
Tallinn 2020

 TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Cybersecurity engineering

Ayaka Uehara 177770IVSB

SECURITY INVESTIGATION OF
THE TALTECH SMART LIFT

Bachelor's thesis

Supervisor: Mairo Leier

 Research Scientist

Co-Supervisor Olaf Manuel Maennel

 Professor

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Ayaka Uehara 177770IVSB

TALTECH NUTILIFTI TURVALISUSE
UURIMINE

bakalaureusetöö

Juhendaja: Mairo Leier

Kaasjuhendaja: Olaf Manuel Maennel

3

Author’s declaration of originality

Author’s declaration of originality is an essential and compulsory part of every thesis. It

always follows the title page. The statement of author’s declaration of originality is

presented as follows:

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Ayaka Uehara

4

Abstract

Keywords: penetration test, threat modelling, IoT

The evolution of IT and engineering has produced IoT technology in this decade. Its

convenience, however, has been significantly recognized, its complicated structure

conceals security threats, because it has composite devices, IT infrastructures and web

applications whose systems are under disparate attacks which have been increasing in

recent years. The phenomenon is rooted in those original functions which have no facilites

in interacting with several devices on networks. Here this thesis reveals potential exploits

in an IoT system to define a threat model and to perform a penetration test on Nutilift, a

smart lift developed by Tallinn University of Technology. The threat model and the

penetration test suggest potential attacks and mitigations which exist on the system. The

investigation classifies the system as three layers, a perception layer, a network layer and

an application layer, to identify threats, based on the characteristic of each them.

Outcomes indicate that the perception layer and the network layer result in robust security

on the system, while a system web application has probabilities of information disclosure.

This thesis is written in English and 50 pages long, including 8 chapters, 29 figures and

15 tables.

5

Table of abbreviations and terms

WSN Wireless sensor network

STRIDE Spoofing Tampering, Repudiation Information, Disclosure Denial of Service,

Elevation of Privilege

PASTA The Process for Attack Simulation and Threat Analysis

NFC Near Field Communication

RTSP Real Time Streaming Protocol

IoT Internet of Things

OWASP Open Web Application Security Project

XSS Cross site scripting

DoS Denial of service

ROS Robot Operating System

REST Representational state transfer

CVE Common Vulnerabilities and Exposures

RCE Remote Code Execution

ReDoS Regular Expression Denial of Service

6

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Table of abbreviations and terms.. 5

Table of contents .. 6

List of Figures ... 8

List of Tables .. 9

1 Introduction ... 10

2 Related work .. 12

3 Background .. 13

3.1 Smart city architectures .. 13

3.2 The purpose of the smart lift and relation to a smart city 14

4 The threat model of IoT and smart city ... 14

4.1 Logical structures of the smart city .. 14

4.2 Threat modeling concepts ... 15

4.3 Origins of threats .. 16

4.4 Attack vectors ... 17

5 Risk assessment of the smart lift ... 18

5.1 Logical topology ... 19

5.2 Trust boundaries ... 19

5.3 Threats for each layer ... 21

5.3.1 Perception Layer threats .. 21

5.3.2 Network layer threats .. 22

5.3.3 Application Layer threats .. 23

5.4 The Threat model of the smart lift .. 25

5.5 Threat severity .. 26

6 Methodology and scope of penetration tests ... 27

6.1 Testing Prerequisite .. 27

6.2 Attack trees of the system ... 28

6.2.1 Application Layer .. 28

7 System penetration testing and system setting survey .. 29

7.1 Existing vulnerability research and its environment .. 29

7

7.1.1 Information Disclosure .. 31

7.1.2 Denial-of-Service .. 39

7.1.3 Elevation of Privilege .. 40

7.2 Security severity of the smart lift ... 42

8 Conclusion and future work .. 43

References .. 45

Appendix 1 Web application functions .. 48

Appendix 2 Serialize-javascript search results ... 49

Appendix 3 Node audit result ... 50

8

List of Figures

Figure 1. Logical topology of the smart lift [19] .. 19

Figure 2. Trust boundaries of the smart lift... 20

Figure 3. Application Layer Attack tree ... 28

Figure 4. Replicated environment logical topology .. 31

Figure 5. Http Only option .. 32

Figure 6. PostgreSQL dump file on Google Drive ... 32

Figure 7. COPY command execution ... 33

Figure 8. SELECT table outcomes.. 33

Figure 9. Outcome of node-serialize search .. 34

Figure 10. A npm audit result ... 35

Figure 11. ROS melodic roscpp path .. 35

Figure 12. Confirm vulnerabilities .. 36

Figure 13. Exploit results .. 36

Figure 14. 1. Created a user on the server ... 37

Figure 15. 2. Installed “pkg” package and compiled “CVE-2020-7598.js” on the web

application directory .. 37

Figure 16. 3. Set a setuid flag on “CVE-2020-7598” ... 38

Figure 17. 4. Created an exploit script on /tmp directory ... 38

Figure 18. 5. Executed the node script. ... 38

Figure 19. Sudoers attacking on the server ... 39

Figure 20. User privilege on ROS Client .. 40

Figure 21. Lxc accounting information on ROS Client .. 40

Figure 22. User information on ROS Master .. 40

Figure 23. Failed CVE 2019-13272 exploit .. 41

Figure 24. Installed package lists .. 41

Figure 25. ROS Master kernel version .. 41

Figure 26. Picture management UI on web application .. 48

Figure 27. Serialize-javascript search results .. 50

Figure 28. XSS vulnerability on serialize-javascript .. 50

Figure 29. Arcon package ReDoS vulnerability ... 50

9

List of Tables

Table 1. Logical topology and its related equipment... 14

Table 2. Origins of threats on the Layers... 16

Table 3. Attack Vectors on the Layers .. 17

Table 4. Detail installation on the smart lift system .. 20

Table 5. Installation and origin of threats on Perception Layer 21

Table 6. Installation and attack vectors on Perception Layer 22

Table 7. Installation and origin of threats on Network Layer 23

Table 8. Installation and attack vectors on Network Layer 23

Table 9. Installation and origin of threats on Application Layer 24

Table 10. Installation and attack vectors on Application Layer 24

Table 11. Origins of Threats on the Smart lift system ... 25

Table 12. Attack Vectors on the Smart lift system .. 26

Table 13. Vulnerability research on the installed system .. 30

Table 14. Results of the survey .. 42

Table 15. Available functions on the web application... 48

10

1 Introduction

A combination of high-speed network and ubiquitous computing has created a new

technology in this decade: IoT. It has enhanced connectivity of various devices to

integrate one system to another for efficient management. The devices monitor usage of

electricity, degradation of water pipes or predictive maintenance of vehicles. These

systems gradually change its control into automatic one by the devices. They send useful

live data to central servers from distance so that maintainers can manipulate them without

visiting actual systems every day. Their potential growth is promising in various

industrial fields. The technology applies to a wide range of products such as

electrocardiograms or city infrastructures. According to “IoT Security Framework for

Smart Cyber Infrastructures”, [1] the number of IoT devices will reach approximately 50

billion in 2020.

Emerging of IoT based systems simultaneously causes the cyber attacks as they have

many attack surfaces. “The Hunt for IoT: The Growth and Evolution of Thing bots

Ensures Chaos” [3] demonstrates statistical evidences in the article.

“Telnet brute force attacks against IoT devices rose 249% year over
year (2016–2017).”

“44% of the attack traffic originated from China, and from IP
addresses in Chinese networks that were top threat actor networks in

prior reports. Behind China in total attack volume was the U.S.,
followed by Russia.”

- The Hunt for IoT: The Growth and Evolution of Thing bots Ensures
Chaos [3]

The more IoT based services emerged, the more protections need to keep a system

trustworthy. Since IoT based architectures have complex devices and services, a secure

system development becomes difficult. Actual security incidents do not indicate that

those products are safe. They rather have several security problems regardless of their

scales. One example of IoT products substantiates security holes on a smart coffee

machine which collects home LAN information. In the worst scenario, attackers are able

to take over the system. [4] Another example verifies a traffic system in Michigan [5]

whose unencrypted wireless traffic enables attackers to turn on green lights whenever

they want. Those incidents derive from products which have no facilities in network

11

connections on their original functions. The number of installation cases attests to

convenience of IoT in the society; nevertheless, they have security holes to allow

attackers intrude the system. These present circumstances have strengthened motivation

of this thesis which examines one IoT based project: Nultilift in the IoT research

laboratory of Tallinn University of Technology. The thesis research question is:

 What are potential threats in the lift?

To answer the research question, the thesis will deal with:

 To create a threat model for the smart lift.

 To develop a digital twin of the production servers.

 To discover existing vulnerabilities on the smart lift systems.

 To propose mitigations in accordance with the vulnerabilities.

The thesis consists of eight chapters. They are divided into two parts: a risk assessment

and a penetration testing on the smart lift. The risk assessment part adapts IoT threat

models to the lift and reveals potential attacks. The threat model, which is an outcome of

the risk assessment, identifies trust boundaries and possible attacks on the smart lift. The

penetration testing part surveys replicated lift systems on Virtual Boxes. A pre-process of

attacks reviews the system to investigate what feasible exploits are. The test walks

through attack trees to convey enumerations and exploitations towards the systems.

Contributions of this thesis are as indicated below:

 To develop the threat model and the attack surface of the smart lift based on the view

from IoT security and the smart city topology.

 To clarify existing vulnerabilities based on software and hardware implementation.

 To creates a digital twin of production servers to build a testing environment of the

smart lift system.

 To give severity to the smart lift.

12

2 Related work

The smart lift features in publicness, IoT function and IT security. The subjects deal with

a similar existing system. This paper utilizes smart cities as a fundamental concept model.

The lift’s IoT function treats preceding IoT security studies. IT security refers to

researches on IT threats modelling, web application security and modern attacking

methods. The prior practical implementation of the smart city is Smart Santander in Spain.

Its testbed is set out in detail in “SmartSantander: IoT experimentation over a smart city

testbed” (2013). [6] It discussed social impacts and deployment results of the smart city

where feasible physical systems had been installed. “Security and Privacy in Smart City

Applications: Challenges and Solutions” (2017) [7] correlated with security issues of

smart cities. The paper indicated that it was significant for smart cities to protect personal

data security on data sensing, data storages and data controls from attackers. The subject

focused on those privacy problems when one system transported personal data to another

where the IT infrastructures had been introduced. From the viewpoint of IT security, an

invasion of privacy is not only the issue of smart cities, but also other problems including

service availability, server hijacking external attacking. Such practical attack examples

are covered by “An Emerging US (and World) Threat: Cities Wide Open to Cyber Attacks”

(2015). [8]

In IoT security, a prior research pointed out significant differences between modern IT

web applications and IoT based systems to make IoT strenuous to handle. The source of

difficulties comes from systematic entanglements. “Internet of Things security: A survey”

(2017) [9] analysed possible security threats in various IoT environments whose theory

accented layers and their threats taxonomy based on communication pattern. “Threat-

Based Security Analysis for the Internet of Things IoT” (2014) [10] contributed to create

a threat model of the smart lift. It gave an insight of potential attackers and attack

categories which approached security impacts of consumer IoT products.

Threats modelling of IT systems delineated the scope of a penetration test on Threat

Modeling: Designing for Security Adam Shostack. [20] The book illustrated STRIDE,

which had been theorized by Microsoft to deliver general knowledge about organising

those skills to readers. IoT Penetration Testing Cookbook: Identify vulnerabilities and

secure your smart devices [21] marked down composite threat models, but the contents

13

highlighted hardware threat modeling and exploiting methods on IoT devices including

embedded systems, smart phones and web applications on IoT devices.

3 Background

The chapter explains a brief background of the smart lift development as well as its

relation to the smart city security and its entities.

3.1 Smart city architectures

IBM [11] and Cisco [12] described a smart city as follows:

“IBM defines a smart city as “one that makes optimal use of all the
interconnected information available today to better understand and
control its operations and optimize the use of limited resources”.68”.
-Cosgrove M & al, (2011), Smart Cities series: introducing the IBM

city operations and management solutions. IBM [11]

Cisco defines smart cities as those who adopt “scalable solutions that
take advantage of information and communications technology (ICT)

to increase efficiencies, reduce costs, and enhance quality of life”.

-Falconer G & Mitchell Sh (2012), Smart City Framework A
Systematic Process for Enabling Smart+Connected Communities [12]

The two references define the key aspects as “efficiency” and “scalable”. The concepts

have been embodied in “Smart Santander”. The city has almost 12,500 sensors to capture

ambient information. [13] The data applies to various analysis of facility monitoring or

traffic controls. [6] The city architecture consists of “application & data servers”,

“embedded GW nodes” and “IoT nodes”. Those words converted into IT-related terms

which represent “Application layer”, “Network layer” and “Perception layer” in “Smart

city and the applications”. [15] These layers have been utilized for making up the threat

model.

14

3.2 The purpose of the smart lift and relation to a smart city

An Atlassian’s smart lift repository contains a source of motivation behind the project

which aims to “personalized services to identify individual preferences”. “Face

recognition”, “learning tendency of a person” and “flexibility of moving” require the

project to archive the goals. They were equipped with several control options that

provided on the lift such as a voice speaker which gives an alternative way of pushing a

button of a floor, especially for the disabled, children or elderly people. These smart lift

principals invoke a particular preceding study which can adjust its security frameworks.

A topology of IoT lift consists of edge devices, networks and processing servers. The

grand structure should be regarded as part of “smart city” to assess the lift facilities.

4 The threat model of IoT and smart city

This chapter surveys three papers and consolidates a lift threat model from an IoT security

concept, a system development threat model and a smart city’s logical structure.

4.1 Logical structures of the smart city

Smart cities have three layers: Perception layer, Network layer and Application layer,

whose terminology traces back “Smart City and the Applications”. [15] They

commensurate with IT terms in Table 1.

Table 1. Logical topology and its related equipment

No. Layer Name Layer functionality associated with IT products

1. Perception layer Sensors / IoT devices

2. Network layer Routers / Switches / Firewalls / data encryption

3. Application layer Web applications / Databases / APIs

15

1. Perception layer functionality outline

The perception layer consists of sensors and IoT devices which collect information such

as ambient and meta data. Devices are so durable structures to turbulent outside

environment that they collect accurate ambient data.

2. Network layer functionality outline

The network layer is a medium of the perception layer and the application layer. They

guarantee secure communications with cryptographic technology which protects both

passive and active attacks from malicious actions.

3. Application layer functionality outline

The application layer furnishes analytical information which has been collected from edge

devices. “Smart Santander” has several services based on the information: histories of

parking space usage, amount of waste or crowded pavements. [13] The information is

accessible to end-users of smartphone applications.

4.2 Threat modeling concepts

The thesis uses a threat modeling concept from the prior IoT security researches to

identify attacks and to measure attack severities. There are an ample of thread model

theories to assess potential risks on software and system architecture: however, they are

outdated or unfit the smart lift project security analysis. For instance, STRIDE and

PASTA are two major threat modeling frameworks to estimate what potential attacks to

systems are. STRIDE is one threats modeling concept which covers cyber and cyber-

physical systems, but the model is no longer maintained by Microsoft. [14] PASTA is the

other modeling theory for visualizing business and technical requirements. The aim of

the treat model integrates a security strategy into business process. [14] These threat

models are practical to create an outline of possible system risks except for detecting

detailed attack source and categories. Therefore, the thesis refers to “Threat-Based

Security Analysis for the Internet of Things” to reveal these.

16

4.3 Origins of threats

Origins of threats differ from the respective layers. The paper “Threat-Based Security

Analysis for the Internet of Things” [10] specifies Sources of Threats and Class of

Attack Vectors. The research has three Sources of Threats: Malicious User, Bad

Manufacturer, and External Adversary. Malicious User and External Adversary perceive

practical entities as attack origins in the smart city. The two attempt to obtain secrets of

manufacture or transmitting data in the system. However, they have a difference in

accordance with their ownership of the devices.

Malicious User: Is the owner of the IoT device with potential to
perform attacks to learn the secrets of the manufacturer, and gain
access to restricted functionality. By uncovering the flaws in the

system the malicious user is able to obtain information, sell secrets to
third parties, or even attack similar systems.

External Adversary: Is an outside entity that is not part of the system
and has no authorised access to it. An adversary would try to gain

information about the user of the system for malicious purposes such
as causing financial damage and undermining the user’s credibility.

- Threat-Based Security Analysis for the Internet of Things IoT Ahmad
W. Atamli, Andrew Martin (12/3/2015)[10]

To make these terms clearer, Malicious User is altered by Internal Malicious User, who

deals with the system. The thesis has need of vicious attacks from end-users who do not

have ownership of devices. Therefore, Vindictive End User, one extra threat, presents

itself as additional Origins of Threats in this paper. The table below depicts Origins of

Threats and associated matrix of layers.

Table 2. Origins of threats on the Layers

Origins of threats Perception layer Network layer Application layer

Internal Malicious
User

Vindictive End User

Bad Manufacturer

External Adversary

17

4.4 Attack vectors

 “Threat-Based Security Analysis for the Internet of Things” [10] theorizes that IoT

devices have eight attack vectors. They are Device Tampering, Information Disclosure,

Privacy Breach, Denial-of-Service, Spoofing, Elevation of Privilege and Side-Channel.

In this taxonomy, the research suggests that they have individual classifications on

Information Disclosure and Privacy Breach.

Information Disclosure: is the act of revealing information to an
entity which does not have permission to see it. This includes

accidental exposure, targeted attack, and inference or correlation. An
attacker can obtain information by eavesdropping on the network
channel, physical access to the device, or through accessing the

device over the network.

Privacy Breach: unlike Information Disclosure, an adversary does
not necessarily need to have access to confidential information to
learn about the user. The adversary can infer private information

from other sources such as meta data and traffic analysis.

- Threat-Based Security Analysis for the Internet of Things IoT Ahmad
W. Atamli, Andrew Martin (12/3/2015) [10]

The differences arise from whether a security hole was traced back to passive

reconnaissance or not. Table 3 exhibits each vector and the layers as the result of making

their difference clear.

Table 3. Attack Vectors on the Layers

Attack Vector
Name

Potential Attacks on
Perception Layer

Potential Attacks on
Network Layer

Potential Attacks on
Application Layer

Device Tampering

Information
Disclosure

Privacy Breach

Denial-of-Service

Spoofing

Elevation of
Privilege

Signal Injection

Side-Channel

18

1. Potential Attacks on Perception layer attack vector

The perception layer has two attack vectors: Device Tampering and Information

Disclosure. The security of the layer emphasises theft prevention and endpoint encryption

on wireless modules with which attackers can send and receive various payloads or

sensitive data from other layers.

2. Potential Attacks on Network layer attack vector

The network layer has five attack vectors: Privacy Breach, Denial-of-Service, spoofing,

Signal Injection, and Side-Channel. As previously mentioned in chapter 4.3, the domain

of Privacy Breach belongs to this layer due to leakage from indirect eavesdropping

payloads. The primary protection against the attacks consists of strong data encryption

and IT security best practice on routers and switches.

3. Potential Attacks on Application layer

The application layer has four attack vectors: Information Disclosure, Denial-of-Service,

Spoofing and Elevation of Privilege. The layer has analytical systems including REST,

API and databases. The system has possibilities to face modern web application cyber

attacks. The most probable three attacks are “Injection”, “Broken Authentication” and

“Sensitive Data Exposure” as in the OWASP report 2017. [18]

5 Risk assessment of the smart lift

The chapter integrates the installation structure, trust boundaries and detail software

versions into the threat model. The threat model incorporates Origins of Threats and

Attack Vectors into the smart lift installation.

19

5.1 Logical topology

The Figure 4 describes a logical topology of the IoT lift system.

Figure 1. Logical topology of the smart lift [19]

The system has three different environments: “KONE elevator”, “TalTech environment”

and “KONE environment”. “KONE elevator” is an actual lift box where end-devices and

Elevator PC have been installed. “Taltech environment” has the cloud server and the

university employee database, which is an external resource of the smart lift system. The

cloud server stores picture data, controls the lift remotely, and monitors end-devices.

“KONE environment”, which offers a voice command facility to lift users and a remote

control API on the management server, is situated in an external environment.

5.2 Trust boundaries

The logical topology forges trust boundaries of the smart lift. The term is presented itself

as a border of trustworthy systems in Threat Modelling: Designing for Security Adam

Shostack, John Wiley & Sons(2014). [20]

20

A trust boundary and attack surface are very similar views of the
same thing. An attack surface is a trust boundary and a direction from

which an attacker could launch an attack

- Threat Modelling: Designing for Security Adam Shostack, John
Wiley & Sons(2014) [20]

 Figure 2 shows the Layers and Environment predefined in chapter 4 and chapter 5.1.

Broken green lines are attack surfaces of each layer.

Figure 2. Trust boundaries of the smart lift

Although the university employee database is the external asset, it is whitelisted because

its source subnet is the intranet of the university network. Table 4 illustrates products and

their correspondent layers on the system: IoT devices, servers or network equipment.

Table 4. Detail installation on the smart lift system

Layer Name System /Device Descriptions

Perception Layer BASLER pylon
GigECamera
version 3.8.0

Face video camera

 Sennheiser speaker Lift voice command hardware (Microsft
Voice command software)

 Intel RealSense Depth cameras on the lift
 Mikrotik hEX The embedded router on the lift
Network Layer RTSP RTSP has some overlap in functionality

with HTTP. Port 554. Application layer
protocol

 Ubuntu 18.04 OS of Micro PC and Central server

21

Control of image processing and depth
measurement

Stores pictures and provide REST for end
maintainers in central server

Application Layer Melodic Morenia Robot Operating system in Micro PC
 Node.js 8.16 Picture management system
 PostgreSQL 12 Server database; storing picture path, lift

information, lift movement history

 OpenCV 2 Face recognition and machine learning

 Mycroft 19.2 Open source voice command software

The table designates software and hardware installations on the smart lift system. The list

imparts clues to develop the smart lift threat model in the next chapter.

5.3 Threats for each layer

This chapter explains specific threats for the system in individual layers. They apply to a

practical penetration test in the following chapter to launch any attacks to the system.

5.3.1 Perception Layer threats

1. Origins of Threats

Perception Layer has a possibility of device tempering in BASLER camera, Intel

RealSense and Sennheiser speaker. Vindictive End User can carry out hostile attacks on

them. Thefts disrupt the data assembling function of the lift. The incident makes the

Application Layer service down because it interrupts system analysis to obtain statistical

data of the lift. Even though devices are under the surveillance, it cannot eliminate the

issue.

Table 5. Installation and origin of threats on Perception Layer

Origin of
Threats

BASLER Sennheiser speaker Intel RealSense

Internal Malicious
User

22

Vindictive End
User

Bad Manufacturer

External
Adversary

2. Attack Vectors

The layer exclusively has an Attack Vector. Device Tampering is a possible action of

Vindictive End User.

Table 6. Installation and attack vectors on Perception Layer

Vector Name BASLER Sennheiser speaker Intel

RealSense

Device
Tampering

Information
Disclosure

Privacy Breach

Denial-of-Service

Spoofing

Elevation of
Privilege

Signal Injection

Side-Channel

5.3.2 Network layer threats

1. Origins of Threats

Origins of Threats show Internal Malicious User and External Adversary. Since

Vindictive End User is unable to attack Network Layer from Perception Layer, the origin

of threat has been removed from potential threats. External Adversary attempts

unauthorized access from external systems to get control of Network Layer.

23

Table 7. Installation and origin of threats on Network Layer

Origin of Threats Mikrotik hEX RTSP

Internal Malicious
User

Vindictive End User

Bad Manufacturer

External Adversary

2. Attack vectors

Safe data transmission has a responsibility for Network Layer and its protocols, which

has a possibility to eavesdrop data. The action follows Information Disclosure and

Privacy Breach. The other target of this layer is Mikrotik hEX, a router which has

potential Denial-of -Service and Elevation of Privilege.

Table 8. Installation and attack vectors on Network Layer

Attack Vector
Name

Mikrotik hEX RTSP

Device Tampering

Information
Disclosure

Privacy Breach

Denial-of-Service

Spoofing

Elevation of
Privilege

Signal Injection

Side-Channel

5.3.3 Application Layer threats

1. Origin of Threats

The Application layer has Internal Malicious User and External Adversary as sources of

threats. Inside the system, Internal Malicious User can execute various attacks. To repress

evil actions, a security design should be Principle of least privilege. External Adversary

24

derives from an external network in KONE, which has possibilities of any attacks to API

address to take over the control of the lift.

Table 9. Installation and origin of threats on Application Layer

Origin of Threat Ubuntu
18.04

Melodic
Morenia

Postgre

SQL 11

Node.js
8.16

OpenCV
2

Mycroft
19.2

Internal Malicious
User

Vindictive End User

Bad Manufacturer

External Adversary

2. Attack Vectors

Application Layers has multiple attack vectors on several products equipped with

analytical and management purposes. The feasible attack is Information Disclosure to

obtain hidden data from servers in the system. A leakage severity depends on what data

has been stolen by attackers. Denial-of-Service intercepts running service to damage a

reputation or system reliability. Attackers send massive SYN packets to get the system

down. If actual attacks occur in the system, Elevation of Privilege causes a serious

security incident. The attack results in attackers to take over the system in the worst

scenario.

Table 10. Installation and attack vectors on Application Layer

Attack
Vector
Name

Ubuntu
18.04

Melodic
Morenia

Postgre

SQL 11

Node.js
8.16

OpenCV2 Mycroft
19.2

Device
Tampering

Information
Disclosure

Privacy
Breach

Denial-of-
Service

Spoofing

25

Elevation of
Privilege

Signal
Injection

Side-Channel

5.4 The Threat model of the smart lift

As a summary of the IoT lift threat model, the table designates details and an outline

which illustrate possible attacks and attackers. The conclusion proposes three origins of

threats in the layers. Internal Malicious User, who conducts oneself in evil actions to the

system, can execute attacks on several products. While Attack Vectors illustrates several

attack possibilities, the most probable attack is Information Disclosure.

Table 11. Origins of Threats on the Smart lift system

Origins of Threats Perception
Layer

Network
Layer

Application Layer

B
A

SL
E

R

Se
nn

he
is

er
 s

p
ea

k
er

In
te

l R
ea

lS
en

se

M
ik

ro
ti

k
hE

X

R
T

SP

U
bu

nt
u

18
.0

4

P
os

tg
re

SQ
L

 1
1

M
el

od
ic

 M
em

or
ia

N
od

e.
js

 8
.1

6

M
yc

ro
ft

 1
9.

02

Internal Malicious
User

Vindictive End
User

External
Adversary

26

Table 12. Attack Vectors on the Smart lift system

Attack Vectors Perception
Layer

Network
Layer

Application Layer

B
A

SL
E

R

Se
nn

he
is

er
 s

p
ea

k
er

In
te

l R
ea

l S
en

se

M
ik

ro
ti

k
hE

X

R
T

SP

U
bu

nt
u

18
.0

4

P
os

tg
re

SQ
L

 1
1

M
el

od
ic

 M
em

or
ia

N
od

e.
js

 8
.1

6

M
yc

ro
ft

 1
9.

02

Device Tampering

Information
Disclosure

Privacy Breach

Denial-of-Service

Elevation of
Privilege

5.5 Threat severity

Based on the prior IoT researches, the lift concept and the threat model develop a severity

degree to the smart lift.

1. Elevation of Privilege

This is the worst attack, which utilizes package- or Linux kernel- vulnerabilities on

the system. The attack outcomes affect leakage of various project data or influence

other systems to perform unauthorized access. When the system is hijacked by

attackers, a system restoration takes considerable time and money.

2. Privacy Breach or Information Disclosure

Security misconfigurations or existing vulnerabilities allow attackers to obtain

sensitive information from the servers on Application Layer and Network Layer. The

attack enables anonymous people to view personal lift usage which impacts on

privacy problems to the system.

27

3. Denial of Service

The threat disrupts the system services from all the layers to lower the system

reputation. However, the security design results in lower possibilities of attacks

whose reason derives from no wireless modules and no wireless connections on

Perception Layer and Network Layer. A university firewall protects the Layers from

external network attacks.

4. Device Tampering

The attack composes device theft on Perception Layer where the cameras and the

voice speaker have been installed. The lift design has eliminated attack possibilities

where the Application Layer has monitoring functions.

6 Methodology and scope of penetration tests

This chapter explains the prerequisite and methodology of a penetration test based on the

IoT lift threat model. Subsequently, the model succeeds in developing attack trees, which

construct attacking paths to damage the system.

6.1 Testing Prerequisite

A core of the system survey starts from the prerequisite of the threat model which has

been arranged for the test. The following list explicates a precondition of it.

 The penetration test style is “White-box testing” [24] which begins with gathering

system information from iotdevcentre.atlassian.net. The main goal of “White-box

testing” is to create a digital twin of the production servers. The digital twin brings

an advantage over testers to carry on the test without interacting with the production

server configurations.

 The test leaves it out because the intranet has been regarded as the whitelisting system,

while the trust boundaries describe the university database as the external asset.

28

 Reverse engineering has been removed from the test since it is difficult for attackers

to attempt theft on the current lift installations. The devices are monitored by the web

application and locked by wires.

 Although social engineering has been regarded as one of the best methods to obtain

target credentials through phishing, [23] the methodology excludes it from the test

because of ethical reasons in the IT field.

6.2 Attack trees of the system

The chapter explains how to convey three steps. First, the survey starts to assemble

existing vulnerabilities from CVE and Exploit DB. In the next step, the test runs the

application scanner to find any misconfigurations on the server. In the final step, it

performs manual testing by utilizing system commands to examine any flaws.

6.2.1 Application Layer

In Application layer, the tester examines three attack vectors. The picture illustrates the

respective attack vectors and their methods.

Figure 3. Application Layer Attack tree

29

1. Information Disclosure

Information Disclosure has three directions. OWASP ZAP, an automating

application scanner, discovers an attackable vulnerability in all paths. Subsequently,

manual-operation commands inspect severs to confirm probable misconfigurations.

2. Denial-of-Service

Denial-of-Service has three attack directions. The attack utilizes automatic exploits

with existing vulnerabilities and manual ReDoS exploits.

3. Elevation of Privilege

Elevation of Privilege has an attack method which examines existing

vulnerabilities. CVE and Exploit DB are two main databases to search one which

allows attackers to succeed in obtaining the highest accounting right to control the

server.

7 System penetration testing and system setting survey

The chapter describes a detailed penetration test work-through and its results.

7.1 Existing vulnerability research and its environment

As of 1/4/2020, vulnerability researches consist of retrieving data from CVEs, an exploit

DB and security adversaries.

 Ubuntu distribution survey showed its security adversary URL since the distribution

has a lot of libraries and package.

 The system version contained CVEs whose suffixes start from 2019 when the project

production servers were deployed.

 The version had unfixed bugs.

30

 None of the databases has Basler, RealSense, Sennheiser speaker vulnerabilities. Table

13 elucidates five products and their security holes in Application Layer.

Table 13. Vulnerability research on the installed system

Product Name Database Name CVE number/ Security advisory list
/Article Details

Ubuntu 18.04 Ubuntu security
Notice

Ubuntu Security Notice

https://usn.ubuntu.com/releases/ubuntu-
18.04-lts/

 Exploit DB Ubuntu 18.04 - 'lxd' Privilege
Escalation

Linux Kernel 4.10 < 5.1.17 -
'PTRACE_TRACEME' pkexec Local
Privilege Escalation

PostgreSQL 11.2 CVE CVE-2020-1720

CVE-2019-10130

 Exploit DB PostgreSQL 9.3 - COPY FROM
PROGRAM Command Execution

Melodic Memoria CVE CVE-2019-13566

 Exploit DB N/A

Node.js 8.16 CVE CVE-2017-5941

CVE-2020-7598

 Exploit DB Node.JS - 'node-serialize' Remote Code
Execution

Mycroft 19.2 CVE N/A

 Exploit DB N/A

31

The system snapshot was taken on 23/12/2019. Figure 4 is a logical topology of the

environment. The detailed Nodejs functions are in Appendix 1.

Figure 4. Replicated environment logical topology

7.1.1 Information Disclosure

The chapter shows results of security holes that caused unintended information exposure.

7.1.1.1 HTTP only option

A HTTP only flag gives the web site to protect against XSS. OWASP explains [25] the

option as follows.

HttpOnly is an additional flag included in a Set-Cookie HTTP
response header. Using the HttpOnly flag when generating a cookie
helps mitigate the risk of client side script accessing the protected

cookie

-OWASP HttpOnly [25]

32

Figure 5. Http Only option

In Figure 5, the flag set “False”. The setting enabled attackers to perform XSS when the

site had attackable textboxes which enabled attackers to exhibit hidden values by utilizing

JavaScript. However, current implementations kept XSS out of the text boxes.

7.1.1.2 Postgres SQL 11.2 Authenticated Arbitrary Command Execution

The system had the database on the ROS client whose version was PostgreSQL 11.2 based

on the database dump which had been saved on project folder in Google Drive. Figure 8

represented a screenshot of the dump.

Figure 6. PostgreSQL dump file on Google Drive

The version 11.2 includes CVE-2019-9193. [26][27]

“function allows superusers and users in the
'pg_execute_server_program' group to execute arbitrary code in the
context of the database's operating system user. This functionality is

enabled by default and can be abused to run arbitrary operating
system commands on Windows, Linux, and macOS.”

-NATIONAL VULNERABILITY DATABASE CVE-2019-9193[27]

Trastwave’s SpiderLabs Blog, “Authenticated Arbitrary Command Execution on

PostgreSQL 9.3 > Latest”, [28] reported manual steps in getting data on the server. The

33

attack used \COPY command on the database whose documentation expounds on a Where

option.[29]

A command to execute. In COPY FROM, the input is read from standard
output of the command, and in COPY TO, the output is written to the

standard input of the command.

-PostgreSQL 9.5.21 Documentation, COPY[29]

The screenshot was outcomes of COPY command.

Figure 7. COPY command execution

After execution of \COPY with Linux commands, cmd_exec table included results which

contained a list of users captured by the previous commands.

Figure 8. SELECT table outcomes

34

7.1.1.3 Node.JS - 'node-serialize' Remote Code Execution

Node.js has a renowned flaw called node-serialize RCE, which utilized node-serialize

npm package. [30][31] The CVE article explains it. [32]

An issue was discovered in the node-serialize package 0.0.4 for
Node.js. Untrusted data passed into the unserialize() function can be
exploited to achieve arbitrary code execution by passing a JavaScript

Object with an Immediately Invoked Function Expression (IIFE).

-Common Vulnerabilities and Exposures CVE-2017-5941 [32]

On the replicated environment, it did not have packages related to node-serialize, which

enabled attackers to exploit the server.

Figure 9. Outcome of node-serialize search

7.1.1.4 Regular expressions Cross-Site Scripting (XSS) vulnerability

The NVD explained this vulnerability[33] as follows:

Affected versions of this package are vulnerable to Cross-site
Scripting (XSS). It does not properly mitigate against unsafe

characters in serialized regular expressions.

This vulnerability is not affected on Node.js environment since
Node.js's implementation of RegExp.prototype.toString() backslash-

escapes all forward slashes in regular expressions.

If serialized data of regular expression objects are used in an
environment other than Node.js, it is affected by this vulnerability.

- NVD serialize-javascript CVE 2019-16769 [33]

A “npm audit” command result suggested that the server installed one which enabled

attackers to exploit. However, the web application had been contained none of the

package. The search result of “grep -rnw /var/nultilift/ -e ‘serialize-javascript’” command

is in Appendix 2.

35

Figure 10. A npm audit result

7.1.1.5 Melodic Memoria String overflow

ROS has a string buffer overflow in UDP transport C++ file. [34]

An issue was discovered in the ROS communications-related
packages (aka ros_comm or ros-melodic-ros-comm) through 1.14.3.
A buffer overflow allows attackers to cause a denial of service and

possibly execute arbitrary code via an IP address with a long
hostname

- Common Vulnerabilities and Exposures CVE-2019-13566[34]

Figure 11. ROS melodic roscpp path

The ROS server had main codes under /opt/ros/melodic/share/roscpp which did not have

the one mentioned in the CVE-2019-13566 article.

7.1.1.6 Minimist prototype pollution

Minimist”, a npm package, obtained higher privilege information with “__proto__”

option. Snyk explicated methods.[35] [36]

Affected versions of this package are vulnerable to Prototype
Pollution. The library could be tricked into adding or modifying
properties of Object.prototype using a constructor or __proto__

payload.

- Snyk Prototype Pollution [36]

36

To confirm the package, wrote some codes to get information.

Figure 12. Confirm vulnerabilities

From the screenshot, a proto option was able to execute this exploit. The proof of concept

on “Exploring the minimist prototype pollution security vulnerability”[37] depicted the

sequence of the attack. In exploiting the system, two scripts required to retrieve

unauthorized information. One was JavaScript to run codes. The other was a shell script

to execute Linux based commands.

Figure 13. Exploit results

The Exploit failed to create a file on the root directory because lift-user had no right to

access to the root directory. The attack succeeded in exploiting the system under two

conditions.

 A npm “pkg” module, which enables users to perform command line, has been

installed. A JavaScript file has a setuid flag to execute commands on the highest

privilege.

37

 A web application owner belongs to sudoers.

Figure 14 to 17 were the examples of a certian successful attack where the user had the

right to execute the exploit with “pkg” and the setuid flug. The following steps and

screenshots verified the proof of concept of “pkg” package and the setuid flag.

1. Created a user on the server.

2. Installed “pkg” package and compiled “CVE-2020-7598.js” on the web application

directory.

3. Set a setuid flag on “CVE-2020-7598”.

4. Created an exploit script on /tmp directory.

5. Executed the node script.

Figure 14. 1. Created a user on the server

Figure 15. 2. Installed “pkg” package and compiled “CVE-2020-7598.js” on the web application

directory

38

Figure 16. 3. Set a setuid flag on “CVE-2020-7598”

Figure 17. 4. Created an exploit script on /tmp directory

Figure 18. 5. Executed the node script.

39

Figure 19 was the example of the success in sudoer group.

Figure 19. Sudoers attacking on the server

7.1.2 Denial-of-Service

Exploit DB and CVE contained none of any automated DoS attacks. However, attackers

were able to launch manual ReDoS attacks.

7.1.2.1 A ReDoS attack

“Freezing the Web: A Study of ReDoS Vulnerabilities in JavaScript-based Web

Servers”[38] disclosed that regular expression matching vulnerabilities existed. The

research figured out eight npm packages to launch the DoS. In addidion, Synk, an online

web application scanner, discoverd a new attackable package called “arcon”, which

performed ReDoS. The survey uncoverd no npm module in any scripts on the web

application codes.

40

7.1.3 Elevation of Privilege

7.1.3.1 Ubuntu 18.04 - 'lxd' Privilege Escalation

Lxd is a lightweight container hypervisor bundled in ubuntu 18.04. [39][40] A

requirement of the attack suggested provision lxd group to a user and an actual ubuntu

sandbox image. Default settings and container showed that the ROS Client was unable to

exploit.

Figure 20. User privilege on ROS Client

Figure 21. Lxc accounting information on ROS Client

In ROS Master server, the attack was out of range since the user was not a member of lxd

group.

Figure 22. User information on ROS Master

7.1.3.2 Ubuntu 18.04 - Kernel vulnerability

Linux kernel before 5.1.17 has a Linux Kernel security issue, which explicits in the CVE

page.[41]

In the Linux kernel before 5.1.17, ptrace_link in kernel/ptrace.c
mishandles the recording of the credentials of a process that wants to

41

create a ptrace relationship, which allows local users to obtain root
access by leveraging certain scenarios with a parent-child process

relationship, where a parent drops privileges and calls execve
(potentially allowing control by an attacker).

- Common Vulnerabilities and Exposures CVE-2019-13272[41]

A proof of the concept refered to the GitHub’s bcoles/kernel-exploits/CVE-2019-

13272[42] where the C based executable code showed steps of attack. In escalating the

highest privilege on the servers, the step started to compile the C script which executed

the exploit from a local user. The outcome showed that the servers composed of neither

exploitable libraries nor packages. The following three pictures resulted from the proof

of the concept which failed to perform the code. ROS Client Linux kernel included a

scope of the exploit, while no Polkit service disallowed the script to perform the attack.

ROS Master kernel version was out of range to launch the attack.

Figure 23. Failed CVE 2019-13272 exploit

Figure 24. Installed package lists

Figure 25. ROS Master kernel version

42

7.2 Security severity of the smart lift

Table 14 shows severity and the security survey outcomes. The column of the far left

defines severity based on chapter 5.5. Others illustrate layer information of the smart lift

and system. Check marks on the PostgreSQL 11.2 and Node.js 8.16 proved that they had

the attackable contents.

Table 14. Results of the survey

Rank Severity list Perception
Layer

Network
Layer

Application Layer

B
A

SL
E

R

Se
nn

he
is

er
 s

p
ea

k
er

In
te

l R
ea

lS
en

se

M
ik

ro
ti

k
hE

X

R
T

SP

U
bu

nt
u

18
.0

4

P
os

tg
re

SQ
L

 1
1.

2

M
el

od
ic

 M
em

or
ia

N
od

e.
Js

 8
.1

6

M
yc

ro
ft

 1
9.

2

1 Elevation of
Privilege

2 Privacy
Breach or
Information
Disclosure

3 Denial of
Service

1. PostgreSQL

PostgreSQL had a problem with a built-in command. Although the version later than 11.5

had no security issue, COPY command allowed attackers to view the server information

in accordance with the user account on Linux system. One solution is to regulate the user

accounting. Another is to upgrade the version. The database vendor developed a security

patch after the vendor had discovered the one.

(1) Regulate database user accounting

To regulate the user accounting which runs the database, the command limits its

results.

43

(2) Upgrade the database

To follow the security advisory, a security patch can mitigate the issue. The

upgrading task takes significant time to create migration planning and actual upgrade

operations on the smart lift system

2. Node.js HTTP option

The web application configuration lacked the HTTP only flag. Although no exploitable

XSS functions were discovered by the test, the HTTP only options gave hindrance to

perform it.

3. Minimist prototype pollution

Upgrading the package version to 0.2.1, 1.2.3 or higher mitigates this attack. The

successful attack must fill several prerequisites to exploit the server. Therefore, it is

difficult for attackers to perform a remote exploit, but it is easy for them to attack from

the local environment if a user account has the right to execute root commands.

8 Conclusion and future work

The smart lift threat model and the penetration test outcomes concluded that the smart lift

project had more concrete installation than that of other IoT products, while significant

IoT based products constituted security problems on IoT sensors and its network. On the

lift, Perception Layer and Network Layer eliminated a possibility of wireless attacks from

Vindictive End User. The layers interacted with wired communication which resulted in

a producing the robust system on the two layers. The layer designs ruled out problems of

performing malicious behaviours on the lift. However, the Application Layer

investigation revealed moderate security issues: three security holes and one potential

problem. The security holes comprised the PostgreSQL vulnerability and HTTP

misconfiguration which had possibilites to enhance the system security by upgrading or

adding options to the web application setting. The higher npm package version had

removed potential exploits from the option which could execute arbitrary codes.

Therefore, it was highly recommended to upgrade the current package. Those mitigations

44

contributed to exclude attacks from Internal Malicious Users. Hence the analysis

concluded that attendant risks of Application Layer involved Information Disclosure on

the system, yet they had alternative methods to mitigate the problems.

Future work of security survey on the project is prospects for a security governance

analysis and reverse engineering of hardware. GDPR and security governance strategies

will contribute to enhance the system, which collects face data related to the university

employee database. The survey expects to be instrumental in establishing a stronger

environment from the operation point of view. Reverse engineering on IoT devices will

present with an insight to detect hardware-based vulnerabilities. It is difficult for software

engineers to inspect from surface analysis.

45

References

[1] IoT Security Framework for Smart Cyber Infrastructures [Online]
https://ieeexplore.ieee.org/abstract/document/7789475 Jesus Pacheco , Salim Hariri
(19/12/2016)

[2] Cyber security — IoT [Online] https://ieeexplore.ieee.org/abstract/document/8256700
Swapnil Naik , Vikas Maral (15/1/2018)

[3] The Hunt for IoT: The Growth and Evolution of Thingbots Ensures Chaos [Online]
https://www.f5.com/labs/articles/threat-intelligence/the-hunt-for-iot-the-growth-and-
evolution-of-thingbots-ensures-chaos Sara Boddy, Justin Shattuck (13/3/2018) [Access
date: 31/3/2020]

[4] The Internet of Thing: How a single coffee maker’s vulnerabilities symbolize a world of
IoT risks [Online] https://blog.avast.com/avast-hacked-a-smart-coffee-maker, Martin Hron
(18/6/2019) [Access date: 16/4/2020]

[5] Green Lights Forever: Analyzing the Security of Traffic Infrastructure
 [Online]https://www.usenix.org/system/files/conference/woot14/woot14-ghena.pdf,
Branden Ghena, William Beyer, Allen Hillaker, Jonathan Pevarnek, and J. Alex Halderman
[Access date: 16/4/2020]

[6] SmartSantander: IoT experimentation over a smart city testbed [Online]
https://www.sciencedirect.com/science/article/pii/S1389128613004337 Luis Sánchez , Luis
Muñoz, Jose Antonio Galach , Pablo Sotres, Juan Ramón Santana, Verónica Gutierrez,
Rajiv Ramdhany , Alexander Gluhak , Srdjan Krco, Evangelos Theodoridis, Dennis
Pfisterer (27/12/2013)

[7] Security and Privacy in Smart City Applications: Challenges and Solutions [Online]
https://ieeexplore.ieee.org/abstract/document/7823349 Kuan Zhang, Jianbing Ni, Kan Yang,
Xiaohui Liang , Ju Ren , Xuemin Sherman Shen (1/1/2017)

[8] An Emerging US (and World) Threat: Cities Wide Open to Cyber Attacks [Online]
Available: https://ioactive.com/pdfs/IOActive_HackingCitiesPaper_CesarCerrudo.pdf Cesar
Cerrudo [Access date: 31/3/2020]

[9] Internet of Things security: A survey [Online]
https://www.sciencedirect.com/science/article/pii/S1084804517301455 Fadele
AyotundeAlaba , Mazliza Othman, Ibrahim Abaker Targio Hashem, Faiz Alotaibi
(7/4/2017)

[10] Threat-Based Security Analysis for the Internet of Things IoT [Online]
https://ieeexplore.ieee.org/document/7058906 Ahmad W. Atamli, Andrew Martin
(12/3/2015)

[11] Smart Cities , 1:Smart cities definitions [Online]
https://www.centreforcities.org/reader/smart-cities/what-is-a-smart-city/1-smart-cities-
definitions/(29/5/2019)

[12] Falconer G & Mitchell Sh (2012), Smart City Framework A Systematic Process for
Enabling Smart+Connected Communities [Online]
https://www.uraia.org/documents/101/2012_-_Cisco_-_Smart_City_Framework_-
_ENG.pdf[Access date 01/04/2020]

[13] Santander: The Smartest Smart [Online] City
https://www.governing.com/topics/urban/gov-santander-spain-smart-city.html (5/2014)

46

[14] Threat Modeling: 12 Available Methods [Online]
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
Nataliya Shevchenko (3/12/2018)

[15] Smart city and the applications [Online]
https://ieeexplore.ieee.org/abstract/document/6066743 Kehua Su, Jie Li, Hongbo Fu
(11/9/2011)

[16] Proposed Security Model and Threat Taxonomy for the Internet of Things (IoT)
[Online] https://link.springer.com/content/pdf/10.1007%2F978-3-642-14478-3.pdf
Natarajan Meghanathan, Selma Boumerdassi, Nabendu Chaki, Dhinaharan Nagamalai
(25/7/2010)

[17] Five Steps to Successful Threat Modelling [Online]
https://community.arm.com/iot/b/internet-of-things/posts/five-steps-to-successful-threat-
modelling Suresh Marisetty (10/1/2019)

[18] OWASP Top Ten [Online] https://owasp.org/www-project-top-ten/[Access Date:
01/04/2020]

[19] NUTILIFT system architecture [Online]
https://iotdevcentre.atlassian.net/wiki/spaces/NUTILIFT/pages/1966177/System+architectur
e [Access Date: 27/04/2020]

[20] Threat Modeling: Designing for Security Adam Shostack (2014/02/17) John Wiley &
Sons

[21] IoT Penetration Testing Cookbook: Identify vulnerabilities and secure your smart
devices(2017/11/29) Aaron Guzman, Aditya Gupta

[22] PTES Technical Guidelines [Online] http://www.pentest-
standard.org/index.php/PTES_Technical_Guidelines[Accees date :01/04/2020]

[23] Fully 84 Percent of Hackers Leverage Social Engineering in Cyber Attacks [Online]
https://www.esecurityplanet.com/hackers/fully-84-percent-of-hackers-leverage-social-
engineering-in-attacks.html Jeff Goldman (01/032017) [Access date :01/04/2020]

[24] What are Black Box, Grey Box, and White Box Penetration Testing? [Updated 2019]
[Online]https://resources.infosecinstitute.com/what-are-black-box-grey-box-and-white-box-
penetration-testing/#gref [Access date: 01/04/2020]

[25] HttpOnly[Online] https://owasp.org/www-community/HttpOnly [Access date:
01/04/2020]

[26] CVE-2019-9193[Online] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-
9193[Access date: 01/04/2020]

[27] NATIONAL VULNERABILITY DATABASE CVE-2019-9193 [Online]
https://nvd.nist.gov/vuln/detail/CVE-2019-9193 [Access date: 01/04/2020]

[28] Authenticated Arbitrary Command Execution on PostgreSQL 9.3 > Latest [Online]
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/authenticated-arbitrary-
command-execution-on-postgresql-9-3/ (29/3/2019)

[29] PostgreSQL 9.5.21 Documentation[Online]https://www.postgresql.org/docs/9.5/sql-
copy.html[Access date 01/04/2020]

[30] Node.Js-Security-Course [Online] https://github.com/ajinabraham/Node.Js-Security-
Course/blob/master/nodejsshell.py (8/2/2017)

47

[31] Exploiting Node.js deserialization bug for Remote Code Execution (CVE-2017-5941)
[Online] https://www.exploit-db.com/docs/english/41289-exploiting-node.js-
deserialization-bug-for-remote-code-execution.pdf [Access date: 01/04/2020]

[32] CVE-2017-5941 [Online] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-
5941[Access date: 01/04/2020]

[33] CVE-2019-16769 Detail [Online] https://nvd.nist.gov/vuln/detail/CVE-2019-16769
[Access date: 01/04/2020]

[34] CVE-2019-13566 [Online] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2019-13566 [Access date: 01/04/2020]

[35] CVE-2020-7598 [Online] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-
7598 [Access date: 01/04/2020]

[36] Prototype Pollution [Online] https://snyk.io/vuln/SNYK-JS-MINIMIST-559764
[Access date: 01/04/2020]

[37] Exploring the minimist prototype pollution security vulnerability Klrill
Efimov(26/3/2020)[Online]https://snyk.io/blog/prototype-pollution-minimist/ [Access date:
01/04/2020]

[38] Freezing the Web: A Study of ReDoS Vulnerabilities in JavaScript-based Web Servers
Cristian-Alexandru Staicu , Michael Pradel [Online]
https://www.usenix.org/conference/usenixsecurity18/presentation/staicu (17/8/2018)

[39] lxd_root [Online]https://github.com/initstring/lxd_root (4/3/2019) [Access date:
01/04/2020]

[40] Linux Privilege Escalation via LXD & Hijacked UNIX Socket Credentials [Online]
https://initblog.com/2019/lxd-root/ (20 /5/2019)

[41] CVE-2019-13272 [Online] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2019-13272 [Access Date:06/04/2020]

[42] CVE-2019-13272 [Online] https://github.com/bcoles/kernel-exploits/blob/master/CVE-
2019-13272/poc.c, bcoles (23/12/2019) [Access Date:06/04/2020]

[43] Robot Vulnerability Database [Online] https://github.com/aliasrobotics/RVD [Access
Date:01/04/2020]

48

Appendix 1 Web application functions

The web application has picture storages and the lift controls, but several buttons are

merely HTML objects. File upload functions can utilize neither files saved on local PCs

nor web links.

Figure 26. Picture management UI on web application

Table 15 shows a picture management user interface of the replicated REST. The table

explains numbers, functionalities and availability.

Table 15. Available functions on the web application

Numbers in the picture Outline Available

1 Sorting picture ID (desc / asc)

2 Searching picture ID

3 Add an ID and a picture of people

4 Add picture to the ID

5 Delete the ID

49

Appendix 2 Serialize-javascript search results

/var/nutilift/node_modules/serialize-javascript/package.json:4: "serialize-javascript@1.7.0",

/var/nutilift/node_modules/serialize-javascript/package.json:8: "_from": "serialize-javascript@1.7.0",

/var/nutilift/node_modules/serialize-javascript/package.json:9: "_id": "serialize-javascript@1.7.0",

/var/nutilift/node_modules/serialize-javascript/package.json:12: "_location": "/serialize-javascript",

/var/nutilift/node_modules/serialize-javascript/package.json:17: "raw": "serialize-javascript@1.7.0",

/var/nutilift/node_modules/serialize-javascript/package.json:18: "name": "serialize-javascript",

/var/nutilift/node_modules/serialize-javascript/package.json:19: "escapedName": "serialize-javascript",

/var/nutilift/node_modules/serialize-javascript/package.json:27: "_resolved": "https://registry.npmjs.org/serialize-javascript/-
/serialize-javascript-1.7.0.tgz",

/var/nutilift/node_modules/serialize-javascript/package.json:35: "url": "https://github.com/yahoo/serialize-javascript/issues"

/var/nutilift/node_modules/serialize-javascript/package.json:44: "homepage": "https://github.com/yahoo/serialize-javascript",

/var/nutilift/node_modules/serialize-javascript/package.json:54: "name": "serialize-javascript",

/var/nutilift/node_modules/serialize-javascript/package.json:57: "url": "git+https://github.com/yahoo/serialize-javascript.git"

/var/nutilift/node_modules/serialize-javascript/README.md:12:The code in this package began its life as an internal module to
[express-state][]. To expand its usefulness, it now lives as `serialize-javascript` — an independent package on npm.

/var/nutilift/node_modules/serialize-javascript/README.md:27:$ npm install serialize-javascript

/var/nutilift/node_modules/serialize-javascript/README.md:33:var serialize = require('serialize-javascript');

/var/nutilift/node_modules/serialize-javascript/README.md:126:[npm]: https://www.npmjs.org/package/serialize-javascript

/var/nutilift/node_modules/serialize-javascript/README.md:127:[npm-badge]: https://img.shields.io/npm/v/serialize-
javascript.svg?style=flat-square

/var/nutilift/node_modules/serialize-javascript/README.md:128:[david]: https://david-dm.org/yahoo/serialize-javascript

/var/nutilift/node_modules/serialize-javascript/README.md:129:[david-badge]: https://img.shields.io/david/yahoo/serialize-
javascript.svg?style=flat-square

/var/nutilift/node_modules/serialize-javascript/README.md:130:[travis]: https://travis-ci.org/yahoo/serialize-javascript

/var/nutilift/node_modules/serialize-javascript/README.md:131:[travis-badge]: https://img.shields.io/travis/yahoo/serialize-
javascript.svg?style=flat-square

/var/nutilift/node_modules/serialize-javascript/README.md:134:[LICENSE]: https://github.com/yahoo/serialize-
javascript/blob/master/LICENSE

/var/nutilift/node_modules/react-scrolllock/yarn.lock:6669:serialize-javascript@^1.4.0:

/var/nutilift/node_modules/react-scrolllock/yarn.lock:6671: resolved "https://registry.yarnpkg.com/serialize-javascript/-
/serialize-javascript-1.5.0.tgz#1aa336162c88a890ddad5384baebc93a655161fe"

/var/nutilift/node_modules/react-scrolllock/yarn.lock:7372: serialize-javascript "^1.4.0"

/var/nutilift/node_modules/react-scrolllock/yarn-error.log:6749: serialize-javascript@^1.4.0:

/var/nutilift/node_modules/react-scrolllock/yarn-error.log:6751: resolved "https://registry.yarnpkg.com/serialize-javascript/-
/serialize-javascript-1.5.0.tgz#1aa336162c88a890ddad5384baebc93a655161fe"

/var/nutilift/node_modules/react-scrolllock/yarn-error.log:7452: serialize-javascript "^1.4.0"

/var/nutilift/node_modules/happypack/lib/JSONSerializer.js:7:// Adapted from https://github.com/yahoo/serialize-javascript so
that it is

/var/nutilift/node_modules/terser-webpack-plugin/package.json:43: "serialize-javascript": "^1.7.0",

/var/nutilift/node_modules/terser-webpack-plugin/dist/TaskRunner.js:16:var _serializeJavascript =
_interopRequireDefault(require("serialize-javascript"));

/var/nutilift/node_modules/terser-webpack-plugin/dist/index.js:22:var _serializeJavascript =
_interopRequireDefault(require("serialize-javascript"));

/var/nutilift/node_modules/react-prop-toggle/yarn.lock:4778:serialize-javascript@^1.4.0:

/var/nutilift/node_modules/react-prop-toggle/yarn.lock:4780: resolved "https://registry.yarnpkg.com/serialize-javascript/-
/serialize-javascript-1.5.0.tgz#1aa336162c88a890ddad5384baebc93a655161fe"

/var/nutilift/node_modules/react-prop-toggle/yarn.lock:5313: serialize-javascript "^1.4.0"

/var/nutilift/package-lock.json:9741: "serialize-javascript": {

/var/nutilift/package-lock.json:9743: "resolved": "https://registry.npmjs.org/serialize-javascript/-/serialize-javascript-
1.7.0.tgz",

50

/var/nutilift/package-lock.json:10440: "serialize-javascript": "^1.7.0",

Figure 27. Serialize-javascript search results

Appendix 3 Node audit result

XSS vulnerability

Figure 28. XSS vulnerability on serialize-javascript

ReDoS vulnerabilities

Figure 29. Arcon package ReDoS vulnerability

