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1.  Reasons for choosing the topic 

This topic was chosen to support the mission of the European Green Deal which was 

approved in 2020. Additionally, the current energy crisis in Europe brought about by the 

Russion Federation aggression has also necessitated the creation of methods to reduce 

energy consumption. HVAC systems currently use up to 40% of the energy supplied to 

building as they currently work on schedule and not as required by the indoor human 

needs. Running building amenities according to the estimation of occupants in building 

will greatly reduce energy consumption. The reason for this work is to apply my interest 

in data analysis and machine learning to help reduce energy wastage and run building 

facilities optimally. 

 

2. Thesis objective 

The aim of this thesis is to develop an AI model with the best accuracy to predict 

occupancy level in building using already available environmental sensors in buildings 

thus reducing energy consumption while providing the required Indoor Air Quality (IAQ) 

for the comfort of building occupants. 

 

3. List of sub-questions: 

List 3-4 specific research goals that you intend to achieve or find and answer to. 

• What environmental sensor data is required to estimate occupancy with highest 

accuracy? 

• How does algorithm type affect accuracy of estimation model? 

• How does ventilation flow rate and volume of room affect occupancy 

estimation? 

 

4. Basic data: 

The data for this work will be provided by the thesis supervisor 

 

5. Research methods 

This thesis work will use python for exploratory data analysis. The data will first be pre-

processed to normalize the data and account for certain lags. The data condition will be 

a deciding factor on whether to roll data. Next, the clustering model will be developed 

using DBSCAN and K-Means. This model will be developed for different building types 

which include Mall, Kindergarten and Senior School building types. The results will be 

analyzed to understand how each sensor type affects the model accuracy.  



 

 

Then finally, analysis will be carried out to estimate the possibility of using the same 

estimation model for different building types to access how much additional actions or 

fine-tuning is needed to apply it. 

 

6. Graphical material 

Algorithm blocks will be provided to visualise how the algorithms works. Tables and 

graphs of the various comparison and results will also be provided to further buttress 

the result of the work. 

 

7. Thesis structure 

This thesis report is organized into eight chapters.  

Chapter 1 explains the thesis' goals in general terms and gives an introduction. There 

is an explanation of the problem description and the tasks required to accomplish those 

goals. 

Chapter 2 presents an overview of relevant literature. It covers two main methods of 

occupancy estimation and explains why ML techniques are widely adopted and adopted 

in this work. It also explains the various data acquisition methods, their advantages, 

and disadvantages. It also highlights the ML method to be used in this work. 

Chapter 3 describes the Data acquisition, preprocessing and analysis methods used. 

Chapter 4 discusses the development and analysis of the model using various metrics 

for example accuracy, RMSE, specificity, etc. 

Chapter 5 provides ideas on future research works and recommendations based on the 

findings of the study.  

Chapters 6 provides ideas on future research works and recommendations based on the 

findings of the study in Estonian 

Chapter 7 lists the references used in this study. 

Chapter 8 lists the appendices 
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1. INTRODUCTION 

 

Buildings play a significant role in human daily lives because we spend the majority of our 

time inside of them [1].  They include residential and commercial structures, workplaces, 

libraries, shopping centers, hospitals, schools, and other public buildings. It is necessary 

to use electricity-powered utilities such as lighting, heating, ventilation, etc. while 

occupying these buildings. According to data from the U.S. Department of Energy, HVAC 

account for 35% to 45% of all maintenance costs in a building [2].  In the EU, HVAC 

accounts for 38% of energy use in buildings according to the European commission 

website. To keep these structures habitable, HVAC systems are a necessity in public 

buildings. Even on weekends and holidays when the buildings are empty and do not require 

as much ventilation as when they are inhabited to capacity, these HVAC systems are 

operated at full capacity.  

The advancement of technology has facilitated the collection of a large amount of data in 

various fields, including the field of building automation. With the increasing focus on 

energy conservation and building efficiency, many researchers have keyed into the 

application of machine learning techniques in building automation. One of the key 

challenges in building automation is to estimate the occupancy of a room accurately.  

Traditionally, occupancy estimation has been performed using motion sensors or manual 

counting. However, these methods are not always reliable and carry along many 

inaccuracies. Furthermore, the use of cameras for occupancy estimation raises privacy 

concerns. As a result, there has been a growing interest in the use of environmental 

sensors for occupancy estimation. 

Environmental sensors can measure various parameters such as temperature, humidity, 

and CO2 levels, which are affected by the presence of occupants in a room. Machine 

learning algorithms can then be used to analyze these sensor readings and estimate the 

occupancy of the room. This approach has several advantages over traditional methods, 

including its non-intrusive nature, low cost, and ease of installation. 
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1.1 Problem statement 
 

DCV aims to reduce the amount of heating and cooling required by buildings by altering 

the ventilation rates according to occupancy levels. These systems generally depend on 

the concentration of selected markers and results in less energy consumption without 

affecting the acceptable IAQ [3]. To this end, it is essential to accurately determine the 

occupancy levels in a space to properly implement DCV. Estimating occupancy using 

counting gates is expensive to deploy at room level inside a whole building [4],  and hence 

the goal of this thesis is to develop an AI model system that can operate on already 

installed equipment in buildings to reduce energy consumption by estimating or predicting 

the occupancy level at a specific moment and operating energy systems based on that 

knowledge which can then be used in BMS and BIM services for building.  

This study attempts to investigate solutions to assist the present energy crisis, especially 

in the EU due to the conflict, which has made it imperative to explore strategies to reduce 

energy consumption in buildings without incurring additional costs due to the installation 

of new infrastructure. To achieve this goal, accurate and reliable occupancy estimation 

methods are required for building automation. However, traditional methods such as 

motion detection or door sensors have limitations in terms of accuracy and practicality. 

This study proposes a new method for occupancy estimation using environmental sensors, 

specifically temperature, and CO2 sensors. The objective is to develop machine learning 

algorithms that can analyze sensor readings and accurately predict room occupancy. The 

study aims to evaluate the performance of the proposed method using real-world data 

collected from several buildings. The outcome of this study will contribute to the 

development of more accurate and reliable occupancy estimation methods for building 

automation, leading to increased energy efficiency, reduced environmental impact, and 

improved comfort for building occupants. 
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1.3 Description of task 
 

The list of tasks that will be done during this study includes: 

I. Overview of supporting literature on data that correlates with occupancy counts and 

use of environmental sensors for estimating occupancy count. 

II. Data pre-processing to clean the data to increase overall productivity and allow for 

the highest quality information of models 

III. Model creation using data clustering 

IV. Analysis of models created 

V. Validation of models using building types. 

 

 

 

1.4 Out of scope of this work 
 

While the proposed topic was motivated by an interest in data collection, data analysis, 

data science, and energy price reduction, this work does not focus on the practical 

implementation of the proposed algorithm. The hardware application of the proposed 

algorithm is not within the scope of this thesis.  

This work does not aim to develop or implement the sensors, or the sensor network 

required for occupancy estimation, or to for example, implement the model to an HVAC 

system in the building. Instead, the focus is on analyzing and building models that can be 

provided to construction companies to be integrated into building information modeling 

(BIM) and building management systems (BMS) for large buildings. The goal of this study 

is not to provide hardware solutions, but rather to investigate how data affects the model 

and what combination of data is best suited for a particular circumstance. The study also 

aims to identify the achievable results given a set of data. 
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1.5 Thesis structure 
 

This thesis report is organized into eight chapters.  

Chapter 1 explains the thesis' goals in general terms and gives an introduction. There is 

an explanation of the problem description and the tasks required to accomplish those goals. 

Chapter 2 presents an overview of relevant literature. It covers two main methods of 

occupancy estimation and explains why ML techniques are widely adopted and adopted in 

this work. It also explains the various data acquisition methods, their advantages, and 

disadvantages. It also highlights the ML method to be used in this work. 

Chapter 3 describes the Data acquisition, preprocessing and analysis methods used. 

Chapter 4 discusses the development of the ML models and analysis of the model using 

CO2 mass balance equation. 

Chapter 5 provides ideas on future research works and recommendations based on the 

findings of the study.  

Chapters 6 provides a summary of the thesis. 

Chapter 7 lists the references used in this study. 
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2. THEORETICAL BASIS 

2.1 Background of work and literature review 
 

This section provides an overview of relevant literature on the prediction of occupancy for 

the reduction of energy consumption in buildings. The terms "occupancy" and "occupant 

behavior" refer to the presence of people inside structures and their active engagement 

with various building systems, including lighting, heating, cooling, ventilation, window 

coverings, plugs, etc. [5]. Occupancy information is vital in the design, operation, and 

energy efficiency of buildings. Occupancy information may be used in pattern identification, 

behavior prediction, sensing and tracking, occupancy detection, and quantitative 

prediction. First, the mass balance equation method for occupancy estimation will be 

discussed. The shortfall of this method of occupancy estimation will be mentioned. Second, 

the use of ML techniques as an alternative will be considered. Finally, different data 

acquisition methods for model creation, their advantages and disadvantages and some 

metrics for model accuracy estimation will be discussed. 

 

 

 

2.2 Traditional techniques for occupancy estimation 
 

The traditional techniques for estimating occupancy in smart buildings typically rely on 

motion sensors. These sensors detect movement within a certain range and assume that 

any movement corresponds to the presence of a person. However, there are limitations to 

this approach. For example, if a person is stationary or moves slowly, the sensors may not 

detect their presence, leading to an underestimation of occupancy. On the other hand, if 

there are objects or pets that move within the range of the sensors, they may be 

mistakenly identified as people, leading to an overestimation of occupancy.  

The use of opportunistic sensor data, specifically motion sensors installed by security 

companies, to infer the number of residents in a house and their identities [6]. And as 

explained previously, the model showed some inaccuracies The authors then explored the 

possibility of using machine learning algorithms to discriminate movement trajectories of 

different occupants to identify the current occupants based on anonymous motion events. 
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2.3 Environmental sensors data as a means of occupancy 

estimation 

 

To implement DCV, it is necessary to accurately determine the occupancy of a space, and 

this can be achieved by processing data from a plethora of sources including cameras, gas 

sensors, Wi-Fi, CO2 sensors, Temperature sensors, etc. Cost factors and privacy concerns 

have led to the widespread usage of CO2 sensors. The foundation for employing CO2 for 

occupancy estimation is based on well-quantified principles of human physiology. All 

humans exhale CO2 at a consistent rate based on occupant age and activity level while 

engaged in similar levels of activity [7]. 

According to earlier research, some environmental sensors exhibit a significant correlation 

between their values and building occupancy rates. The viability and possibility of using 

specific sensor data and analysis techniques for occupancy prediction were examined in 

[8]. The authors applied environmental sensors to office buildings for occupancy estimation 

at the Robert L. Preger Intelligent Workplace (IW) at Carnegie Mellon University. They 

created a comprehensive, all-encompassing environmental sensing testbed that included 

distributed sensors for a range of environmental parameters like CO2, carbon monoxide 

(CO), total volatile organic compounds (TVOC), small particulates (PM2,5), acoustics, 

illumination, motion, temperature, and relative humidity.  According to their findings, there 

was a strong correlation between occupant count and CO2 and acoustic parameters. 

However, difficulties can occur when using acoustics because of the impact of sound from 

neighboring offices. Environmental sensors, including luminance, temperature, relative 

humidity (RH), motions, CO2 concentration, power consumption, door and window 

positions, and acoustic pressure from microphone sensors were used in [4] to collect data 

to estimate occupancy.  

It was discovered that door opening contacts, motion (PIR) sensors, power consumption 

sensors, CO2 sensors, a microphone, and power consumption sensors had the strongest 

correlations with occupancy. Estimation of occupancy form environmental data could be 

done using the mass balance method, machine learning method, etc. This chapter 

discusses mass balance and Machine learning methods.  
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2.4 Indoor CO2 concentration standards and guidelines 
 

Indoor CO2 levels can pose a threat to human health well before they reach 5.000 ppm. As 

a result, various standards and guidelines have been put in place to ensure that indoor air 

quality remains within acceptable limits. REHVA has established guidelines related to indoor 

CO2 levels in various types of buildings, including schools, offices, and residential buildings 

[9]. The recommended CO2 levels in these guidelines vary depending on the specific 

building type and occupancy. For example, in office buildings, REHVA recommends that 

CO2 levels should not exceed 1.000 ppm above outdoor levels, and that ventilation rates 

should be sufficient to maintain CO2 levels below this threshold. In classrooms and other 

educational buildings, REHVA recommends a maximum CO2 level of 1,500 ppm, while in 

residential buildings, the recommended maximum CO2 level is 1,200 ppm. 

 

 

 

2.5 Quantitative occupancy prediction 
 

Occupancy prediction can be classified under detection or estimations. Occupancy 

detection involves detecting the presence or absence in a space while occupancy prediction 

is about estimating the number of occupants in a space. This research focuses on 

occupancy estimation to reduce energy consumption. In the work [5], a correlation 

between CO2 concentration and occupancy was investigated using a synthetic variable 

defined as the volume available per person. They opined that data on CO2 levels has 

throughout time shown relationships with several factors, including occupancy profile, since 

CO2 levels rise proportionally to the level of activity because of metabolic activities.  

To quantify CO2 concentrations in enclosed environments, defining a few numerical details 

is crucial. In businesses and learning environments like schools and colleges, a level of 

600-1.000 ppm is deemed ideal.  

Physical and statistical models were employed in [10] to predict the occupancy counts in 

a high-volume lecture theatre. They collected 6189 datasets spread across a four-month 

period and used a PTZ camera to obtain ground truth by recording images at 5-minute 

intervals. They used 3 CO2 sensors spread throughout the room to collect data at 5-minute 

intervals and took an average of it to account for brief increases in CO2 brought on by 

people breathing directly on the sensors. The physical model utilized the fully mixed 

dynamic mass balance model is given in eq. (2.1). 
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                                𝑉 .  
𝑑𝐶𝑂2,𝑖𝑛

𝑑𝑡
 =  𝜆 𝜐  ∙  𝐶𝑂2,𝑜𝑢𝑡  +  𝑅 −  𝜆 𝜐  ∙  𝐶𝑂2,𝑖𝑛                              (2.1) 

Where CO2,in - indoor CO2 concentration in the LT, ppm/106, 

          CO2,out - outdoor CO2 concentration, ppm/106, 

          λν - AER of the LT,h-1,  

          R - rate of CO2 being generated within the LT, Lmin-1, 

          V - volume of the LT, m3. 

One significant flaw in this approach is that both models experience residual CO2 

concentration after people have left the room. This can be mitigated by coupling a CO2 

sensor with, for example, a PIR sensor. 

 

 

 

2.6 CO2 mass balance method for occupancy estimation 
 

This estimate is based on a model of the dynamics of CO2 gas inside a well-mixed 

environment, with the assumption that the air mass in the environment is constant and 

the concentration distribution in the environment is spatially uniform. The work [7] gives 

the following mass balance equation to describe the flow of gas in an enclosed space 

described by Figure 2.1: 

 

 

Figure 2.1 Hypothetical indoor space [7] 
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                                                    VĊ𝑡 = -Q(𝐶𝑡-C0) + 𝑐𝑁                                     (2.1) 

The unknowns that will be estimated are to be the number of occupants N and the airflow 

rate Q. For this work, mass, M will be replaced with volume, V. The eq (2.2) results from 

integrating this equation and presuming there is not already a gas source in the space: 

                                             𝐶𝑡 = 𝐶0 +  (
𝑐𝑁

𝑄
) (1 − 𝑒

−
𝑡𝑄

𝑉 )                                  (2.2) 

Where Ct - CO2 concentration in the space at a particular time t, mgm-3, 

          C0 - CO2 concentration in the space at a particular time t = 0, mgm-3, 

          c - CO2 generation rate per person in the space, mgh-1, 

          N - number of people in the space at time t, 

          Q - volumetric flow rate of the ventilation unit, m3/h  

          t - time under consideration, h) 

          V - volume of the building or space being considered, m3 

Note: 

                 Mgm-3 = 0.0409 * ppm * CO2 molar weight (28.01)                    (2.3) 

 

 

Theoretical CO2 mass balance equation-based techniques given above are effective at 

forecasting occupant counts in the order of tens, but they require the user to submit 

numerous details about the observed rooms, such as volume and air flow rate, or the 

results of air flow meters [11]. The main flaw of this method is that not all parameters can 

always be measured or obtained in buildings. Most buildings do, however, include 

environmental sensors that can be used in conjunction with other techniques, such Machine 

Learning (ML) techniques, which are covered below, to predict occupancy. 

 

 

 

 

 

 

 



26 

2.7 Machine learning methods for occupancy estimation 
 

Computer systems use algorithms and statistical models to carry out certain tasks without 

being explicitly programmed. This process is known as Machine Learning (ML) and is also 

a subset of Artificial Intelligence (AI). A machine learning algorithm is a computer 

procedure that uses input data to complete an intended goal without being explicitly 

programmed to do so. These algorithms are, in a way, "soft programmed" in that they 

automatically change or adjust their design because of repetition to get better and better 

at carrying out the desired task. Training is the process of adaptation, when samples of 

the input data are given along with the intended results. The algorithm is then set up in 

the best possible way so that it can provide the desired result when given the training data 

as well as generalize to create the desired result from fresh, previously unexplored data. 

The "learning" component of machine learning is this training. The training does not have 

to be restricted to a first adaptation over a set period. A smart algorithm can engage in 

"lifelong" learning as it analyses fresh data and learns from its errors, just like humans can 

[12].  

Many of the applications that we use every day have learning algorithms [13]. As shown 

in Figure 2.2, ML algorithms can be classified into various classes. The authors of [14] 

proposes a new approach to estimating occupancy in smart buildings using CO2 

measurements. The authors argue that traditional occupancy estimation techniques, such 

as motion sensors, are limited and can be inaccurate. In contrast, the authors propose a 

machine learning-based approach that uses CO2 levels as a proxy for occupancy 

estimation. The idea behind this approach is that when people occupy a room, they exhale 

CO2, which increases the concentration of CO2 in the air.  

By measuring the concentration of CO2, the occupancy of the room can be estimated. The 

authors collected CO2 and occupancy data in real buildings and used it to train machine 

learning models. The models were then tested on data collected from other buildings to 

evaluate their accuracy. The advantage of this approach is that it is not affected by 

motionless or slow-moving occupants, and it can distinguish between people and other 

objects that do not emit CO2. 
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Figure 2.2 ML classification 

 

 

 

2.7.1 Supervised Learning 

 

Supervised Machine Learning is the pursuit of algorithms that draw broad hypotheses from 

instances supplied externally, and then forecast instances in the future [15]. In this type 

of ML technique, the machine is trained using "labeled" training data, and then they make 

predictions about the outcome using that data. "Labeled data" refers to input data that has 

already been given the correct output.  

In supervised learning, the training data provided to the computers acts as the supervisor, 

teaching them how to accurately predict the output in a manner similar to how a student 

learns with a teacher. The supervised learning method involves giving the ML model the 

right input and output data. A supervised learning method looks for a mapping function to 

connect the input variable (x) with the output variable (y). Following the completion of the 

training phase, the model is evaluated using test data (a subset of the training set), and it 

then makes output predictions. 
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2.7.2 Unsupervised Learning 
 

In unsupervised learning, algorithms are used to find patterns in data sets which have data 

points that are neither categorized nor assigned labels. Thus, without any outside 

assistance, the algorithms are free to classify, label, and organize the data points inside 

the data sets. The model does not require supervision from the users. In other words, the 

learning algorithm is not provided any labels, therefore it is left to its own devices to 

identify structure in the input collection. Unsupervised learning is when an AI system 

groups unsorted data based on similarities and differences even if no categories are given. 

Finding hidden and intriguing patterns in unlabeled data is its primary objective [16]. The 

four classes of unsupervised learning are: Clustering, Association, Anomaly detection, and 

Auto-encoders. This work focuses on clustering. A typical Machine Learning process can be 

diagrammatically represented as shown in Figure 2.3. As it relates to this work, ML 

algorithms have a series of applications in building management system field as can be 

seen from Figure 2.4. 

 

Figure 2.3 Flowchart of a typical ML process [17] 
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Figure 2.4 ML application as discussed in this chapter [17] 

 

 

 



30 

2.8 Data Acquisition methods for occupancy prediction 

using Machine Learning models 
 

The environment has the power to improve or worsen people's quality of life [17]. The 

building industry has benefited from the continued advancements of AI and ML for smart 

buildings focusing on efficiency, thermal comfort, health, and productivity. These 

technologies are used in "smart" buildings to automate activities like lighting, HVAC, and 

security [18]. Due to their capacity to recognize patterns in data, machine learning 

algorithms have become effective tools for occupancy prediction. Wi-Fi, video, and 

environmental sensor data, as well as other forms of data, can all be utilized to estimate 

occupancy using machine learning algorithms. By utilizing the fact that occupancy patterns 

are frequently connected to changes in certain environmental parameters, it is possible, 

for instance, to use environmental sensor data such as CO2 and temperature to anticipate 

occupancy. Video data can be used to forecast occupancy by recognizing the presence of 

individuals in the visual area, while Wi-Fi data can be used to predict occupancy by 

recording the movement patterns of people. 

This section aims to provide an overview of the various data acquisition techniques for 

occupancy prediction using machine learning applications. We will discuss the advantages 

and limitations of different types of data sources and Machine Learning techniques for 

occupancy prediction. Energy prediction, Electricity demand prediction, Energy 

management and Fault detection are a few of the ways in which AI has been adapted in 

the built environment sector.  

 

 

2.8.1 Using WI-FI data 
 

The capacity to collect fine-grained human activities and the ubiquity of Wi-Fi networks 

have made occupancy estimation using Wi-Fi data a viable method in recent years. There 

are several theories on which this method works.  

Firstly, because Wi-Fi signals are weakened by objects, such as people, Wi-Fi data can be 

used to estimate occupancy. This implies that alterations in the Wi-Fi access point signal 

intensity can be utilized to deduce the presence of people nearby.  

 



31 

Wi-Fi signals can also be used to determine users' locations, which can provide more details 

to the occupancy estimation process. Another theory is the fact that the number of people 

connected to the Wi-Fi network of a building can be counted which can give an estimate of 

the number of people in a building at a particular instance. This information can be used 

to train a ML model to predict occupancy at for energy reduction models. To train a 

classifier, for instance, to discriminate between signal patterns pertaining to empty and 

occupied locations, supervised learning techniques can be utilized. On the other hand, 

unsupervised learning methods can be used to cluster signal patterns and identify 

occupancy patterns. The authors of [19] applied Wi-Fi probe technology set to 30 seconds 

interval to collect Wi-Fi data and fused it with environmental sensor data (indoor air 

temperature, RH, and CO2 concentration) to predict occupancy level using BP based ANN 

(with 3 hidden layers), SVM (with ε = 0.2) and K-NN (with k= 15) ML algorithms. The 

fusion was done using time label and ground truth was acquired using two overhead 

cameras installed to record the entrance and exit events of occupants and the occupant 

number was then manually counted after the recording. The experiment was conducted in 

a graduate student office inside a building housing academic facilities at City University of 

Hong Kong. Three data groups were used in the study to create three occupancy models, 

one using only environmental parameters (T, RH, and CO2), one using only Wi-Fi data, and 

one utilizing both datasets. The MAE, MAPE, and RMSE indices were used to evaluate the 

occupancy models. They discovered that the ANN-based occupancy model outperforms the 

kNN and SVM models at predicting occupancy, not just when using environmental factors 

alone but also when using environmental parameters and Wi-Fi data together. The SVM 

model performed most effectively with the Wi-Fi data.  

In the work [20], due to added infrastructure drawbacks, a simplistic framework was 

developed. This was based on the use of commodity Wi-Fi to estimate real-time occupancy 

data that can result in a large energy savings in HVAC operation while eliminating privacy 

concerns. The experiment was carried out in a large lecture hall in the Mechanical 

Engineering department at the University of New Mexico for six weeks. They used data 

from a sensor installed on the room door frame that counts the number of people in the 

room (ground truth) and router data that shows the number of people connected to the 

campus network inside the room. The main drawback of this strategy is the employment 

of camera and Wi-Fi technology, which raises privacy issues, as well as the possibility that 

a single person could have multiple wearable devices connected to the Wi-Fi router at a 

particular time giving false information. This method also falls short for this study as 

students in the school are not allowed to use their phones in classes during sessions.  



32 

2.8.2 Using measured vital signs 
 

Previously, many researchers based their theory for thermal comfort prediction on Fanger’s 

PMV model [21]. A ML algorithm was utilized in [22] to forecast residents' thermal comfort 

votes (TCV) and thermal sensation votes (TSV) in fourteen Chinese cities. Sensors were 

used to measure relative humidity, air speed, inside and outdoor air temperature, and 

globe temperature. Thermal comfort (TCV) and thermal sensation (TSV), metabolism, 

gender, BMI, age, climate type, level of clothing, and adaptive control measures such as 

opening windows or doors, using electric heaters, etc., was obtained using paper-based 

surveys. 10.000 dataset was obtained of which 5.512 were obtained in naturally ventilated 

spaces which were all normalized to ensure data accuracy. SVM and BP ANN algorithm was 

used to develop a model to predict TSV and TCV. The experiment revealed that for TCV 

prediction, the combination of indoor and outdoor environmental parameters, personal 

parameters, climatic types, and adaptive control measures revealed best result; while the 

combination of indoor and outdoor environmental parameters, personal parameters, 

climatic types, and adaptive control measures revealed best result for TSV prediction. 

However, Personal characteristics including age, gender, and BMI have little bearing on 

predicting thermal comfort of spaces. ML and IoT-based method as against Fanger’s PMV 

method was used to access thermal comfort management as proposed in [23]. The authors 

used a WSN with various environmental sensors embedded in the wireless node connected 

to a common gateway used to transmit data to backend servers via the internet. A mobile 

app was also developed to track occupant vital signs via wearable devices in real time. The 

backend system was used to manage and analyze data. Thermal comfort modelling was 

carried out using 2 methods which are the white-box ML approaches; Native Bayes, K-NN, 

and decision tree and the black-box ML approaches; occupant dynamics, complex 

relationships, interaction among parameters, and confounding factors using SVM, RF and 

ITCNN. Using the information gathered from 20 students and 10 staff volunteers over a 

three-week period, they first created a simulation environment based on statistical theory. 

The research concluded that ITCNN outperforms the PMV model and the other six 

traditional machine learning techniques in terms of modeling performance. The drawback 

to this method is also privacy as stipulated by GDPR. Collection of data such as age can 

pose serious privacy non-compliance. 
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2.8.3 Using Video camera and motion sensor 
 

Another means of data acquisition for model creation is using motion sensors and video 

cameras. In the work [24], an occupancy prediction model based on real-time occupancy 

data obtained from a wireless sensor network, Smart Camera Occupancy Position 

Estimation System (SCOPES) using the Markov Chain model was proposed. They concluded 

that to save energy, it is important to have real-time data on occupancy which they 

acquired from video data. Their study resulted in an average of 42% annual energy 

savings. The authors of [25] predicted occupancy using indoor data derived from sensors 

for various environmental parameters such as temperature, humidity, CO2, illuminance, 

and motion. In addition to these, a web-based camera was also included in the sensing 

networks to track the exact occupancy in the test space. While the method described was 

found to be effective, there are also concerns about privacy. The building being studied 

mainly houses children, and collecting ground truth data through video surveillance would 

be intrusive and impractical. 

 

 

2.8.4 Using combination sensors 
 

Energy management is crucial for smart buildings and cities since it lowers power usage 

and results in improved energy and cost savings. Different algorithms have been developed 

over time to better manage energy consumption for built environments. The work [26] 

uses a dataset obtained from a nearby airport which contains 35 different variables of 

weather information (temperature, humidity, pressure, wind speed, visibility, and dew 

point), appliance and light energy consumption and temporal data. The dataset was 

recorded for 137 days at 10 minutes intervals. First, the dataset was normalized before 

being used in various configurations to train the model. The AI technique employed was a 

multi-layer feed-forward (MLP) neural network with a ReLU activation function with the 

output layer being the power usage. Various configurations were tested, and the optimum 

model had four hidden layers with 512 neurons per layer. This model had an RMSE of 

66.295%, R2 value of 56.7%, MAE of 29.556 and MAPE of 27.961. 
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In the paper [27], Data was collected from 2015 to 2017 in the Southeast University in 

China. The data was used to develop a model that integrates a SNA with a BN-ANN and 

ANN technique to predict multi-building energy use. ANN of 4 layers having a random 

number of hidden layers and a sigmoid activation function was used to predict energy use. 

It was concluded that the BN-ANN model offered better prediction accuracy compared to 

ANN. In the work [28], a data-driven model of a HVAC thermal comfort-based temperature 

set point control using k-nearest neighbor (KNN) with K=100, random forest (RF) with tree 

depth of 3, and support vector machine (SVM) with a degree of correctness C = 1, was 

developed. Eight features were extracted from the dataset which included the average of 

three heights' air temperature (°C), outdoor average min/max relative humidity on the 

day of survey (%), Average metabolic rate of subject (met), Relative humidity (%), 

outdoor average of min/max air temperature on day of survey (°C), Clothing plus 

upholstery insulation (clo), average of three heights' air speed (m/s), and Average of three 

heights' mean radiant temperature (°C). They used KNN, SVM and RF to classify the data 

and adopted a Q-learning controller algorithm as the temperature set point controller. The 

Q-learning algorithm is a reinforcement learning algorithm. Algorithms for reinforcement 

learning develop their own autonomous responses to their surroundings. Its agent 

attempts to maximize a numerical reward (gained from a correct output) signal through 

trial and error as it learns how to relate situations to actions. In this manner, the algorithm 

develops over time [29]. When there are several distinct types of sensors accessible, this 

strategy can be used. Unfortunately, this isn't often the case in most buildings, particularly 

in offices and schools. This makes it a less than ideal method of gathering data for ML 

model development. 

Various data acquisition means have been employed in research literatures. Table 2.1 lists 

a few data acquisition means as they relate to building automation, their advantages, and 

drawbacks. This work will utilize data from CO2, and temperature sensors as these 

environmental sensors are readily available in buildings by standard and are also non-

intrusive, hence does not pose privacy threat to the students who are children. 
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Table 2.1 Table of data acquisition means showing their pros and cons [29], [30] 

Data acquisition tool Advantages Drawbacks 

PIR 

Easy to deploy. 
 Low cost. 

Non-intrusive. 
Easy detection. 

Unable to detect static state 
multi-occupant situation. 
Limited detection range. 

Ultrasonic 

Detects minor motion. 
Does not require an 
unobstructed line of 

slight. 

High levels of vibration or 
airflow complicates their 

application. 

RFID 
Easy to deploy. 

Real-time response. 

Subject to indoor 
electromagnetic condition. 
Require users to carry a 

card/tag. 

Camera 

High accuracy.  

Missing data entries 
can be handled 
successfully. 

High cost. 

Privacy problems. 
Complex model or algorithm 
required for processing data. 

Temperature, RH, 
CO2 sensor (so 

called 
environmental 

sensors) 

Easy to deploy. 
Low cost. 

Commercially 
available. 

Non-intrusive. 

Stability of the sensor is 

dependent on regular 
calibration. 

Delay problems. 

GPS, Wi-Fi, 
Bluetooth 

Efficient and 
convenient. 

The join point does not match 
the number of occupants. 

It may require other sensors 
for effective occupancy 

detection. 

Privacy concerns. 

Requires a device to be carried 
by the occupant. 

Combination sensor High accuracy. High cost. 

 

 

 

2.9 Clustering as an unsupervised learning algorithm 
 

Clustering, which is an exploratory technique, is used to locate dense groupings of data 

that are more comparable to one another. Quantifying the degree of similarity or 

dissimilarity between observations is necessary for this process. The type of similarity 

metric employed greatly affects the analysis's findings. It has numerous uses in pattern 

identification, picture analysis, consumer analytics, market segmentation, social network 

analysis, and other fields. From airplanes to healthcare and beyond, a wide range of 

businesses use clustering.  
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One of the main benefits of clustering over supervised learning is that it is unsupervised 

learning, meaning that we do not need labeled data for clustering algorithms. This work 

utilizes this learning method due to the absence of output labels. This was done to protect 

the privacy of the residents as our data does not include ground truth or video camera and 

occupancy information. The algorithms utilized in this work for model creation are K-Means, 

GMM and DBSCAN clustering. 

 

 

 

2.9.1 K-means clustering 
 

The K-means algorithm often uses the standard of square error and identifies K clusters in 

accordance with a particular standard [31]. The algorithm's foundation is the internal 

distance minimization (the sum of the distances of the patterns assigned to a cluster to 

the centroid of that cluster). The fundamental principle of K-means clustering is to move 

each point to its new nearest center if the initial clustering is not optimal, update the 

clustering centers by calculating the mean of the member points, and repeat the moving-

and-updating process up until the convergence criteria (such as a predetermined number 

of iterations, a difference in the value of the distortion function) are met [32]. K-means 

algorithm uses a first set of centroids that are chosen at random to serve as the starting 

points for each cluster as it processes the learning data. Iterative computations are then 

performed to optimize the placements of the centroids. It stops developing and enhancing 

clusters when either the centroids have stabilized; their values have not changed, or 

iterations have reached the predetermined number. The K-means clustering technique is 

graphically represented in Figure 2.5 as a flow chart. 
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Figure 2.5 Flowchart of a K-means clustering algorithm 

 

 

2.9.2 DBSCAN clustering 
 

DBSCAN is a clustering algorithm used in unsupervised ML. It is designed to identify 

clusters of data points that are densely packed together in a high-dimensional space. The 

algorithm works by defining a neighborhood around each data point based on a radius, 

called epsilon(ε), and a minimum number of points, called min_samples, that must be 

present in that neighborhood to form a dense region. Points that are not part of any dense 

region are labeled as noise. An advantage of this algorithm is that can be applied to 

datasets that contain noise points because this algorithm is insensitive to noise points. This 

algorithm identifies these noise points and excludes them from clustering results [33]. 

However, it can be sensitive to the choice of hyperparameters mentioned previously, which 

can affect the clustering results. The DBSCAN method should be used to detect correlations 

and structures in data that are challenging to find manually but may be pertinent and 

valuable to identify patterns and forecast trends [34].  
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The algorithm starts by selecting an arbitrary data point and finding all other points that 

are within its epsilon radius. If the number of points in this neighborhood is greater than 

or equal to the minimum sample threshold, then a new cluster is formed. The algorithm 

then continues to explore the points in this cluster, expanding it until all points within the 

cluster have been identified. Once a cluster has been identified, the algorithm moves on to 

the next unexplored data point and repeats the process. Figure 2.6 how this algorithm 

clusters data points.  

In comparison to K-means, DBSCAN is better suited for datasets with complex shapes and 

varying densities, where the number of clusters is not known prior to clustering. It can also 

handle outliers well since it labels them as noise. K-means, on the other hand, is more 

appropriate for datasets with a fixed number of clusters and where the clusters are roughly 

spherical and equally sized as depicted in Figure 2.7.  

 
Figure 2.6 DBSCAN algorithm [35] 

 

 

 

 

 

Figure 2.7 DBSCAN algorithm compared to K-means algorithm [36] 
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3. DATA ACQUISITION 

3.1 Introduction 
 

Data acquisition refers to the process of acquiring data from the environment. The process 

of data acquisition facilitates obtaining specific knowledge about the environment being 

studied [37]. Data collection, cleaning, processing, and transformation into a usable 

version are all steps in the crucial data acquisition process of data analysis and Machine 

learning model creation. Making informed choices requires accurate and reliable data, 

which can only be obtained through high-quality data acquisition. In this part, we describe 

how the temperature, CO2 levels and ventilation consumption dataset from a school in 

Tartu was collected and pre-processed for model creation. We outline the procedures used 

to prepare, process, and convert the data into an analytically usable format. 

  

 

 

3.2 Data source 
 

The data used in this study was obtained from a recently renovated educational building 

in Tartu, Estonia. Ventilation units with balanced air flow and heat recovery systems were 

installed in the building during the renovation. The dataset consisted of: 

•  CO2 sensor data for 57 classes 

• Temperature sensor data for the 57 classes 

• Cumulative ventilation data for 11 ventilation units in the building. 

The period of data collection spanned from 01.09.2020, to 31.01.2022 and the frequency 

of sampling was at 5-minute intervals for 24-hrs per day including weekends and holidays. 

The dataset per class contained 154.885 records. The CO2 levels was measured using 

commercial indoor air quality NDIR sensors SMT-IAQ3 visible in Appendix 1 which has an 

accuracy of +/-30ppm at 25°C and an operating range of 0...2000ppm. According to the 

manual [38], the sensor employs an advanced learning self-calibration feature that takes 

place over the course of eight days. The data used for this work included 3 classes with 

volumes 153 m3, 168 m3 and 200 m3 using ventilations units labelled SV06, SV05 and 

SV07 respectively. 
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3.3 Data cleaning 
 

The first step in data processing was cleaning the data. Data cleaning is one of the most 

important processes in data analysis and the first step in any machine learning endeavor. 

It is a crucial stage in making sure the dataset is free of erroneous data. For the creation 

of high-performing, accurate Machine Learning (ML) applications, the availability of high-

quality data is a requirement. But in practice, data is rarely clean because of erroneous 

inputs from manual data curation or inevitabilities in automated data collection or 

generation processes [39]. Erroneous data can prevent algorithms from finding patterns, 

while cleaned data guarantees consistency in model training for the best outcomes. 

According to recent research by Forbes, data scientists typically spend 80% of project 

effort cleaning data [40]. This demonstrates the value of data cleaning and how time-

consuming it is. Prior to conducting further research, it was necessary to resolve the 

missing values, outliers, and discrepancies in the study's raw data. There was also the 

problem of no noticeable changes in the readings from the CO2 and temperature sensors 

when the building was completely unoccupied, for example, on weekends and vacations, 

as CO2 and temperature are proportionate to human activity in a space. The steps taken 

to clean the data are discussed below. 

 

 

 

3.3.1 Removing missing (null) values 

 

Missing data happens in practically all studies, including those that are carefully planned 

and managed. The statistical power of a study can be decreased by missing data, which 

can also lead to erroneous estimates and inaccurate conclusions [41]. This was the case 

with the data for this study at the initial stage. Missing data can be handled by one of the 

many approaches which include simply omitting those cases which have missing values 

and analyzing the remaining data. This is called listwise or case deletion, it is by far the 

most common approach and is what is used in this study as can be seen from Figure 3.1. 

Another approach to handling missing values is pairwise deletion which involves excluding 

observations that have missing data on any variable involved in an analysis, only for the 

specific pairwise comparisons that are being performed, it is also known as case deletion 

and results in preservation of more information than the former.  
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Mean substitution is a method of handling missing values where the missing data value for 

a variable is replaced with the variable's mean value. The “Regression imputation” method 

handles missing data by estimation. The missing values are estimated by regressing that 

variable on other variables in the dataset that are related to it. The regression model is 

used to predict the missing values based on the values of the other variables. The “last 

observation carried forward” method is another common approach of handling missing data 

in time series data. It involves replacing a missing value with the last observed value. It 

can be done forward or backward. It was also used in this study to fill missing values in 

the ventilation dataset. Mean substitution involves replacing missing values with the mean 

values of a variable in the dataset.  

 

 

Figure 3.1 Raw data with missing values (NaN) which have to be eliminated 

 

Figure 3.2 Resulting data after eliminating missing values using case deletion method 
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3.3.2 Removing weekends and holidays 
 

Since the data was collected over a period of two years, it included weekends and holidays. 

However, due to decreased occupancy levels on weekends and holidays, the CO2 and 

temperature levels were noticeably lower. To remove noise and straight lines from the 

dataset, weekends and holidays were taken out. It is important to remove weekends and 

holidays from the CO2 data when building an ML model to predict occupancy because the 

occupancy patterns on weekends and holidays can be significantly different from those on 

weekdays. We can make sure that the model is trained on data that is typical of weekday 

occupancy patterns, which are probably more regular and predictable, by excluding 

weekends and holidays. This may help increase the model's predicted occupancy's 

accuracy. The visualization shown in Figure 3.3 below supports the claim that CO2 level is 

proportional to occupancy and can be used to predict building occupancy as there is no 

increase in the observed parameters' levels during the weekend where CO2 levels on the 

y-axis remain constant all through the time of the day on the x-axis. 
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Figure 3.3 Noisy and straight plots caused by weekend and holiday data validating the claim of CO2 
level being proportional to occupancy 
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3.3.3 Fixing baselines to accommodate sensor calibration 
 

Fixing the baselines of CO2 data refers to a process involving adjusting the CO2 

concentration measurements to a reference point, often to a value that corresponds to the 

normal or anticipated range of CO2 in the environment. This is done to focus on the more 

significant changes in CO2 levels that signal the occupancy state of the space and to reduce 

the impact of the natural variations in CO2 concentration caused by things like human 

breathing and ventilation. Since occupancy patterns and CO2 levels have a high correlation, 

fixing the baselines of the CO2 data is crucial when utilizing it to estimate occupancy. By 

fixing these baselines, the model will be trained to distinguish between CO2 levels that are 

attributable to occupancy and those that are not. Baselines relate to the CO2 levels when 

the space is empty. Instead of discriminating between increases in CO2 due to occupancy 

and increases due to other factors, the model may learn to forecast occupancy based only 

on CO2 levels if the baselines are not constant. This may result in incorrect predictions and 

a model that is not applicable in real-world situations. By adjusting the baselines, the model 

can be trained to recognize occupancy patterns more accurately, improving estimation 

accuracy. Fixing the baselines, in other words, means reducing the noise in the CO2 data 

brought on by variables unrelated to occupancy, allowing the ML model to concentrate on 

the patterns and trends more pertinent to predicting occupancy. This is frequently 

accomplished by using a statistical filter to eliminate noise or by deducting a baseline value 

from the raw CO2 data. Figures 3.4 and 3.5 show a comparison of the same data before 

and after fixing the baselines accurately. Since the accepted CO2 level for unoccupied 

spaces in 400ppm, this value was used when fixing baselines using a 288-window period 

which corresponds to (24hours * 60min) / 5-minute intervals.  
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Figure 3.4 CO2 level against the time of day plot showing data before fixing CO2 baseline for 

calibration 
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Figure 3.5 CO2 level against the time of day plot showing cleaner and useable data after fixing CO2 
baseline 
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3.3.4 Calculation of Distinct Consumption Data from Cumulative 

Consumption 

 

To accurately match the CO2 data interval, the cumulative ventilation consumption 

statistics were approximated into distinct consumption values per 5-minute interval by 

resampling the 1-hour interval using the mean approach, as shown in Figure 3.6. To 

achieve this, an empty pandas series with a specified data type was created using a 

function that calculated the difference between succeeding values repeatedly in a loop. The 

remaining values were then filled using a backfill technique. The resulting series provided 

a more granular view of the ventilation consumption, allowing for a more precise analysis 

of the relationship between ventilation and indoor air quality. Figure 3.7 displays the final 

outcome of this process. However, future works can explore more sophisticated methods 

of approximating cumulative values and resampling, which could potentially improve the 

accuracy of the analysis. 

 

       

 

      

 

                  (a)                       (b) 

Figure 3.6 Cumulative ventilation consumption data before and after re-sampling. (a) 

shows consumption with 1-hr timestamps and (b) shows the resulting consumption levels 

with 5-minutes timestamps 
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Figure 3.7 Ventilation data after calculating distinct values 

 

 

 

3.3.5 Grouping the CO2 data based on ventilation levels 
 

To gain a better understanding of the ventilation data and extract significant insights, a 

visualization technique was applied. Specifically, the CO2 and temperature levels were 

grouped by week to provide a comprehensive view of the data and allow for the 

identification of weekly patterns in CO2 levels. To further investigate the impact of 

increasing population on CO2 levels, the CO2 data was grouped according to ventilation 

levels, and these grouped weeks were subsequently clustered based on weeks where the 

ventilation was maintained at a specific level. The purpose of this grouping was to generate 

a dataset with sufficient amount of comparable data points that could be utilized for model 

creation, as the quantity of related data points also influences the model's accuracy. 

Through this approach, it was possible to identify CO2 levels at peak occupancy and low 

occupancy using percentiles, providing valuable insights into the relationship between 

ventilation and CO2 levels. 
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3.3.6 Eliminating outliers 
 

Outliers are observations or measurements that are unusually little or large compared to 

the bulk of the observations, and hence are suspicious [42]. They are data points that do 

not fit the series' historical trend or regular pattern of change. These observations are 

troubling because they might not be the result of the process being examined or might not 

accurately represent the trend under observation and as a result, a prediction model may 

learn erroneous information when the data it is fed is contaminated by these aberrant 

values [43]. Even a few outliers can sometimes be enough to skew the results of the group 

by altering the mean performance or by increasing variability unnecessarily.  

In the dataset under consideration, there existed some outliers that needed to be 

eliminated after grouping the data by ventilation levels. A representation of one of the 

outliers available in the dataset is shown in Figures 3.8 and 3.9 before and after outliers 

were eliminated, respectively. 
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Figure 3.8 CO2 data plot including outliers 
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Figure 3.9 CO2 data plot after eliminating outliers 
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4. ANALYSIS AND TEST RESULTS 

4.1 Overview of the analysis 
 

This chapter presents a detailed analysis of the occupancy estimation methods used in this 

study, utilizing the preprocessed data obtained in Chapter 3, and it also describes the 

validation of the applied method. The chapter is structured into three main sections, in 

accordance with the framework established in Chapter 2. The first section provides a 

comprehensive explanation of the method adopted in this study. The second section 

outlines the process of selecting the appropriate machine learning algorithm to be used for 

occupancy estimation based on the selected method. The final section focuses on the 

validation of the methodology using the CO2 mass balance equation for gaseous spaces 

and mixing. Through these sections, this chapter aims to provide a clear and detailed 

understanding of the occupancy estimation methods utilized in this study, and their validity 

in estimating the number of occupants in the selected space. 

 

 

 

4.2 Methodology 
 

The method used in this study is the estimation of occupancy using CO2 and temperature 

data based on the historical energy consumption data for the ventilation unit installed in 

the building. Since the ventilation units only run during a specific time when the building 

is occupied, the main meter installed in the building under consideration can be used to 

confirm that there are occupants there, but this information is insufficient to accurately 

estimate the occupancy level. The historical consumption data can be utilized in such a 

way that we take into account days when the units were working at the same power level, 

keeping in mind that if the unit works at the same level, we can then analyze the build-up 

of CO2, keeping in mind that the more people present, the higher the CO2, and these can 

be clustered together as opposed to using CO2 information for various times when the 

ventilation units work at different power levels. When air is pumped into the space and 

removed at different rates, we cannot precisely say that it is fully occupied at a certain CO2 

level and group them together. This presumption is only valid if the air is entering and 

leaving the space at the same rate for all levels of CO2.  
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This method can then be verified by utilizing the CO2 mass balance equation to determine 

the population at a specific moment and demonstrating how full occupancy for one flow 

rate differs from that at another. Three factors led to the choice of this approach. These 

are: 

• CO2 and temperature sensors are readily available in buildings and hence no extra 

amenities will need to be installed which will increase the cost for all schools in the 

building under consideration. Every classroom for students and teachers has been 

fitted with CO2 and Temperature sensors. 

• The privacy concerns attached to obtaining ground truth with other known methods. 

As the occupants of the building in question are underaged children, care must be 

taken when trying to obtain ground truth for validation of any methodology adopted 

for occupancy estimation. 

• Clusterization Unsupervised ML algorithms due to the type and quantity of data. A 

cluster is a set of core samples that are close to each other (measured by some 

distance metrics) and a set of non-core samples close by that are not considered 

core samples themselves. The goal of clusterization is to identify patterns or 

similarities in the data without any prior knowledge or labelling of the data. 

Clustering algorithms usually use distance or similarity measures to group data 

points together based on their features or attributes. The goal of classification is to 

learn a model that can accurately predict the label or class of new data points based 

on the training data. The clusterization algorithms sampled in this study include K-

means, GMM and DBSCAN. 

 

 

4.2.1 Grouping based on ventilation consumption level 
 

As explained in Section 3.3.5, the preprocessed CO2 and Temperature data was grouped 

based on the ventilation unit consumption level. At a certain energy consumption level, the 

power and flowrate are the same and the clustering can then be carried out. The Figure 

4.1 shows the grouping of the three ventilation units under consideration using their energy 

consumption data to show the levels at which the unit was working during the data 

collection period.  

This grouping what then used to group the CO2 and Temperature data of these days 

together. The x-axis shows the hours for one week. 0 to 24 for a 24-hr period for 5 days 

(Monday, Tuesday, Wednesday, Thursday, and Friday) as seen below.  
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This represents one week data on the x-axis and consumption data on the y-axis. On weeks 

where the units work at the same level, the CO2 and Temperature data was grouped 

together to make a dataset. For example weeks 20_42, 20_43, 20_44, etc, were grouped 

together for ventilation unit SV05. The weeks are labelled year_week number since there 

are 52 weeks in the year.  

Upon grouping, the dataset with enough datapoint to be fed into the into a ML algorithm 

was selected. This was only 1 dataset per class as shown from Figure 4.2 which shows a 

dataset with enough datapoint suitable for ML as seen in and one dataset with very few 

datapoint as seen in Figure 4.3. The units have a layout in Appendix 2 and are labelled as 

follows: 

• Class 1 uses SV06 

• Class 2 uses SV05 

• Class 3 uses SV07 
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Figure 4.1 Ventilation consumption levels per week for the three Ventilation units under consideration 
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Figure 4.2 Grouped data with required datapoints for ML 
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Figure 4.3 Grouped data with insufficient datapoint  
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4.3 Selected ML algorithm 
 

In the absence of ground truth, the ML algorithm to be used will be an unsupervised 

learning method for reasons explained in Section 2.7.2. Three algorithms were 

implemented for all 3 classes under consideration and the best algorithm that properly 

clusters the data was selected. The correct number of clusters for the data was arrived at 

using the elbow method. Figure 4.4 shows the elbow method applied to each useable 

dataset for all three classes under consideration. In the Elbow method, the number of 

clusters (K) is varied, then the WCSS is calculated for each value of K. The plot of the 

WCSS with the K value resembles an elbow. The idea is that, as the WCSS value drops, 

the number of clusters rises. When the graph is examined, an elbow is observed due to 

the rapid change between WCSS and K. At a point, the graph moves parallel to the x-axis. 

The ideal K value is the one that corresponds to this point [44]. Figure 4.4 shows this 

representation. From Figure 4.5, the ideal number of clusters for all dataset under 

consideration is three (3) as indicated by the arrow. The clusters will be labelled as “Low 

occupancy”, “Medium occupancy”, and “Full occupancy”. 

 

Figure 4.4 Sample elbow plot [45] 
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Figure 4.5 Elbow plots for this work’s dataset with point of inflection of “3” 

 

Figures 4.6 and 4.7 depict the daily and weekly fluctuations in CO2 level, with each class 

session lasting 45 minutes and starting at 8:00 am. These fluctuations are reflected in the 

rise and fall of the plot for the first 45 minutes of each day, providing a visual 

representation of occupancy level as students enter and leave the classroom. 
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Figure 4.6 Daily plot for CO2 fluctuations 
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Figure 4.7 Weekly plot for CO2 fluctuations 

 

 

 

4.3.1 DBSCAN method  

 

This method is explained in Section 2.9.2. For this method, two parameters are required 

which are the epsilon and minimum number of samples. These parameters are: 

• Epsilon (eps) which denotes the maximum distance between any two data points in 

a cluster. If there is a distance between two points that is less than or equal to 

epsilon, the algorithm considers them to be in the same cluster. The degree of 

granularity at which the clusters are produced depends on the value of epsilon. 

Smaller, more compact clusters will arise from a low value of epsilon, whereas 

bigger, more dispersed clusters will result from a high number. This was decided 

upon as 0.1 based on the number of required clusters which is 3. 

• Minimum samples which refer to the bare minimum number of data points 

necessary to create a dense zone. The minimum number of neighboring points that 

must exist for a point to be a core point is determined by this value and is referred 

to as “min_samples” in DBSCAN. For this work, a min_sample of 10 was used.  
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This method however performed poorly for the dataset. Figure 4.8 shows that the algorithm 

clustered one data point with majority of the data. Several reasons could account for this 

behavior. Reasons such as uneven cluster density, insufficient data, Noise in the date, etc. 

(a) 

 

(b) 

 

(c) 

 

 
Figure 4.8 DBSCAN cluster for three classes. (a) Class 1, (b) Class 2 and (c) Class 3.  
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4.3.2 GMM method  

 

The objective of GMM is to determine the underlying clusters in the data by estimating the 

Gaussian distributions' parameters. Each data point in a GMM is considered to belong to 

one of many Gaussian distributions, and the probability density function of the mixture 

model determines which Gaussian distribution each point belongs to. In comparison to 

other clustering algorithms like K-means or DBSCAN, GMM has the advantage of being 

able to model more complicated cluster structures and find clusters with different densities. 

GMM does, however, have certain drawbacks as well which includes its inability to perform 

well for high-dimensional data and the fact that it is computationally more expensive than 

k-means. Figure 4.9 shows that this method also performed quite poorly for the dataset. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.9 GMM cluster for 3 classes. (a) Class 1, (b) Class 2 and (c) Class 3 
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4.3.3 K-means method  

 

This method is explained in Section 2.9.1. The only parameter required by this algorithm 

is the number of clusters which in the case of this study is 3. Figure 4.10 shows that this 

method performed best in clustering all the dataset and analyzing the clusters revealed 

the below results for the classes: 

• As depicted in Figure 4.10 (a), CO2 levels below 535ppm were clustered as low 

occupancy, CO2 levels between 535ppm and 780ppm were clustered as medium 

occupancy and CO2 levels above 780ppm were clustered as full occupancy for class 1. 

• As depicted in Figure 4.10 (b), CO2 levels below 445ppm were clustered as low 

occupancy, CO2 levels between 445ppm and 535ppm were clustered as medium 

occupancy and CO2 levels above 535ppm were clustered as full occupancy for Class 2. 

• As depicted in Figure 4.10 (b), CO2 levels below 550ppm were clustered as low 

occupancy, CO2 levels between 550ppm and 785ppm were clustered as medium 

occupancy and CO2 levels above 785ppm were clustered as full occupancy for Class 3. 

These clusters exhibit varying levels for the three classes due to the differences in their 

respective areas, and hence volumes. As the area of a space increases, the diffusion of 

CO2 gases into the surrounding air improves, resulting in lower measured CO2 levels by 

the sensor. Consequently, a smaller class with fewer occupants may have a higher CO2 

level compared to a larger class with more occupants. However, it is important to note that 

higher CO2 levels in a smaller class do not necessarily indicate higher occupancy. The CO2 

level in a space is influenced by two factors: the volume of the space and the ventilation 

flow rate. In the subsequent sections, both of these parameters will be utilized to validate 

the accuracy of the occupancy estimation method employed in this study.  
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(a) 

 

(b) 

 

(c) 

 

Figure 4.10 K-means cluster for 3 classes. (a) Class 1, (b) Class 2, (c) Class 3 
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4.4 Validation of the methodology using CO2 mass balance 

equation for mixing in gaseous spaces 
 

This method has been introduced in Section 2.6. The authors of [46] describes the dynamic 

method for detecting the actual occupancy in indoor spaces by measuring the indoor and 

outdoor CO2 concentration and flow rate of ventilated spaces. The authors describe the 

parameters that affect ventilated spaces as seen in Figure 4.11 where ν is the volumetric 

flow rate (m3/s) at which the air enters into the space from the ventilation units, Vs is the 

volume (m3) of supply air in the space, Cs is the CO2 concentration (ppm) in supply air (if 

any), N is the number of occupants in the space, Crtn is the CO2 concentration (ppm) of the 

return air or outside air and CR is the CO2 concentration (ppm) in the space. 

 

 

Figure 4.11 Parameters for a ventilated space [46] 

 

 

 

The authors in [46] describe a CO2-based occupancy detection method which aims to 

estimate the number of people in a room based on the measured CO2 concentration. This 

method is a refined version of the traditional mass balance method, which is based on the 

principle that the CO2 concentration in a room is directly proportional to the number of 

people in the room. It does this by using a dynamic model of the indoor air quality in the 

room, which considers the sources and sinks of CO2 in the room, as well as the transport 

of CO2 in the room due to air currents and mixing. The equations described by this author 

are however very complex and require a lot of unavailable parameters.  
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This problem was eliminated by the study in [7] where an equation was developed to 

exactly calculate the number of occupants in a space given the CO2 level and other 

parameters. This equation is listed in eq (2.2) of this work. The following assumptions are 

valid for the equation: 

• The CO2 removal rate from the space was not taken into consideration in the model.  

• The volume of air in the space is constant. 

• The concentration of CO2 in the air is uniform and well mixed within the space over 

time 

• There is no significant source or sink of CO2 within the space, other than the 

occupants' respiration and the ventilation system's intake and exhaust 

• The ventilation rate is constant and uniform throughout the space, with no short-

circuiting or dead zones 

• The occupancy level is constant over the time period being analyzed 

• There is no significant air exchange between the space and adjacent spaces or the 

outdoor environment 

From eq. (2.2), the number of occupants N can be calculated as shown in eq. (4.1) 

                                                𝑁 =
𝑄 (𝐶𝑡 − 𝐶0)

𝑐 (1 − 𝑒 
(−

𝑄𝑡
𝑉

)
)

                                             (4.1) 

For this study, c, the CO2 generation rate per person was chosen as 0.0055L/s 

(39.718,8mg/h) which is an average of the values found in [47] for classrooms since 

student age in the building varies. The following sub-sections will illustrate how variations 

in the power level and flow rate of the ventilation unit can impact the number of occupants 

for the same CO2 level, demonstrating that a full occupancy for one ventilation level does 

not equate to a full occupancy for another ventilation level. Hence, the feasibility of using 

electricity consumption level data to cluster ventilation levels is demonstrated. For all 

classes, we use a sample curve in Figure 4.12 for validation. The assumption is that every 

student is already in the class when classes start. 
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From the ventilation units’ datasheet in appendix 3, the Specific Fan Power (SFP) is of 

importance for this calculation as it is a measure of the energy efficiency of the ventilation 

system in question. It is defined as the power required by the ventilation fan to move a 

unit of air mass through the system. The units have 2 fans, the exhaust fan and the inlet 

fan, and these will be taken into consideration during the calculations. The following 

equations will be used: 

                                              𝑃𝑀𝑎𝑥,𝐹𝑎𝑛 = 𝑆𝐹𝑃𝑓𝑎𝑛  ∗  𝑄𝑀𝑎𝑥,𝐹𝑎𝑛                               (4.2) 

                                                  𝑃𝐴𝐻𝑈 =  𝑃𝑓𝑎𝑛 ∗ 2                                           (4.3) 

                                                  𝑃 =  𝑅𝑓𝑎𝑛 ∗  𝑄3                                              (4.4) 

Where P - power of the unit under investigation, kW, 

          Q - flow rate of the unit under investigation, m3s-1, 

          PMax,Fan - maximum fan power for the ventilation, kW, 

          QMax,Fan - maximum fan flow rate for the ventilation, m3s-1, 

          PAHU is the power of the AHU, kW, 

          Rfan is the flow resistance.  

Flow resistance is a measure of the force required to move a fluid through a pipe or duct. 
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Figure 4.12 Sample plot for validation 
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4.4.1 Low occupancy 

For the plot in Figure 4.12, the red marker represents low occupancy interval during which 

time 12:30 to 13:12 was selected along the x-axis and CO2 level between 420 ppm and 

445 ppm on the y-axis. 

 

 

For class 1. This class uses ventilation unit SV06. From Appendix 3, for SV06 SFPfan = 

1,25 kW/(m3s-1) and Maximum flowrate, Qmax = 2,46 m3s-1.  

Analyzing Figure 4.12 for CO2 values for low occupancy on the y-axis gives values: 

CO2 level at 13:12 from dataset Ct = 445 ppm (509,8 mgm-3), CO2 level at 12:30 from 

dataset C0 = 420 ppm (481,2 mgm-3), Energy consumed in 24 hrs from dataset, E = 38,92 

kWh, Time t = 42 mins (0,7 h), Volume of room = 153,2 m3, CO2 generation rate per 

person c = 0,0055 L s-1 (39.718,8 mgh-1). 

From eq. (4.2), 

𝑃𝐴𝐻𝑈,𝑀𝑎𝑥,𝐹𝑎𝑛 = 1,25 ∗  2,46 = 3 𝑘𝑊 

From eq. (4.3), 

𝑃𝑚𝑎𝑥,𝑓𝑎𝑛 = 3.000 ÷ 2 = 1,5 𝑘𝑊  

From eq. (4.4),  

𝑅𝑓𝑎𝑛 =  
1,5

2,463
=  0,1 𝑘𝑊/(𝑚3𝑠−1)3 

Power consumed for this level, 

𝑃 =  
𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑖𝑚𝑒
=  

38,92

24
= 1,62 𝑘𝑊 

From eq. (4.3), PAHU for this level 

𝑃𝑓𝑎𝑛 = 1,62 ÷ 2 = 0,81 𝑘𝑊 

Flow rate for this level, Q from eq (4.4), 

𝑄 =  √
0,81

0,1

3

= 2 𝑚3𝑠−1 

Q = 2 m3s-1 = 7.200 m3h-1 

Populating eq. (4.1) results in the below 

𝑁 =
7.200(509,8 − 481,2)

39.718,8 (1 − 𝑒
(−

7.200 ∗ 0,7 
153,2

)
)

  

Solving for N gives N ≈ 6 occupants. 
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For class 2. This class uses ventilation unit SV05. From Appendix 3, for SV05 SFPfan = 

1,25 kW/( m3s-1) and Maximum flowrate, Qmax = 2,12 m3s-1.  

Analyzing Figure 4.12 for CO2 values for low occupancy on the y-axis gives values: 

CO2 level at 13:12 from dataset Ct = 445 ppm (509,8 mgm-3), CO2 level at 12:30 from 

dataset C0 = 420 ppm (481,2 mgm-3), Energy consumed in 24 hrs from dataset E = 23,55 

kWh, Time t = 42 mins (0,7 h), Volume of room = 168,2 m3, CO2 generation rate per 

person c = 0,0055 L s-1 (39.718,8 mgh-1). 

From eq. (4.2), 

𝑃𝐴𝐻𝑈,𝑀𝑎𝑥,𝐹𝑎𝑛 = 1,25 ∗  2,12 = 2,65 𝑘𝑊 

From eq. (4.3), 

𝑃𝑚𝑎𝑥,𝑓𝑎𝑛 = 2,65 ÷ 2 = 1,3 𝑘𝑊  

From eq. (4.4),  

𝑅𝑓𝑎𝑛 =  
1,3

2,123
=  0,14 𝑘𝑊/(𝑚3𝑠−1)3 

Power consumed for this level,  

𝑃 =  
𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑖𝑚𝑒
=  

23,55

24
= 0,98 𝑘𝑊 

From eq. (4.3), PAHU for this level 

𝑃𝑓𝑎𝑛 = 0,98 ÷ 2 = 0,49 𝑘𝑊 

Flow rate for this level, Q from eq (4.4), 

𝑄 =  √
0,49

0,14

3

= 1,52 𝑚3𝑠−1 

Q = 1,52 m3s-1 = 5.466 m3h-1 

Populating eq. (4.1) results in the below 

𝑁 =
5.466(509,8 − 481,2)

39.718,8 (1 − 𝑒
(−

5.466 ∗ 0,7 
168,2

)
)

  

Solving for N gives N ≈ 5 occupants. 
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For class 3. This class uses ventilation unit SV07. From Appendix 3, for SV05 SFPfan = 

1,43 kW/(m3s-1) and Maximum flowrate, Qmax = 3,59 m3s-1.  

Analyzing Figure 4.12 for CO2 values for low occupancy on the y-axis gives values: 

CO2 level at 13:12 from dataset Ct = 445 ppm (509,8 mgm-3), CO2 level at 12:30 from 

dataset C0 = 420 ppm (481,2 mgm-3), Energy consumed in 24 hrs from dataset E = 108,03 

kWh, Time t = 42 mins (0,7 h), Volume of room = 200,48 m3, CO2 generation rate per 

person c = 0,0055 L/s (39.718,8 mgh-1). 

From eq. (4.2), 

𝑃𝐴𝐻𝑈,𝑀𝑎𝑥,𝐹𝑎𝑛 = 1,43 ∗  3,59 = 5,13 𝑘𝑊 

From eq. (4.3), 

𝑃𝑚𝑎𝑥,𝑓𝑎𝑛 = 5,13 ÷ 2 = 2,57 𝑘𝑊  

From eq. (4.4),  

𝑅𝑓𝑎𝑛 =  
2,57

3,593
=  0,055 𝑘𝑊/(𝑚3𝑠−1)3 

Power consumed for this level,  

𝑃 =  
𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑖𝑚𝑒
=  

49

24
= 2,0 𝑘𝑊 

From eq. (4.3), PAHU for this level 

𝑃𝑓𝑎𝑛 = 2,0 ÷ 2 = 1,00 𝑘𝑊 

Flow rate for this level, Q from eq (4.4), 

𝑄 =  √
1,00

0,055

3

= 2,60 𝑚3𝑠−1 

Q = 2,60 m3s-1 = 9.466 m3h-1 

Populating eq. (4.1) results in the below 

𝑁 =
9.466(509,8 − 481,2)

39.718,8 (1 − 𝑒
(−

9.466 ∗ 0,7 
200,48

)
)

  

Solving for N gives N ≈ 8 occupants. 
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4.4.2 Medium occupancy  

For the plot in Figure 4.12, the blue marker represents medium occupancy interval during 

which time 12:30 to 13:30 was selected along the x-axis and CO2 level between 420 ppm 

and 520 ppm on the y-axis. 

 

 

For class 1. Analyzing Figure 4.12 for CO2 values on the y-axis for medium occupancy 

gives values: 

CO2 level at 12:30 from dataset Ct = 420 ppm (481,20 mgm-3), CO2 level at 13:30 from 

dataset C0 = 520 ppm (595,70 mgm-3), Time t = 1 h, from Section 4.4.1 flow rate for class 

1, Q = 7.200 m3h-1 

Populating eq. (4.1) results in the below 

𝑁 =
7.200  (595,70 − 481,20 )

39.718,8 (1 − 𝑒
(−

7.200 ∗ 1 
153,2

)
)

  

Solving for N gives N ≈ 21 occupants. 

 

 

For class 2. Analyzing Figure 4.12 for CO2 values on the y-axis for medium occupancy 

gives values: 

CO2 level at 12:30 from dataset Ct = 420 ppm (481,20 mgm-3), CO2 level at 13:30 from 

dataset C0 = 520 ppm (595,70 mgm-3), Time t = 1 h, from Section 4.4.1 flow rate for class 

2, Q = 5.466 m3h-1 

Populating eq. (4.1) results in the below 

𝑁 =
5.466 (595,70 − 481,20 )

39.718,8 (1 − 𝑒
(−

5.466   ∗ 1 
168,2

)
)

  

Solving for N gives N ≈ 15 occupants. 

 

 

For class 3. Analyzing Figure 4.12 for CO2 values on the y-axis for medium occupancy 

gives values: 

CO2 level at 12:30 from dataset Ct = 420 ppm (481,20 mgm-3), CO2 level at 13:30 from 

dataset C0 = 520 ppm (595,70 mgm-3), Time t = 1 h, from Section 4.4.1 flow rate for class 

3, Q = 9.466 m3h-1 
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Populating eq. (4.1) results in the below 

𝑁 =
9.466(595,70 − 481,20 )

39.718,8 (1 − 𝑒
(−

9.466 ∗ 1 
200,48

)
)

  

Solving for N gives N ≈ 27 occupants. 

 

 

4.4.3 High occupancy  

For the plot in Figure 4.12, the magenta marker represents high occupancy interval during 

which time 12:30 to 13:40 was selected along the x-axis and CO2 level between 420 ppm 

and 530 ppm on the y-axis. 

 

 

For class 1. Analyzing Figure 4.12 for CO2 values on the y-axis for high occupancy gives 

values: 

CO2 level at 12:30 from dataset Ct = 420 ppm (481,20 mgm-3), CO2 level at 13:40 from 

dataset C0 = 530 ppm (607.2 mgm-3), Time t = 70 mins (1,2 h), from Section 4.4.1 flow 

rate for class 1, Q = 7.200 m3h-1 

Populating eq. (4.1) results in the below 

𝑁 =
7.200(607.2 −  481,20)

39.718,8 (1 − 𝑒
(−

7.200 ∗ 1,2 
153,2

)
)

  

Solving for N gives N ≈ 23 occupants. 

 

 

For class 2. Analyzing Figure 4.12 for CO2 values on the y-axis for high occupancy gives 

values: 

CO2 level at 12:30 from dataset Ct = 420 ppm (481,20 mgm-3), CO2 level at 13:40 from 

dataset C0 = 530 ppm (607.2 mgm-3), Time t = 70 mins (1,2 h), from Section 4.4.1 flow 

rate for class 2, Q = 5.466 m3h-1 

Populating eq. (4.1) results in the below 

𝑁 =
5.466 (607.2 −  481,20)

39.718,8 (1 − 𝑒
(−

5.466  ∗ 1,2 
168,2

)
)

  

Solving for N gives N ≈ 18 occupants. 
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For class 3. Analyzing Figure 4.12 for CO2 values on the y-axis for high occupancy gives 

values: 

CO2 level at 12:30 from dataset Ct = 420 ppm (481,20 mgm-3), CO2 level at 13:40 from 

dataset C0 = 530 ppm (607.2 mgm-3), Time t = 70 mins (1,2 h), from Section 4.4.1 flow 

rate for class 3, Q = 9.466 m3h-1 

Populating eq. (4.1) results in the below 

𝑁 =
9.466(607.2 −  481,20)

39.718,8 (1 − 𝑒
(−

9.466 ∗ 1,2 
200,48

)
)

  

Solving for N gives N ≈ 30 occupants. 

The findings of this study suggest that the proposed method of estimating occupancy by 

clustering environmental sensor data using historical energy consumption data of the 

ventilation unit and the DBSCAN method is effective. The observed variations in the 

calculated number of occupants irrespective of the same CO2 level provide strong evidence 

to support the reliability and accuracy of the proposed method. Table 4.1 summarizes the 

values calculated for the number of occupants using the eq. (4.1). The occupancy for each 

class is given as low, medium, and high from top to bottom.  

 

Table 4.1 Summary of parameters and occupancy level for each class 

Class Unit Flow rate, Q, m3h-1 Vol of class, m3 Power, P, kW Occupancy 

1 SV06 7.2 153,2 0,8 
6 

21 

23 

2 SV05 5.5 168,2 0,5 
5 

15 

18 

3 SV07 9.5 200,5 1,0 
8 

27 

30 
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5. CONCLUSION AND RECOMMENDATIONS FOR FUTURE 

WORKS 
 

In this work, a review and evaluation of prior research on occupancy estimation was carried 

out, highlighting the strengths and weaknesses of different AI-based methods. The use of 

more recent methods, such as Wi-Fi, wireless sensors, and webcams, combined with AI 

techniques for occupancy studies was also discussed. However, previous literature lacked 

the comparison of different combinations of sensor data and their impact on occupancy 

estimation reduction. This study fills this gap by investigating the use of historical energy 

consumption data and environmental sensor data to estimate occupancy levels. Finally, 

the model was validated using the CO2 mass balance equation. The findings of this study 

have implications for future research and practical applications in building energy 

management systems. 

Based on the findings of this study, the following recommendations for future research on 

occupancy estimation can be made: 

• One promising direction for future research would involve implementing the 

proposed solution for controlling amenities in classrooms. The identified clusters 

can serve as a basis for determining periods of low or no occupancy in the classes. 

This information can be integrated into smart dashboards or systems to notify 

building managers and trigger specific actions based on the occupancy levels. For 

instance, actions such as turning off lights and switches in unoccupied classrooms 

can be automated, leading to significant energy conservation and cost reduction. 

• Furthermore, this solution holds potential for future applications in (DCV) systems, 

leveraging the cluster analysis and CO2 levels. By dynamically adjusting ventilation 

rates based on the identified clusters and CO2 levels, it becomes possible to 

maintain optimal IAQ while simultaneously reducing energy consumption and 

associated expenses. For example, according to EU regulations, indoor CO2 levels 

should not exceed 1000 ppm. However, in class 1, there were recorded CO2 values 

above 1200 ppm, indicating that the ventilation unit was not functioning properly 

as required. The utilization of cluster analysis in this study can be instrumental in 

identifying such deviations and facilitating necessary adjustments to ensure optimal 

IAQ. 
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6. JÄRELDUS JA SOOVITUSED TULEVASTEKS TÖÖDEKS 
 

Käesolevas töös viidi läbi ülevaade ja hindamine varasematest uurimustest seoses 

hõivatuse hindamisega, rõhutades erinevate tehisintellekti meetodite tugevusi ja nõrkusi. 

Arutati ka viimase aja meetodite, nagu Wi-Fi, traadita andurid ja veebikaamerad, 

kasutamist koos tehisintellekti tehnikatega hõivatuse uuringutes. Siiski puudus varasemas 

kirjanduses erinevate andurite andmekombinatsioonide võrdlus ja nende mõju hõivatuse 

hindamisele. Käesolev uuring täidab selle lünga, uurides ajaloolise energiatarbimise 

andmete ja keskkonnaandurite andmete kasutamist hõivatuse taseme hindamiseks. 

Lõpuks valideeriti mudel CO2 massibalansi võrrandiga. Käesoleva uuringu tulemused 

omavad olulisi tagajärgi tulevastele uurimustele ja praktilistele rakendustele hoonete 

energiavalitsemise süsteemides. 

Käesoleva uuringu tulemuste põhjal saab teha järgmised soovitused tulevastele hõivatuse 

hindamise uurimustele: 

• Tulevaste uuringute jaoks pakub üks paljulubav suund lahenduse rakendamine 

klassiruumide haldamiseks. Määratud klastrid saavad olla aluseks perioodide 

tuvastamiseks, mil klassides on madal või puudub hõivatus. See teave saab 

integreerida nutikatesse juhtpaneelidesse või süsteemidesse, et teavitada 

hoonehaldureid ja käivitada konkreetseid tegevusi sõltuvalt hõivatuse tasemest. 

Näiteks saab automatiseerida valguste ja lülitite väljalülitamise tühjades 

klassiruumides, mis toob kaasa olulise energiasäästu ja kulude vähenemise. 

• Lisaks sellele omab see lahendus potentsiaali tulevasteks rakendusteks 

Nõudluspõhise ventilatsiooni (DCV) süsteemides, kasutades ära klastrite analüüsi 

ja CO2 taset. Klastrite ja CO2 taseme põhjal ventilatsioonimäära dünaamiline 

kohandamine võimaldab säilitada optimaalset siseõhu kvaliteeti (IAQ), samal ajal 

vähendades energiatarbimist ja sellega seotud kulusid. Näiteks vastavalt Euroopa 

Liidu seadustele ei tohiks siseruumides CO2 tase ületada 1000 ppm. Siiski, klassis 

1 registreeriti CO2 väärtusi üle 1200 ppm, mis näitab, et ventilatsioonisüsteem ei 

töötanud nõuetekohaselt. Käesoleva uuringu raames läbiviidud klastrianalüüs võib 

olla oluline abivahend selliste kõrvalekallete tuvastamisel ning vajalike muudatuste 

tegemisel optimaalse siseõhu kvaliteedi tagamiseks. See rõhutab klastrianalüüsi 

kasutamise olulisust siseõhu kvaliteedi juhtimisel ja vastavuse tagamisel 

regulatiivsetele standarditele. 
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Appendix 1. Sensor datasheet 
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Appendix 2. Ventilation Layout 
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Appendix 3. Ventilation parameters 
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