 UEs 90 UEs 90 UEs 90 UEs 90 UEs 90 UEs 90 UEs 90 UEs
Good-BLER no change no change no change no change no change no change no change
id=5 id=5 id=5 id=5 id=5 id=5 id=5
id=5 81 RBs L 81 RBs L 81 RBs L 81 RBs L 81 RBs L 81 RBs L 81 RBs
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77 UEs no change no change no change no change no change no change no change
Scenario 1
DSbB id=6 id=6 id=6 id=6 id=6 id=6 id=6
id=1 id=6 41 RBs L 41 RBs L 41 RBs L 41 RBs L 41 RBs L 41 RBs L 41 RBs
250 RBs | |41 RBs —" 44 UEs 44+1 UEs 45 UEs 45+1 UEs 46+1 UEs 47 UEs 47 UEs
250 UEs 44 UEs no change no change no change no change no change no change no change
Split (52
plit ©2) id=20
id=14 12 RBs
id=8 id=8 14 RBs id=17 11 UEs
24RBs | | 24 RBs el 14 UEs 25 RBs merge
21 UEs 21+1 UEs 24 RBs merge 22+1 UEs ey
Poor-BLER merge . split (10 _
£ 2l SESIN [ia=1s id=16 PO JA| 13 RBs
id=9 id=9 id=10 PO | \[10 RBs| | 40 RBs 12+1 UEs
16 RBs 16 RBs 40 RBs 11 UEs 41 UEs merge
18 UEs | |18 UEs 40 UEs merge split (10) . .
Poor-BLER split (10 id=18 id=19
oor- merge split (10) id=12 id=13 15 RBs 15 RBs
16 RBs 16 RBs 19 UEs 19 UEs
16 UEs 16 UEs merge merge
merge merge

FIGURE 16. Slice configuration, Scenario 1, splitting algorithm DSbB, first 7 events.

: Initialization Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7
id=1 - - - - - - -
110 RBs id=1 id=1 id=1 id=1 id=1 id=1 id=1
55 UEs —| 110 RBs — 109 RBs — 107 RBs [— 106 RBs — 105 RBs — 103 RBs — 100 RBs
(UE Rate=400 kbps) 55-1 UEs 54-1 UEs 53-1 UEs 52-1 UEs 51-1 UEs 50-1 UEs 49-1 UEs
Scenario 2
S3S id=2
250RBs 8; RBs id=2 id=2 id=2 id=2 id=2 id=2 id=2
250UE; 35 UE; — 85 RBs —— 85 RBs —— 86 RBs — 86 RBs —— 87 RBs —— 88 RBs —— 90 RBs
Split (UE Rate=200 Kbps) 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs 85 UEs
id=3 - - " - - - -
55 RBs id=3 id=3 id=3 id=3 id=3 id=3 id=3
110 UEs — 55 RBs — 56 RBs [— 57 RBs —{ 58 RBs — 58 RBs — 59 RBs [— 60 RBs
(UE Rate=100 kbps) 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs 110 UEs

FIGURE 17. Slice configuration, scenario 2, splitting algorithm S3S, adopted from [5], first 7 events.
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Initialization Event 1 ‘Event 2 Event 3 Event 4 Event 5 Event 6 ‘Event 7
id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3

57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs 57 RBs

110 UEs [ | 110 UEs | | 110 UEs | | 110 UEs | | 110 UEs | /| 110 UEs | /| 110 UEs | | 110 UEs

Scenario 2| /| UE Rate=100 kbps | |no change| |no change| |[no change no change no change no change | |no change
DSbR

id=1 id=4 id=4 id=4 id=4 id=4 id=4 id=4 id=4
250RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs 86 RBs
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55 UEs 7 55-1 UBs | | 54-1 UBs | | 53-1 UEs | | 52-1 UEs | /| 51-1 UE | ] 50-1 UEs | | 49-1 UEs

UE Rate=400 kbps no change no change no change no change no change no change no change

FIGURE 18. Slice configuration, scenario 2, splitting algorithm DSbR, first 7 events.

Initialization ‘Event 1 ‘Event 2 ‘Event 3 ‘Event 4 ‘Event 5 :Event 6 Event 7
id=3 id=3 id=3 id=3 id=3 id=3 id=3 id=3
88 RBs L 88 RBs L 88 RBs L 88 RBs L 88 RBs L 88 RBs L 88 RBs L 88 RBs
90 UEs 90 UEs 90 UEs 90 UEs 90 UEs 90 UEs 90 UEs 90 UEs
Good-BLER no change no change no change no change no change no change no change
id=5 id=5 id=5 id=5 id=5 id=5 id=5
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FIGURE 19. Slice configuration, scenario 2, splitting algorithm DSbB, first 7 events.
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