
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Nikita Ratškov 206195IAAB

Centralized Logging System for a Multi-Tenant

Environment

Bachelor's thesis

Supervisor: Mohammad Tariq

Meeran

 PhD

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Nikita Ratškov 206195IAAB

Keskne klientide vahel jagatud

logihaldussüsteem

Bakalaureusetöö

Juhendaja: Mohammad Tariq

Meeran

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Nikita Ratškov

10.04.23

4

Abstract

Company X lacks a proper solution for log collection and aggregation leading to manual

processing. In case of any related problem or customer request it takes extra time to do

everything manually causing the unnecessary delays for customers also leading to

dissatisfaction with the Company X service.

The thesis aims to solve the problem faced by Company X. Solution should be able to

collect and process logs from different WAF (Web Application Firewall) sensor locations

and provide different storage options.

Work includes an in-depth literature review, which was conducted to identify the

available technologies and find the most suitable and effective solutions among them. To

achieve the goal and solve the problem, the Author implemented the experimental setup

using all the data obtained from the literature overview and following all the requirements

requested by Company X.

The solution development steps are described in 2 major parts: Experimental Setup and

Implementation. The Experimental Setup part consists of chosen options and proposed

configurations. The Implementation part consists of building of the solution and its

integration with the existing tools.

The result of the thesis is a logging collection and aggregation solution for Company X

which provides all the requested features and meets the requirements. The goal was

achieved by building the fully working integrated logging solution and implementing it

as Infrastructure as Code.

This thesis is written in English and is 46 pages long, including 7 chapters, 19 figures and

2 tables.

5

Annotatsioon

Keskne klientide vahel jagatud logihaldussüsteem

Ettevõttel X puudub korralik lahendus logide kogumiseks ja koondamiseks, mis viib

käsitsi töötlemiseni. Mis tahes seotud probleemi või kliendi soovi korral kulub lisaaega

kõige käsitsi tegemiseks, mis põhjustab klientidele tarbetuid viivitusi, mis omakorda toob

kaasa ka rahulolematuse Ettevõte X teenusega.

Lõputöö eesmärk on lahendada ettevõtte X probleem. Lahendus peaks suutma koguda ja

töödelda logisid erinevatest WAF-anduritest ning pakkuma erinevaid salvestusvõimalusi.

Töö sisaldab põhjalikku kirjanduse ülevaadet, mis viidi läbi olemasolevate tehnoloogiate

väljaselgitamiseks ning nende hulgast sobivaimate ja tõhusamate lahenduste leidmiseks.

Ülesande saavutamiseks ja probleemi lahendamiseks rakendas autor eksperimentaalse

seadistuse, kasutades kõiki kirjanduse ülevaatest saadud andmeid ja järgides kõiki

ettevõtte X nõudeid.

Lahenduse arendamise etappe kirjeldatakse üksikasjalikult kahes suures osas:

eksperimentaalne seadistamine ja juurutamine. Eksperimentaalse seadistuse osa koosneb

valitud valikutest ja pakutud konfiguratsioonidest. Rakendamise osa koosneb lahenduse

ehitamisest ja integreerimisest olemasolevate tööriistadega.

Lõputöö tulemuseks on ettevõtte X logide kogumise ja koondamise lahendus, mis pakub

kõiki nõutud funktsioone ja vastab nõuetele. Eesmärk saavutati täielikult töötava

integreeritud logimise lahenduse ehitamisega ja kogu ehituse rakendamisega

infrastruktuur koodina.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 46 leheküljel, 7 peatükki, 19

joonist, 2 tabelit.

6

List of abbreviations and terms

API Application Programming Interface

AWS Amazon Web Services

CA Certification Authority

DB Database

DNS Domain Name System

ECS Elastic Container Service

HCL HashiCorp Configuration Language

HTTP Hypertext Transfer Protocol

IaC Infrastructure as Code

IT Information Technology

JDK Java Development Kit

JRE Java Runtime Environment

JSON JavaScript Object Notation

Regex Regular expression

SaaS Software as a Service

SAN Subject Alternative Name

SOC Security Operation Center

SQL Structured Query Language

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

TOML “Tom's Obvious, Minimal Language”

TSDB Time Series Database

VRL Vector Remap Language

WAF Web Application Firewall

XSS Cross-Site Scripting

YAML “Yet Another Markup Language”

7

Table of contents

1 Introduction ... 11

1.1 Problem statement .. 11

1.2 Goal of the Thesis ... 11

1.3 Objectives of the research ... 12

1.4 Research questions ... 12

2 Literature review.. 13

2.1 Organization ... 13

2.2 Multitenancy ... 13

2.3 Syslog ... 14

2.4 Nginx .. 14

2.5 Common logging solutions ... 14

2.6 High availability ... 15

2.7 Cloud .. 15

2.8 Portability ... 16

2.9 Infrastructure as Code ... 16

3 Methodology .. 18

3.1 Research method ... 18

3.2 Data collection .. 18

3.3 Testing environment ... 18

4 Experimental Setup ... 19

4.1 Requirements .. 19

4.2 Log collection ... 21

4.3 Log processing .. 21

4.4 Security ... 23

4.5 Infrastructure as Code ... 23

5 Implementation .. 24

5.1 DNS .. 24

5.2 Certificates .. 24

5.3 IaC .. 27

8

5.4 Digital Ocean .. 29

5.5 Vector ... 29

5.6 Tool Set... 34

5.7 Grafana and Loki .. 37

6 Review of the implemented setup ... 41

7 Conclusion ... 42

References .. 44

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 46

9

List of figures

Figure 1. Example of using Terraform with Ansible (Source: [10]) 17

Figure 2. Vector deployment options (Source: [11]) .. 22

Figure 3. Script to generate CA .. 25

Figure 4. Script to generate client certificates .. 26

Figure 5. Terraform providers .. 27

Figure 6. Terraform DO resource ... 28

Figure 7. Terraforn Ansible resource ... 28

Figure 8. Terraform Ansible group... 29

Figure 9. Vector syslog source ... 31

Figure 10. Vector filters.. 31

Figure 11. Vector Nginx access log transform ... 32

Figure 12. Vector Nginx error log transform ... 33

Figure 13. Vector Loki sink .. 33

Figure 14. Vector Python class code .. 35

Figure 15. Tool set Python code snippet .. 36

Figure 16. Grafana dashboard for Nginx access logs ... 38

Figure 17. Grafana dashboard for Nginx error logs ... 39

Figure 18. Grafana Loki data source settings ... 40

Figure 19. Implemented setup scheme ... 41

10

List of tables

Table 1. Logging solutions comparison ... 20

Table 2. Log collectors comparison ... 22

11

1 Introduction

Logging is one of the most essential components in any modern IT system operation. A

proper logging solution should be able to provide any essential information about various

system events like system activity, errors, and performance, making it easier to identify

and resolve any issue or incident. For cloud-based companies, logs can be challenging to

manage due to enormous amounts of data from various locations.

Lack of the logging system would lead to serious problems for Company X, including

degraded customer service quality and increased downtimes. The inability to find the

proper logs to identify the root of the problem leads to further delays in resolving issues.

Additionally, unfiltered and unaggregated logs require more storage space, which can

lead to higher costs and impact the company’s budget.

All the problems mentioned can be solved by using a proper and complete logging

solution which covers all essential aspects: collection, aggregation, correlation, analysis,

reporting, and storage.

1.1 Problem statement

Company X is getting a lot of different logs from separately located WAF sensors.

Currently these logs exist only on WAF sensors located in a multi-tenant configuration,

which makes it hard to collect all of them manually by going to each of the sensors

separately with plain SSH (Secure Shell). What is more, Company X uses mostly cloud

based solutions for their products and tools, therefore logs are also stored in the cloud.

Unfiltered and unaggregated logs may take up a lot of space and lead to increased costs

of data storage.

1.2 Goal of the Thesis

The main goal of the research is to find suitable options for building the complete logging

collection and aggregation system for Company X and integrate it into the production

environment. Solution must follow Company X’s security requirements and measures,

provide seamless integration with currently used systems and solutions, provide

scalability and high availability options to ensure that no data or services are lost.

12

This new solution will be integrated with existing internal logging tools to provide

automatic collection, forwarding, and visualizing the logs for production environment

and increase work efficiency of the SOC (Security Operation Center) team. Tool must be

able to parse and aggregate different types of logs automatically without any additional

observation from the user. The whole solution should be as lightweight as possible while

meeting the functional and security requirements provided.

1.3 Objectives of the research

• To analyze and find the most suitable logging solutions

• To meet all the defined requirements

• To implement and integrate the solution

1.4 Research questions

• What logging options are available?

• What requirements should be met?

• What can be an appropriate solution for Company X?

13

2 Literature review

In today’s digital age, companies are looking for ways to improve their IT infrastructure

and services quality. To achieve this, many organizations have decided to use various

logging solutions.

This section presents a review and analysis of tools and technologies which can be used

for building the proper solution for the logging problem of Company X. The purpose of

this review is to examine the current situation with the proposed options. Review of the

existing literature should provide insights into best practices for solving the problem.

2.1 Organization

US-based cybersecurity Company X is providing WAF services for their clients around

the world. Company’s solutions are designed to protect web applications and APIs

(Application Programming Interface) from different types of attacks, including SQL

(Structured Query Language) injection, XSS (Cross-Site Scripting) and other common

types.

They have asked the author to conduct research and find a proper solution for their

logging problem. They are using cloud-based multi-tenant system with services provided

by companies like Amazon or Internap and located in different geo locations.

2.2 Multitenancy

Tenant is a group of users sharing the same view of an application they use. This view

includes the data they can access, configurations, user management and some other

functional and non-functional options. Usually, groups are members of different legal

entities.

Multitenancy is an approach to share an instance of an application between multiple

tenants by providing every tenant a dedicated “share” of the instance, which is isolated

from other shares regarding performance and security.

14

2.3 Syslog

Syslog is a standard protocol for message logging. It allows various applications, servers,

databases, and network devices to send event messages to a predefined, usually

centralized, server or service. Generated messages can include different information

about system errors, security alerts, application events and so on. Syslog protocol works

by client-server model. The client is usually a device or application that generates log

messages, while the server is the logging system that collects and stores such messages.

Syslog messages can be sent over the network using UDP (User Datagram Protocol) and

TCP (Transmission Control Protocol) protocols or between applications on the same host

with UNIX sockets. [1]

2.4 Nginx

Nginx is open-source software which can be used as web server, reverse proxy, and load

balancer. Nginx is a high-performance solution which can handle many concurrent

connections and requests [2]. Company X uses it in reverse proxy mode as a main

component of sensor instances, therefore it acts as a main source of the access and error

logs for this research.

2.5 Common logging solutions

As logging is an important aspect of every IT related activity, therefore a lot of solutions

are available like: Grafana Loki, ELK (Elastic, Logstash, Kibana) Stack, Splunk and

Graylog.

Grafana Loki is horizontally scalable, highly available and multi-tenant logging system

designed to be cost-effective and easy to operate. It is an open-source solution which can

be self-hosted on premises or in the cloud. Loki is a highly customizable tool which

allows users to store logs in a way that suits their specific requirements. Additionally, it

can be easily integrated with other solutions like Fluentd or Vector.

ELK is a widely used open-source log and analytics stack. Elasticsearch is a search and

analytics engine that stores and indexes data, also providing fast and efficient data search

and analysis. Logstash is server-side data processing pipeline that collects, parses, and

sends it to another predefined place for investigation and examination. Kibana is a data

15

visualization tool, like Grafana, that allows users to explore, visualize data and build

custom dashboards, charts, and reports. [3]

Splunk is a platform that collects, indexes and analyses logs, metrics, and other types of

data. Splunk is not an open-source solution, and it is provided only as a paid service.

Splunk also supports different data sources, like cloud instances or network devices, it

has a big plugins and integrations ecosystem.

Fluentd, Promtail, Vector are all open-source log collection, processing and forwarding

tools. These tools can be used with different frontends like Kibana or Grafana to visualize

and structure the data.

2.6 High availability

High availability is the ability of a system or application to remain operational and

accessible for users for an extended period without any disruptions or downtime.

A highly available system must be designed with redundancy and fault tolerance in

mind. System must be able to provide uninterrupted services during essential time

periods, most hours of the day and most days of the week throughout the year. [4]

2.7 Cloud

AWS (Amazon Web Services) and Digital Ocean are both cloud computing platforms

that provide tools, resources, and infrastructure options for deploying, scaling, and

managing applications.

AWS is a complete cloud platform that provides a wide range of different services like

computing, storage, networking, and security. It also offers more enterprise-oriented

features like high availability, failover, and recovery.

Digital Ocean, on the other hand, is a simpler solution that provides virtual servers and a

few other important services such as storage, databases, and load balancing. All this

makes it an option for enthusiasts, developers or small businesses who need an

uncomplicated and cheaper platform than AWS. [5]

16

2.8 Portability

Portability is the ability to move applications between different environments without any

significant configuration changes or adaptations. It means that an application can be

deployed to different platforms, operating systems, or cloud environments without

changes. [6]

Docker is one of the most popular open-source container technologies. It is a software

platform that allows to create, deploy, and run applications using containerization

technology. Docker provides portability option which allows to pack applications with

all the required dependencies into a single container and help users or customers to deploy

software faster and with less issues.

2.9 Infrastructure as Code

IaC (Infrastructure as Code) is an approach that involves managing IT infrastructure

resources such as virtual machines, network and storage with software code and

templates. IaC enables developers to automate the process of deploying and managing

infrastructure to make it faster and more consistent. [7]

Terraform is an open-source IaC tool for building, changing, and versioning IT

infrastructure. Terraform focuses on the abstraction of the datacenter and associated

services allowing users to define various infrastructure resources such as virtual hosts,

databases, and load balancers across multiple cloud providers like AWS, Azure or Digital

Ocean and on-premises data centers. It works with infrastructure definition by providing

a configuration file created by user using a high-level language called HCL (HashiCorp

Configuration Language). [8]

Ansible is an open-source automation tool for application deployment and configuration

management. It can automate a wide range of management tasks across different

environments. Ansible uses SSH for changes and does not require any agents or daemons

to be installed on remote hosts making it easier to integrate with the existing environment.

The main difference between both is their configuration language and use cases.

Terraform uses HCL for configuration files and its aim is to provide infrastructure, while

17

Ansible uses plain YAML (Yet Another Markup Language) for its playbooks and its main

purpose is configuration management on already provided hosts. [9]

Figure 1. Example of using Terraform with Ansible (Source: [10])

18

3 Methodology

In this section, the author presents research method, data collection and testing

environment used in the study.

3.1 Research method

The choice of research methods may vary based on a variety of factors, including the

object of research, settings, and timeframes. For this work, the most suitable methods are

analytical review and empirical search.

An analytical review process involves reviewing of the existing literature, research

studies, and other relevant works.

Empirical research involves collecting and analyzing through the experiments to test the

solution against company functional and security requirements.

3.2 Data collection

The observation method is the main data collection method for this work. Data is being

collected from various open sources and with the information from the running corporate

environment including on-site interviews with IT (Information Technology) Engineers of

the Company X, observing and collection of the data regarding security and functional

aspects of IT systems. IT related scientific articles, documents and previous research have

also been reviewed to get data about various options and possibilities to analyze.

3.3 Testing environment

To conduct the research without affecting the corporate production environment and

provide a testing stage of the proposed solutions before implementing them into

production, the testing cloud environment will be implemented and used for all the

development and testing purposes.

19

4 Experimental Setup

Experimental setup, also known as a testing environment, is critical for testing and

validating the changes before implementing into production environment. This setup

allows developers and engineers to test changes in a controlled environment to not cause

any unexpected problems with production.

4.1 Requirements

Log collection and analysis is always relevant to IT, Engineering and Security. What

makes this unique is the various limitations the solution should run within. The simplest

solution would be to add a hook into every sensor that streams logs to a centralized

location. However, it adds unwanted network overhead, and processing power for the

entire system. Similarly, there are sensors regionally deployed and load balanced, so

collection of the logs for specific investigations is cumbersome since it is impossible to

connect to each instance separately. Also, various solutions that exist have known security

vulnerabilities, this is why Company X tries not to use Java based solutions for example.

Regarding the deployment options, the solution should be open-source to allow the self-

hosting option, be independent of the service provider which also decreases costs and

allows moving between instances or even different providers.

Main requirements for the logging solution:

• Open-Source

• Self-Hosted

• Not Java based

• Lightweight with less dependencies

• Mature product with support

• Resource efficient

20

The number of options has been narrowed down to 3: Grafana Loki, Graylog and ELK.

All these products are open source, they can be self-hosted, mature enough to be used in

production environment and have good community support.

However, ELK stack and Graylog seems to be slower and less lightweight for our usage

cases, also they are using Java as the main project programming language. Java

applications require JRE (Java Runtime Environment) or JDK (Java Development Kit)

packages to be installed on the server, which take up a lot of space and they also do not

meet the security requirements, therefore the author decided to skip any Java based

solutions.

The author has found that the most suitable solution for our environment is Grafana Loki.

Loki instance uses Grafana as dashboard that is already used in production environment,

so it will allow to reuse the resources and avoid additional costs by not running any

separate dashboards like Kibana.

Additionally, Loki can work with various logging collectors and processors like Vector,

FluentBit, Fluentd and Promtail, which gives a variety of options to choose from. Grafana

is based on Golang and does not require Java packages, therefore it does not have any

Java specific security issues.

The comparison table was composed to provide a visual interpretation of the available

options with their advantages and disadvantages for our usage cases:

Table 1. Logging solutions comparison

Solution Source Free

options

Deployment Main PLs Community

support

Collectors

Graylog Open Self-

Hosted

SaaS and

self-hosted

Java Yes Syslog or other

community

options

ELK (Logstash) Open Self-

Hosted

SaaS and

self-hosted

Java and

Go

Yes Filebeat

Grafana Loki Open Self-

Hosted

SaaS and

self-hosted

Go

Yes Promtail,

Fluentd,

Fluentbit and

Vector

Datadog Partially

open

Trial SaaS - Yes, closed. Datadog agent

GoAccess Open Free Self-hosted C and JS Yes -

Splunk Partially

open

Trial Saas - Yes Syslog

SigNoz Open Self-

Hosted

Saas and

self-hosted

TS and Go Yes Open

Telemetry

https://github.com/Graylog2
https://signoz.io/pricing/
https://signoz.io/pricing/
https://github.com/elastic
https://signoz.io/pricing/
https://signoz.io/pricing/
https://github.com/grafana/loki
https://signoz.io/pricing/
https://signoz.io/pricing/
https://github.com/DataDog
https://github.com/DataDog
https://www.datadoghq.com/pricing/
https://github.com/allinurl/goaccess
https://github.com/splunk
https://github.com/splunk
https://www.splunk.com/en_us/products/pricing.html
https://github.com/SigNoz
https://signoz.io/pricing/
https://signoz.io/pricing/

21

Falcon LogScale Partially

open

Limited SaaS and

self-hosted

Java Yes, closed. Internal agent

New Relic Partially

open

Limited SaaS - Yes, low

activity.

Internal agent

Mezmo/LogDNA Partially

open

Limited SaaS - No Internal agent

Loggly Partially

open

Limited SaaS - No Internal agent

4.2 Log collection

It is not possible to hook into every sensor and collect the logs directly from them due to

specific infrastructure realization. Moreover, any log collectors like Vector or Fluentbit

cannot be added to the sensor's images, as it needs to pass implementation, testing,

integration, and some other phases to be done, which will take a lot of time. Therefore, a

fully automatic logging solution cannot be implemented now.

However, Company X developed tools for the internal SOC team to collect the logs, this

tool could be modified for new purposes to send logs directly to the parser using the

syslog protocol.

Internal tool kit must collect the logs and send them to the Vector instance, for this

purpose some changes should be implemented: Vector host must be connected with tools

with internal jump host through SSH tunnel and new function to collect and send all the

logs must be implemented to allow users to run through the entire process with only one

command.

4.3 Log processing

Vector, Promtail, Fluentd are all popular log collection and aggregation tools. Each tool

has its own advantages and disadvantages, and the choice of the right tool to use depends

on a variety of factors, including the specific use cases, volume of data, acceptable

performance, and resource consumption.

The main reason Vector is faster than Promtail or Fluentd is that it was designed to be

high-performance and low-latency tool for collecting and processing logs. Vector is built

with modern and fast Rust language, which is known for its efficiency and low memory

consumption.

https://github.com/crowdstrike
https://github.com/crowdstrike
https://www.crowdstrike.com/products/observability/falcon-logscale/
https://github.com/newrelic
https://github.com/newrelic
https://newrelic.com/pricing
https://github.com/logdna
https://github.com/logdna
https://www.mezmo.com/pricing
https://github.com/loggly
https://github.com/loggly
https://www.loggly.com/plans-and-pricing/

22

As a result, Vector can process massive amounts of logs efficiently. Additionally,

Company X development team is using Rust language frequently for internal tool set,

therefore they can modify the code if needed. Furthermore, Vector provides a big variety

of options for data output such as Vector itself to be used as separated collector and

aggregator or Apache Kafka to attach even more log consumers to it.

Figure 2. Vector deployment options (Source: [11])

The comparison table of log collectors and processors was created to show main

differences between the options:

Table 2. Log collectors' comparison

Name Purpose PL Dependencies

Fluentd Log collector, processor, and aggregator C and Ruby Ruby Gems

Fluentbit Processor and Forwarder C None

Promtail Build-in log agent for Loki Go Loki

Vector Collect, transform, and route all logs Rust None

Based on various reviews, the author found that Vector usually provides better

performance, especially in heavy workload conditions. Some reviews use Logs Per

Second metric which shows how many logs can be processed in a second, based on the

data provided, Vector offers 2 times better performance in comparison with Fluentbit and

around 4 times better than Fluentd with less memory consumption. [12] [13] [14]

23

Furthermore, Vector uses Adaptive Request Concurrency feature by default which

automatically optimizes HTTP (Hypertext Transfer Protocol) concurrency limits based

on downstream service responses to improve performance and reliability. [15]

4.4 Security

There is no defined security policy about encryption of connections between nodes.

However, the SOC team asked the author to implement encryption for logs travelling

between logging instances.

TLS (Transport Layer Security) cryptographic protocol is the most common way for such

cases, and it can be used on all the stages without any problems, Grafana, Loki and Vector

support it natively. It is the protocol used to secure communications over the internet.

TLS is used to encrypt data transmissions between servers or clients to prevent

unauthorized access and data theft. It is commonly used with secured HTTPS (Hypertext

Transfer Protocol Secure) connections.

Internally developed tools do not have the option to use TLS by default, but as we need

it for syslog transmissions this option can be added with Python library: “rfc5424-

logging-handler”, which adds TLS enabled handler to standard syslog library. [16]

Self-signed TLS certificates can be used, they should not cause any security problems in

this case as the production environment is in internal network and is not exposed to the

internet directly.

4.5 Infrastructure as Code

IaC tools must be used to provide a consistent and repeatable way to build the whole setup

for the experimental and testing purposes, and later in the production environment to

improve scalability of the deployment. Provided Infrastructure as Code solution must

provide a consistent and automated option to deploy and manage infrastructure resources,

which can increase the quality of a services provided by a Company X by reducing

manual efforts and ensuring that whole logging infrastructure is deployed consistently

across all the environments.

24

5 Implementation

This chapter provides an overview of the logging solution implementation workflow.

5.1 DNS

Internal resources of Company X do not have a DNS (Domain Name System) server.

Therefore, static DNS records can be used to avoid regeneration of the certificates,

records can be added separately to each docker container by “etc_hosts” parameter. This

option let us use the same certificates with the same SAN (Subject Alternative Name)

DNS records in them.

All the DNS entries should have the same format containing name of the host and domain

part: “.companyx.internal”. Domain name “.internal” was used instead of “.local” due to

potential problems with Multicast DNS as per RFC6762 Appendix G [17].

5.2 Certificates

Self-signed TLS certificates are used to encrypt connections between all the steps in

chain: Jump Host – Vector – Loki – Grafana. Grafana, Loki and Vector support TLS

certificates by default, therefore no additional changes are needed there, only to enable

TLS mode and to set the required certificate and key files info configurations.

25

For the ease of use the following bash scripts were created to generate required CA

(Certificate Authority) and individual keys and certificates in a more convenient way:

#!/usr/bin/env bash

while getopts s:e:a: flag

do

 case "${flag}" in

 s) subject=${OPTARG};;

 e) expiration=${OPTARG};;

 a) addext=${OPTARG};;

 *) echo "Usage: $0 [-s] [-e] [-a]" >&2

 exit 1 ;;

 esac

done

set -e

ca_cert="ca.crt"

ca_key="ca.key"

echo "Subject: $subject";

echo "Expiration: $expiration";

echo "AddExt: $addext";

Generate private key

openssl genrsa -out $ca_key 2048

echo "Generating root certificate..."

echo "Subject: ${subject}"

echo "Expiration: ${expiration} days"

Generate root certificate

openssl req -x509 -new -nodes -subj "$subject" -addext "$addext" \

 -key $ca_key -sha256 -days "$expiration" -out $ca_cert

chmod 644 ca_key

echo -e "Success!"

echo "The following files have been written:"

echo -e " - $ca_cert"

echo -e " - $ca_key"

Figure 3. Script to generate CA

26

#!/usr/bin/env bash

while getopts c:s:e:a: flag

do

 case "${flag}" in

 c) client=${OPTARG};;

 s) subject=${OPTARG};;

 e) expiration=${OPTARG};;

 a) addext=${OPTARG};;

 *) printf "Usage: %s [-s] [-e] [-a]\n""$0" >&2

 exit 1 ;;

 esac

done

set -e

ca_cert="ca.crt"

ca_key="ca.key"

echo "Client: $client";

echo "Subject: $subject";

echo "Expiration: $expiration";

echo "AddExt: $addext";

openssl genrsa -out "$client.key" 2048

openssl req -new -subj "$subject" -addext "$addext" -key "$client.key" \

 -out "$client.csr"

cat > "$client.ext" <<-EOF

authorityKeyIdentifier=keyid,issuer

basicConstraints=CA:FALSE

keyUsage = digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment

extendedKeyUsage = serverAuth, clientAuth

$addext

EOF

openssl x509 -req -in "$client.csr" -extfile "$client.ext" -CA "$ca_cert" \

 -CAkey "$ca_key" -out "$client.crt" -days "$expiration" -sha256

rm "$client.csr"

rm "$client.ext"

chmod 644 "$client.crt"

chmod 644 "$client.key"

Figure 4. Script to generate client certificates

27

5.3 IaC

Ansible was integrated with Terraform to provide all the variables for Ansible on the

initialization and deployment steps dynamically. The simplest solution to integrate

Terraform with Ansible is using “local-exec” provisioner to run ansible playbook as a

plain command on local machine. However, despite its simplicity, this solution has a lot

of potential drawbacks that should be considered. The most important problem is that this

way provides limited error handling, this means that in case of any playbook failure,

Terraform may not be able to handle the problem properly and the state of the managed

resources may be left uncertain. Furthermore, the code of the whole solution becomes

unclear with all the additional shell commands and parameters.

Therefore, official Ansible provider for Terraform and Terraform Collection for Ansible

were used for this purpose to provide a seamless experience and better integration with

both tools. [18]

All this allows to run the entire process with only 3 commands:

• terraform init

• terraform apply -var-file=do_main.tfvars

• ansible-playbook -i ansible/inventory.yaml ansible/infra.yaml

The most essential parts of the Terraform configuration are provided below:

terraform {

 required_providers {

 digitalocean = {

 source = "digitalocean/digitalocean"

 version = "~> 2.0"

 }

 ansible = {

 version = "~> 1.0.0"

 source = "ansible/ansible"

 }

 }

}

Figure 5. Terraform providers

28

resource "digitalocean_droplet" "vector" {

 image = "centos-stream-9-x64"

 name = "vector.company.internal"

 region = "lon1"

 size = "s-1vcpu-1gb"

 ssh_keys = [digitalocean_ssh_key.def_pk.fingerprint]

 provisioner "remote-exec"{

 inline = [

 "echo Vector server is running!",

]

 connection {

 host = self.ipv4_address

 user = "root"

 type = "ssh"

 private_key = file(var.do_private_key)

 timeout = "2m"

 }

 }

}

Figure 6. Terraform DO resource

This resource part also includes “remote-exec” provisioner to make sure that host is

created before exiting the program.

resource "ansible_host" "vector-0" {

 name = digitalocean_droplet.vector.name

 groups = ["vector"]

 variables = {

 ansible_host = digitalocean_droplet.vector.ipv4_address,

 ansible_user = "root",

 ansible_ssh_private_key_file = var.do_private_key,

 ansible_ssh_extra_args = "-o StrictHostKeyChecking=no"

 }

}

Figure 7. Terraforn Ansible resource

“ansible_host” resource provides all the variable values to the ansible.

29

resource "ansible_group" "vector" {

 name = "vector"

 variables = {

 vector_port = var.vector_port,

 loki_port = var.loki_port,

 vector_image = var.vector_image

 }

}

Figure 8. Terraform Ansible group

The latest resource part provides a group to ansible to assign each separate similar

instances to one group, also it some important variable values to it.

Provided configuration snippets are the same for Loki, excluding some variable values.

5.4 Digital Ocean

Digital Ocean was taken as a testing platform due to its simplicity and cheapness

compared to AWS. Three separate Ubuntu 22.04 Linux instances were created in distinct

regions (LON, AMS and FRA) to simulate various locations for production environment.

All the instances, except Grafana, were created using only Terraform and provisioned

with Ansible. Each machine runs docker containers with appropriate images. The Loki

host is two times more powerful than other ones, for Grafana and Vector, as Loki requires

more resources for fast operation.

5.5 Vector

Vector supports a set of different sources and sinks for receiving and transmitting the

data, it allows the use of Syslog as a log source and Loki as a sink natively without any

additional plugins. For its configurations, it can use different file types of its configuration

files: YAML, TOML (Tom's Obvious Minimal Language) and JSON (JavaScript Object

Notation), but it is recommended to stick with TOML, as it was used from the start of a

Vector development process, and it has better support from the community and

developers.

For data transformation purposes Vector provides multiple transform options including

VRL (Vector Remap Language) to define event transformation logic. VRL offers a wide

range of data-specific functions that map directly to the desired use cases. The VRL

compiler also performs multiple compile-time checks for the provided code to ensure that

30

it is correct and does not contain any unhandled errors. As the main purpose is to process

the nginx logs which have the same format all the time, the remap transform function

could be used with regex (regular expression) specific rules for proper separation and

aggregation of the log’s fields.

Nginx provides two main types of logs: access and error logs, therefore two main regex

rules should be used to process them separately due to different formats. Access and error

logs must be separated before the regex processing steps, it can be implemented with filter

transformation function which should check for a log’s severity field options and forward

each log entry to the desired point. Main remap function should also remove unused fields

and unnest additional syslog fields as they have more information about the tenant and

source of the log entry to put them together with main syslog message field.

The last step is to forward all processed logs entries to the Loki instance. This task can be

done with Loki sink module which also supports TLS protocol and Syslog source module.

Loki labels could be set up manually or be taken from each syslog entry automatically.

31

To accomplish the tasks the following ansible configuration template was written:

[sources.syslog]

type = "syslog"

mode = "tcp"

address = "0.0.0.0:{{ vector_port }}"

tls.enabled = true

tls.crt_file = "/etc/vector/certs/vector.crt"

tls.key_file = "/etc/vector/certs/vector.key"

tls.ca_file = "/etc/vector/certs/ca.crt"

tls.verify_certificate = true

tls.verify_hostname = true

Figure 9. Vector syslog source

Syslog source collects all the logs going from outside to the specified port.

[transforms.nginx_filtered]

type = "filter"

inputs = ["syslog"]

condition = '.appname == "nginx"'

[transforms.nginx_access_filtered]

type = "filter"

inputs = ["nginx_filtered"]

condition = '.severity == "info"'

[transforms.nginx_err_filtered]

type = "filter"

inputs = ["nginx_filtered"]

condition = '.severity == "err"'

Figure 10. Vector filters

Logs are being filtered by application name and Nginx log types. This is made to avoid

parsing unwanted logs going with wrong syntax or from incorrect application.

32

[transforms.nginx_access_processed]

inputs = ["nginx_access_filtered"]

type = "remap"

source = '''

.message = parse_regex!(.message, r'^(?P<source_ip>\d+\.\d+\.\d+\.\d+) \-
(?P<user>-|[a-z_][a-z0-9_]{0,30}) \[(?P<log_timestamp>[^]]+)]
"(?P<method>GET|POST|HEAD|PUT|DELETE|CONNECT|OPTIONS|TRACE|PATCH)
(?P<request_uri>/[^\s]*) (?P<http_version>HTTP/\d\.\d)" (?P<status_code>\d{3})
(?P<body_bytes_sent>\d+) "(?P<server>[^\s]+)" "(?P<user_agent>[^"]+)"
"(?P<forward_for>[^"]+)" "(?P<request_id>[a-z0-9]+)" "(?P<ssl_protocol>[^\s]+)"
"(?P<ssl_cipher>[^\s]+)" "(?P<upstream_addr>[^\s]+)"
"(?P<upstream_resp_time>[^\s]+)" "(?P<upstream_status>[^\s]+)"$')

.customer_name = get!(value: ."additional@0", path: ["customer_name"])

.sensor_name = get!(value: ."additional@0", path: ["sensor_name"])

.cloud_provider = get!(value: ."additional@0", path: ["cloud_provider"])

.log_timestamp = to_timestamp!(get!(value: .message, path: ["log_timestamp"]))

.int_status_code = to_int!(get!(value: .message, path: ["status_code"]))

if .int_status_code >= 500 && .int_status_code < 600 {

 .level = "critical"

} else if .int_status_code >= 400 && .int_status_code < 500 {

 .level = "error"

} else if .int_status_code >= 300 && .int_status_code < 400 {

 .level = "warning"

} else {

 .level = "info"

}

.additionals = {"log_timestamp": .log_timestamp, "type": "access",
"customer_name": .customer_name, "sensor_name": .sensor_name, "cloud_provider":
.cloud_provider, "level": .level}

. = merge(.message, .additionals)

'''

Figure 11. Vector Nginx access log transform

On the transform module logs are being parsed by specific regex rule and some

additional fields are added. Access logs does not have any log level by default;

therefore, it is going to be added by checking the HTTP response codes.

33

[transforms.nginx_error_processed]

inputs = ["nginx_err_filtered"]

type = "remap"

source = '''

.message = parse_regex!(.message, r'^(?P<log_timestamp>.+) \[(?P<level>\w+)]
(?P<pid>\d+#\d+): *(?P<tid>\d+) (?P<cid_message>[^,]+), client:
(?P<client_ip>\d+\.\d+\.\d+\.\d+), server: (?P<server>[^,]+)(?:, request:
"(?P<method>GET|POST|HEAD|PUT|DELETE|CONNECT|OPTIONS|TRACE|PATCH)
(?P<request_uri>/[^\s]+) (?P<http_version>HTTP/\d\.\d)")?(?:, upstream:
"(?P<upstream_url>[^"]+)")?(?:, host: "(?P<host>[^"]+)")?(?:, refferer:
"(?P<refferer>[^"]+)")?$')

.customer_name = get!(value: ."additional@0", path: ["customer_name"])

.sensor_name = get!(value: ."additional@0", path: ["sensor_name"])

.cloud_provider = get!(value: ."additional@0", path: ["cloud_provider"])

.log_timestamp = to_timestamp!(replace!(get!(value: .message, path:
["log_timestamp"]), "/", "-"))

.additionals = {"log_timestamp": .log_timestamp, "type": "error", "customer_name":

.customer_name, "sensor_name": .sensor_name, "cloud_provider": .cloud_provider}

. = merge(.message, .additionals)

'''

Figure 12. Vector Nginx error log transform

[sinks.loki]

type = "loki"

inputs = ["nginx_access_processed", "nginx_error_processed"]

endpoint = "https://loki.threatx.internal:{{ loki_port }}"

encoding.codec = "json"

tls.crt_file = "/etc/vector/certs/loki.crt"

tls.key_file = "/etc/vector/certs/loki.key"

tls.ca_file = "/etc/vector/certs/ca.crt"

tls.verify_certificate = true

tls.verify_hostname = true

healthcheck.enabled = false

[sinks.loki.labels]

service = "sensor"

app = "nginx"

type = "{{ type }}"

customer_name = "{{ customer_name }}"

server = "{{ server }}"

sensor_name = "{{ sensor_name }}"

Figure 13. Vector Loki sink

Loki sink module sends logs next to the Loki host, providing required headers.

34

The provided configuration uses multiple filter functions to ensure that logs are going

from Nginx and to separate them before processing with regex function. The filters and

regex rules were tested multiple times with a lot of different kinds of logs, the code was

optimized and all the found issues were solved to parse all the correct log records

properly. Incorrect log entries are being skipped as they do not contain any useful

information.

The configuration was written with help of official Vector documentation and tested with

VRL Playground as it has specific regex syntax which cannot be properly tested with

common tools like regex101 or RegExr.

5.6 Tool Set

As mentioned before the internal tool set should be used to forward logs from sensor

instances to Vector host. Tools are integrated with all the production and development

systems through a set of internal jump hosts which provide SSH tunnels to allow secure

connection to remote and internal resources for management and debugging purposes.

This channel can be used for sending the logs from Nginx on the sensors to Vector.

Currently log collection can be triggered only manually and all the logs are saved to the

directory on the local machine of the tool user, therefore this function can be reused to

forward logs back to the jump host and to the Vector instance. The new function should

send logs as syslog messages to the Vector using TLS protocol for encryption, so the

additional Python library was used: “rfc5424-logging-handler”.

https://github.com/jobec/rfc5424-logging-handler

35

The following class was written to provide log forwarder functionality:

import logging

from socket import SOCK_STREAM

from rfc5424logging import Rfc5424SysLogHandler

class VectorLogsSender:

 def __init__(self, address: tuple, utf8: bool = False, enterprise_id: str =
"0"):

 self.address = address

 self.utf8 = utf8

 self.enterprise_id = enterprise_id

 self.logger = logging.getLogger('nginx')

 self.handler = Rfc5424SysLogHandler(

 address=self.address,

 msg_as_utf8=self.utf8,

 enterprise_id=self.enterprise_id,

 socktype=SOCK_STREAM,

 tls_enable=True,

 tls_verify=True,

 tls_client_cert="/vector.crt",

 tls_client_key="/vector.key"

)

 self.logger.addHandler(self.handler)

 def send_logs(self, log_type: str, log_list: list, extra: dict):

 for log in log_list:

 if log_type == "error":

 self.logger.setLevel(logging.ERROR)

 self.logger.error("%s", log, extra=extra)

 else:

 self.logger.setLevel(logging.INFO)

 self.logger.info("%s", log, extra=extra)

Figure 14. Vector Python class code

36

Additional function was added to tool set to provide new command for sending logs to

the Vector instance:

for sensor_name in sensor:

 selected_sensor = sensorops.find_one_sensor(sensor_name)

 if not selected_sensor:

 logger.warn(f"Sensor was not found: {sensor_name}")

 continue

 sensor_instance = SensorConnFactory().create_sensor(

 selected_sensor, ctx.tty_jump)

 with console.status(f"Fetching contents of log file '{rfile}' from
{sensor_name}."):

 try:

 for log_list_gen in sensor_instance.get_logs(rfile):

 logs_list = log_list_gen.split("\n")

 customer_name = selected_sensor.get("customer_name")

 cloud_provider = selected_sensor.get("cloud_provider")

 extra_info = {

 "structured_data": {

 "additional": {

 "sensor_name": sensor_name,

 "customer_name": customer_name,

 "cloud_provider": cloud_provider

 }

 }

 }

 vector = VectorLogsSender(('localhost', 9000))

 vector.send_logs(log_type, logs_list, extra_info)

 except Exception as err:

 logger.warn(err.__str__())

 logger.debug("Error", exc_info=err)

 finally:

 logger.info(f"Output has been sent.")

Figure 15. Tool set Python code snippet

In this example the localhost port is forwarded by another internal function to the Vector

host located behind the jump host.

37

5.7 Grafana and Loki

Loki does not require any specific configuration to work with Vector, therefore the typical

“local” configuration example was used with some changes to allow TLS and to increase

performance of the Loki instance. As the current implementation does not have any

external DB (Database) like Cassandra or AWS S3 to use and 24h logs period is enough,

the TSDB (Time Series Database) as a new database option introduced in Loki version

2.8 option is used to store data locally with “filesystem” object storage without any

additional dependencies. [19]

Also, some values of variables like “frontend.max_outstanding_per_tenant” and

“query_scheduler.max_outstanding_requests_per_tenant” were increased to avoid “too

many outstanding requests” issue which could appear when Grafana dashboard generates

too many queries with data panels.

38

Two separate Grafana dashboards were created to provide all the essential information

about logs and allow to examine in a better way:

Figure 16. Grafana dashboard for Nginx access logs

39

Figure 17. Grafana dashboard for Nginx error logs

40

As TLS certificates are used, the Grafana Loki data source was configured with additional

Auth parameters enables and TLS/SSL (Secure Sockets Layer) Auth Details provided

with certificates, keys, and ServerName of the Loki host.

Figure 18. Grafana Loki data source settings

41

6 Review of the implemented setup

The implemented setup consists of three hosts based on Digital Ocean droplets service.

Loki and Vector hosts are deployed using developed Terraform and Ansible playbooks,

Grafana is standalone host as it does not require any specific changes and the internal

Grafana host can be used instead.

Vector and Loki hosts are running docker containers with corresponding images and

specific Jinja2 configuration templates provided by Ansible.

Figure 19. Implemented setup scheme

42

7 Conclusion

The main goal of this thesis was to find and build a proper logging solution for Company

X. By analyzing available options and conducting experiments to find the most suitable

solution, the author deems that this goal has been met. The author has fulfilled all the

requirements and implemented the working solution using the testing environment. The

solution was successfully integrated with existing tools and can already be used by an

SOC team to improve their services quality. Some parts and principles of the created

solution can be reused by other individuals or companies with similar environments to

implement logging solutions reusing the existing tools.

Limitations of this research are related with the development and implementation of new

features; the following factors limited the author’s scope of work:

• Agreements: Company X has hierarchical structure as any other company, and it

means that any significant changes, like changing the Sensor image, can’t be made

without any agreement on multiple levels like software developers and

infrastructure engineers. This slowed down the whole process of implementation

and significantly narrowed the variety of available options to and how to

implement.

• Testing: Testing is an important phase of the implementation of any new solution,

and it should be done properly to avoid any further problems like incompatibility

with the existing environment.

• New tools: The author did not have much experience with tools like Vector, Loki,

Digital Ocean, and Terraform, therefore the author had to learn from scratch how

these tools work and how to configure them to make the solution work.

Future work in this topic can be focused on providing a more comprehensive view of

the Sensors behavior and allow SOC team to investigate problems even faster. Proposed

improvements are listed as follows:

• Move from Digital Ocean to production AWS hosts

43

• Implement high availability options for AWS installation using the Consul or ECS

(Elastic Container Service) tools

• Add Vector as collector to each Sensor image to collect logs directly in real-time

without any additional triggers from SOC team members

• Add more and improve existing Grafana dashboards

44

References

[1] A. Deveriya, "Using Syslog," in Network Administrators Survival Guide , Cisco,

2005, pp. 181-223.

[2] Nginx, "What Is NGINX?," [Online]. Available:

https://www.nginx.com/resources/glossary/nginx/. [Accessed 18 April 2023].

[3] D. Tiede, "Big-Data Solutions for Manufacturing Health Monitoring and Log

Analytics," 23 August 2022. [Online]. Available: https://d-

nb.info/1272863476/34. [Accessed 19 April 2023].

[4] Oracle, "High Availability Overview and Best Practices," March 2023. [Online].

Available: https://docs.oracle.com/en/database/oracle/oracle-

database/19/haovw/high-availability-overview-and-best-practices.pdf. [Accessed

18 April 2023].

[5] D. Manoor, "AWS or DigitalOcean - Which cloud platform is the best fit for

you?," DigitalOcean, 8 December 2022. [Online]. Available:

https://www.digitalocean.com/blog/aws-vs-digitalocean-cloud-platform.

[Accessed 18 April 2023].

[6] J. D. Mooney, "Developing Portable Software," [Online]. Available:

https://link.springer.com/content/pdf/10.1007/1-4020-8159-6_3.pdf. [Accessed 18

April 2023].

[7] K. Morris, Infrastructure as Code: Dynamic Systems for the Cloud Age, O’Reilly

Media, Inc., 2021.

[8] HashiCorp, "What is Terraform?," [Online]. Available:

https://developer.hashicorp.com/terraform/intro. [Accessed 18 April 2023].

[9] Red Hat, "Ansible vs. Terraform, clarified," 28 September 2022. [Online].

Available: https://www.redhat.com/en/topics/automation/ansible-vs-terraform.

[Accessed 18 April 2023].

[10] A. I. C. S. S. Steve Strutt, "End-to-End Application Provisioning with Ansible and

Terraform," IBM, 21 November 2018. [Online]. Available:

https://www.ibm.com/cloud/blog/end-to-end-application-provisioning-with-

ansible-and-terraform. [Accessed 18 April 2023].

[11] Vector, "Deployment," [Online]. Available:

https://vector.dev/docs/setup/deployment/. [Accessed 18 April 2023].

[12] E. R. Ajay Gupta, "Who is the winner — Comparing Vector, Fluent Bit, Fluentd

performance," IBM Cloud, 9 September 2021. [Online]. Available:

https://medium.com/ibm-cloud/log-collectors-performance-benchmarking-

8c5218a08fea. [Accessed 18 April 2023].

[13] Vector, "Vector. Comparisons: Performance," [Online]. Available:

https://github.com/vectordotdev/vector#performance. [Accessed 18 April 2023].

[14] СберМегаМаркет, "Как мы искали свой Vector в построении

высоконагруженной системы логирования," 1 November 2022. [Online].

Available: https://habr.com/ru/companies/sbermegamarket/articles/696844/.

[Accessed 18 April 2023].

45

[15] Vector, "Adaptive request concurrency (ARC)," [Online]. Available:

https://vector.dev/docs/about/under-the-hood/networking/arc/. [Accessed 18 April

2023].

[16] J. Beckers, "Python rfc5424 syslog logging handler," 2020. [Online]. Available:

https://rfc5424-logging-handler.readthedocs.io/en/latest/. [Accessed 18 April

2023].

[17] M. K. A. I. S. Cheshire, "Multicast DNS," February 2013. [Online]. Available:

https://www.rfc-editor.org/rfc/rfc6762#appendix-G.

[18] Ansible, "Terraform Provider for Ansible," [Online]. Available:

https://github.com/ansible/terraform-provider-ansible. [Accessed 18 April 2023].

[19] G. L. Team, "Grafana Loki 2.8 release: TSDB GA, LogQL enhancements, and a

third target for scalable mode," 6 April 2023. [Online]. Available:

https://grafana.com/blog/2023/04/06/grafana-loki-2.8-release-tsdb-ga-logql-

enhancements-and-a-third-target-for-scalable-mode/. [Accessed 18 April 2023].

46

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Nikita Ratškov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Centralized Logging System for a Multi-Tenant Environment”, supervised by

Mohammad Tariq Meeran

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

21.04.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

