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Abstract

In real time software development, state machines are very widely used for presenting

the  concepts  and  logic  of  systems  and  for  their  simulation.  Model-driven  software

engineering (MDE) seems to gain popularity and state machine based formalisms are a

natural component of many MDE approaches. Stateflow and SDL are two widely used

state machine oriented modeling languages. SDL is formally defined and standardized

whereas Stateflow has an excellent tool support and integration with other MATLAB

based tools. Given that these languages have a common logical  basis, but their  tool

support  offers  different  possibilities,  it  would  be  interesting  to  exchange  models

between them. This work address the conversion between these two languages.  

First, a possible semantic mapping from Stateflow to SDL state machine and vice versa

is  explored.  The  mapping  include  events,  guards,  composite  states,  parallel  states,

temporal logic and so on. The mappings are validated using two case studies, which

show that the mappings are adequate for the selected language subsets.  

A  feasible  implementation  mechanism  is  proposed  and  required  algorithms  are

provided. The source model is first converted to an intermediate JSON data structure

and,  then  converted  to  the  target  language.  The  structure  of  the  intermediate  data

structure is very simple and self explanatory.

Four algorithms are provided for implementing the mappings through the intermediate

data structure. Required learning materials are referred and a simple prototype is under

development.

The thesis has been written in English and contains text on 81 pages, 5 sections, 36

figures and 17 tables.
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Annotatsioon

Mudeliteisendused kahe olekumasina keele vahel - SDL ja Stateflow

Reaalajasüsteemide  arenduses  kasutatakse  süsteemide  kontseptsioonide  ja  loogika

esitamiseks  ning nende käitumise simuleerimiseks  tihti  olekumasinaid.  Mudelipõhine

tarkvaraarendus  (MDE)  näib  koguvat  populaarsust  ja  olekumasinatel  põhinevad

formalismid on paljude MDE meetodite osaks. Stateflow ja SDL on kaks laialt levinud

olekumasinatele orienteeritud modelleerimiskeelt. SDL keele semantika on formaalselt

defineeritud ning see keel on standardiseeritud,  samas Stateflow keelel on suurepärane

tööriista toetus ja see keel on hästi integreeritud teiste MATLABi-põhiste tööriistadega.

Arvestades, et neil keeltel on ühine loogiline alus, kuid nende arendusvahendid pakuvad

erinevaid võimalusi, oleks huvitav mudelite ristkasutuse võimaldamine.  Käesolev töö

käsitlebki mudeliteisendusi nende kahe keele vahel.

Käesolev  töö  uurib  esmalt  Stateflow  ja  SDLi  olekumasinate  elementide  semantika

võimalikke  teisendusi  mõlemas  suunas.  Seejuures  käsitletakse  sündmusi,  ülemineku

tingimusi,  hierarhilisi  ja  paralleelseid  olekuid,  ajalist  loogikat  jne.  Teisenduste

teostatavust  ja  korrektsust  on  kontrollitud  kahe  suurema  mudeli  teisendamise  ning

nende käitumise võrdlemise teel.

Teisenduse  efektiivseks  automaatseks  realiseerimiseks  on  töös  väljapakutud

lahendusskeem  ja  vastavad  algoritmid.  Lähtemudel  teisendatakse  kõigepealt

vahpealsesse  JSON  andmevormingusse  ja  sealt  edasi  sihtkeelde.  Kasutatav

vaheandmestruktuur on väga lihtne ja arusaadav.

Töö  sisaldab  nelja  algoritmi  mudeliteisenduste  realiseerimiseks  läbi

vaheandmestruktuuri.  Töös  on  viidatud  teemakohastele  taustmaterjalidele  ning

teisenduste automaatseks teostamiseks on loomisel lihtne prototüüp.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 81 leheküljel, 5 peatükki, 36

joonist ja 17 tabelit
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List of abbreviations and terms

MDE Model-driven software engineering

FSM Finite State Machine

EFSM Extended Finite State Machine

ASM Abstract State Machine

SDL ITU-T Specification and Definition Language

TASTE The ASSERT Set of Tools for Engineering

ASN.1 Abstract Syntax Notation One

MSC Message Sequence Chart

API Application Programming Interface
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1  Introduction

1.1  Background

State machines (also referred to as state diagrams, state charts etc.) are a very popular

and convenient notation for expressing the logic of many kinds of reactive systems that

have some state dependent nature.

The transition to model-based development is motivated both by lower costs for overall

software development and by the enhanced ability to find defects early in the design

cycle. [1]

Different state machine dialects  range from classical finite-state automata (FSA) and

extended  finite-state  machines  (EFSM)  to  richer  and  more  practically  oriented

formalisms,such  as  the  UML  state  diagrams,  StateCharts,  Stateflow  or  the  state

machines in SDL.

While at the highest level all of these dialects share some common concepts, there are

significant differences in the core semantics, as well as in detail, such as the supported

constructs in the guard and action language.

State machine diagrams are used in the process of system (or more narrowly, software)

engineering at its various stages (specification, design, implementation, verification). To

decide an appropriate state machine dialect in a specific context, a good understanding

of the exact semantic differences between dialects becomes handy.

Sometimes, it can be necessary to migrate from one dialect to another, either due to the

different level of expressiveness needed at the different development steps or due to the

different background and context of the parties involved.

1.1.1  State Machine

In general, a state machine is any device that stores the status of something at a given

time and can operate on input to change the status and/or cause an action or output to

take place for any given change. [32]
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1.1.2  FSM

Finite-State Machine is an abstract machine that can be in exactly one of a finite number

of states at any given time. The FSM can change from one state to another in response

to some external inputs; the change from one state to another is called a transition.[37] It

is defined by: list of its states, Initial state and conditions for each transition. “There are

several different notations we can use to capture the behavior of finite-state machines:

 As a functional program mapping one list into another.

 As a restricted imperative program, reading input a single character at a time and

producing output a single character at a time.

 As a feedback system.

    Representation of functions as a table

    Representation of functions by a directed labeled graph”[44]

1.1.3  EFSM

In Extended Finite-State Machine a transition can be expressed by an “if statement”

consisting of a set of trigger conditions [46]. An Extended Finite State Machine M is a

5-tuple {S, I, O, D, T} where

 S is a set of states,

 I is a set of inputs,

 O is a set of outputs,

 D is an n-dimensional linear space D 1 × . . . × D n ,

 T is a transition relation, T : S×D×I → S×D×O [45].

In addition to FSM, EFSM can have -  guards (the if condition of the transition), data

operation (such as assignments, calculation), and an n-dimensional linear space. It is

sometimes  explained  in  three  blocks,  FSA block,  arithmetic  block  and  transition

evaluation block [46].

1.1.4  Harel’s State Machines

Harel enriched the idea of state machine by adding composite and parallel states and

history. “Our diagrams, which we call statecharts, extend conventional state-transition

diagrams  with  essentially  three  elements,  dealing,  respectively,  with  the  notions  of

hierarchy, concurrency and communication.”  [10] As summarized in  [6], Harel’s state
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charts, as well as UML state charts, allow one to decompose a large state space into a

set of composite states, each of them containing a subset of the original state set.  

1.1.5  UML State Machines

“In UML, each class has an optional state machine that describes the behaviour of its

instances (the objects). This state machine receives events from the environment and

reacts to them. The reactions include sending new events to other objects and executing

internal methods on the object.”  [11] UML state machine editors (such as YAKINDU

state chart Tools), allows to create state machines that are conceptually very similar to

Harel’s state machine. 
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1.1.6  ASM

Abstract State Machines (ASM) combine declarative concepts of first-order logic with

the  abstract  operational  view of  distributed  transition  systems.  ASMs are  based  on

many-sorted first-order structures, called states [5]. In simpler word ASM provides the

visualization with logics that makes a conceptual state machine easy to understand. 

In the original conception of ASMs, a single agent executes a program in a sequence of

steps, possibly interacting with its environment. This notion was extended to capture

distributed computations, in which multiple agents execute their programs concurrently

[39]. “Starting from an initial  state, the agents perform concurrent computations and

interact  through  shared  locations  of  the  state.  The  behaviour  of  ASM  agents  is

determined  by  ASM  programs,  consisting  of  ASM  rules.”  [5] ASM  updates  when

transitions triggers. A transition triggers based of rules that are defined by a guard or

combination  of  guards.  “These  update  sets  define  state  transitions  that  result  from

applying all updates simultaneously.”[5] On transition ASM performs computations as

well. 

1.1.7  SDL

The Specification and Description Language (SDL) is a specification language targeted

at  the  unambiguous  specification  and  description  of  the  behavior  of  reactive  and

distributed systems. For SDL-2000, Abstract State Machines (ASMs) have been chosen

as  the  underlying  formalism[6].  In  SDL systems  are  described  by  blocks  that  are

connected through channels - carrying messages. The messages/signals are passed from

other agents or environment.  The reception of a signal may cause a state transition.

Transitions  may  contain  actions  that  output  signals  to  other  agents  or  environment.

Messages are treated in FIFO order. SDL supports:

 Predefined  data  types  (boolean,  integer,  natural,  real,  character,  charstring,

duration, time)

 Struct, choice, array, string, bag
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 New data types based on existing data types and having additional operators and

constraints  

 Constants

 Variables

 Read only remote variables (variables of other processes)

 Procedures (inside block or procedure,  accepts  parameter  and return value to

caller, can send and receive messages, can modify data of declaring agent)

 Macros (can't receive messages, no transition, can’t call itself)

 Composite states (sub-states)

 Timers and manipulation of timers 

 Dynamic process creation 

 Classes (of block or processes, connected with gates), subclasses 

SDL does not support global variables. But, constants can be declared anywhere. 

1.1.8  Available Tools for Handling SDL State Machines

One of the available SDL state machine modeling tool is PragmaDev Studio. It is a

complete, large scale tool that comes with commercial support [42]. It integrates tools

for system architects, developers and testers. “PragmaDev has established partnership

with key players in the real time domain. Customers include Airbus, Renault, Nokia, ST,

ABB, the French Army, the European Space Agency, Toshiba, Korean Telecom, or LG

Electronics”.  [38] Unfortunately,  it  requires  to install  some 32bit  linux libraries  that

does not ship with Ubuntu 16.04 LTS by default.

16



17

Figure 3: PragmaDev Studio SDL State Machine Editor [33]



“Use the Freemium version that comes with all the features but that is restricted in size:

50Kb per  file  and  200Kb  per  project  (this  includes  all  diagrams  except  the  MSC,

declaration files such as SDL-PR and ASN.1 files,  and TTCN-3 source files).”  [34]

Regular price is euro 290 per month  [34]. It is a limitation that creates a necessity to

search for a free solution.  

There exists also an open source SDL editor called OpenGEODE [42]. It is a tool that

was originally developed for the TASTE suite  [40], but can also be used standalone.

TASTE allows  to  create  and simulate  interactive  modules.  Fortunately,  it  is  a  open

source product and  free. 
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“TASTE is a set of freely-available tools dedicated to the development of embedded,

real-time systems. It is developed by the European Space Agency together with a set of

partners from the space industry.” [40] “TASTE also comes with two built-in (free) SDL

editors  that  allow  graphical  description  of  state  machines,  and  automatic  code

generation.”  [40] After considering all these benefits, TASTE is the tool of choice for

this study. 

19
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1.1.9  Stateflow

Stateflow is a state machine dialect. It is used in the popular MATLAB/Simulink tool

suite. “Stateflow lets you combine graphical and tabular representations, including state

transition diagrams, flow charts, state transition tables, and truth tables, to model how

your system reacts to events, time-based conditions, and external input signals.” [12] It

is widely used in the industry and education. Stateflow combines state machines and

flow-diagrams diagrams to a unique and expressive formalism. Subsets of the Stateflow

language have been-formalized by independent researchers, e.g. in [43] and [47]. 

1.1.10  Problematic Example of Transformation  

There  is  a  chance  of  getting  results  by  conversion  process  that  does  not  work,  the

converted  model  may  not  show the  same behavior  as  the  original  model.  Such  an

example is explored by Danial et al in their work “Polyglot Modeling and Analysis for

20
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Multiple  Statechart  Formalisms”  [1].  They have  experimented  if  properties  hold  on

converting  Stateflow  and  UML  (Rhapsody)  state  charts  into  a  Java.  Relational

Rhapsody is a modeling environment based on UML. They modeled two users to access

shared resources.  The communication  between the Arbiter  and the users is  modeled

using Simulink signals  [1]. A user may request or cancel a resource; the arbiter may

grant or deny the resource, and it can also rescind the resource after it has been granted

[1].  The arbiter  prevents  potential  conflicts  between  resource  requests  coming from

different users and it enforces priorities. For example, it does not make sense to start a

communication session with Earth while the rover is driving [1]. 

The result shows that property holds when both users are uses Stateflow semantics, but

property fails when one user uses UML.  The reason why this property fails in the UML

case while it holds in the Stateflow case is that outer transitions (e.g. see the transition

enabled  on  reset==true  from  Busy  back  to  Idle)  have  higher  priority  over  inner

transitions in Stateflow, but have lower priority in UML Rhapsody. [1] 
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1.2  Motivation

State machines can be designed using different tools such as Stateflow, OpenGEODE,

PragmaDev  Studio,  YAKINDU  Statechart  Tools,  Rational  Rhapsody.  Once  a  state

machine is done, later it can be reused in another project. It can be reused as a small part

of new state machine or as a starter tool, depending on relevance. But, it is not possible

when an existing state machine is designed with the tools that use a modeling language

different from new project. To make this possible a proper conversion tool is required.

This  study  is  aimed  for  making  this  tool  for  two  practical  state  machine  dialects:

Stateflow and SDL.   

1.3  Goal

The current study should compare the semantics of the Stateflow and the SDL modeling

languages and identify the subset of either language that can be converted to the other

language in an unambiguous and clear way without altering the semantics. 

Secondly, provide guidelines for creating a tool for automatic bidirectional conversions

between the two dialects, so that one could automatically convert models (that fall into

the above subset) to the other language and vice versa.

1.4  Objectives

1. To specify mappings for a subset of the modeling languages

2. To provide guidelines for making an automatic conversion tool 

1.5  Research Design 

Objective Steps Outcome

Semantic 
mapping

Study the semantics of the above modeling languages

Literature review reportFamiliarize with the respective modeling tools

Perform a literature review and familiarize oneself 
with existing research in the field

According to the findings choose/adapt an existing 
approach or define a mapping yourself, if necessary.

Semantic mapping 
specification for a subset of 
the above modeling 
languages

Set of models in either 
language demonstrating the 
mapping in concrete cases
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Objective Steps Outcome

Find an 
optimistic way 
for  Automated 
translations

Propose data structure to store both SDL and 
Stateflow model that facilitate conversions flow. 

Data structure

Give an algorithm to Implement the semantic 
mapping rules identified in first objective using a 
chosen model transformation approach.

Pseudo code

Suggest an optimistic approach to go for coding.
Programming languages, 
API documentation, demo 
code

Table 1: Research Objectives

1.6  Validation

 Running converted and original state machines side by side and comparing their

behavior. 

 Comparing MSC’s to find behavioral similarity. 

1.7  Related Work

Dony et al in their paper “Programming Language Inter-conversion” presented a new

approach of programming languages inter-conversion which can be applied to all types

of  programming  languages.  The  idea  is  about  implementation  of  the  intermediate

language for inter-conversion. [7] They also said “Hence code conversion becomes even

more  challenging because the features  of  the source  language need to  be somehow

simulated  into  the  destination  language.  Hence,  this  imposes  a  limitation  on  code

conversion.” [7] 

Sendall et al in their paper "Model transformation: The heart and soul of model-driven

software development."  [9] state that “A transformation is typically only meaningfully

applied against certain model configurations. Thus, it would be desirable in many cases

to describe the conditions under which the transformation produces a meaningful result,

which can then be enforced by a tool at execution time.”

Rodionov  in  his  thesis  “Implementing  TTÜ  Nanosatellite  Communication  Protocol

using TASTE Toolset”, worked with SDL and indicated further usability of the state

machine created there. “The created system can be used in the communication process

of the TTÜ-Mektory Student Satellite both on ground and on the satellite. The result of

23



this thesis will be used as a case study in ESA project that integrates TASTE Tool set

with  QGen.”  [3] Here  nothing  mentioned  about  possible  uses  of  the  state  chart  in

another formalism such as Stateflow.

Danial et  al in their  work “Polyglot Modeling and Analysis for Multiple  State chart

Formalisms”, wanted to compare various state charts. “To verify these safety-critical

systems, a unified framework is needed based on a formal semantics that captures the

variants of State-charts. We describe Polyglot, a unified framework for the analysis of

models described using multiple State chart formalisms. In this framework, State chart

models are translated into Java and analyzed using pluggable semantics for different

variants operating in a polymorphic execution environment.” [1] This work supposed to

consider available conversion tools, but their report does not signal any existence of

such a tool.

Czarnecki  and  Helsen  state  in  [8] that  “While  there  exist  some  well-established

standards for modeling platform models, there is currently no matured foundation for

specifying transformations between such models.”

Through these studies and through web exploration, nothing is found that can convert

SDL to Stateflow state machine or vice versa.

1.7.1  Language Conversion Approach

The paper on “Programming Language Inter-conversion” by Dony et  al  discussed a

conversion approach. They  also performed a theoretical case study on the conversion of

code written in the C++ programming language to Java. [7]

Code conversion should also preserve the structure or should modify it to make it even

better by removing redundant codes. Hence, it will be better if a compiler is designed

for this purpose. And the purpose of compilation is to convert the given program into its

corresponding Intermediate-language. This Intermediate-language can be converted into

any programming language using another compiler. [7] 

All the programming languages have some common features such as logical,  arithmetic

operators,  looping and so on.  Based on these  facts  a  new language can be defined
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having all these features to represent the characteristics of the programming language.

[7] - Dony et al explained in their writing. Their main idea is show in the next figure. 

25

Figure 8: Source to Intermediate Code [7]



Their work was done kind of successfully, but with limitation such as “Pointers in C++

cannot be completely represented in Java but can be approximated by using references,

operator”, “Multiple Inheritances: This is impossible to achieve. The only option is to

use interfaces.” The conclusion is very interesting - “Achieving the maximum efficiency

of  conversion  without  compromising  the  quality  of  converted  system  is  the

programmers'  dream. Even though language conversion might seem to be easy, it  is

actually a Herculean task with many different complications.”[7] 

Despite  of  some  limitation,  this  method  helps  to  formulate  the  approach  for  the

transformation between state machine dialects.  
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Figure 9: Intermediate Code to Source [7]



2  Mapping

The  semantics  of  SDL continuous  signals  and  continuous  time  Stateflow  were  not

investigated  in  this  study,  because  the  study  was  primarily  oriented  for  model

development  for  embedded  systems  that  more  typically  operate  in  a  discrete  time

manner. 

2.1  Variable

In SDL one can  use either  SDL predefined data  types  or  the  ASN.1 formalism for

declaring data types. OpenGEODE only supports ASN.1 type definitions. In ASN.1 all

numeric data types get an upper limit and lower limit of allowed values at the time of

declaration.  In Stateflow range can be limited by assigning minimum and  maximum

value.  While converting Stateflow to SDL, the range of the data type itself  is to be

assigned. SDL has no global variable. But it is not touching the scope of this study. For

a state machine, read and writes are done on containing block variables. Variables of

other blocks are not relevant here. 

2.2  State Machine Initialization

SDL requires an unnamed entry point with a transition to initial state. Also there has to

be a separate state with same identifier as initial state that will work as state definition.

Stateflow requires just an initial (default) transition to initial state for inception of a state

machine.  If a Stateflow state machine has events, then it needs the option “Execute

(enter) Chart At Initialization” to be enabled. It is explained in the “Transition” section

below.

Stateflow SDL

Table 2: Initial Transition - Stateflow vs SDL
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2.3  State

A minimal state looks similar in both Stateflow and SDL. But Stateflow state can have

entry,  during and exit  actions. Composite and Parallel  state is possible in both case.

They are explained below under the headings “Action”, “Composite State” and “Parallel

State”. 

Stateflow SDL

Table 3: Basic State - Stateflow vs SDL

2.4  Transition

The most contrasting element is transition. SDL requires an  incoming message signal to

enable transition. Stateflow uses guard or event to trigger a transition as well as an event

can be triggered without anything (guard, event). A Stateflow chart  can be activated

either by event or input data. An event based Stateflow state machine stay put until it

receives an event. When it receives the first event, it triggers the initial transition. This

event  should  not  be  consumed  by  the  initial  transition  while  converting  SDL to

Stateflow. Because,  it  is for a transition other than initial  one. In this case “Execute

(enter) Chart At Initialization” option is to be enabled. By default, the first time a chart

wakes up, it executes the default transition paths [41]. 

SDL message signal can contain more than one parameters. In Stateflow message can

trigger transition but it can contain just one parameter [23]. Therefore, SDL signal can

not be converted to Stateflow message. But, Stateflow messages will be converted to

SDL signal that will have one parameter only. 
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TASTE requires signals to contain at least one parameter. Since, we are simulating SDL

models in TASTE, signal without any message can not be sent. 

For converting SDL to stateflow, the message sending needs to be emulated using an

input event. Say, we have a signal “push()” in SDL. It will be converted to an input

event  “push”.  When  the  event  will  be  called  by  outside  agent,  transition  will  be

triggered.  Event  in  Stateflow does not  carry any argument,  therefore,  the arguments

have to be converted to input variables. 

Stateflow

SDL

Table 4: Transition - Stateflow vs SDL
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2.4.1  Transition Order 

Each transition in Stateflow has a value for transition execution order. SDL does not

store such value and it does not have this concept. SDL has decision branches. These

branches are mutually exclusive, overlapping conditions are not allowed. Such as if a

decision has two branches with “x>5” and “ELSE”, then another branch “x=6” can not

be added, because last one is overlapping with first one. But, Stateflow can have two

transition with “x>5” and “x=6” sourcing from same state.  Therefore, conversion of

Stateflow transition order into SDL decision branch require implementation of complex

algorithm. This study is not digging that much. 

2.5  Guard

2.5.1  Stateflow Guard

To convert a Stateflow guard to SDL, firstly have to convert the input variables to the

parameters of of incoming signal. An input signal will be a created to intake all the input

variables, as “get_data(x)” in the example. There will be an extra transition per state

machine that will start from initial state and go to initial state. It will be triggered by the

input variable intake signal. Secondly, we have to create a input signal to check the

value of the variable, as “check(whatever)” in the example. Because, dislike Stateflow,

SDL can not trigger transition without input signal. Finally, have to place “decision” as

a replacement of guard condition. Each transition with a variable will have a “decision”

branch of this variable. 

Stateflow to SDL

Stateflow
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SDL

Table 5: Conversion of Stateflow Guard to SDL

2.5.2  SDL Decision of Signal Parameter

For the other direction, SDL to stateflow, first part of a transition, input signal will be

converted to input event and value checking (of the parameter of the signal itself) will

be converted to a guard that checks the value of the corresponding input variable. 
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SDL to Stateflow

SDL

Stateflow

in_x is a double type input variable.

x is a double type local variable.

star is output variable.

Table 6: Conversion of SDL Guard to Stateflow

Each  branch  of  the  decision  symbol  in  SDL will  be  converted  to  a  transition  in

Stateflow. ELSE in SDL covers all other possible values. Covering all possible values is
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compulsory in SDL, otherwise SDL will give error.  There can be many branches along

with ELSE branch in SDL. For converting ELSE, a transition will be used that will have

the highest execution order. Because, it has to be triggered only when all other guard

conditions are false. But, when the destination of this ELSE transition and the source

are same state, it will not be converted to Stateflow transition. In this case number of

transition in Stateflow will be number of decision branches minus one. Secondly, the

value must be saved because in Stateflow value of input variable can change before

occurrence of next event. This is not possible in SDL. For the sake of intuitiveness,

local variable name will be same as SDL signal parameter name but the input variable

will be in_[variable name]. Local variable will be used for all further read and write

purpose until an event brings new value. When an event brings new value, the local

variable will be written and get continued. 

2.5.3  SDL Signal

When in SDL transition is not checking the value of the argument, no need check the

value of the corresponding input variable in Stateflow. But the value must be saved

because in Stateflow value of input variable can change before occurrence of next event

that is not possible in SDL.

SDL to Stateflow

SDL Stateflow

x is a double type local variable.
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in_x is a double type input variable.

Table 7: Conversion of SDL Event Based Transition to Stateflow

2.5.4  Stateflow Event and Parameterless SDL Signal

This is the simplest case, similar to transition conversion, a Stateflow transition with

just an event will be converted to just a SDL signal. Same for SDL to Stateflow, a signal

without any parameter will be converted to an event.  

Bidirectional

Stateflow SDL

Since, TASTE does not work with signal without
parameter, “whatever” used as a parameter

placeholder, e(whatever) instead of e(). 

Table 8: Bidirectional Conversion of Parameterless Event Triggered Transition

2.6  Output Signal/Event

SDL output signal is equivalent to Stateflow output event when it has not parameter. In

SDL it can have any number of parameter. This parameters will be converted to output

parameters. 

2.7  Messages

Stateflow message is very similar to SDL signal, but it can have only one parameter. So,

Stateflow receiving message will be converted to SDL input signal with a parameter and

Stateflow message sending will be converted to SDL output signal with a parameter.
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2.8  Action/Task

2.8.1  Entry Action

A Stateflow state can have assignment/task on entry of that state. This entry actions will

be converted to SDL task and will be placed just before the state.  It sounds wrong,

because  assignment  will  be  done first,  then  the  state  will  be  reached.  But  in  SDL

nothing can happen other than going into connecting state. Therefore, it will work. 

Stateflow to SDL

Table 9: Conversion of Stateflow Entry Action to SDL

2.8.2  During Action

During  actions  are  executed  when  a  state  is  active,  an  event  occurs,  and  no  valid

transition to another state is available  [35]. A During action will be converted to SDL

task and will be placed just before state. This state will not have any outgoing transition.

Since, the task is just before the state nothing can happen between the task and state

other than getting in the state. Therefore, it will give same behavior.  

Stateflow to SDL

Table 10: Conversion of Stateflow During Action to SDL 
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2.8.3  Exit Action

Exit actions will be converted to SDL task and will be placed just after input signal

connected to the state.  On getting an incoming message state can be exited,  so exit

actions will be placed just after catching the incoming message. It has to be done for

each of the state exiting input signal. 

Stateflow to SDL

Stateflow SDL

Table 11: Conversion of Stateflow Exit Action to SDL

For better understanding, a complete Stateflow state machine with Entry, During and

Exit actions is converted to SDL state machine.

Stateflow

SDL
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Table 12: Stateflow Actions Converted to SDL - Complete State Machine

2.8.4  Task

Tasks are placed in task symbol in SDL that is curly bracket in Stateflow. 

Bidirectional

Stateflow SDL

Table 13: Bidirectional Conversion of Stateflow Assignment and SDL Task

2.9  Procedure 

Procedure  is  used  in  SDL to  group  a  sequence  of  instruction.  The  counterpart  of

procedure  in  Stateflow  is  Graphical  function.  These  two  contains  mappable

components. Some components are already discussed that are also available  in  a SDL

procedure such as “Decision”, “Task” and mappings for this components will remain
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same. Some components are exclusively for SDL Procedure such as “ProcedureStart”

maps to “Default transition”, “ProcedureStop” maps to “Junction”. 

SDL

Stateflow

Table 14: SDL Procedure and Stateflow Graphical Function
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2.10  Procedure Call 

Almost similar to task, procedure calls are placed in ProcedureCall symbol in SDL that

is curly bracket in Stateflow.

2.11  Composite State

Variables declared in parent is available in sub-state in SDL. Pointing to an exit point

using return statement (exit symbol), for at least once is compulsory for SDL nested

state. It is also the way to define a transition from inner state to outer state. Exit symbol

without a label means the default exit to outer state. To make a transition from outer

state  to  inner  state,  an  entry  point  is  required.  This  entry  point  connects  to  the

destination  state.  Transition  from outer  state  points  to  this  entry  point  (using  “via”

keyword). Entry point without label works as initialization. 
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Figure 10: First Level of SDL State Machine With Nested State 



Composite  state  use “Connect”  that  allows inner  to  outer  transition  in  SDL. In this

example “troubleshoot” is the connect statement that is used on “fail” signal to move

from “RECORDING” state to “FAULTY” state. Stateflow it is direct and simpler to

connect inner state to outer state. 
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Figure 11: Nested State "ON" of The SDL State Machine Above
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Figure 12: Same State Machine in Stateflow



2.12  Parallel State

In Stateflow parallel state is defined by selecting decomposition of an state to “AND”

that is by default “OR”. In SDL parallel state is just two or more nested state inside a

nested state without initial transition. 

Table 15: SDL Parallel States

42

Figure 13: Stateflow Parallel States
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Figure 14: SDL State Chart View of Parallel States



2.13  Temporal Logic

2.13.1  After 

Bidirectional

Stateflow

SDL

In stateflow, if WAIT state has other outgoing transition that can trigger during this 2 seconds then
ticking state has to have that transition as well. This case is not considered in this mapping.  

Figure 15: Conversion of Stateflow Temoral Logic After to SDL
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2.13.2  Duration 

Stateflow

SDL

Figure 16: Conversion of Stateflow Temoral Logic Duration to SDL

2.13.3  Timer

SDL timer is a simple timer that can be set and reset. It is a service available in SDL

design and simulation package such as TASTE. To convert this timer to Stateflow an

external timer service has to be used. Also easy to create a timer state machine to help

getting value and making guard on this value. 
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2.14  Limitations

All the discussion so far is about what is possible. But easy to bump on a state machine

that is way too difficult to convert. Secondly, TASTE has some limitation. For example

-

 If a Stateflow transition triggered by both variable value guard and an event then

it a bit difficult to  convert.

 SDL  can  have  parameterless  signal  but  TASTE  does  not  work  with

parameterless signal, it requires at least one parameter for each interface.

 SDL signal can have more than one parameter but  TASTE does not work with

more than one parameter  for sporadic interface  that generates  the SDL input

signals for OpenGEODE.

 In entry and exit procedure of nested state “output” signal does not work with

TASTE.

 Output signal between entry point (both named and unnamed) and connecting

state does not work with TASTE.

 History concept is not available  in TASTE. History means saving status of a

composite state and resume from this saved status next time this composite state

get activated. In Stateflow it is done by the symbol “H” with a circle around.

This feature in not available in OpenGEODE, although in SDL a similar concept

called “save” exists.
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3  Validation of Mappings

Behavioral comparison of the converted state machines and the original state machines

can testify the correctness of the mappings. First a SDL state machine of Automated

Teller Machine (ATM) is  converted to Stateflow. Then they are simulated and their

behavior  is  compared to  check if  they  behave same.  This  SDL machine  is  a  slight

extension of the state machine described by Birger et al in their work “Scalable and

Object Oriented SDL State(chart)s.” [4]

Secondly, a Stateflow coffee machine is converted to SDL and checked for behavioral

similarity. 

3.1  SDL to Stateflow

The main behavior of this state machine is to represent a ATM. Once a card entered,

First it verifies the card, then reads the amount to transact. If the amount is valid, it

makes the transaction, otherwise shows “Limit exceeded” and take the amount again.

Anytime, it aborted. Also it can become out of service anytime. 
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Figure 17: ATM SDL State Machine



It has a nested state (or composite state) READ_AMOUNT that encapsulates the logics

for getting the amount to transact for cashing out from bank account.  

It’s behavior has been tested using Message Sequence Chart (MSC). Here is a happy

path being discussed and others are placed in annex. This MSC shows that amount is
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Figure 18: Nested State READ_AMOUNT of ATM SDL State Machine



taken three times, 5000, 500 and 50. For 5000 and 500 transaction rejected, finally for

50 transaction is successful. Amount 500 and 50 is entered using digit press and 5000

by amount button. 
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Figure 19: MSC of A Happy Path of ATM SDL State Machine  



TASTE does not show output signal in MSC that is between entry point (named and

unnamed) and immediate next state. Therefore, “ENTER_AMOUNT” after “reenter”,

display(‘Select amount’) and out_msg(‘AMOUNT_SELECTION’) on initial transition

are missing. 

To convert this SDL state-machine to Stateflow, first the states are placed. Once states

are in place including sub-states, it looks like getting the shape. Secondly, declaring the

variables and events. An event for each signal and two variable for each input signal

parameter.  One  of  intaking  data  and the  other  one  for  saving data  when the  event

triggers. But no variable to declare for output signal parameter, because they are using

variable that is already available.   Finally, converting the transitions by applying the

mappings. 

Though Simulink work differently and it does not facilitate MSC tracing, a simple trick

is applied to simulate  the same sequence of signal/event  calling.  A state machine is

created  to  repeat  the  sequence  and  some  information  is  printed  out  to  make  the

execution order exportable and comparable.  
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Figure 20: State Machine to Create the Same Sequence of Signal



Events and states are printed while the ATM machine is simulated in diagnostic view.

Below is the print outs of the diagnostic view. It shows only the lines printed by fprintf()
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Figure 21: ATM State Machine Transformed in Stateflow



and other lines are excluded to make it easy to read. Finally, behavior of ATM state-

machine in SDL and Stateflow is ready to put in contrast. 

    VERIFYING_CARD    14

    accept_card ->    14

    READ_AMOUNT    11

    <- display - Select amount    26

    AMOUNT_SELECTION    16

    amount - 5000 ->    16

    <- transaction - 5000    21

    VERIFYING_TRANSACTION    21

    reject_transaction ->    21

    <- display - Limit exceeded    27

    READ_AMOUNT    11

    ENTER_AMOUNT    12

    digit - 5 ->    12

    ENTER_AMOUNT    12

    digit - 0 ->    12

    ENTER_AMOUNT    12

    digit - 0 ->    12

    ENTER_AMOUNT    12

    ok ->     5

    <- transaction - 500    20

    VERIFYING_TRANSACTION    21

    reject_transaction ->    21

    <- display - Limit exceeded    27

    READ_AMOUNT    11

    ENTER_AMOUNT    12

    digit - 5 ->    12

    ENTER_AMOUNT    12
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    ok ->     5

    <- transaction - 5    18

    VERIFYING_TRANSACTION    21

    transaction_succeeded ->    24

    <- eject_card    13

    CARD_RELEASED    13

Table 16: Lines Printed in Diagnostic View by Stateflow ATM 

Comparison of  the  sequence  of  these  printed  lines  of  Stateflow and MSC of  SDL,

proves that these two state-machines are behaving same. 

3.2  Stateflow to SDL

An event based state is the ideal situation for using this mapping. An example such as

the example below is easily convertible using the mapping discussed earlier. 

Guard  based Stateflow state  machines  are  more  difficult  to  convert  than  SDL state

machine.  A coffee  machine  state  machine  is  considered  for  conversion.  This  state
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Figure 22: State machine show basic function of a ATM [4]



machine has not event,  it  is completely input and output variable based (these input

variables can change anytime). Also this state machine wakes up without any event call.

This coffee machine does two things heat up the water to 100 degree with coffee and

sugar, then pour 100 cc coffee in a carafe. It also keep tracks how much water remains

in water  pot  and get  turned off  when water  is  less than 100 cc.  To make a textual

presentation of its behavior, meaningful messages printed on diagnostic view. 
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Figure 23: Stateflow Coffee Machine



    water =1400

    OFF     3

    HEATING     7

    HEATING     7

    <- water_tmpr - 95    18

    FILLING_CARAFE    14

    FILLING_CARAFE    14

    <- coffee - 0    13

    FILLING_CARAFE    14

    <- coffee - 20    14

    FILLING_CARAFE    14

    <- coffee - 40    14

    FILLING_CARAFE    14

    <- coffee - 60    14

    FILLING_CARAFE    14

    <- coffee - 80    14

    BEEPING     7

    <- coffee - 100    15

    <- water - 1300    15

    STANDBY     7

Table 17: Print out in Diagnostic View of Stateflow Coffee Machine

After  converting  to  SDL state  machine  it  looks  quite  long  because  of  the  way  of

presentation. Specially, the nested state state has to be displayed in different view that

gives SDL a complexer look.  

55



56

Figure 24: SDL Coffee Machine Part 1/5

Figure 25: SDL Coffee Machine Part 2/5
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Figure 26: SDL Coffee Machine Part 3/5

Figure 27: SDL Coffee Machine Part 4/5



 

SDL transitions can not trigger without input signal (an event or continuous signal).

Continuous signals were not considered in the current study. Therefore, to run a SDL

state machine, another agent is required to send an input event as a complementary. By

the means of TASTE Graphical User Interface (GUI) signals has been sent. This signals

are sent in sequence that results in a comparable MSC. 

58

Figure 28: SDL Coffee Machine Part 5/5
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Figure 29: MSC of SDL Coffee Maching Part 1/2



The SDL MSC looks longer than the number of lines printed in Stateflow diagnostic

view, because SDL state machine requires more signals to send to trigger transitions.

For example to simulate temporal logic “for_ticking()” has to be sent many times, that

is  never  required  in  Stateflow.  The  way  of  interaction  is  different  because  of  the

difference  of  the  definitive  characteristics  of  the  two  formalisms.  This  comparison

clearly reveals that the behavior of the coffee machine in Stateflow and SDL is same. 

3.3  Inner vs Outer Transition Inconsistency Issue

Stateflow provides higher priority for outer transition over inner transition [30]. On the

other  hand,  SDL editor  OpenGEODE gives  error  while  adding such an overlapping

transition. If an input signal is placed for inner state to outer state then it will not allow

to add same input signal to be placed for the parent state to any outer state. In the ATM

example, if a transition is added from “READ_AMOUNT” to “CARD_RELEASED”

using signal “abort_out(w)” OpenGEODE gives error. Therefore, this study did not face

any problem of transition inconsistency upon conversion that was described by Danial

et al in [1]. 
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Figure 30: MSC of SDL Coffee Maching Part 2/2



4  Guidelines for Automatic Model Transformation

The basic idea is to convert both SDL and Stateflow state machine to a data structure

that is preferably easy to parse and convert into any of these two. For example, for

converting  a  SDL to  Stateflow,  firstly,  SDL state  machine  will  be  converted  to  a

structured data, then this data will be converted to a Stateflow state machine. So, it is

very important to define a data structure that is simple but complete and extensible. It is

foreseeable that having a bit human readable and programatically easy to handle data

structure can bring a big success in terms of popularity. 

4.1  Data Structure

JavaScript Object Notation (JSON) is the formate of choice because of it’s simplicity,

popularity and the support by a wide range of programming language for parsing and

generating. Matlab has jsonencode() to create and jsondecode() to import JSON. In the

proposed implementation of the mapping one file will contain one state machine and

will contain the state machine features in a list structure. The first level will include

variables,  events,  states  and  transitions.  The  second,  level  will  include  their

specifications.

{

  "variables": {
    "<variable identifier>": {
      "scope": "<input/output/local>",
      "type": "<boolean/integer/double/string>",
      "initial_value": "<null/value>",
      "min": <null/value>,
      "max": <null/value>
    },
    ...
  },

  "events": {
    "<event identifier>": {
      "scope": "<input/output/local>",
      "parameters": <null/[variable_identifier, ...]>
    },
    ...
  },
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  "messages": {
    "<message identifier>": {
      "scope": "<input/output/local>",
      "type": "<boolean/integer/double/string>"
    },
    ...
  },

  "states": {
    "<state identifier>": {
      "type": "<basic/composite/composite+parallel>",
      "parent": "<null/state identifier>",
      "entry": "<null/state identifier>",
      "during": "<null/state identifier>",
      "exit": "<null/state identifier>"
    },
    ...
  },

  "transitions": {
    "<!sourseless!/state identifier]": [
      {
        "destination": "<state identifier>",
       "order": <integer value>,
        "trigger_type": "<null/event/guard/event+guard>",
        "event": "<null/event identifier>",
        "guard": "<null/guard expression for truthy 
checking>",
        "action": "assign all input variable to output 
variable such as x_ = x while converting SDL to Stateflow",
        "contents": [
          {"input_event":["<event identifier>", "<variable 
identifier of first parameter>", "<variable identifier of 
second parameter>" ]},
          {"action":"water=water+100"},
          {"output_event":["<event identifier>", "<variable 
identifier of first parameter>", "<variable identifier of 
second parameter>" ]},
          {"procedure_call": "<call expression>"}
        ]
      },
      ...
    ]
  }

}

Figure 31: Intermediary Data Structure
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An example of the data structure is given in the appendix. Rules to be maintained for

this data structure are:-

 Events are not allowed use input variables as parameter

 Initial value of input variables must be null

 Variable type must be a data type 

 Parent of a sub state must be a composite or parallel state

 Transition “trigger_type” can be "event" or "guard" or "event+guard"

4.2  Algorithms for Implementing The Mappings 

Though,  state  machines  will  be  saved  in  an  intermediary  data  structure,  for  a

transformation two algorithms are required. Giving a total of four algorithms -

 For converting a Stateflow to SDL

1 Stateflow state machine to the JSON formated state machine

2 JSON formated state machine to SDL state machne

 For converting a SDL to Stateflow

3 SDL state machine to the JSON formated state machine

4 JSON formated state machine to Stateflow state machine

4.2.1  Algorithm for Stateflow to JSON 

Stateflow state machine is readable in Stateflow API. It has a tree structure.  [14][15]

But, objects of same type are accessible in an array. [13]

Part 1. Getting handle

h = load_system(‘file_name.slx’);
rt = sfroot
m = rt.find('-isa','Stateflow.Model');
ch = m.find('-isa', 'Stateflow.Chart');

sm = {};

Part 2. Reading variables and adding to JSON
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vs = ch.find('-isa','Stateflow.Data')
Loop i=1 To length(vs)
    sm.variables.[get(vs[i], ‘name’)] = {
        scope: get(vs[i], ‘scope’),
        type: get(vs[i], ‘type’),
        initial_value: get(vs[i], ‘initial_value’),
        min: get(vs[i], ‘min’),
        max: get(vs[i], ‘max’)
    }
End Loop

Part 3. Reading events and adding to JSON

es = ch.find('-isa','Stateflow.Event')
Loop i=1 To length(es)
    sm.events.[get(es[i], ‘name’)] = {
        scope: get(es[i], ‘scope’),
        parameters: null
    }
End Loop

Part 4. Reading messages and adding to JSON

ms = ch.find('-isa','Stateflow.Event')
Loop i=1 To length(es)
    sm.messages.[get(ms[i], ‘name’)] = {
        scope: get(ms[i], ‘Scope’),
        type: deduce from ms[i]
    }
End Loop

Part 5. Reading states and adding to JSON

ss = ch.find('-isa','Stateflow.State')
stype = “basic”;
sparent = null;
Loop i=1 To length(ss)
    If (ss[i].up is a state) Then
        parent = get(ss[i], ‘name’)
    Else
        sparent = null
    End If
    If (length(ss.find('-isa','Stateflow.State','-depth',1))>0) Then
        stype = “composite”
    End If
    If (get(ss[i], ‘Decomposition’) is “PARALLEL_AND”) Then
        stype = stype + “parallel”
    End If
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    sm.states.[get(ss[i], ‘name’)] = {
        type: stype,
        parent:  sparent
    }
End Loop

Part 6. Reading transitions and adding to JSON

ts = ch.find('-isa','Stateflow.Transition')
Loop i=1 To length(ts)
    sm.transitions = []
    sm.transitions.push({
        source: get(get(ts[i], ‘Source’), ‘Name’) If Not null,
               destination: get(get(ts[i], ‘Destination’), ‘Name’),
               order: get(ts[i], ‘ExecutionOrder’)
               contents: {
                       input_event: truncate ts[i].LabelString using regular expression  
                       action:  truncate ts[i].LabelString using regular expression
                       output_event:  truncate ts[i].LabelString using regular expression
                       procedure_call:  truncate ts[i].LabelString using regular expression
               }
    })
End Loop

Part 7. Writing json file

write the return of jsonencode(sm) to a file.

Figure 32: Algorithm for Stateflow to JSON

4.2.2  Algorithm for JSON to SDL

To create SDL state machine to use with OpenGEODE, the .pr has to be produced. To

generate .pr a programming language will be used, that will read the JSON and write the

file. Algorithm below gives the logics for getting SDL out of JSON.

Part 1. Read JSON file into object

jsm = jsondecode(content of the JSON file);
sdl = “”

Part 2. Reading variables and adding to a dataview-uniq.asn file

type = “”
Loop i=1 To length(jsm.variables) as {key:v}
    type += “convert v to asn variable /n”
    Format Example

65



    “Num ::= INTEGER (0..9)”
End Loop

Part 3. Reading events and input variables and write in 
system_structure.pr file

sys = “USE Datamodel;\n
    SYSTEM atm;\n”
incom = []
outgo = []
Loop i=1 To length(jsm.events) as {key:e}
    sys += “convert to consistent format for system_structure file”
    Format example
    “/* CIF Keep Specific Geode PARAMNAMES account */
    SIGNAL accept_card (MyString);”
    If (e.scope == “input”) Then
        incom.push(key)
    End If
    If (e.scope == “output”) Then
        outgo.push(key)
    End If
End Loop
Loop i=1 To length(jsm.variables) as {key:v}
    If (e.scope == “input”) Then
        type += “create signals for input variables 
        such get_x(x) for input variable x /n”
        incom.push(“get_variable_identifier”)
    End If
End Loop
sys += “write CHANNEL with specifying signal definition by 
concatinating incom and outgo”
sys += “write BLOCK with specifying signal definition by 
concatinating incom and outgo”

sys += “ENDSYSTEM;”

Part 5. Reading transitions and adding to chart

sdl += “process some_name;”
Recursive Function transition_converter(node)
    Loop i=1 To length(jsm.states) as key:s
        If (jsm.states[i].parent == node) Then
            If (Is a destination in jsm.events.”!sourceless!”) Then
                sdl += “START;\n”
                sdl += “NEXTSTATE state_name;\n”
                sdl += “START;\n”
            End If
            If (jsm.states[i].type contain “composite”) Then
                sdl += “substructure \n” 
                    transition_converter(jsm.states[i])
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                sdl += “endsubstructure; \n”
            End If
            Loop i=1 To length(jsm.transitions.”key”)
                Convert jsm.transitions.”key”[i] 
                Add its input event
                    Add its contents - output, task
                    Add destination
            End Loop
        End If
    End Loop
End Recursive Function
transition_converter(null)

N.B. SDL keeps transitions between inner and outer states in a 
splitted form, but JSON has them in single transition, these have to 
be splitted.

Part 6. Saving sdl to file

Figure 33: Algorithm for JSON to SDL

4.2.3  Algorithm for SDL to JSON 

SDL can be read by parsing .pr file saved in OpenGEODE. It contains state machine in

a  tree  structure.  OpenGEODE  provides  code  generation  facility  based  on  custom

template. Using this feature .pr file should be converted to a easily parseable formate,

such as JSON. Then using a programming language this JSON formate of .pr has to be

read into an abject. So, the object, where the SDL will be read in, will have the same

tree structure as .pr file.  By the means of this object and a programming language the

intermediary JSON file is to be generated. Below is the algorithm for generating this

intermediary file. Also possible is reading the .pr file line by line in a programming

language and creating the object for further processing.

Part 1. Read .pr file into an object

sdl = SDL state machine
sm = {}

Part 2. Read in data types into a separate array

Convert dataview-uniq.asn to JSON format using String Template

jdt = jsondecode(content of converted dataview-uniq)

Part 3. Convert variables into JSON
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Recursive Function var_converter(node)
    Loop i=1 To length(node)
        If (type_of(node[i]) == variable) Then
            sm.variables.”node[i].variable_name” = {
                scope: "output",
                type: find in jdt,
                initial_value: null,
                min: find in jdt,
                max:  find in jdt
            }
        Else (If type_of(node[i]) == substructure) Then
            var_converter(node[i])
        End If
    End Loop
End Recursive Function

var_converter(sdl)

Part 4. Convert events into JSON

File system_structure.pr contains at least three (while SDL is 
simulated in TASTE), 1) list of signals with parameters, 2) list of 
input signals, 3) list output signal. These three will be converted 
three array – signals, in_sigs, out_sigs.

Loop i=1 To length(signals)
    sm.events.”signals[i].identifier” = {
        scope: “input” if in in_sigs, “output” if in out_sigs,
        parameters: {
            Loop param In signals[i].parameters 
                param + “_”,
                sm.variables.”param_” = { 
                    same to same sm.variables.”param_”
                }
                sm.variables.””.scope = “input”
            End Loop
        }
    }
End Loop

Part 5. Convert states into JSON

Recursive Function state_converter(node)
    Loop i=1 To length(node)
        If (type_of(node[i]) == state && not_in(sm.states)) Then
            sm.states.”node[i].state_name” = {
                type: "basic",
                parent: 
                    If  type_of(node) == state Then
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                        ”node.state_name” 
                    Else null
            }
        Else (If type_of(node[i]) == substructure) Then
            sm.states.”node[i].state_name” = {
                type: "composite",
                parent: ”node[i].state_name”
            }
            state_converter(node[i])
        End If
    End Loop
End Recursive Function

state_converter(sdl)

Part 6. Convert transitions into JSON

fht = {}
lht = {}
sm.transitions = []
Recursive Function transition_converter(node)
    Loop i=1 To length(node)
        If (type_of(node[i]) == START) Then
            sm.transitions.”!sourseless!”.push({
                destination: node[i].NEXTSTATE
            })
        Else If (type_of(node[i]) == state && contain(input)) Then
            If(sm.transitions.”node[i].state_name” == undefined) Then
                sm.transitions.”node[i].state_name” = []
            End If
            Loop j=1 To length(sm.transitions.”node[i].state_name”)
                input = sm.transitions.”node[i].state_name”[j]
                et = {
                    trigger_type: “event”
                    event: node[i].input
                    guard: node[i].decision
                    contents: []
                }
                If (input signal has parameters) Then
                     assign all input variable to output variable
                     such as x_ = x
                End If
                If (input contain decision) Then
                    ee = et.clone()
                    et.destination = input.true.NEXTSTATE
                    et.contents.push(
                        contents of input.decision.true
                    )
                    ee.destination = input.ELSE.NEXTSTATE
                    ee.contents.push(
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                        contents of input.decision.ELSE
                    )
                Else 
                    et.destination = input.NEXTSTATE 
                    et.contents.push(
                        contents of  input
                    )
                    sm.transitions.”node[i].state_name”.push(et)
                End If
            End Loop
        Else If (type_of(node[i]) == substructure) Then
            transition_converter(node[i])
        End If
    End Loop
End Recursive Function

transition_converter(sdl)

N.B. SDL keeps transitions between inner and outer states in a 
splitted form, but JSON has them in single transition, these have to 
be joined. 

Part 7. Saving JSON to file

Figure 34: Algorithm for SDL to JSON

4.2.4  Algorithm for JSON to Stateflow

By the means of Stateflow API, JSON will get converted to Stateflow.

Part 1. Read JSON file into object and creating handle

jsm = jsondecode(content of the JSON file);
rt = sfroot;
sfnew;
m = rt.find('-isa','Stateflow.Model');
ch = m.find('-isa', 'Stateflow.Chart');

Part 2. Reading variables and adding to chart

chvs = []
Loop i=1 To length(jsm.variables) as {key:v}
    chvs[i] = Stateflow.Data(ch)
    chvs[i].Name = key
    chvs[i].Scope = v.scope
    chvs[i]. type = v. type
    chvs[i].InitialValue = v.initial_value
    chvs[i].Minimum = v.min
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    chvs[i].Maximum = v.max
End Loop

Part 3. Reading events and adding to chart

ches = []
Loop i=1 To length(jsm.events) as {key:e}
    ches[i] = Stateflow.Event(ch)
    ches[i].Name = key
    ches[i].Scope = e.scope
End Loop

Part 4. Reading states and adding to chart

chss = []
temp = null
Loop i=1 To length(jsm.states) as {key:s}
        If (s.parent != null) Then
            temp = ch.find(
                '-isa','Stateflow.State','-and','Name', s.parent
            )
            chss[i] = Stateflow.State(temp)
            chss[i].Name = key
        Else 
            chss[i] = Stateflow.State(ch)
            chss[i].Name = key
        End If
        If (s.type contain “parallel”) Then
            chss[i].Decomposition = “PARALLEL_AND”
        End If
End Loop

Part 5. Reading transitions and adding to chart

chts = []

Loop i=1 To length(t)
    chts[i] = Stateflow.Transitions(ch)
    chts[i].Source =  jsm.states.[t.source].inch
    chts[i].Destination = jsm.states.[t.destination].inch
    chts[i].ExecutionOrder = t.order
    chts[i].LabelString = generate from t.compnents
End Loop

Part 6. Saving chart to file

Figure 35: Algorithm for JSON to Stateflow
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4.3  Prototyping for Demonstration

To  demonstrate  how  to  apply  the  conversion  approach  a  prototype  is  under

development.  It  is  placed  on  Github  as  a  public  repository

(https://github.com/taheruddin/transformation-stateflow-sdl). It is expected to be ready

very shortly. All the updates from now will be available in the repository. 
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5  Conclusion 

The aim of this work is to find out and validate a possible semantic mapping between

subsets of two state  machine modeling languages,  Stateflow and SDL. Secondly,  to

propose an optimistic approach for the implementation of this mapping.

Both Stateflow and SDL have been studied and the mappings between a substantial

amount  of  their  features  are  explored.  These  mappings  are  simulated  using  small

representative  models  to  focus  on  a  specific  semantic  equality  that  results  in  same

behavior. This simulation revealed behavioral equality. 

Moreover, two case studies have been conducted, ATM and Coffee Machine, to find out

the validity of mappings as well as the quality of the total conversion work. These case

studies show that conversion from SDL to Stateflow (ATM) is easier and more efficient.

Converting input event based state machine from Stateflow to SDL is also a piece of

cake. However, input value based Stateflow state machine is a bit difficult to convert,

but it was successful to produce useful output. These models are placed in the same

Github public repository (https://github.com/taheruddin/transformation-stateflow-sdl).

Next  the  approach  for  implementation  of  these  mappings  is  explained.  Firstly,  the

source is to be converted to an intermediate JSON data structure, then this data is to be

converted  to  destination.  The  structure  of  this  data  is  very  simple  and  very  easy

understand and hopefully,  easy to use. This data structure is self explanatory and an

example is also included in the annex. 

Four algorithms are provided for implementing the mappings through the intermediate

data structure. Required learning materials are referred. A prototype for demonstrating

the  approach  is  currently  under  development.  It  is  placed  on  Github  as  a  public

repository and future updates will be available there.   

Finally, it is an honor to be supervised by Andres Toom and Tõnu Näks. Their direction

and continuous support made this work possible for me. 
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Appendix 1 – Data Structure Example

{

  "variables": {
    "water": {
      "scope": "input",
      "type": "integer",
      "initial_value": null,
      "min": 0,
      "max": 2000
    },
    "faulty": {
      "scope": "input",
      "type": "boolean",
      "initial_value": null,
      "min": null,
      "max": null
    },
    "amount": {
      "scope": "output",
      "type": "double",
      "initial_value": 55.75,
      "min": 0,
      "max": 999999
    },
    "account": {
      "scope": "local",
      "type": "string",
      "initial_value": "EE87281471849",
      "min": null,
      "max": null
    },
    "msg": {
      "scope": "output",
      "type": "string",
      "initial_value": null,
      "min": null,
      "max": null
    }
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  },
  "events": {
    "activate": {
      "scope": "input",
      "parameters": null
    },
    "insert_card": {
      "scope": "input",
      "parameters": ["account", 
"another_output_or_local_variable"]
    },
    "verify_transaction": {
      "scope": "input",
      "parameters": ["account", "amount"]
    },
    "cancel": {
      "scope": "input",
      "parameters": null
    },
    "eject_card": {
      "scope": "output",
      "parameters": null
    },
    "out_msg": {
      "scope": "output",
      "parameters": ""
    }
  },
  "states": {
    "verifying_card": {
      "type": "basic",
      "parent": null
    },
    "read_amount": {
      "type": "composite",
      "parnet": null
    },
    "amount_selection": {
      "type": "sub",
      "parnet": "read_amount"
    },
    "entering_amount": {
      "type": "sub",
      "parent": "read_amount"

79



    },
    "verifying_transaction": {
      "type": "basic",
      "parent": null
    }
  },
  "transitions": {
    "!sourseless!": [
      {
        "destination": "verifying_card",
        "trigger_type": "event",
        "event": "activate",
        "guard": null,
        "contents": [
          {"action":"water=water+100"},
          {"output_event":["out_msg", 
"value_of_first_parameter"]}
        ]
      }
    ]
  },
  "verifying_card": [
    {
      "destination": "read_amount",
      "order": 1,
      "trigger_type": "guard",
      "event": null,
      "guard": "amount<200",
      "contents": [
        {"action":"water=water+100"},
        {"output_event":["out_msg", 
"value_of_first_parameter"]}
      ]
    },
    {
      "destination": "read_amount",
      "order": 2,
      "trigger_type": "event+guard",
      "event": "verify_transaction",
      "guard": "water<100",
      "contents": [
        {"action":"water=water+100"},
        {"output_event":["out_msg", 
"value_of_first_parameter"]}
      ]
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    }
  ]
}

Figure 36: An Example of Proposed Data Structure
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