
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Toyib Olamide Ahmed 177782IVSB

Open-Source Penetration Testing Tool For
Beginners

Bachelor's thesis

Supervisor: Kaido Kikkas

 Ph.D

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Toyib Olamide Ahmed 177782IVSB

Avatud lähtekoodiga läbistustestimisvahend
algajaile

bakalaureusetöö

Juhendaja: Kaido Kikkas

 Tehnikateaduste
doktor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Toyib Olamide Ahmed

29.04.2020

4

Abstract

The objective of this thesis is to create an application that’s free for anyone to test the

vulnerability in their web server and open to anyone willing to improve usage or

download the application. This solution will help small businesses that can’t afford to pay

a professional for the evaluation of their system.

The result of this work is a full-stack web application, where user can input and submit

their domain name and email via user interface and get their system tested with the basic

phases of penetration testing. The result will then be forwarded to their respective email

on the completion of the test. Back-end is written using Node.js while front-end is

implemented with React.js.

This thesis is written in English and is 45 pages long, including 5 chapters, 17 figures and

1 table.

 5

Annotatsioon

Avatud lähtekoodiga läbistustestimisvahend algajaile

Küberturbetehnika bakalaureuse programm.

Lõputöö eesmärk on luua tasuta äpp, mida võib kasutada igaüks, kes soovib oma

veebiserveri haavatavust testida, lisaks on äpi kood avatud kõigile, kes soovivad selle

kasutusmugavust parandada või isiklikuks kasutuseks alla laadida. See veebilahendus

võiks aidata väikeettevõtteid, kellel puudub rahaline ressurss, et palgata professionaal

oma süsteemi hindama.

Käesoleva lõputöö tulemuseks on full-stack veebiäpp, kuhu kasutaja sisestab

kasutajaliidese kaudu domeeninime ja emaili, seejärel testitakse süsteemi

läbistustestimise algtasemel. Testi lõppedes saadetakse tulemus sisestatud emailile.

Backend‘i kirjutamiseks oli kasutuses Node.js ja frontend‘i jaoks React.js.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 45 leheküljel, 5 peatükki, 17

joonist ja 1 tabelit.

 6

List of abbreviations and terms

AJAX : Asynchronous JavaScript and XML .. 20
API : Application Programming Interface .. 20
DOM : Domain Object Model .. 21
GUI : Graphical User Interface ... 21
HTML : HyperText Markup Language ... 22
HTTP : HyperText Transfer Protocol ... 22
IP address : Internet Protocol address ... 23
JSON : Java Script Object Notation .. 23
SPA : Single Page Application ... 19
UI : User Interface ... 20
URL : Uniform Resource Locator ... 27

 7

Table of Contents
1 Introduction .. 11

1.1 Problem statement .. 11

1.2 Goals of the Thesis .. 12
1.3 Structure of the Thesis .. 12

2 Background .. 14
2.1 Main concepts of penetration testing ... 14

2.2 The penetration testing process ... 15
2.2.1 Commencement .. 15
2.2.2 Planning .. 15
2.2.3 Testing .. 15
2.2.4 Reporting .. 17

2.3 Tools for penetration testing .. 18
2.3.1 Metasploit Framework ... 18
2.3.2 Nmap .. 18
2.3.3 Wireshark ... 19
2.3.4 Burp Suite ... 19

2.4 Related Work ... 20
2.4.1 Penetration Testing of Web Applications in a Bug Bounty Program 20
2.4.2 Penetration Testing on Domain Name Service .. 20
2.4.3 Summary of related work ... 20

3 Methodology .. 22

3.1 Single Page Application (SPA) ... 22
3.2 Model-View-Controller (MVC) ... 23

3.3 Model – View – View-Model (MVVM) ... 24
3.4 Frontend with React.js .. 24

3.4.1 Additional used libraries .. 25
3.5 Backend with Node.js .. 25

3.5.1 Additional used modules .. 26
3.6 Database with MongoDB .. 26

3.7 Heroku Cloud Application Platform ... 27
4 Implementation .. 28

4.1 Service architecture ... 28
4.2 Server-side ... 29

4.2.1 API ... 29
4.2.2 Model for database ... 31
4.2.3 Creating new test .. 31
4.2.4 Running test and sending result ... 32
4.2.5 File structure ... 34

4.3 Client-side .. 35
4.3.1 Structure ... 35

 8

4.3.2 Components .. 35
4.3.3 User Interface ... 38
4.3.4 File structure ... 39

4.4 Future development .. 40
5 Summary .. 42

6 References .. 43

 9

List of figures

Figure 1 Traditional page and SPA lifecycles ... 22

Figure 2 The MVC Pattern .. 23

Figure 3 The MVVM pattern .. 24

Figure 4 The MVVM pattern with React.js .. 25

Figure 5 Client-Server Architecture of the Service ... 28

Figure 6 The package.json file .. 29

Figure 7 API routes from server .. 30

Figure 8 Database model ... 31

Figure 9 Create test controller ... 32

Figure 10 Server project structure ... 34

Figure 11 Client-side structure .. 35

Figure 12 App.js component ... 36

Figure 13 Search.js component ... 37

Figure 14 Service.js component .. 38

Figure 15 Web application homepage ... 39

Figure 16 Error Messages when fields are left empty ... 39

Figure 17 Successful message on test completion .. 39

 10

List of tables

Table 1 API endpoints ... 30

 11

1 Introduction

This thesis is focusing on penetration testing and building a simple penetration tool for

beginners. A penetration test is a procedure that is used to assess the security of a

computer system by acting as an attacker who’s trying to gain access into the system. The

result of the test always shows if the system is vulnerable to an attack or not. This thesis

will focus on building an application to implement network-based penetration testing, as

it is one of the most common types of penetration testing. The main reason for choosing

network-based penetration testing is because the testing that will be performed in the app

involves several repetitive tasks that can be performed remotely via a network connection,

so for this reason it is necessary to automate them.

The purpose of penetration testing automation is to reduce the costs in terms of and people

needed to perform the test. However, there are also some disadvantages of penetration

testing automation like the generation of false positives, limited pivoting, less analysis of

sensitive data and stability issues.

1.1 Problem statement

There is already a number of tools that can be used to perform web automated penetration

testing and some of these tools will be described in section 2.4. These tools perform well

and minimize the amount of work needed to perform a penetration test, but these user-

friendly web tools are often monetized and usually give little to no information if you are

not paying to use the tool. An undeniable question is “Why are there not enough open-

source web penetration testing tools for beginners?”. The answer is most companies or

institutions behind these web applications are doing it solely for the purpose of

monetizing them.

Exploiting is a vulnerability that can often cause a system or service to crash or fail to

perform its legitimate purpose. This makes penetration testing a difficult practice since

the tests are usually performed in a production environment. The stability and integrity

of the target system are very important in almost every situation and one cannot simply

accept that the tools may cause the system to stop operating. Therefore, penetration testers

mostly prefer manual testing so that the tester has all control of the testing process and

can maintain and assure that only safe techniques are used.

 12

1.2 Goals of the Thesis

The main goal of this thesis is to build a web application that’s completely open-source

and suitable for non-tech personnel to use in order to check the security flaws of a domain

or a system.

This new tool will evaluate systems with a non-aggressive approach and should be

suitable to use in production environment, should automate everything that can be done

safely without risk of service interruption. The new tool will only focus on implementing

the first three steps of penetration testing which will be explained in section 2.2. The tool

would serve as an initial step in the testing process by eliminating repetitive testing and

dependencies. The system under test should be exploited to extend the traded off area and

to securely get extra valuable data.

Additionally, the tool should provide the user with a descriptive report of the testing

results and this report can be download from the webpage on the completion of the test

or sent to the user email. The choice will be made by the user on how to they want to

receive their system testing report.

Furthermore, the user will not be able to influence or specify what kind of test they want

to run. The test will be conducted based on the set of rules implemented by the author of

this project, but the fact that the project is open source allows people with technical

knowledge to manipulate, add or remove from the series of testing that has been originally

specified.

1.3 Structure of the Thesis

Chapter 1 will be describing the problem and the specific goal of this. Chapter 2 provides

the background necessary to understand the problem and the specific knowledge that the

reader will need to understand the rest of this thesis. The standard penetration testing

process is explained, and some common tools are briefly described. Chapter 3 elaborates

on the methodology and explains the steps followed during this thesis work. A description

of the web application built is based on research and observation. Chapter 4 talks about

the initial consideration, approach and application scenario of this thesis work. In chapter

 13

5, the design of the architecture of the new web penetration testing tool is presented and

the main aspect deriving from the implementation of the new tool. Chapter 6 describes

the current state of the implemented application, as well as the testing of the new tool and

the result of these tests. Finally, chapter 7 reports the conclusion of this thesis project, and

suggests possible future improvements and extensions to the new tool.

 14

2 Background

This chapter gives an overview of the primary component to fully understand the rest of

the thesis. Section 2.1 presents the primary inspiration driving the choice of performing

a penetration test. In section 2.2 the standard penetration testing process is depicted.

Understanding this part is fundamental for the development of a tool to automate the

process. Several tools, utilities, and frameworks are then introduced. Some are part of the

common toolkit of a penetration tester while others (section 2.4) will be analyzing the

process of automated penetration testing.

2.1 Main concepts of penetration testing

There are a few reasons why an association/organization should procure a security expert

to perform a penetration test. The fundamental explanation is that security breaches can

do incredibly exorbitant damage. An effective attack may lead to direct financial losses,

hurt the association, trigger fines and so on. With a proper penetration test, it is possible

to identify security vulnerabilities and afterwards take countermeasures before a genuine

assault happens.

Another reason behind performing penetration testing is that it very well may be a driving

function to make the system operator keep the system up to date with respect to the most

recent vulnerabilities. New bugs and security issues are often found. An association may

utilize intermittent penetration testing to maintain an updated security level.

The aftereffect of a penetration test encourages an association to organize their risks. An

explicit security break creates specific harm to the association. Depending on the

seriousness of the issues that are identified, it is conceivable to fittingly design a relief

procedure with a stronger focus on more critical issues.

Since penetration testing is just a simulation of a real attack, it can also help in assessing

the readiness of the organization technical employees in such situations. For example, if

the security expert will be able to infiltrate the system without anyone noticing, it is a

good sign that more awareness should be put on security and incident handling.

 15

2.2 The penetration testing process

The purpose of penetration testing is to assess the degree of exposure of the system under

test and to decide if any approaches to break into the system exist. In request to properly

perform an important and authentic test, a couple of activities should be performed in

addition to the actual testing phase as described in this chapter. The process of an expert

penetration test can be divided into four fundamental stages: commencement, planning,

testing, and reporting [3].

2.2.1 Commencement

The commencement or initiation phase includes an underlying conversation with the

client (the owner of the system to be tested) planned for setting up an agreement with the

penetration tester. Both parties define and set the scope of the test, the individual

responsible for each task and the activities that the testers are permitted to take. A team

is also set up in case of emergencies like server shutting down or unforeseen

circumstances.

2.2.2 Planning

Before the commencement of penetration testing, both parties need to establish an

agreement during the commencement phase. If they’re more than one tester involved in

the testing process, then the processed is usually organized and shared between the team.

Tools to be used for the testing process often depends on the task that needs to be

executed. This phase allows the testers to put into consideration the system they are

testing by considering the integrity and stability of the system.

2.2.3 Testing

This stage is where the actual testing is carried out. All actions taken during this stage

must be logged so that there are possibilities to check back if anything goes wrong. The

testing phase is one of the most important parts of penetration testing and a lot of steps

are taken to achieve the set goals. The steps to follow will be analyzed carefully in the

subsections below.

2.2.3.1 Target identification

Target identification is information gathering of the system currently tested and its basic

information like available domain, IP addresses, active services, open ports, security

 16

policy etc. The importance of target identification depends on the information that was

available to the testers at the beginning of the test. Identifying the target is a crucial step,

particularly with regards to an external test, i.e. the tester has no internal resources. Useful

information can only be found out using other types of techniques such as information

gathering through search engines, probing the website, or performing social engineering

[2].

2.2.3.2 Port scanning

Port scanning is the part of penetration testing process that includes establishing a

connection with the system under test. It comprises of examining the system to discover

which hosts are available, what ports are open and what types of services are running. A

tool is always used for this process and one of the most popular tools for this process is

described in section 2.3.2.

2.2.3.3 Enumeration

Enumeration is the process of gathering additional information based on the result of port

scanning i.e. analyzing the services detected in the previous step to find out which of the

services is vulnerable and can be easily used as an entry into the system. This step requires

some previous experience, but there are always tools that can be handy for this process.

2.2.3.4 Penetration

According to the definition of penetration it is the act of exploiting weaknesses that have

been identified in the system under test. Based on the result of the previous step, the phase

focuses on the exploitation part. As stated in [3] an exploit means a tester or an attacker

takes advantage of a security flaw within the system, resulting in the behavior that the

developers did not intend.

2.2.3.5 Escalation

The escalation process consists of further exploiting the vulnerable service to increment

the impact of the tester on the compromised machine. For instance, when a vulnerability

is successfully exploited, the access gained is always limited (e.g. ordinary user

privileges), but to have a real impact on the system the superuser privilege is needed to

exploit the system even further.

 17

2.2.3.6 Getting interactive

The fact that a host in the system under testing is compromised doesn’t mean that the

system can be easily controlled. An interactive component is needed for the tester to

analyze and give commands on the system the same way a system administrator does.

But in most cases exploits automatically provide the tester with an interactive interface

such as shell to remotely control the system but in case this doesn’t happen automatically,

an additional phase to gain interactive access is needed so the tester can control and

manipulate the system in whatever way they want.

2.2.3.7 Pillaging

This phase is mostly skipped if the above processes went well and full access is gained,

but in case of limited access of the system under test, the stage at hand is needed to get

more information about comprised resources. The goal of this phase is to gather more

information without the need to exploit them. For example, tester analyzes firewalls or

extracts credentials from the database and tries to decrypt the hash values.

2.2.3.8 Clean up

The purpose of this stage is to clean up all the software, commands or script used in

exploiting the system, this is done to avoid additional vulnerabilities and the goal of the

phase is completely different from a hacker’s perspective. A hacker is only concerned

about not leaving any trace in the system so that the administrator will not notice any

changes that would lead to any suspicions, but the hacker might leave a backdoor in the

system (a mechanism to be later used to get into the system without having to exploit the

system again).

2.2.4 Reporting

The final phase of a penetration test is to report the consequences of the test. These reports

include all the vulnerabilities that were experienced during the test, how it’s possible to

exploit them and recommendations on how they could be fixed. The clients often don’t

appreciate reports, so its recommended to explain by financially stating how much they

could lose if those kinds of attacks were performed by a professional hacker. This way

the client gets to understand how important the vulnerability issue is and what the

consequences will be if it’s not fixed.

 18

2.3 Tools for penetration testing

This section explains some of the most common tools for penetration testing used by

security professionals. These tools have their specific tasks and although they can perform

the test on their own once automated, they are still not considered to be automated tools

because they still need influence from a tester.

2.3.1 Metasploit Framework

Metasploit [3] [4] is an exploitation framework which provides several tools, scripts and

utilities to develop and execute exploits against the targeted machine, referencing the

penetration testing process in section 2.2, Metasploit is often used for Penetration,

Escalation and Getting interactive. There are also some other tools included in the

framework to perform a more specific attack.

The Metasploit Project is an open-source computer security project that gives information

about the security vulnerability. This tool is developed by the Massachusetts-based

security company called Rapid7 and it is best known for executing exploits against a

remote target machine using anti-forensic and evasion tools.

Before using Metasploit to exploit a remote target, basic information of the target should

be available in advance. Most penetration testers use tools like Nmap since it doesn’t only

help collect the information, but also identify a potential vulnerability in the target

machine. Metasploit has a large number of exploits for different applications and

operating systems that can be accessed once a vulnerability is spotted. It is up to the tester

to manually choose what kind of attack to launch.

2.3.2 Nmap

Nmap [5] [6] is also a free and open-source network scanner created by Gordon Lyon to

discover hosts and services on a computer network by sending packets and analyzing the

response. This tool can also be used for network monitoring and inventory.

Nmap injects uniquely created parcels as system traffic and by breaking down the

reactions to these packets, it derives several pieces of data about the system. For example,

what hosts are available, what administration is running on the machine, the operating

system installed, what firewalls are in use, etc. Nmap is an incredible utility that gives the

 19

client extraordinary adaptability with more than 100 command-line options. Below is the

following process that takes place during a normal scanning process:

1. Pre-scanning

2. Target enumeration

3. Host discovery

4. Reverse-DNS resolution

5. Port scanning

6. Version detection

7. Operating system detection

8. Traceroute

9. Script scanning

10. Output

11. Post-scanning

Some of this process will be used later in this thesis to gain knowledge about the target.

2.3.3 Wireshark

Wireshark [7] [8] is a free and open-source packet analyzer tool; its main usage is network

troubleshooting and analyzing. The project was originally named Ethereal but was

renamed in May 2006 due to trademark issues. Wireshark is a cross-platform tool and

using QT widget toolkit in its current releases to implement its user interface and using

pcap (packet capture) to capture packets.

2.3.4 Burp Suite

Burp Suite [19] is a Java application designed for a major reason: to perform security

testing on web applications. Burp Suite consists of different components that together

constitute a platform for web application assessment. Below is the list of Burp Suite

components:

 20

1. Burp Proxy

2. Burp Spider

3. Burp Scanner

4. Burp Intruder

5. Burp Repeater

2.4 Related Work

This section presents a few related works to this thesis (web-based open-source

penetration testing tools). These existing tools will give a basic understanding of this

thesis work and also the limitations.

2.4.1 Penetration Testing of Web Applications in a Bug Bounty Program

This thesis work focused on using the readily available penetration testing too called the

Bugcrowd, since web application security cannot be guaranteed it is always

recommended to used penetration testing method to evaluate new applications. The

author used the software to test different web applications and compare the results with

the statistics provided by other penetration testing companies and using that to determine

the average web application security level [10].

2.4.2 Penetration Testing on Domain Name Service

This thesis work is explaining and simulating the risk associated with threats experienced

by domain name service (DNS) inside a private system or web. The author used a virtual

environment (VMware workstation) and a kali Linux operating system to achieve this.

The goal of the project is to analyze and process the vulnerabilities associated with DNS

through penetration testing and try to mitigate the damage or eliminate any possible risks

[11].

2.4.3 Summary of related work

Studying the behavior of the research’s described in this section, a typical way to deal

with penetration testing emerged. The method followed by these tools comprises of three

primary stages:

 21

1. Scan the hosts in the system under evaluation to gather information about the

target.

2. Identify vulnerabilities by comparing scan result with vulnerabilities database.

3. Exploit the vulnerability to gain access into the system.

Depending on the tool the tester decides to use, other steps might be needed, however the

basic steps for any successful penetration testing are always the three steps mentioned

above.

 22

3 Methodology

In this chapter author describe the methodology of the web application, technologies,

framework and services used in achieving this thesis work.

3.1 Single Page Application (SPA)

A single page application is a web application that dynamically rewrites the current page

with new data from the web server based on the client interaction, instead of the default

method of the browser loading the entire new pages [12].

Figure 1 Traditional page and SPA lifecycles [28].

 23

This approach is possible due to JavaScript ability to manipulate DOM elements. It

works in such a way that the client send request to the server and the server respond

with just an HTML page for the first time and all subsequent request with the server are

being made via AJAX request to fetch content and update the page upon client's

interaction. This approach is not possible when it come to a multi-page application, the

server will respond with a whole new page whenever there’s an update (Figure 1). In

addition, the SPA history API allow a smooth navigation process without the need for

reloading the page, this means that the URL might change a bit due to the route but

there will be no page reload to, but instead just replace the content of the page based on

the application architecture.

3.2 Model-View-Controller (MVC)

Model-View-Controller is a software design pattern ordinarily utilized for creating UIs

which partitions the related program rationale into three interconnected components. This

is done to separate internal representations of information from the way’s information is

presented to and accepted from the users [13].

Figure 2 The MVC Pattern [29].

 24

The MVC Pattern is used for applications with GUI. The Model represents the

application object while the View represents that object information and the Controller

specify the method in which the user interface reacts with the user input.

3.3 Model – View – View-Model (MVVM)

MVVM is another type of software architectural pattern that facilitates the separation of

the development of the view from the development of the backend logic (model) just to

make sure the view is not depending on any specific model platform. The VM (view

model) of the MVVM is a value converter i.e. its responsible for changing over the data

objects from the model so that items are effectively overseen and introduced [14].

This model is more common nowadays when it comes to using JavaScript library or

framework for frontend because developers don’t want to do too much input control

anymore like it would be when using the MVC pattern. Below is a diagrammatic

representation of MVVM (Figure 3).

Figure 3 The MVVM pattern [26]

3.4 Frontend with React.js

React is a JavaScript library for building user interfaces. Its maintained by Facebook and

a community of individual / companies [15].

React is mostly used as a base for developing a single page application but its only

concerned with rendering the DOM i.e. react is focused on the MV layer in the MVVM

pattern because it only connects Model and View through the two-way data bindings.

 25

Figure 4 The MVVM pattern with React.js [27]

React manages the data in the HTML element because of its reactiveness and this helps

to automatically re-render elements whenever there’s any changes [16].

3.4.1 Additional used libraries

• React-bootstrap is a front-end CSS library for React.js to build responsive web

design

• Axios is a popular JavaScript library for performing HTTP request that works in

both browser and Node.

• Mdbreact is a material design CSS library to enhance web design

• Formik is a JavaScript used to handle form input, author prefer using this than just

regular input because it helps to keep track of values, errors and visited fields.

3.5 Backend with Node.js

Node.js is an open-source, cross-platform, JavaScript runtime built on Chrome’s V8

JavaScript engine that executes JavaScript code outside of a web browser [17].

Node.js allows developer to use JavaScript to write server-side script to produce a

dynamic web page. This represent a “JavaScript everywhere” paradigm which is basically

about use a single programming language to build dynamic web application. Node.js also

have an event-driven architecture that allows it to perform asynchronous operations [17].

Author choice of this solution was based on the possibilities to use node modules instead

on running the whole command on Kali Linux, this module provides the possibilities to

 26

do network scan, dns lookup, etc. And also, the desire to use the same programming

language is also considered.

3.5.1 Additional used modules

• Express.js is a framework in Node.js which is use for building web applications

and APIs. It’s an essential part of the server because it helps to handle all kinds of

HTTP requests and also with the implementation of APIs [18].

• CORS is a cross-origin resource sharing module that allows AJAX request to

ignore the same-origin policy and allow connections from other remote hosts.

Without enabling this module, author will not be able to put frontend and backend

on different host [19].

• Mongoose is an ODM module for MongoDB, it helps to facilitate the relationship

between data and also provides schema validation. Author use this module to

design the database model for the Application [20].

• Nodemailer is a node module that helps to manage email sending. In this

Application it is used to send test result to client email after the completion of the

testing face

3.5.1.1 Penetration testing modules

• Node-nmap a node module for working with NMAP in Node.js, more explanation

about nmap can be found at section 2.3.2 [23].

• DNS a node module uses to get information about a particular domain, for

example it gets domain IP address, address and also family depending on the code

[24].

3.6 Database with MongoDB

MongoDB is a cross-platform data-oriented database classified as NoSQL database, it

uses JSON-like documents with schema and it stores documents in collections, it supports

the major SQL queries expression [21].

 27

Data coming from the frontend of the App is in JSON object that’s why a NoSQL database

like MongoDB suites this project development.

3.7 Heroku Cloud Application Platform

Heroku is a container-based cloud Platform which developers use to deploy, oversee and

scale present day application. Heroku is a very big and popular platform that is well

documented, easy and to some extent free to use [25].

Heroku is completely overseen, giving developers the opportunity to concentrate on their

core project without the interruption of looking after servers [25].

 Both client and server side are deployed on Heroku to share application between course-

mates and also for demonstration purpose. For simplicity and easy to manage application

author have chosen to put the frontend and the backend on different server, the frontend

(client) is available at https://pen-testing-frontend.herokuapp.com/ while the backend

(server) is available at https://pen-testing-backend.herokuapp.com/.

 28

4 Implementation

Application is constantly developed with the visual studio code editor and source code

deployed to GitHub repository available at https://github.com/Tobzzy/Thesis. How to run

both server and client locally is carefully explained in the readme.md file upload

alongside all other files.

4.1 Service architecture

Figure 5 Client-Server Architecture of the Service

It has a presentation layer of 3 client machine, that are requesting web application via

browser using the user interface. The application layer is the server that processes and

respond to the client data. Server is able to grab the data being passed from the client

through the API and store the data in the database represented as the database layer. All

communication between client and server is done via HTTP connection.

Client-side web application and Server are both hosted on Heroku and for easier

accessibility, explanation about Heroku and link to web application can be found at

section 3.7.

 29

4.2 Server-side

Backend is written using Node.js.

Node.js uses package.json file is know as the core of Node.js ecosystem because it’s the

most basic and fundamental part of the working with Node.js, the package.json file can

be called the manifest of the application as it handles modules, packages and etc.

Figure 6 The package.json file

As shown in the figure 6. The package.json file helps to facilitates the whole of the

Node.js server, from specifying the name of the application, version of the software, the

description of the application, entry scripts, dependencies and etc.

4.2.1 API

The communication between the server and the client is built on HTTP, API was

implemented on the server so as to get the endpoints to be passed to the client side of the

application, table 1 shows the endpoints defined. Express.js a Node module was used to

help configure the server and also manage the route. GET method are used where the data

 30

is only retrieved, POST method are used for creating new data, PUT method is used for

updating existing data and DELETE is used for removing existing data from the database.

URL route Request method Description

/tests GET Responds with the list of all

existing test run

/tests/:testId GET Responds with the details

of the particular test with

parameter (testId)

/tests POST Create new test

/tests/:testId PUT Update an existing test by

specifying with parameter

(testId)

/tests/:testId DELETE Delete an existing test by

specifying with parameter

(testId)

Table 1 API endpoints

Figure 7 API routes from server

 31

4.2.2 Model for database

Describing the model when using MongoDB is a very important part of building the API

for the server.

Figure 8 Database model

From figure 7, we can already what kind of datatypes is required from the client when

using the application. The domain and email are required by the client while the test being

an object is computed in the server based on the parameter passed from the client.

4.2.3 Creating new test

The two main parameter requested form user in order to run the test from the client side

are the parameter needed on the server in order for the test to be conducted.

Domain – the domain name or IP address the client wishes to test and see it vulnerabilities.

Email – needed for sending the test result to the client upon the completion of the test.

 32

Figure 9 Create test controller

As seen in the figure 9 above both parameters are requested for the test to be conducted.

4.2.4 Running test and sending result

Running the test and send the rest result was integrated into the export.create function. In

order to test the domain, the value of that particular domain need to be passed from the

frontend.

 33

Figure 10 Running test and sending result

Domain = req.body.domain is where the domain value is being passed into a variable.

Testing = data is where the response from the test is being sent back and passed to data.

Test: testing represent the test result and its one of the objects being passed to the instance

of the test function which was imported from the model.

Template: index is how the result will show in email of the client which is one of the

objects being passed to the instance of the mail options for sending email using the node

mailer module.

 34

Res.send(data) is the point at which when all the previous stages have been passed

successfully it then sends the JSON object to the database for storage.

4.2.5 File structure

Figure 11 Server project structure

Server file structure (Figure 11) is divided into the following part. App folder where the

controllers, models and routes file are being stored. The controller handles all the

incoming HTTP request and send back appropriate response based on the request being

made. Models are schemes for the for different collections of json objects that are stored

in the MongoDB database. Routes are the API paths where users send request. The view

file contains visible files but in this case the template for the email sent to users plus result.

 35

Config are for modules exporting constants and in this case is exporting database URL.

Node modules, package-lock.json and package.json files are generated automatically,

they are needed for the server to run. The main file is server.js where all the server

configurations are being made for example where the sever starts, what ports to listen to

and etc.

4.3 Client-side

The client-side is implemented using React.js which also uses package.json file with

similar explanation like in section 4.2.

4.3.1 Structure

React.js uses App.js as an entry point from which any component can be render but will

still be inside the main entry component. In this application components are using Axios

to perform request. Axios is a promised based HTTP client. Figure 12 gives more

understanding of this process.

Figure 12 Client-side structure

4.3.2 Components

App component is the main component that user will see, the app component is displaying

the application logo, search component and a footer tag.

 36

Figure 13 App.js component

 Search component is the component user will interact with, it’s the component that ask

users for inputs, validates the inputs and send the values to the server for the test to be

made. Formik module is used to handle this form process because of its easy integration

of error messages and validation.

 37

Figure 14 Search.js component

Service components is the component in charge of sending the test received in the search

component but for simplicity sake author incorporate service component in the search

component for easier implementation.

 38

Figure 15 Service.js component

4.3.3 User Interface

Achieving the present appearance of the application different component and modules

were used for example the react-bootstrap which make gives the pleasant look of the web

application. The figures below show the web application in action.

 39

Figure 16 Web application homepage

Figure 17 Error Messages when fields are left empty

Figure 18 Successful message on test completion

4.3.4 File structure

Client-side file structure (Figure 19) is divided into the following parts. Static files like

web page logo are being save in the assets folder. Components folder are for the

components files which are described in section 4.3.2. Styles folder consist of the

stylesheets files used to make the web application colorful. App.js is the main page for

the application.

 40

Figure 19 Client file structure

4.4 Future development

For future development first thing which is really important is to make the result visible

to the user from the web page and also provide the possibility to download the result in

pdf format.

 41

Implementing all other steps of penetration testing that this thesis work did not cover.

Integrate a reusable header that contains menu and sub- menu item and give users more

flexibility to choose from what kind of test they will like to run by using checkboxes to

specify which tests to be conducted and which tests should be ignored.

 42

5 Summary

The goal of this thesis work is to build a web application that’s open source and suitable

for a non-technical person to check the security flaws of a domain.

The result is a web application that accepts inputs from the user from the client-side of

the application and send this to the server-side of the application as a JSON object, while

the server-side run the specified vulnerability test on the specific domain submitted by

the user and send the respective result from the testing to the user specified email address.

This solution will help small businesses to evaluate their domain on the basic penetration

testing level and have an idea of what vulnerability they have or could possibly have.

The final product of this thesis work is a full-stack web application with the server

(Backend) written in Node.js and client (Frontend) written in React.js. Date is saved in

MongoDB and the application deployed to a different server on Heroku.

 43

6 References

[1] Jason Andress and Ryan Linn. Coding for Penetration Testers: building better

tools. Syngress, ISBN 978-1-59749-729-9, 2012

[2] Christopher Hadnagy. Social Engineering: The Art of Human Hacking.

Wiley, ISBN-10 0470639539, December 2010

[3] David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni.

Metasploit: The Penetration Tester’s Guide. No Starch Press, ISBN 978-1-59327-

288-3, 2011.

[4] Rapid7, Inc. “Metasploit Framework” [Online]. Available:

http://www.metasploit.com/download/. [Accessed 06 01 2021].

[5] “Insecure.Com LLC. Nmap” [Online]. Available:

http://nmap.org/download.html. [Accessed 06 01 2021].

[6] Gordon "Fyodor" Lyon. Nmap Network Scanning: The Official Nmap Project

Guide to Network Discovery and Security Scanning. Nmap Project, ISBN 978-0-

9799587-1-7, 2009.

[7] “Wireshark,” [Online]. Available: https://www.wireshark.org/download.html.

[Accessed 06 01 2021].

[8] “Ulf Lamping, Richard Sharpe, and Ed Warnicke. Wireshark User’s Guide:

for Wireshark 1.9,” [Online]. Available:

http://www.wireshark.org/docs/wsug_html_chunked [Accessed 07 01 2021].

[9] “BurpSuite,” [Online]. Available

http://www.portswigger.net/burp/download.html. [Accessed 07 01 2021].

[10] “Penetration Testing of Web Application in a Bug Bounty Program,”

[Online]. Available: http://www.diva-

portal.org/smash/get/diva2:723516/FULLTEXT02.pdf [Accessed 06 01 2021].

 44

[11] “Penetration Testing on Domain Name Service,” [Online]. Available:

https://www.theseus.fi/bitstream/handle/10024/155680/Famuwagun_Samuel.pdf

?sequence=1&isAllowed=y. [Accessed 07 01 2021].

[12] “What Is a Single-Page Application?,” [Online]. Available:

https://dzone.com/articles/what-is-a-single-page-application. [Accessed 07 01

2021].

[13] “ASP.NET - Single-Page Applications: Build Modern, Responsive Web

Apps with ASP.NET,” [Online]. Available:

https://msdn.microsoft.com/enus/magazine/dn463786.aspx. [Accessed 07 01

2021].

[14] J. Gossman, “Introduction to Model/View/ViewModel pattern for building

WPF apps,” 08 10 2005. [Online]. Available: https://docs.microsoft.com/en-

us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-

view-viewmodel-design-pattern. [Accessed 07 01 2021].

[15] “Introduction,” [Online]. Available: https://reactjs.org. [Accessed 07 01

2021].

[16] “Getting Started,” [Online]. Available: https://reactjs.org/docs/getting-

started.html. [Accessed 07 01 2021].

[17] “Node”, [Online]. Available: https://nodejs.org/en/. [Accessed 07 01 2021]

[18] “Express,” [Online]. Available: http://expressjs.com/. [Accessed 07 01

2021].

[19] “Cors,” [Online]. Available: https://www.npmjs.com/package/cors/.

[Accessed 07 01 2021]

[20] “Mongoose,” [Online]. Available:

https://www.npmjs.com/package/mongoose. [Accessed 07 01 2021].

[21] “MongoDB,” [Online]. Available: https://www.mongodb.com/. [Accessed

07 01 2021].

 45

[22] “Nodemailer,” [Online]. Available: https://nodemailer.com/about/.

[Accessed 07 01 2021].

[23] “Node-nmap,” [Online]. Available: https://www.npmjs.com/package/node-

nmap/. [Accessed 07 01 2021].

[24] “DNS,” [Online]. Available: https://nodejs.org/api/dns.html -

dns_class_dns_resolver. [Accessed 07 01 2021].

[25] “Heroku,” [Online]. Available: https://www.heroku.com/home/. [Accessed

07 01 2021].

[26] “MVVM,” [Online]. Available:

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel/

. [Accessed 07 01 2021].

[27] “MVVM React,” [Online]. Available:

https://medium.cobeisfresh.com/level-up-your-react-architecture-with-mvvm-

a471979e3f21/. [Accessed 07 01 2021].

[28] “Single page Architecture,” [Online]. Available:

https://www.goconqr.com/c/74455/course_modules/113576-single-page-vs-

multi-page-architecture#/. [Accessed 07 01 2021].

[29] “MVC pattern,” [Online]. Available: https://developer.mozilla.org/en-

US/docs/Glossary/MVC/. [Accessed 07 01 2021].

 46

Non-exclusive licence for reproduction and publication of a graduation thesis1

I Toyib Ahmed

1. grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis Open-source Penetration Testing Tool for Beginners, supervised by Kaido Kikkas,

1.1 to be reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of Tallinn
University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be entered

in the digital collection of the library of Tallinn University of Technology until
expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'
intellectual property rights, the rights arising from the Personal Data Protection Act or
rights arising from other legislation.

07/01/2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application
for restriction on access to the graduation thesis that has been signed by the school's dean, except in case of the
university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based on the joint
creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student
defending his/her graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses
1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be valid for the period.

