TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Grete Ohak 1850921ABB

Hardware and software setup for long term
OCXO output frequency and temperature
measurement

Bachelor's thesis

Supervisor: Erkki Arus
MSc EE

Marten Kask
MSc

Tallinn 2021

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Grete Ohak 1850921ABB

Riist- ja tarkvaralahendus OCXO sageduse ja
temperatuuri pikaajaliseks mootmiseks

Bakalaureusetdo

Juhendaja: Erkki Arus
MSc EE

Marten Kask
MSc

Tallinn 2021

Author’s declaration of originality

I hereby certify that | am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Grete Ohak

17.05.2021

Abstract

In this thesis a measurement system is designed to measure a 10 MHz OCXO output
frequency and temperature on a telecom product continuously for an extended period of
time, up to 24 hours, to observe that there are no sudden frequency deviations. Specific
hardware setup was created and software written to carry out the measurements and store
results. The measured frequency and temperature values, together with a timestamp of
each measurement, are stored in a comma-separated log file. The designed measurement

system is verified functional and able to meet the thesis problem requirements.

This thesis is written in English and is 37 pages long, including 18 chapters and 17

figures.

Annotatsioon

Riist- ja tarkvaralahendus OCXO sageduse ja temperatuuri pikaajaliseks

mootmiseks

Selle t60 eesmérgiks on disainida sageduse ja temperatuuri mdétmise sisteem, mis
mdddaks 10 MHz OCXO véljundsagedust 24 tunni jooksul. Stisteemi abil saab kindlaks
teha, et ei esine méarkimisvaarseid korvalkaldeid 10MHz-st. Selle jaoks pannakse kokku
riistvaraline lahendus ning luuakse programmikood md&tmistulemuste kétte saamiseks
ning salvestamiseks. Sageduse mo&dtmistulemused ei tohiks olla mé6jutatud
temperatuurist, seega tuleb mdota ka OCXO lahedal asuva komponendi temperatuuri
ning tulemused samuti samas failis salvestada. Esialgu saab tulemusi analliusida
manuaalselt, et teada saada, kas loodud lahendus t66tab ja véljundsagedus pisib ette

antud limiitide piires. Kirja on pandud ka véimalikud edasiarendused tulevikuks.

Pohjus selle stisteemi loomiseks on kliendi tdéheldus telekommunikatsioonitoote piiratud
funktsionaalsusest, mis voib olla seotud OCXO véljundsageduse vdimaliku kdikumisega.

Loodud mddétmise susteem on testitud, tdidab oma eesmaérki ning seda on v@imalik

kasutada antud I6putdds késitletud probleemi lahendamiseks.

LOputdd on kirjutatud inglise keeles ning sisaldab teksti 37 lehekdljel, 18 peattkki ja 17
joonist.

List of abbreviations and terms

COM Communication Port

Ccsv Comma-Separated Values

DBB Debug Board

DTP Device Test Platform

DUT Device Under Test

VI Interchangeable Virtual Instruments

LMT Local Maintenance Terminal

OCXO Oven Controlled Oscillator

PC Personal Computer

PCB Printed Circuit Board

PPB Parts Per Billion

PTC Production Test Connector

RS232 Recommended Standard 232 for serial communication
UART Universal Asynchronous Receiver-Transmitter
uUSB Universal Serial Bus

Table of contents

Author’s declaration of OriINAlItycccocviiiiiiiiiiie 3
N 0L = Uod SRR PPROPRRN 4
N 0] 10 - 5] o Lo o PSSO PO PP PRSP 5
List of abbreviations and terMS ..o s 6
TabIE OF CONTENTS ... bbb bbb nre s 7
LISE OF FIQUIES ..ottt bbbt 8
1 (0T L1 T [RSP 9
2 BACKOIOUNG.......oioeiiiic et ettt e e s re e resreesreenee s 10
N o o o [F o RSO PRUR PPN 10
2.2 OCXO ittt ettt bt R n et et et et e nrenreereares 10
2.3 HArAWAIE SELUD ..ottt bbbttt bbb 11
2.4 SOTIWAIE SELUD ©..vveiveeie ettt et et este e e sneenns 13
3 FreqUENCY MEASUIBIMENTviieiiii ettt sttt et e e e nnae e ssneeenneas 15
3.1 MEASUrEMENT BCCUIACYvveuveeureieeiieiee st ettt et nne e 15
3.2 SINGIE MEASUMEIMENT.iitiiiiiiieieie ettt sb e 16
3.3 CoNtINUOUS MEASUFEMENTevvevierieieie sttt reeee et st sbeste e e eseeseesbeseesresneaneas 20
4 Temperature MEASUMEMENTcuuieiiie e esitee e e e e et e e sbe et e e e srbe e s srae e snneeeseees 24
4.1 MeaSUr€MENT ACCUTACYccveerrerrreerneersreesreessreesseessreessessneesseessreennesasneesneesreensens 24
4.2 SINGIE MEASUIEMENT.cuiiiiiieiiite sttt 24
4.3 CONLINUOUS MEASUIEMENTeuviveitesiietesieereesieiestestestestesbesseesee e eeseeseesbesressessennens 26
5 Merging measuremMent dataccceoveiiiieiieie e 28
B ANAIYSIS ...ttt bbb 30
7 Possible future deVelOPMENTSooiiiiiiiiieee s 34
ST 0 11 0T LY PP 35
RETEIBNCES ...ttt ettt b et e et st e e sbe e 36

Appendix 1 — Non-exclusive licence for reproduction and publication of a graduation
LU LS F PSPPSR 37

List of figures

FIGUIE 1. OCXO [2] . eveeveeiteeitieiesieesteete st s e te et e st te e sta e ta et e ta e teasaesnaessaennesneesneennes 10
Figure 2. HardWare SEIUD.........cviiieieeeiie sttt sra e esre e 12
Figure 3. Device Test PIatfOrm.........cooiiiiiiiiieseeese e 13
Figure 4. Driver initialization and COMMUNICALIONc.coveriiieiieiesie e 17
Figure 5. Collecting frequency MeasuremMENtScccvevveieereeieseeseeiesee e esre e 18
Figure 6. Adding measurement results to the list and print out..............ccccooveveiieieennns 18
Figure 7. Parallel running threads ..o 20
Figure 8. Initializing With IV ArIVETcoiiiiiii e 22
Figure 9. Getting measurements and checking if they are validc.ccccoeivieinenninn 23
Figure 10. ComMMANd OULPUL........ccueiieieiie ettt ra e e sre e 25
Figure 11. Getting temperature With Serial POrt ... 26
Figure 12. Getting temperature using COM port and diCtionaryccccecevererereenne. 27
Figure 13. Merging frequency and temperature into CSV file.........c.cccooiiviiciciiens 29
Figure 14. Data in CSV file ..o 30
Figure 15. ProduCt Warm-uUp SAJE.........couerueriirieriiriesieie ettt 31
Figure 16. Frequency and temperature change over 24h ..., 31
Figure 17. Frequency change over 24h with upper and lower limit...............c.c.cccceene. 32

1 Introduction

Most electronics today use crystal oscillators, mainly for microcontroller and processor
clock frequency sources. A crystal oscillator generated output frequency depends on its
temperature. In-order to get a table output frequency, Oven Controlled Oscillators
(OCXO0) are widely used, which automatically stabilize their crystal temperature [1].
However, even stable OCXOs can have output frequency stability issues in certain

scenarios.

The problem of this thesis is that a customer observed performance issues (losing sync

lock) with a telecom product which could be related to OCXO output frequency stability.

The purpose of the thesis is to design a measurement system with which to measure a 10
MHz OCXO output frequency and temperature on a telecom product continuously for an
extended period of time, up to 24 hours and to observe that there are no sudden deviations.
For this a suitable hardware setup should be created and specific software written to carry
out the measurements and store results. The measured frequency and temperature values,
together with a timestamp of each measurement, will be stored in a comma-separated log
file. The results of the measurement shall be manually analysed to see if the designed
solution works for the intended purpose and can be used to detect sudden OCXO output
frequency deviations that exceed the required limits. The thesis also includes
recommendations for possible future developments. Similar works probably have been

done, but they are not available.

2 Background

2.1 Product

The product under investigation is a telecom product that features a 10 MHz OCXO for
generating an internal clock reference. The reference 10 MHz clock is used to generate
custom clock frequencies, for Transport Network and Radio Base Station Network, on
the product. During production testing, it is mandatory to measure the 10 MHz OCXO
output clock, and for this reason the clock output signal is routed to Production Test
Connector (PTC). This is where the clock will be measured from, for the purposes of this

thesis.

2.2 OCXO

The Oven Controlled Crystal Oscillator (OCXO) is a stable frequency generation device
in electronics products [2]. The used quartz crystals have a natural output frequency
dependence to its temperature. However, the temperature inside the product will fluctuate
during its use which can cause frequency shifts. To compensate for temperature changes
and keep the crystal close to constant temperature during use, and thus keep the output
frequency stable, an internal heater together with its control circuit are used [3]. The
OCXO components are housed in a hermetically sealed metal case, that also acts as an

Electro Magnetic shielding. The OCXO is shown in Figure 1.

Figure 1. OCXO [3]

10

The OCXO component used in the product can be from multiple manufacturers and
historically quality issues have been documented internally [4], which could possibly
affect the output frequency stability of the component. In addition, there could be other
issues that could affect the output frequency stability, like the ageing related frequency
jumps that are described here [5]. The previously recorded issues, possible unknowns and
the nature of the failure performance at the customer site are the main reasons for needing
to verify the OCXO component.

2.3 Hardware setup

In order to measure the OCXO frequency stability, the hardware setup as depicted in
Figure 2. Hardware setupFigure 2 was prepared. The setup can be described as in two
parts, the product communication interface and the 10 MHz OCXO output signal

interface.

The product communication interface hardware setup consists of a USB-RS232 adapter
that connects to product Local Maintenance Terminal (LMT) port. The USB-RS232
adapter appears as a Communication port (COM port) in Windows and is used for UART
serial communication with the product processor, running Linux, to send commands and

received results. The commands sent are described in section 4.2.

The 10 MHz OCXO output signal interface consists of a Debug Board (DBB) that is
connected to product PTC. To measure the frequency a Keysight 53230A frequency
counter is used, that is connected to the PC via a USB port. Device Under Test (DUT) is
the telecom product inside which the OCXO is mounted.

11

PC

m USB<->RS232 ||
adapter |

Keysight 53230A

DUT
LMT
PTC

OCXO0 |

Figure 2. Hardware setup

12

2.4 Software setup

Device Test Platform (DTP), in Figure 3 is an automated testing framework used for both
radio and digital products [6]. This platform makes test system development easier by

allowing to re-use already existing code for various hardware operations.

DTP is a cross-platform application, developed using Microsoft C#.

Test Progress Test Execution
. Product Scanner
Dashboard Service
Test Settings
Dashboard Test Framework User ID Card Scanner

Syncronization Service

External Systems

Figure 3. Device Test Platform

13

Test Framework is the core operations handler in the DTP. It exchanges data with all
components of the DTP, processes all the received data and makes decisions. For
example, it identifies the product when it receives product information from the product
scanner, then it can load the correct test files for that product. It also identifies test users

from the information received when the user ID card is scanned.

The Test Settings Dashboard shows the product platform information to the user. The
information displayed includes product name, product revision and product description.

The test and user settings can also be viewed and modified from there.

From the Test Progress Dashboard, the user will be able to view the revisions of the test
files and the status of the running test. The test logs are also printed on this dashboard

while the test runs. The user can abort, block, repeat or re-run tests from this dashboard.

Test Execution Service is the test execution engine that executes all the tests in the loaded
test file.

Synchronization Service supports a two-way communication between the Test
Framework and the external systems, for example, the automated mechanical test fixture.
It translates information into a form that either the Test Framework or the External

Systems can understand.

14

3 Frequency measurement

3.1 Measurement accuracy

The frequency counter works by counting the pulses from the input source and adding up
the value until a predefined period of gate time is reached, after which the value will be
stored to a register and read out. The gate time is based on an internal oscillator which is
the reference against which the measurement is done. The instrument internal oscillator
requires 45min warm-up time, to become stable and accurate [7]. To increase the accuracy
of the frequency counter even further a very accurate rubidium oscillator is used as an
external reference to the frequency counter. The following calculations are based on the
instrument data sheet [8] where an example calculation is given. The values and

calculations used below are for the designed measurement system.
Tss = 20ps
K = 2 (for confidence 95%)
GateTime = 100ms
R =4

_08%XV, 08x50

SR =
tmse 10 % 1079

= 400MV /s

1 1
_ (S00uV2 4 ER V7 (S00uVDZ
E(5V) = SR 200 x 10-6 P8

1 1
14 % (T&+ T2 1,4 x [(20 x 10712)2 + (1,25 x 10712)]2

Random = =
ANAOM ="p "X GateTime 4% 0,1
= 7,01 x 107? parts error
. 10ps 10 x 10712 1
Systematic = = =1 x 10710 parts error

GateTime 0,1

Timebase = Rubidiumyggng + Rubidiumygyp = 1 X 1072 + 0,5 X 1072 = 1,5 x

1079 parts error.

15

Basic Accuracy = £[(K X Random) + Systematic + Timebase]
=2x701x1071)+1x1071%+1,5x107°
= 11,742 X 107 parts error

As result, £1,742 parts error is £1,742 ppb. The limit for frequency deviations was given
as £100ppb, so that small mistake (x1,742ppb) is barely noticeable. It is fine to say that
used frequency counter is trustworthy.

3.2 Single measurement

The Keysight 53230A frequency counter user guide [7] provided instructions and an
example code solution on how to use the instrument for frequency measurement. The
example code contained code for initializing the instrument and carrying out a single
measurement. However, it is important to point out that the example code was too reliant
on the instrument manufacturer software, which is indicated by it using the
Agilent. Ag532xx.Interop library. Having code that is dependant to one company, like in
the current example, is not preferred since in the future there might be need to use the
same code with an instrument from a different company, where this specific library might
not exist, and this would break the code. However, the example code suits well for

understanding the instrument and its operation.

The first measurements were done following the example code used driver initialization

and communication code in Figure 4.

16

Ag532xx driver = null;

// Create driver instance
driver = new Ag532xx();

// Edit resource and options as needed. Resource is ignored if option
Simulate=true

//string resourceDesc = "GPIBO::3::INSTR";
string resourceDesc = "USBO::0x0957::0x1907::MY60020108::0::INSTR";
// resourceDesc = "TCPIPO::<ip or hostname>::inst@::INSTR";

string initOptions = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=, Trace=false, TraceName=c:\\temp\\traceOut";

bool idquery = true;
bool reset = true;

// Initialize the driver. See driver help topic "Initializing the
IVI-COM Driver" for additional information

driver.Initialize(resourceDesc, idquery, reset, initOptions);
Console.WriteLine("Driver Initialized");

Figure 4. Driver initialization and communication

Before doing a measurement, the frequency counter needs to be initialized. Fetch()
method is used to collect all measurement results but the execution will not continue
unless Fetch() method has completed. However, for a 24-hour measurement it is a very
risky design since there is no way to know which of the measurements failed in case of
failure. Also, it will mean loss of all measurement data. The used code is provided in

Figure 5.

17

List<double> measurementResults = new List<double>();

Console.WritelLine("Basic Frequency Measurement \n");
double[] Data;

int Channel = 1;

double Estimate = 1E6;

double Resolution = le-4;
driver.Frequency.Configure(Estimate, Resolution, Channel);
driver.Trigger.Count = 3; //At the moment measures 3 times
driver.Trigger.Delay = 3; //Seconds, time between measures

driver.Trigger.Source =
Agilent.Ag532xx.Interop.Ag532xxTriggerSourceEnum.Ag532xxTriggerSourcel
mmediate;

driver.Trigger.Slope =
Agilent.Ag532xx.Interop.Ag532xxSlopeEnum.Ag532xxSlopePositive;

driver.Measurement.Initiate();

driver.System.WaitForOperationComplete(100000); //Milliseconds, time
when operation finishes anyway

Data = driver.Measurement.Fetch();
int points = Data.length;

Figure 5. Collecting frequency measurements

When Fetch() method has succeeded, then the measured results should be added to a list
so they could be printed out and analysed. This provides an overview of what the

instrument returned. The used code is shown below Figure 6.

Console.Write(" Measurement results: ");
for (int i = @; i < points; i++)

{
measurementResults.Add(Data[i]);
Console.Write("{@};", Data[i]);
//Adding results to the list and printing them
}

Figure 6. Adding measurement results to the list and print out

This method worked and returned the measured frequency results, but there was
minimally a 1 second delay between each measurement. This was however not good

enough to be considered a continuous measurement.

The above discussed solution was not suitable and as discussed, it had multiple problems.
Firstly, the code is tied to a specific Keysight driver and their software library. Secondly,
the Fetch() method was not suitable for 24h measurement since there was possibility of

loosing data in case of any issues. Thirdly, there is no way to stop the Fetch() method

18

execution, in case there should be a need. And finally, how to get the already measured

data out in case of non-completion.

It is possible to stop the measurement using threads, shown in Figure 7, where two threads
would run in parallel. One thread would handle the frequency measurements and the other
waiting for Esc Key. This however was not a suitable solution either, as the
driver.Measurment.Abort() left the frequency counter in a state where a new measurement
was not possible to be started. This meant that, the frequency counter needed to be

restarted after each abort, and this is not a suitable solution.

19

Thread measThread = new Thread(() =>

{
Console.WriteLine("Started measuring, thread ID {0} ...",
Thread.CurrentThread.ManagedThreadId);
Data = driver.Measurement.Fetch();

})s

measThread.IsBackground = true;
measThread.Start();

Console.WritelLine("Press Esc to stop measuring. Thread ID: {@}",
Thread.CurrentThread.ManagedThreadId);

do
{
if (Console.KeyAvailable)
{
if (Console.ReadKey().Key == ConsoleKey.Escape)
{
driver.Measurement.Abort();
Console.WritelLine("Measurement aborted");
break;
}
}
else
{
Thread.Sleep(500);
}
}

while (!measThread.Join(@));
int points = Data.lLength;

Console.Write(" Measurement results: ");
for (int i = @; i < points; i++)

{
measurementResults.Add(Data[i]);
Console.Write("{0};", Data[i]);
//Adding results to the list and printing them
}

Figure 7. Parallel running threads

3.3 Continuous measurement

For a continuous measurement, the code needed to be made less dependent on the
frequency counter software, for which the 11 driver was used. Actually, VI driver is not
a typical driver at all, but rather a set of standardized interfaces which instrument vendors

20

implement in their instrument software. As a result, a client application does not need to
know, or care about, which vendors instrument it is using. The code about IV driver and

initializing is shown below in Figure 8.

const double Attenuation = 1.0D;
const double Impedance = 50.0D;
const int MeasTimeoutMs = 50;

IIviCounter freqCounter = null;

// Assume by default, the test has been succeeded, i.e. all
measurements in the range.

bool testResult = true;

// While we don't have C# wrapper RCM Module for the Frequency Counter
and we use the IVI interfaces and

// counter's COM component directly, the test takes relatively long
time and we don't know how to set

// lease time for COM component's remoting object then we don't use
here Platform's Resource Scheduler to

// instantiate the frequency counter. Instead, we instantiate it
directly from Test Method with help of

// IVI Session Factory and release it when the Test Method finishes.

// Instantiate IVI Session Factory
IIviSessionFactory sessionFactory = new IviSessionFactoryClass();

// Instantiate Frequency Counter.

object freqCounterObj =
sessionFactory.CreateSession(_FreqCounterLogicalName);

freqCounter = freqCounterObj as IIviCounter;

// We need IOResource Descriptor to initialize the Frequency Counter.
We use ConfigStore class from Platform for that

ConfigStore configStore = new ConfigStore(Logger as ILoggerGeneric2);

string ioResourceDescriptor =
configStore.GetHardwareAsset(_ FreqCounterLogicalName);

// Initialize the Frequency Counter
freqCounter.Initialize(ioResourceDescriptor, true, true);

if (DebuggingOutputEnabled)

{
Output.TextOut("Number of channels: {0}", freqCounter.Channels.Count);

}

// We use the first channel.

21

string channelName = freqCounter.Channels.Name[1l];
IIviCounterChannel channel = freqCounter.Channels.Item[channelName];

// Configure the channel

channel.Configure(Impedance,
IviCounterCouplingEnum.IviCounterCouplingAC, Attenuation);

channel.Slope = IviCounterSlopeEnum.IviCounterSlopePositive;

// Configure the frequency

// Get Estimate Frequency.

double estimateFreq = _expectedFreq;
int power = 0;

while (estimateFreq > 10.0d)

{

estimateFreq /= 10.0d;

power++;

¥

estimateFreq = Math.Ceiling(estimateFreq);
estimateFreq = estimateFreq * Math.Pow(10.0d, power);

freqCounter.Frequency.ConfigureManual(channelName, estimateFreq,
_resolution);

freqCounter.Arm.Start.Type =
IviCounterArmTypeEnum.IviCounterArmTypeImmediate;

Figure 8. Initializing with IVI driver

After using VI driver functionality, it became possible to do a continuous measurement

with a do/while cycle. With a do/while cycle it was possible to get 3 measurement results

per second, which was deemed continuous enough for current purposes. Then a

timestamp was added to track the time of each measurement to know later when a possible

deviation occurred. The limit for frequency deviations was given as +100ppb. To easily

observe when the measured result was out of the limits, a check was included for each

measured value and “OUT” written to list. To use different data types in one list, Tuple

list is used. The following Tuple list format is used: timestamp, measured frequency, limit

check. The variable _measTime determines the length of the time to measure, and its

value is given in a parameter file. The code about continuous measuring is shown in

Figure 9.

22

var freqlist = new List<Tuple<string, double, string>>();
DateTime measStartTime = DateTime.Now;

do
{
FlowControl.TestStopButton();
freq = measFunction.Read(MeasTimeoutMs);
// Check if the measured frequency is in range. If not and
_breakOnFirstFailure is set then break the measuring.
// If measurement is out of range, set testResult to false.
Also, output it with Output.TextOutError.
if (freq >= _expectedFreq - (_allowdDeviation * 10) && freq <=
_expectedFreq + (_allowdDeviation * 10))
{
var time = DateTime.Now.ToString("s");
freqlist.Add(new Tuple<string, double, string>(time, freq,
inBorders));
}
else
{
var time = DateTime.Now.ToString("s");
freqlist.Add(new Tuple<string, double, string>(time, freq,
outOfBorders));
if (_breakOnFirstFailure == true)
{
if (DebuggingOutputEnabled) {
Output.TextOut("Measurement failed"); }
testResult = false;
break;
}
}
}

while (DateTime.Now - measStartTime < _measTime);

Figure 9. Getting measurements and checking if they are valid

23

4 Temperature measurement

4.1 Measurement accuracy

The temperature sensor D73002A4 is a high-accuracy remote temperature sensor monitor
which has a built-in local temperature sensor [9]. The D73002A4 is physically located
close to the OCXO. The temperature value used in this thesis is read from the local

temperature sensor of D37002A4 which has the accuracy of +1°C according to datasheet

[9].

4.2 Single measurement

Since OCXO has a temperature dependency, and in-order to rule out any frequency
deviations due to possible temperature fluctuations, the temperature of the product should
also be measured. Since OCXO crystal will be kept at constant 77°C degrees [10] then an
assumption is that this will be according to the specification and would not need to be
measured. The requirement for the thesis assignment states to monitor PCB temperature
sensor D37002A4, which is closest to OCXO, and which should be kept between 45°C-
55°C throughout the measurement process. For this the first task is to be able to read the
temperature value of the D37002A4 temperature sensor, which can be done using an
existing Testbox application. Testbox is a Linux application running on the product, used
for running test related functions. The Testbox application is started using command line
commands (Testbox commands), sent to the product via serial port. The challenge here is
to create the code to send the necessary commands through the test system software to

the product, over the serial port, which is a virtual COM port.

Using a simple Windows form application, it is possible to query info from COM port.
The Testbox command used to read the temperature value from the D37002A4 sensor is
testbox temp_read D37002A4. Response to this command, from the product can be

seen in Figure 10.

24

[SERIAL]: testbox temp_read D37002A4
[SERIAL]: Sensor D37002A4 Temperature (C): 41
[SERIAL]: temp_read :: TESTBOX_PASS
[SERIAL]: [phv]#

Figure 10. Command output

As seen from the response message, it contains other information as well, so it is
necessary to filter out and capture the temperature value we are interested in. Getting the

temperature with COM port is shown in Figure 11.

public partial class Forml : Form

{

SerialPort comport = new SerialPort("COM3", 115200);

public Formi()

{
InitializeComponent();
comport.DataReceived += Comport_DataReceived;
comport.Open();

}

private void Comport_DataReceived(object sender,
SerialDataReceivedEventArgs e)

{

byte[] buf = new byte[comport.ReadBufferSize];

(sender as SerialPort).Read(buf, @, buf.Length);

string str = System.Text.Encoding.UTF8.GetString(buf, o,
buf.Length);

if (str.StartsWith("testbox"))
return;

string[] lines = str.Split(new char[] { "\n' });

if (lines.ElementAt(1).Contains("temp_read ::
TESTBOX_PASS™"))

{
string[] data = lines.ElementAt(0).Split(new char[]

{7 s

25

Console.WriteLine("temp: {@}",
data.ElementAt(1).Trim());

}
}
private void buttonl_Click(object sender, EventArgs e)
{

comport.WriteLine("testbox temp_read D37002A4");
}

private void Forml_FormClosing(object sender,
FormClosingEventArgs e)

{

comport.Close();

Figure 11. Getting the temperature with serial port

4.3 Continuous measurement

As discussed in chapter [3.3] it is already possible to measure the frequency continuously
which was defined as 3 times per second, but temperature reading is also needed to be
made continuous. Since temperature fluctuates very slowly, due to the mass of the metal
case-heatsink of the product, it is enough to read the temperature only once per minute,
and this can be considered continuous. The Testbox command response message filtering
and temperature value capturing are done using a regular expression (Regex). The
timestamps and captured temperature values are stored in Dictionary. The product is
described in the code as DUT. The used code is shown in Figure 12.

private static IDictionary<string, double> measTempList = new
Dictionary<string, double>();

DateTime measStartTime = DateTime.Now;
bool testResult = true;
using (var dutHandle = GetDutCommunicationSession(_comPort))

{
// Set up the DUT communication

Session theDut = SetupDutCommunication(dutHandle);

if (thebDut == null)
{

26

do

}

return MethodResult.Error;

theDut.Clear();
theDut.Timeout = this.Timeout / 1000.0;

//Delay

System.Threading.Thread.Sleep(1000);

// Send the command

string command = "testbox temp_read D37002A4 \n";
theDut.Send(command);

Output.TextOut("CMD: {@}", command.TrimEnd());

string response;
WaitForResponse(theDut, out response);

Regex regexGetTemp = new Regex(@"Temperature.+(\d\d)",
RegexOptions.Multiline | RegexOptions.CultureInvariant);

Match matchTemp = regexGetTemp.Match(response);
int temp = -1;

if (matchTemp.Success)

{
temp = Int32.Parse(matchTemp.Groups[1].Value);

var time = DateTime.Now.ToString("s");
measTempList.Add(time, temp);

if (DebuggingOutputEnabled)

{
Output.TextOut(TextOutColor.Green, "DBG:
lastWaitResult: {@}", this.LastWaitResult);

while (DateTime.Now - measStartTime < _measTime);

Figure 12. Getting the temperature using COM port and dictionary

27

5 Merging measurement data

The frequency values in Tuple list are: DateTime, frequency, inBorders/outOfBorders.
The temperature values in a Dictionary are: DateTime, temperature. A Dictionary was
chosen since it is easy to match frequency and temperature while using DateTime as a
key. The DateTime from Tuple list is used as a key to match the DateTime from
Dictionary, to merge the DateTime, frequency, temperature and inBorders/outOfBorders
as one line. The order of data in the line is such to give a good overview to the user on

what date and time each measurement was done.

DateTime matching is only possible when the frequency measurement class and
temperature measurement class are running in parallel. The command to run the two

classes in parallel is handled by the test system.

When the predefined period for measurement has passed (24h), the measurements need
to be stored from lists to a file. The matching of DateTime-s and sorting the data to a line
is done before writing each line to file. The file format shall be .csv since it is smaller in
size and faster to handle, it is easy to read without formatting and can be imported to MS
Excel for additional analysis. The name and location of the file are handled by the test

system and defined in the parameter list file. All the logic behind is shown in Figure 13.

Writing to file is done in frequency class and this means the Dictionary from the other
class needs to be imported. For this getTemperatureDictionary() method is used. The
value of variable _dumpMeasurements determines if the file shall be created or not, and

it is defined by the input parameter.

28

var measTempList = mComportConnection.getTempetureDictionary();

if (_dumpMeasurements == true)
{
using (StreamWriter writer = new StreamWriter(_measFile, true))
{
for (int i = @; i <= freqlist.Count - 1; i++)
{
var date = freqlist[i].Iteml;
var freqValue = freqlist[i].Item2;
var isInBorder = freqlist[i].Item3;
if (measTempList.ContainsKey(date))
{
writer.WriteLine("{0};{1};{2};{3}", date,
freqValue, measTempList[date], isInBorder);
}
}
}

Figure 13. Merging frequency and temperature into CSV file

29

6 Analysis

The code execution results in a .csv file as shown in Figure 14 with timestamp, measured
frequency in MHz and temperature value in °C. The fourth column in the file is for
marking the measured result as out of the £100ppb deviation limit, in which case there
will be a marking “OUT”. In Figure 14 there are two results with “OUT” which are caused
by low OCXO temperature during its warm-up stage. However, these measured values
show that the code to detect and mark the “OUT” text in case the measurement is out of

the £100ppb deviation limit, works and is detecting and marking the deviations properly.

In the .csv file, the values are separated by semicolons and each row represents one
measurement. The filename is automatically generated and includes the product serial
number for future result tracking, which is blacked out in the Figure 14 below.

[=] 0CX0_Stability_ masmmeyll® 2021-04-24T153926.csv E3
1 2021-04-24T15:39:27;9999997.34281555;29;0UT

2021-04-24T15:
2021-04-24T15:
2021-04-24T15:
2021-04-24T15:
2021-04-24T15:
2021-04-24T15:

39

359:
36G:
35:
36:

39

128,;9999857,
28;99589587,
28;99995997.
29795899597,
29;99990697.
:25;99995057,

3712182;2%; 00T
39808287;25;
426937;29;
4527756:,29;
47631514;25;
5006436;259;

2021-04-24T15:

S5 2021-04-24T15:
10 2021-04-24T15:
2021-04-24T15:
2021-04-24T15:
12 2021-04-24T15:
2021-04-24T15:
15 2021-04-24T15:
16 2021-04-24T15:

36:
39:
39:

30,99599597.
30,99599557.
30,9998857,
39:31,9995597,
39:31,99985897.
39:32;99958597.
39:32,;,99958597.
39:32;9998507,
39:33,9995597.

52408648;25;
54742292;259;
568B86322;259;
59059791;25;
61342514;25;
63416137;25;
65428802;25;
©7468362;259;
©9334258;25;

Figure 14. Data in CSV file

The chosen CSV format made it easy to import the result file to Excel for analysis. After
importing, the measurement data can be filtered and plotted on a graph to show frequency
and temperature change over time. In Figure 15, a graph of the first hour of testing is
shown. The product is at room temperature of 21°C when powered on, but during the
software loading and initialization phase, its temperature rises to about 29-30°C and this
Is what is shown in the first measurement. The Figure 15 shows temperature rise to the

target level of 50°C during which the frequency also stabilizes.

30

60

9595539

50

9995958,5

40

5555558

30

9999957,5

20

9599997

10

9999996,5

TSIOT TZOTPOFT
TS:9T T20TF0'PT
6¥:0T TE0TvOFE
8101 TTOTPOFE
98T T20T'vOFE
S¥91 TZ0TFOPE
POl TZ0TPOPE
Z¥eT T20T'v0Fe
Vo1 T20TF0PE
G6E:OT TZOTVO'VE
8E:9T TZ0TFOFE
9€:91 T20T'vOFT
SE9T TZOTHOPT
PEGT T20Tv0'FE
CEOT TE0TPOFE
TEOT TCOTPOFT
62:91 TZ0TFO'PT
8Z:9T TZOTvO¥E
9Z:9T TTOTPOFE
SZi8T T20T'vOFE
€T:91 T2OTPOPE
TE:9T TTOTPOPE
02:9T TZ0T+0FE
8T:91 T20T'vO¥T
LT:9T TTOTHOPT
ST:9T T20TF0Fe
PT:9T T20T'v0PE
TT:9T TTOTHO'PT
0T8T T20Tv0'FE
80:9T TEOTPOFE
90:9T TZOTPOFT
¥0:9T T20TF0'FE
Z0:9T TE0TvOPE
00:9T TZOTPOFE
6SIST T20T'vO'FE
LS:ST TZOTPOPE
SSIST TZOTVO'FE
E£6:ST TE0TFOFE
TS:ST T20T'v0¥FT
6 ST TT0THO'PT
88T T20Tv0'FE
OF:ST TE0TPOFE
PiST TT0THOPT
VST T20T'vOFE
TSI TE0Cv0ve
GEIST TZOTPOFT

Temperature (°C)

Frequency (Hz)

Figure 15. Product warm-up stage

The purpose of the test is to measure the frequency deviation over the period of 24h after

the product has reached 50°C, which is shown in Figure 16. Here it can be seen that the

temperature fluctuates between 50-51°C while the output frequency is quite stable, but

still showing very minuscule average drift while becoming more stable towards the

second part of the measurement.

21,2

9999998,57000000

8
=]
8
]
5.
&
f
&
@

9999998,56000000

9999998,55500000

49,8

9599958,55000000

49,6

49,4

5955958,54500000

TT¥S9T T20Tv0ee
80'€Z:9T TZOZ'VO'EL
SOESST T20T'vo'Te
COTEST TZ0T'VOTL
0005 %1 TZ02'v0'2E
LSBT TZ0TVOTT
SSILVET TZ0T'Y0'2E
TSOTET TZOT'VOTT
9FSHET TT0T'VO'CT
EFPTTT TZ0T'VOTT
GEEVTT TZOZ'VO'ZT
9ETTTT TZ0E'v0'2L
TETEOT TZ0Z'V0ZT
9¢:0T:0T T20T'VO'CT
6TI6E60 TZOZ'VO'ZT
TT'80'60 T20T¥0'CT
SOILE80 TZOZ'VO'EL
85:C0'80 T20TVO'CT
TSWELD TZ0Z'vOZT
€01 L0 T202Y0'EE
BEIZESO TZ0TVOTT
€ET0'90 TZOZ'VYO'CL
8Z0ESD TLOTVOEL
ETESV0 TZOT'VO'TL
ST:BTW0 TZOT'VO'CL
ETILGE0 TZOTVO'TL
90:9¢:E0 TZ0Z'VO'2L
8SIWCIT0 TZOT'VO'TL
0S'ECIZ0 TZ0Z'Y0'2L
TPZGT0 TZ0T'vOET
TETTTO TTOT'VO'CT
TT0S00 TZOT'VO'TT
TT:6T:00 TTOTVO'CT
6SILPEC TZOZ'YO'TE
LPOTIET TZOEVO'TL
YESKIT T20TVO'TL
6T PTIEC TLOTVO'TL
COEVTE TL0TVO'TE
SPITTC TZ02'V0'T1E
SZ:0V0C T20TVvO'TL
80:60:0C TZOZT'VO'TZ
TSILEBT T20T'VO'TT
9E:90:6T TZOTVO'TT
0ZSEBT TZ0T'VO'TL
SO:w0:8T TZOT'VO'TZ
8SITENT TTOTVO'TT

Temperature (°C)

Frequency (Hz)

Figure 16. Frequency and temperature change over 24h

Then a check on the measured data was done to see its Min and Max deviation, for which

Excel Min and Max functions were used. The values are:

31

Measured Min = 9999998,55404948Hz Measured Max = 9999998,56699854Hz
The calculated £100ppb deviation limits are:
Lower limit (-100ppb) = 9999997,377Hz Upper limit (+100ppb) = 9999999,377Hz

To better visualize the measured frequency deviation, as shown in Figure 16, in relation
to the deviation limits, a graph Figure 17 is presented. From here, it can be seen that the
frequency deviations are barely visible at all, and very far from the limits. This is
however, an expected outcome since the product used was a known good reference

sample.

5599999,40000000
5955555,20000000
9999999,20000000
5599999,10000000
5955555,00000000
9999958,90000000
9999998,80000000
$999998,70000000
9999998,60000000
9999998,50000000
9999998,40000000
9999998, 30000000
5999998, 20000000
59599558, 10000000
9999998,00000000
9999997,20000000
5999997,80000000
5955557,70000000
9999957,60000000
$999997,50000000
9999997,40000000
9999997,30000000

2021 17:32:58
2021 18:01:02
2021 18:29:12
2021 00:35:42
2021 01:03:45
2021 03:24:18
2021 03:52:22
2021 04:20:24
2021 04:48:26
2021 05:16:29
2021 05:44:31
2021 06:12:33

22
22
22
22
22
22
22
22

| ower limit (-100ppb) Frequency (Hz) Upper limit

+100ppb)

Figure 17. Frequency change over 24h with upper and lower limit

From the presented data and its analysis, it can be seen that different parts, and the entirety
of, the program code fills its functions. The timestamp was verified by comparing the
start and end timestamps to start and end times from the test program execution software
log. The temperature values were based on the temperature sensor, and the values read
out by the program code were seen rising as expected and no abnormalities were
observed. The frequency measurements were done with a calibrated instrument and the
values measured for a single measurement matched the values on the screen of the
instrument. The measured values were also seen varying as expected and no abnormal

behaviours were observed in the data. In the few measurements where the frequency was

32

out of the limits, the “OUT” mark was printed to the CSV file as expected. And finally,
the CSV file creation code created the file, with proper formatting, data and name, as
expected. There were no problems for the code to measure for up 25h straight and then

writing all the data to file in the end in one go.

This proves that the designed hardware and software solution is functioning as intended,
Is tested and demonstrated to function properly, and can be used to try and solve the
problem of the thesis, to measure the product OCXO output frequency and temperature
over 24h.

33

7 Possible future developments

Monitoring OCXO internal temp as well, in addition to PCB temp sensor.

The thesis task description states to measure the board temperature via a board temp
sensor that is close to the OCXO, to know that the OCXO environment temperature is
stable. However, since the OCXO frequency depends on its internal temperature, then
when only monitoring the board temp sensor, an assumption is made, that the OCXO
internal temperature is stable when the environment is stable, while in reality, it is not
known. To be able to rule out possible frequency deviations due to OCXO internal
temperature deviations, then the OCXO internal temperature should also be measured and

stored to file.
Progress counter to know how far test progress is and how much time is left.

The current implementation of the temperature and frequency measurement is done such
that the data is collected to system RAM and stored to file once the specified time period
is succeeded. This long term measurement shows up in the test system as one test item
and while it is in progress, there is no way to know how long time has passed or how long
time it will still need to run before completion. This information could be very valuable
to the user, who otherwise could make incorrect conclusions about the progress of the test
and try to abort the test execution. To solve this problem, a progress indication printout
functionality could be added to the program code.

Parallel measurement for 6 products.

Due to the measurement time period being very long (24h) and the reality of possibly
needing to test a lot of products in this test system, the limiting factor will be the
throughput of the system. Since the measurement time is fixed, the only way to increase
throughput is to test multiple products in parallel in the same test system. The used Device
Test Platform supports testing 6 products, so the changes needed for the designed test
system to support parallel testing, would be changes to the written program code and the
IV driver regarding instrument addressing. This would also mean separate instruments

for each product.

34

8 Summary

The topic of this thesis came from the need to solve a real-life problem that the company
Is facing. The problem is that a customer observed performance issues with a telecom
product that were proposed to be related to OCXO output frequency stability. In this thesis
a test system, consisting of suitable hardware and software setup, was designed and
verified. The hardware setup consisted of a PC, the frequency counter, the product and
necessary cable connections. The focus in the thesis was on writing the software for single
and continues measurement of frequency and temperature of the product, and on how to
store the results to a file. The measurements were carried out on a sample reference
product and the results were collected. The results file was analysed in Excel and graphs
showing the frequency and temperature changes over time presented. The individual parts
of the program code, and the whole code itself, were verified to fill the intended functions.
Based on this the designed test system is found to be suitable for carrying out the OCXO

output frequency stability measurement, in order to help solve the problem.

35

References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

[9]

J. Lim, K. Choi, H. Kim, T. Jackson and D. Kenny, “Miniature Oven Controlled
Crystal Oscillator (OCXO) on a CMOS Chip,” IEEE, 2006.

H. Zhou, C. Nicholls, T. Kunz and H. Schwartz, “Frequency Accuracy & Stability
Dependencies of Crystal Oscillators,” Carleton University, 2008.

Company, “OCXO Specification,” Internal document, 2019.

Company, “Vtemp mis-trigger report,” Internal document, 2019.

M. Koyama, Y. Watanabe, H. Sekimoto and Y. Oomura, “An Experimental Study
of Frequency Jumps,” IEEE, 1996.

Company, “Test Platform,” Internal document, Tallinn, 2019.

K. Technologies, “Keysight 53220A/53230A 350 MHz Universal Frequency
Counter/Timer User Guide,” Keysight Technologies, Bayan Lepas Free Industrial
Zone, 11900 Penang, Malaysia.

K. Technologies, “53200A Series RF/Universal Frequency Counter/Timers Data
Sheet,” Keysight Technologies, Dallas, 2020.

T. Instruments, “TMP461 High-Accuracy Remote and Local Temperature Sensor
with Pin-Programmable Bus Address Datasheet,” Texas Instruments, Dallas,
2015.

[10] Company, “Test requirements for products,” Internal document, 2020.

36

Appendix 1 — Non-exclusive licence for reproduction and

publication of a graduation thesis’

| Grete Ohak

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Hardware and software setup for long term OCXO output frequency and

temperature measurement”, supervised by Erkki Arus and Marten Kask

1.1. to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library of
Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be
entered in the digital collection of the library of Tallinn University of Technology
until expiry of the term of copyright.

| am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

17.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her
graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

37

