TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Kazi Taher Uddin 166804IVSM

TRANSFORMATIONS BETWEEN TWO
STATE MACHINE DIALECTS - SDL AND
STATEFLOW

Master's thesis

Supervisor: Andres Toom
MSc
Tonu Naks
MSc

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Kazi Taher Uddin 166804IVSM

MUDELITEISENDUSED KAHE
OLEKUMASINA KEELE VAHEL - SDL JA
STATEFLOW

Magistrit6o

Juhendaja: Andres Toom

Tehnikateaduste
magister
Tonu Naks

Tehnikateaduste
magister

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Kazi Taher Uddin

08.05.2018

Abstract

In real time software development, state machines are very widely used for presenting
the concepts and logic of systems and for their simulation. Model-driven software
engineering (MDE) seems to gain popularity and state machine based formalisms are a
natural component of many MDE approaches. Stateflow and SDL are two widely used
state machine oriented modeling languages. SDL is formally defined and standardized
whereas Stateflow has an excellent tool support and integration with other MATLAB
based tools. Given that these languages have a common logical basis, but their tool
support offers different possibilities, it would be interesting to exchange models

between them. This work address the conversion between these two languages.

First, a possible semantic mapping from Stateflow to SDL state machine and vice versa
is explored. The mapping include events, guards, composite states, parallel states,
temporal logic and so on. The mappings are validated using two case studies, which

show that the mappings are adequate for the selected language subsets.

A feasible implementation mechanism is proposed and required algorithms are
provided. The source model is first converted to an intermediate JSON data structure
and, then converted to the target language. The structure of the intermediate data

structure is very simple and self explanatory.

Four algorithms are provided for implementing the mappings through the intermediate
data structure. Required learning materials are referred and a simple prototype is under

development.

The thesis has been written in English and contains text on 81 pages, 5 sections, 36

figures and 17 tables.

Annotatsioon

Mudeliteisendused kahe olekumasina keele vahel - SDL ja Stateflow

Reaalajasiisteemide arenduses kasutatakse siisteemide kontseptsioonide ja loogika
esitamiseks ning nende kditumise simuleerimiseks tihti olekumasinaid. Mudelipdhine
tarkvaraarendus (MDE) ndib koguvat populaarsust ja olekumasinatel pdhinevad
formalismid on paljude MDE meetodite osaks. Stateflow ja SDL on kaks laialt levinud
olekumasinatele orienteeritud modelleerimiskeelt. SDL keele semantika on formaalselt
defineeritud ning see keel on standardiseeritud, samas Stateflow keelel on suurepérane
tooriista toetus ja see keel on hdsti integreeritud teiste MATLABi-p0histe tooriistadega.
Arvestades, et neil keeltel on tihine loogiline alus, kuid nende arendusvahendid pakuvad
erinevaid voimalusi, oleks huvitav mudelite ristkasutuse voimaldamine. Kéesolev t66

kasitlebki mudeliteisendusi nende kahe keele vahel.

Kéesolev t66 uurib esmalt Stateflow ja SDLi olekumasinate elementide semantika
voimalikke teisendusi modlemas suunas. Seejuures kasitletakse siindmusi, iilemineku
tingimusi, hierarhilisi ja paralleelseid olekuid, ajalist loogikat jne. Teisenduste
teostatavust ja korrektsust on kontrollitud kahe suurema mudeli teisendamise ning

nende kaitumise vordlemise teel.

Teisenduse efektiivseks automaatseks realiseerimiseks on td6s viljapakutud
lahendusskeem ja vastavad algoritmid. Léhtemudel teisendatakse koigepealt
vahpealsesse JSON andmevormingusse ja sealt edasi sihtkeelde. Kasutatav

vaheandmestruktuur on véga lihtne ja arusaadav.

Too sisaldab nelja algoritmi = mudeliteisenduste realiseerimiseks 1dbi
vaheandmestruktuuri. T66s on viidatud teemakohastele taustmaterjalidele ning

teisenduste automaatseks teostamiseks on loomisel lihtne prototiiip.

Loputdo on kirjutatud inglise keeles ning sisaldab teksti 81 lehekiiljel, 5 peatiikki, 36

joonist ja 17 tabelit

MDE
FSM
EFSM
ASM
SDL
TASTE
ASN.1
MSC
API

List of abbreviations and terms

Model-driven software engineering

Finite State Machine

Extended Finite State Machine

Abstract State Machine

ITU-T Specification and Definition Language
The ASSERT Set of Tools for Engineering
Abstract Syntax Notation One

Message Sequence Chart

Application Programming Interface

Table of Contents

1 INTOAUCHION. c..ceeitetteteeteet ettt ettt sat b e s e e b e e be e e emaeenee s 12
1.1 BaCK@IOUNd.......cciiiiiiiiiieeieeeieeeiteeete et e et e ssveessteesareessaaeesaaeessaesssssnsnneeeans 12
1.1.1 State Machine........cocueeiiriiriinieeeeeeeeteeeee ettt 12
TLL.2 FSMiuiiiieeteeeeet ettt ettt sttt st sttt et ae et e e 13
LLLB3 EFSMu ittt sttt s s s s 13
1.1.4 Harel’s State MacChines..........coecueeiruieiniieiiiieerieecrieeeseeeseeessreesieeessaeeeeens 13
1.1.5 UML State Machines..........ccccueriieeriiiniieiiienieeiieeste e esee et see e e saresveesaee s 14

T LB ASMuieeeee ettt ettt st ettt st e bt e e e e aeeeaee 15
1.1.7 SDLieeteee ettt sttt a e sttt e s 15
1.1.8 Available Tools for Handling SDL State Machines...........ccccecveeeveenvercueennen. 16
1.1.9 StAteflOW ... 20
1.1.10 Problematic Example of Transformation.............ccccueevueerienciieencieeeniieenns 20
1.2 MOtIVALION....cuutiiiiiiiiiiiicitieete ettt re et e s sare e s sae e snnne e e 22
RGN 0 T | OO RO 22
1.4 ODJECHIVES. c..eeiieeeteeiteeieeete ettt ettt et s bt et e st e e sat e s be e st e e ssssbeessasaeesnnsaeeanns 22
1.5 ReSEarCh DeSIGN.....cuuiiiiiiieiieieiieeiiteerite et este e e sre e sve e s sare e s sare e seaeessaeessaaenaseas 22
1.6 ValIdatioN. ...c..eeouiiiieiieiieiecteteeteet sttt ettt ettt 23
1.7 Related WOTK.......coocuieieiiiiiieiite ettt ettt ae s st e e s e e e saa e e sanee s 23
1.7.1 Language Conversion APProach..........cccceceeeeevienieneniieneenennieneeereeeeeenaes 24

2 MADPINE. ... evieieeiiieeeeettee e ettt e e sttt e e e s itteeessabeeesssbteeeesabaeeesssbaeesesasbaeeessnraaessnabaaaaeaees 27
2.1 VariaDIe. ... st 27
2.2 State Machine InitialiZation..........ccceeecieeriierniiieiriieeiee e e e e 27
2.3 STALC.....eiiiiiiiteect bbb be e e be e 28
2.4 TTANSTION. ...eeeeeeiiieeeeritteteeitee e ettt eeeesiteeesssabteeesssbeeesssssaeeessassaaesssssssssnssssssnsaeeeees 28
2.4.1 TranSition OTAer.......c.cocuerueerieriereriententeeteetesre et site et e e s e saeesreessneeeas 30
2.5 GUATC....eeieieeeiee ettt ettt e st e e st e s s bt e e s abeeesstee s sseeesaeeesseenssaeenssaaennns 30
2.5.1 Stateflow GUAT.......coeevuiiiiriiiiieieeeerteeeeteeee ettt 30
2.5.2 SDL Decision of Signal Parameter............cccceeveevieereeeiieenreeeesveeesseveeessnneens 31
2.5.3 SDL Si@NQAl...uuiiiiiiiiiiiiiieeieerteeeee e 33
2.5.4 Stateflow Event and Parameterless SDL Signal..........ccccecveeviienieriiieniencneenns 34
2.6 Output SigNAl/EVENL.....ccccviiiiieiienieeiterie ettt et s et e steesaeesbeesaeesseessneesnnns 34
2.7 IMLBSSAGES....eveeieueiieeeenitteeesiiteeeesitteesssstaeeesauaaeessssssteesasstaeeasassaaessasbaaessssnnnnnnrnnnn 34
2.8 ACION/TASK....veeuteriieiieieeiteeteeteeteste ettt ettt st b ettt e e s beesnee e 35
2.8.1 ENUTY ACHON. ...utiiiiiiiieeeriiteeeeeitteeeeeiteeeesteeeesseteeesessaeesssnseeeeeesessssssssssnnnses 35
2.8.2 DUTING ACHON.utiiiiiiiieeieeitteeeeiieeeeeereeeseeetteeeesiseeessenreeesesareeeeesnnsneesesesenns 35
2.8.3 EXIt ACTON..ceeiiiurieeeeiiieeeeriteeeeeiteeeeetteeessireeeessiraeesssarraeeeeeeeeessssssssssnsnssses 36
284 TASK ettt ettt e e b e e 37
2.9 PrOCEAUTE.veeeiiieeeiieeeiee et e et e ettt e st e e stteesteeesateesbeessaseeesssaeeeesnsnssaaeessnnnssnes 37
2.10 Procedure Call.........coceeieriirieniiieieeeeeeeeteeeteeee ettt 39
2.11 COMPOSITE STALE.....uuevreeeerrreereriiteeeeritteeeeerrteeeesetteeesssreeeessaraeessssssssssssssssreseeeees 39
2.12 Paralle] STate........cocuerieririieieiteeetere ettt sttt 42
2.13 TemMPOTal LOZIC..cccuviiiiieiiiieeeiieeeiteesite et erte e erte e st eesae e e sebeessabeessasaaaeesnsnenens 44

21300 ASTOT et e 44

2.13.2 DIUTAUOMN. ¢eeeeuurieeeeiiieeeieeiteeeesiiteeessiteeeessrteeessssrreeesssssaeessssseessssssssessssssaneses 45
0 G TR I 1 1 1 1<) PO O RO PP 45

2.14 LIMILATIONS. ...uvveeeeeirieeerriieeesesireeeessteeeessisreeessssseeeesssssseesssssssesssssssaesssssssssssnsssnnes 46

3 Validation Of MapPingS.......ccccueecueerieriieeriienieesitesteesieesteeseesseesseesetessseesssessessssesssennns 47
3.1 SDL tO StateflOW...ccuvieiieeiieieeeieeitee ettt ettt et ve e e aeesraeenes 47
3.2 StatefloW 10 SDLu....couiiiieiieieiieeieeeeteet ettt ettt s 53
3.3 Inner vs Outer Transition INCONSIStENCY ISSUE.........cceervirieeiriiirieririieeerereeeiaens 60

4 Guidelines for Automatic Model Transformation............cccceceeverveernieenieenieensieenneeenns 61
4.1 Data SITUCKUTE.uveeeeeeirreeeeriteeeesstteeeessteeeessrreeesssseeeesssssseessssssesaeeessssssssssssssnnes 61
4.2 Algorithms for Implementing The Mappings........ccccecueevveerierriernieeenireeenceneeennnns 63
4.2.1 Algorithm for Stateflow to JSON......cccueeeiieiieiieeiecieeceeeeeeee e 63

4.2.2 Algorithm for JSON t0 SDL.....c.coeciiiiiiriiiiienieeeeeieeee e s 65

4.2.3 Algorithm for SDL t0 JSON......cccuiiiiierieeiiiecieeieeete et eveesree v sraeeae e 67

4.2.4 Algorithm for JSON to StatefloW........cccecierieriiiinieniieieeieerreee e 70

4.3 Prototyping for DemONStIratioN.........c.cccveeveeeieriieenieeeieeieeeieeecreesreeessreeessneeennns 72

5 CONCIUSION. ..ttt ettt ettt e sb et st s ae et e et e sbeesaneesaneesane 73
REFEIENCES.ecvieeteeee ettt ettt e vt e st e e te e sabe e beeesbaeeessbaeeessaeeesseaennns 74
Appendix 1 — Data Structure EXample.........ccccceevuerriiniiennieniieeiieniesieeeieesieessieeeesneeeens 78

List of Figures

Figure 1: Harel's State Machine [10]......c.coocueriuirniiiiiiinieeiieeiecitesee et 14
Figure 2: UML State Machine.........cccocueriiieriiiniiieeieneeeneeeeieete et 14
Figure 3: PragmaDev Studio SDL State Machine Editor [33].......cccccccevvviviieeeininneenn. 17
Figure 4: Simulation in PragmaDev [33].......cccctiiiiiiiinieiieeieeteeitee et 18
Figure 5: TASTE INteface VIEW.....ccccocieiiririinieiieieneetenesieeeeeteete ettt 19
Figure 6: SDL Editor OpenGEODE..........ccccooirtiiiiiinieienieneeeetesteseeee et 20
Figure 7: State machine for USer [1]......ccccueeiieriieiiieieeieeeeeeeeecreeee e 21
Figure 8: Source to Intermediate Code [7]......ccceerueerieniieinienieerteeieesee et 25
Figure 9: Intermediate Code t0 SOUICE [7].....cevieriierriieriiniieeieerteeieee et 26
Figure 10: First Level of SDL State Machine With Nested State............ccccccevceevueruennee. 39
Figure 11: Nested State "ON" of The SDL State Machine Above.........c.c.cceceervueennueene 40
Figure 12: Same State Machine in Stateflow..........ccoceevuerirneeciniieieieeceeceeeee e, 41
Figure 13: Stateflow Paralle]l States........c.cccoeevuerieniiiinieniienerecereseeee e 42
Figure 14: SDL State Chart View of Parallel States.........cc.cccceeveeriienennenennennieenieeen. 43
Figure 15: Conversion of Stateflow Temoral Logic After to SDL........ccceceevieinieinnennns 44
Figure 16: Conversion of Stateflow Temoral Logic Duration to SDL.........ccccccecveeruuennne 45
Figure 17: ATM SDL State Machine..........cccocerieviiriieninnenienteneeieseeeeee et 47
Figure 18: Nested State READ_AMOUNT of ATM SDL State Machine..................... 48
Figure 19: MSC of A Happy Path of ATM SDL State Machine...........ccccceceevervieneennen. 49
Figure 20: State Machine to Create the Same Sequence of Signal............ccccceevvueernenn. 50
Figure 21: ATM State Machine Transformed in Stateflow..........cccccccerviviininicninnennee 51
Figure 22: State machine show basic function of a ATM [4].....cccceevvevviiriiieinciieennieenn. 53
Figure 23: Stateflow Coffee Machine............cooeevuerieriiniiniieniceeeteeee e 54
Figure 24: SDL Coffee Machine Part 1/5.......ccceecueriereriieniiieieneesieeeeseesie e 56
Figure 25: SDL Coffee Machine Part 2/5.......ccccoceeieveriiiniinienienieneneenecieeee e 56
Figure 26: SDL Coffee Machine Part 3/5.......ccccecueriiveriieniinienieneeiereeneeeeee e 57
Figure 27: SDL Coffee Machine Part 4/5........cccocerieviiiieniinenienteseeeeneeseeee e 57
Figure 28: SDL Coffee Machine Part 5/5.......cccceceriereriienieieeieneesiesee e 58

Figure 29: MSC of SDL Coffee Maching Part 1/2........cccceceeeeveriieniinenieneeneenieeeenn 59

Figure 30: MSC of SDL Coffee Maching Part 2/2.........ccceccevieveriieniinenieneeneenieeeenn 60
Figure 31: Intermediary Data SIIUCUTE.ccccuveeriiieerieeerieeerteeeseeeeeireeereeesveeesaaeaeeens 62
Figure 32: Algorithm for Stateflow to JSON......ccccociiiiiiriiniiiiecececeeeee 65
Figure 33: Algorithm for JSON t0 SDL....c.ccoiiiiiriinirienieneeieeteeeeee et 67
Figure 34: Algorithm for SDL t0 JSON.......ccciiiiiiinieiieeteseeieete ettt 70
Figure 35: Algorithm for JSON to StatefloW.........ccccueecieriieiieniecieeeceecee e 71
Figure 36: An Example of Proposed Data StruCture...........ccccceceeveeneerueenueenueennreennneens 81

10

List of Tables

Table 1: ReSearch ObJeCtiVES.......cccuiieciieieiiieeeiieeciee et e esieeesre e s sreeeseae e s seaeesaaeesaeaesneeas 23
Table 2: Initial Transition - Stateflow vS SDL......ccccceciiriiriiiiniiniieiecieeee e 27
Table 3: Basic State - Stateflow VS SDL.....c..cocueiiiiirienieiinieneeeeteeeeeeee et 28
Table 4: Transition - Stateflow VS SDL......ccccceviiriiiiiriienieieeiereeeeteree et 29
Table 5: Conversion of Stateflow Guard to SDL........ccccecevviriieniinieniieneeeeieeeeeeeeen 31
Table 6: Conversion of SDL Guard to Stateflow.........ccceeeerviieiiiniieniieniieieeieeeeeeeee 32
Table 7: Conversion of SDL Event Based Transition to Stateflow........cc.ccccecueeevienncen. 34
Table 8: Bidirectional Conversion of Parameterless Event Triggered Transition........... 34
Table 9: Conversion of Stateflow Entry Action to SDL.......ccccccueeviervieeiienieeieeeeieeeeans 35
Table 10: Conversion of Stateflow During Action to SDL.......cccccccevviininnenneneencneenen. 35
Table 11: Conversion of Stateflow Exit Action to SDL.......cccceveriienirveeniieeniieeeieeeeeenne 36
Table 12: Stateflow Actions Converted to SDL - Complete State Machine.................... 37
Table 13: Bidirectional Conversion of Stateflow Assignment and SDL Task................. 37
Table 14: SDL Procedure and Stateflow Graphical Function..........c..cccceeevevervinicnnennen. 38
Table 15: SDL Paralle]l States........ccueveeierieririenieieneeriteteeteseesee sttt 42
Table 16: Lines Printed in Diagnostic View by Stateflow ATM.........cccccevervieneevienieennen. 53
Table 17: Print out in Diagnostic View of Stateflow Coffee Machine..............cccuuene.e. 55

11

1 Introduction

1.1 Background
State machines (also referred to as state diagrams, state charts etc.) are a very popular
and convenient notation for expressing the logic of many kinds of reactive systems that

have some state dependent nature.

The transition to model-based development is motivated both by lower costs for overall
software development and by the enhanced ability to find defects early in the design

cycle. [1]

Different state machine dialects range from classical finite-state automata (FSA) and
extended finite-state machines (EFSM) to richer and more practically oriented
formalisms,such as the UML state diagrams, StateCharts, Stateflow or the state

machines in SDL.

While at the highest level all of these dialects share some common concepts, there are
significant differences in the core semantics, as well as in detail, such as the supported

constructs in the guard and action language.

State machine diagrams are used in the process of system (or more narrowly, software)
engineering at its various stages (specification, design, implementation, verification). To
decide an appropriate state machine dialect in a specific context, a good understanding

of the exact semantic differences between dialects becomes handy.

Sometimes, it can be necessary to migrate from one dialect to another, either due to the
different level of expressiveness needed at the different development steps or due to the

different background and context of the parties involved.

1.1.1 State Machine
In general, a state machine is any device that stores the status of something at a given
time and can operate on input to change the status and/or cause an action or output to

take place for any given change. [32]

12

1.1.2 FSM

Finite-State Machine is an abstract machine that can be in exactly one of a finite number
of states at any given time. The FSM can change from one state to another in response
to some external inputs; the change from one state to another is called a transition.[37] It
is defined by: list of its states, Initial state and conditions for each transition. “There are

several different notations we can use to capture the behavior of finite-state machines:

= As a functional program mapping one list into another.
= As arestricted imperative program, reading input a single character at a time and
producing output a single character at a time.
= As afeedback system.
Representation of functions as a table

Representation of functions by a directed labeled graph”[44]

1.1.3 EFSM
In Extended Finite-State Machine a transition can be expressed by an “if statement”
consisting of a set of trigger conditions [46]. An Extended Finite State Machine M is a

5-tuple {S, I, O, D, T} where

= Sis a set of states,

= [isa set of inputs,

= Qs a set of outputs,

= D is an n-dimensional linear spaceD 1 x...xDn,

= Tis a transition relation, T : SxDxI — SxDxO [45].
In addition to FSM, EFSM can have - guards (the if condition of the transition), data
operation (such as assignments, calculation), and an n-dimensional linear space. It is
sometimes explained in three blocks, FSA block, arithmetic block and transition

evaluation block [46].

1.1.4 Harel’s State Machines

Harel enriched the idea of state machine by adding composite and parallel states and
history. “Our diagrams, which we call statecharts, extend conventional state-transition
diagrams with essentially three elements, dealing, respectively, with the notions of

hierarchy, concurrency and communication.” [10] As summarized in [6], Harel’s state

13

charts, as well as UML state charts, allow one to decompose a large state space into a

set of composite states, each of them containing a subset of the original state set.

time
a -

(stopwatch)

. [

Zero

d
(in off) /{b

(/display # N\ run ™
reg. on
g

off

(in or?l
lap

\ y

Figure 1: Harel's State Machine [10]

= o ——

1.1.5 UML State Machines

“In UML, each class has an optional state machine that describes the behaviour of its
instances (the objects). This state machine receives events from the environment and
reacts to them. The reactions include sending new events to other objects and executing
internal methods on the object.” [11] UML state machine editors (such as YAKINDU
state chart Tools), allows to create state machines that are conceptually very similar to

Harel’s state machine.

Figure 2: UML State Machine

14

1.1.6 ASM

Abstract State Machines (ASM) combine declarative concepts of first-order logic with
the abstract operational view of distributed transition systems. ASMs are based on
many-sorted first-order structures, called states [5]. In simpler word ASM provides the

visualization with logics that makes a conceptual state machine easy to understand.

In the original conception of ASMs, a single agent executes a program in a sequence of
steps, possibly interacting with its environment. This notion was extended to capture
distributed computations, in which multiple agents execute their programs concurrently
[39]. “Starting from an initial state, the agents perform concurrent computations and
interact through shared locations of the state. The behaviour of ASM agents is
determined by ASM programs, consisting of ASM rules.” [5] ASM updates when
transitions triggers. A transition triggers based of rules that are defined by a guard or
combination of guards. “These update sets define state transitions that result from
applying all updates simultaneously.”[5] On transition ASM performs computations as

well.

1.1.7 SDL

The Specification and Description Language (SDL) is a specification language targeted
at the unambiguous specification and description of the behavior of reactive and
distributed systems. For SDL-2000, Abstract State Machines (ASMs) have been chosen
as the underlying formalism[6]. In SDL systems are described by blocks that are
connected through channels - carrying messages. The messages/signals are passed from
other agents or environment. The reception of a signal may cause a state transition.
Transitions may contain actions that output signals to other agents or environment.

Messages are treated in FIFO order. SDL supports:

= Predefined data types (boolean, integer, natural, real, character, charstring,

duration, time)

= Struct, choice, array, string, bag

15

https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Distributed_computing

= New data types based on existing data types and having additional operators and

constraints

= Constants

= Variables

= Read only remote variables (variables of other processes)

= Procedures (inside block or procedure, accepts parameter and return value to

caller, can send and receive messages, can modify data of declaring agent)

= Macros (can't receive messages, no transition, can’t call itself)

= Composite states (sub-states)

» Timers and manipulation of timers

= Dynamic process creation

= (lasses (of block or processes, connected with gates), subclasses

SDL does not support global variables. But, constants can be declared anywhere.

1.1.8 Available Tools for Handling SDL State Machines

One of the available SDL state machine modeling tool is PragmaDev Studio. It is a
complete, large scale tool that comes with commercial support [42]. It integrates tools
for system architects, developers and testers. “PragmaDev has established partnership
with key players in the real time domain. Customers include Airbus, Renault, Nokia, ST,
ABB, the French Army, the European Space Agency, Toshiba, Korean Telecom, or LG
Electronics”. [38] Unfortunately, it requires to install some 32bit linux libraries that

does not ship with Ubuntu 16.04 LTS by default.

16

Diagram Edit Search View

Export Windows Help

:.
L
T H
*
..

[E 557

= BE@E? » @ A b

Yo

_JﬁipCennd

PR R

pLocal
[

index := index + 1

pLocals(index) := OFFSPRING;

[—

3

(start)
Idle
sGetId

1

Figure 3: PragmaDev Studio SDL State Machine Editor [33]

17

MSC Tracer

Trace View Windows Help

BB LRI

Tracing

Figure 4: Simulation in PragmaDev [33]

“Use the Freemium version that comes with all the features but that is restricted in size:

50Kb per file and 200Kb per project (this includes all diagrams except the MSC,
declaration files such as SDL-PR and ASN.1 files, and TTCN-3 source files).” [34]

Regular price is euro 290 per month [34]. It is a limitation that creates a necessity to

search for a free solution.

There exists also an open source SDL editor called OpenGEODE [42]. It is a tool that

was originally developed for the TASTE suite [40], but can also be used standalone.

TASTE allows to create and simulate interactive modules. Fortunately, it is a open

source product and free.

18

File MNew Edit Tools

View Option 7

TASTE

R

HEETEEE]

[> DataView

[» InterfaceViews

— DeploymentView
[deploymentview: DV
— DV _Lib_Root

— Processors

[C]x86 Jinux
[C]x86.winaz
[» Devices
[» Buses

ConcurrencyView

Data View] Interface View] Deployment View] Concurrency View] AADL]

[Terazyfie_v:
[Jstmazf407_
[Jstmazfdzg.
[Jleon.rtems_
[leonz.nem:
[leona.nem:
For712.iem:
[gr740.rtem:
[Clgr740.rtem:
Tgr740.rem:

out_msg

transaction

fe

fe

Aienl
(U=

eject_card

gui

accept_card
reject_transaction
out_of_service
abort_out

amount
other_amount
digit

ok

F Y W W %

3

transaction_succese..,

out_msg
transaction
display

eject_card

atm

transaction_succeseeded
accept_card

reject_transaction

out_of_service
abort_out

amount
e other_amount

digit

w ok

Search -@I I"_-‘}'

Object Created :

“TASTE is a set of freely-available tools dedicated to the development of embedded,
real-time systems. It is developed by the European Space Agency together with a set of
partners from the space industry.” [40] “TASTE also comes with two built-in (free) SDL
editors that allow graphical description of state machines, and automatic code

generation.” [40] After considering all these benefits, TASTE is the tool of choice for

this study.

Figure 5: TASTE Inteface View

19

- OpenGEODE - oox

Jd H OO

= process atm = Statechart view Data dictionary ®

del account MyString;
(:) G_CARD) del amount Amount;

dclw My String;

1 2

P ASN Datatypes
ASM.1 Constants

B

del num Mum; VERIFYIN P Input signals
lj ————————— 5 P Output signals
MOUNT | 4 Et;tets
_____________ . abels
{] oy P Wariables
Timers

out_msg('REA

o)

FLEASED TEEEE 1
{ READ_AI

- SERVICE | - ;
‘<3> aborted L |

|
(“‘l‘e) transaction(amount) } eject_card(") >

out_msg('VERIFYING_TRANSACTION')>]]
out_msg('CARD_RELEASED
!

|| (VERIF‘(ING TRANSACTION w { v [+

—_— [n [[>] | Datatypes | Data dictionary
s
Use F7 to check the model or update the Data view, and F3 to generate Ada code ®
=== |[WARNINC] State definition missing
L. [WARMNING] Expression evaluation in range [0.0..99995999.0], could be outside expected range [0..999999]

¥

Figure 6: SDL Editor OpenGEODE

1.1.9 Stateflow

Stateflow is a state machine dialect. It is used in the popular MATLAB/Simulink tool
suite. “Stateflow lets you combine graphical and tabular representations, including state
transition diagrams, flow charts, state transition tables, and truth tables, to model how
your system reacts to events, time-based conditions, and external input signals.” [12] It
is widely used in the industry and education. Stateflow combines state machines and
flow-diagrams diagrams to a unique and expressive formalism. Subsets of the Stateflow

language have been-formalized by independent researchers, e.g. in [43] and [47].

1.1.10 Problematic Example of Transformation
There is a chance of getting results by conversion process that does not work, the
converted model may not show the same behavior as the original model. Such an

example is explored by Danial et al in their work “Polyglot Modeling and Analysis for

20

Multiple Statechart Formalisms” [1]. They have experimented if properties hold on
converting Stateflow and UML (Rhapsody) state charts into a Java. Relational
Rhapsody is a modeling environment based on UML. They modeled two users to access
shared resources. The communication between the Arbiter and the users is modeled
using Simulink signals [1]. A user may request or cancel a resource; the arbiter may
grant or deny the resource, and it can also rescind the resource after it has been granted
[1]. The arbiter prevents potential conflicts between resource requests coming from
different users and it enforces priorities. For example, it does not make sense to start a

communication session with Earth while the rover is driving [1].

[reset == true] ...
{cancel = true; request = false;}

\

[deny == true]...
{request = false}

grant == true]

/

Figure 7: State machine for user [1]

The result shows that property holds when both users are uses Stateflow semantics, but
property fails when one user uses UML. The reason why this property fails in the UML
case while it holds in the Stateflow case is that outer transitions (e.g. see the transition
enabled on reset==true from Busy back to Idle) have higher priority over inner

transitions in Stateflow, but have lower priority in UML Rhapsody. [1]

21

1.2 Motivation

State machines can be designed using different tools such as Stateflow, OpenGEODE,
PragmaDev Studio, YAKINDU Statechart Tools, Rational Rhapsody. Once a state
machine is done, later it can be reused in another project. It can be reused as a small part
of new state machine or as a starter tool, depending on relevance. But, it is not possible
when an existing state machine is designed with the tools that use a modeling language
different from new project. To make this possible a proper conversion tool is required.
This study is aimed for making this tool for two practical state machine dialects:

Stateflow and SDL.

1.3 Goal

The current study should compare the semantics of the Stateflow and the SDL. modeling
languages and identify the subset of either language that can be converted to the other

language in an unambiguous and clear way without altering the semantics.

Secondly, provide guidelines for creating a tool for automatic bidirectional conversions
between the two dialects, so that one could automatically convert models (that fall into

the above subset) to the other language and vice versa.

1.4 Objectives
1. To specify mappings for a subset of the modeling languages

2. To provide guidelines for making an automatic conversion tool

1.5 Research Design

Objective Steps Outcome

Study the semantics of the above modeling languages

Familiarize with the respective modeling tools . .
Literature review report

Perform a literature review and familiarize oneself
with existing research in the field

Semantic Semantic mapping
mapping specification for a subset of
the above modeling

According to the findings choose/adapt an existing languages

approach or define a mapping yourself, if necessary.
Set of models in either

language demonstrating the
mapping in concrete cases

22

Objective Steps Outcome

Propose data structure to store both SDL and

o . Data structure
Stateflow model that facilitate conversions flow.

Find an Give an algorithm to Implement the semantic

optimistic way mapping rules identified in first objective using a Pseudo code

for Automated chosen model transformation approach.

translations Programming languages,
Suggest an optimistic approach to go for coding. API documentation, demo

code

Table 1: Research Objectives

1.6 Validation
= Running converted and original state machines side by side and comparing their

behavior.

= Comparing MSC’s to find behavioral similarity.

1.7 Related Work

Dony et al in their paper “Programming Language Inter-conversion” presented a new
approach of programming languages inter-conversion which can be applied to all types
of programming languages. The idea is about implementation of the intermediate
language for inter-conversion. [7] They also said “Hence code conversion becomes even
more challenging because the features of the source language need to be somehow
simulated into the destination language. Hence, this imposes a limitation on code

conversion.” [7]

Sendall et al in their paper "Model transformation: The heart and soul of model-driven
software development." [9] state that “A transformation is typically only meaningfully
applied against certain model configurations. Thus, it would be desirable in many cases
to describe the conditions under which the transformation produces a meaningful result,

which can then be enforced by a tool at execution time.”

Rodionov in his thesis “Implementing TTU Nanosatellite Communication Protocol
using TASTE Toolset”, worked with SDL and indicated further usability of the state
machine created there. “The created system can be used in the communication process

of the TTU-Mektory Student Satellite both on ground and on the satellite. The result of

23

this thesis will be used as a case study in ESA project that integrates TASTE Tool set
with QGen.” [3] Here nothing mentioned about possible uses of the state chart in

another formalism such as Stateflow.

Danial et al in their work “Polyglot Modeling and Analysis for Multiple State chart
Formalisms”, wanted to compare various state charts. “To verify these safety-critical
systems, a unified framework is needed based on a formal semantics that captures the
variants of State-charts. We describe Polyglot, a unified framework for the analysis of
models described using multiple State chart formalisms. In this framework, State chart
models are translated into Java and analyzed using pluggable semantics for different
variants operating in a polymorphic execution environment.” [1] This work supposed to
consider available conversion tools, but their report does not signal any existence of

such a tool.

Czarnecki and Helsen state in [8] that “While there exist some well-established
standards for modeling platform models, there is currently no matured foundation for

specifying transformations between such models.”

Through these studies and through web exploration, nothing is found that can convert

SDL to Stateflow state machine or vice versa.

1.7.1 Language Conversion Approach
The paper on “Programming Language Inter-conversion” by Dony et al discussed a
conversion approach. They also performed a theoretical case study on the conversion of

code written in the C++ programming language to Java. [7]

Code conversion should also preserve the structure or should modify it to make it even
better by removing redundant codes. Hence, it will be better if a compiler is designed
for this purpose. And the purpose of compilation is to convert the given program into its
corresponding Intermediate-language. This Intermediate-language can be converted into

any programming language using another compiler. [7]

All the programming languages have some common features such as logical, arithmetic

operators, looping and so on. Based on these facts a new language can be defined

24

having all these features to represent the characteristics of the programming language.

[7] - Dony et al explained in their writing. Their main idea is show in the next figure.

Source Language

Syntax Analyzer

/\

Information
Gathering

Parser

Information
Processing

Optimizer

'

Conversion System

v

Optimized Intermediate
Code

Figure 8: Source to Intermediate Code [7]

25

Intermediate Language

!

Syntax Analyzer

!

Interpreter

v

Destination Language
Converter

v

Destination Specific
Optimizer

!

Optimized Destination
Language Code

Figure 9: Intermediate Code to Source [7]

Their work was done kind of successfully, but with limitation such as “Pointers in C++
cannot be completely represented in Java but can be approximated by using references,
operator”, “Multiple Inheritances: This is impossible to achieve. The only option is to
use interfaces.” The conclusion is very interesting - “Achieving the maximum efficiency
of conversion without compromising the quality of converted system is the
programmers' dream. Even though language conversion might seem to be easy, it is

actually a Herculean task with many different complications.”[7]

Despite of some limitation, this method helps to formulate the approach for the

transformation between state machine dialects.

26

2 Mapping

The semantics of SDL continuous signals and continuous time Stateflow were not
investigated in this study, because the study was primarily oriented for model
development for embedded systems that more typically operate in a discrete time

manner.

2.1 Variable

In SDL one can use either SDL predefined data types or the ASN.1 formalism for
declaring data types. OpenGEODE only supports ASN.1 type definitions. In ASN.1 all
numeric data types get an upper limit and lower limit of allowed values at the time of
declaration. In Stateflow range can be limited by assigning minimum and maximum
value. While converting Stateflow to SDL, the range of the data type itself is to be
assigned. SDL has no global variable. But it is not touching the scope of this study. For
a state machine, read and writes are done on containing block variables. Variables of

other blocks are not relevant here.

2.2 State Machine Initialization

SDL requires an unnamed entry point with a transition to initial state. Also there has to
be a separate state with same identifier as initial state that will work as state definition.
Stateflow requires just an initial (default) transition to initial state for inception of a state
machine. If a Stateflow state machine has events, then it needs the option “Execute
(enter) Chart At Initialization” to be enabled. It is explained in the “Transition” section

below.

Stateflow SDL

Table 2: Initial Transition - Stateflow vs SDL

27

2.3 State

A minimal state looks similar in both Stateflow and SDL. But Stateflow state can have
entry, during and exit actions. Composite and Parallel state is possible in both case.
They are explained below under the headings “Action”, “Composite State” and “Parallel

State”.

Stateflow SDL

ON

Table 3: Basic State - Stateflow vs SDL

2.4 Transition

The most contrasting element is transition. SDL requires an incoming message signal to
enable transition. Stateflow uses guard or event to trigger a transition as well as an event
can be triggered without anything (guard, event). A Stateflow chart can be activated
either by event or input data. An event based Stateflow state machine stay put until it
receives an event. When it receives the first event, it triggers the initial transition. This
event should not be consumed by the initial transition while converting SDL to
Stateflow. Because, it is for a transition other than initial one. In this case “Execute
(enter) Chart At Initialization” option is to be enabled. By default, the first time a chart

wakes up, it executes the default transition paths [41].

SDL message signal can contain more than one parameters. In Stateflow message can
trigger transition but it can contain just one parameter [23]. Therefore, SDL signal can
not be converted to Stateflow message. But, Stateflow messages will be converted to

SDL signal that will have one parameter only.

28

TASTE requires signals to contain at least one parameter. Since, we are simulating SDL

models in TASTE, signal without any message can not be sent.

For converting SDL to stateflow, the message sending needs to be emulated using an
input event. Say, we have a signal “push()” in SDL. It will be converted to an input
event “push”. When the event will be called by outside agent, transition will be
triggered. Event in Stateflow does not carry any argument, therefore, the arguments

have to be converted to input variables.

Stateflow

TYPE NAME PORT

& push 1

OFF push _{ON

i .[]. delwhatever MyString; &
o)

puzh(whatever]l<

Duzh(whatever)<

outmsal off)

outmsal'on’)

Table 4: Transition - Stateflow vs SDL

29

2.4.1 Transition Order

Each transition in Stateflow has a value for transition execution order. SDL does not
store such value and it does not have this concept. SDL has decision branches. These
branches are mutually exclusive, overlapping conditions are not allowed. Such as if a
decision has two branches with “x>5” and “ELSE”, then another branch “x=6" can not
be added, because last one is overlapping with first one. But, Stateflow can have two
transition with “x>5” and “x=6" sourcing from same state. Therefore, conversion of
Stateflow transition order into SDL decision branch require implementation of complex

algorithm. This study is not digging that much.

2.5 Guard

2.5.1 Stateflow Guard

To convert a Stateflow guard to SDL, firstly have to convert the input variables to the
parameters of of incoming signal. An input signal will be a created to intake all the input
variables, as “get_data(x)” in the example. There will be an extra transition per state
machine that will start from initial state and go to initial state. It will be triggered by the
input variable intake signal. Secondly, we have to create a input signal to check the
value of the variable, as “check(whatever)” in the example. Because, dislike Stateflow,
SDL can not trigger transition without input signal. Finally, have to place “decision” as
a replacement of guard condition. Each transition with a variable will have a “decision”

branch of this variable.

Stateflow to SDL

Stateflow

30

SDL
51 del x MyReal,
del whatewer MySkring;

checkl{whateuerj< 51

=

Gesn>
gek_dataix) <
(true) (ELse)

Table 5: Conversion of Stateflow Guard to SDL

2.5.2 SDL Decision of Signal Parameter
For the other direction, SDL to stateflow, first part of a transition, input signal will be
converted to input event and value checking (of the parameter of the signal itself) will

be converted to a guard that checks the value of the corresponding input variable.

31

SDL to Stateflow

SDL

- o

del x MyReal, Ill

a(x) del star MyReal;

Stateflow
[e[in_x > 9]
{x=In_x,
St star = x} S2

in_x is a double type input variable.

x is a double type local variable.

star is output variable.

Table 6: Conversion of SDL Guard to Stateflow

Each branch of the decision symbol in SDL will be converted to a transition in

Stateflow. ELSE in SDL covers all other possible values. Covering all possible values is

32

compulsory in SDL, otherwise SDL will give error. There can be many branches along
with ELSE branch in SDL. For converting ELSE, a transition will be used that will have
the highest execution order. Because, it has to be triggered only when all other guard
conditions are false. But, when the destination of this ELSE transition and the source
are same state, it will not be converted to Stateflow transition. In this case number of
transition in Stateflow will be number of decision branches minus one. Secondly, the
value must be saved because in Stateflow value of input variable can change before
occurrence of next event. This is not possible in SDL. For the sake of intuitiveness,
local variable name will be same as SDL signal parameter name but the input variable
will be in_[variable name]. Local variable will be used for all further read and write
purpose until an event brings new value. When an event brings new value, the local

variable will be written and get continued.

2.5.3 SDL Signal

When in SDL transition is not checking the value of the argument, no need check the
value of the corresponding input variable in Stateflow. But the value must be saved
because in Stateflow value of input variable can change before occurrence of next event

that is not possible in SDL.

SDL to Stateflow

SDL Stateflow

51

52

delx MyReal;

Hialo

T
L — L

X is a double type local variable.

33

in_x is a double type input variable.

Table 7: Conversion of SDL Event Based Transition to Stateflow

2.5.4 Stateflow Event and Parameterless SDL Signal
This is the simplest case, similar to transition conversion, a Stateflow transition with
just an event will be converted to just a SDL signal. Same for SDL to Stateflow, a signal

without any parameter will be converted to an event.

Bidirectional

Stateflow SDL

elwhaktever)

del whaktever MyString; j

Since, TASTE does not work with signal without
parameter, “whatever” used as a parameter
placeholder, e(whatever) instead of e().

Table 8: Bidirectional Conversion of Parameterless Event Triggered Transition

2.6 Output Signal/Event

SDL output signal is equivalent to Stateflow output event when it has not parameter. In
SDL it can have any number of parameter. This parameters will be converted to output

parameters.

2.7 Messages

Stateflow message is very similar to SDL signal, but it can have only one parameter. So,
Stateflow receiving message will be converted to SDL input signal with a parameter and

Stateflow message sending will be converted to SDL output signal with a parameter.

34

2.8 Action/Task

2.8.1 Entry Action

A Stateflow state can have assignment/task on entry of that state. This entry actions will
be converted to SDL task and will be placed just before the state. It sounds wrong,
because assignment will be done first, then the state will be reached. But in SDL

nothing can happen other than going into connecting state. Therefore, it will work.

Stateflow to SDL

o
=

entry: x =2

Table 9: Conversion of Stateflow Entry Action to SDL

2.8.2 During Action

During actions are executed when a state is active, an event occurs, and no valid
transition to another state is available [35]. A During action will be converted to SDL
task and will be placed just before state. This state will not have any outgoing transition.
Since, the task is just before the state nothing can happen between the task and state

other than getting in the state. Therefore, it will give same behavior.

Stateflow to SDL

-'53 a

b push(whatever)<

(54
during: x =4

Table 10: Conversion of Stateflow During Action to SDL

35

2.8.3 EXxit Action

Exit actions will be converted to SDL task and will be placed just after input signal
connected to the state. On getting an incoming message state can be exited, so exit
actions will be placed just after catching the incoming message. It has to be done for

each of the state exiting input signal.

Stateflow to SDL

Stateflow SDL

(52
exit:x=23

b push(whatever]l<

Table 11: Conversion of Stateflow Exit Action to SDL
For better understanding, a complete Stateflow state machine with Entry, During and

Exit actions is converted to SDL state machine.

Stateflow

push (54

{ ext: x =3 - o during: x = 4

SDL

36

delwhatewver MyString;
delxT_Int32;

ZEl

10
e
l
.

=2 push(whatever< push(; whatever tap(whatever Dushl[whatever]l<

ouk_msg(x) W=3 =3 oub_msg(x)
out_msa(x) out_msa(x) %

55

“

1]
I

54

'
w

Table 12: Stateflow Actions Converted to SDL - Complete State Machine

2.8.4 Task
Tasks are placed in task symbol in SDL that is curly bracket in Stateflow.

Bidirectional

Stateflow SDL

[a=40}

Table 13: Bidirectional Conversion of Stateflow Assignment and SDL Task

2.9 Procedure

Procedure is used in SDL to group a sequence of instruction. The counterpart of
procedure in Stateflow is Graphical function. These two contains mappable
components. Some components are already discussed that are also available in a SDL

procedure such as “Decision”, “Task” and mappings for this components will remain

37

same. Some components are exclusively for SDL Procedure such as “ProcedureStart”

maps to “Default transition”, “ProcedureStop” maps to “Junction”.

SDL

delx T Int32;
dely T_Int32;

(true) (EL|5E)
Fodo | |

yi=1 y:=0
Fodo ‘ out_msaly) | |
uut_msglf:,r}l> Dut_msglf:,r}>
Stateflow
51 function fodo
hi x=8]{y=1] .
[w o)
2
e{fodo)
Y= D}
S2
frf"\

Table 14: SDL Procedure and Stateflow Graphical Function

38

2.10 Procedure Call

Almost similar to task, procedure calls are placed in ProcedureCall symbol in SDL that

is curly bracket in Stateflow.

2.11 Composite State

Variables declared in parent is available in sub-state in SDL. Pointing to an exit point
using return statement (exit symbol), for at least once is compulsory for SDL nested
state. It is also the way to define a transition from inner state to outer state. Exit symbol
without a label means the default exit to outer state. To make a transition from outer
state to inner state, an entry point is required. This entry point connects to the
destination state. Transition from outer state points to this entry point (using “via”

keyword). Entry point without label works as initialization.

S H‘u_ delw MyString;
- OFF 5 A [SERWCEJ timert;

---------- dellength MyReal;

OFF
Switch_un(w]l< R :
| t on i
e B
out_msg('On" |
_L gwitch_grﬂwj< troubleshoot
{ on |

--------- 0ut_m5g|{'OFF']l> Uut_mSQK'FﬁULT‘f':'>

OFF

reskart(w)

out_msg({'READY in ON']I>

Figure 10: First Level of SDL State Machine With Nested State

39

Composite state use “Connect” that allows inner to outer transition in SDL. In this

example “troubleshoot” is the connect statement that is used on “fail” signal to move

from “RECORDING” state to “FAULTY” state. Stateflow it is direct and simpler to

connect inner state to outer state.

exit

(READY J (RECORDING) (PAUSED) entry

REALDY

start_recording(w]l<

out_msg('RECORDING'}>

RECORDIMNG

RECORDIMG

RECORDING

stop_recording(w)<

out_msg('PAUSED']l>

out_msg('RECORDING')>

out_msg('READ‘(‘)>

PALISED

RECORDING

out_msal'going out of ON')>

RECORDIMNG
PALSED

stop_recording(w)<

out_msal'READY")

REALY

Figure 11: Nested State "ON" of The SDL State Machine Above

40

activate B

switch_on

switch_off

-

ﬁ

(ON A
entryzo =1
ry start_recording
=~ RECORDING
entry:0=7
3
7 stop_recording
II
\
\ 2
fall St
1 pause
tol ding
stop_recording resume 1
g o

Figure 12: Same State Machine in Stateflow

41

2.12 Parallel State
In Stateflow parallel state is defined by selecting decomposition of an state to “AND”
that is by default “OR”. In SDL parallel state is just two or more nested state inside a

nested state without initial transition.

o
511 . ,
] 2
- ﬂ =~ ¥ 1:: -
/811 y 512)
L (s P S121 i
Il'x. ..-r"‘ I'\-_‘ _._/'I
p A

Figure 13: Stateflow Parallel States

Table 15: SDL Parallel States

42

51
f” 511 N
))
4 512 N
)
y,

Figure 14: SDL State Chart View of Parallel States

43

2.13 Temporal Logic

2.13.1 After

Bidirectional

Ctntnflax.s

after(2, sec) | READY

SDL

WAIT TICEING READY
TICKING

sdlbmr

WAIT
delwhatever T_Boolean;

sl

timer sdlcmr;
inputmsg(whatever)<

set_timer(2000, sdltmr)

|

TICEING

i

In stateflow, if WAIT state has other outgoing transition that can trigger during this 2 seconds then
ticking state has to have that transition as well. This case is not considered in this mapping.

Figure 15: Conversion of Stateflow Temoral Logic After to SDL

44

2.13.2 Duration

Stateflow
' [duration(someval == 3) = §]
WAIT =f READY
entry: isReady=false entry: isReady=true
SO 'd Ly
SDL

H . B

timer sdltmr;
- (WAIT) [TICKINGJ [READY)
delsomeval T_Int32;
WAIT
inputmsg(somevaL)< TICKING

@ inputmsg(someua[)< detmr<
[| outputmsg(' READY")
{wmamn) (Ese) @

set tlmer(SUUU sdltme) outputmsg(wA|T)>(3 (Eese)

outputmsag(TICKING)> WAIT TICKING resekt_timer(sdltmr)
TICKING outputmsg(WAIT')

Figure 16: Conversion of Stateflow Temoral Logic Duration to SDL

2.13.3 Timer

SDL timer is a simple timer that can be set and reset. It is a service available in SDL
design and simulation package such as TASTE. To convert this timer to Stateflow an
external timer service has to be used. Also easy to create a timer state machine to help

getting value and making guard on this value.

45

2.14 Limitations
All the discussion so far is about what is possible. But easy to bump on a state machine

that is way too difficult to convert. Secondly, TASTE has some limitation. For example

= [f a Stateflow transition triggered by both variable value guard and an event then

it a bit difficult to convert.

= SDL can have parameterless signal but TASTE does not work with

parameterless signal, it requires at least one parameter for each interface.

= SDL signal can have more than one parameter but TASTE does not work with

more than one parameter for sporadic interface that generates the SDL input

signals for OpenGEODE.

» In entry and exit procedure of nested state “output” signal does not work with

TASTE.

= Qutput signal between entry point (both named and unnamed) and connecting

state does not work with TASTE.

= History concept is not available in TASTE. History means saving status of a
composite state and resume from this saved status next time this composite state
get activated. In Stateflow it is done by the symbol “H” with a circle around.
This feature in not available in OpenGEODE, although in SDL a similar concept

called “save” exists.

46

3 Validation of Mappings

Behavioral comparison of the converted state machines and the original state machines
can testify the correctness of the mappings. First a SDL state machine of Automated
Teller Machine (ATM) is converted to Stateflow. Then they are simulated and their
behavior is compared to check if they behave same. This SDL machine is a slight
extension of the state machine described by Birger et al in their work “Scalable and

Object Oriented SDL State(chart)s.” [4]

Secondly, a Stateflow coffee machine is converted to SDL and checked for behavioral

similarity.

3.1 SDL to Stateflow

The main behavior of this state machine is to represent a ATM. Once a card entered,
First it verifies the card, then reads the amount to transact. If the amount is valid, it
makes the transaction, otherwise shows “Limit exceeded” and take the amount again.

Anytime, it aborted. Also it can become out of service anytime.

del account MyString;
del amount Amount;
delw MyString;

VERIFYING_CARD

del num Mum; WERIFYING_CARD
! READ_AMOUNT }
----------------- accept_card(account)<
(VERIFYING_TRANSACTION) |
‘ out_msa{'READ_AMOUNT')
CARD_RELEASED e

{ READ_AMOUNT !

LT 2 S | 5 T 5 R 5 5 5 5 5 0 0 8 5 5 5 0 5 5 O R A B e = - o o e

aborted out_of_service(w)
| transaction{amount) } | eject_card(") > out_msg('OUT_OF_SER\.-’ICE')>

0ut_msg('VERIFYING_TRANSACTION')> \ ,
out_msa('CARD_RELEASED')
|

(VERIFYING_TRANSACTION)
CARD_RELEASED
|

OUT_OF_SERVICE

reject_transaction(w)< | transaction_succeseeded(w)<
ject_card(™)

|
‘ display('Limit exceeded’)
|

out_msg(CARD_RELEASED')

out_msg('READ_AIvlOUNT—»reenter')>
|

(READ_AMOCUNT wia reenter) CARD_RELEASED

Figure 17: ATM SDL State Machine

47

It has a nested state (or composite state) READ_AMOUNT that encapsulates the logics

for getting the amount to transact for cashing out from bank account.

(AMOUNT_SELECTION) { EMTER_AMOLUNT i

@ abork_oukblw)

display('Select amu:uunl:'}>

out_ms g(AMOUNT_SELECTION') >

J
(Nu':IDUNT_SELECTIDN)
I
' ' nt amit
amnunt[amnunt)< u:uther_amu:uunt[w}<

® ntr_okrf amt

display(Enter amu:uunl:'}>

amount=0

out_msg('ENTER_AMOUNT) >

ENTER_AMOUNT

amounk:=amount * 0=num 'z‘
|

out_msg({'ENTER_AMOUNT) >
I

EMTER_AMOUNT

Figure 18: Nested State READ_AMOUNT of ATM SDL State Machine

It’s behavior has been tested using Message Sequence Chart (MSC). Here is a happy

path being discussed and others are placed in annex. This MSC shows that amount is

48

taken three times, 5000, 500 and 50. For 5000 and 500 transaction rejected, finally for
50 transaction is successful. Amount 500 and 50 is entered using digit press and 5000

by amount button.

gui TASTE_System
accept_card(™)
A >
display("Select amount")
- play’
- out_msg("READ_AMOUNT")
amount(5000)
-
transaction(5000)
-}
< out_msgl"vERIFYING_TRANSACTION")
reject_transaction(")
g
display("Limit exceeded"}
- play
- out_msgl"READ_AMOUNT->reenter")
digit(5)
J -
< out_msg("ENTER_AMOUNT")
digit(0)
g >
< out_msgl"ENTER_AMOUNT"}
digit(0)
E >
- out_msgl"ENTER_AMOUNT")
CIk':"":'
-
transaction(500)
-}
- out_msgl"™/ERIFYING_TRANSACTION")
reject_transaction(")
g
display("Limit exceedead")
- play
- out_msgl"READ_AMOUNT->reenter")
digit(5)
g o
out_msg("ENTER_AMOUNT")
-}
Okt"")
-
transaction(5)
-l
< out_msgl"vERIFYING_TRANSACTION")
transaction_succeseeded("")
o
eject_card(")
- |ect_
< out_msg("CARD_RELEASED")

Figure 19: MSC of A Happy Path of ATM SDL State Machine

49

TASTE does not show output signal in MSC that is between entry point (named and
unnamed) and immediate next state. Therefore, “ENTER_AMOUNT” after “reenter”,
display(‘Select amount’) and out_msg(‘AMOUNT_SELECTION’) on initial transition

are missing.

To convert this SDL state-machine to Stateflow, first the states are placed. Once states
are in place including sub-states, it looks like getting the shape. Secondly, declaring the
variables and events. An event for each signal and two variable for each input signal
parameter. One of intaking data and the other one for saving data when the event
triggers. But no variable to declare for output signal parameter, because they are using

variable that is already available. Finally, converting the transitions by applying the

mappings.
»
lactivate, activeVA)
after(1, sec
|-\. .-\.- 5
.aﬂer.l s8C) after(i. sec. .
e 0 nt;=h-uuu [reject_transaction} af er(1, sec
Aeeaun =E‘:‘:E': amount) wm=0
' | -::|; i)
56
after(1. sec
af er| 1 sec "LI"' 0
after(1. s
- . .
. afer 1]
after(1. s& reject_transactic

{transaction_succeeded

Figure 20: State Machine to Create the Same Sequence of Signal
Though Simulink work differently and it does not facilitate MSC tracing, a simple trick
is applied to simulate the same sequence of signal/event calling. A state machine is
created to repeat the sequence and some information is printed out to make the

execution order exportable and comparable.

50

activate

ERIFYING_CARD
entry: fprintf('VERIFYING_CARD')

accept_card
{account_=account;
fprintfi’accept_card ->")}

¥
READ_AMOUNT ™
entry: fprintffREAD_AMOUNT")
{display_=1; display,
fprintf('<- display - Select amount'’)}
AMOUNT_SELECTION
| —1 entry: fprintf' AMOUNT_SELECTION") 3.
2 other_amount \
{amount2_=0; \
fprintf{"other_amount ->")}
1~ |
L [o
/ ENTER_AMOUNT Cagh - % >, num) |
: fprintf{'ENTER_AMOUNT : e -
/ entry: fprint{ -) amount2_=amount2_*10+num_:} III
i'll
]

3 2 /
| S . ~ 4 |
| amount out_of _service
| {transaction, iect t i {fprintf{"abort_gut ->7

mount2_=amount2; rz!ecl_ rane;g,.dlsnl)
rintf{'amount - %d ->', amount2}, Lr:ffu?r_f__?:- D.'. i /
fArintfi’<- t ction’) i \
Ryinti{<- transaction’)} fprintf{"reject_transaction -»") | /
ok fprintf{"<- display - Limit exceeded’)} |
(transaction -

fprintf('<- transaction’)} 4
J

VERIFYING_TRANSACTION
entry: fprintf{" VERIFYING_TRANSACTION')

2
abort_out
{fprintf("abort_ou

>

transaction_succeeded
{eject_card
fprintf{‘transaction_succeeded ->')

fprintf{'<- eject_card'))
7

OUT_OF_SERVICE
entry: fprintf({OUT_OF_SERVICE))

CARD_RELEASED
entry: fprintfi{CARD_RELEASED) —

Figure 21: ATM State Machine Transformed in Stateflow

Events and states are printed while the ATM machine is simulated in diagnostic view.

Below is the print outs of the diagnostic view. It shows only the lines printed by fprintf()

51

and other lines are excluded to make it easy to read. Finally, behavior of ATM state-

machine in SDL and Stateflow is ready to put in contrast.

VERIFYING_CARD 14

accept_card -> 14

READ_AMOUNT 11

<- display - Select amount 26

AMOUNT_SELECTION 16

amount - 5000 -> 16

<-transaction - 5000 21

VERIFYING_TRANSACTION 21

reject_transaction -> 21

<- display - Limit exceeded 27

READ_AMOUNT 11

ENTER_AMOUNT 12

digit-5-> 12

ENTER_AMOUNT 12

digit-0-> 12

ENTER_AMOUNT 12

digit-0-> 12

ENTER_AMOUNT 12

ok-> 5

<- transaction - 500 20

VERIFYING_TRANSACTION 21

reject_transaction -> 21

<- display - Limit exceeded 27

READ_AMOUNT 11

ENTER_AMOUNT 12

digit-5-> 12

ENTER_AMOUNT 12

52

ok-> 5

<-transaction-5 18

VERIFYING_TRANSACTION 21

transaction_succeeded -> 24

<-eject_card 13

CARD_RELEASED 13

Table 16: Lines Printed in Diagnostic View by Stateflow ATM

Comparison of the sequence of these printed lines of Stateflow and MSC of SDL,

proves that these two state-machines are behaving same.

3.2 Stateflow to SDL

An event based state is the ideal situation for using this mapping. An example such as

the example below is easily convertible using the mapping discussed earlier.

VerifyCard
acceptCard{account)

ReadAmount W

(W\ \SelectAm nunt_/;-__jﬂ'f_ R"““W
Service | '

Amount | otheramount Card
arutﬂ'l'SBrviT:a

{amount)

EnterAmount

l rejectTransaction

@urifyTransactiunjj

e

Figure 22: State machine show basic function of a ATM [4]

Guard based Stateflow state machines are more difficult to convert than SDL state

machine. A coffee machine state machine is considered for conversion. This state

53

machine has not event, it is completely input and output variable based (these input

variables can change anytime). Also this state machine wakes up without any event call.

1}

OF [water >= 100] /ON M
entry: | o entry:
coffes = 0; L water_tmpr = init_tmpr;
water = init_water [water < 100]
o - Waler < 1Uu after(1, sec)
fprintf{'OFF) (fprintiHEATING),
fprintf{’<- water_tmpr - %', water_tmpr}}
}:n:ri-‘:‘-j'HEATNG' I} ——
S —— i '.r. \
HEATING \
entry: water_tmpr = water_tmpr + 10;
2
|
[water_tmpr >=100]
{fprintf’ FILLING_CARAFE")}
after(1, sec)
STANDBY ,f':-'ni_f:l'FILLING_{:rf‘E:AFE_':. .
fprintf("<- coffee - %d', coffee))
™
f l'll v
[(FILLING_CARAFE
exit: water=water-20;
2| coffee=coffee+20;
Srir—
|
[
1 [coffee==100]
A _ {fprintf{' BEERPING'),
, after(3, sec) _ fprintf('<- coffee - %d', coffes)
\":""”1f':'3T"’"NDBY'3.= fprintf{'<- water - %d', water)]
S y V= : 1 =
BEEPING
'“"x_,__
\ v

Figure 23: Stateflow Coffee Machine

This coffee machine does two things heat up the water to 100 degree with coffee and
sugar, then pour 100 cc coffee in a carafe. It also keep tracks how much water remains
in water pot and get turned off when water is less than 100 cc. To make a textual

presentation of its behavior, meaningful messages printed on diagnostic view.

54

water =1400

OFF 3
HEATING 7
HEATING 7

<- water_tmpr-95 18

FILLING_CARAFE 14

FILLING_CARAFE 14

<- coffee-0 13

FILLING_CARAFE 14

<- coffee-20 14

FILLING_CARAFE 14

<- coffee -40 14

FILLING_CARAFE 14

<- coffee -60 14

FILLING_CARAFE 14

<- coffee -80 14

BEEPING 7

<- coffee - 100 15

<-water - 1300 15

STANDBY 7

Table 17: Print out in Diagnostic View of Stateflow Coffee Machine

After converting to SDL state machine it looks quite long because of the way of
presentation. Specially, the nested state state has to be displayed in different view that

gives SDL a complexer look.

55

OFF

get_init_water(init_water)<

coffee:=0,

water=init_water

out_msagl'OFF")

wakter=100

ouk msgl[ON}l> ouk msgl[OFF

(EL;SE)

out_msg{'OFF'}>

out_msg('ON'}>

Figure 25:

{---- CELTS
o Y
1

i '
[O)
. £

get_init_tmpr(init_tmpr}(

water_tmpr=init_tmpr

out_msg('oOn")

SDL Coffee Machine Part 2/5

56

timer tmr;

timer tmri;
timer tmr2;
timer tmr3;

delinit_tmprT_Int32;
delinit_water T_Int32;
delwater T_Ink32;
delwater_tmprT_Int32;
del coffee T INE32;

delw MyString;
G y
OFF I on)
L o4
STAMNDBY

A H‘I

LooN

e e e El

to_standby

out_msg('SI'ANDBY'}>

STAMDEY

(HEATING) (FEELING_CARAFE) - TICKING BEEPING
HEATING

TICKING
For_water_tmpr(w}l< -
. Emrl
yater_tmpr== 10> set_timer(1000, Emr1)
|

out msg('TICKING')> water_tmpr=water_tmpr+10

(true) (EL'SE) |

| | TICKING 0ut_msg('HEATING')>
out_msg('FEELING_CARAFE')> 0ut_msg('HEATING')>

HEATING
FEELING_CARAFE HEATING

Figure 26: SDL Coffee Machine Part 3/5

FEELING_CARAFE
]
for_coffee(w) for_ticking(w) < TICKING

water=water-20, water=water-20, tmrz
coffee=coffee+20 coffee=coffee+20

Coffees=100 SEt_til‘l‘lEr(']UUU, tmrz) 0ut_msg('FEELING_CARAFE')>

(I:rll.le) it EL|SE)

FEELING_CARAFE

out_msa(TICKING")

TICKING

0ut_msg('BEEF’ING')> out_msg('FEELING_CARAFE')>

BEEPIMG FEELING_CARAFE

Figure 27: SDL Coffee Machine Part 4/5

57

BEEFING
TICEING

Fcr_ticking(wjl<

set_timer(3000, tmr3)

|
nut_msg('TICKING')>

i

tmr3

c:ut_msgl{'EI'ANDB‘r"]l>

Eo by

TICKIMNG

i

Figure 28: SDL Coffee Machine Part 5/5

SDL transitions can not trigger without input signal (an event or continuous signal).
Continuous signals were not considered in the current study. Therefore, to run a SDL
state machine, another agent is required to send an input event as a complementary. By
the means of TASTE Graphical User Interface (GUI) signals has been sent. This signals

are sent in sequence that results in a comparable MSC.

58

gui TASTE Systermn
for_ticking(") >
< out_msgl"TICKING")
for_ticking(") >
< out_msg("HEATING")
for_water_tmpr{") >
< out_msg("HEATING")
for_ticking(") >
< out_msgl"TICKING")
< out_msg("HEATING")
for_water_trpr("™) >
< out_msg("FEELING CARAFE")
for_ticking(") >
< out_msg("TICKING")
< out_msg("FEELING CARAFE")
for_ticking(") >
< out_msg("TICKING")
< out_msg("FEELING_CARAFE")
for_ticking(") >
< out_msgl"TICKING")
< out_msg("FEELING_CARAFE")
for_ticking(") >
< out_msgl"TICKING")
< out_msg("FEELING CARAFE")
for_ticking(") >
< out_msg("TICKING")

Figure 29: MSC of SDL Coffee Maching Part 1/2

59

< out_msg("FEELING_CARAFE")
for_coffes(")
-
out_msg("BEEPING")
< _msg
for_ticking("™)
_ g >
out_msg("TICKING")
< _msg
out_msgl("STANDEY")
-
]
|

Figure 30: MSC of SDL Coffee Maching Part 2/2

The SDL MSC looks longer than the number of lines printed in Stateflow diagnostic
view, because SDL state machine requires more signals to send to trigger transitions.
For example to simulate temporal logic “for_ticking()” has to be sent many times, that
is never required in Stateflow. The way of interaction is different because of the
difference of the definitive characteristics of the two formalisms. This comparison

clearly reveals that the behavior of the coffee machine in Stateflow and SDL is same.

3.3 Inner vs Outer Transition Inconsistency Issue

Stateflow provides higher priority for outer transition over inner transition [30]. On the
other hand, SDL editor OpenGEODE gives error while adding such an overlapping
transition. If an input signal is placed for inner state to outer state then it will not allow
to add same input signal to be placed for the parent state to any outer state. In the ATM
example, if a transition is added from “READ_AMOUNT” to “CARD_RELEASED”
using signal “abort_out(w)” OpenGEODE gives error. Therefore, this study did not face
any problem of transition inconsistency upon conversion that was described by Danial

etalin[1].

60

4 Guidelines for Automatic Model Transformation

The basic idea is to convert both SDL and Stateflow state machine to a data structure
that is preferably easy to parse and convert into any of these two. For example, for
converting a SDL to Stateflow, firstly, SDL state machine will be converted to a
structured data, then this data will be converted to a Stateflow state machine. So, it is
very important to define a data structure that is simple but complete and extensible. It is
foreseeable that having a bit human readable and programatically easy to handle data

structure can bring a big success in terms of popularity.

4.1 Data Structure

JavaScript Object Notation (JSON) is the formate of choice because of it’s simplicity,
popularity and the support by a wide range of programming language for parsing and
generating. Matlab has jsonencode() to create and jsondecode() to import JSON. In the
proposed implementation of the mapping one file will contain one state machine and
will contain the state machine features in a list structure. The first level will include
variables, events, states and transitions. The second, level will include their

specifications.

"variables": {
"<variable identifier>": {

"scope": "<input/output/local>",
“type": "<boolean/integer/double/string>",
"initial value": "<null/value>",
"min": <null/value>,
"max": <null/value>
b
I
"events": {
"<event identifier>": {
"scope": "<input/output/local>",
"parameters": <null/[variable identifier, ...]>
I
b

61

"messages": {
"<message identifier>": {
"scope": "<input/output/local>",
"type": "<boolean/integer/double/string>"

b
}
"states": {
"<state identifier>": {
"type": "<basic/composite/composite+parallel>",
"parent": "<null/state identifier>",
"entry": "<null/state identifier>",
"during": "<null/state identifier>",
"exit": "<null/state identifier>"
}
b

"transitions": {
"<lsourseless!/state identifier]": [

{

"destination": "<state identifier>",

"order": <integer value>,

"trigger type": "<null/event/guard/event+guard>",

"event": "<null/event identifier>",

"guard": "<null/guard expression for truthy
checking>",

"action": "assign all input variable to output
variable such as x = x while converting SDL to Stateflow",

“contents": [

{"input_event":["<event identifier>", "<variable

identifier of first parameter>", "<variable identifier of
second parameter>" 1]},

{"action":"water=water+100"},

{"output _event":["<event identifier>", "<variable
identifier of first parameter>", "<variable identifier of
second parameter>" 1},

{"procedure call": "<call expression>"}
]
I

Figure 31: Intermediary Data Structure

62

An example of the data structure is given in the appendix. Rules to be maintained for

this data structure are:-

= Events are not allowed use input variables as parameter

= [Initial value of input variables must be null

= Variable type must be a data type

= Parent of a sub state must be a composite or parallel state

= Transition “trigger_type” can be "event" or "guard" or "event+guard"

4.2 Algorithms for Implementing The Mappings
Though, state machines will be saved in an intermediary data structure, for a

transformation two algorithms are required. Giving a total of four algorithms -

= For converting a Stateflow to SDL

1 Stateflow state machine to the JSON formated state machine

2 JSON formated state machine to SDL state machne

= For converting a SDL to Stateflow

3 SDL state machine to the JSON formated state machine

4 JSON formated state machine to Stateflow state machine

4.2.1 Algorithm for Stateflow to JSON
Stateflow state machine is readable in Stateflow API. It has a tree structure. [14][15]

But, objects of same type are accessible in an array. [13]

Part 1. Getting handle

h = load system(‘file name.slx’);

rt = sfroot

m= rt.find('-isa', 'Stateflow.Model');
ch = m.find('-isa', 'Stateflow.Chart');
sm = {};

Part 2. Reading variables and adding to JSON

63

vs = ch.find('-isa', 'Stateflow.Data')
Loop i=1 To length(vs)
sm.variables.[get(vs[i], ‘name’)] = {
scope: get(vs[i], ‘scope’),
type: get(vs[i], ‘type’),
initial value: get(vs[i], ‘initial value’),
min: get(vs[i], ‘min’"),
max: get(vs[i], ‘max’)
}
End Loop

Part 3. Reading events and adding to JSON

es = ch.find('-isa', 'Stateflow.Event')
Loop i=1 To length(es)
sm.events.[get(es[i], ‘name’)] = {
scope: get(es[i], ‘scope’),
parameters: null

}
End Loop

Part 4. Reading messages and adding to JSON

ms = ch.find('-isa', 'Stateflow.Event')
Loop i=1 To length(es)
sm.messages. [get(ms[i], ‘name’)] = {
scope: get(ms[i], ‘Scope’),
type: deduce from ms[i]

}
End Loop

Part 5. Reading states and adding to JSON

ss = ch.find('-isa', 'Stateflow.State"')
stype = “basic”;
sparent = null;
Loop i=1 To length(ss)
If (ss[i].up is a state) Then
parent = get(ss[i], ‘name’)

Else
sparent = null

End If

If (length(ss.find('-isa', 'Stateflow.State','-depth',1))>0) Then
stype = “composite”

End If

If (get(ss[i], ‘Decomposition’) is “PARALLEL AND"”) Then
stype = stype + “parallel”
End If

64

sm.states.[get(ss[i], ‘name’)] = {
type: stype,
parent: sparent

}
End Loop

Part 6. Reading transitions and adding to JSON

ts = ch.find('-isa', 'Stateflow.Transition')
Loop i=1 To length(ts)
sm.transitions = []
sm.transitions.push({
source: get(get(ts[i], ‘Source’), ‘Name’) If Not null,
destination: get(get(ts[i], ‘Destination’), ‘Name’),
order: get(ts[i], ‘ExecutionOrder’)
contents: {
input_event: truncate ts[i].LabelString using regular expression
action: truncate ts[i].LabelString using regular expression
output_event: truncate ts[i].LabelString using regular expression
procedure_call: truncate ts[i].LabelString using regular expression

})
End Loop

Part 7. Writing json file

write the return of jsonencode(sm) to a file.

Figure 32: Algorithm for Stateflow to JSON

4.2.2 Algorithm for JSON to SDL
To create SDL state machine to use with OpenGEODE, the .pr has to be produced. To
generate .pr a programming language will be used, that will read the JSON and write the

file. Algorithm below gives the logics for getting SDL out of JSON.

Part 1. Read JSON file into object

jsm = jsondecode(content of the JSON file);
sd‘L = an

Part 2. Reading variables and adding to a dataview-unig.asn file

type - an

Loop i=1 To length(jsm.variables) as {key:v}
type += “convert v to asn variable /n”
Format Example

65

“Num ::= INTEGER (0..9)”
End Loop

Part 3. Reading events and input variables and write in
system structure.pr file

sys = “USE Datamodel;\n
SYSTEM atm;\n”
incom = []
outgo []
Loop i=1 To length(jsm.events) as {key:e}
sys += “convert to consistent format for system structure file”
Format example
“/* CIF Keep Specific Geode PARAMNAMES account */
SIGNAL accept card (MyString);”

If (e.scope == “input”) Then
incom.push(key)
End If
If (e.scope == “output”) Then
outgo.push(key)
End If
End Loop
Loop i=1 To length(jsm.variables) as {key:v}
If (e.scope == “input”) Then

type += “create signals for input variables
such get x(x) for input variable x /n”
incom.push(“get variable identifier”)
End If
End Loop
sys += “write CHANNEL with specifying signal definition by
concatinating incom and outgo”
sys += “write BLOCK with specifying signal definition by
concatinating incom and outgo”

sys += “ENDSYSTEM;"”

Part 5. Reading transitions and adding to chart

sdl += “process some name;"”
Recursive Function transition converter(node)
Loop i=1 To length(jsm.states) as key:s
If (jsm.states[i].parent == node) Then
If (Is a destination in jsm.events.”!sourceless!”) Then
sdl += “START;\n”
sdl += “NEXTSTATE state name;\n”
sdl += “START;\n”
End If
If (jsm.states[i].type contain “composite”) Then
sdl += “substructure \n”
transition converter(jsm.states[i])

66

sdl += “endsubstructure; \n”
End If
Loop i=1 To length(jsm.transitions.”key"”)
Convert jsm.transitions.”key”[i]
Add its input event
Add its contents - output, task
Add destination
End Loop
End If
End Loop
End Recursive Function
transition converter(null)

N.B. SDL keeps transitions between inner and outer states in a
splitted form, but JSON has them in single transition, these have to
be splitted.

Part 6. Saving sdl to file

Figure 33: Algorithm for JSON to SDL

4.2.3 Algorithm for SDL to JSON

SDL can be read by parsing .pr file saved in OpenGEODE. It contains state machine in
a tree structure. OpenGEODE provides code generation facility based on custom
template. Using this feature .pr file should be converted to a easily parseable formate,
such as JSON. Then using a programming language this JSON formate of .pr has to be
read into an abject. So, the object, where the SDL will be read in, will have the same
tree structure as .pr file. By the means of this object and a programming language the
intermediary JSON file is to be generated. Below is the algorithm for generating this
intermediary file. Also possible is reading the .pr file line by line in a programming

language and creating the object for further processing.

Part 1. Read .pr file into an object

sdl = SDL state machine
sm = {}

Part 2. Read in data types into a separate array
Convert dataview-unig.asn to JSON format using String Template

jdt = jsondecode(content of converted dataview-uniq)

Part 3. Convert variables into JSON

67

Recursive Function var converter(node)
Loop i=1 To length(node)
If (type of(node[i]) == variable) Then
sm.variables.”node[i].variable name” = {
scope: "output",
type: find in jdt,
initial value: null,
min: find in jdt,
max: find in jdt
}
Else (If type of(node[i]) == substructure) Then
var_converter(node[i])
End If
End Loop
End Recursive Function

var_converter(sdl)

Part 4. Convert events into JSON

File system structure.pr contains at least three (while SDL is
simulated in TASTE), 1) list of signals with parameters, 2) list of
input signals, 3) list output signal. These three will be converted
three array — signals, in_sigs, out sigs.

Loop i=1 To length(signals)
sm.events.”signals[i].identifier” = {
scope: “input” if in in sigs, “output” if in out sigs,
parameters: {
Loop param In signals[i].parameters

" n

param + “ ",
sm.variables.”param " = {
same to same sm.variables.”param ”
}
sm.variables.””.scope = “input”
End Loop
}
}
End Loop

Part 5. Convert states into JSON

Recursive Function state converter(node)
Loop i=1 To length(node)
If (type of(node[i]) == state && not in(sm.states)) Then

sm.states.”node[i].state name” = {
type: "basic",
parent:

If type of(node) == state Then

68

"node.state name”
Else null
}
Else (If type of(node[i]) == substructure) Then
sm.states.”node[i].state name” = {
type: "composite",
parent: "node[i].state name”
}
state converter(node[i])
End If
End Loop
End Recursive Function

state converter(sdl)

Part 6. Convert transitions into JSON

fht = {}

lht = {}

sm.transitions = []

Recursive Function transition converter(node)

Loop i=1 To length(node)
If (type of(node[i]) == START) Then
sm.transitions.”!sourseless!”.push({
destination: node[i].NEXTSTATE

}
Else If (type of(node[i]) == state && contain(input)) Then
If(sm.transitions.”node[i].state name” == undefined) Then
sm.transitions.”node[i].state name” = []
End If

Loop j=1 To length(sm.transitions.”node[i].state name”)
input = sm.transitions.”node[i].state name”[j]
et = {
trigger type: “event”
event: node[i].input
guard: node[i].decision
contents: []
}
If (input signal has parameters) Then
assign all input variable to output variable
such as x_ = X
End If
If (input contain decision) Then
ee = et.clone()
et.destination = input.true.NEXTSTATE
et.contents.push(
contents of input.decision.true
)
ee.destination = input.ELSE.NEXTSTATE
ee.contents.push(

69

contents of input.decision.ELSE
)
Else
et.destination = input.NEXTSTATE
et.contents.push(
contents of input
)
sm.transitions.”node[i].state name”.push(et)
End If
End Loop
Else If (type of(node[i]) == substructure) Then
transition converter(node[i])
End If
End Loop
End Recursive Function

transition converter(sdl)

N.B. SDL keeps transitions between inner and outer states in a
splitted form, but JSON has them in single transition, these have to
be joined.

Part 7. Saving JSON to file

Figure 34: Algorithm for SDL to JSON

4.2.4 Algorithm for JSON to Stateflow
By the means of Stateflow API, JSON will get converted to Stateflow.

Part 1. Read JSON file into object and creating handle

jsm = jsondecode(content of the JSON file);

rt = sfroot;
sfnew;

m = rt.find('-isa"', 'Stateflow.Model');
ch = m.find('-isa', 'Stateflow.Chart');

Part 2. Reading variables and adding to chart

chvs []

Loop i=1 To length(jsm.variables) as {key:v}
chvs[i] = Stateflow.Data(ch)
chvs[i] .Name = key
chvs[i].Scope = v.scope
chvs[i]. type = v. type
chvs[i].InitialValue = v.initial value
chvs[i] .Minimum = v.min

70

chvs[i].Maximum = v.max
End Loop

Part 3. Reading events and adding to chart

ches = []

Loop i=1 To length(jsm.events) as {key:e}
ches[i] = Stateflow.Event(ch)
ches[i].Name = key
ches[i].Scope = e.scope

End Loop

Part 4. Reading states and adding to chart

chss []
temp = null
Loop i=1 To length(jsm.states) as {key:s}
If (s.parent != null) Then
temp = ch.find(
'-isa', 'Stateflow.State','-and', 'Name', s.parent
)
chss[i] = Stateflow.State(temp)
chss[i].Name = key
Else
chss[i] = Stateflow.State(ch)
chss[i].Name = key
End If
If (s.type contain “parallel”) Then
chss[i].Decomposition = “PARALLEL_AND"”
End If
End Loop

Part 5. Reading transitions and adding to chart
chts = []

Loop i=1 To length(t)
chts[i] = Stateflow.Transitions(ch)
chts[i].Source = jsm.states.[t.source].inch
chts[i].Destination = jsm.states.[t.destination].inch
chts[i].ExecutionOrder = t.order
chts[i].LabelString = generate from t.compnents

End Loop

Part 6. Saving chart to file

Figure 35: Algorithm for JSON to Stateflow

71

4.3 Prototyping for Demonstration

To demonstrate how to apply the conversion approach a prototype is under
development. It is placed on Github as a public repository
(https://github.com/taheruddin/transformation-stateflow-sdl). It is expected to be ready

very shortly. All the updates from now will be available in the repository.

72

https://github.com/taheruddin/transformation-stateflow-sdl

5 Conclusion

The aim of this work is to find out and validate a possible semantic mapping between
subsets of two state machine modeling languages, Stateflow and SDL. Secondly, to

propose an optimistic approach for the implementation of this mapping.

Both Stateflow and SDL have been studied and the mappings between a substantial
amount of their features are explored. These mappings are simulated using small
representative models to focus on a specific semantic equality that results in same

behavior. This simulation revealed behavioral equality.

Moreover, two case studies have been conducted, ATM and Coffee Machine, to find out
the validity of mappings as well as the quality of the total conversion work. These case
studies show that conversion from SDL to Stateflow (ATM) is easier and more efficient.
Converting input event based state machine from Stateflow to SDL is also a piece of
cake. However, input value based Stateflow state machine is a bit difficult to convert,
but it was successful to produce useful output. These models are placed in the same

Github public repository (https://github.com/taheruddin/transformation-stateflow-sdl).

Next the approach for implementation of these mappings is explained. Firstly, the
source is to be converted to an intermediate JSON data structure, then this data is to be
converted to destination. The structure of this data is very simple and very easy
understand and hopefully, easy to use. This data structure is self explanatory and an

example is also included in the annex.

Four algorithms are provided for implementing the mappings through the intermediate
data structure. Required learning materials are referred. A prototype for demonstrating
the approach is currently under development. It is placed on Github as a public

repository and future updates will be available there.

Finally, it is an honor to be supervised by Andres Toom and Tonu Néks. Their direction

and continuous support made this work possible for me.

73

https://github.com/taheruddin/transformation-stateflow-sdl

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Balasubramanian, Daniel, et al. "Polyglot: modeling and analysis for
multiple statechart formalisms." Proceedings of the 2011
International Symposium on Software Testing and Analysis. ACM,
2011.

Crane, Michelle L. On the Syntax and Semantics of State Machines.
Diss. Queen’s University, 2005.

Rodionov, Dan. “IMPLEMENTING TTU NANOSATELLITE
COMMUNICATION PROTOCOL USING TASTE TOOLSET.” TALLINN
UNIVERSITY OF TECHNOLOGY, 2017.

Mgller-Pedersen, Birger, and Dagbjern Nogva. "Scalable and object
Oriented SDL State (chart) s." Formal Methods for Protocol
Engineering and Distributed Systems. Springer, Boston, MA, 1999. 59-
73.

Grammes, Rudiger, and Reinhard Gotzhein. "SDL Profiles—Formal
Semantics and Tool Support." /nternational Conference on Fundamental
Approaches to Software Engineering. Springer, Berlin, Heidelberg,
2007.

Fischer, Joachim, et al. "SDL-2000: A Language with a Formal
Semantics." Rigorous Object-Oriented Methods. 2000.

George, Dony, et al. "Programming Language Inter-conversion." syntax
1.20 (2010).

Czarnecki, Krzysztof, and Simon Helsen. "Classification of model
transformation approaches." Proceedings of the 2Znd OOPSLA
Workshop on Generative Techniques in the Context of the Model Driven
Architecture. Vol. 45. No. 3. 2003.

Sendall, Shane, and Wojtek Kozaczynski. "Model transformation: The
heart and soul of model-driven software development." [EEE
software 20.5 (2003): 42-45.

Harel, David. "Statecharts: A visual formalism for complex systems."
Science of computer programming 8.3 (1987): 231-274.

Lilius, Johan, and Ivn Porres Paltor. "The semantics of UML state
machines." (1999).

74

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

“Stateflow.” MATLAB & Simulink, The MathWorks, Inc,
www.mathworks.com/products/stateflow.html.

MATLAB Data Acquisition Toolbox User's Guide,
http://files.matlabsite.com/docs/books/matlab-
docs/data_acquisition_toolbox_daqug_r2015a.pdf.

Overview of the Stateflow APl. The MathWorks, Inc, 2018,
se.mathworks.com/help/stateflow/api/overview-of-the-stateflow-api.html.

Stateflow Hierarchy of Objects. The MathWorks, Inc, 2018,
se.mathworks.com/help/stateflow/ug/stateflow-hierarchy-of-
objects.html.

Access the Properties and Methods of Objects. The MathWorks, Inc,
2018, se.mathworks.com/help/stateflow/api/accessing-the-properties-
and-methods-of-objects.html.

Create a MATLAB Script of APl Commands. The MathWorks, Inc, 2018,
se.mathworks.com/help/stateflow/api/creating-a-matlab-script-of-api-
commands.html.

Tutorials Point. MATLAB Tutorial. Tutorials Point, 19 Mar. 2018,
www.tutorialspoint.com/matlab/index.htm.

Jsonencode. The MathWorks, Inc, 2018,
se.mathworks.com/help/matlab/ref/jsonencode.html.

Jsondecode. The MathWorks, Inc, 2018,
se.mathworks.com/help/matlab/ref/jsondecode.html.

Properties and Methods Sorted By Chart Object. The MathWorks, Inc,
2018, www.mathworks.com/help/stateflow/api/properties- and-
methods-sorted-by-chart-object.html.

Integrate Custom C/C++ Code for Simulation. The MathWorks, Inc,
2018, se.mathworks.com/help/stateflow/ug/procedures-for-
simulation.html.

View Differences Between Stateflow Messages, Events, and Data. The
MathWorks, Inc, 2018, se.mathworks.com/help/stateflow/ug/view-
differences-between- messages-events-and-data-1.html.

Integrate C Code Using the MATLAB Function Block. The MathWorks,
Inc, 2018, se.mathworks.com/help/simulink/ug/incorporate-c-code-
using-a-matlab-function-block.html.

Temporal Logic Operators. The MathWorks, Inc, 2018,
se.mathworks.com/videos/temporal-logic-operators-
1487800687476.html.

Control Chart Execution Using Temporal Logic. The MathWorks, Inc,

2018, se.mathworks.com/help/stateflow/ug/using-temporal-logic-in-
state-actions-and-transitions.html.

75

http://www.mathworks.com/help/stateflow/api/properties-
http://www.tutorialspoint.com/matlab/index.htm
http://files.matlabsite.com/docs/books/matlab-
http://files.matlabsite.com/docs/books/matlab-

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[39]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Execution of a Stateflow Chart. The MathWorks, Inc, 2018,
se.mathworks.com/help/stateflow/ug/chart-during-actions.html.

Activate a Stateflow Chart Using Input Events. The MathWorks, Inc,
2018, se.mathworks.com/help/stateflow/ug/using-input-events-to-
activate-a-stateflow-chart.html.

How Events Work in Stateflow Charts. The MathWorks, Inc, 2018,
se.mathworks.com/help/stateflow/ug/how-events-work-in-stateflow-
charts.html.

Execution Order in Stateflow. Gamax Laboratory Solutions Ltd., 27 Aug.
2015, gamaxlabsol.com/execution-order-stateflow/?lang_=EN.

Technical Topic: Use of Timers in User Code with TASTE. TASTE, 4
Aug. 2017, 21:02, taste.tuxfamily.org/wiki/index.php
?title=Technical topic: Use_ of timers_in_user code with TASTE

What Is Finite State Machine? - Definition from.
whatis.techtarget.com/definition/finite-state-machine. Accessed 5 Dec.
2017.

PragmaDev Studio Tutorial.
www.pragmadev.com/downloads/Manuals/Tutorial.pdf.

PragmaDev. Product Prices. PRAGMADEV SARL,
www.pragmadev.com/prices.html.

State Action Types. The MathWorks, Inc, 2018,
se.mathworks.com/help/stateflow/ug/state-action-types.html#f0-123926.

Create and Access Charts Using the Stateflow APl. The MathWorks,
Inc, 2018, se.mathworks.com/help/stateflow/api/quick-start-for-the-
stateflow-api.html.

Finite-State Machine. Wikipedia, 7 May 2018,
en.wikipedia.org/wiki/Finite-state_machine.

PragmaDev. PragmaDev - Modeling and Testing Tools. PRAGMADEV
SARL, 2018, www.pragmadev.com/index.html.

Abstract State Machines. Wikipedia, 13 Feb. 2018,
en.wikipedia.org/wiki/Abstract_state_machines.

Overview. TASTE, taste.tuxfamily.org/wiki/index.php?
titte=Overview.

Types of Chart Execution. The MathWorks, Inc, 2018,
se.mathworks.com/help/stateflow/ug/types-of-chart-execution.html.

Technical Topic: OpenGEODE, an SDL Editor for TASTE. TASTE, 2018,

taste.tuxfamily.org/wiki/index.php?title=Technical_topic
%3A_OpenGEODE%2C_an_SDL_editor_for_TASTE.

76

http://www.pragmadev.com/index.html
http://www.pragmadev.com/prices.html
http://www.pragmadev.com/downloads/Manuals/Tutorial.pdf

[43]

[44]

[45]

[46]

[47]

Tiwari, Ashish. Formal semantics and analysis methods for Simulink
Stateflow models. Technical report, SRI International, 2002.

Keller, Robert M. "Computer science: Abstraction to implementation."
Harvey Mudd College, Claremont, CA, United States (2001).

Cheng, Kwang-Ting, and Avinash S. Krishnakumar. "Automatic
generation of functional vectors using the extended finite state machine
model." ACM Transactions on Design Automation of Electronic Systems
(TODAES) 1.1 (1996): 57-79.

Extended Finite-State Machine. Wikipedia, 10 Apr. 2018,
en.wikipedia.org/wiki/Extended_finite-state_machine.

Hamon, Grégoire. "A denotational semantics for Stateflow." Proceedings

of the 5th ACM international conference on Embedded software. ACM,
2005.

77

Appendix 1 — Data Structure Example

{
"variables": {
"water": {
"scope": "input",

"type": "integer",
"initial value": null,

"min": 0O,
"max": 2000

b

"faulty": {
“scope": "input",
"type": "boolean",
"initial value": null,
"min": null,
"max": null

}

"amount": {
“scope": "output",
“type": "double",
“initial value": 55.75,
"min": O,
"max": 999999

I

"account": {
"scope": "local",
“type": "string",
"initial value": "EE87281471849",
"min": null,
"max": null

I

"msg": {
"scope": "output",
“type": "string",
“initial value": null,
“min": null,
"max": null

}

78

I
"events": {
"activate": {
"scope": "input",
"parameters": null
I
“insert card": {
"scope": "input",
“parameters": ["account",
"another output or local variable"]

I
"verify transaction": {
"scope": "input",
"parameters": ["account", "amount"]

b
"cancel": {
"scope": "input",
“parameters": null
I
"eject card": {
"scope": "output",
"parameters": null
b
"out msg": {
"scope": "output",
"parameters": ""
}
b
"states": {

"verifying card": {
"type": "basic",
"parent": null

}

“read _amount": {
“type": "composite",
"parnet": null

b

"amount selection": {
"type": "sub",
“parnet": "read amount"”

I

“entering amount": {
"type": "sub",
"parent": "read amount"

79

I

"verifying transaction": {
“type": "basic",
"parent": null

}
I
"transitions": {
“Isourseless!": [
{
"destination": "verifying card",
"trigger type": "event",
"event": "activate",
"guard": null,

“contents": [
{"action":"water=water+100"},
{"output _event":["out msg",
"value of first parameter"]}
]
}
]
I
"verifying card": [
{
"destination": "read amount",
"order": 1,
“trigger type": "guard",
"event": null,
"guard": "amount<200",
"contents": [
{"action":"water=water+100"},
{"output _event":["out msg",
"value of first parameter"]}

]

I

{
"destination": "read amount",
“order": 2,
"trigger type": "event+guard",
"event": "verify transaction",
"guard": "water<l100",

"contents": [
{"action":"water=water+100"},
{"output event":["out msg",

"value of first parameter"]}

]

80

Figure 36: An Example of Proposed Data Structure

81

	1 Introduction
	1.1 Background
	1.1.1 State Machine
	1.1.2 FSM
	1.1.3 EFSM
	1.1.4 Harel’s State Machines
	1.1.5 UML State Machines
	1.1.6 ASM
	1.1.7 SDL
	1.1.8 Available Tools for Handling SDL State Machines
	1.1.9 Stateflow
	1.1.10 Problematic Example of Transformation

	1.2 Motivation
	1.3 Goal
	1.4 Objectives
	1.5 Research Design
	1.6 Validation
	1.7 Related Work
	1.7.1 Language Conversion Approach

	2 Mapping
	2.1 Variable
	2.2 State Machine Initialization
	2.3 State
	2.4 Transition
	2.4.1 Transition Order

	2.5 Guard
	2.5.1 Stateflow Guard
	2.5.2 SDL Decision of Signal Parameter
	2.5.3 SDL Signal
	2.5.4 Stateflow Event and Parameterless SDL Signal

	2.6 Output Signal/Event
	2.7 Messages
	2.8 Action/Task
	2.8.1 Entry Action
	2.8.2 During Action
	2.8.3 Exit Action
	2.8.4 Task

	2.9 Procedure
	2.10 Procedure Call
	2.11 Composite State
	2.12 Parallel State
	2.13 Temporal Logic
	2.13.1 After
	2.13.2 Duration
	2.13.3 Timer

	2.14 Limitations

	3 Validation of Mappings
	3.1 SDL to Stateflow
	3.2 Stateflow to SDL
	3.3 Inner vs Outer Transition Inconsistency Issue

	4 Guidelines for Automatic Model Transformation
	4.1 Data Structure
	4.2 Algorithms for Implementing The Mappings
	4.2.1 Algorithm for Stateflow to JSON
	4.2.2 Algorithm for JSON to SDL
	4.2.3 Algorithm for SDL to JSON
	4.2.4 Algorithm for JSON to Stateflow

	4.3 Prototyping for Demonstration

	5 Conclusion
	References
	Appendix 1 – Data Structure Example

