
INFOTEHNOLOOGIA TEADUSKOND

Automaatikainstituut

Reaalajasüsteemide õppetool

Jaanus Kaugerand

ISP70LT

Autonomous Unmanned Aerial System as a

Component in a Tactical System of Systems

Magistritöö

Tallinn 2014

Juhendaja: Jürgo-Sören Preden

reaalajasüsteemid

vanemteadur

AUTORIDEKLARATSIOON

Olen koostanud antud töö iseseisvalt. Kõik töö koostamisel kasutatud teiste autorite

tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on viidatud.

Käesolevat tööd ei ole varem esitatud kaitsmisele kusagil mujal.

Kuupäev:

Autor: Allkiri:

Autonoomne mehitamata lennuk taktikalise süsteemide

süsteemi komponendina

Annotatsioon

Käesoleva magistritöö eesmärk on võtta kasutusele autonoomne mehitamata õhu-süs-

teem (mehitamata lennuk, inglise keeles Unmanned Aerial System), mis teeb koos-

tööd autonoomse maapealse sensorsüsteemide võrgustikuga (inglise keeles Unatten-

ded Ground Sensor System), eesmärgiga pakkuda sensorsüsteemi poolt avastatud

sündmuste kohta visuaalset infot. Töö käigus tehakse kindlaks nõuded ja piirangud

autonoomsele mehitamata õhu-süsteemile, luuakse nimetatud õhu-süsteem ning integ-

reeritakse see maa peal paikneva sensorsüsteemiga. Töö kirjeldab ka lõpliku süsteemi-

ga tehtud katsete tulemusi ning järeldusi.

Lõputöö on kirjutatud inglise keeles ja sisaldab teksti 67 leheküljel, 4 peatükki, 28

joonist ja 6 tabelit.

Autonomous Unmanned Aerial System as a Component in

A Tactical System of Systems

Abstract

Autonomous UAS are seldom considered as a component in a larger System of Sys-

tems. Current thesis reviews the challenges in integrating a simple mini UAS capable

of autonomous flight with an existing System of Systems (SoS) consisting of a ground

sensor systems network, with the objective to provide visual information about the

events detected by the ground sensor systems. The thesis describes the creation of the

UAS, its integration with an SoS and the evaluation of the resulting SoS.

This thesis is written in English and contains 67 pages of text, 4 chapters, 28 figures

and 6 tables.

Table of Contents

1 INTRODUCTION...1
1.1 OBJECTIVE OF THE THESIS...2

1.2 DESCRIPTION OF THE APPLICATION SCENARIO..2

1.3 OUTLINE OF THE THESIS...4

2 BACKGROUND FOR CREATING AN AUTONOMOUS UAS..........................5
2.1 DEFINITION OF AUTONOMOUS UNMANNED AERIAL SYSTEM (UAS)...5

2.2 LEGAL ISSUES APPLICABLE TO CONTROL OF AUTONOMOUS UAS...6

2.3 BRIEF OVERVIEW OF NATO STANAG ON UAV CONTROL...8

2.4 DESCRIPTION OF THE MAVLINK PROTOCOL..10

2.5 ASPECTS OF SYSTEMS OF SYSTEMS...12
2.5.1 Definition of autonomy..12
2.5.2 Taxonomy of autonomy..13
2.5.3 Context of measuring the autonomy..15
2.5.4 System of Systems definition..15

2.5.4.1 Components of SoS as autonomous and communicative agents..17
2.5.5 Characteristics of Systems of Systems...17

2.5.5.1 Autonomy..18
2.5.5.2 Belonging..19
2.5.5.3 Connectivity...19
2.5.5.4 Diversity..19
2.5.5.5 Emergence...19

2.5.6 Autonomous control on contemporary UAS..20

2.6 DATA ASSOCIATION..21
2.6.1 Detection and classification..21
2.6.2 Aided classification and situation identification...22

3 CREATING AN AUTONOMOUS UAS..23
3.1 COMPONENTS OF THE SOS IN THE APPLICATION SCENARIO..23

3.1.1 Net Relay Server..24
3.1.2 Ground control station..24
3.1.3 The UGS network..25
3.1.4 UAS platform for ISR SoS..25

3.2 DESCRIPTION OF THE UAS ON-BOARD COMPONENTS...27
3.2.1 Fuselage..27
3.2.2 Servos and motors...28
3.2.3 Batteries..28
3.2.4 On-board remote control receiver...28
3.2.5 Payload...29
3.2.6 Autopilot..29

3.2.6.1 AKPilot IO ports..30
3.2.6.2 The different states of AKPilot..31

3.2.7 Embedded system for UAS autonomous control..32
3.2.8 Modem...33

3.3 DESCRIPTION OF SOFTWARE IMPLEMENTED FOR UAS..35
3.3.1 The requirements for the software...35
3.3.2 UAS software architecture for the high level control module................................36
3.3.3 Pilot Control module...37
3.3.4 The Mission Control module...38

v

3.3.4.1 The mission plan generator..38
3.3.4.2 Uploading a mission plan to AKPilot..40
3.3.4.3 Execution of the mission plan..40
3.3.4.4 UAV camera control..41

3.3.5 Internal and external communication..42

4 TESTING...43
4.1 LABORATORY TESTS...43

4.1.1 Generating a simple plan, uploading it and running the simulation on it.............43
4.1.2 Testing the UAS-GCS communication over Net Relay server................................43
4.1.3 Testing software components on Gumstix and Raspberry Pi embedded systems...44
4.1.4 Testing the UAS in full configuration in the laboratory...45

4.2 FLIGHT TESTS...46
4.2.1 Testing UAS without payload..46

4.2.1.1 Lessons learned (10.05.2014; 16.05.2014; 18.05.2014):...46
4.2.2 Testing UAS with payload..47

4.2.2.1 Lessons learned (23.05.2014):...47
4.2.3 Testing UAS in full mission configuration...47

4.2.3.1 Lessons learned (30.05.2014):...48
4.2.3.2 Lessons learned (31.05.2014):...50

5 CONCLUSION..52

 RESÜMEE...54

 REFERENCES..58

vi

List of Figures
Figure 1: Asymmetric threat detection scenario...3
Figure 2: UAV family tree..5
Figure 3: STANAG for UAV control...8
Figure 4: MAVLink packet structure...10
Figure 5: Mission upload..11
Figure 6: OODA loop...14
Figure 7: Contextual autonomous capability model...15
Figure 8: Structure of a cyber-physical system...16
Figure 9: SOS architecture...23
Figure 10: HappyKillmore Ground Control Station...24
Figure 11: Vaatlusdroon UAS..25
Figure 12: AKPilot...29
Figure 13: AKpilot connections...30
Figure 14: Raspberry Pi..33
Figure 15: UAS mission scenario...35
Figure 16: UAS software architecture..36
Figure 17: Pilot Control module...37
Figure 18: MAVLink mission example..39
Figure 19: Camera control procedure...41
Figure 20: Internal and external communication model...42
Figure 21: UAS testing in laboratory...45
Figure 22: Generated mission plan downloaded from AKPilot...................................45
Figure 23: Example of UAS camera quality from 100m hight....................................47
Figure 24: The first testing of the application scenario..48
Figure 25: Target 2, image 3..49
Figure 26: Target 3, image 2..49
Figure 27: Second testing of the application scenario..50
Figure 28: Target 2 image 1...51

List of Tables
 Table 1: MAVLink packet structure..10
 Table 2: Sheridan's model...13
 Table 3: Example of autonomy spectrum and OODA Loop.......................................14
 Table 4: Characteristics of a System of Systems...18
 Table 5: States/modes of AKPilot...31
 Table 6: Gumstix Overo on Pinto-TH expansion board vs Raspberry Pi...................32

Appendices
Appendix I: Implemented MAVLink messages in Pilot Control software..................57

vii

Glossary of Abbreviations and Symbols

AKPilot Autopilot, that has its name by its programmer Andrus Kangro

COTS Commercial off the shelf

CPS Cyber-physical system

GPS Global Positioning System

GCS Ground Control Station

HMI Human machine interface

ISR Intelligence, Surveillance and Reconnaissance

ProLab The Laboratory for Proactive Technologies

LGPL GNU Lesser General Public License

MAS Multi Agent System

MAV Micro air vehicle

MAVLink Micro air vehicle link

NMEA National Marine Electronics Associaton

NATO North Atlantic Treaty Organization

MT Master thesis

SA Situational Awareness

STANAG Standardization Agreement

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

UGS Unattended Ground Sensor

viii

1. Introduction

1 Introduction

During recent decades, the development of autonomous unmanned aerial vehicles has been

rapid in both military and civilian domain. Today there are already applications where aer-

ial vehicles are working together in teams, but almost no examples can be found where

autonomous air vehicles are teamed up with autonomous ground sensors systems to form a

larger autonomous System of Systems (SoS). The goal of the current thesis is to implement

a tactical autonomous unmanned aerial system (UAS) that collaborates with a tactical

autonomous network of ground sensor systems with the purpose of offering visual informa-

tion about the events detected by the sensor systems. In the context of the thesis, the re-

quirements and constraints for such UAS are explored, and the UAS is designed, imple-

mented and integrated with the network of sensor systems on the ground. Finally the results

are evaluated against a realistic application scenario presented in the first chapter, which is

a scenario of a perimeter control for a temporary military base in an asymmetric threat en-

vironment. The scenario is an adaptation of the scenario from the ongoing European De-

fence Agency project IN-4-STARS in the Research Laboratory for Proactive Technologies

(ProLab) at Tallinn University of Technology.

The UAS developed in the context of the thesis will be used in the IN-4-STARS project.

The basis for UAS is an autonomous tactical reconnaissance unmanned aerial vehicle

(UAV), designed and custom built the for current thesis by a team of enthusiasts

(“Vaatlusdroon”). The name Vaatlusdroon was chosen when author of the thesis together

with Andrus Tamboom participated in entrepreneurship-competition “Ajujaht” in 2011

with the then latest model of teams self-built UAV. The design of the Vaatlusdroon UAS

has been inspired by a half-military reconnaissance competition “Põrgupõhja Retk” annu-

ally organized by Estonian Defence League. Vaatlusdroon team has been participating in

this competition for several years. The UAV together with necessary equipment has been

carried in rucksack to the reconnaissance task and successfully used to gain intelligence as

described in three competition scenarios. This is also the source of authors interest into

autonomous unmanned aerial vehicles.

The thesis explores the requirements, designs the overall architecture, chooses and im-

plements the components in order to add the autonomous communication and mission

planning and execution ability to a UAV. During the process, ProLab offered assistance in

1

1. Introduction

both procurement of the necessary components and also implementing the individual soft-

ware components.

The tactical Intelligence, Surveillance and Reconnaissance (ISR) SoS discussed in cur-

rent thesis and presented in the related case study is designed and implemented by ProLab,

during the actual testing of the UAS the ground sensor systems are emulated.

1.1 Objective of the thesis

The thesis explores and evaluates the requirements for the system components that must be

added to an operator controlled UAS to facilitate the integration of the UAS to the SoS and

provides the design for the required hardware and software. The main objective is to imple-

ment the autonomous UAS according to the operational and technical requirements derived

from the application scenario of the IN-4-STARS project, assuming an SoS architecture for

the ISR system. Finally the thesis will evaluate the result during the testing of the imple-

mented UAS according to the application scenario.

A sub-objective of the thesis is to identify the limitations and possibilities for establish-

ing data connectivity between the UAS and the UGS. For that purpose one of the ground

sensor nodes is installed on board UAS in order to create a possibility to monitor the per -

formance of a wireless ad hoc communication when one of the nodes is moving in and out

of the communication range of the UGS.

1.2 Description of the application scenario

The perimeter control scenario for the current thesis foresees that the tactical sensor net-

work is used for force protection and the UAS is utilized to augment the situational picture

by providing visual information on detected objects and events. The scenario is described

below briefly, and visualized on Figure [1].

The scenario describes a complex system for identifying and mitigating the asymmetric

threat to a temporary military base perimeter. The components in such a system are Unat-

tended Ground Sensor (UGS), UAS and possible data fusion nodes. The data fusion as-

pects are not discussed in the thesis as they fall outside the scope of the current work. A

UGS is essentially an autonomous computer based sensing system, equipped with a power

supply, a set of sensors, and typically a wireless communication interface [1]. In the con-

text of current thesis the collection of these systems is considered a tactical and autonom-

2

1. Introduction

ous System of Systems (SoS). The SoS concept is explained later in chapter 2.5.

The Scenario description is the following: the UAS is launched and configured to re-

main in a standby mode (i.e. hold a circling pattern) in a specific area. 10 minutes after the

UAS has been launched and has assumed the standby position, a mobile object of interest

(e.g. a vehicle of the red force) is detected by UGS.

The UGS establishes contact to UAS and communicates the instructions (i.e. coordin-

ates and type of sensor to use) from where the images are required to enhance the situ-

ational picture (i.e. where object of interest is located).

The UAS will then relocate to the new position, take pictures/video of the area of in-

terest and transmit the pictures to the data requester (UGS), that will combine the data with

the fused sensor data from UGS and communicate the data to the (human) data consumer.

In case many information requests are received, the requests are handled by order of prior-

ity and order of arrival.

3

Figure 1: Asymmetric threat detection scenario

1. Introduction

1.3 Outline of the thesis

The thesis is divided into 4 major chapters. Chapter one gives the introduction, outline and

objectives of the thesis. Chapter 2 gives background for creating a UAS, chapter 3 de-

scribes the details of implementation and chapter 4 evaluates the results by conducting both

laboratory and flight testing.

Chapter 2 starts off by introducing the definition of the Unmanned Aerial Vehicle. Sec-

tion 2.2 defines the legal requirements relevant for the UAS operation. Section 2.3 explains

NATO allied nations standardization of UAS control. Section 2.4 explains the communica-

tion protocol used for Commercial Off The Shelf (COTS) micro air vehicles. Section 2.5

discusses the definition of System of Systems, autonomy and also the measuring of

autonomy in contemporary military unmanned aircraft. Section 2.6 introduces the concept

of data association. Thesis describes the work performed by the author in:

1. Chapter 3.2 where the overall design of the UAS is developed, including the on

board components:

• The author identified the additional components to transform the UAV to a

component of an SoS.(choice of payload, the embedded computer and commu-

nication interface.

• The author also provided input to the design and assembly of the rest of the

components (legacy components).

2. In chapter 3.3 the software implemented on UAS is described:

• The author implemented the mission planning software and the software for up-

loading the mission to the autopilot, sending the mission related commands to

the autopilot, and parsing the messages sent by autopilot.

• The author also provided input on overall design of the SoS software.

3. In chapter 4 the testing procedures and results of the UAS are described:

• The author planned and conducted the laboratory tests described in chapter 4.

• The flight tests were planned and carried out in cooperation with the author,

Team “Vaatlusdroon” and ProLab staff. The author managed the negotiations

about the test scenarios and the testing schedule.

4

2. Background for creating an autonomous UAS

2 Background for creating an autonomous UAS

2.1 Definition of Autonomous Unmanned Aerial System (UAS)

Unmanned Aerial System (UAS), also called a drone, is a powered and guided aircraft with

no human pilot on board. Sakamoto [2] gives a good overview of the UAV definition, see

Figure [2]. It brings out the clear difference between a conventional aircraft and a UAV.

Current thesis uses the term UAS instead of UAV in order to emphasize the complexity of

the on-board systems of autonomous unmanned aircraft considered in the current thesis –

while a regular UAV can be an aircraft with no autonomous operation capabilities, the UAS

discussed in the current thesis is capable of autonomous operation, task evaluation and exe-

cution. A UAS can be controlled either remotely by a human operator on ground using a

communication link, or autonomously by an on-board computer.

 The idea of an autonomous pilotless aircraft is not a new concept, attempts to achieve this

date back even to the middle of the 20th century. Today there are working examples of dif-

ferent applications for UAS in both civilian and military sector. In civilian practice, the

most common tasks are various surveillance, inspection and mapping tasks, in military the

main usage of UAS is for intelligence, surveillance and reconnaissance (ISR) tasks, but

5

Figure 2: UAV family tree [2]

(RPV – Remotely piloted vehicle, ICBM – Inter Continental Ballistic Missile)

2. Background for creating an autonomous UAS

also carrying out armed attacks on enemy.

There are several advantages inherent to designing an aircraft with no human pilot on

board. Many tasks are too difficult or not suitable for humans, these tasks are called as dull,

dirty and dangerous (D3). Operating unmanned aircraft involves less risk to human lives

and operational costs can be smaller. The design of aircraft does not need to consider the

space for pilots, instead the freed space could be used for other purposes, e.g. more com-

plex payload, fuel, electronic equipment or propulsion. The aircraft could be smaller as it

does not need to carry pilots on board, this also lowers costs for propulsion systems and

can make aircraft more fuel-efficient. The aircraft could even be disposable and be used for

missions which involve risk of loss of airframe (i.e. monitoring natural disasters), which in

case of a manned aircraft would mean a risk to human lives.

The unmanned aircraft also has its downsides. More often than not the sensor informa-

tion gathered is far too extensive for on-board processing and needs to be fed back to

Ground Control Station (GCS) where information can be displayed to human operators

who can make the decisions which in turn need to be communicated back to aircraft. This

sets either limits on aircraft operating range or/and requires extra infrastructure for relaying

the communication between GCS and the aircraft. Another disadvantage of unmanned air-

craft is high dependence on GPS satellite system for positioning and timing.

2.2 Legal issues applicable to control of autonomous UAS

The purpose of the legislative regulations in the domain of unmanned vehicles is to ensure

safety. The legislation concerning autonomous or remote controlled UAV is not implemen-

ted in Estonia at the moment. A draft act has been prepared [3], and author of current thesis

together with team Vaatlusdroon and Estonian UAV community has contributed to the draft

with own proposals [4] during February of 2013. The resulting rules are expected to be the

following:

the UAV-s are classified in 3 categories as:

• IA, takeoff weight below 5kg (proposed by Vaatlusdroon team)

• I, takeoff weight below 25kg

• II, takeoff weight below 150kg

• III, takeoff weight above 150kg

For current thesis the relevant category is IA. The IA category UAS can be operated

6

2. Background for creating an autonomous UAS

without coordination with Air Traffic Control (ATC) below a flight height of 150m. The

UAS has to stay within visibility range and within 1000m from the takeoff point. In case

longer distance is needed the UAV would according to the draft act automatically advance

to category II. Category II UAVs must already be registered in the Aviation Office and Avi-

ation permit is needed. Also the remote operator must have taken the piloting exam. The

draft act does not currently have provisions for the case then UAV is completely autonom-

ous. One of the proposals in [4] was that in case of category IA autonomous plane should

be allowed to travel longer distances than 1km and then only ATC would have to be con-

tacted and presented with a flight plan and the approval of the flight plan could be given if

not in conflict with other traffic. Another proposal was to have less restricted rules for sci-

entific and research activities.

In case the flight of unmanned aircraft is in close proximity to airfields or air traffic con-

trol areas the ATC coordination is always required.

In any case if unmanned aircraft is outside the visual line of site the operator must mon-

itor the UAS constantly. It is not fully clear how the term monitoring should be interpreted,

does the UAS have to stay within visual sight or is it sufficient to monitor the UAS over

the GCS. While with the GCS the operator is able to monitor the movement of UAS on a

geographical map, there is also an alternative for UAS control, which is the First Person

View (FPV), where the operator monitors the UAS flight through special goggles where

the video view from the forward camera on board UAS is displayed.

The legal aspects may be easier to implement in military domain as in principle the mil-

itary traditional top-down command and control structure ensures that there is always

someone in command and thus responsible. There are mainly ethical and moral discussions

about armed UAVs as it is generally accepted that the decision to commit a weapon against

a target is made by a human. It is technically quite feasible to give this decision to an un-

manned system, but considerations of collateral risk, and rules of engagement, make this is

generally inappropriate.

Richard M. O’Meara, presented in his “Intersection” at a robotics law conference “We

Robot 2012” that from various humanitarian law treaties there are five general rules regard-

ing the conduct of warfare [5].

1. A general prohibition on the employment of weapons of a nature to cause superflu-

ous injury or unnecessary suffering,

7

2. Background for creating an autonomous UAS

2. military necessity,

3. proportionality,

4. discrimination, and

5. command responsibility.

There rules must be observed when designing military UAS solutions, as when develop-

ing new technology used as a weapon in warfare, each country has a responsibility to de-

termine if it is in accordance with international law [6].

2.3 Brief overview of NATO STANAG on UAV control

As the current thesis discusses application of a UAS for military purposes as part of a lar-

ger system, a review of the relevant standards for connecting UAS with other systems is

appropriate. NATO uses standardization agreements called STANAGs to provide common

military or technical procedures and to define processes, procedures, terms, and conditions

for common military or technical procedures or equipment for NATO members (or nations

cooperating with NATO). STANAGs also form the basis for technical interoperability

between a wide variety of communication and information (CIS) systems essential for

NATO and Allied operations [7].

The UAV control procedures are standardized in STANAG 4586. It specifies the generic

architecture of a UAV control system, a good overview of standards used in relation to

UAV operation is given by Terryl Bandzul [8], see Figure [3].

The main goal of STANAG 4586 is to achieve UAV Systems Interoperability through

mainly standardising the two interfaces:

8

Figure 3: STANAG for UAV control [8]

2. Background for creating an autonomous UAS

1. Data Link Interface (DLI)

2. Command and Control Interface (CCI)

The DLI provides for standard messages and formats to enable communication between

a variety of air vehicles and NATO standardised control stations. The CCI specifies the data

requirements that should be adopted for communication between the UAV control systems

and all C4I end users through a common, standard interface [9].

Another relevant NATO document for UAV is STANAG 7085 which defines a Common

Data Link (CDL) for ISR systems. This STANAG provides the interoperability standards

for 3 classes of data links used for imagery data transmission: analogue links, point-to-

point digital links, and broadcast digital links. The STANAG is structured in a way it

provides a number of options for the specific data link configuration, such as simplex or

duplex operation, data rate, carrier frequency, channel multiplexing, interleaving, encryp-

tion, and many others that must be matched prior to passing data from transmitter to re-

ceiver [10].

The other STANAGs shown on the Figure [3] are 7023, 4545, 4607 and 4609 which

provide standards for the data interfaces for digital sensors as payload.

The technological standards trends in STANAG development currently lean towards

bandwidth reduction, toward network-centric CONOPS, service-oriented architecture, in-

creasing system autonomy (Autonomy messages added to the STANAG 4586, operators

are to become system supervisors in future) and toward collaboration among systems [8].

9

.

2.4 Description of the MAVLink protocol

The MAVLink protocol is designed as a header-only message library and was first released

in early 2009 by Lorenz Meier under LGPL [11]. The protocol is designed for use between

micro air vehicle autopilots and Ground Control Stations (GCS).

MAVLink message management library defines the messages for:

• vehicle attitude / telemetry

• GPS messages

• mission related commands and reports

• messages to read and write parameters (e.g. PID gains)

In current thesis the MAVLink protocol is relevant as it is used for controlling the auto-

pilot (listening to GPS messages, autopilot reports and vehicle attitude, sending commands

to autopilot).

MAVLink frame is 8 – 263 bytes long and its packet structure is depicted on Figure [4].

For closer explanation of each byte segemt see Table [1].

Byte index Content Value Explanation

0 Packet start
sign

v1.0: 0xFE
(v0.9: 0x55)

Indicates the start of a new packet.

1 Payload
length

0 - 255 Indicates length of the following payload.

2 Packet
sequence

0 - 255 Each component counts up his send sequence.
Allows to detect packet loss

3 System ID 1 - 255 ID of the SENDING system. Allows to differentiate
different MAVs on the same network.

4 Component
ID

0 - 255 ID of the SENDING component. Allows to
differentiate different components of the same
system, e.g. the IMU and the autopilot.

5 Message ID 0 - 255 ID of the message - the id defines what the payload
“means” and how it should be correctly decoded.

6 to (n+6) Data (0 - 255) bytes Data of the message, depends on the message id.

(n+7) to
(n+8)

Checksum ITU X.25/SAE AS-4 hash, excluding packet start sign, so bytes 1..
(n+6)

Table 1: MAVLink packet structure [12]

10

Figure 4: MAVLink packet structure [12]

.

The current version in use with most today’s micro air vehicles is MAVLink version 1.0.

The communication protocol implemented on board AKPilot, the control unit on the UAS

developed in the thesis, is MAVLink version 0.9. Most of the Ground Control Stations

available have implicit support for both versions.

An example of waypoint list request from Micro Air Vehicle (MAV) autopilot can be

seen of Figure [5].

In order to interpret and compose the MAVLink messages a python PyMavlink module

the PyMavlink dialect “V09 Common“ is used. This is as its name also indicates a dialect

with the most common functions needed for a generic autopilot. The MAVLink procedures

used in current thesis are explained in chapter 3.3.

11

Figure 5: Mission upload [12]

.

2.5 Aspects of Systems of systems

In order to understand the context and requirements for the SoS aspects of the UAS, a short

review of the SoS aspect is presented below.

The System of Systems (SoS) is, as its name implies, a system which consists of sys-

tems. The definition of SoS which will be explored in chapter 2.5.4, provides a more ab-

stract view of a system under design and helps to concentrate more on behaviours and in-

teractions of the constituent systems and to relate them to the goal of the emergent system.

This definition of is closely related to the theory of autonomous agents and multi agent sys-

tems (MAS). The current chapter provides an overview of necessary definitions and in ad-

dition to SoS explores more thoroughly the notion of autonomy and how autonomy is

measured.

2.5.1 Definition of autonomy

The word comes from the Greek words autos (self) and nomos (governance). US National

Institute of Standards and Technology defines autonomy for unmanned system as: “An un-

manned systems own ability of sensing, perceiving, decision-making, and acting/executing,

to achieve its goals as assigned by its human operator(s) through designated HRI” [13] or

simply “its own capability to achieve its mission goals” [14]. There are numerous more ex-

amples but the substance remains same. An artificial entity can be considered autonomous

when it can function independently over extended period of time, perceive its surrounding

environment, comprehend at least some part of the environment, decide by itself what is

the best action in order to achieve its goal, and act in an optimal way on this decision. The

definition of autonomy must not be mixed with the definition of automation, although they

can be heavily overlapping. The purpose of automation as well as of autonomy is to lessen

the workload of humans, via the capacity to operate without outside intervention [15]. But

the definition of automation does not include the decision making process. Especially the

decisions over whether or not to and when to provide service that is subscribed by other

components or decisions to initiate interactions with other nodes. An automated machine

executes preprogrammed actions in a certain fixed sequence, though the complexity of

those preprogrammed actions may be very high. Another differentiating factor is that an

automated entity operates mostly in a bounded static environment while autonomous entity

operates in open dynamic environment. Taking decisions in an uncertain environment is

12

.

not a trivial task, the process requires hierarchical buildup of the situational awareness that

is derived from perceiving and comprehending of the environment. Endsley (1988) gives

the following definition for the situational awareness: “the perception of the elements in

the environment within a volume of time and space, the comprehension of their meaning

and the projection of their status in the near future” [16]. The situation awareness does not

have to be an individual trait, in an SoS designed according to multi agent system it is

achieved collectively by exchanging situational parameters in order to gain a situational

awareness of a team [17].

2.5.2 Taxonomy of autonomy

With the recent development in the field of UAVs there have been several attempts to cre-

ate a taxonomy for levels of autonomy. The most known studies in this field are Sheridan's

model and OODA loop.

The Sheridan's model [18] describes machine's independence of human as a continuum

from the entity being completely controlled by a human, through the entity being com-

pletely autonomous and not requiring input or approval of its actions from a human before

taking actions, see Table [2].

Computer:

1. offers no assistance, human must do it all

2. offers a complete set of action alternatives

3. narrows the set of alternatives down to a few

4. suggests one alternative

5. executes the chosen alternative if the human approves

6. allows the human a restricted time to veto before automatic exe-

cution of the selected alternative

7. executes automatically, then necessarily informs the human

8. informs human after execution only if he asks

9. informs human after execution if it, the computer, decides to

10. decides everything and acts autonomously, ignoring the human.

Table 2: Sheridan's model [18]

Another way to measure autonomy is to use an OODA model developed by military

13

.

strategist John Boyde in the 70s, see Figure [6].

The OODA loop was originally developed in order to formalize the decision cycle for

gaining an advantage in military operations [20]. It has four dimensions: Observe, Orient,

Decide and Act. According to Boyde the decision cycle is a recurring loop over the those

four dimension repeated hundreds of times during a mission. A fighter aircraft pilot would

Observe the situation around him, Orient himself about the situations, Decide upon the

next action and Act on the decision taken. The key to success here is the completion of the

single loop of OODA faster than the opponent.

Today the OODA model has also proven very useful in describing how machine systems

like UAVs operate, make decisions and interact with the world [20]. Each dimension of

OODA loop can further be assessed in a Sheridan model like scale. This way the problem

of measuring the machine independence from human can be divided into smaller tasks. An

example of such taxonomy is shown on Table [3].

Level Observe Orient Decide Act

0 Flight control sensing
and on board camera

Telemetry data; remote
pilot commands.

None. Off-board pilot. Control by remote pi-
lot.

5 Local sensors to detect
external targets, fused
with off-board data.

Group action diagnosis
and resource manage-

ment.

On-board trajectory
planning; optimize for

current & predicted
conditions; collision

avoidance.

Group accomplishment
of tactical plan as ex-
ternally assigned; air
collision avoidance.

10 Cognizant of all within
the battlespace.

Coordinates as neces-
sary.

Capable of total inde-
pendence.

Requires little guid-
ance of any sort.

Table 3: Example of autonomy spectrum and OODA Loop [20]

14

Figure 6: OODA loop [19]

.

There can be found also a lot of references to definitions like human being “In the

Loop”, “On the Loop” or human completely taken “Out of the Loop” [10]. These are ro-

bust generalizations of human either assisting machine in some or every step of OODA

loop or human only observing and only intervening in extreme cases or machine observing,

orienting, deciding and acting completely autonomously.

2.5.3 Context of measuring the autonomy

According to the levels of autonomy explained in previous chapters, it is difficult if not im-

possible to compare two autonomous vehicles. For this purpose the context of mission and

environmental complexity must be used. Between 2003 and 2008 the US National Institute

of Standards (NIST) has published several works on Autonomy Levels For Unmanned Sys-

tems (ALFUS). The main goal for this taxonomy is to evaluate and document the require-

ments and capabilities of unmanned vehicles. In a nutshell, the levels of autonomy are

measured in the following three dimensions: human independence, mission complexity and

environmental complexity [21], as illustrated on Figure [7].

While the Mission Complexity and Environmental Complexity dimensions provide the

contextual background, the autonomy level itself is on the third axis. In order to evaluate

autonomy level on autonomy axis the ALFUS is also using Sheridan's model.

2.5.4 System of Systems definition

With technological development, systems have grown larger and more complex. New sys-

tems can have several components which are systems themselves and where interactions

15

Figure 7: Contextual autonomous capability model [21]

.

among the system components and with the environment are more important than the in-

ternal design of the constituent subsystems. Furthermore, the environment in which the

complex systems are carrying out their tasks, is often dynamic, open and unpredictable.

Components in such a complex system may not have fixed roles and internal structure does

not necessarily have to be static. These aspects bring in a new level of complexity and have

resulted in a new concept – a System of Systems.

The study of System of Systems is not older than a couple of decades and has its origins

from large corporations operating in a field of aerospace where complex systems like

spacecraft, military fighter aircraft or commercial aircraft are being developed. Today the

examples of systems that can be designed according to those principles can be found in

industry, power distribution networks, and also from fields of study of smart houses or

even smart cities consisting of fully autonomous entities, which interact with each other in

order to create more efficient infrastructure and work together in order to achieve a super-

ior goal, that each part of the SoS would not be capable of achieving by itself.

As the SoS discussed in the context of the current thesis interacts with the physical

world, the resulting systems can be considered to be Cyber-physical systems (CPS). A CPS

is is an integration of computation with physical processes, in Figure [8] there is depicted

an example structure of a cyber-physical system [22].

A CPS is a system which consists of several actors (computational platforms), it may

have networks connecting the actors and by definition it interacts with the environment

(physical processes).

One example of the complexity of the system which could be considered as a System of

Systems is a Boeing 787 Dreamliner. An interesting case is under media attention since

December 2012, the latest update was in March 2014 when it was still unsolved. The Boe-

16

Figure 8: Structure of a cyber-physical system [22]

.

ing engineers are having trouble finding what causes the battery system failure. The system

which fails may not be of big importance, the battery system itself is very robust system

and works in other systems, but now it is put into a very complex airplane which involves

several autonomous components, and the result is intermittent failures. Prof. Steven Ep-

pinger, a researcher from MIT, comments on this: “In complex systems, you can have thou-

sands of interconnections of parts, which will create unanticipated and unintended interac-

tions. It is likely that one or more of those interactions is causing this failure in the Dream-

liner’s battery system” [23].

2.5.4.1 Components of SoS as autonomous and communicative agents

In computer science the term agent is an abstraction that allows to concentrate on interac-

tions and behaviours rather than internal mechanisms. Stan Franklin and Art Graesser give

following definition: “An autonomous agent is a system situated within and a part of an en-

vironment that senses that environment and acts on it, over time, in pursuit of its own

agenda and so as to effect what it senses in the future” [24]. In other words the agent is a

computational system that is autonomous, is able to perceive dynamic environment and

have a goal oriented reactive or proactive behaviour according to its comprehension and

computational capabilities. The agent may be capable of optimizing or adopting its actions

and may be able to learn from previous experience. Furthermore, in the context of current

thesis, it must be emphasized that agents are considered to have capability to exchange in-

formation among each other - they are communicative. This ability can also be considered

as implicitly required and existing if the surrounding environment contains other agents

with the same agenda or higher goal, and they need to work together in order to achieve

that goal. Of course this sets more complex technical requirements for the physical imple-

mentations of systems (components in an SoS) that must act similarly to such autonomous

and communicative agents.

2.5.5 Characteristics of Systems of Systems

Despite of the various definitions of the concept of an SoS, it can still often be difficult to

differentiate between when a system is a System or SoS. One of the more comprehensive

overviews on the definition of SoS comes from the paper published by Broadman and

Sauser in 2006. They defined five characteristics [25] that describe the SoS: autonomy,

17

.

connectivity, belonging, diversity and emergence. In following every one of those charac-

teristics shall be explained in more detailed and compared against a monolithic system.

System System of Systems

Autonomy Parts give up autonomy to system. Goal driven autonomy by parts.

Belonging Parts are akin to family members; they
are organic part of the System.

Constituent systems have similar goals
with the SoS and choose to belong on a
cost/benefits basis;

Connectivity High connectivity hidden in elements, and
minimum connectivity among major
subsystems.

Dynamically supplied by constituent
systems, possibly via a net-centric
architecture.

Diversity Minimized by modular hierarchy; parts'
diversity encapsulated to protect
simplicity into the next level of hierarchy.

Increased diversity in SoS capability
achieved by released autonomy,
committed belonging, and open
connectivity.

Emergence Foreseen, both good and bad behaviour,
and designed in or tested out as
appropriate.

Enhanced deliberately by creating an
emergence capability climate.

Table 4: Characteristics of a System of Systems [25]

2.5.5.1 Autonomy

The principal difference between autonomy in a monolithic system and an SoS is illus-

trated on Table [4]. In a monolithic system the components of system are not autonomous,

they are being controlled by the system and the system cannot fullfill its purpose without

its parts. In a System of Systems each constituent system exercises autonomy in order to

achieve the overall goal of an SoS.

When looking for examples in the scale of autonomy characteristic, we could in one end

have system like a UAS that for some reason cannot complete its mission without its link

to ground control station (and operators), while on the other end of the scale we could have

components of a sensor network designed according to contemporary understanding of the

principles of Systems of Systems and multi-agent networks. In latter case the total system

would be scalable, consisting of autonomous components, and robust. Autonomous UAS

as a component in such system would continue with its mission and contribution to achiev-

ing the goal of SoS autonomously using its best abilities even if the connectivity to other

components of SoS is intermittently lost.

18

.

2.5.5.2 Belonging

According to Broadman's and Sauser's characteristics, the belonging shows the willingness

of a system to pay the costs of offering some service or to collaborate with other systems in

return to adding a new value to the systems own purpose and role and to enhance the pos-

sibility of achieving both the system's own goal and the goal of a System of Systems. In

other words the belonging indicates also if a system or a device is an organic part of a lar-

ger system, or chooses to be part of a System of Systems because it is beneficial. The

choice of collaboration obviously assumes also a certain degree of autonomy.

2.5.5.3 Connectivity

Connections and interactions among the components of SoS are considered as important as

the components themselves. In systems engineering it has become a rule that if the connec-

tions between components are huge, they are hidden away, encapsulated. This cannot be

the case in SoS as the constituent components are autonomous and decide largely by them-

selves when an interaction is initiated or which connections must be created among the

components, see Table [4].

2.5.5.4 Diversity

Diversity may come in many forms, it may manifest itself in various forms of interactions,

behaviours, perception and comprehension etc. Any task may require certain amount of di-

verse skills. In case of SoS, it is not difficult to see that more diversity among its compon-

ents results in an ability to solve more complex tasks. The diversity also enhances the SoS

odds for survival in complex environment and also possibility for emergent behaviour.

2.5.5.5 Emergence

 High level of autonomy, loose belonging and connectivity, and high level of diversity in a

System-of-Systems leads to synergism, adaptivity and emergent behaviour and the other

way around if synergism and emergence is desired, high level of autonomy, loose belong-

ing, loose connectivity and high level of diversity is required. In such a System-of-Systems

the emergent behaviour is unpredictable, but is highly welcomed as it facilitates the ability

to cope with the unexpected nature of the environment. This is also that something that dis-

tinguishes the System from System-of-Systems.

19

.

On the other hand it is an open question whether emergence can actually exist in a sys-

tem made up entirely of engineered components. Edmonds, B., in his PhD thesis (1999)

“Syntactic measures of complexity” has eloquently posed this as the question of emergence

versus ignorance – in other words, is an unpredictable result truly a feature of the complex

system, or merely an artefact of our lack of understanding? Recent work has been under-

taken that seeks to develop a mathematical test of this hypothesis, but the effort is still in

its infancy [26].

2.5.6 Autonomous control on contemporary UAS

It is interesting to note that the most autonomous and famous contemporary UAS, like

MQ-1 Predator and MQ-9 Reaper by General Atomics and RQ-4 Global Hawk by

Northrop Grumman, only score 0-2 on the given Autonomy spectrum described in Table

[3]. This is due to the fact that in reality these are remotely operated aircraft. For example a

single Predator's crew consists of one pilot and two sensor operators, but it takes a total of

82 people, including technical support staff, to fly it [27].

Today in US military the discussions concerning autonomy of both the contemporary

and also the newest autonomous UAS not in service yet (i.e. Boeing Phantom Eye (2013),

autonomous take off, landing and flight, Northrop Grumman X-47B (2012), autonomous

take off and landing on aircraft carrier), are not yet about designing fully autonomous UAS,

but instead, several sources describe the US military endeavours to climb couple of levels

up on autonomy levels to achieve the capability for the UAS to require less operators and

maybe even having one operator to pilot several UAS. At the moment commonly at least

two operators are required to pilot one UAS.

The biggest constraints for the UAS being fully autonomous is the lack of capability to

comprehend the perceived sensor information at a level necessary to take the decisions

needed for autonomous behaviour. Another shortfall is the high dependence on positioning

service provided by GPS in their movement and path planning. Though some examples can

be found of UAS operating without GPS, (i.e. using pre-mapped 3D models [28] or coast-

line or a road following algorithms which are said to be as good as human [29]) but those

are still scientific studies and conducted by universities.

20

.

2.6 Data association

Data association means creating relations between data components. In current thesis it is

used in context of adding temporal and spatial metainfo to a captured image. This is used

when the UAS records an image in a position according to a subscription received from

ground sensors and uploads it back to the subscriber. Having exact time and position asso-

ciated with the image gives the final user a possibility to put the images into a larger con-

text by comparing the image to the:

• Image from same area at an earlier time.

• Image taken almost simultaneously from a different position (images acquired with

overlap and with short time interval could be even fused together)

• Other sensor measurements from same time and position.

A good example for the term “Data Association” can be found from military domain, where

the principle is often used for associating detected radar contacts into usable information,

for example radar tracks. This is achieved by relating an event with time and position plus

having an historical overview.

When different actors exchange data associated with temporal and spatial metainfo, it

enables a receiver to also validate the information both in time space in order to determine

if the data can be used in the first place.

2.6.1 Detection and classification

In military terminology detection is: “In tactical operations, the perception of an object of

possible military interest but unconfirmed by recognition” [30]. The event or object can be

detected by sensors using some predefined signal characteristics thresholds. The process of

detection can be conducted by either a fully autonomous cyber physical system, by a hu-

man with a computer aided system or by a human alone. Today the data acquired by

sensors is mostly analysed by some computing system, and detection process is partially or

fully automatic. After an event or object has been detected, the next step is to classify it.

The simplest way to classify it in military terms is to decide whether the detected event or

object is either probable fake or probable real object or event of interest like signal charac-

teristics. Certainly when more measurements are fused/combined, a more detailed classific-

ation may hierarchically go further including for example classification steps like: noise on

ground → possible ground vehicle → possible slow ground vehicle firing a gun → pos-

21

.

sible enemy slow ground vehicle.

The classification of events or objects is performed based on data acquired by sensors.

The acquired sensor measurements can be processed using classification algorithms, and

with certain confidence be categorized into predefined classes. The resulting events or ob-

jects classified and associated with spatial and temporal metadata can be used to create

situational awareness in humans or machines. Owing to the fact that situational awareness

is crucial in military operations, the common practice is still to have the human operator

behind the sensor HMI making the decisions about identification and classification. This is

mainly due to the very nature of situations that are taking place in the military theatre of

operations. It is still easier and faster to brief human operators who can also draw conclu-

sions on their own from their experience, than to reprogram the machines on situational

context. This is to say that the criteria for classification can be very complex in terms of

situational awareness.

2.6.2 Aided classification and situation identification

Already for several decades, ironically due to the development of sensor technology and

cyber-physical systems, we have faced the complication of the sensors producing too much

information to be processable by human operators. One solution also presented in this

thesis is to split the tasks (and solve them by machines) into smaller pieces by using several

autonomous agents that together form a large System of Systems that dynamically handles

each detection, classification and identification case by interacting within its components.

The recognition and identification can be done in several ways. Current thesis presents an

identification approach where a tactical System of Systems, containing a set of autonomous

sensors, is used for detecting and classifying objects of interest. The UAS considered in the

current thesis supports the classification tasks by providing additional visual information

after the automatic classification methods that utilize the sensor information from UGS

have identified an object of interest. The information generated by the UGS is supplemen-

ted with the visual information provided by the UAS and delivered to the human user for

classification and situation identification. Having visual information associated with posi-

tion and time information is crucial during this process.

22

3. Creating an autonomous UAS

3 Creating an autonomous UAS

The autonomous capability required for the UAS to perform as a component in an ISR SoS

is built upon an existing UAV that is operator controlled and capable of simple waypoint

navigation. The existing UAV is described later in current chapter, in the sub-chapter 3.1.4.

The requirements of what must be added to the existing UAV are derived from the applica-

tion scenario in chapter 1.2. The UAS must be capable of receiving the subscriptions from

UGS and sending back the images. Furthermore UAS must be able to plan its mission

autonomously and execute the mission and capture the images at required positions.

 During the next sub-chapters (3.1 – 3.4) each of the components in an ISR SoS shall be

described. The creation of UAS shall be explained in details in the rest of current chapter.

3.1 Components of the SoS in the Application Scenario

There are four different types of components in SoS used in current thesis: UAS, UGS, Net

Server and Ground Control Station, see Figure [9].

The software implemented on UGS falls out of the scope of current thesis. The Net Relay

Server is used as a temporary solution in the current configuration in order to implement a

Client-Server model for communication between the UAS, UGS and Ground Control Sta-

tion. The Net Relay Server is required as the data link (a 3G modem) used on the UAS en-

ables only unidirectional data links from the UAS to the internet, the connection from the

Internet is not enabled to the UAS. The implementation of software and hardware for UAS

is explained below in chapters 3.2 and 3.3.

23

Figure 9: SOS architecture

3. Creating an autonomous UAS

3.1.1 Net Relay Server

The Client-Server model is used because the requirement to transfer the images from UAS

to the subscriber requires higher data rates than can be provided by sub-gigahertz modems

which are typically utilized to establish data links from ground to a UAS. An ordinary net-

work server is implemented to facilitate the communication between SoS components.

The proper implementation of communication architecture for such an SoS should be

based on a dynamic ad-hoc local wireless network not reliant on internet and client server-

model, but this topic falls out of the scope of the current thesis.

It must be also mentioned that the replacement of communication does not affect the

general design of the SoS in question.

3.1.2 Ground control station

Ground control station consists of two parts, an open source ground control station soft-

ware for monitoring the UAS telemetry information and mission progress, and a web ap-

plication for displaying the images UAS is sending back to the subscriber.

The open source ground control station chosen for the case study is HappyKillmore

[31], see Figure [10].

24

Figure 10: HappyKillmore Ground Control Station

3. Creating an autonomous UAS

 It is an easy-to-use control station, providing the following features:

• supports MAVLink and NMEA protocols

• visual interface for UAS attitude

• Google Earth interface for displaying UAS location

• simple mission planning interface

• an interface for adjusting UAS autopilot parameters

3.1.3 The UGS network

The existing SoS is a tactical sensor network consisting of UGS (Unattended Ground

Sensor) built according to SoS principles. Its purpose is to detect anomalous or illegal

movement in the monitored area and to classify the types of the detected objects.

The UGS use various sensor modalities, including audio, seismic and magnetic field,

being also able to perform classification in a collaborative manner. The interactions in the

SoS are subscription based and mediated using ProWare [32]. The sensors are aware of

their own position and among each other they exchange situational parameters in order to

obtain and keep a local situational awareness picture.

When an object of interest is detected and classified, the UGS transmits an imaging sub-

scription to the UAS. Once the image from the area has been received by the UGS, it is

combined with the classification results and communicated to the information consumers

who had requested information from the area.

3.1.4 UAS platform for ISR SoS

Vaatlusdroon UAS is a small tactical fixed wing aircraft, see Figure [11].

25

Figure 11: Vaatlusdroon UAS

3. Creating an autonomous UAS

Its main task is to provide images (intelligence data) about enemy activity in some given

location. It weighs around 1.9kg, has a wingspan of 1.5m, and its average flight time is 40

minutes. The payload used for testing is a single COTS (commercial off the shelf) camera

able to capture high resolution images.

The range and flight time is limited by battery power, and Vaatlusdroon keeps track of

and is aware of this limit. During the image capturing session, the autopilot has built in al-

gorithm for keeping the aircraft as steady as possible in current environmental conditions.

Vaatlusdroon can operate in limited weather conditions - it can not tolerate high wind

speeds or heavy precipitation, and in order to use its camera it needs daylight. It has no col-

lision avoidance capability. Vaatlusdroon can be completely autonomous after it has been

launched, as it is able to follow a preplanned trajectory uploaded from a ground station cre-

ated by a human operator.

In order for the UAS to be able to perform as an autonomous system in an ISR SoS, the

following abilities are to be added:

• ability to receive subscriptions for imaging service

• autonomous mission planning capability

• camera control capability

• capability of sending the images to the subscriber.

• if requested, to be able to provide situational parameters about its position, move-

ment and flight time (also environmental data like wind speed and air pressure are

available),

In future it is planned to add:

• an ability to decide also when a mission is not possible and thus the service can not

be provided

• a capability to detect when it is in communication range with other components of

SoS.

26

.

3.2 Description of the UAS on-board components

The components for UAV platform are chosen using the following criteria:

• low power consumption

• minimal dimensions

• low cost

• hardware compatibility and software support

Low power consumption is needed in order to maximize the flight time. The minimal

dimensions are required as the payload space on board UAV is very limited. Low cost on

the whole may be difficult to achieve as a UAS is a very complex system, but it is import-

ant that the each component is as cost-effective as possible. This is because during the de-

velopment, testing and learning about the aircraft behaviour, it is impossible to fully avoid

accidents or rough landings (take-off and landing are always most critical). This means

that there must always be a certain amount of spare parts and materials ready, and this can

easily double the developmental costs. Good hardware compatibility and wide software

support is crucial when integrating the components into an integral whole. Most of these

criteria cannot be satisfied simultaneously. Low power consumption or minimal dimen-

sions versus low cost can be especially contradictory.

Following components are described in more detail in the thesis:

1. Platform, fuselage,

2. Servos and motors,

3. Batteries,

4. On-board remote control receiver (2,4Ghz),

5. Payload (camera),

6. Autopilot and sensors,

7. PilotControl module (Raspberry Pi),

8. 3G modem.

3.2.1 Fuselage

The fuselage is designed to fit into a rucksack and to be assembled very quickly, have good

stability, and one of the requirements is also a low stall speed for capturing images. Also in

case of poor landing or crashing, the wings will easily break off and thus avoid more dam-

27

.

age. Furthermore, the UAS is designed to be launched from hand. The material of the fu-

selage is a mixture of carbon and kevlar, making the fuselage strong and light. The design

of the fuselage is also dictated by the planned electronics and the payload, as the centre of

gravity is directly related to the position and aerodynamic design of the wings. This means

that during fuselage design, the placement of all the internal components is planned ahead

and cannot be changed much afterwards without compromises to flight time.

3.2.2 Servos and motors

UAS main electrical motor is of type A30-24M-UAV RHT. Its maximum power (15s) is

350W. With the current configuration of the battery set, the maximum power to the motor

is 230W. UAS has four ailerons and a servo to control each one of the ailerons. All servos

are of type MKS DS6100 Servo-10mm 9.5g 3.3Kg·cm. The servos for ailerons have 3.3

kg·cm torque and a speed of 0.12s/60°, which makes them suitable for electric glider and

faster sport sloper steering (a sloper is an R/C plane without motor, thrown off the slope

and using warm air currents).

3.2.3 Batteries

UAS battery pack consists of two 3000mAh lithium polymer batteries. Each battery has 3

cells and produces 11,1V. Batteries provide electricity to speed regulator, which in turn dis-

tributes the electricity to main motor and electronic equipment. The batteries are placed in-

side the wings.

3.2.4 On-board remote control receiver

Vaatlusdroon also has one on-board remote control receiver for manual override of control

in case of emergencies. This is an 8 channel 2,4Ghz receiver for remote control. The chan-

nels are divided as follows: 2 channels are used for setting the mode/state of the UAS (AK-

Pilot has four states, see chapter 3.2.6.2), 4 channels are used for ailerons, 1 channel is used

for electric motor and 1 channel is available for payload control. The remote control option

is mainly used while assisting the UAS take-off and landing, and also when the human op-

erator intends to abort the mission.

28

.

3.2.5 Payload

Vaatlusdroon UAS is capable of carrying approximately 200g of payload. For testing pur-

poses the Raspberry Pi camera module is used (OmniVision OV5647 image sensor [33]). It

is a very lightweight camera designed for mainstream mobile phone market, has a 5 mega-

pixel sensor, capable of making HD (720p/60) video, has following physical dimensions:

25mm x 20mm x 9mm and weighs 3g. As OV5647 camera is shipped together with Rasp-

berry Pi, it is easily installed and can be fully controlled by software.

Other possibilities exist also. For example the fuselage for payload part is built cyl-

indrical keeping in mind the possibility for one-axis gimbal. The design of one-axis gimbal

is also supported by “Vaatlusdroon” UAS autopilot where also camera stabilization func-

tionality has been implemented.

During the testing it is also planned to make a test with one of the sensor nodes as a pay-

load on board UAS, interfaced to UGS, in order to test the ad hoc short range wireless

communication possibilities.

3.2.6 Autopilot

The autopilot used for UAS is also developed by team “Vaatlusdroon” and is called by its

programmers initials “AKPilot” (SW architecture has been designed by Andres Kangro and

Andrus Tamboom, SW is programmed by Andres Kangro, hardware architecture is de-

signed and assembled by Veljo Sinivee, Phd, author of current thesis participated in testing

and debugging).

29

Figure 12: AKPilot

.

 AKPilot, see Fig. 12, consists of two parts, the autopilot itself and the sensor board.

The sensors are:

1. Acceleration sensors used on AKPilot are a ±3g, ±9g Three Axis Low-g Microma-

chined Accelerometers MMA7341LC.

2. There are two electrical gyroscopes on AKPilot of type: MEMS motion sensors,

dual axis pitch and yaw ±30º/s analogue gyroscopes.

3. Air pressure sensors for altitude and air speed measurement.

The sensors board also contains a Secure Digital (SD) memory card reader.

The stabilization and flight control part is designed on a Texas Instrument Digital Signal

Processing (DSP) microcontroller dsPIC30F6012 chipset with a 16bit 30MHz processor

and 144KB of flash memory.

The autopilot uses Global Positioning System (GPS) for navigating from one position to

another. An Ublox NEO-6M GPS Module is used. The GPS update rate is 5Hz.

3.2.6.1 AKPilot IO ports

A view of AKPilot interfaces is illustrated on Figure. [13]. The UAS is interfaced with the

embedded system for high level control (Raspberry Pi) via the serial port.

• R/C Receiver – a port for a radio control receiver.

30

Figure 13: AKpilot connections

.

• Outputs to servos – AKPilot supports up to 7 servos, current UAS has 4 ailerons.

• I2C – software not implemented.

• Serial – a serial connection to PilotControl module (telemetry and mission related

messages). Pins from up to down: Ground, 5V, TX, RX.

• GPS – serial port for GPS messages (NMEA 0183 standard)

• Voltage lvl – a port for measuring battery voltage.

• Current lvl – a port for measuring current consumption

• Air pressure sensor – an analogue IO port for measuring the feedback from air pres-

sure sensor.

• PROG – a port for programming interface.

3.2.6.2 The different states of AKPilot

AKPilot has four different states or modes, see Table [5]. After AKPilot is turned on, it will

enter an initialization phase. During this phase the autopilot is initializing its GPS and

other sensors (accelerometers, gyroscopes, pressure sensor). The position acquired during

the initialization mode is set as HOME position. When only simulation is required then this

mode can be skipped and HOME position is either loaded from a hardcoded memory loca-

tion, or if there exists a previously uploaded mission on SD memory card, then the first

waypoint is loaded as HOME position.

State/mode definiton

Initialization preflight Initialization of the sensors

Manual human pilot has full command over UAS

Half autonomous autopilot stabilizes and lets human pilot to steer the UAS

Fully autonomous autopilot has full command over UAS

Table 5: States/modes of AKPilot

After initialization the UAV can be switched into any other of the abovementioned by

sending a correct MAVLink command over an established communication link. In case

AKPilot is switched into fully autonomous mode, it will search for a saved mission plan,

and if it finds one, the AKPilot will start following the mission, otherwise it will start

loitering over the HOME position at an altitude of 100m and begins waiting for commands.

In modes like “half autonomous” or “fully manual” mode the UAV does not accept com-

mands from the groundstation. Half autonomous stabilizes the aircraft and human pilot

31

.

only needs to steer a general course, this is mainly used for landing and take-off procedures

in more difficult conditions, when human assistance is required in order to avoid obstacles

or landscape characteristics.

3.2.7 Embedded system for UAS autonomous control

In order to implement autonomous capabilities of solving tasks necessary for application

scenario described in chapter 1.2, an additional embedded system needed to be installed on

board UAS.

Two embedded systems were considered for PilotControl module: “Gumstix Overo”

with “Pinto-TH” expansion board and “Raspberry Pi”. The comparisson of the two embed-

ded system can be seen on Table [6]. Other parameters were not considered, because both

systems had enough computing power and necessary input and output ports.

Gumstix Overo on Pinto-TH Raspberry Pi

Size (L × W × H) 76,2mm × 23.0mm × 9.0 mm 85.60mm × 56.0mm × 21.2 mm

Weight 12.2g 45g

Price 200 € 30 €

Power ratings 400mA (2,0W) 700mA (3,5W)

Table 6: Gumstix Overo on Pinto-TH expansion board vs Raspberry Pi

The first choice was Gumstix embedded system as its size, weight and maximum power

consumption are considerably smaller than Raspberry Pi. But the Raspberry Pi price is

lower, which is important when using it on a developmental aircraft; and more importantly

- the software support of Raspberry Pi operating system is considerably better. Another as-

pect in the consideration was also available UAS payload size, which was 200g and both

embedded systems fit well into it, so for those reasons the Raspberry Pi embedded system

was chosen.

Raspberry Pi is a small single-board computer, see Figure [14], developed for educa-

tional purposes.

32

.

Some selected specifications relevant for PilotControl module:

• Broadcom BCM2835 System on a Chip (SoC)

• ARM1176JZF-S 700Mhz processor

• 512MB RAM

• Raspbian GNU/Linux 7 (wheezy)

• SD-Card for booting and persistent storage

• 2 USB ports

• 10/100 Ethernet controller

• 1 UART serial port (with 3,3V logic levels)

In the UAS configuration the Ethernet connection is used for debugging, first USB port

is for 3G modem and serial port (among General Purpose Input Output (GPIO) ports) is

connected to autopilot serial port.

3.2.8 Modem

The requirements for UAS communication capability with components of a tactical SoS

are derived from the necessity to send high quality images to the subscribing UGS and to

do it within the time constrains allocated for UAS task. The duration of the UAS task may

be constrained by other tasks, UAS flight time, the communications availability etc., but it

is highly preferred to keep the image upload times as short as possible. Each image is a

JPEG file with approximate size of 3-5MB.

Thus in summary the following considerations are relevant:

33

Figure 14: Raspberry Pi [34]

.

• High data rate and long distance is required

• Sub GHz modems provide data rate around 200Kbps

• WiFi modems have ranges up to 100m.

As a result a COTS 3G modem is used for communication. It is both easy to implement

and affordable. A Huawei E3131 which supports 3G and 3.5G (HSUPA, HSDPA), with

speeds from 5.76Mbps up to 21.6Mbps is chosen. (In case of 3G or 3.5G is not available

the 3G modem is expected to fall back to supported modes of GPRS or EDGE.)

34

.

3.3 Description of software implemented for UAS

This chapter gives an overview of the requirements and software components that were im-

plemented. The vehicle based software (autopilot) itself has been left unchanged, only mis-

sion related software has been specified and developed.

3.3.1 The requirements for the software

The requirements for the software are derived from the mission scenario that UAS needs to

perform as a component in SoS. The typical mission scenario is described in Figure [15].

After UAS has completed the initialization mode, it can be switched to full automatic

mode and launched from hand. UAS then starts loitering above its initialization position

called HOME. When UAS receives a subscription for an image capturing mission and if

battery voltage has not dropped below pre-set threshold the UAS will proceed with the

mission. If UAS receives more subscriptions, they will be handled by order of priority and

order of arrival. When UAS has no more missions or decides that it is unable to complete

more missions due to the low battery power (or weather conditions - UAS speed over

ground depends on wind) it will return to HOME position and land.

35

Figure 15: UAS mission scenario

.

In order to fill its role in SoS, the UAS must be able to:

1. receive a subscription for new target position (includes requirement for communic-

ation with other components in SoS),

2. plan a new mission according to a given target GPS position,

3. follow a pre-planned mission,

4. capture images on indicated positions,

5. upload images to the subscribing component.

These five capabilities that UAS must be capable to perform are also the high level require-

ments that are pursed in following paragraphs. The autonomous landing capability is out of

context of current thesis.

3.3.2 UAS software architecture for the high level control module

The software architecture for the high level hierarchical structural design is used as depic-

ted in Figure [16].

On the lowest level the autopilot manages the UAS stabilization and waypoint naviga-

tion. The second level in hierarchy is Mission Control, which according to the input from

level above generates a mission plan and also handles the camera control during the mis-

sion. On the same level with the Mission Control a Communication Management logic is

implemented. The Communications Management handles all the communication with both

other members of the SoS and also relays the navigational telemetry between the internal

components. The overall high level UAS control is managed by Pilot Control layer. It exer-

cises the overall control of Mission Control and Communications Management layer and

handles the subscriptions received from other members of SoS.

36

Figure 16: UAS software architecture

.

3.3.3 Pilot Control module

The Pilot Control module is a Python program for Raspberry Pi embedded system, written

by Erki Suurjaak, an engineer at ProLab. The author of current thesis provided input on the

requirements and operation logic for the module.

The Pilot Control module handles high level control of internal and external UAS

communication, and mission control. The module creates both a serial connection to auto-

pilot and a network connection to the remote network server, parses the relevant informa-

tion from internal and external communication, keeps the vehicle state variables and acts

accordingly.

The data read from network socket can either be a stream of MAVLink messages from

ground control station or a subscription from UGS. The stream of MAVLink messages is

relayed directly via the serial connection to the autopilot. In case Pilot Control module re-

ceives a subscription over network from a UGS, it will call the relevant software functions

from Mission Control module and produce a new mission plan which then is communic-

ated to autopilot.

The data read from serial connection is a stream of MAVLink messages from autopilot.

It contains the UAS vehicle telemetry and system info, mission related requests and reports

37

Figure 17: Pilot Control module

.

and GPS data. The MAVLink messages are parsed by Pilot Control module and the ob-

tained information is used according to its type. From GPS data the Pilot Control module

extracts current position and memorizes it until it is updated. Mission request and report

messages from autopilot are used by Pilot Control module for controlling the UAS mis-

sion. (starting new mission, aborting the mission, control of camera, etc.). The vehicle tele-

metry and system info contains various information about vehicle attitude, movement (in-

cluding airspeed and heading) and also battery voltage and current.

All data red from serial port is also relayed to the ground control station.

The procedures for generating a mission, uploading a mission and controlling the cam-

era are described more thoroughly below. Finally the Pilot Control module logs everything

to a local file.

3.3.4 The Mission Control module

The software for managing mission planning and execution is implemented as a part of Pi-

lot Control module. Its tasks upon receiving appropriate commands from Pilot Control

module are generating a new mission plan, uploading it to the autopilot, execution of the

plan and managing the camera control. The implementation of this software required thor-

ough understanding of MAVLink protocol subset implemented on board AKPilot.

3.3.4.1 The mission plan generator

The mission plan generator is an independent software component, developed by the author

of the current thesis and is executed by the Pilot Control module. The mission plan gener-

ator takes two arguments as its input. First argument is a set of GPS coordinates of the

UAS current position and the second argument is the position of the target. The mission

plan generator produces a list of MAVLink mission plan items where the first item is a cur-

rent position and the rest are items which will command the UAS to fly over the given tar-

get and to make three images, first before the target, second above the target and third after

the target. The distance between the image coordinates is hard coded constant. The reason

for this is to adjust the overlap of images during the testing period.

It is also possible to generate various different mission plans, i.e. for flying several times

over a given point with different angles, or to cover a given area with constantly spaced

tracks in order to create a large mosaic image covering the whole area, but these options

38

.

are removed from current implementation as they are not needed for the scenario used in

current thesis.

The navigational formulas for calculating distances, angles and new positions in

WGS84 (World Geodetic System 1984) coordinate system make use of spherical geo-

metry.

The final mission plan is composed of a list of mission items. Each mission item is a

command that autopilot must execute. Currently only two types of mission items have been

implemented on AKPilot's software. A waypoint command to navigate to a certain position

according to GPS x, y and z coordinates and a command for camera triggering. The

MAVLink command for waypoints is a “MAV_CMD_NAV_WAYPOINT” and its function

as its name indicates is to navigate to a given waypoint. The MAVLink command for cam-

era triggering is “MAV_CMD_DO_REPEAT_RELAY” and allows to cycle a relay on and

off for a desired number of cycles with the desired period.

Mission plan generator produces currently only one type of a mission plan. A plan which

consists of 6 mission items. An example of a mission is given on Figure [18].

Where arguments have the following meaning:

1. UAS designation (System ID)

2. UAS designation (Component ID, not used)

3. Sequence number

4. The coordinate system of the mission (not used)

5. The scheduled action of the mission (MAVLink_Command_Item)

1. 16 – an ordinary waypoint

2. 182 – relay repeat

6. Is current (boolean variable, if true then indicates that this is the next waypoint)

7. Autocontinue (1 indicates that UAS will autocontinue to the next waypoint)

39

MAVLink_waypoint_message (99,1,0,0,16,0,1,0,0,0,0,59.014099,22.609684,120)

MAVLink_waypoint_message (99,1,1,0,182,0,1,1,1,2,0,0,0,0)

MAVLink_waypoint_message (99,1,2,0,16,0,1,0,0,0,0,59.017963,22.609621,120)

MAVLink_waypoint_message (99,1,30,0,182,0,1,1,1,2,0,0,0,0)

MAVLink_waypoint_message (99,1,4,0,16,0,1,0,0,0,0,59.014664,22.612465,120)

MAVLink_waypoint_message (99,1,5,0,182,0,1,1,1,2,0,0,0,0)

Figure 18: MAVLink mission example

.

8. In case the scheduled action is relay repeat then: Relay number, otherwise not used

9. In case the scheduled action is relay repeat then: Cycle count, otherwise not used

10. In case the scheduled action is relay repeat then: Cycle time (seconds, decimal),

otherwise not used

11. Not used

12. GPS latitude

13. GPS longitude

14. GPS altitude.

In given mission example there are six mission items, 3 waypoints and 3 commands (re-

lay repeat command) to trigger the camera. Simply said, the UAS receives an imaging sub-

scription and decides to proceed to the mission, it will plan a straight line to the target co-

ordinates and then make 3 images, one before the target, one on the target and third after

the target.

3.3.4.2 Uploading a mission plan to AKPilot

Procedure for uploading a mission items to AKPilot is the following:

1. Mission planner sends a mission items count to AKPilot

2. AKPilot requests each mission item

3. Mission planner sends each mission item as a response

4. When AKPilot has received the correct number (mission item count) of mission

items, it will respond by sending a mission acknowledged message.

3.3.4.3 Execution of the mission plan

When a mission plan has been uploaded to autopilot memory, the mission can be executed

by setting the AKPilot mode to “auto mission”. This can be achieved by using the follow-

ing MAVLink message: “MAVLINK_MSG_ID_SET_MODE” with an integer argument

indicating the mode number. Once the UAV is in “auto mission” mode, the UAV starts pro-

cessing the mission items one by one according to the set sequence. In this mode it is also

at any time possible to task the UAV to any waypoint that is contained in the current mis-

sion plan. This can be achieved by using MAVLink message:

“MAVLINK_MSG_ID_WAYPOINT_SET_CURRENT”. This message takes one integer

argument, which is the mission item sequence number. As the AKPilot executes one mis-

40

.

sion item at a time and does not consider the next mission item, the set waypoint current

message commands the autopilot simply to abort currently ongoing task and to start execut-

ing the mission item given by the function argument. There can be a maximum of 255 way-

points in one mission. Setting the argument to any larger value causes AKPilot to abort

mission and to return to HOME position.

3.3.4.4 UAV camera control

The camera triggering functionality is implemented within Mission Control module. While

“PilotControl” software is relaying the AKPilot telemetry and mission related communica-

tion, it can parse out and memorise the mission commands that are designed for camera

control and then AKPilot reports back that a certain mission item has been reached and

next item has been set to “current”, the Mission Control module will take action and com-

mand the camera capturing according to the previously memorised messages, see Figure

[19].

The images will be transferred to the requester of the images automatically right after the

image has been captured.

41

Figure 19: Camera control procedure

.

3.3.5 Internal and external communication

The communication on board the UAS is managed by Pilot Control module (implemented

on Raspberry Pi embedded system) and is divided into two main parts: an internal serial

connection between the autopilot and the Raspberry Pi embedded system, and TCIP/IP

connection using 3G modem to connect the UAS to Net Relay Server, see Fig. 20.

The internal communication uses MAVLink protocol for flight related telemetry inform-

ation. MAVLink protocol is explained in chapter 2.4.

The external communication uses TCP/IP communication protocol in order to exchange

information between UAS, UGS and GCS. There are two main tasks for external commu-

nication. First task is to relay UAS telemetry information to UGS and GCS and the second

task is to receive subscriptions from UGS and send mission results in form of images and

related meta data for validation to the subscribing UGS. It is also the need to send high

definition images that has resulted in a more complex Client-Server communication model

for UAS external communication, as this allows the usage of high bandwidth connection to

communicate captured images back to subscribing UGS reliably.

It must be emphasized that this approach is only required for the design-implementa-

tion-test purposes. For the final solution, which is out of the scope of current thesis, the cli-

ent-server model shall be replaced with a more appropriate communication model designed

specifically for loose collection of systems of systems.

42

Figure 20: Internal and external communication model

4. Testing

4 Testing

Evaluation of the UAS platform was conducted in several stages, starting from tests in

laboratory and finalized by tests with flying UAS in the field, communicating with the

ground sensors.

4.1 Laboratory tests

Before commencing the flight tests it is necessary to test every component separately and

whole system thoroughly on the ground.

4.1.1 Generating a simple plan, uploading it and running the simulation on it.

Test description:

Test was run on regular personal computers running Windows 7 operating system. Dur-

ing the test different positions were given to Mission Planner module as a function argu-

ment in order to validate it.

Lessons learned:

1. The UAS internal communication between autopilot and Pilot Control module is

hidden from the human observer. The groundstation HMI must be updated manu-

ally in order to see the generated mission on groundstation map.

2. In case the communication is cut in the middle of mission upload then only some

mission items are overwritten on AKPilot's memory and the resulting mission may

consist of a mix of new mission waypoints and mission waypoints from previous

mission. The AKPilot itself will not be aware of this and if ordered to execute, it

will proceed with the mission as it is. Only indication of mission upload failure will

be missing acknowledgement from AKPilot. Fixed after software debugging.

4.1.2 Testing the UAS-GCS communication over Net Relay server

Test description:

Net Relay server is run on regular personal computer running on Windows 7 operating

system. Local WiFi network is used for communication medium. The software for UAS is

run on another PC. The goal of the test is to validate the UAS communication with the

HappyKillmore GCS. This is necessary for maintaining the overview of the UAS during

43

4. Testing

the flight tests.

Lessons learned:

1. During the software testing phase the components were run on PC with Windows

operating system. It turned out that most of the programs for creating virtual serial

ports readily downloadable from internet were unreliable. The serial data was buf-

fered by the operating system and represented with a considerable delay. The prob-

lem was solved by switching to Linux operating system “Ubuntu”. Actually as the

final solution must run on Linux operating system anyway, this was a quicker pro-

gression to the testing in final configuration.

2. The most interesting part for this test was to test the interactions between the on-

board mission planning tool and HappyKillmore ground station. The mission plan-

ning tool software had to be updated to ignore the MAVLink packets sent by ground

station and only listen to the packets with correct id (UAV system id). A better solu-

tion was later designed in Pilot Control module by routing the messages correctly.

In updated software the mission planning tool only sees the messages coming from

autopilot and is not aware of the groundstation. In case several missions is sent

from both the groundstation and on-board mission planning tool, the missions are

loaded to autopilot in order of arrival and the final mission is the one which is ex-

ecuted.

4.1.3 Testing software components on Gumstix and Raspberry Pi embedded
systems

Test description:

Run different simulations using Gumstix and Raspberry Pi (RP) embedded system. In

order to decide which embedded system to choose.

Lessons learned:

It turned out that RP operating system has much better software support and was easier

get systems running. The more problematic hindrances with Gumstix embedded system

were: serial interface support, USB drivers and software libraries for camera control. The

RP embedded system has its own native camera and libraries for controlling it, also 3G

modem was detected over USB without problems.

44

4. Testing

4.1.4 Testing the UAS in full configuration in the laboratory

Test description:

The test is ran in full configuration and in simulation mode. In Figure [21] illustrates

the Raspberry Pi embedded system is installed in the UAS. The Raspberry Pi is powered by

the UAS on board wiring and is connected to the autopilot via serial connections. The

black cable on Figure [21] in upper right corner leads to 3G modem by which the UAS is

connected to the internet.

Running the test scenario in simulation. The positions for subscriptions are simulated by

a normal computer. There are three targets simulated on Figure [22].

45

Figure 22: Generated mission plan downloaded from AKPilot

Figure 21: UAS testing in laboratory

4. Testing

Lessons learned:

During the laboratory testing the uploading speed of images from UAS via the 3G mo-

dem was about 200-400Kb/s. For this reason the size of the captured images was regulated

by limiting the quality of the captured images to 15% of their original captured quality. The

result was that for a 1290x960 pixel and 160kB image it took 3-5 seconds to upload. The

time interval during which the UAS is uploading the images back to the subscriber depends

on local 3G connection speed and in current configuration the telemetry info is not sent

while UAS is uploading images. It must be also mentioned that in final configuration the

telemetry from UAS is not required.

4.2 Flight tests

4.2.1 Testing UAS without payload

Test description:

The purpose of the first flight tests is to validate the UAS capability to fly reliably and

safely before the payload is installed and mission capabilities are tested. During the first

flight tests the AKPilot is constantly measuring the requested attitude of the vehicle against

the actual attitude and adjusting its regulator weight coefficients accordingly. UAS memor-

izes the coefficients every 5 minutes, so UAS has to be in half-autonomous or fully

autonomous mode at least 5 minutes.

4.2.1.1 Lessons learned (10.05.2014; 16.05.2014; 18.05.2014):

During the first two flight test UAS behaved so badly that it was decided to not to let it

fly by itself, but was landed already after 2-3 minutes flight in order to inspect the log files.

First suspicion was that ailerons were not fully balanced, after rebalancing ailerons it

turned out that this was not the problem. Another possible cause was found to be the pro-

peller cone which caused vibration. From log files it was also discovered that GPS per-

formance was getting worse when UAS tilted close to 60°. Thus for the third flight test the

propeller cone was removed and allowable tilt was changed to 45°. After those changes the

UAS started to behave better and the test was successful. This is the first UAS the Ublox

NEO-6M GPS Module was used on. Further testing will show how GPS signal will behave

under different conditions. It may well be that this model GPS is not usable for on-board

UAS.

46

4. Testing

4.2.2 Testing UAS with payload

Test description:

The purpose of the test is to validate the chosen external communication model and the

communication speed while UAS is flying. The Raspberry Pi (RP) is connected to the in-

ternet with the 3G modem and serial cable to the autopilot is disconnected. The goal is that

after booting the RP, a start up script will create the connection to the internet and create a

dedicated ssh tunnel that will enable the creation of the (Secure Shell) SSH connection

from laptop computer during the field to test.

4.2.2.1 Lessons learned (23.05.2014):

A permanent connection was created and it was possible to send the camera commands

to the RP during whole flight. A captured image from 100m hight with UAS camera can be

seen on Figure [23].

4.2.3 Testing UAS in full mission configuration

Test description:

Test according to the mission application scenario described in chapter 1.2. Sending the

UGS subscription is simulated on a personal computer. Then UAS started loitering around

home position the three subscriptions were sent in succession:

47

Figure 23: Example of UAS camera quality from 100m hight

4. Testing

1. Target 1 (GPS: 59.428494° N – 24.581936° E)

2. Target 2 (GPS: 59.428753° N – 24.585783° E)

3. Target 3 (GPS: 59.428753° N – 24.585783° E)

The UAS had to plan the mission for each of the targets, execute the missions and send

images back to the subscriber. (A mission contains 3 imaging positions with 50m spacing.)

4.2.3.1 Lessons learned (30.05.2014):

1. At first just before the launch it turned out that UAS was in simulation mode, this

had never happened before on the field. It was noticed that ailerons were not react-

ing as they should and then HappyKillmore GS was checked it showed that UAS

was already circling above us. Which it in reality of course was not. This was a

software bug, the PilotControl module sent simulation command each time it star-

ted up, this had worked fine in the laboratory tests.

2. After the software had been fixed, the UAS was launched without any further

trouble. It started the loitering pattern above, waiting for the subscriptions. The sim-

ulated subscriptions were sent and the UAS proceeded with the missions. The result

is illustrated on Figure [24]. On the figure it can be seen that the UAS generated

each mission for the next target in regard (the approach course chosen) to the last

target, not to the last waypoint. This must be fixed in order to avoid the excessive

loops then targets are very close to each other.

48

Figure 24: The first testing of the application scenario

4. Testing

1. Due to yet unresolved software or rather communication problems the images

for the first target were lost.

2. For the target 2 all three images were sent back to the subscriber but two first

images did not capture the target due to the large UAS tilt. The third image was

successful. See Figure [25].

3. For the third target the first and the third images did not capture the target as the

UAS tilt was too large. The second image, however did capture the target area,

see Figure [26].

49

Figure 25: Target 2, image 3

Figure 26: Target 3, image 2

4. Testing

In conclusion for the first test of the application scenario it can be said that a lot was

learned. The UAS is able to receive subscriptions and is able to plan its missions. But the

communication needs some more testing and also in case the UAS receives more than one

subscription at a time, the mission generation needs improvements.

4.2.3.2 Lessons learned (31.05.2014):

This is the second outdoor testing in full configuration after software fixes. Two flights

and several missions were run in order to test the communication and mission planning.

During the testing a few times the connection to the UAS was lost, but the UAS managed

to re-establish the connection to the internet. The flight trajectory of one of the scenarios

can be seen on figure [27]. The green arrows on the figure indicate the positions were im-

ages were captured and sent back over the 3G connection to the subscriber. During this

scenario the UAS was tasked to send 6 images for each target. It can also be seen the im-

ages before the target and after the target and after the target are captured too far and no

overlap is gained.

The first target was not captured on image due to the UAS is still not allowed to start its

50

Figure 27: Second testing of the application scenario

4. Testing

mission on its own. After the subscription was sent, it was checked that UAS had received

it and generated the mission and the point where UAS was allowed to begin with the mis-

sion by operator on the ground, it was positioned so that it did have time to manoeuvre it-

self to fly over the first target.

The second target (the west corner of the grove) is approached and captured as required,

See Figure [28].

After reaching the third target there was some problems with the communication and

only 3 images instead of 6 were sent back to the subscriber. Although the third image for

target 3 captured it very well. All in all the second outdoor test was much more successful

than the first, a lot more confidence was gained.

One conclusion from the tests so far can be drawn that 1 axis gimbal is definitely

needed, as it can be seen that UAS can even in difficult conditions follow its plan with a

quite a high confidence, but it is often impossible to hold the vehicle tilt needed to capture

the targets required.

51

Figure 28: Target 2 image 1

5. Conclusion

5 Conclusion

The thesis started by exploring the background for creating an autonomous UAS and integ-

rating it as a component in an ISR SoS. Thesis investigated what can be considered as an

UAS, what is the state of current legislation relevant for UAV and UAS, what is an SoS

and how autonomy is measured in contemporary UAS. The contemporary UAS are mostly

remotely operated, not autonomous and are not used as autonomous components in larger

systems in a way described in current thesis. The current thesis shows that it is feasible to

do so.

It is clear that an ISR SoS described in the application scenario of the case study bene-

fits greatly from having a UAS as a component. The autonomous UAS developed within

the scope of the thesis features all the necessary characteristics identified in the first half of

the current thesis. The UAS - UGS collaboration model is based on choice and loose con-

nectivity, fitting well under the SoS characteristics of belonging and connectivity. The re-

quirement for diversity is also satisfied by comparing the UAS to any of the UGS nodes,

they are very different both by design, behaviour and services they can provide. Quite

likely the newly created SoS will feature emergent behaviour, but this is subject to further

studies.

The author concludes that the most important characteristic for a system to be intro-

duced into an existing SoS is autonomy. The UAS has its constraints, but as long as the

conditions allow it to operate, it will be able to do so as a component in a System of Sys-

tems.

The thesis also gives an overview of hardware of the existing UAV system and what was

needed to be added or replaced. Within the scope of the thesis a new UAV airframe was de-

veloped and implemented, hardware was selected, software designed and implemented.

The resulting UAS is able to communicate with the ground sensors systems, get data re-

quests, plan the missions, take pictures and send them back to the subscriber.

The UAV taken as a basis for building an autonomous UAS was custom built separately

of current thesis. The author provided input in design aspects regarding the new computing

system that had to be added and payload, and helped with minor details. The development

tracks of the UAS were conducted concurrently, the construction of the new airframe for

the UAS and authors work on the hardware design and requirements engineering for the

52

5. Conclusion

UAS. The requirements of the UAS were derived from the application scenario described

in chapter 1.2 and were in short following:

1. UAS must be able to receive data subscriptions from UGS,

2. UAS must be able to plan its mission,

3. UAS must be able to execute its missions,

4. UAS must be able to send images back to the subscriber.

 Also a single axis gimbal for controlling the angle of the payload was planned for the

UAS and initial design was completed, but due to the time constraints this functionality

was not implemented within the context of this thesis.

The software (written in the Python programming language) was initially developed and

tested on a desktop computer and then moved to the embedded platform. The set-up of the

environment for the testing and setting up the ports/interfaces for the data communication

was an especially challenging task within the development cycle.

The challenges encountered in the final outdoor tests showed what could have been

predicted: such a system is greatly affected by the physical environment and most of these

aspects cannot be easily simulated or predicted in a laboratory environment. For example

then the UAS is loitering above the starting position or executing its mission it actually

flies very fast (the average speed is 80-90km/h), which may have an impact on the 3G mo-

dem communication. UAS also makes random turns while it is loitering (disappearing

sometimes for several seconds behind the tree line) which makes it hard to follow and,

while it is just a psychological effect - makes the observer think “is it still coming back”

and adds to the already tense atmosphere of the testing. The outdoor testing sessions are

also challenging as they lack the comfortable environment of the laboratory – the tools and

the equipment.

The completion of the thesis is just the start for the following work – additional field

tests with the UAS platform are needed to gain increase confidence in the platform and to

develop the system further. Live tests with operational smart network of ground sensor sys-

tems can be started once the ground sensor systems are able to offer all the required func-

tionality (i.e. classification and tracking of mobile objects of interest). There are also sev-

eral plans for upgrades of the UAS, the 1 axis gimbal is to be added, the mission planning

decision process needs improving so that UAS can work with several ground based ISR

systems simultaneously.

53

5. Conclusion

The UAS solution created within the scope of the thesis can be effectively used for a

perimeter control in an environment of asymmetric threat in collaboration with UGS. The

UGS detect and classify the threat and the UAS provides visual information in order to im-

prove the situational awareness. The developed solution can be also applied in the context

of Estonian national defence.

Resümee

Magistritöö sissejuhatuse käigus selgitatakse eesmärke ja soovitud tulemust näidisstsenaa-

riumi näol. Nimelt on tänapäevase sõjapidamise üks suurimaid väljakutseid asümmeetrilise

ohu vähendamine. Käesoleva töö kontekstis loodud lahendus, mis kombineerib ja täiendab

olemasolevaid süsteeme, on kasutatav selle väljakutse lahendamiseks. Käesolev töö seob

mehitamata autonoomse lennuki autonoomsete maapealsete sensorsüsteemide süsteemiga.

Magistritöö toob ülevaate kirjeldatud ülesande lahendamisega seotud mõistetest ning

tehnoloogiatest. Üks tähtis eristamine on vahe UAV ja UAS vahel. UAV on motoriseeritud,

juhitud, mehitamata õhu-sõiduk, UAS on keerukam ja autonoomne õhusõiduk, mida võib

pidada omaette süsteemiks. Antud töös on UAS lennuk, mis on võimeline autonoomselt

lendama ning oma tegevust planeerima vastavalt süsteemist saabuvatele andmete soovile.

Töös tuuakse ka lühike ülevaade mehitamata lennukite käitamise regulatsioonist, mis on

hetkel kehtestamisel Eesti seadusandluses. Mehitamata sõidukitele kategooriate ja reeglite

seadmine on ennekõike ohutuse tagamiseks. Näiteks kõige madalama kategooria mehi-

tamata lennukiga, milleks on lennuk stardimassiga alla 5 kg, tohiks lennata 1km sõõri sees

ja maksimaalselt 150m kõrgusel, mis on allpool regulaarse õhuliikluse jaoks kehtestatud

piire. Lennates sellest välja või või raskema stardimassiga kehtivad lennukile juba hoopis

rangemad reeglid. Teisalt on käesoleva töö eesmärk loodud süsteemi kasutus militaarvald-

konnas. Militaarmaailmas pole mehitamata õhu-sõidukeid juriidilise külje pealt vaja nii

rangelt reguleerida, kuna militaarvaldkonnas on vastutus juba tagatud süsteemi organi-

satsioonilisest ülesehitusest tulenevalt. Samuti on militaarvaldkonnas süsteemide testimise

ning kasutamise harjutamiseks katsepolügoonid kus tavainimesi ei ohustata. Veel toob

autor välja olulise nüansi täiesti autonoomsete relvasüsteemide loomise valdkonnast.

Nimelt vastutab relvasüsteeme loov iga riik ise selle eest, et süsteemid vastaksid rahvusva-

54

. Resümee

helistele nõuetele.

Töö annab ülevaate ka NATOs kehtivates UAV-de kommunikatsiooni standarditest.

NATO standardite eesmärk on reguleerida protseduuride ja erinevat tehnika standardisee-

rimist üle kogu NATO riikide, selleks et tagada parem sõjaline ja administratiivne koostöö

riikide vahel.

Kuna lõputöö peamine eesmärk on integreerida mehitamata lennuk Süsteemide Süs-

teemi, siis annab töö ka ülevaate sellest, mis on Süsteemide Süsteem, autonoomsus ja kui-

das mõõdetakse autonoomsust mehitamata sõidukitel, eesmärgiga teada saada mida on sel-

leks vaja, et olemasoleva Süsteemide Süsteemiga liita veel üks olemasolev süsteem. Vaada-

takse ka Süsteemide Süsteemide loomisega seotud aspekte.

Süsteemide Süsteem on süsteem, mis on suhteliselt suur ja keerukas süsteem, mille

komponendid on eelnevalt olemasolevad ning mis on üldiselt füüsiliselt hajutatud ning dü-

naamiliselt arenev.

Töö teises pooles kirjeldatakse põhjalikult kuidas ja millised täiendused oli vaja viia

sisse selleks, et töös kasutatud mehitamata lennuk muuta autonoomseks Süsteemide Süs-

teemi osaks. Alustades nõuetest luuakse UAS arhitektuurne disain ning valitakse selle rea-

liseerimiseks vajalikud riistvaralised ning tarkvaralised komponendid, selgitatakse riist-

varalisi valikud ja uuendusi, seejärel antakse ülevaade lisatud sardsüsteemi tarkvarast ning

lõpuks kirjeldatakse läbiviidud teste. Riistvara kirjelduse juures tuuakse välja kirjeldus

kõigi lennuki riistvaraliste komponentide kohta. Uued lisatud komponendid on: sardsüs-

teem (Raspberry Pi), 3G modem ning sardsüsteemi poolt täpselt juhitav kaamera. Sardsüs-

teemiks valiti Raspberry Pi, kuna see on mõistliku hinnaga (võrreldes teiste sarnaste plat-

vormidega) ning ning lisaks on Raspberry Pi tarkvaraline toetus parem kui teistel sarnastel

platvormidel.

Nõuded tarkvara jaoks identifitseeriti lähtudes stsenaariumist tuletatud alam-üles-

annetest, mis on järgmised:

• tellimuste vastuvõtmine maapeal asuvatelt sensorsüsteemidelt,

• missiooni planeerimine vastavalt tellimustele,

• missiooni laadimine autopilooti,

• kaamera juhtimine vastavalt missiooni käigule,

• ning piltide saatmine tellijale.

Tarkvara üldstruktuur on disainitud Proaktiivtehnoloogiate laboratooriumi inseneri Erki

55

. Resümee

Suurjaak poolt. Töö autor analüüsis kuidas toimub maajaama ning autopiloodi vaheline

kommunikatsioon võimaldamaks missioonide laadimist autopilooti UAS-l paiknevast sard-

arvutist. Lähtuvalt kogutud infost lõi autor missiooni genereerimise tarkvara ning

missiooni autopilooti laadimise mooduli, samuti visuaalse sensori käivituse funktsionaal-

suse. Autor koordineeris ja viis läbi UAS platvormi integratsiooniteste mille osaks oli muu-

hulgas tarkvaramoodulite testimine ning tarkvara silumine erinevates konfiguratsioonides.

Käesoleva magistritöö valmimine on ainult edasise töö algus. Jätkata on vaja nii

välitestidega, et jätkuvalt suurendada usaldust UAS vastu, kui ka seda edasi arendada. Kui

sensorsüsteemide arendus jõuab nii kaugele, et sensorsüsteemid on võimelised pakkuma

vajaminevat funktsionaalsust (huvipakkuvate mobiilsete objektide klassifitseerimine ning

jälgimine) saab ka hakata läbi viima UAS väliteste koos sensorvõrgustiku süsteemiga. Ka

UAS-i edasiarenduseks on rida plaane, näiteks on plaanis lisada UAS-le 1 teljeline

kaamera stabiliseerija, samuti missiooni planeerimise otsustusprotsess vajab edasiarendust

et UAS suudaks koos töötada mitme maapeal asuva ISR süsteemiga koos samaaegselt.

Lõppkokkuvõttes võib öelda, et käesoleva töö käigus loodud UAS lahendus on kindlasti

kasutatav koostöös maapeal asuvate sensorsüsteemidega perimeetri kontrolli tarbeks asüm-

meetrilise ohu keskkonnas. Maapeal asuvad sensorid tuvastavad ohu, klassifitseerivad selle

ning UAS annab visuaalse ülevaate situatsiooniteadlikkuse suurendamiseks. Välja töötatud

lahendust saab kasutada ka Eesti riigikaitse kontekstis.

56

Appendix I: Implemented MAVLink messages in Pilot Control software

MAVLink_attitude_message Contains vehicle tilt, yaw and pitch.

MAVLink_gps_raw_message Contains raw GPS information.

MAVLink_heartbeat_message Periodic message to indicate originator availability.

MAVLink_set_mode_message Sets vehicle mode (autonomous, manual, etc.).

MAVLink_sys_status_message Sensors status message.

MAVLink_vfr_hud_message Contains information of heading, speed, altitude, etc.

MAVLink_waypoint_ack_message Acknowledge sent by UAS then mission has been
received correctly.

MAVLink_waypoint_count_message Sends waypoint count N, receiver starts requesting
for N waypoints.

MAVLink_waypoint_current_message Sets currently followed waypoint if originator is GCS
or informs about that vehicle has set new waypoint
as target if originator is UAS.

MAVLink_waypoint_message Contains waypoint data.

MAVLink_waypoint_reached_message Informs that waypoint is reached.

MAVLink_waypoint_request_message Used for requesting next waypoint in list when
uploading mission.

57

References

[1] J. Preden, L. Mõtus, J. Linas, R. Pahtma, R. Savimaa, M. Meriste, S. Astapov, „Improvised Explosive Devices in
Asymmetric Conflicts“, „Multisource Data Fusion for Providing Situational Information“.

[2] Norman S. Sakamoto, UAV development and history at Northrop Grumman Corporation Ryan Aeronautical Center,
URL: http://www.nps.edu/Academics/Institutes/Meyer/docs/August%2026%202004%20History%20of
%20UAVs.pdf [accessed 30.04.2014]. p. 2.

[3] MEHITAMATA ÕHUSÕIDUKITE TSIVIILOTSTARVEL KÄITAMIE EESTI ÕHURUUMIS, Eelnõu kavand.
URL: http://www.infopank.ee/UAS_reeglistik_2013_02_14.docx [accessed 29.05.2014].

[4] Proposals for change in [3]. URL: http://www.infopank.ee/Ettepanekud_eelnou_kavandisse_ver1.2.1.docx
[accessed 29.05.2014].

[5] Richard M. O’Meara, Intersection: "The Rules of War and the Use of Unarmed, Remotely Operated, and
Autonomous Robotics Systems, Platforms and Weapons…Some Cautions". URL: http://robots.law.miami.edu/wp-
content/uploads/2012/01/Omeara-INTERSECTION.pdf [accessed 26.05.2014], p. 9.

[6] Protocol Additional to the Geneva Conventions of 12 August 1949, and relating to the Protection of Victims of
International Armed Conflicts, 8 June 1977 Article 36 of 1977.

[7] Wikipedia. STANAG – Wikipedia, the free encyclopedia, 2014. URL: http://en.wikipedia.org/wiki/STANAG
[accessed 24.04.14]

[8] T. Bandzul, STANAG 4586 –Enabling Interoperability URL:
http://www.thesciencedude.com/projects/RESEARCH/MASSystem/References/Bandzul.pdf [Accessed
26.05.2014], p. 42.

[9] STANAG 4586 (EDITION 3) – STANDARD INTERFACES OF UAV CONTROL SYSTEM (UCS) FOR NATU
UAV INTEROPERABILITY, URL: http://nsa.nato.int/nsa/zPublic/stanags/current/4586eed03.pdf [accessed
25.05.2014], p. VIII.

[10] AEDP-2 (Edition 1) – NATO Intelligence, Surveillance, and Reconnaissance (ISR) Interoperability Architecture
(NIIA), Volume 1: Architecture Description. URL:
http://www.nato.int/structur/ac/224/standard/AEDP2/AEDP2_Documents/AEDP-02v1.pdf [accessed 25.05.2014],
p. 14.

[11] Wikipedia. MAVLink – Wikipedia, the free encyclopedia, 2014. URL: http://en.wikipedia.org/wiki/MAVLink
[accessed 21.02.2014].

[12] QgroundControl. MAVLink packet structure. URL: http://qgroundcontrol.org/mavlink/start [accessed 24.05.2014].
[13] H. Huang, Autonomy Levels for Unmanned Systems. URL: http://www.nist.gov/el/isd/ks/upload/ALFUS-BG.pdf

[accessed 21.03.2014], p. 6.
[14] H. Huang, Toward a Generic Model for Autonomy Levels for Unmanned Systems (ALFUS), URL:

http://www.dtic.mil/dtic/tr/fulltext/u2/a515323.pdf [accessed 21.03.2014], p. 4.
[15] W. C. Marra, S. K. McNeil, “Understanding “The Loop”: Humans and the Next Drone Generations”, Issues in

Governance Studies, August 2012.
[16] Endsley, M. R. Designing for Situation Awareness in Complex Systems, URL: http://209.238.175.8/Papers/pdf/SA

%20design.pdf [accessed 03.03.2014], p. 4.
[17] Preden, J. Situation Awareness for Networked Systems –IEEE First International Multi-Disciplinary Conference

on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), Miami Beach, Florida, February
22-24 2011, 2011, 125. [Onlne] IEEE Xplore (30.04.2014), p. 125.

[18] Raja Parasuraman, Thomas B. Sheridan, “A Model for Types and Levels of Human Interaction with Automation”,
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS – PART A: SYSTEMS AND HUMANS,
VOL 30, NO 3, MAY 2000, p. 18.

[19] Wikipedia. OODA – Wikipedia, the free encyclopedia URL: http://en.wikipedia.org/wiki/OODA_loop [accessed
25.04.2014].

[20] E. Sholes, “Evolution of a UAV Autonomy Classification Taxonomy”, Aerospace converence, 2007, IEEE, page 1
and p. 3.

[21] AUTONOMY LEVELS FOR UNMANNED SYSTEMS (ALFUS) FRAMEWORK, (Dec. 2007). URL:
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=823618 [accessed at 06.04.2014], p. 9.

[22] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A Cyber-Physical Systems Approach,
LeeSeshia.org, 2011, p. 1-5.

[23] Steven Eppinger, "A systems engineering view of boeings 787 dreamliner", URL: http://mitsloanexperts.mit.edu/a-
systems-engineering-view-of-boeings-787-dreamliner-steve-eppinger/ [accessed 18.03.2014].

[24] Stan Franklin and Art Graesser (1996); Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents;
Proceedings of the Third International Workshop on Agent Theories, Architectures, and Languages, Springer-Ver-
lag, 1996

[25] J. Boardman and B. Sauser "System of systems—The meaning of of", Proc. IEEE/SMC Int. Conf. Syst. Syst. Eng.,
pp.118 -123 2006

[26] W. N. Felder “Interactions Among Components in Complex Systems”, Stevens Institute of Technology, Hoboken,

NJ 07030, p. 3.
[27] Robert Valdes, “How the Predator UAV Works”, HOW STUFF WORKS (Apr. 1, 2004), URL:

http://science.howstuffworks.com/predator.htm [accessed 5.04.2014].
[28] Bry, A. Massachusetts Inst. of Technol., Cambridge, MA, USA, State estimation for aggressive flight in GPS-

denied environments using onboard sensing.
[29] A. Xu and G. Dudek: A Vision-Based Boundary Following Framework for Aerial Vehicles, in Proceedings of the

2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '10), p. 81--86, Taipei, Taiwan,
October 2010. http://www.cim.mcgill.ca/~anqixu/.

[30] Joint Publication JP 1-02, Department of Defence Dictionary of Military and Associated Terms, URL:
http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf [accessed 26.05.2014], p. 73.

[31] HappyKillmore Ground Control Station. URL: http://code.google.com/p/happykillmore-gcs/ [accessed
26.05.2014].

[32] J. Preden, L. Mõtus, J. Linas, R. Pahtma, R. Savimaa, M. Meriste, S. Astapov, Improvised Explosive Devices in
Asymetric Conflicts, Multisource Data Fusion for Providing Situational Information, (2014).

[33] OmniVision OV5647 image sensor. URL: http://www.ovt.com/products/sensor.php?id=66 [accessed 04.06.2014].
[34] Raspberry Pi, Model B, URL: http://www.pcmag.com/article2/0,2817,2407058,00.asp [accessed 04.06.2014].

	References
	1 Introduction
	1.1 Objective of the thesis
	1.2 Description of the application scenario
	1.3 Outline of the thesis

	2 Background for creating an autonomous UAS
	2.1 Definition of Autonomous Unmanned Aerial System (UAS)
	2.2 Legal issues applicable to control of autonomous UAS
	2.3 Brief overview of NATO STANAG on UAV control
	2.4 Description of the MAVLink protocol
	2.5 Aspects of Systems of systems
	2.5.1 Definition of autonomy
	2.5.2 Taxonomy of autonomy
	2.5.3 Context of measuring the autonomy
	2.5.4 System of Systems definition
	2.5.4.1 Components of SoS as autonomous and communicative agents

	2.5.5 Characteristics of Systems of Systems
	2.5.5.1 Autonomy
	2.5.5.2 Belonging
	2.5.5.3 Connectivity
	2.5.5.4 Diversity
	2.5.5.5 Emergence

	2.5.6 Autonomous control on contemporary UAS

	2.6 Data association
	2.6.1 Detection and classification
	2.6.2 Aided classification and situation identification

	3 Creating an autonomous UAS
	3.1 Components of the SoS in the Application Scenario
	3.1.1 Net Relay Server
	3.1.2 Ground control station
	3.1.3 The UGS network
	3.1.4 UAS platform for ISR SoS

	3.2 Description of the UAS on-board components
	3.2.1 Fuselage
	3.2.2 Servos and motors
	3.2.3 Batteries
	3.2.4 On-board remote control receiver
	3.2.5 Payload
	3.2.6 Autopilot
	3.2.6.1 AKPilot IO ports
	3.2.6.2 The different states of AKPilot

	3.2.7 Embedded system for UAS autonomous control
	3.2.8 Modem

	3.3 Description of software implemented for UAS
	3.3.1 The requirements for the software
	3.3.2 UAS software architecture for the high level control module
	3.3.3 Pilot Control module
	3.3.4 The Mission Control module
	3.3.4.1 The mission plan generator
	3.3.4.2 Uploading a mission plan to AKPilot
	3.3.4.3 Execution of the mission plan
	3.3.4.4 UAV camera control

	3.3.5 Internal and external communication

	4 Testing
	4.1 Laboratory tests
	4.1.1 Generating a simple plan, uploading it and running the simulation on it.
	4.1.2 Testing the UAS-GCS communication over Net Relay server
	4.1.3 Testing software components on Gumstix and Raspberry Pi embedded systems
	4.1.4 Testing the UAS in full configuration in the laboratory

	4.2 Flight tests
	4.2.1 Testing UAS without payload
	4.2.1.1 Lessons learned (10.05.2014; 16.05.2014; 18.05.2014):

	4.2.2 Testing UAS with payload
	4.2.2.1 Lessons learned (23.05.2014):

	4.2.3 Testing UAS in full mission configuration
	4.2.3.1 Lessons learned (30.05.2014):
	4.2.3.2 Lessons learned (31.05.2014):

	5 Conclusion
	Resümee

