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Abstract

This thesis presents the design of an experimental autonomous unmanned aerial platform
for implementing autonomous navigational capabilities. Most suitable environmental
perception system for such platform is introduced, designed and built. A LIDAR-based
environmental perception system uses one laser range-finder sensor and a motorized gimbal
stabilization system to sense the environment in 3D, being undependable from the aerial
vehicle's movements. Such system is capable of perceiving the environment in a range up
to 40 meters, however longer-range (15 — 40 m) measurements may lead to inaccurate
representation of an environment. With the point-cloud-like result from a LIDAR-based
system, the X, Y and Z coordinates of the target objects in the environment are calculated —
based on the object's distance and the sensors location in the environment. With such
dataset, it is possible to create a representation, using OctoMap model, based on octrees.
Main issue of the LIDAR-based environmental perception system can be proper
configuration: scanning granularity and scanning angle must be carefully considered, as the
actual scanning-time is limited. It has been shown, that approach for such system is
successful - results of the environmental scans are promising and further improvements

may greatly add more flexibility to this system.



Annotatsioon

LIDARIi-pShine timbruskonna tajumise siisteem eksperimentaalsele mehitamata

Ohusdidukile

Kéesoleva projekti eesmérgiks on ehitada autonoomne mehitama dhusdiduk, mis suudab
ohutult navigeerida algpunktist 18pp-punkti. Autonoomse funktsionaalsuse eesmérgi
saavutamiseks on kdigepealt uuritud erinevaid mehitamata Shusdidukite platvorme ja

t6opohimdtteid. Tulemusena ehitatakse eksperimentaalse Shusdiduki platvorm.

Kidesoleva 1doput6d eesmirgiks on uurida timbruskonna tajumise siisteemide vdimalusi
eksperimentaalsele mehitamata dhusdidukile, mis aitab saavutada autonoomse
funktsionaalsuse ja ohutu navigeerimise. Umbruskonna tajumiseks on valitud avatud
lahtekoodiga tdendosuslik 3D-kaardistamise mudel OctoMap, mis pohineb Octree

puustruktuuril.

Loputdd eesmirgina on vaadeldud erinevaid ldhenemisi, kuidas timbruskonna tajumise
stisteeme luuakse, milliseid mudeleid on realiseeritud ning millise pohimottega siisteem
sobiks kéesolevasse toosse kdige enam. Antud siisteemiks on valitud LIDARi-pShine
timbruskonna tajumise siisteem, mis koosneb laser-kaugusmootja sensorist, motoriseeritud
stabiliseerimise stisteemist ja juhtkontrollerist, mille abil on seda slisteemi vdimalik juhtida.
Selline siisteem on voimeline teostama modtmisi 3D-keskkonnas, véimaldades viljastada
punktipilve tulemusi — sihtmérgi-objektide XY Z koordinaate antud keskkonnas. Sellist
punktipilve vdib kasutada timbruskonna mudeli loomiseks ja lennu ajal takistuste
avastamiseks. Umbruskonna mudelit on vdimalik kasutada Shusdiduki ohutu teekonna

planeerimiseks 0huséiduki autonoomsuse saavutamiseks.

On oluline &igesti valida imbruskonna kaardistamise karakteristikud — kaardistamise
detailsuse samm, mootmise kaugus ja mdotmise ulatus, et siisteemi viljund oleks

voimalikult tdpne. Tulemused nditavad, et antud siisteem suudab edukalt ja tdpselt



timbruskonda tajuda ning selle slisteemi véljundit voib kasutada edukalt ruumi
kaardistamiseks. Siisteemi tdiendamiseks on vdimalik kasutada mitmeid ldhenemisi,
parendades stisteemi timbruskonna kaardistamist kiiremaks ning stisteemi efektiivsemaks.
Loputsd on kirjutatud inglise keeles ning sisaldab teksti 106 lehekiiljel, 6 peatiikki, 58
joonist, 15 tabelit.
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1 Introduction

Statement
The analysis and construction of an experimental unmanned aerial vehicle is
collaboration work and Sections 1, 2, 3 with their subsections are shared in current

thesis and [1].

Unmanned aerial vehicles offer wide application usage — these systems are usually
autonomous and operate without human-intervention. Such small scale vehicles can
perform tasks as search, rescue and disaster response, inspection of dangerous places, GIS,
mapping and observation of indoors or outdoors areas, environment monitoring, security
surveillance and inspection. Fixed-wing unmanned vehicles, suitable searching large area,
are successfully used for agricultural inspection. Various payload-based applications are

also suitable — for delivery of low-mass supplies.

Today, different approaches are used for designing such applications from standalone
vehicles to aerial vehicle swarms. Systems can be designed on GPS control, which
simplifies the localization problems, however, accuracy of the sensor must be considered.
Such vehicles cannot fly in cities near large buildings as GPS reception is reduced and as
those mission are safety critical. For achieve better accuracy with GPS, another approach of
redundant design with sensor fusion to achieve better accuracy can be used -- from 2.5 m to
centimetre-level accuracy [2]. Systems can be also designed for indoor use, using other

sensors and approaches to achieve localization within the environment.

To add: Drone's goal, (miks puude kohal ei lenda) ----- Main purpose is to achieve
autonomous flight mission capabilities for small-scale aircraft, which is able to avoid
obstacles based on light detection and ranging-based (LIDAR) perception system. Vehicle
is able to carry out missions in GPS available areas of old-grown forest, with low density of

forest-tloor, below treetops to add: Eva’s part intro
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To add: Eva’s part intro [1]

To add: Lauri's part intro

To add: Process flow, how we thought it would work, very briefly

Construction of such system is a challenging task — selection of overall design such as
frame construction, weight balance, type of aircraft and selection of flight system must be
carefully considered. Flight dynamics of such vehicle are hard to model. Main criteria for
the project is to build compact aircraft to fly in narrow areas with large enough payload

area and lift power to carry a LIDAR-based perception system.

For such design, four-rotor configuration allows maneuverability with capability of
generating enough lift power for desired payload over fixed-wing aircrafts. Multi-rotors are
highly maneuverable and thus especially suited for challenging indoor [3], [4], [5], [6] and
outdoor [7], [8], [9], [10] tasks. Maneuverability allows such systems to traverse in narrow
and complex areas. Such vehicles are able to carry wide range of scientific payloads for

deploying UAV (unmanned aerial vehicle) for the task of an autonomous exploration.

Our system consists of four main architecture blocks, see Figure 1.

14



Navigational sensors Telemetry link
PulsedLight LIDAR-Lite V1 rangefinder

Brushless motors Radio control link

LIDAR-based environmental Quad-rotor system
perception system

Electronic speed
controllers

Gimbal system Avionic system

Pixhawk flight controller

APM: copter 3.3.2 software system

J

BaseCam SimpleBGC 32bit gimbal controller

Gimbal brushless motors

On-board computer Ground station control application

PulsedLight LIDAR-Lite V1 rangefinder Flight control layer

Environmental perception

Mission analysis layer

Trajectory calculation

Configuration layer

Status layer
Real-time parameter analyze
Flight plan
Flight data

Navigation

Figure 1. System Architecture Block Diagram.

Quad-rotor System. Quad-rotor system consists of physical components for aerial vehicle,
navigational sensors including (i) an inertial measurement unit (IMU), (ii) global
positioning system (GPS), (iii) magnetometer and avionic system. Main functionality of an
avionic software system is: [11] (i) analyzing and collection in-flight information, (ii)
executing automatic control laws: flight control algorithm execution, actuator control
driving, (iii) communicating with ground control station, and (iv) logging necessary in-

flight data.

LIDAR-based environmental perception system. For environmental sensing LIDAR-based

system, described in chapter 6 in [1] will be used, which consists of gimbal system and
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laser range-finder, device that measures distance from the observer to a target. Gimbal is
used for stabilizing and directing sensor beam to desired direction. Laser range-finder
module works in various environmental conditions such as sunlight, rain or fog which has
advantage over ultrasonic or infrared sensors as range-finder provides good measurement

accuracy and longer distance sensing.

On-board computer system. On-board computer is used to handle control routines to

implement autonomy for the vehicle.

Main routines hosted on on-board computer are (i) environmental perception (scanning task
to create map of environment; real-time safety scanning task while navigating), (ii)

trajectory calculation, and (iii) navigation for multi-rotor.

To model environment, OctoMap mapping model based on octree structures will be used,
described in chapter 3. To create a world-map of possible obstacles and free space, the
OctoMap tools will be used, input for the map is used from LIDAR-based system. Based on
the map is it possible to understand the environment and plan for best suitable trajectories

for UAV to follow.

Trajectory calculation is executed based on environmental perceptional model. The A*
search algorithm is implemented on OctoMap tree-structure to find most suitable
trajectories for the multi-rotor (reference to Lauri's work). For finding best possible
trajectory from source to destination cost model for the vehicle is carried out. Various
parameters are counted such as (i) security measures (width of corridor of possible path),
(i1) speed for the vehicle, (iii) path length, (iv) time limitation for our model, and (v) energy
model. According to cost model most effective trajectory is selected to implement the GPS-

based way-points as a possible route for navigation task.

Ground  station control application.  Ground station control application realizes
communication between avionic system and ground station control system via wireless
link. This system is preferable but not compulsory, main purpose is to see in-flight data in
real-time via user interface. Application can be categorized as follows: (i) flight control

layer, (ii) mission analysis layer, (iii) configuration layer and (iv) status layer. Flight control

16



layer is responsible for sending desired executable flight control messages from ground
station application to avionic system. Mission analysis layer handles generation and
maintenance of desired flight trajectories and logging mission data. Configuration layer
allows to read and edit UAV's flight and configuration parameters. Status layer allow user

to monitor in-flight data in real-time.
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2 Configuration for Experimental Unmanned Aerial Vehicle

For the model to be effective - frame construction, weight balance, type of aircraft and
selection of flight system must be carefully considered. Section 2.1 introduces quad-rotor's
dynamics for selection components like motors, propellers and frame as these

configurations are most important as physical components for air-vehicle.

Another, yet very important configuration for quad-rotor, see section 2.4, is selection of
actual avionic system, which includes flight controller with avionic software system, which
is responsible for executing automatic control laws: flight control algorithm execution,
actuator control driving, communicating with ground control station and logging necessary

in-flight data.

Estimated models with possible suitable components are designed, see section 2.2. To make
rough evaluation on the models, viability calculation is made with ECalc tool. It is essential
to evaluate that all components, specially rotors and propellers would suit for specific
frame, for quad-rotor it is to lift the frame with estimated payload, which would result in

working vehicle.
Most suitable configuration is selected and final quad-rotor model is built, see section 2.3.
Flight results on a real model is introduced in section 2.5.

Error! Reference source not found. shows overall model of the system. Figure 34 [12]

shows in detail components for the quad-rotor model.
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Figure 2. Model of Multirotor and Perception System.




Figure 3. Model of Quad-rotor and Perception System.

2.1 Quad-rotor’s Model

2.1.1 Quad-rotor’s Dynamics

For air vehicle model quad-rotor-typed air vehicle is constructed. Four rotors generate
upwards lift, independent control of relative thrust to each rotor results desired movement
of the model. With a change of a speed of each rotor, possible desired turning force is

achieved.

Rotors are aligned in shape of rectangle, two rotors turn in clockwise (CW) direction and
the other two rotate in the opposite direction (CCW), as shown on Error! Reference
ource not found.. The aerodynamic torque of the first rotors pair cancel out the torque
created by the second pair which rotates in the opposite direction. This rotation
configuration neutralizes rotors' tendency to make multi-rotor rotate so if all four rotors

apply equal thrust, the multi-rotor will maintain its direction.

Multi-rotor has four controllable degrees of freedom: altitude, yaw, pitch and roll. Each
degree of freedom is controlled by changing speed of rotors. To maintain the overall
balance and desired position, sophisticated control system must be used. Pixhawk avionic

flight control system is used as a multi-rotor's control system.
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Figure 4. H-type frame configuration.

To control position in any degrees of freedom, speed of rotors are changed. Different axis

are shown on Error! Reference source not found..
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Figure 5. Quad-rotor's axis configuration.
2.1.2 Steering

For controlling direction in yaw axis, the control system is to slow down opposite pairs of
rotors relative to other pair. Rotation is to take place as angular momentum of the two pairs
of propellers will not be in balance. Multi-rotor is to rotate in either direction by changing

rotor speed in different pair of rotors.

For controlling direction to roll and pitch axis, control system is to change speed of two
rotors on the side. One side of the model is to have more thrust than other side, causing

multi-rotor to tilt.

Axis-tilt position changes in causes multi-rotor to move. With the tilt, multi-rotor can move
to different directions as lift force produced by the rotor is not directed downward resulting
in pushing the multi-rotor. For this movement it is important for control system to be able

to maintain the altitude since less rotor thrust power is directed downward while tilting.

2.1.3 Frame

Frame is the structure that holds the multi-rotor and its components together. For the model
it is to be as light as possible. Most available materials are carbon fiber, aluminum or
polyurethane foam. For the final model, hollow aluminum square rods are used for their
relatively light weight, rigidness and affordability. However as damping effect for
aluminum is not so good, to reduce some vibrations to the frame, plastic motor attachments

are used. H-typed frame (with configuration)

Frame consists of 3D printed parts: bottom, top, motor attachments and aluminum rods.
Frame is light enough for our settings. Design is expandable if needed, easy to repair and as

light as possible.

Frame design testing showed that most suitable frame for project's configuration was with

few 3D custom parts which is light enough for vehicle to be able to motion outdoors.
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First version of the frame was handmade polystyrene foam square size of 500x500x50mm
with 4 holes inside with diameter about 180mm. Two aluminum profile rods were attached

as motor attachments. This frame was too soft and small for this vehicle.

To reduce problems, another version of the frame was constructed with 3D printed parts.
Frame did not suit because of the weight of the frame and that it was not elastic nor strong

enough. Severe blow would harm the frame.

Next version was designed with polystyrene body with more elaborated design but it also
was too soft to the impacts with the objects as well in strong wind the frame did not have

good effect on the vehicle. Problem with this frame was weight and strong wind drag.

Final design of the frame was without external bumpers and for outside flight only.

2.1.4 Motors and Propellers

For heavy lift as well as slow and stable ride brushless DC motors are used along with
electronic speed controllers for each motor. Each motor is controlled separately by a speed
controller via avionic controlling system. The final selection of motor and propeller is to
match the overall model. Main characteristics considered for motor selection is KV-rating,
which indicates the revolutions per minute for number of volts. For final motor selection it
is to estimate the final weight of the model for create required thrust for lifting the multi-

rotor.

General rule is to provide twice as much thrust than weight of the multi-rotor. For larger
multi-rotors that carry payloads, low KV motors work better as they have more rotational

momentum and maintain multi-rotor’s stability.

Propellers are selected based on motor characteristics. For selection propellers length and
pitch are important. Pitch is a parameter for travel distance of single propeller rotation.
Higher pitch means slower rotation, but increase of the multi-rotor’s speed with usage of
more power. Lightness of overall model is very important as excess weight reduces battery
life and maneuverability. To have an optimal flight time it is important to find balance

between final selection of rotors and propellers.
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Increase of propeller’s size and pitch characteristics, more thrust can be generated therefore
more lift force for multi-rotor is achieved. The bigger propeller’s diameter, the more
efficiently model hovers, but control of the model is decreased. Although carbon fiber
typed propellers are expensive in respect to plastic ones, carbon fiber material is selected as
it is significantly stronger than plastic propellers. (high performance, durable, expensive,

stiff, rigid, strong - propellers flexes and decreases efficiency of the blade)

With intention of having stable ride with heavy multi-rotor, low-RPM rotors are to be
selected. Based on rotor selection, suitable carbon fiber slow-fly typed propellers are used.
Slow-fly propellers [13], that usually generate higher amount of thrust in respect to speed
propellers, have wide taper and broad flat blades, usually lower pitch. With this

configuration, the multirotor has enough power to lift the estimated payload.

For controlling rotors, suitable electronic speed controller (ESC) is used. Selection of the
component depends on selection of rotor and rotor's current consumption. Li-Po as power
source is to be used. Type of a battery depends on motors; bigger capacity of battery

estimates longer flight time.

2.2 Estimate on Components. Viability Calculation

To find suitable electric components for the model, Ecalc [14] tool is used to make a rough
estimate for correct setup. Ecalc is to simulate and evaluate electric motor driven systems
for remote controlled models. This tool is to show problematic areas when selecting
components for the model. It is essential to evaluate that all components, specially rotors
and propellers would suit for specific frame for multi-rotor is to lift the frame with

estimated payload, which would result in working vehicle.

Largest propeller for the frame, the bigger the total disc area the more efficient multi-rotor
hover is achieved, but the slower gets the control response. Final propeller selection is

based on final rotor, for air vehicle dynamics please refer to Section 2.1.4.

Table 1. Estimate on Model's Dimensions.

Parameter Value Unit
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General
Number of motors

4 _

Type of rotor configuration Flat -

Frame size

388x388x100 @ mm

Flight controller tilt limitation -

Estimate

Multirotor system 1200 g
Battery 350 g
Payload (LIDAR system) 300 g
Total estimate weight 1800 g

All-up Weight:

# of Rotors:

Frame Size:

Battery - Rated Voltage:
Fropeller - Diameter:
Fropeller - Fitch:
Fropeller - # Blades:

recommended KV:
min. Motor Power:

min. ESC size:

Prop-Kv-Wizard

[ ]
400 mm
12.6 )

25...45 A+

Figure 6. Estimate of Suitable Rotor/Propeller Configuration.

Estimate on rotors. Weight of the model and payload is essential, refer to Table 1. For most
optimal flight based on our configuration, slow rotors are proposed (estimated KV rate: 770
- 1120), see Figure 6. Two-bladed 11" propellers are proposed, final selection results on a
specific motor. Approximate motor power is estimated between 275 - 480 watts, which

would result in using electronic speed regulators between 25 - 45 amperes.

Many different combinations were considered for the same frame configuration. Best

possible results based on estimated weight and frame type are shown in Table 2.
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Possibilities of low-RPM rotors were considered. Turnigy Multistar motor along with
11"x4,7" and 12"x4,5" propellers gave most promising estimation. Hover flight time with
usage of 5000mAh 3-cell battery in all cases is around 11 minutes (estimated time in min:
10"x4,5" - 11,1; 11"x4,7" - 11,4; 12"x4,5" - 12,1). Enough lift power is generated in all
cases, but with combination of SunnySky 980KV motors and 10"x4,5" propellers the
estimated load to rotor is near to maximum (estimated: 154W, max: 160W), which is to

lead to possible motor failure.

Estimate on Propellers. Two different slow-fly propellers can be used with Turnigy
Multistar 800KV motor for our model. With 11"x4,7" propellers better estimated motor
efficiency is achieved, but efficiency of both configurations are very similar. At total drive,
estimated efficiency at hover is 11"x4,7" - 75%, 12"x4,5" - 73%. At total drive, estimated
efficiency at maximum throttle is 11"x4,7" - 72%, 12"x4,5" - 68%. In both cases 11"x4,7"

and 12"x4,5" propellers result in similar efficiency.

Throttle Input. With longer propeller blades, better estimated throttle input at hover is
achieved (est, %, 12"x4,5" - 50%, 11"x4,7" - 57%). With our specific configuration best
throttle aim at hover is to be less than 60%, the lower, the better. Below 50% used for racer

quad-rotors.

Specific Thrust. In both cases (est, g/W, 12"x4,5" —7.9; 11"x4,7" — 7,5), specific thrust of
propeller is efficient, results above 6 g/W considered as good efficiency. Specific thrust
indicates grams of produced thrust with one watt of electric input on motor. Thrust to
weight ratio is better with configuration of 12"x4,5" (est, 12"x4,5" — 1,9; 11"x4,7" — 1,6)
although this estimate is rough as for final model carbon fiber propellers are to be used.
Calculator's estimation is based on APC SF propellers, which have different PConst
constant value from final selected-to-be propeller. But as usually this information is not

published by manufacturer, rough estimation is used in this case.

Current Consumption. Estimated current per motor in both cases stays under 20A, at hover
estimate around 5A (est, A, 12"x4,5" - 5,6; 11"x4,7" - 5,3). At full throttle current estimate
per one motor is around 11A (est, A, 12"x4,5" - 10.2; 11"x4,7" - 10,2). Based on
estimation 20A ESC's can be used.
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Temperature. With both setups, load on a motor is not resulting motor overheat. With
maximum estimated load on a motor and good cooling presumed, temperature change is
minimal, around 11 degrees (est, degrees, 12"x4,5" - 11; 11"x4,7" - 14). Temperatures of

rotor case over 80 degrees and higher might result in motor failure.

RPM limits for Propellers. Both propellers fit within permissive RPM range. At hover,
11"x4,7" estimated RPM represent 58% of max RPM, 12"x4,5" estimated RPM represent
61% of max RPM on specific propeller. At full throttle RPM of propellers are estimated
83% versus 94%. 11"x4,7" propellers show better result with Turnigy Multistar 800KV

motor as lower load on a propeller is preferred.

Table 2. Different Multi-Rotor Possible Setups
Parameter Unit SunnySky | Turningy Turningy

@ 10x45 @ 11x47 @ 12x45
Battery LiPo 25/35C

Configuration 3S1P 3S1P 3S1P
Load C 12,11 9,81 11,64
Total capacity mAh 5000 5000 5000
Minimum flight time min 4,2 5,2 4,4
Mixed flight time min 8,8 9,3 9,4
Hover flight time min 11,1 11,4 12,1
ESC
Current A const. 20 20 20

A max 25 25 25
Motor at maximum
Current A 15,14 12,27 14,55
Voltage \Y 10,19 10,36 10,22
Estimated RPM rpm 8239 6665 6253
RPM at full battery rpm 12348 10080 10080
Maximum RPM for propellers | rpm 10500 8000 6667
Maximum motor power W 160 220 220
Electric power W 154,2 127,1 148,7
Mechanical power w 123,4 98,4 110,2
Efficiency % 80 77,4 74,1
Estimated temperature °C 13 11 14
Motor at hover
Propeller Speed 10"x4,7" SF11"x4,7" | SF12"x4,5"

27



Current A 5,72 5,58 5,27
Voltage Vv 10,76 10,76 10,78
Revolutions rpm 5409 4615 4050
Throttle % 51 57 50
Efficiency % 80,1 76,7 74,3
Specific Thrust g/W 7,31 7,5 7,92
Estimated Temperature °C 5 5 5
Total drive
Model Estimate g 1800 1800 1800
Estimated Maximum Thrust g 3240 2880 3420
Estimated Thrust per Rotor 810 720 855
Thrust-Weight 1,8 1,6 1,9
Current @ Hover A 22,88 22,3 21,08
P(in) @ Hover W 254 247,5 234
P(out) @ Hover W 197,1 184,1 168,8
Thrust @ Hover g 1857 1857 1853
Efficiency @ Hover % 77,6 74,4 72,1
Current @ max A 60,57 49,06 58,18
P(in) @ max w 672,3 544,6 645,8
P(out) @ max W 493,8 393,5 440,8
Efficiency @ max % 73,5 72,3 68,3
Quadcopter
Additional Possible Payload g 1008 710 1095
Maximum Tilt degrees 50 44 52
Maximum Speed km/h 39 28 29
Rate of Climb m/s 5,4 3,6 4,1

Legend for Table 2

= Battery

— Configuration: Setup for configuration, number of cells.

— Load: Actual discharge rate in relation to the capacity. Total Capacity: Used
setup of capacity of the battery.

— Minimum Flight Time: Expected minimum flight time, based on maximum
throttle of maximum discharge % of battery and is independent of the weight.

— Mixed Flight Time: Based on all-up weight when moving, result on max.

discharge % of battery, base is geometric mean value of current difference from
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hover to maximum throttle. Hover Flight Time: Expected flight time based on

all-up weight when hovering only on max. discharge % of battery.

= Motor at Maximum

Current: Maximum estimated current draw per rotor.

Voltage: Maximum estimated voltage per rotor at maximum current.

Estimated RPM: Maximum revolutions for rotor at full throttle.

RPM at Full Battery: Revolutions for rotor at 100% full battery, at 3S1P,
12.6V.

Maximum RPM for Propellers: Maximum estimated revolutions for specific
propeller, common RPM limits from manufacturers. Estimate taken: Graupner
SF CF propellers 88000 RPM/diameter [15], APC Multirotor Speed propellers
105000 RPM/diameter [16].

Maximum Motor Power: Maximum load on a specific rotor.

Electric Power: Maximum electric input power.

Mechanical Power: Maximum mechanical output power or shaft power.
Efficiency: Efficiency at maximum ampere draw.

Estimated Temperature: Temperature of the rotor case. Temperatures over 80C

result in rotor failure.

= Motor at Hover (for each rotor)

Propeller: Propeller type for setup.

Current: Estimated current for hovering. The hover current should be close to
the optimal current.

Voltage: Rotor voltage for hovering.

Revolutions: Rotor revolutions at hover.

Throttle: Stick position to hover in manual mode as input signal. Indication of
power signal to rotor at hover, to aim for 50-60%. Under 50% used for racer
vehicles.

Efficiency: Rotor efficiency at hovering.

Specific Thrust: How many gram of thrust is produced with one watt of electric

input power at the rotor.
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Estimated Temperature: Predicted rotor temperature - subject to the motor

cooling.

= Total Drive

Model Estimate: Total estimate on the weight of the model.

Estimated Maximum Thrust: Total estimate for full thrust on a model.
Estimated Thrust per Rotor: Total estimate for full thrust per rotor.
Thrust-Weight: Dimensionless ratio of thrust to weight of a rocket, jet engine,
propeller engine, or a vehicle propelled by such an engine that indicates the
performance of the engine or vehicle. [17]. Flying below 1.2 is almost
impossible.

Current (@ Hover: Sum of all rotors when hovering.

P(in) @ Hover: Electric input power at battery when hovering.

P(out) @ Hover: Mechanical output power or shaft power when hovering.

Thrust @ Hover: Calculated thrust for hovering, based on specific thrust.

Efficiency @ Hover: Total efficiency when hovering.

Current (@ max: Sum of all motors at full thrust.

P(in) @ max: Electric input power at battery at full thrust.

P(out) @ max: Mechanical output power or shaft power at full thrust.
Efficiency (@ max: Total efficiency at full thrust.

= Quadcopter

Additional Possible Payload: Maximum additional payload possible to hover
with 80% throttle to guarantee maneuverability.

Maximum Tilt: Theoretically maximum possible tilt of the copter to maintain
level flight (neglecting down force due tilt).

Maximum Speed: Theoretically maximum attainable forward speed in flight at
max. tilt and throttle (neglecting copter aerodynamic drag and down force due
tilt)

Rate of Climb: Estimated maximum achievable rate of climb (neglecting copter

aerodynamic drag).
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Final Results: Both propellers generate enough thrust for the model with 800KV motor
(est, g/W, 12"x4,5" - 7.9; 11"x4,7" - 7,5), which would result in working vehicle. Estimate
on setup with propellers of 11"x4,7", thrust-weight is estimated at 1,6. With usage of
12"x4,5" propellers, estimate is 1,9. As propeller's PConst value remains undocumented by
manufacturer of possible propellers that are to used, reliability of an estimation remains

unknown.

Throttle input at hover is efficient in both cases, lower throttle is preferred (est, %,
12"x4,5" - 50; 11"x4,7" - 57). Current consumption per motor in both cases is similar,
resulting in usage of same ESC of 20A for motors. Temperature changes are similar if

model is to have good cooling.

Based on estimation, combination of motors of 800KV with 12"x4,7" propellers is to be
used, see Figure 7. Although both setups are very similar, combination of selected motor
and propellers result in most efficient setup as thrust-weight ratio is very important metric

for selection of final components:

1. Total drive thrust has better estimate: Maximum thrust of 3420 grams by 12"x4,5"
propellers to be generated while 11"x4,7" would result in 2880 grams of thrust on
model all-up-to 1800 grams (est, 12"x4,5": 1,9; 11"x4,7": 1,6).

2. Better throttle at hover is achieved: With longer propeller blades, better estimated
throttle input at hover is achieved (est, %, 12"x4,5": 50; 11"x4,7": 57).

3. Longer hover time estimate: With longer propeller blades, longer estimated hover

flight time is to be achieved (est, min, 12"x4,5": 12,1; 11"x4,7": 11,4).
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est. Temperature: Thrust-Weight: specific Thrust:

Figure 7. Estimated results for final model with Turnigy 800 KV 12"x4,5"

2.3 Specifications of Components used for a Model

Real model is built on estimated result of possible usable components. Estimated weight of
1800 grams resulted in reduced model weight of 1732 grams, for specifications refer to
Table 3. Real dimensions of the model are 390 x 365 mm. Model, refer to Figure 8 is set up
using H-typed Frame as deck space is needed for mounting the payload. This design

provides more available area for components than usual X-typed Frame.
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Figure 8. Multi-rotor’s model

Motors and Propellers. Four Turnigy Multistar 2216 Outrunner motors (800 KV), refer to
Table 4 for specifications, are used with 12"x4,5" Carbon Fiber Slow-fly propellers, see

Table 6. For testing purposes also propellers 11"x4,5" are used.

Motors are controlled with Hobbywing 20A Skywalker Quattro uBEC 4-in-1 Brushless
ESC, for specifications refer to Table 5. This controller is capable handling continuous
current consumption of 20A for each motor, burst of 25A, enough of source current the
selected motors require. Model is compact and comfortable as wiring complexity is

simplified.

Power Supply. ZIPPY Compact 5000mAh 3S 25C LiPo Pack is used, see Table 7. Weight
of 342 grams, this compact battery helps to reduce overall weight on a model. Battery's

capacity is 5000 mAh resulting in maximum 12-minute hover flight time with payload on

board.

Autopilot System. As an avionic system - 3DR Pixhawk flight controller is used with APM:
Copter 3.3.2 source configuration, refer to Table 10 and section 2.4 for details. 3DR uBlox
GPS with Compass Kit is used for positioning.
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Radio System. Three different radio modules are used for the model: telemetry link, manual

radio control and for debug and navigational link for user interface operations.

For telemetry link, SiK Telemetry Radio module v1 433 MHz are used, refer to Table 8.
Telemetry application is used for primarily sending data from aircraft to ground station
application [18], it gives possibility to monitor vehicle’s status while in operation. Basic
and quick configurations of avionic software's parameters can be done via telemetry link.
Updating, creating and loading autonomous missions to aircraft with simple point-and-click
way-point entry on Google or other maps is possible via telemetry link and Mission Planner

application software [19].

Manual control of the quad-rotor is achieved by using Taranis X9D Plus remote control
unit [20] with X8R 16¢ch Receiver, connected directly to flight controller's SBUS port, see
Table 9 for specifications. As safety precaution, this radio system gives user full control
over quad-rotor if it is necessary to take over autonomous control operations. Remote
control also offers testing possibilities of flight dynamics while developing autonomous

flight implementations.

It would be possible to implement debug and navigation link over 2,4 GHz Xbee radio
devices for user interface operations. Devices would be connected to an on-board computer
and ground station computer. Possible implementation of software will be needed to see

possible debug data as well as real-time view of the flight mission and map of the space.

Adjustments to radio configurations are made, to ensure correct usage of radio devices
according to general requirements for the use of radio transmission equipment in Estonia

[21].

Table 3. Configuration of Real Model. Weight vs Size

Parameter Value Unit
General

Number of Rotors 4 -
Type of Rotor Configuration flat -
Estimated Frame Size 400x400 mm
Real Frame Size 390x365 @ mm
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Real Frame Size with Propellers
Estimate

Multi-rotor System
Battery

Payload (LIDAR system)
Total Estimate Weight
Real Model

Multi-rotor System
Battery

Payload (LIDAR system)
Total Real Weight

696 x 672

1200
350
300
1800

1081
342,4
308
1732

cq 0a Ou 0.

q 0q Ou 0.

Table 4. Model Components: Motor Specifications

Parameter Value

Model Turnigy Multistar 2216 Outrunner
KV 800

Poles 14

Weight 83

Maximum Current = 20

Idle Current 0.5

Maximum Voltage @ 12

Maximum Power 222

Connector

Dimensions

3.5mm bullet-typed

Unit

rom/V

S <>»>»m

Length 34
Diameter 28
Table 5. Model Components: ESC Specifications
Parameter Value
Model Hobbywing 20A Skywalker Quattro uBEC

4-in-1 Brushless ESC

Continous Current (per 1) 20

Burst Current (per 1) 25

BEC Output 5;3

Battery Cell: 2S-4S, 7,4V-14,8V
Size: 70,62, 11
Weight: 112

35

Unit

mm, mm, mm
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Table 6. Model Components: Propeller Specifications

Parameter
Model

Material

Pitch

Diameter
Weight:

Shaft Diameter:
Hub Thickness:
Number of Blades:
PConst:
TConst:

Value
Carbon Fiber Propeller 12"x4,5" Black
Carbon Fiber
04.jaan

12

15

6

8

2

Unknown
Unknown

Table 7. Model Components: Battery Specifications

Parameter

Model

Capacity

Voltage

Cells

Continuous Discharge Rate
Burst Discharge Rate
Weight:

Balance Plug:
Discharge Plug:
Dimensions

Length

Height

Width

Value

ZIPPY Compact 5000mAh 3S 25C Lipo Pack

5000
11.jaan
3

25C
35C
354
JST-XH
XT60

162
21
46

Table 8. Model Components: Telemetry Specifications

Parameter

Model

Supply Power

Operating Frequency
Receiver Sensitivity
Maximum Transmit Power
Used Transmit Power
Continuous Discharge Rate

Value

RCTimer Radio Telemetry Kit 433Mhz
5

433

-121

100

10

25C

36

Unit
Vv

MHz
dBm
mwW
mwW

Unit

mAh



Air Data Rate 250 kbps
Standard Interface: UART -
UART Baud Rate: 57600 bps
Used Firmware: SIK Telemetry Radio 1,9 -
Data Protocol: MAVLink -
Weight: 15 g

Parameter

Table 9. Model Components: RC Control Specifications

Parameter Value Unit
Transmitter

Model Taranis X9D Plus -
Operating Frequency 02.jaan GHz
Number of Channels 16 -
Operating Voltage Range juuni.15 \Y
Maximum Operating Current 260 mA
Maximum Transmitting Power | 100 mW
Configured Transmitting Power | 10 mwW
Receiver

Model X8R 16ch Receiver -
Operating Frequency 02.jaan GHz
Number of Channels 16 -
Operating Voltage Range 04.okt Vv
Operating Current 100 (@5V) mA
Operating Range 1,5 km

Table 10. Model Components: 3DR Pixhawk Flight Control System

Description

3DR Pixhawk

Processor

Main Processor
Failsafe Processor
Operating Frequency MHz

RAMKB

168
256

32bit STM32F427 Cortex M4 core with FPU
32 bit STM32F103 failsafe co-processor

Flash Memory MB
Sensors

2
ST Micro L3GD20H 16-bit gyroscope

ST Micro LSM303D 14-bit accelerometer/magnetometer
Invensense MPU 6000 3-axis accelerometer/gyroscope
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MEAS MS5611 barometer
Interfaces

5x UART, 1x high-power capable, 2x with HW flow control

1x CAN with internal transceiver

1x CAN on expansion connector

Spektrum DSM / DSM2 / DSM-X® Satellite compatible input

Futaba SBUS® compatible input and output

PPM sum signal input

RSSI (PWM or voltage) input

12C, SPI, 2x ADC inputs

Internal microUSB port and external microUSB port extension
External

3DR uBlox GPS with Compass Kit 5Hz

2.4 Avionic System: Autopilot and Software

Our Avionic system consists of Pixhawk flight controller and APM software which
coordinates all the hardware components on board in an appropriate sequence. Figure 9

explains the framework of an avionic software system, where each task is shown as a block.

Navigational data control task manages collection of sensor data. Motor control task
generates appropriate motor control signal to drive the motors. Communication control
ensures communication between avionic system and ground control system application.
Data logging provides log of in-flight data. Flight control implements the automatic flight

control laws. Main control block manages all tasks.
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Main controll task

data
) control |

write read

Navigational data Motor control Communication Flight law control

Data logging task

control task task control task task

Navigational Electronic speed Telemetry
: External storage
sensors controller transiver

Figure 9. Avionic Software System Framework Block Diagram

Important requirement for avionic system selection for research and development is an
open software and hardware platform, widely active community and up-to-date software
development in progress. Pixhawk flight controller is mainly used for high-end research

and amateur usage, can be considered as new but mature platform.

Pixhawk project is a further evolution of the PX4 flight controller system [22]: a single
board controller having powerful 32-bit processor with an additional failsafe backup
controller and extensive memory. Board is equipped with 1O interfaces, refer to Table 10,
and advanced sensor profile: (i) 3-axis 16-bit ST Micro L3GD20H gyroscope for
determining orientation, (ii) 3-axis 14-bit accelerometer and compass for determining
outside influences and compass heading, (iii) external HMC5883L kit: magnetometer and
GPS unit, (iv) MEAS MS5611 barometric pressure sensor for determining altitude, (v)

voltage and current sensing for battery condition determination.

System is optimized to provide control APM flight navigation software with high
performance and capacity. For vehicle control APM open source flight stack is used,

licensed under GPLv3 [23]. It is actively developed and has large community. Flight

39



software runs on NuttX real time operating system, which features high performance,

flexibility, and reliability for controlling any autonomous vehicle [24].

Basic structure [25] of the flight software stack and the configuration is shown on Figure
11. APM Flight Stack is responsible for state estimation and flight control. PX4Firmware is
base middle-ware and driver layer for Pixhawk board, licensed under BSD [26]. APM
flight stack interfaces through Hardware Abstraction Layer, which makes APM software
portable for Pixhawk board. Libraries block represents structure of essential libraries such

as core, sensor and other libraries [27].

Ground station User interface layer

Communication layer

Libraries

Vehicle specific code APM flight stack layer

Hardware abstraction layer

PX4 Firmware Interface layer

NuttX RTOS Operating system layer

Pixhawk Hardware layer

Figure 10. APM configuration.
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1 Spektrum DSM receiver

2 Telemetry (radio telemetry)

3 Telemetry (on-screen display)

7 4 USB

5 SPI (serial peripheral interface) bus
1 8 6 Power module

7  Safety switch button

8 Buzzer
2 ° 9 Serial
3 10 10 GPS module

11 CAN (controller area network) bus
T 12 1°C splitter or compass module
") 13 Analog to digital converter 6.6 V
14 Analog to digital converter 3.3V
15 LED indicator

13
14
15

Figure 11. Pixhawk flight controller

ground
power
signal

1 Radio control receiver input
2 S.Bus output

3 Main outputs

4 Aucxiliary outputs

Figure 12. Pixhawk flight controller's output

2.5 Quad-rotor's Setup Routines and Flight Results

Setup Routines
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Setup for quad-rotor includes proper assembly of the system as well as installation of
ground control application. Software is used as a configuration utility and dynamic control
application for autonomous vehicle, proper setup and configuration of quad-rotor is done

after full assembly (I will include here the link of the setup file for our drone).

Ground control application [28] allows to (i) load the firmware into flight controller; (ii)
setup and configure the vehicle for an optimum performance; (iii) create, save and load
autonomous mission into autopilot; (iv) download and analyze mission logs created by
flight controller software; (v) use telemetry link to monitor vehicle's status while in

operation, record, view and analyze telemetry logs.

After assembling the vehicle, firmware must be loaded to the board and mandatory initial
setup must be completed for achieving best performance for vehicle's operation. Initial
setup requires setting up the frame configuration for mapping the motors for software.
Proper flight modes are configured supporting different types of flight stabilization,
autopilot, follow-me system etc. Most used modes are Stabilize, Altitude Hold, Loiter,

Return-to-Launch, Auto tune, Follow-Me, Guided Mode etc.

For advanced configuration, auto tune functionality helps to automatically configure
control loop feedback mechanism (PID gains) parameters of stabilizing algorithm for flight
controller for providing vehicle's highest control response without significant overshoot.

Auto tune functionality can be triggered manually while vehicle is operating in the air.

To ensure safety, failsafe mechanisms [29] are set up for geo-fence, battery, radio and
ground control application to be triggered when vehicle is in operation, if needed. Flight
software supports return-to-launch or landing functionality in cases where contact between
RC transmitter and flight controller's receiver is lost. Failsafe for battery can be set up to
trigger return-to-launch or landing functionality when battery voltage has crossed below
configurable threshold. Geo-fence failsafe ensures that vehicle will remain in desired area,
if flying too far away from allowed area, failsafe will be triggered switching vehicle to

return-to-launch or land.
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Pre-arm safety check is enabled for safety routines to be analyzed before airborne. These
checks will prevent vehicle from arming if any problems are discovered including missed
calibration, configuration or a bad sensor. Failure messages may include device failures or

mis-calibrations with RC, magnetometer, GPS or problems with accelerometer or

gyroscope [30].

Calibration of sensors must be done before first flight, which include calibrations of: (i)
magnetometer; (ii) RC device; (iii) accelerometer; (iv) ESCs. Electronic speed controllers
are responsible for spinning the motors at the speed requested by the autopilot. Most ESCs
need to be calibrated so that they know the minimum and maximum control values that the
flight controller will send [31]. Before each flight it is recommended to perform calibration

of magnetometer, other devices should be calibrated optionally if needed.

Flight Results

Smooth flight. With our configuration of weight of 1732 grams, quad-rotor is capable of
smooth flight with payload for around 11,5 minutes, as seen from Figure 13. Flight was
conducted in strong winds using altitude hold mode, holding desired altitude of 1,2 meters.
Altitude hold mode uses barometer sensor readings, as readings may vary in different
weather conditions, it can be seen that altitude change was between 1,0 — 1,5 meters, with

peaks of 2 and 0,8 meters.
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Figure 13. Flight results. Smooth flight. Altitude Changes

Rapid flight. Test results in flight time of 9,5 minutes, see Figure 14 and Figure 15. Flight
was engaged in moderate weather conditions in auto-tune mode, which is used for vehicle's
advanced configuration. Figure 14 shows altitude of the vehicle. Although barometer
sensor readings, see red line, are sensitive due to moderate weather conditions, quad-rotor
holds its desired altitude. During the flight, desired altitude is set to 3.5 meters, see green

line, resulting real altitude to change minimally, see blue line.

Figure 15 shows the functional operation of auto-tune mode. For first eight minutes, vehicle
was tilting the roll axis, see red rapid lines. Last two minutes were used to tilt pitch axis,
see blue rapid lines, until the control response became sufficient. In the beginning, between
second and third minute, see less rapid red lines, the tuning operation was manually paused

because of the strong winds.
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Figure 14. Flight results. Rapid flight. Altitude Changes
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Figure 15. Flight results. Rapid flight. Roll and Pitch Axis Changes in Autotune Mode

Guided mode. Flight test was conducted in guided mode to invoke automatic mission
execution. Mission consists of ten independent way-points, planned holding altitude of 7
meters with 5-second delays between every way-points. Execution time of the flight

mission was 3 minutes.
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Figure 16 represents the way-point data and real passed trajectory by quad-rotor. Point

precision was set to 1 meter in the mission configuration, so all way-points were taken

accurately.

Figure 16. Flight Results. Guided Mode. Way-points and Real Trajectory

Maximum flight target speed between way-points is set to 500cm/s (18km/h) as an internal
parameter. Such flight speed is successfully carried out by quad-rotor, see Figure 17, Figure

19 and Figure 18.

Figure 17 shows constant battery voltage drop. During three minutes of mission execution,
battery voltage dropped from 12.4V to 10.9V. Red line represents battery voltage, green

line shows horizontal speed of quad-rotor.
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Figure 17. Flight Results. Guided Mode. Battery Voltage Change

During the flight, current consumption was between 22A - 25A. After reaching certain
way-point, 5-second delay is invoked. Figure 18 contains small segment of Error!
Reference source not found. - here it can be seen that speed remains around 0 m/s during

5 seconds, see orange line.

After the delay, quad-copter reaches target speed of 500cm/s (5m/s) with constant
acceleration, see purple line. During acceleration, slight overall current consumption raise
can be noticed, see Figure 18 and 4Appendix Error! Reference source not found.. Yellow
bar represents an area, where constant acceleration takes place, current consumption rises
around 2,5A, such trend takes place upon every acceleration as can be seen from Appendix

Error! Reference source not found..
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Figure 18. Flight Results. Guided Mode. Current Consumption vs Flight Dynamics

Figure 19 shows mission's altitude. Green line represents desired altitude set beforehand.
Red line shows barometer's sensor-readings, which may vary in weather conditions, blue
line represents real altitude of the vehicle. Real altitude is calculated fusing barometric
sensor data and GPS readings. Real altitude differs slightly from desired altitude. Changes

in altitude can occur due to constant speed changes, see white line.
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Figure 19. Flight Results. Guided Mode. Altitude Changes
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3 Environmental Mapping

For an autonomous behaviour, the mapping and localization of the UAV in the 3D space is
an important component. With a LIDAR-based approach, the UAV senses the environment
by taking 3D-range measurements (see Figure 20). Storing the raw measurements is not
reasonable, therefore suitable modelling framework to represent the environment needs to
be considered. Localization in the environment is an important issue, which should not be

underestimated. In this project, GPS-signal is expected for localization implementation.

Based on a specific modelling framework, the map of the space is created. Such map is
considered the central component for autonomous operations as it will be used for path-
planning and navigational operations. Such map has to be effective and efficient in respect

to access and size, so the large outdoor environments could be mapped.

Figure 20. Example of generated point cloud by a LIDAR System.
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For our configuration, following requirements are set: we would use a probabilistic
representation for modelling the occupied, free and unknown space in addition with
optimum runtime and memory usage. The modelling framework has to be capable of
transforming environmental readings to an environmental map. We are looking for an
implementation from open-source project that could be refined to specific needs for this

project.

3.1 Environmental Mapping Models

Although several environmental modelling concepts are available, lack of finalized,

working and successful implementations leads to barrier of using such concepts.

POINT CLOUD MODELS. Point clouds (PCL) are very precise and are proved to be used in
static environments, however these models are not memory efficient. Large raw point cloud
data, that is stored without organizing nor segmenting readings into structures, introduce
modelling and computational problems. Several measurements for the same space-segment
can exist with such approach. With the growing amount of raw readings, the representation
of the model increases with no upper-bound. Without structuring and processing the data, it
is impossible to differentiate between obstacle-free space. Such models have no

information about unknown nor free areas.

ELEVATION MODELS. These structures store the height information in each cell of a discrete
grid of the surface. These models provide maps of discretization the space in vertical
dimension, not the actual volumetric representation. Whereas the elevation maps provide a
compact representation, they lack the ability to represent vertical structures on multiple
levels [32]. Upper surface of the environmental space for a specific height is stored on such
maps and useful for the navigational tasks for ground [33] mobile vehicles. These models
do not have full distinction between free and unknown space, they may have large memory
consumption, particularly outdoors. With 3D precise dataset, precision will be lost as the

map of the surface does not represent an actual space.

OCTREE MODELS. Probabilistic octree-based models avoid one of the main shortcomings of

the fixed grid-map structures. Octree structure can be used as a multi-resolution
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representation -- structure contains multi-node elements for obtaining coarser subdivision.
OctoMap [34] is an octree-based framework, that is able to address large point clouds and
integrate measurements into memory efficient volumetric occupancy map. Octree structure
represents spatial subdivision in 3D, represented as a voxel (cubic volume). Structure is
divided into eight substructures until minimum cube size is reached, which defines the
resolution of a structure. This structure can be decreased at any level, allowing to have a
coarser subdivision for obtaining another resolution. Different resolutions, as can be
introduced on Figure 21 and Figure 22Error! Reference source not found., rendered with

OctoVis tool from publicly available model [34], [35].

Tl ﬁii

i ‘ml

Figure 21. OctoMap corridor vizualization at resolution 10cm [35].

52



Figure 22. OctoMap corridor vizualization at resolution 20cm [35].

Figure 23. Corridor Visualization, Cube 20 cm. Occupied; Free; Unknown Space [35].

OctoMap modelling framework is an implementation for the octree model, which uses tree-
based representation for modelling the environment. This approach uses probabilistic
occupancy estimation to ensure updatability and cope with sensor noise. Method provides

compactness on the resulting models as Boolean occupancy states are used. If certain space
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is considered occupied, the node in a structure is initialized. Unoccupied volumes in the
space are also represented. Figure 36 included to Appendix, represents OctoMap

visualization for an occupied space and Figure 23 shows occupied, free and unknown areas.

For the compact implementation structures are maintained as follows: if all substructures of
a node have the same state of probability parameter, e.g. occupied or free, the structure is
pruned. OctoMap ensures that confidence of the map remains bounded and the model itself
can adapt changes in the environment quickly. Compression is not completely lossless in
terms of full probabilities, as structures with close thresholds ([0; 1]) are considered as a
stable in high confidence and pruned. In between the thresholds, full probabilities are
preserved. In static environments all voxels will converge to a stable state after a sufficient
number of applied measurements. In such cases, as all substructures get the same
occupancy state, they are pruned from the main node. When new measurements are applied
that would conflict the corresponding inner-node, the sub-structures are accordingly

regenerated and updated.

OctoMap framework is available as an open-source BSD-licensed C++ library and has been
successfully applied to several robotics projects. There are publicly available real-world
datasets that can be used for simulation and testing while implementation process takes
place. OctoMap approach is able to update the environmental representation efficiently

keeping the memory requirements at a minimum.
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4 Strategic Outline of Path Planning

In this part of the thesis a strategy for an appropriate path planning method for the
developed and tested UAV platform will be investigated. First, based on a final decision for
an efficient data presentation using OctoMap [1], algorithms for path planning will be
compared. Here the following major constraints and goals for Mission Path Planning

(MPP) have to be considered:

e  Optimum path result based on a defined cost function.

e Initial cost function: flight distance only (later: speed, energy, ...).

e Path planning method must be capable of dynamic replanning in case of occurrence
of OctoMap changes (or even cost function changes (e.g. dynamically modified
distance/power/speed trade-off?).

e Short path re-calculation times/re-planning times, since energy plays a role and
copter cannot “stand” in the air too long, until computation is finished (2>
computational efficiency).

e Memory efficiency of the MPP algorithm, since limited memory resources are
available in the computational unit of the UAV.

e Optimum re-planning efficiency in combination with OctoMap models.

e Currently no detailed mathematical model on flight dynamics is available: path

planning method has to be model-independent from flight dynamics.

Furthermore, the envisaged Path Planning Algorithm should be ready for the following

intended novel contributions to path planning methods:

e Minimized service completion times for UAV missions: requires consideration of
flight speed (which is depending on corridor width and straightness of the flight
corridors, e.g. minimization of directional changes).

e Power optimization (minimization of acceleration, deceleration, height changes;

minimization of overall flight time).
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4.1 Introduction

Careful and safe navigation is most important requirement for unmanned aerial vehicle.
This is to be achieved by careful path planning. For path planning it is necessary to

understand the environment from real world model.

107: Exploration module uses computed 3D map for autonomous functionality: trajectory

planning, later navigation and exploration.

For this project one should carry out careful navigation route minimizing constraints that
are important to this projects. Paths are to be optimized for speed and distance due to
limited battery life and time vehicle can fly - so routes must be energy efficient. How to
achieve one needs to understand from vehicles energy model. Speed efficiency can be

achieved from map - to pass only big cubes which are empty.

Speed efficient. trajectory in in very detail: big cubes which are empty. Distance: Optimal.
Cost function: speed vs distance. and then think which model is more optimal. Rough step
model: discrete flying model to sum up energy consumption - slow down/accelerate costs
more energy. Cost function for operational tasks we have to do. And then find optimal
trajectory minimizing the cost in some constraints (for ex time). Parameters for cost

function and to define cost function.

Optimization for path:

Speed (trajectory in in very detail: big cubes which are empty)
Time (constraint)

Distance (optimal)

b=

Energy point (limited battery life, more time to be on air). Energy consumption:

slow down/accelerate costs more energy vs flying most time at just hovering?

)]

Precision (precise vs not preside) + time

6. Acceleration model?

To think on this topic, you should start for thinking on distance and speed and then refine

this to energy model (some energy cost function). Cost function: speed vs distance. and
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then think which model is more optimal. Cost function for operational tasks we have to do.
And then find optimal trajectory minimizing the cost in some constraints (for ex time). As

long as scanning takes = route can be calculated (test).

Algorithm selection: Theoretically calculate how much time we have for path planning
(theoretical numbers how long could use that) and then find algorithm, which fit into that
and which does not fit. And also based on processing power of the Raspberry CPU

consumption. Constraints have to be good enough!

Localization: is the process of determining where the robot is located, relative to objects in

its environment.

Mapping: is the process of building maps based on data acquired from one or more sensors.
Once the map is built, the robot can begin performing its navigation and obstacle avoidance
functions. Navigation is comprised of path planning to reach a goal within a map, along
with detection of new obstacles that are not part of the map. This is where the preceding
elements of LiDAR, scanning, and mapping are all brought together into a functioning
system. During navigation, the software provides real-time updates to the proposed path to
keep the robot within the mapped area, whilst avoiding any new obstacles. In the picture
below, we see a navigation ‘goal’ being set. The user clicks a location on the map where
they would like to robot to go, and the navigation software displays a large green arrow to
show this goal. In deriving a path to the goal, the robot must allow a safe distance around
all obstacles. To this end, the purpose of obstacle inflation is to make obstacles appear
larger than they are, and with a safety margin, to help ensure the robot does not collide with
them. So the turquoise areas are areas the robot should avoid: they are the danger spots
where collision could occur. During path planning, the robot footprint (in red) should not

be made to overlap significantly with those inflated areas.

Path planning: is the process of determining a path for the robot to follow, in order to reach

a ‘goal’, whilst avoiding obstacles (a goal is just where you want the robot to go).

Obstacle detection: is the process of detecting objects in the environment that were not

present during the mapping process, but are now nonetheless present.
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Avoidance: is the process of path planning around dynamically occurring objects.

- Purpose of this work is to investigates path-planning algorithms that can be realized
for navigational operation for this project and represent ideas behind path planning
strategies. The main idea of our project is to have experimental fling platform that
can autonomously navigate in an environment where might have multiple, mainly

not dynamic, obstacles.

Before executing the mission, the system has to perform the initial environment scanning
even if there is some map available so that it can generate new map or update old one. After
initial scanning, depending of current location, there might still remain some unknown
areas what perception system isn’t able to scan. After the initial scanning the representative
result can be seen in Figure 24 (a and b) where light green represents the fully scanned and
free area and white represents unknown or not scanned area. On that figure blue drone-
model represents our experimental fling platform with a perception system on-board. Dark
grey squares represent obstacles in environment and bright green dot represents the goal
location. On a Figure 24(b) light transparent grey squares represent occupied voxels on a
map and those are out of limit for UAV to fly. Variety of blue tones squares on a map
represent partially scanned voxels what can hold weight values, for example free voxel has
a value 1 and occupied has a value 0, then squares represented as blue have values in
between. For simplicity the idea in this work is that if voxel is scanned more than 90% and
obstacle is not detected there, it is considered as free voxel. Initial location where UAV is
located at start, is considered as free. Must be mentioned for clarity that all figurers

describing environment has illustrated in 2D instead of 3D.
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Figure 24. Environment scanning and map generation.

Path will be given to autopilot step by step in form of waypoints. Autopilot what is used in
this UAV supports communication protocol called MAVLink [36]. This protocol supports
sending waypoint coordinates with its radius from on-board computer to autopilot.
Coordinates is calculated from the map and represents the centre point of the voxel. Radius
of the waypoint means that UAV does not reach exact point of that coordinate before
targeting next one but starts fling towards next waypoint before reaching to the current one.
This kind of possibility gives an easy way to construct a smooth flight. In Figure 25 is

illustrated how different radius size affects flight smoothness.
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Figure 25. Meaning of the waypoint radius.

Test flights have shown that the result can be seen in Appendix at Figure 35, that rapid and
sharp turns increase current consumption noticeably therefore, smooth flightpath is

preferred.

Because of the sensor-system what is used for this platform [1] is relatively slow, scanning

for fast moving objects and overall scanning takes time, there are some restrictions.

Firstly, while taking a full-scan UAV does not move [1] thus it takes more time to

accomplish the mission what is not preferred of the limited amount of battery life.

Secondly, the system does not able to sense whole environment, therefore the system does

not have complete map and navigation must be conducted in partially-known environment.

Figure 26. Representation of one possible calculated route with waypoints
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Waypoint radius defines the radius (in meters) of all waypoints in the mission. The radius
of the waypoint determines the size of the waypoint in three dimensional space and controls
how close to the specified location the vehicle needs to be before continuing to the next

waypoint.

Cost =2 Cost =1,8927 Cost =1,7854 Cost =1,6781 Cost =1,5708
Figure 27. Cost of the different paths

4.2 Path planning algorithms

According to [37] several approaches exist for computing paths given some representation
of the environment. In general, the two most popular techniques are deterministic,
heuristic-based algorithms (Hart, Nilsson, & Rafael 1968; Nilsson 1980) and randomized
algorithms (Kavraki et al. 1996; LaValle 1998; LaValle & Kuffner 1999; 2001). According
to our platform restriction, capabilities and the fact that randomized algorithms, like
Probabilistic Roadmaps (PRM) and Rapidly Randomly Exploring Tree (RRT), need
complete map of the environment [38] we cannot use those and need to find required

algorithm from many variety of heuristic-based algorithms.

4.2.1 Dijkstra

The Dijkstra algorithm is the most famous algorithm. The algorithm evaluates the moving
cost from one node to any other node and sets the shortest moving cost as the connecting
cost of two nodes. Initial node is marked as current state and all others is marked as

unvisited.
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Dijkstra algorithm woks so that it gives every node (state or vertex) infinite value except
start node, it gets cost equal to zero. Then for a current node it calculates initial
cost/distance for all of its unvisited neighbors, compares new cost to the current one and
give it smaller value if exist. If all the neighbors of the current node have been evaluated,
then current node is marked as visited and never checked again. Algorithm is finished when
goal node is marked as visited or when there is no connection between start node and

remaining unvisited nodes [39].
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Figure 28. Concept of Dijkstra's algorithm.

Dijkstra algorithm is one of the first algorithm designed for finding shortest path [40]. It is
simple by just oriented to find the shortest path between start and goal point. It picks the
unvisited vertex with the lowest distance, calculates the distance through it to each

unvisited neighbor, and updates the neighbor’s distance if smaller. Mark nodes as visited
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when done with neighbors. But the simplicity is what makes it also slower than many
others algorithms, like one of the most used algorithms A* and D*. Although it was
superior to its predecessors [41]. Dijkstra is a special case of the A* when the heuristics

parameter is set to zero.

4.2.2 A*

A* is one of the most used pathfinding algorithm today [37] [42]. It was developed by Peter
E. Hart at 1968 to solve minimum cost path. The A* approach differs from other methods
as it incorporates an estimate of the cost of path-completion. For certain classes of

estimating functions, A* will find the optimal path [41].

A* plans a path from an initial point to a goal point just like Dijkstra’s algorithm. But
instead of starting to visit all neighbors around start position (in circular wave front) it have
directed search to a goal point. That what makes A* algorithm potentially faster than
Dijkstra’s algorithm. At the beginning the A* sets Start state cost to zero and then places
this state into a priority queue witch is called open list. Elements in this list is ordered by
the sum of their path cost from start position and heuristic estimation of their path to goal
position. The heuristic function estimates the minimum cost from any vertex to the goal and

it is used to focus the search. [37]

Like seen in Dijkstra’s algorithm there is lot of wasted moves while searching an optimal
path to the goal position. Therefore, in A* algorithm there is introduced evaluation function
which decide which way the expansion should move. Let say that the evaluation function is
f(n) in that case f(n) = g(n) + h(n) [43] where g(n) is cost of an optimal path from start point
to a current point and h(n) is an optimal path cost from current point to goal point. In this
work the value on g(n) is equal to a traversed distance, like seen in Figure 30, where arrows
show the path and the number on the arrow means the distance what is traversed. The
second member of this function h(n) is presented in Figure 30 as a red arrow, in our case it
represents the Euclidean distance between current point and goal point [43]. It can be
calculated easily from coordinates of the goal point n, and current point » as seen in (1). In
our case the pathfinding takes place in 3D environment therefore we use three coordinates

x, y and z. Given our environment restrictions, this formula gives good value for evaluating

63



node suitability as next waypoint and decreases number of nodes what must check for

finding the path.

C H)Jc ) C )y ) (1)

This cost value of the path from current point to goal point is used in A* to calculate the

optimal path from s to n, and it is used to focus the search.

1 initialize the open list

2 initialize the closed list

3 g(s)=0, for all other nodes g(n)=e

4 initialize goal node //this is the target node

5 initialize start node //add the node to the open

6 while open list is not empty

7

8 get node n from the open list with the lowest f(n)

9 add n to the closed list

10 if n is equals the goal node then stop;

11 return solution;

12 generate each successor node n' of n;

13 for each successor node n' of n

14 {

15 set the parent of n' to n;

16 //heuristic estimate distance to goal node

17 set h(n")

18 set g(n') = g(n) + cost from n to get to n'

19 set f(n') = g(n') + h(n")

20 if n' contained in open and the existing node is as good
or better then discard n' and continue;

21 if n' is contained in closed and the existing node is as
good or better then discard n' and continue;

22 remove all occurrences of n' from open and closed list
and add n' to the open list;

23 }

24

25 //if we searched all reachable nodes
26 //and still have not found a solution then return
27 return failure;

Figure 29. A* algorithm pseudo code. [44] [45] [37]

On Figure 29 is shown pseudocode of the A* algorithm. In line 1 and 2 there is created two
lists, open and closed list. In an open list will be stored all vertexes what can be visited. It is
sorted based on f(n) value. All the others nodes initial value g(n)=oo, line 3. In line 8,
algorithm will take the node » with smallest value of the f(n) from the open list and puts it
in a closed list, line 9. If node taken from open list equals the goal node, then algorithm has

found the path and is finished and returns solution, line 11. Otherwise algorithm continues
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and tires to finds successors for this element n. Successors of » are the direct neighbors of
that element which means that from » to neighbor »' it is possible to move with one step.
Steps are illustrated in Figure 30 as black arrows. From line 17 to 19, f(n) value is
calculated for each successor and added to an open list, line 22, in case existing node has

better f(n) than »’ then this particular neighbor will be elected as a part of the path.

B> u—>

Figure 30. Concept of A* algorithm.

Advantage: delivers optimum path.

Disadvantage: static, if anything in the OctoMap changes, a full re-computation is needed.

4.2.3 D* Lite

D* algorithm is also called Dynamic A* algorithm, which is proposed by Stentz in his two
papers in 1994 [46] and 1995 [47]. Instead of recalculating the full path from zero if
environment changes like A* algorithm does, D* calculates only remaining part again.
Compared to A*, D* and D* Lite is more efficient and therefore it is also more wildly used
for a path planning tasks [48]. D* Lite algorithm mimics the D* algorithm but uses some
properties of LPA* (Lifelong Planning A*) algorithm to find new route as UAV moves on
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[49]. Because of these two algorithms (D* and D* Lite) are fundamentally quite similar,
hereinafter the attention is turned to D* Lite, which has been found to be slightly more

efficient [48].

D* Lite uses a heuristic to limit the states processed and process only those states that has
influence on the path cost of the initial state. As a result, it can make D* Lite up to two
orders of magnitude more efficient then A*. Also D* Lite stores a least-cost path from a
start state to a goal state, for that it stores an estimate cost g(s) from the state s to the goal,
look at a Figure 31 line 1 and 6. It also stores a one-step lookahead cost rhs(s) which is sum

of the cost from state s to its successor state and cost of the path from successor to goal.

key(s)
1 return [min(g(s), rhs(s)) + h(Ssare, s); min(g(s), rhs(s))];

UpdateState(s)

2 if s was not visited before

3 g(sk=r; c

4 if (5 # Sgoal) I"hS(S) = ming SUCC(S)(C(SJ Sl) + g(sl)).;
5 if (s OPEN) remove s from OPEN;

6 if (g(s) # rhs(s)) insert s into OPEN with key(s);

ComputeShortestPath()

7 while (mins geen(key(s)) "< key(Sstart) OR rhs(Ssiart) # 8(Sstart))
8 remove state s with the minimum key from OPEN;

9 if (g(s) > rhs(s9)

10 g(s) = rhs(s);

11 for all s' Pred(s) UpdateState(s');

12 else € U

13 g(s) = oo

14 for all s' Pred(s) {s} UpdateState(s');

Main()

)
15 g(sstar‘t) = r"hs(sstar‘t) = o, g(sgoal) =1;
16 rhs(sga1) = ©; OPEN =
17 insert sg, into OPEN with key(sgea1);
18 forever
19 ComputeShortestPath();
20 Wait for changes in edge costs;
21 for all directed edges (u, v) with changed edge costs
22 Update the edge cost c(u, v);
23 UpdateState(u);

Figure 31. D* Lite algorithm basic version [48].
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On Figure 31 is brought out pseudo code of the basic version of the D* Lite algorithm, it
consists of four parts: key(s), UpdateState(s), ComputeShortestPath() and Main(). Thus D*
Lite starts searching path backwards in contrast to A* from goal to start, then firstly g(Sstart),
1hs(Ssart) and rhs(sgear) s set to zero and g(sgea) getting value 1, in Main() line 15 and 16.
Now when the state Sga is over consistent it inserted to open list. Open list holds the
inconsistent states, these are the states that need to be updated and made consistent. After
that algorithm starting to find path and does it until complete path is found or open list is
empty, line 7 in ComputeShortestPath(). Complete path is found if rhs(Sgar) = 2(Sstart). Open
list cleared in order of lowest priority first. When ComputeShortestPath() expands a locally
over consistent state (line 9), then it makes the vertex locally consistent by setting g-value
of the state to its rhs-value. Otherwise if ComputeShortestPath() expands a locally under
consistent state (line 12) then it simply sets the g-value of the state to infinity (line 13). If
the expanded state is over consistent, then the change of its g-value can affect the local
consistency of its successors (line 11) or if the expanded state is locally under consistent,
then state and its successors can be affected (line 14). In UpdateState(s) all unvisited states
g-value valued as infinity. In lines 4 — 6 the rhs-values will be updated so that algorithm the

condition to be met. Requirements that must be satistied are [49]:

O C ) )
)

e Open list always contains exactly the locally inconsistent states.

e The priority of a state in the open list is always the same as its key.

Advantage: delivers optimum path and allows partial re-calculations after local OctoMap

changes.

Disadvantage: doesn’t allow quick and rough computations, computation may take a while

until completed.
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4.2.4 AD*

Planning for systems, operating in the real world, involves of challenges. Firstly, the real
world is an inherently relatively uncertain and dynamic place. Accurate models for
planning are difficult to compose and may quickly become out of date. Although in this
project there are restriction to the environment where the UAV operates it is still reasonable
this platform to have property to manage dynamic objects. For that problem there are
replanning algorithms, like D*, what can solve this problem. Secondly, when operating in
the real world, the time is constraint. This is especially important with this platform where
the power supply determines the time limit, with smaller fling robots waiting is not on
option because the even maintaining current position drains power supply quite rapidly. For
this problem there are developed anytime algorithms which have shown promising results
solving these kind problems. The main idea with anytime algorithms is that firstly they give
suboptimal path and while the time pass by they improve it.

AD* (Anytime Dynamic A*) have properties to deal with both problems [48], it can handle
dynamic environment as well as complex planning problems. At the beginning, AD*
quickly computes a suboptimal path to the goal, and continually improves the bound on the
initial solution based on available planning time. The heuristic inflation factor is the key by
decreasing the inflation factor, the solution improves in terms of optimality but more states

are explored.
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key(s)

01. if (g(s) > rhs(s))

02. return [rhs(s) + € + h(Sstart, S); rhs(s)l;
03. else

04. return [g(s) + h(Sstart> S); 8(S)];

UpdateState(s)
05. if s was not visited before
06. g(s) € «; €

07. if (S # Sgoal) I“hS(S) = mins' Succ(s)(c(s: S') + g(sl));
08. if (s € OPEN) remove s from OPEN;

09. if (g(s) # rhs(s))

10. if s CLOSED

11. insert s into OPEN with key(s);
12. else
13. insert s into INCONS;

ComputeorImprovePath ()

14. while (ming open(key(s)) "< key(Sstart) OR rhs(Sstart) # 8(Sstart))
15. remove state s with the minimum key from OPEN;

16. if (g(s) > rhs(s)) U

17. g(s) = rhs(€);

18. CLOSED = CLOSED {s};

19. for all s' Pred(s) UpdateState(s');

20. else € U

21. g(s) = =

22. for all s' Pred(s) {s} UpdateState(s');

Figure 32. Anytime dynamic A* ComputeorimprovePath function [48].

AD* performs a series of searches using decreasing inflation factors €. Inflation factor € is a

variable what is used to change heuristic value for improving path search.

When changes occurred in the environment and the cost of the edges change, locally
affected states are placed into an OPEN list with priorities equal to the minimum of their

previous key value and their new key value.
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Main()

o1. g(sstar‘t) = rhs(sstart) = ®; @(Sgoal) = 0,
02. rhs(sga) = 0; € = &g

03. OPEN = CLOSED = INCONS = ;

04. insert sgu, into OPEN with key(Sgoal);
05. ComputeorImprovePath();

06. publish current e-suboptimal solution;
07. forever

08. 1if changes in edge costs are detected

9. for all directed edges (u, v) with changed edge costs
10. Update the edge cost c(u, v);

11. UpdateState(u);

12. if significant edge cost changes were observed

13. increase € or replan from scratch;

14. else if € > 1

15. decrease €; €

16. Move stat®s from INCONS into OPEN;

17. Update the priorities for all s OPEN according to key(s);
18. CLOSED =

19. ComputeorImprovePath();

20. publish current e-suboptimal solution;

21. if € =1

22. wait for changes in edge costs;

Figure 33. Anytume dynamic A* Main function [48].

On the Figure 32 and Figure 33 is presented AD* algorithms psefidocode. At the beginning
§ain function sets some initial values and gives inflation factor a sufficiently high value

o so that algorithm generates first suboptimal path quickly (lines 1 — 6)& After that if
changes in edge costs are not detected, the Main function start to decrease step by step
and improves quality of its solution Tntil it is optimal (lines 14 — 20). Final solution is
optimal when ¢ = 1. Each time when is decreased, all inconsistent states are moved from
INCONS list to OPEN list and CLOSED list is made empty. In the OPEN list the priority
of each state s is stored. CLOSED list contains all states already expanded once in the
current search. INCONS contains all states that have already been expanded and are
inconsistent. In case the environment changes then there is a change that already path is not
e-suboptimal. Now algorithm must calculate new path although if changes are substantial
then repairing current path might be computationally expensive to recover e-suboptimality.
For making calculations faster, algorithm increases € what gives less optimal solution but

does it quickly (line 12 — 13).

The increase of the edge costs may cause some states to become under consistent, therefore

states need to be moved into OPEN list with a key-values. In Figure 32 the new key-values
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are calculated just like in D* Lite algorithm. In order to guarantee that under consistent
states propagate their new costs to their affected neighbors, their key values must use
uninflated heuristic values. This means that for under consistent (line 1 — 2) states and over

consistent (line 3 — 4) states different key values must be computed.

Advantage: dynamic replanning, allows trade-off between computation time and accuracy

with respect to path minimality.

4.2.5 VFH

DVFH (Double Vector Field Histogram) and VFH (Vector Field Histogram)
the planner constructs a polar histogram centered at the MAV’s current position

Describe the concept: polar coordinate histogram technique, starting from a local view into

the environment.
Advantage: memory efficient for small environments.

Disadvantage: complex cost function calculations, reducing the efficiency and the

scalability of the approach for application in large sceneries.

4.3 Comparison and algorithm selection

A* provides a static optimum path calculation for a given scenery, but the required
computation maybe intensive and the mission cannot be started before completion of the
mission. In case of obstacle changes (relevant (= critical) cases: relocation, new obstacles),
the whole computation has to be repeated. This is infeasible, once new obstacles occur in a
path which has been assumed to as free and open. Therefore, the additional functionality of
partial re-calculations in case of OctoMap changes provided by D* (best implementation:
D*-lite) is definitively needed. With D* still the disadvantage remains, that the computed
optimum solution is visible not before the completion of the algorithmic computations,
which may be time-consuming in extensive scenarios. This disadvantage is addressed by

A*-Anytime, which provides the capability of calculating rough solutions quickly and
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improving it over time. Therefore, in case of scenario changes, missions can be smoothly

continued with improved path availability during the mission.

For that reason, A*-Anytime has been selected as backbone algorithm for the mission path
planning in this project. Because of its capability of dynamic precision improvement over
time it also allows a trade-off between the usage of computation resources (processing time,
memory usage) and therefor the method is always scalable to operate in combination with

large OctoMap models.

DVFH works well with smaller scenarios, but the overall scaling is expected to be handled

more easily with A*-Anytime.

Dijkstra slow < A* faster < D* dynamic
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S5 Future work

Since the time for the thesis has been limited, no time for the implementation has been left.

The plan which should be applied for implementation is as follows:

1 Implementation of a simple Dijkstra Algorithm in order to set up and test the
algorithm-OctoMap cooperation in a lower complexity environment; Approval in
real UAV flight scenarios and test.

2 Implementation of the A*-Anytime Algorithm; Approval in real-world.

Once these basic path planning software modules are in place the following optimisations

can be targeted:

e Optimisation of the mission service time by raising up the flight speed.
e Minimisation of energy consumption.

e Inclusion of flight dynamics models for improved trajectory determination.
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Appendix 1 - UAV’s General Components
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Figure 34. Components for the Quad-rotor Model.
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Appendix 2 - UAV’s Flight Dynamics
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Figure 35. Full Flight Results. Guided Mode. Current Consumption vs Flight Dynamics.
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Appendix 3 - Environmental Mapping Model

Figure 36. OctoMap Corridor Visualization, Cube 20 cm. Occupied Space [35].
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