
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

Azad Husen 184631IASM

MAINTAINABLE TEST SUITE DESIGN USING PAGE

OBJECT MODEL IN SELENIUM WEBDRIVER
Master’s Thesis

Supervisor
Vladimir Viies

PhD

Tallinn 2020

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Azad Husen
(signature)

Date: 18th May, 2020

i

Abstract

The aim of this Master’s thesis is to design a test suite using page object model in Selenium
Webdriver and measure how page object model is more maintainable than conventional
test suite design. There will be analysis of updating test suite if an UI changes, the items
needs to update if locator id changes and number of lines of code to change requires in
future. Two test suites will be developed with and without page object model. Although
the page object model is an established model in test automation, the goal of the thesis is
to prove how maintainability can be achieved by using it with a real life example. The
methods used in this Master’s thesis will be tested for https://igavesti-ou.myshopify.com/

as an example.

The issues that need to be resolved for design and development of maintainable test suites:
Choosing a test automation tool, define how to proceed on by choosing page objects,
proving maintainability, optimize results and other simulated scenarios.

This Master’s thesis strives to give an analysed overview of test suite maintainability and
tries giving answers to the questions that may appear.

The thesis is in English and contains 73 pages of text, 6 chapters, 18 figures, 12 tables.

ii

List of abbreviations and terms

API Application Programming Interface
AUT Application Under Test
CD Continuous Deployment
CI Continuous Integration
COM Component Object Model
CPU Central Processing Unit
DOM Document Object Model
GUI Graphical User Interface
HP Hewlett-Packard
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IE Internet Explorer
IT Information Technology
OCP Open Closed Principle
OLE Object Linking and Embedding
OS Operating System
PIP Python Package Installer
POM Page Object Model
QA Quality Assurance
QTP Quick Test Professional
RoR Ruby on Rails
SDLC Software Development Life Cycle
SQL Structured Query Language
SRP Single Responsibility Principle
UFT Unified Functional Testing
UI User Interface
WATIR Web Application Testing in Ruby
XML Extensible Markup Language

iii

Table of Contents

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Background . 2
1.2 Problem . 3

2 Testing of web applications 5
2.1 Definition of Testing . 5
2.2 Types of Testing . 6

2.2.1 According to the Way of Testing 6
2.2.2 According to Depth . 8
2.2.3 According to Scope . 9

2.3 Continuous Integration and deployment 10
2.4 Test Automation Approaches . 14

3 Evaluation of the Tools 18
3.1 Criteria for choosing the tools . 18
3.2 Comparison of tools . 19

3.2.1 Selenium . 21
3.2.2 Watir . 22
3.2.3 Test Complete . 23
3.2.4 QTP . 23
3.2.5 Ranorex . 23
3.2.6 Load Runner . 24

4 UI Automation- Page Object Model and other design patterns 25
4.1 Page Object Model . 26
4.2 Other design patterns . 28
4.3 Dependencies . 29

4.3.1 Python . 29
4.3.2 Selenium Webdriver . 29
4.3.3 Webdriver manager . 29
4.3.4 Unittest . 30
4.3.5 HTML Reports . 31

iv

5 Implementation and Results 32
5.1 Proceed to Test Automation . 37
5.2 Test suite with Page Object Model . 44
5.3 Analysis . 46

6 Summary 51

Bibliography 52

Appendices 55

Appendix 1 - Full test suite without POM 55

Appendix 2 - Full test suite with POM 65

v

List of Figures

1 Every Software Project has optimal test effort[9] 6
2 High level testing types based on various methods, types and scope or

stages of the testing . 10
3 Continuous Integration in practical life 11
4 Continuous Deployment process flow [13] 12
5 Basic building block of a test automation framework 15
6 Test automation approaches aligning with SDLC 16

7 Interaction between Test and a PageObjec[27] 26
8 Page Object Model implementation for Taltech webpage with two tests . . 27

9 Homepage of AUT - Igavesti web shop 32
10 Mind-map of Igavesti . 33
11 Igavesti login page UI with HTML elements 40
12 Order of execution for the example test cases 42
13 A single login test case class diagram 43
14 Class diagram of login test cases without POM 43
15 Class diagram of valid invalid login test cases with POM 44
16 Source code tree of test suites, With POM on the left and Without POM on

the right . 45
17 All pages locators- Changes requires for each id changes 50
18 All pages locators- Changes requires for language changes 50

vi

List of Tables

1 Comparison of the Manual and Automation Testing 8

2 Evaluation criteria of test automation tools[16][17][18] 19
3 Comparative review of automated software testing tools[16][9][20] . . . 20

4 Manual test plan of Igavesti webshop . 34
5 Homepage locators . 46
6 My account page locators . 46
7 Login & Sign Up page locators . 47
8 Product flow pages locators . 47
9 Cart page locators . 47
10 Contact us page locators . 47
11 Shipping flow pages locators . 48
12 All pages locators which were used at least twice 49

vii

1. Introduction

Software testing is one of the most important and crucial phases in the software devel-
opment life cycle process,consuming an average of 40 to 70 percent of the time in the
development process[1]. In the agile software development, testing is fundamentally
important as it enables visibility and enhances communication and feedback to developers
[2]. Test automation is mandatory for the success of web applications in the long run: it
saves a lot of time in testing and helps to release web applications with fewer defects[3].
Automated testing of web applications reduces the effort needed in manual testing, but it
can’t replace manual testing. Automated GUI regression testing tools are very popular
for test automation in IT industry. According to the popular mythology, people with less
programming language experience can use those tools and create extensive test suites.
However, maintenance of these test suites becomes costly in case of anything changes
in future in that project. As a result, designing of maintainable test suites are the main
concern in test automation for the success of the test automation in a software project.

Test suite is a collection of test cases which can be used for test execution. This is a
common term in both manual and automation testing. As the test suit consists hundreds
or thousands of test cases, a lot of test cases are correlated in a way that can minimize
redundancy. This is where maintainability of test suite concern. In the design of test suite,
if you don’t consider maintainability of test suite, then keeping track of hundreds of test
cases really becomes cumbersome.

Selenium is one of the most popular tools for web application automation across different
browsers and platforms. It is being used in the software domain not only for test automation
but also for automating administration tasks as well. Mainly, it consists of two main parts
Selenium IDE and Selenium Webdriver. Selenium IDE; a Chrome and Firefox browser
plugin where anyone can record and playback interactions of the browser during a bug
generation and verify it by adding assertions which can be used as an automated test suite.
On the other hand, Selenium Webdriver; a collection of language specific bindings to drive
a browser - the way it is meant to be driven. Selenium Webdriver has bindings for many
programming language so test cases can be written in pure programming language using
your own favourite tools[4]. It is best when when you want to create robust, browser-based
test automation suites, scale and distribute scripts across many platforms. In Selenium

1

Webdriver, test suites are implemented by using a programming language which requires
time and effort. This is why, maintainability is the first priority during the design phase of
the test suite.

Page Object Model(POM) is a popular design pattern in different test automation frame-
works. The basis of POM is to model the web pages as objects, applying the same
programming language used to write the test cases[3]. As a result, functionalities of an web
page considered as services (i.e: methods) derived from page objects which can be called
in any test cases of that project. This eliminated repetitive codes as well as it becomes
easier to change code in case of any changes comes in the project.

This thesis is aimed at exploring and designing maintainable test suites using Selenium
Webdriver. The main focus would be showing how POM helps to design a maintainable
test suite. Along with design, maintainability parameters in a test suite developed with and
without POM will be analyzed. I will use a real life e-commerce website to implement test
cases for the test suites. This could be useful for manual testers who wants to switch to
automation or the new engineers who wants to start career in test automation. This could
be an industrial level use case for any e-commerce platform.

1.1 Background

Test automation is nothing new, its been around for 40+ years. However, extensive
automation testing started for enterprise applications from the beginning of this century.
Automated functional testing is based on testing web page by creating test cases that
automate the interaction with a web page and its elements. Test cases are used to fill-in and
submit forms or click on hyperlinks automatically. Test cases can be programmed using
general programming languages, but choosing a programming language must consider
several aspects of the application under test. It is better to use a programming language
which provides specific library with user friendly APIs. Built in methods can be used in
order to command e.g., click a button, fill a field and submit a form. Finally, test cases are
completed with assertions to validate [5].

Page Object Model is already an established model in the market, but I have chosen to
proceed on in this thesis because e-commerce automation could be tricky as this deals
with payment processing and user data. On the other hand, the same code can be used for
automating mobile version of the web page. Also, many published papers for POM is in
Java, so this was one of challenges to analyse maintainability of test suites in POM using
Selenium Webdriver in Python.

2

1.2 Problem

Who wrote this piece of code?? I can’t work like this!! —Any programmer

This is a common problem in software development when we work in a team; the same
happens in test automation as well. Today almost all of the studies related to automation
testing are exclusively based in using Java programming language. However, Python
is a popular programming in software development, so this could be powerful in test
automation as well.

Here is the basic paradigm for GUI-based automated regression testing: [6]

� Design a test case, then run it.
� If the program fails the test, write a bug report. Start over after the bug is fixed.
� If the program passes the test, automate it. Rerun the test (either from a script or

with the aid of a capture utility). Capture the screen output at the end of the test.
Save the test case and the output.

� Next time, run the test case and compare its output to the saved output. If the outputs
match, the program passes the test.

First problem is this is not cheap, second problem is this approach increases additional
cost, third problem is these tests are not powerful, and fourth problem is in practice, many
test groups automate only the easy-to-run tests.

In addition to that, most of the companies are using paid automation tools, or they are
building their framework. Apart from this, the main problem was to provide a solution
in low budget for a client, but the requirements are to develop maintainable test suites
which can be easily readable, changeable without having strong coding experience. For
the paid tools; initial cost is lower than free tools, but it becomes costly in the long run due
to monthly subscription[7].

The purpose of the given thesis is to show how to design and develop a maintainable test
suite in Python. The test suite will be designed in a way that anyone can understand the
logical flows if they have knowledge about the AUT. So, the client can understand all the
test cases and run regression test as per their need. Also, they can change locator id if it
changes later. In addition to that, they can use the same test suites if the language changes.
Finally, they can hire a test automation engineer to update the test suites and it will be less
time-consuming for an engineer having this test suite in hand.

3

The goal of this thesis is to improve the readability of tests and therefore also the maintain-
ability of the test suite. In order to prove this, the goal is to quantify the effort needed to
realign the two test suites using the following metrics: the time required to update test suite
if UI changes, if locator id changes, if the language of the product changes. The properties
of its source code[8] determine the maintainability of a software system. Maintenance is
something we have to face after delivery of the code, two main goals of this thesis are:

1. When the program’s UI changes, what amount of work do we need to do to update
the test suite with the goal that they precisely reflect and test the program?

2. When the UI language changes, (for example, English to French), how hard is it to
modify the suite so they precisely reflect and test the program?

Maintainability is a vast topic that can be applied in any kind of development. For example,
house development should be designed in a way that maintenance can be done easily on
periodical basis. Software maintenance is not about fixing wear and tear. Software is
not physical, and therefore it does not degrade by itself the way physical things do [8].
Test automation is also software development but it does not deliver direct product to the
customers. This is why it was not a concern during the implementation of automation
tools, but from the last 7-8 years POM becomes popular in test automation. A paper titled
’Improving Test Suites Maintainability with the Page Object Pattern: An Industrial Case
Study’ showed how to improve maintainability in a test suites where test suite developed
using Java in Selenium. In related to that, the author published several papers related to
test automation in the 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops. However, Selenium IDE lost the popularity by
these years and now Webdriver is the main popular feature of Selenium. A TalTech student
did bachelor thesis titled ’Selenium-based web Test Automation Framework Development’
where he implemented a test automation framework. Though he used page object pattern,
but his focus was not to show how to design in a way to make maintainable test suite. The
current state of the art is that POM is already an established model in the test automation
but my thesis would show how to design and implement maintainable test suites.

4

2. Testing of web applications

In today’s aggressive and rapidly changing world of software development, it has become
critical for the organization to test their web application before releasing to the market. By
performing different kinds of testing, organizations can gain confidence that their product
will work without problems or difficulties for the end-users. In testing, companies may
follow multiple strategies. Still, the common focus of the trial is to make sure the intended
functionality is working as expected and find the bugs in the early stage of development.

Based on these criteria, there are mainly two types of testing: Functional and Non-
Functional testing. Testing which checks the business logic of the product is functional
testing, any other kinds of testing termed as non-functional.

2.1 Definition of Testing

Testing is defined as a process of evaluation that either the specific system meets its
originally specified requirements or not [9]. In other words, testing is a series of actions
or steps to verify the intended result is achieved as per the initial requirements. In simple
words, software testing is an activity to check whether the actual results match the expected
results and to ensure that the software system is defect free [1].Testing approach depends
on the software development life cycle model, but it should provide the exact knowledge
about the quality of the product to the stakeholders.

Testing can be considered as a risk based activity where a tester must understand how to
minimize a large number of test sets into small manageable test cases and cluster what is
important to test in a particular feature or product release. Testing cost and bugs finding
have a relationship where number of missed bugs becomes less when amount of testing
increases.

According to Figure 1, Where the graph of testing and number of missing bugs intersect is
determined as the optimal point of testing. The effective testing goal is to do that optimal
amount of tests so that extra testing effort can be minimised [9].

5

Figure 1. Every Software Project has optimal test effort[9]

2.2 Types of Testing

Testing is a very wide topic in the area of IT systems where it includes various methods,
types, and levels or stages of testing. Attributes of testing depend on what application is
being tested, how big is the feature, and who does the testing. Also, the tester knowledge
about the AUT plays a vital role in order to divide testing activities into several groups
of types. Static testing and dynamic testing are the base in order to differentiate types
of testing. Static testing is an approach where code is not executed; it manually checks
the code, project requirement documents, and design documents to find errors. On the
other hand, code must be executed in order to do dynamic testing to check the functional
behavior of a software product. In high level, the following categories can be derived in
order to classify types of testing:

2.2.1 According to the Way of Testing

Testing can be done by a human or by the computer. When a tester manually executes a
particular set of tests, we call it manual testing. When the same set of tests performed by a
computer, we call automated testing. In reality, test automation cannot be a replacement
for manual testing, but it helps the tester to execute repetitive testing over a more extended
period. Moreover, some tests are time-consuming to execute manually; for example, if you
want to automate thousands of actions in a specific time, sometimes it’s not possible to do
by the human at all.

Manual testing involves manual tasks like setting up test environment, execute the test
tasks and report the found bugs, review the results. This process can be done by following
a test plan or by exploratory testing[10].

6

Following a test plan is the formal process of test steps needs to execute in order to check
functionality of the application under test. According to IEEE 29119-3 [11], it should
contain at least a test plan identifier, an introduction, test items, the features to be tested,
the features not to be tested, an approach, item pass/fail criteria, stakeholder information,
testing communication and a schedule. Because it deals with predefined steps, it may be
executed by a less skilled tester. On the other hand, it requires time and effort from an
expert tester or test lead to document and maintain test plans.

Exploratory testing known as ad-hoc testing where a tester explore the product and test.
Most of the cases, its an unplanned testing but this approach gives opportunity to think out
of the box. As this testing does not require test plan or a minimum test plan is sufficient, it
helps to get a result quickly. Creativity and the experience of the tester is the key in order
to discover important bugs quickly.

Automated testing known as test automation involves test execution without human
interference. In this testing, tester or developer write the scripts to run the test using
another software or tools. Basically, the same test plan can be used to develop automated
tests. Automated tests execution includes, however, other prerequisites [10]:

� Ability to run a subset of all tests.
� Automatic set-up and record environmental variables.
� Running the test cases.
� Capturing the results.
� Comparing actual and expected results and highlighting the differences.
� Analysing the results and processing them in a comprehensive and clear way.

Both manual and automated testing have advantages as well as disadvantages. The
circumstances of the application under test helps deciding the right way of testing. The
circumstances includes how big is the application, how big is the testing budget, and what
is the deadline to finish the testing. Manual testing takes less time to setup initially but
automated testing benefits in the long run. However, testing speed is slow in manual
whereas automated testing is faster and uninterrupted so human resource can dedicate their
time to something else. Overall, test automation could take time and investment on initial
setup but it can reduce costs for regression testing in bigger projects [10]. Comparison
between manual and automation testing can be seen in Table 1.

7

Table 1. Comparison of the Manual and Automation Testing

No. Manual Testing Automation Testing
1 Time consuming as the test is executed

by human and sometimes tedious.
Test execution by software tools, so it
is significantly faster than human and
boring is not an issue for machine.

2 Less reliable due to human error. More reliable as it is performed by tool-
s/scripts.

3 Investment required for human re-
sources.

Investment required for tools.

4 Manual testing is practical when test
run is schedule once or twice (i.e: fre-
quent repetition is not required).

Automation testing is practical when a
repetitive test execution required over
a long time.

5 Manual testing allows human obser-
vation and exploratory testing which
helps to find UX and usability issues

Automation testing does not allow hu-
man observation; so less chance to guar-
antee UX and usability issues.

2.2.2 According to Depth

The next chosen attribute for the types of testing is according to the depth of tester insight
into the AUT. This approach is known as box approach, where tester knowledge about
the internal structure of the product is essential when designing test cases. This testing
methods are traditionally divided into white and black-box testing[1], but there is another
called grey-box testing, which has mixed features of white and black-box testing.

White- box testing; According to the name, this is a testing approach where a tester can
see inside the box. Clear-box testing and denotes technique, when the tester knows the
underlying implementation of an application, so he/she can decide how to develop the tests
according to this knowledge[10]. In this testing approach, the tester should understand the
structure of code to test. As a result, this kind of testing usually done by a designated tester
or developer.

Black-box testing; Likewise white-box testing, the name of this testing approach, de-
scribes the type where a tester cannot see inside the box. Black box testing treats the
software as a "black box". It indicates the way of testing, where the tester does not know
the details of how the AUT works[10]. An output of input is essential, but not how the
action is done. This is why this type of testing can be done by end-users as well as tester
or developer.

8

Grey-box testing; This type of testing known as semi-transparent testing; includes having
knowledge about the internal structures of AUT for the test planning, but testing at the end-
user or black-box level. An example of this is testing of functionality of web applications
because to perform this type of testing, the knowledge of web page structure is required,
and simultaneously it is not important how the functionality testing performed[10]. Usually,
this type of testing performed by end-users, testers, and developers.

2.2.3 According to Scope

The last but the most critical attribute of testing is the scope. The scope denotes the size of
the tested parts of the AUT, or more specifically, what portion of the product needs to be
tested to achieve a result. The scope of the testing needs to consider where the application
stands in the SDLC pyramid, and when the tests are written for it. The motivation behind
the testing pieces of software comes in play because testing by parts can quickly identify
the error in small portion testing in isolation. Moreover, this type of testing helps a tester
to find bugs in the early stage of development. Testing by parts/units gives an overview
of small features before integrating into the full product. As a result, testing according
scope helps to identify the faulty feature in the early stage of development and debugging
in order to release top quality product.

Unit testing; A unit is the smallest piece of software code that can be tested by a mecha-
nism. Mostly this type of testing is done by the developer or a white-box tester who can
compile the code. It is required to break the software development into a set of units/-
modules where each module assigned to a different team or different individual. After the
completion of each module or unit, it is tested by the developer just to check whether the
developed module is working by the expectation or not; this is termed as unit testing [9]

Integration testing; The next step after unit testing is the integration of the units/modules.
A single unit may work alone as the unit test passed, but it is not obvious that it will
work when modules are connected to each other. As a result, once the modules of a
single software system have been developed independently, they are integrated, and often
errors arise in the build once the integration has been done [9]. For example, testing the
interaction with the database or payment processor requires integration testing.

System testing; The final testing step in the SDLC is system testing, which is testing the
whole software from every perspectives[9]. Several units aggregated into one to make
a component; several components integrated into one to create a system (i.e., software
product). System testing validates the full and completely integrated software product.

9

These are the main criteria for the classification of testing, but there are many other
scenario’s can be considered to divide testing. The following diagram can describe
classifications of testing:

Testing Types

Way of
execution

Manual
testing

Automation
testing

Box
approach

White-box
testing

Black-box
testing

Grey-box
testing

Scope of
testing

Unit
testing

Integration
testing

System
testing

Acceptance
testing

Phase of
testing

Smoke
testing

Regression
testing

Re-
testing

Structure
of testing

Test case
based

Exploratory
testing

Figure 2. High level testing types based on various methods, types and scope or stages of
the testing

2.3 Continuous Integration and deployment

“Continuous Integration doesn’t get rid of bugs, but it does make them dramatically easier
to find and remove.”— Martin Fowler, Chief Scientist, ThoughtWorks

In software engineering, continuous integration (CI) is the practice of merging all de-
velopers’ working copies to a shared mainline several times a day[12]. It is a software
development practice where everyone on the engineering team is continuously integrating
small code changes back into the codebase. After each change that they’re making, there’s
a suite of tests that runs automatically that checks the code for any bugs or errors or
anything like that. A basic chart below describes how this happens practically:

10

Figure 3. Continuous Integration in practical life

In the Figure 3, Step one is when a developer change code; they make a future branch,
push it up, submit a pull request. Then the integration tool runs tests automatically, and
that’s pretty important before the next move. The tests need to be run in a consistent way
so that everyone on the team has full confidence that they’re running the tests in the same
style, and they can confidently work on the same version of code. If the test pass, the
current developer is good to go and can keep making changes. The same developer can
go right back around, submit another pull request. If the tests fail, he/she need to make
sure to fix the code. Fix the code until tests pass and then continue developing. So it’s this
beautiful cycle. The idea behind this that the development team wants to catch these bugs
as soon as they can. So they’re not lingering over a long period of time.

The software quality is improved by minimizing the integration risks. This is the risks of
testing product at the end of development life cycle instead of testing simultaneously during
the development to catch the bugs and fix as soon as possible. As a result, integration
testing is feasible not only for integration but also for the unit and system testing[10].

11

Continuous deployment is the next step after CI; it is the ongoing delivery process of
features which are updated, tested, and ready for release. CD is part and parcel in the agile
development world. Business matters on continuous delivery where organizations are in
pressure for quick delivery and shorter time to get a return of investment. The continuous
deployment process flow can be illustrated below:

Figure 4. Continuous Deployment process flow [13]

According to Figure 4, CD is a long but automated process where a developer commits
source code for a software program to the code repository. There are several code repository
tools available in the market. Once code is stored in an organized way, code repository
triggers the build process, and then it automatically runs the unit tests. If the unit test
passed, the build goes to automated acceptance tests where testing happens in the test
environment. This is a system-level testing where it runs fully automated tests, and if it
becomes a success, the build is marked as ready for release. Most of the companies follow
user acceptance tests after an automated acceptance test. In this step, ready for release
build deployed to the staging environment and run another automated test to get approved
for release. Finally, QA tester performs manual testing, and the product gets released. In
any of the steps, if the automated or manual testing failed and the release blocker arises,

12

it goes back to the developer to hot-fix and commit the code change. Again, the cycle of
the CD starts. For the management of this process, there are several available tools in the
market; Gitlab is one of those.

Key principles of CI

To achieve highest possible software quality, CI process has to dully follow key principles
listed below:

� Software code should be maintained in the code repository.
� Build and tests of the software project should be automated.
� Code changes should be committed to the code base every day.
� Each delivering of the code should trigger project build and testing process on

dedicated machine.
� The building and testing should be as fast as possible.
� User acceptance test should be run in the production environment.
� Results should be clearly visible and authors of the code delivery should be notified

that their code delivery might cause failure.
� The latest version of application should be easily accessible, and this process of

releasing the application should be automated [10][14].

Benefits and Problems of CI

The advantages of CI are much more valuable than the disadvantages, but those problems
cannot be ignored. Here are two major benefits of CI:

� A major benefit of CI is reduced risk, which is the main challenge of any project.
Because of CI, there is no long integration, so you know where you are, what works
and what is not working; outstanding defects in your project.

� The second benefit of CI makes a solution to frequent deployment. As a result, your
user gets new features more quickly, and interactive feedback comes from the user
side as well. This process brakes the ice between the customer and the development
team.

On the other hand, a couple of main drawbacks of CI are below:

� Initial investments into hardware, that is usually a dedicated machine with CI tool
running on it and its slaves on which the actual CI build and testing is performed.
The cost could be partially limited by the virtualization of some of the machines.

13

Virtualization is a creation of a virtual hardware platform, or operating system,
etc. Also, Tests need to be automatized, which can extensively increase the overall
development expenses.

� Security vulnerabilities need to be taken into account because an attack to the CI
system can mean disclosure of confidential information or system shutdown, which
can have a negative impact on application development process [10]

2.4 Test Automation Approaches

Test automation is not just for test case execution [15]. According to the author of this
article [15]; To work more efficiently and effectively, test engineers must be aware of
various automated testing strategies and tools that assist test activities other than just
test execution. However, automation does not come for free, so it must be carefully
implemented. Test automation strategy comes from the thinking of aftereffect of test suit
implementation, which is test maintenance. In agile software development, continuous
integration plays a vital role where software QA engineers should think about how to
integrate automated testing during development, deployment, and delivery, beyond mere
test execution. However, software engineers will be able to get the highest benefit from
such automation only if they know available strategies and tools for test automation.

To determine strategies, anyone must be aware of the building block of a testing framework.
Based on the testing types and key principles of CI, a basic building block of test automation
framework can be sketched below:

14

Figure 5. Basic building block of a test automation framework

In the Figure 5, We can divide inputs and outputs by the left and right-hand parts. The
test framework depends on several external sources where to inject from the CI/CD tool
requires to get trigger test. The framework must be able to read configurations and web
element object repository. The significant advantage of object repository is the segregation
of locators from the test case; more details are in 4. In addition to that, the framework will
need to read data from a data source like excel files. On the right side, during or after test
execution, bug reporting should be done in a professional way, including all details. Such
details are screenshot, video, logs, etc. which helps on debugging by the developer. Test
execution reports should be generated and send the report to stakeholders, usually HTML
formatted reports.

15

Test automation is software development, so the approaches are similar to the SDLC.
Even if we use a simple record/playback tools, some sort of codes are generated in the
background. Like any project management, test automation strategy requires planning,
analysis, design, implementation, and maintenance.

Figure 6. Test automation approaches aligning with SDLC

According to Figure 6, Test automation planning and designing are one time approach,
whereas development, execution, and maintenance is an iterative approach. In the planning
phase, feasibility study must be done in order to shortlist the relevant test cases for
automation and choosing the right test tool as per client requirement. Then, selecting a
test automation framework is a vital part of the design phase. There are multiple options
to proceed with. For example, linear test automation framework, data-driven framework,
key-word driven framework, etc. Test data management plans and techniques for choosing
reusable libraries are also included in this step. After that, the heart of test automation
starts, which is the development of the test automation script. In this period, creating test
data and building execution flow started, which are the input of the next stage. Finally,
test execution starts where creating a test environment, deploying test suites, test script
execution to reporting bugs are the integral parts. Last but not least, the maintenance of test
suites, update assets, archiving test scripts, and using the test automation for the regression
run must be planned as well. However, based on the scenario of the product update, these
strategies can be changed in the test automation process.

To better understand how this process works, the author of this paper ’Test Automation
Not Just for Test Execution’ derived six testing activities with an enormous potential for
automation[15]. These could be termed as test automation life cycle:

1. Test-case design.
2. Test scripting.
3. Test execution.
4. Test evaluation.
5. Test results reporting.

16

6. Test management and other test engineering activities.

Test-case design; This activity is the first duty of a test engineer when they plan to move
into test automation. Not all test cases designed for the manual test can be automated.
The test case design outputs a suite of test cases (input and expected output values) or test
requirements (for example, control flow paths to cover) [15]. The output of this activity is
being used by the next activity called test scripting.

Test scripting; Test scripting outputs either manual test scripts (in a variety of formats) or
automated test suites for use in test execution. Testers have been manually performing test
scripting for many years [15].

Test execution; Test execution runs the test cases on the AUT and records the results or
observes the AUT’s output or behavior. Decisions made during the previous activities
affect test execution. For example, if a tester develops all the tests as automated test suites,
test execution will obviously be fully automated. In contrast, if the test team develops all
its tests as manual test scripts, test execution must be manual. Test execution is partially
automated if some scripts are automated and others are manual [15].

Test evaluation; There are usually three approaches for evaluating the test outcome (pass
or fail):

� A human tester makes the judgment.
� The developers incorporate (hard-code) test evaluations as verification points (asser-

tions) in the test code.
� The developers build “intelligent” (learning) test oracles, using machine learning

and AI.

Test results reporting

This is usually the last phase; it reports test verdicts and defects to the developers for fixing
- for example, through defect-tracking systems[15].

Test management and other test engineering activities; These activities include test
set minimization (which includes test redundancy detection), regression test selection,
and test repair (conducting maintenance on broken automated tests when the AUT has
changed)[15].

17

3. Evaluation of the Tools

The test automation approach discussed in the previous chapter 2, first step is planning
where you must choose the right test automation tool as per the client requirement. Compa-
nies who have less budget are not interested in test automation, but due to the complexity
of software development, its not easy to ignore. Though they have a financial limitation,
the aspiration to have automation testing leads them to choose the right tool from available
options. An automated test is more effective when time, cost, and usability are concerned
[16].

There is a wide verity of test automation tools that focuses on automating web and mobile
applications, either open source or commercial. While those tools that support a wide range
of applications, with better features and functionality, may require additional costs[16].
In this paper, I tried to automate an e-commerce based web applications for a startup
company; I concentrated mainly on open source tools which are suitable for enterprise
usage. The initial requirement is to automate their checkout process for different browsers,
especially for the web, then enhance for mobile browsers. That means cross-browser
support must be there where it has to support all major browsers including Firefox, Internet
Explorer, Safari, and Google Chrome, on the major Operating Systems (Linux, Windows,
Mac). The next requirement was to provide a programmatic way of creating test scenarios
from manual test scenarios; CI integration is the next target. Finally, the tool has to be
enabled for testing rich web applications (i.e: Ajax-based web sites).

3.1 Criteria for choosing the tools

The criteria for choosing a test automation tool may differ from organization to organization.
This is because of the initial investment in purchasing tools, the high initial cost in designing
test cases, and may require additional training of human resources. To get the maximum
benefit of test automation, criteria for choosing the right tool must be set in a way to make
test automation more reliable, programmable, reusable, comprehensive, and maintainable
in the long run. In addition to that, a tool which can support more excellent test coverage
should be in the list of evaluation parameter.

18

To analyze the features of automated testing tools, we need to identify the features to be
used for distinguishing similarities and dissimilarities of each tool. According to Mittal
[17], when selecting the best tool among automated testing tools, we can consider these
key points: Support to platforms and technology, flexibility for testers of all skill levels,
feature-rich but easy to create automated tests that are reusable, maintainable and resistant
to changes in the applications user interface.

Table 2. Evaluation criteria of test automation tools[16][17][18]

Criteria Definition
Cost Whether free or licensed

Cross platform How many operating systems supported

Cross browser How many browsers supported

Record playback Ability of tool to record scripts

Script language Programming languages used to edit test scripts or for the cre-
ation of testing scripts

Ease of learning How easy the tool is used

Available resources How easily the resources found in online

Programming skills Programming skills needed or not

Data driven The ability of tool to reduce efforts like making it possible to
make the scripts access the different sets of input data from
external source like data tables, excel sheets

Report generation How result is represented

Training cost The training cost for the tool if exist where low is less than 500,
medium is 500-1500 USD, high is 1500++

3.2 Comparison of tools

Several researchers compared the automation tools based on the above-mentioned criteria.
In the article titled ’Comparative review of the features of automated software testing
tools’ the author concluded that if the project cost is to be given higher consideration,
open-source tools such as Selenium is the better option. If the availability of support, ease
of learning, report generation are to be considered, licensed tools such as QTP/UFT is a
good option [16]. In another article titled ’Comparative Analysis of Automated Software
Testing Tools’ the author analyzed only commercial tools and concluded that Loadrunner
is the best tool[18]. They could be correct in their point of view, but Loadrunner is best for
load testing where client-server application, network, and web performance needs to be
tested. Authors of the article [19] ’A Critical Analysis of Software Testing Tools’ could

19

not come to a conclusion but their observation looks practical where for a particular testing
purpose, tradeoffs can be made to select the best tool depending on the size of the project,
the budgeted cost for testing, the platform of the application and also the language that is
used to develop the project. According to my chosen parameter from the client requirement,
I found Gamido [16] has the latest analysis where they showed the comparative review of
the selected automated software testing tools based from the evaluation parameter used in
the above section:

Table 3. Comparative review of automated software testing tools[16][9][20]

Criteria Selenium Watir Test
Com-
plete

QTP Ranorex Load
Runner

Cost Open
source

Open
source

Licensed Licensed Licensed Licensed

Cross plat-
form

Windows
Linux
Mac

Windows
Mac
Linux

Windows Windows Windows Windows
Linux
Mac

Cross
browser

Chrome,
Firefox,
IE, Opera,
Safari

Chrome,
Firefox,
Opera,
IE,Safari

Chrome,
Firefox,
Opera, IE

Chrome,
Firefox,
IE

Chrome,
Firefox,
Opera,
IE,
Netscape,
Safari

Any
browser

Record &
playback

Support Support Support Support Support Support

Script lan-
guage

Java,
Ruby,
Python,
PHP, C#

Ruby,
Java, C#

Vbscript,
C#,
Javascript,
C++, Del-
phi

Vbscript,
Java, C#,
Delphi

Vbscript,
C++, C#,
Python

Vbscript,
C, Vb, C#,
Javascript

Ease of learn-
ing

Experience
needed

Easy to
learn

Experience
needed

Easy to
learn

Easy to
learn

Experience
needed

Available
resources

Plenty Limited Limited Limited Limited Limited

Continues...

20

Table 3 – Continues...

Criteria Selenium Watir Test
Com-
plete

QTP Ranorex Load
Runner

Programming
skills

Needs
to have
program-
ming
skills

Partial Needs
to have
program-
ming
skills

Partial Partial Partial

Data driven Yes Yes Yes Yes Yes Yes

Training cost Low Medium High High High High

Report gener-
ation

Html Html,
Xml

Html,
Xml

Html,
Xml
-gives ex-
ecutive
sum-
mary
of test,
gives
statistics
in the
form
of pie
charts

Html
-with ex-
ecutive
sum-
mary,
with
graphs
for faster
and
better
compar-
ison of
defects
in every
run

Does not
provide
graphical
represen-
tation of
results

3.2.1 Selenium

Selenium is one of the efficient test automation tools become popular among QA engineers
because of the nice test automation framework and flexibility of coding in almost all
popular programming languages. Jason Huggins originally developed Selenium in 2004 as
an internal tool at ThoughtWorks, which is a privately owned global software company
[21]. Mainly Selenium used for web application test automation, but it’s not limited to test
automation only. Web scraping is another usage of Selenium where anyone can scrape data
from javascript generated content from a webpage. Selenium comes with three variants:

� Selenium IDE: A Chrome and Firefox add-on that will do simple record-and-

21

playback of interactions with the browser[22].
� Selenium Webdriver: A robust driver that controls the browser’s behavior. This

is a solution when you want to create browser-based regression automation suites
and tests, scale and distribute scripts across many environments. There are a lot
of different implementations to support main modern browsers(Firefox, Chrome,
Internet Explorer, Opera, Safari) and even some headless browsers(HTMLUnitDriver
and PhantomJS). [4]

� Selenium Grid: It is a server for evaluating instances of web browsers operating on
remote machines. If you want to scale up by spreading and running tests on multiple
machines and control different environments from a central point, making testing
easy to run against a large combination of browsers/OS, then Selenium Grid is the
option[22].

3.2.2 Watir

Watir (Web Application Testing in Ruby) is pronounced like water. It is an open source
family that uses ruby libraries to automate web browsers. Watir enables testers to write
tests that are easy to read and maintain. Watir is simple and flexible[1]. Most important
variations of Watir are:

� Watir-classic: Watir-classic makes use of the fact that Ruby has built-in object
linking and embedding (OLE) capabilities. As such it is possible to drive internet
explorer programmatically. Watir-classic operates differently than HTTP based test
tools, which operate by simulating a browser. Instead, Watir-classic directly drives
the browser through the OLE protocol, which is implemented over the Component
Object Model (COM) architecture [23].

� Watir-webdriver: Watir-webdriver is a modern version of the Watir API based on
Selenium; Jari Bakken has implemented the Watir API as a wrapper around the
Selenium 2.0 API in Ruby [23].

� Watirspec: Watirspec is an executable specification of the Watir API like RubySpec
is for Ruby [23].

22

3.2.3 Test Complete

TestComplete is a functional test automation tool developed by SmartBear Software.
TestComplete gives testers the ability to create automated tests for Windows, Web, Android,
and iOS applications. Tests can be recorded, scripted or manually created with keyword-
driven operations and used for automatic playback and error logging[24]. This is an
automated UI testing tool with artificial intelligence.

3.2.4 QTP

Quick Test Pro (QTP) is a GUI based test automation tool for recording and playback, a
part of the HP quality center tool suite. It was originally written by Mercury Interactive,
which was acquired by HP (Hewlett Packard) in 2006 [1]. It is a tool used to automate
functional and regression tests for various software applications and environments. HP’s
Quick Test Professional uses the VBScript scripting language to specify the test procedures
and to manipulate the objects and controls of the test AUT. QTP also enables us to
test Java applets and applications, and multimedia objects on Applications as well as
a standard Windows application, Java, Visual Basic applications and .NET framework
applications.This works by defining and executing the necessary operations (such as mouse
clicks and keyboard events) of the application user interface or a webpage. Although
HP’s Quick Test Professional is usually used for "UI Based" test case automation, some
"Non-UI Based" test cases, such as file system operation and database testing, can also be
automated. [18].

3.2.5 Ranorex

Ranorex GmbH is a German software development company developed the GUI test
automation tool called Ranorex Studio. This framework is used for desktop, cloud, and
mobile apps quality testing. Using common programming languages such as C and
VB.NET Ranorex Studio supports the development of automated test suits. The main
features of this tool are:

� Recognition of GUI object, filtering of GUI elements using RanoreXPath proprietary
technology

� Object-based recording and replaying using Ranorex Recorder which records the
user’s desktop or web-based interactions and generates users-maintainable scripts
that can be edited with the Ranorex studio action editor. Record and replay for

23

actions such as key presses and touch actions is supported on mobile devices. The
recorded actions are available as both C and VB.NET code [25]

3.2.6 Load Runner

HP’s Load Runner is a test automation tool from Hewlett-Packard for load testing: system
behavior and performance are examined while a real-time load is generated. It works by
creating virtual users that replace current users and generate loads. The load means to
make thousands of simultaneous operators to put the application through the severities of
actual user load, although gathering information from key setup mechanisms. [18].The
key components of LoadRunner are[26]:

� Load Generator generates the load against the application by defined scripts
� VuGen (Virtual User Generator) for generating and editing scripts
� Controller controls, launches, and sequences instances of Load Generator - speci-

fying which script to use, for how long, etc. During runs, the Controller receives
real-time monitoring data and displays status.

� Agent process manages the connection between Controller and Load Generator
instances.

� Analysis assembles logs from various load generators and formats reports for visual-
ization of run result data and monitoring data.

24

4. UI Automation- Page Object Model and other
design patterns

Writing test script using Python is not a tough job as its easy to code and easy to read. It
requires finding elements and perform systematic actions in a webpage. Consider the below
example of a simple selenium script that will navigate to Taltech website and identifies the
search field and enters the query and click on the search button. I used the Taltech website
just for an example other than the AUT I will be using in my real experiment.

from selenium import webdriver

class searchTaltech:

driver =webdriver.Chrome("../drivers/chromedriver")

driver.get("https://taltech.ee/en/")

driver.find_element_by_id(’search-text’).send_keys(’Computer

Systems’)

driver.find_element_by_id(’search-text’).submit()

assert ’No Results’ not in driver.page_source

driver.quit()

In the above code, a test created for UI based web applications using Selenium libraries
have two parts:

� Located the UI elements by locators.
� Performed actions on these elements.

From the code, it looks like maintaining is very easy because of fewer lines of code.
However, when you need to test all the features, it becomes complex UI with many pages
and elements. Then there will many test cases which will increase lines of code, and the
maintenance of the code will be difficult sometimes un-maintainable. In addition to that,
if the same element (i.e., search field) is being used in 15 test cases, then the id of that
field needs to be changed in 15 places, which is time-consuming and impractical when test
engineers continue to add and extend tests.

25

4.1 Page Object Model

To solve the problem mentioned above, an approach of a formalized design pattern called
Page Object Model (POM) incubated in the software development industry. The POM
design pattern principle is about the separation between test classes and pages (business
objects) where it allows test projects to decouple responsibilities (tests VS. page logic) and
expand codes in the test script. This is a design model that distinguishes the UI elements
and tests or operations conducted on them. Usually, the UI components are implemented
as Page Objects with all the associated logic. Tests are entirely independent to execute
these Page Object operations. Thus, features provided by a web page become "services"
provided by the specific page object (i.e., methods) that can easily be called in any test
case. Therefore, all the web page specifics are within the object of the website. Adopting
the page object pattern allows the test developer to operate at a higher abstraction level
(clearly, unless page objects are required)[3].

The diagram below shows the sequence between test and a page object:

Figure 7. Interaction between Test and a PageObjec[27]

According to Figure 7, there is a clear separation between the test object and the page
object, such as the locators and the layout. This is how tests and pages are divided in a
single repository for the services or operations offered by the page rather than having these
services scattered throughout the tests[22]. In the test object, it initializes driver, and tests

26

are verified by getting UI locators from the page object. This permits changes due to UI
changes in both cases to be carried out in one place.

Implementation of POM involves the following steps:

� Review the overall flow of UI Screens.
� Create a Page class for every UI screen.
� A Page Class should return another Page class (via an operation), which represents

the next screen in a flow.
� Create Test classes and test methods that perform operations on Page Objects. [27]

To implement that in POM in the above example of a basic search in the Taltech website,
we need to create a page class for the homepage, separate locators, and test class for
verification. For the Taltech website, we have a login page for login, menu bar for
navigation, the main page where user landed, header section for search. Based on these
four pages, we can design POM like below:

Figure 8. Page Object Model implementation for Taltech webpage with two tests

According to Figure 8, Two tests are implemented, but during the test design, we need to
consider all the pages. Here, the menu is not a separate page, but I considered it as a page
because all the locators of this page need to be separated from the main page, which could
be accessed independently in any test.

27

4.2 Other design patterns

Screenplay model; This model further brings POM into a more legible (and assumed to be
maintainable) screenplay structure by arranging page objects, actions, and other elements
such as inputs, goals, actors, etc. Screenplay pattern is a template pattern (formerly
known as the Journey pattern) for writing acceptance tests that are based on SOLID design
principles. SOLID is a part of Object-Oriented Design, specifically:

� Single Responsibility Principle
� Open Closed Principle
� Liskov Substitution Principle
� Interface Substitution Principle
� Dependency Inversion Principle

When writing an acceptance test, For each web page, each page object containing the UI
item of the web page and behavior, each entity performs while using the Page Object pattern.
The size of the class, therefore, increases with every new item and action. This often leads
to an anti-pattern called “Large Class” which is a violation of some SOLID Principles,
which are SRP (Single Responsibility Principle) and OCP (Open Closed Principle). SRP
states that a class should be responsible for only one responsibility[28]. The OCP notes
that an extension of the class should be allowed, but modification should not be allowed.
Similar principles are adhered to in the screenplay model, and a separate class is required
to perform each actor. This implies that there is a process class for each process. This
makes it easier to read and manage a lot of smaller classes instead of a few larger classes.

Façade Design Pattern; It is similar to the Page Object Model, but it’s geared to full
facades or shapes where many inputs and possibly more than one action need to happen,
the main drawback is that variance in the workflow forces you to create another façade
class. The test level calls the entire façade class and provides an object that contains all the
inputs needed. It is similar to how API testing is sometimes arranged[28].

Fluent Design Pattern; It is a different flavor of POM that is supposed to conform better
with Behavior Driven Development since it forces the test to be done in a "logical chain"
or workflow. The page objects are written in a fluent interface manner in which methods
can be cascaded or chained in a flow of calls. This is achieved by making the methods
return a page class object of the type required to continue the flow [28].

28

4.3 Dependencies

4.3.1 Python

Python – a programming language that focuses on the readability of code. This is a
programming language that lets you work quickly and integrate systems more effectively.
Simple to learn, considered to be the best beginner programming language [4]. A strong
package management system called pip is available, which can be used to install new
packages easily on any OSes where Python is available. pip installs and updates packages
from remote repository called PyPI(Python Package Index) [4]. All packages which are
used in this experiment can be acquired via pip. Python version 3.8.2 will be used in the
experiment of this study.

4.3.2 Selenium Webdriver

As described in chapter 4, Selenium has three components where Selenium Webdriver
is used for a robust solution for cross-browser test automation. Selenium Webdriver has
bindings for Python, so test cases can be written in a pure programming language using
different kinds of helper tools.

Selenium Webdriver controls browser by communicating directly with it; A collection of
open-source APIs are used to automation of testing of a web application to verify it works
as expected. The interface of Webdriver is the starting point of all Selenium Webdriver API
use, where the initial step is to install a WebDriver framework. You create an instance of a
WebDriver interface using a browser-specific constructor. The name of instances varies
for different browsers and programming languages. For example, invoking a new Chrome
instance is like driver = webdriver.Chrome(). The main classes of Selenium Webdriver are:
Webdriver and Web element. Webdriver object represents an instance of a real browser’s
driver and controls the browser’s behavior. Web element object represents an element on
the web page [4]. Selenium 3.141.0 will be used in this experiment.

4.3.3 Webdriver manager

As we create instances of each browser, the browser driver needs to be in the machine
to open it. If the browser driver is not present, Webdriver can’t open it. Another
way is to provide an executable path for browser driver. For example; driver = web-
driver.Chrome("../drivers/chromedriver") where executable path is provided in the parame-
ter. This way is not good solution when you want to run the test in different versions of a

29

browser. The main idea of WebDriver manger is to simplify the management of binary
drivers for different browsers. Currently it supports [29]:

� ChromeDriver
� GeckoDriver
� IEDriver
� OperaDriver
� EdgeChromiumDriver

4.3.4 Unittest

The python version of the unit testing framework; originally inspired by JUnit with a
similar flavor of unit testing frameworks in other languages. It supports test automation,
sharing of setup and shutdown code for tests, aggregation of tests into collections, and
independence of the tests from the reporting framework [30]. To achieve this, unittest

supports some important concepts in an object-oriented way:

test fixture: A test fixture represents the preparation needed to perform one or more tests,
and any associated cleanup actions. This may involve, for example, creating temporary or
proxy databases, directories, or starting a server process[30].

test case: A test case is the individual unit of testing. It checks for a specific response to
a particular set of inputs. unittest provides a base class, TestCase, which may be used to
create new test cases[30].

test suite: A test suite is a collection of test cases, test suites, or both. It is used to aggregate
tests that should be executed together[30].

test runner: A test runner is a component that orchestrates the execution of tests and
provides the outcome to the user. The runner may use a graphical interface, a textual
interface, or return a special value to indicate the results of executing the tests [30].

30

4.3.5 HTML Reports

Once you have Selenium test suite, it needs to executed and test results needs to be analyzed.
On the other hand, stakeholders may want to see reports in a presentable way rather than in
console or IDE. As a result, all your test reports need to be organized clearly, so that you
have the visibility all at one place. Selenium does not come up with reporting capability,
which is one of the most common drawbacks of it. However, there are several third-party
tools that can be integrated within Selenium code. For Python, three popular tools are:

� HTMLTestRunner
� Allure
� Nose

I don’t need fancy reporting since I won’t analyze test run results so that I will use the
basic reporting tool HTMLTestRunner.

31

5. Implementation and Results

For the experiment, I will be using an e-commerce website developed in Shopify. Shopify
is a commerce platform that allows anyone to set up an online store and sell their products.
Merchants can also sell their products in person with Shopify POS[31]. The core product
of Shopify built using Ruby on Rails with data flowing to MySQL. Shopify can be used
to sell physical products, digital products, services and consultations, memberships and
classes and lessons, etc. The AUT for this experiment is a Tallinn based local shop where
the owner wanted to reach customers through online without hampering in-store POS
system. As a result, our company has chosen Shopify, where both of the parts can be
maintained to meet client expectations. The store sells all kinds of halal foods, including
Asian groceries. My experiments will be on the staging website provided by Shopify. This
is how the homepage of the website looks like:

Figure 9. Homepage of AUT - Igavesti web shop

32

According to Figure 9, the mind-map of the website can be implemented from which
manual test plans can be derived. The mind map is an easy way to brainstorm thoughts;
this is a diagram to display tasks, terms, concepts, or articles related to a central concept
or topic, using a non-linear design that enables the user to construct an intuitive context
around a fundamental idea. Before moving to test automation implementation, I will
illustrate mind-map and document test cases for manual test execution of that website.

Figure 10. Mind-map of Igavesti

As illustrated in Figure 10, all the menu and links of the homepage touched at least once,
but it can be divided into sibling nodes as well. For example, checkout can be added
to the sibling of the cart. As discussed in 2, all test cases can not be implemented for
test automation, so from the manual test cases, I will select possible test cases for test
automation. Also, my purpose is not to make a robust test automation framework, but
I want to experiment maintainability of the test suites when a locator id changes or the
website language changes. For test case documentation, items mentioned in the mind-map
needs to be covered at least once to fulfill a regression run. Test cases are documented
below:

33

Table 4. Manual test plan of Igavesti webshop

Test
case
ID

Test
sce-
nario

Test steps Verification Result

TI001 Verify
header
text

1. Go to https://igavesti-ou.myshopify.com
2. Check the header text in top left corner

Header text is shown Pass

TI002 Check
login
with
valid
data

1. Go to https://igavesti-ou.myshopify.com
2. Click on Login
3. Enter valid registered email
4. Enter password
5. Click on Sign In

User is signed in and
landed on my account
page

Pass

TI003 Check
sign up
with
valid
data

1. Go to https://igavesti-ou.myshopify.com
2. Click on Create account
3. Enter first name, last name
4. Enter a valid email and password
5. Click on Create

Account is created suc-
cessfully.

Pass

TI004 Check
empty
cart

1. Go to https://igavesti-ou.myshopify.com
2. Click on cart

Your cart is currently
empty shown.

Pass

TI005 Add
items
to the
cart

1. Go to https://igavesti-ou.myshopify.com
2. Click on Products
3. Open any product
4. Click on Add to cart

Item is added to the cart,
user is taken to Your
Cart page. Quantity
shows 1

Pass

TI006 Check
valid
search

1. Go to https://igavesti-ou.myshopify.com
2. Enter a valid search query
3. Press enter from keyboard

Search result shows,
heading shows: Your
search for "query" re-
vealed the following:

Pass

34

Table 4 Test plan continues
Test
case
ID

Test
sce-
nario

Test steps Verification Result

TI007 Verify
home-
page
redi-
rection

1. Go to https://igavesti-ou.myshopify.com
2. Click on cart
3. Click on Home

User is redirected back
to home. Collections is
shown.

Pass

TI008 Verify
prod-
ucts
page

1. Stay on any page
2. Click on Products

Products page opened.
Section header is: Prod-
ucts, Browse By is
shown.

Pass

TI009 Verify
recipe
page

1. Stay on any page
2. Click on Recipe

Recipe page opened.
Section header is :
Recipe

Pass

TI010 Verify
about
us
page

1. Stay on any page
2. Click on About Us

About Us page op-
ned. Section header is:
About Us

Pass

TI011 Verify
con-
tact us
sub-
mis-
sion

1. Stay on any page
2. Click on Contact Us
3. Enter name, email, message
4. Click on send

Success message is
shown: Thanks for
contacting us. We’ll get
back to you as soon as
possible.

Pass

TI012 Verify
all the
collec-
tions

1. Go to https://igavesti-ou.myshopify.com
2. Click on all the collections

Verify all the collections
pages are opening

Pass

TI013 Verify
Latest
news

1. Go to https://igavesti-ou.myshopify.com
2. Click on Latest news form the footer

News page opened Pass

35

Table 4 Test plan continues
Test
case
ID

Test
sce-
nario

Test steps Verification Result

TI014 Verify
links

1. Go to https://igavesti-ou.myshopify.com
2. Click on all the links from the footer:
Search products
Contact Us
Privacy Policy
Terms & Conditions
Delivery of Goods

All the links pages are
opened

Pass

TI015 Verify
follow
us
links

1. Go to https://igavesti-ou.myshopify.com
2. Check Follow Us shows in the footer

Social links are present Pass

TI016 Verify
newslet-
ter
sign up

1. Go to https://igavesti-ou.myshopify.com
2. Enter a valid email in newsletter
3. Click on subscribe

Subscribed successfully Pass

TI017 Verify
check-
out
flow
(COD)

1. Go to https://igavesti-ou.myshopify.com
2. Click on Products
3. Open any product
4. Click on Add to cart
5. Click on Checkout
6. Enter email, last name, address, city,
postal code
7. Click on Continue to shopping
8. Click on continue to payment
9. Choose Cash on Delivery
10. Complete order

Order is completed, Or-
der ID found.

Pass

36

Table 4 Test plan continues
Test
case
ID

Test
sce-
nario

Test steps Verification Result

TI018 Verify
check-
out
flow
(Dis-
count
code)

1. Go to https://igavesti-ou.myshopify.com
2. Click on Products
3. Open any product
4. Click on Add to cart
5. Click on Checkout
6. Enter email, last name, address, city,
postal code
7. Enter discount code
8. Click on Apply
9. Contniue with shopping
10. Continue to payment
11. Complete order

In step 10, it shows Your
order is free. No pay-
ment is required. Order
completed.

Pass

5.1 Proceed to Test Automation

According to the comparison in Table 3, I have decided to use Selenium to implement
test automation based on the manual test plan documented in Table 4. This is because
selenium is an open-source tool that is cost-effective. In addition to that, it supports almost
all popular OS and browsers. Although all the tools compared in Table3 supports record
and playback, but I am not implementing record-playback script since it’s mostly for non-
programmers. As I will be comparing test suites maintainability in Python, Selenium is
one of the best tools in terms of available resources with low training costs. If a framework
can be implemented in a maintainable way, it would be easier for the client to manage it
in the long term. Before moving to write code for test automation, I am following test
automation approaches mentioned in Chapter 3, where test case documentation is done
in 4. After manual execution, I found in two cases would require a special mechanism to
implement using Selenium Webdriver, so these will be skipped in test automation:

� Robot verification (i.e.: reCAPTCHA)
� Paypal checkout

37

This is because reCAPTCHA is implemented to prevent automated action, so if you can
bypass it easily, then it does not make sense to apply it. For Paypal checkout, this is 3rd
party web page, and what if the locator changes or the UI changes by them in the future.
Things that are not in control within our system, automation won’t be reliable there.

For the test suite comparison, I will be using the same parameters in the script developed
using POM or without POM. This is about locating elements in a page or type of loop
usage in any test method. For the perfect comparison, I will be using the same strategy in
both cases.

Selenium automates the browser; using it, you can automate almost every task in the
browser as if a real person were to execute the same task. Selenium Webdriver is used to
send commands to the browser. As soon as you import Webdriver in your code, you get
access to Webdriver API and you can access classes like:

webdriver.Chrome

webdriver.Firefox

webdriver.Ie

Selenium provides the following methods to locate elements in a page[22]:

� find_element_by_id
� find_element_by_name
� find_element_by_xpath
� find_element_by_link_text
� find_element_by_partial_link_text
� find_element_by_tag_name
� find_element_by_class_name
� find_element_by_css_selector

To find multiple elements (these methods will return a list):

� find_elements_by_name
� find_elements_by_xpath
� find_elements_by_link_text
� find_elements_by_partial_link_text
� find_elements_by_tag_name
� find_elements_by_class_name
� find_elements_by_css_selector

38

Based on element in the DOM of a webpage, I will be using appropriate ways to locate an
element in that webpage. However, the same element can be located in multiple ways. For
example: consider this log in and create account page source from the AUT:

#Login_email field

<input type="email" name="customer[email]" id="CustomerEmail"

placeholder="Email" autocorrect="off" autocapitalize="off"

autofocus="">

#Create Account_email field

<input type="email" name="customer[email]" id="Email"

placeholder="Email" autocorrect="off" autocapitalize="off">

For two different element in two different pages; the customer email field has both id
and name attribute, so choosing the way of locating this element could be tricky. The id
attribute defines a unique ID for an HTML element. The name attribute specifies a name
for the element. XPath can be used to navigate through elements and attributes in an XML
document [32]. The same element can be located by id, by name, and by XPath, but the
preferred way would be by id since its unique. From the above pages, the name is same,
but id is different through the field serves the same functionality from two pages. This is
how locators can be used for this customer email element:

driver.find_element_by_id("CustomerEmail")

driver.find_element_by_name("customer[email]")

driver.find_element_by_xpath("/html/body/main/div/div/div/div/form/input[5]")

To automate login scenarios analysing login page HTML attribute would be the first step
and choosing the locators.

39

Figure 11. Igavesti login page UI with HTML elements

According to Figure 11 Clicking through the desired element and entering inputs would be
sufficient to create a single test case. Lets consider checking valid login test from Table
4. The very first task would be to import Webdriver, then open the browser and open the
specified URL, click on the login link, enter email, enter the password, and click on the
submit button. Finally, quit the browser.

from selenium import webdriver # Import webdriver from Selenium

driver = webdriver .Chrome() # Invoke chrome driver

driver . get (" https :// igavesti −ou.myshopify.com/") # Open the URL

driver . find_element_by_id(’ customer_login_link ’) . click () # Click on Login link

driver . find_element_by_id("CustomerEmail").send_keys(’ azadtestlio@gmail .com’) # Enter

the email

driver . find_element_by_id("CustomerPassword").send_keys(’Tester1234’) # Enter the

password

driver .find_element_by_xpath(" // form[@id=’customer_login ’]// input [@class=’btn’]") . click ()

Click on submit button

driver .find_element_by_xpath(" // h1[contains (text () ,’ My Account’)]") . is_displayed () #

Verify header of the page is My Account

driver . quit () # Quit the browser

40

Now, we have a single test case, but to make it test suite, we need to add more test cases to
it. In the above code, opening the URL would be a common case for each test case. Also,
quitting the browser needs to happen after executing all test cases. If we start adding these
lines in each test cases, the code will become longer and somewhat unmanageable. To
organize those tests accurately and run them all together, unitest framework comes as a
solution. Python unittest module is used to test a unit of source code, but this borrows four
basic concepts from the unit testing which are: test fixture, test case, test suite, test runner
mentioned in 4.3.4. Unittest is built into the Python; it contains both a testing framework
and a test runner. Unittest requires to put tests into classes as methods and use assertion
methods in the unittest.TestCase class instead of the built-in assert statement. The structure
of unitest with a couple of tests looks like below:

import unittest

class TestSuite (unittest .TestCase) :

def setUp(self) :

...

@classmethod

def setUpClass(self) :

...

def test_case_01 (self) :

...

def test_case_02 (self) :

...

def tearDown(self) :

...

@classmethod

def tearDownClass(self) :

...

setUp() : Method called to prepare the test fixture. This is called immediately before
calling the test method; other than AssertionError or SkipTest, any exception raised by this
method will be considered an error rather than a test failure. The default implementation
does nothing[30].

tearDown() : Method called immediately after the test method has been called and the result
recorded. This is called even if the test method raised an exception, so the implementation
in subclasses may need to be particularly careful about checking internal state [30].

41

setUpClass() : A class method called before tests in an individual class are run. setUpClass
is called with the class as the only argument and must be decorated as a classmethod()
[30].

tearDownClass() : A class method called after tests in an individual class have run.
tearDownClass is called with the class as the only argument and must be decorated as a
classmethod() [30]. A classmethod transform a method into a class method.

Figure 12. Order of execution for the example test cases

Figure 12 is the illustration of the order of the execution for the test suite in the unittest
with an example of a couple of tests. Now, converting actual test cases to a unittest test
case, the following steps need to be accomplished:

1. Import unittest
2. Create a class called TestLogin
3. Add test into methods of the class
4. Add the command-line entry point to call unittest.main()

42

Figure 13. A single login test case class diagram

In the Figure 13, I used setUp and tearDown methods as there is only one test case. When
designing a test suite, some actions needs to be done initially and use it throughout the test
execution. For example, test URL opening requires once before start execution, so it can
be added to setUpClass. The same applies for quit a browser once all the test finished, so
tearDownClass is the perfect choice when adding more tests. Multiple test cases can be
added in the same suite by adding more methods:

Figure 14. Class diagram of login test cases without POM

The default ordering of tests created by the unittest test loaders is to group all tests from
the same modules and classes together. This will lead to setUpClass being called exactly
once per class and module. If you randomize the order, so that tests from different modules
and classes are adjacent to each other, then these shared fixture functions may be called
multiple times in a single test run[30]. Tests are alphabetically ordered, so I added 01 and
02 for ordering these tests showed in Figure 14. However, there are several ways to order
tests, add @ordered tag before each test case. By adding all the test cases mentioned in
Igavesti test plan in Table 4, this becomes the test suite without Page Object Model. The
full code can be viewed in appendix in the chapter 6

43

5.2 Test suite with Page Object Model

The same test suite implemented using Page Object Model where tests are separated and
pages are separated. All the locators are added in a separate file as well. As a result,
if any locator id changes, it can be modified from one place. The above tests for login
can be implemented in Page Object Model. In POM, every web page should have a
separate class having its objects and methods, then test script should be separated from
the object. Here, we have three pages related to the tests: My account page for assertion
after successful login, Homepage where login link clicked and Login page where email,
password submitted, . No need touch setUpClass and tearDownClass since these does not
contain any page information.

In the homepage, finding login link and clicking on it are the tasks so here one object and
one action needs to be created. In the login page class, three objects and three methods
needs to be created where locators of email field,password field, sign in button are objects
and methods are entering email, password, clicking on sign in button. Finally, in the my
account page class, two locators and two method needs to be created where getting the
header text and click on logout link are methods and locators of those elements are the
objects. All the pages are separated from the tests, now test needs to be modified to use
attributes of these classes.

Figure 15. Class diagram of valid invalid login test cases with POM

44

This class diagram are for two test cases but for my analysis I have created a full test suite
with all 18 test cases mentioned in Table 4. The full code can be viewed in the appendix in
chapter 6 . The source code tree of the codes without POM and with POM are generated
below:

Figure 16. Source code tree of test suites, With POM on the left and Without POM on the
right

According to Figure 16 with POM code tree has many folders and files but only a few
when doing the same without POM. However, all the locators are within test cases in the
code without POM which makes difficult to maintain it.

45

5.3 Analysis

A total 44 locators used in the test suites in both of the codes for the same test plan.
Analysis of locators from each pages are listed below:

Table 5. Homepage locators

Homepage locators
Used in Places Places need to be changed
POM No POM

Yes
POM No POM

Yes
header_text_xpath 1 1 1 1

customer_login_link_id 2 2 2 1

customer_register_link_id 1 1 1 1

cart_class_name 1 1 1 1

search_field_xpath 1 1 1 1

latest_news_link_text 1 1 1 1

links_partial_link_text 2 2 2 1

social_links_xpath 1 1 1 1

subscribe_email_field_id 1 1 1 1

subscribe_button_id 1 1 1 1

subscribe_success_css_selector 1 1 1 1

home_link_text 17 17 17 1

products_link_text 5 5 5 1

recipe_link_text 1 1 1 1

about_us_link_text 1 1 1 1

contact_us_xpath 1 1 1 1

Table 6. My account page locators

My Account pages locators
Used in Places Places need to be changed
POM No POM

Yes
POM No POM

Yes
my_account_header_xpath 1 1 1 1

account_details_xpath 1 1 1 1

customer_log_out_link_id 1 1 1 1

46

Table 7. Login & Sign Up page locators

Login & Sign up page locators
Used in Places Places need to be changed
POM No POM

Yes
POM No POM

Yes
customer_email_id 3 3 3 1

customer_password_id 2 2 2 1

sign_in_button_xpath 2 2 2 1

first_name_id 1 1 1 1

last_name_id 1 1 1 1

email_id 3 3 3 1

create_password_id 1 1 1 1

create_button_xpath 1 1 1 1

Table 8. Product flow pages locators

Product & PDP pages locators
Used in Places Places need to be changed
POM No POM

Yes
POM No POM

Yes
all_items_css_selector 3 3 3 1

add_to_cart_button_id 3 3 3 1

Table 9. Cart page locators

Cart page locators
Used in Places Places need to be changed
POM No POM

Yes
POM No POM

Yes
remove_cart_class_name 1 1 1 1

checkout_button_name 2 2 2 1

Table 10. Contact us page locators

Contact us page locators
Used in Places Places need to be changed
POM No POM

Yes
POM No POM

Yes
contact_form_name_id 1 1 1 1

contact_form_email_id 1 1 1 1

contact_form_message_id 1 1 1 1

contact_send_button_xpath 1 1 1 1

47

Table 11. Shipping flow pages locators

Shipping flow pages locators
Used in Places Need changes
POM No POM

Yes
POM No POM

Yes
checkout_email_or_phone_xpath 2 2 2 1

checkout_shipping_address_last_name_id 2 2 2 1

checkout_shipping_address_address1_id 2 2 2 1

checkout_shipping_address_city_id 2 2 2 1

checkout_shipping_address_zip_id 2 2 2 1

shipping_checkout_continue_button_xpath 4 4 4 1

checkout_reduction_code_id 2 2 2 1

continue_to_payment_xpath 4 4 4 1

cash_on_delivery_radio_button_xpath 1 1 1 1

complete_order_button_id 4 4 4 1

order_number_class_name 2 2 2 1

continue_shopping_link_text 1 1 1 1

48

For the analysis, I am excluding the locators which used only once. Combining all the
locators which are used more than once.

Table 12. All pages locators which were used at least twice

All pages locators used multiple times
Used in Places Change in places
POM No POM

Yes
POM No POM

Yes
customer_login_link_id 2 2 2 1

links_partial_link_text 2 2 2 1

home_link_text 17 17 17 1

products_link_text 5 5 5 1

customer_email_id 3 3 3 1

customer_password_id 2 2 2 1

sign_in_button_xpath 2 2 2 1

email_id 3 3 3 1

all_items_css_selector 3 3 3 1

add_to_cart_button_id 3 3 3 1

checkout_button_name 2 2 2 1

checkout_email_or_phone_xpath 2 2 2 1

checkout_shipping_address_last_name_id 2 2 2 1

checkout_shipping_address_address1_id 2 2 2 1

checkout_shipping_address_city_id 2 2 2 1

checkout_shipping_address_zip_id 2 2 2 1

shipping_checkout_continue_button_xpath 4 4 4 1

checkout_reduction_code_id 2 2 2 1

continue_to_payment_xpath 4 4 4 1

complete_order_button_id 4 4 4 1

order_number_class_name 2 2 2 1

49

From the Table 12 the plotting can be drawn below:

Figure 17. All pages locators- Changes requires for each id changes

According to Figure 17, it can be seen that for home link text only 1 changes required in
the test suite designed with POM, whereas 17 changes required for the same id. As this is
small test suite, not many locators used multiple times but at least 8 times more changes
required as per the results of the [3] which can be changed for big test suite with at least
100 test cases where tests are related to each other.

If website language changes, then the locators with id won’t need to changes because these
are unique. However, link_text, partial_link_text, name, xpath etc. needs to changes. In
that case, less locators needs to be changes but the number of places needs remains same.

Figure 18. All pages locators- Changes requires for language changes

50

6. Summary

Web test automation is becoming complex due to dynamic web development, but having
a test suite by investing time and money can be fruitful in the long run. The results of
this experimental study conducted to check how POM can improve maintainability in test
automation suites. I can give a positive answer to my research questions where the test
suite implemented using POM requires less effort to update when a locator id changes or
the webpage language changes. After this experiment, I came to a solution to keep these
points in mind when designing test suite:

� Consider test automation as a software development
� Choose the way of locator which has less chance to be changed
� Test data should be in a separate file
� All the locators should be in a single file
� Common tasks in the SetUpClass
� Last tasks in tearDownClass

Due to time constraints, I could not integrate the tests CI/CD, but this can be done in the
future. Finally, to get the best result of test automation, it must be designed in a way that
maintenance of the test suite takes less time, less effort and adopt with changes by keeping
the same automation tool.

After doing this thesis, my experience with programming has increased. Test automation
with CI/CD process are in my portfolio now, so that I can look forward to the next challenge
in my career from manual to automation testing.

51

Bibliography

[1] Monika Sharma and Rigzin Angmo. “Web based Automation Testing and Tools”. In:
(IJCSIT) International Journal of Computer Science and Information Technologies

5.1 (2014), pp. 908–912.

[2] Børge Haugset and Geir Kjetil Hanssen. “Automated Acceptance Testing: A Lit-
erature Review and an Industrial Case Study”. In: Agile 2008 Conference (2008),
pp. 27–38. DOI: 10.1109/agile.2008.82.

[3] Maurizio Leotta et al. “Improving Test Suites Maintainability with the Page Object
Pattern: An Industrial Case Study”. In: 2013 IEEE Sixth International Conference

on Software Testing, Verification and Validation Workshops (2013), pp. 108–113.
DOI: 10.1109/icstw.2013.19.

[4] Kaarel Allik. “Selenium-Based web Test Automation Framework Development”.
2015.

[5] Maurizio Leotta et al. “Automated generation of visual web tests from DOM-
based web tests”. In: Proceedings of the 30th Annual ACM Symposium on Applied

Computing - SAC 15 (2015). DOI: 10.1145/2695664.2695847.

[6] Cem Kaner. Improving the Maintainability of Automated Test Suites.

[7] Amorim Daniel. Why companies choose paid test automation tools rather

than free? | LinkedIn. https : / / www . linkedin . com / pulse / why -
companies- choose- paid- test- automation- tools- rather-

daniel-amorim/. (Accessed on 04/10/2020). Apr. 2018.

[8] Joost Visser. Building maintainable software: ten guidelines for future-proof code.
OReilly, 2016.

[9] Muhammad Abid Jamil et al. “Software Testing Techniques: A Literature Review”.
In: 2016 6th International Conference on Information and Communication Technol-

ogy for The Muslim World 16.1 (2016), pp. 177–182.

[10] Juraj Húska. “Automated Testing of the Component-based Web Application User
Interfaces”. 2012.

[11] “ISO/IEC/IEEE International Standard - Software and systems engineering – Soft-
ware testing –Part 3: Test documentation”. In: ISO/IEC/IEEE 29119-3:2013(E)

(2013), pp. 1–138.

52

https://doi.org/10.1109/agile.2008.82
https://doi.org/10.1109/icstw.2013.19
https://doi.org/10.1145/2695664.2695847
https://www.linkedin.com/pulse/why-companies-choose-paid-test-automation-tools-rather-daniel-amorim/
https://www.linkedin.com/pulse/why-companies-choose-paid-test-automation-tools-rather-daniel-amorim/
https://www.linkedin.com/pulse/why-companies-choose-paid-test-automation-tools-rather-daniel-amorim/

[12] Continuous integration - Wikipedia. https://en.wikipedia.org/wiki/
Continuous_integration. (Accessed on 04/17/2020).

[13] Best Practices for Continuous Deployment | Lucidchart Blog. https : / /
www . lucidchart . com / blog / continuous - deployment - best -

practices. (Accessed on 04/20/2020).

[14] Continuous Integration. https : / / martinfowler . com / articles /
continuousIntegration.html. (Accessed on 04/21/2020).

[15] Vahid Garousi and Frank Elberzhager. “Test Automation: Not Just for Test Execu-
tion”. In: IEEE Software 34.2 (2017), pp. 90–96. DOI: 10.1109/ms.2017.34.

[16] Heidilyn Veloso Gamido and Marlon Viray Gamido. “Comparative Review of
the Features of Automated Software Testing Tools”. In: International Journal of

Electrical and Computer Engineering (IJECE) 9.5 (Jan. 2019), pp. 4473–4478. DOI:
10.11591/ijece.v9i5.pp4473-4478.

[17] Harish Mittal. “Comparative Analysis of Automated Functional Testing Tools”.
In: Journal of Network Communications and Emerging Technologies (JNCET) 6.6
(June 2016), pp. 50–53. DOI: 10.26565/2519-2310-2019-1-07.

[18] Majid Khan et al. “Comparative Analysis of Automated Software Testing Tools”. In:
International Journal of Soft Computing and Engineering (IJSCE) 6.4 (Sept. 2016),
pp. 46–49. DOI: 10.26565/2519-2310-2019-1-07.

[19] F. Okezie, I. Odun-Ayo, and S. Bogle. “A Critical Analysis of Software Testing
Tools”. In: Journal of Physics: Conference Series 1378 (Dec. 2019), p. 042030. DOI:
10.1088/1742-6596/1378/4/042030. URL: https://doi.org/10.
1088%2F1742-6596%2F1378%2F4%2F042030.

[20] Inderjeet Singh and Bindia Tarika. “Comparative Analysis of Open Source Au-
tomated Software Testing Tools: Selenium, Sikuli and Watir”. In: International

Journal of Information Computation Technology 4.15 (2014), pp. 1507–1518.

[21] Selenium (software) - Wikipedia. https://en.wikipedia.org/wiki/
Selenium_(software). (Accessed on 04/27/2020).

[22] SeleniumHQ Browser Automation. https://www.selenium.dev/. (Ac-
cessed on 04/27/2020).

[23] Watir - Wikipedia. https://en.wikipedia.org/wiki/Watir. (Accessed
on 04/27/2020).

[24] TestComplete - Wikipedia. https : / / en . wikipedia . org / wiki /
TestComplete. (Accessed on 04/27/2020).

[25] Ranorex Studio - Wikipedia. https : / / en . wikipedia . org / wiki /
Ranorex_Studio. (Accessed on 04/27/2020).

53

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://www.lucidchart.com/blog/continuous-deployment-best-practices
https://www.lucidchart.com/blog/continuous-deployment-best-practices
https://www.lucidchart.com/blog/continuous-deployment-best-practices
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1109/ms.2017.34
https://doi.org/10.11591/ijece.v9i5.pp4473-4478
https://doi.org/10.26565/2519-2310-2019-1-07
https://doi.org/10.26565/2519-2310-2019-1-07
https://doi.org/10.1088/1742-6596/1378/4/042030
https://doi.org/10.1088%2F1742-6596%2F1378%2F4%2F042030
https://doi.org/10.1088%2F1742-6596%2F1378%2F4%2F042030
https://en.wikipedia.org/wiki/Selenium_(software)
https://en.wikipedia.org/wiki/Selenium_(software)
https://www.selenium.dev/
https://en.wikipedia.org/wiki/Watir
https://en.wikipedia.org/wiki/TestComplete
https://en.wikipedia.org/wiki/TestComplete
https://en.wikipedia.org/wiki/Ranorex_Studio
https://en.wikipedia.org/wiki/Ranorex_Studio

[26] LoadRunner - Wikipedia. https://en.wikipedia.org/wiki/LoadRunner.
(Accessed on 04/27/2020).

[27] Design Patterns - Page Object Model - Experitest - Test Execution. https://
docs.experitest.com/display/TE/Design+Patterns+-+Page+

Object+Model. (Accessed on 04/28/2020).

[28] UI Automation - Page Object Model and other Design Patterns - Microsoft Tech

Community - 992242. https://techcommunity.microsoft.com/t5/
testingspot-blog/ui-automation-page-object-model-and-

other-design-patterns/ba-p/992242?fbclid=IwAR2KGUiJ_

MKsjJuk_2tGTEAQvkGaNsJzw9xxEDY91uaYlefkpRNbG2jI1GY#. (Ac-
cessed on 05/04/2020).

[29] SergeyPirogov/webdriver_manager. https://github.com/SergeyPirogov/
webdriver_manager. (Accessed on 05/06/2020).

[30] unittest — Unit testing framework — Python 3.8.3rc1 documentation. https:
//docs.python.org/3/library/unittest.html. (Accessed on
05/06/2020).

[31] What is Shopify? How to Start Selling on Shopify. https://www.shopify.
com/blog/what-is-shopify. (Accessed on 05/05/2020).

[32] HTML name Attribute. https://www.w3schools.com/tags/att_name.
asp. (Accessed on 05/11/2020).

54

https://en.wikipedia.org/wiki/LoadRunner
https://docs.experitest.com/display/TE/Design+Patterns+-+Page+Object+Model
https://docs.experitest.com/display/TE/Design+Patterns+-+Page+Object+Model
https://docs.experitest.com/display/TE/Design+Patterns+-+Page+Object+Model
https://techcommunity.microsoft.com/t5/testingspot-blog/ui-automation-page-object-model-and-other-design-patterns/ba-p/992242?fbclid=IwAR2KGUiJ_MKsjJuk_2tGTEAQvkGaNsJzw9xxEDY91uaYlefkpRNbG2jI1GY##
https://techcommunity.microsoft.com/t5/testingspot-blog/ui-automation-page-object-model-and-other-design-patterns/ba-p/992242?fbclid=IwAR2KGUiJ_MKsjJuk_2tGTEAQvkGaNsJzw9xxEDY91uaYlefkpRNbG2jI1GY##
https://techcommunity.microsoft.com/t5/testingspot-blog/ui-automation-page-object-model-and-other-design-patterns/ba-p/992242?fbclid=IwAR2KGUiJ_MKsjJuk_2tGTEAQvkGaNsJzw9xxEDY91uaYlefkpRNbG2jI1GY##
https://techcommunity.microsoft.com/t5/testingspot-blog/ui-automation-page-object-model-and-other-design-patterns/ba-p/992242?fbclid=IwAR2KGUiJ_MKsjJuk_2tGTEAQvkGaNsJzw9xxEDY91uaYlefkpRNbG2jI1GY##
https://github.com/SergeyPirogov/webdriver_manager
https://github.com/SergeyPirogov/webdriver_manager
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://www.shopify.com/blog/what-is-shopify
https://www.shopify.com/blog/what-is-shopify
https://www.w3schools.com/tags/att_name.asp
https://www.w3schools.com/tags/att_name.asp

Appendices

Appendix 1 - Full test suite without POM

Github link: https://github.com/azadnsu/IgavestiWithoutPOM

Valid login test:

from selenium import webdriver # Import webdriver from Selenium

import unittest # Import unittest

class TestLogin(unittest .TestCase) :

def setUp(self) :

self . driver = webdriver .Chrome() # Invoke chrome driver

def test_valid_login (self) :

driver = self . driver # Setup driver variable to self . driver so no need to

type self . driver each time

driver . get (" https :// igavesti −ou.myshopify.com/") # Open the URL

driver . find_element_by_id(’ customer_login_link ’) . click () # Click on Login

link

driver . find_element_by_id("CustomerEmail").

send_keys(’ azadtestlio@gmail .com’) # Enter the email

driver . find_element_by_id("CustomerPassword").

send_keys(’Tester1234’) # Enter the password

driver .find_element_by_xpath(

" // form[@id=’customer_login ’]// input [@class=’btn’]") . click () # Click on

submit button

section_header =

driver .find_element_by_class_name(" section− header__title ") # Find the section

header

self . assertEqual (section_header . text , "My Account") # Verify header of the

page is My Account

55

https://github.com/azadnsu/IgavestiWithoutPOM

def tearDown(self) :

self . driver . quit () # Quit the browser

if __name__ == ’__main__’:

unittest .main()

Valid invalid login tests:

from selenium import webdriver # Import webdriver from Selenium

import unittest # Import unittest

class TestLogin(unittest .TestCase) :

@classmethod

def setUpClass(cls) :

cls . driver = webdriver . Firefox () # Invoke chrome driver just at the begining

of test execution

cls . driver . get (" https :// igavesti −ou.myshopify.com/") # Open the URL at the

beginning of test

def test_01_valid_login (self) :

driver = self . driver # Setup driver variable to self . driver so no need to

type self . driver each time

driver . find_element_by_id(’ customer_login_link ’) . click () # Click on Login

link

driver . find_element_by_id("CustomerEmail").

send_keys(’ azadtestlio@gmail .com’) # Enter the email

driver . find_element_by_id("CustomerPassword").

send_keys(’Tester1234’) # Enter the password

driver .find_element_by_xpath(

" // form[@id=’customer_login ’]// input [@class=’btn’]") . click () # Click on

submit button

section_header =

driver .find_element_by_class_name(" section− header__title ") # Find the section

header

self . assertEqual (section_header . text , "My Account") # Verify header of the

page is My Account

driver . find_element_by_id(’ customer_logout_link ’) . click () # Need to sign out

after this test for the next one

56

def test_02_invalid_login (self) :

driver = self . driver # Setup driver variable to self . driver so no need to

type self . driver each time

driver . find_element_by_id(’ customer_login_link ’) . click () # Click on Login

link

driver . find_element_by_id("CustomerEmail").

send_keys(’ azadtestlio@gmail .com’) # Enter the email

driver . find_element_by_id("CustomerPassword").

send_keys(’Tester12345’) # Enter the password

driver .find_element_by_xpath(

" // form[@id=’customer_login ’]// input [@class=’btn’]") . click () # Click on

submit button

assert ’ Incorrect email or password.’ in driver .page_source # Verify error is

shown

@classmethod

def tearDownClass(cls) :

cls . driver . quit () # Quit the browser

if __name__ == ’__main__’:

unittest .main()

import unittest

from selenium import webdriver

from webdriver_manager.chrome import ChromeDriverManager

import time

import HtmlTestRunner

from selenium.webdriver .common.by import By

from selenium.webdriver . support . ui import WebDriverWait

from selenium.webdriver . support import expected_conditions as EC

import random

from selenium.webdriver .common.keys import Keys

from selenium.common.exceptions import NoSuchElementException

from random import randint

class IgaveestiTestSuite (unittest .TestCase) :

@classmethod

def setUpClass(cls) :

cls . driver = webdriver .Chrome(ChromeDriverManager().install())

57

cls . driver . implicitly_wait (10)

cls . driver .maximize_window()

def test_01_header_text_present (self) :

driver = self . driver

driver . get (" https :// igavesti −ou.myshopify.com/")

driver .find_element_by_xpath(" // div[@class=’header−bar__module

header−bar__message’]").is_displayed()

time. sleep (1)

@unittest . skip ("Due to reCAPTCHA skip it")

def test_02_valid_login (self) :

driver =self . driver

Login_link = driver . find_element_by_id(’ customer_login_link ’)

Login_link . click ()

WebDriverWait(driver , 10) . until (

EC.presence_of_element_located ((By.ID, "CustomerEmail"))

)

driver . find_element_by_id("CustomerEmail").send_keys(’ azadtestlio@gmail .com’)

driver . find_element_by_id("CustomerPassword").send_keys(’Tester1234’)

driver .find_element_by_xpath(" // form[@id=’customer_login ’]// input [@class=’btn’]") . click ()

driver .find_element_by_xpath(" // h1[contains (text () ,’ My

Account’)]") . is_displayed ()

driver .find_element_by_xpath(" // h2[contains (text () ,’ Account

Details ’)]") . is_displayed ()

driver . find_element_by_id(’ customer_logout_link ’) . click ()

@unittest . skip ("Due to reCAPTCHA skip it")

def test_002_invalid_login (self) :

driver =self . driver

Login_link = driver . find_element_by_id(’ customer_login_link ’)

Login_link . click ()

driver . find_element_by_id("CustomerEmail").send_keys(’azadtestlioyy@gmail .com’)

driver . find_element_by_id("CustomerPassword").send_keys(’Tester1234’)

driver .find_element_by_xpath(" // form[@id=’customer_login ’]// input [@class=’btn’]") . click ()

assert ’ Incorrect email or password.’ in driver .page_source

@unittest . skip ("Due to reCAPTCHA skip it")

def test_03_create_account (self) :

driver = self . driver

driver . find_element_by_id(" customer_register_link ") . click ()

58

WebDriverWait(driver , 10) . until (

EC.presence_of_element_located ((By.CLASS_NAME, "btn"))

)

name_generator = ’Azad’+str(random.randint (0, 99))

password_generator = ’ Tester ’+str (random.randint (0, 99))

driver . find_element_by_id("FirstName").send_keys(name_generator)

driver . find_element_by_id("LastName").send_keys(name_generator)

driver . find_element_by_id("Email") .send_keys(name_generator+’@gmail.com’)

driver . find_element_by_id("CreatePassword") .send_keys(password_generator)

driver .find_element_by_xpath(" // form[@id=’create_customer ’]// input [@class=’btn’]") . click ()

time. sleep (2)

def test_04_empty_cart (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

driver .find_element_by_class_name(" cart−page−link").click ()

assert "Your cart is currently empty" in driver .page_source

assert driver . find_elements_by_css_selector ("p. cart−−empty−message") ==

"Your cart is currently empty."

def test_05_add_product_to_cart (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

driver . find_element_by_link_text (’Products ’) . click ()

all_items = driver . find_elements_by_css_selector (’p. grid− link__title ’)

item = all_items [randint (0, len (all_items) − 1)]

print (item. text)

item. click ()

driver . find_element_by_id(’AddToCart’). click ()

assert "Your Shopping Cart" in driver . title

WebDriverWait(driver , 10) . until (

EC.presence_of_element_located ((By.CLASS_NAME, "btn"))

)

driver .find_element_by_class_name(’cart__remove’) . click ()

assert "Your cart is currently empty" in driver .page_source

def test_06_valid_search (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

search_term = ’Chicken’

search_field = driver .find_element_by_xpath(" // div[@class=’header−bar__right

59

post−large−−display−table−cell’]// input [@placeholder=’Search’]")

search_field .send_keys(search_term)

search_field .send_keys(Keys.RETURN)

try :

assert search_term in driver . title

print (" Assertion Test Passed")

except Exception as e:

print (" Assertion Test Failed " , format(e))

def test_07_homepage_redirection (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

assert ’Home’ in driver . title

def test_08_products_page_redirection (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

driver . find_element_by_link_text (’Products ’) . click ()

assert ’Products ’ in driver . title

def test_09_recipe_page_redirection (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

driver . find_element_by_link_text (’Recipe’) . click ()

assert ’Recipe’ in driver . title

def test_10_about_us_page_redirection (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

driver . find_element_by_link_text (’About Us’). click ()

assert ’About Us’ in driver . title

@unittest . skip ("Due to reCAPTCHA skip it")

def test_11_contact_us_form_submission (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

driver .find_element_by_xpath(" // a[@class=’ site−nav__link’][contains (text () ,’ Contact

Us’)]") . click ()

name_generator = ’Azad’ + str (random.randint (0, 99))

driver . find_element_by_id(’ContactFormName’).send_keys(name_generator)

60

driver . find_element_by_id(’ContactFormEmail’).send_keys(name_generator+’@gmail.com’)

driver . find_element_by_id(’ContactFormMessage’).send_keys(’Test message,

please ignore ’)

driver .find_element_by_xpath(" // input [@class=’btn right ’] ") . click ()

assert "Thanks for contacting us . We’ll get back to you as soon as possible . "

in driver .page_source

def test_12_all_collections (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

collections = ["Meat", "Fish" , "Spices" , "Ghee", "Vegetable" , "Frozen",

"Rice" , "Sweets"]

for collection_name in collections :

driver . find_element_by_link_text (’Home’).click ()

driver . find_element_by_partial_link_text (collection_name) . click ()

assert collection_name in driver . title

def test_13_latest_news (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

driver . find_element_by_link_text (’ Latest News’). click ()

assert ’News’ in driver . title

def test_14_links_from_footer (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

footer_partial_link_text = ["Search" , "Contact" , "Privacy" , "Terms",

"Delivery"]

for link in footer_partial_link_text :

driver . find_element_by_link_text (’Home’).click ()

driver . find_element_by_partial_link_text (link) . click ()

assert link in driver . title

def test_15_follow_us_from_footer (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

try :

driver . find_elements_by_xpath(" // ul [@class=’ inline− list social−icons’]")

except NoSuchElementException:

return False

return True

61

@unittest . skip ("Due to reCAPTCHA skip it")

def test_16_subscribe (self) :

driver = self . driver

driver . find_element_by_link_text (’Home’).click ()

email_generator = ’username’+str (random.randint (0, 999))+’@gmail.com’

driver . find_element_by_id(’Email’) . clear ()

driver . find_element_by_id(’Email’) .send_keys(email_generator)

driver . find_element_by_id(’ subscribe ’) . click ()

if driver . find_elements_by_css_selector (’p.note form−success’):

print ("Element exists ")

else :

print ("No such element exist ")

def test_17_complete_checkout_cash_on_delivery (self) :

driver = self . driver

driver .find_element_by_xpath(" // a[@class=’ site−nav__link’

[contains (text () ,’ Products ’)]") . click ()

all_items = driver . find_elements_by_css_selector (’p. grid− link__title ’)

item = all_items [randint (0, len (all_items) − 1)]

print (item. text)

item. click ()

driver . find_element_by_id(’AddToCartText’). click ()

driver .find_element_by_name(’checkout’) . click ()

WebDriverWait(driver , 10) . until (

EC.presence_of_element_located ((By.ID, "checkout_email_or_phone"))

)

driver .find_element_by_xpath(" // input [@id=’checkout_email_or_phone’]").

send_keys(’username’+str (random.randint (0,999))+’@gmail.com’)

driver . find_element_by_id(’ checkout_shipping_address_last_name ’) .

send_keys(’LastName’+str(random.randint (0,99)))

driver . find_element_by_id(’ checkout_shipping_address_address1 ’) .

send_keys(’ Tester Lane’+str (random.randint (0,99)))

city = [" Tallinn " , "Tartu" , "Parnu"]

driver . find_element_by_id(’ checkout_shipping_address_city ’) .send_keys(random.choice(city))

driver . find_element_by_id(’ checkout_shipping_address_zip ’) .send_keys(random.randint(10000,15000))

driver .find_element_by_xpath(" // button [@id=’continue_button’]") . click ()

WebDriverWait(driver , 10) . until (

EC.element_to_be_clickable ((By.ID, " continue_button "))

)

62

driver .find_element_by_xpath(" // button [@id=’continue_button’]") . click ()

driver .find_element_by_xpath(" // input [@id=’checkout_payment_gateway_47481028746’]").click()

time. sleep (1)

driver . find_element_by_id(" continue_button ") . click ()

WebDriverWait(driver , 10) . until (

EC.presence_of_element_located ((By.CLASS_NAME, "os−order−number"))

)

assert ’Thank you for your purchase’ in driver . title

print (driver .find_element_by_class_name(’os−order−number’))

driver . find_element_by_link_text ("Continue shopping") . click ()

def test_18_complete_checkout_by_discount_code(self) :

driver = self . driver

driver .find_element_by_xpath(" // a[@class=’ site−nav__link’][contains (text () ,’ Products ’)]") . click ()

all_items = driver . find_elements_by_css_selector (’p. grid− link__title ’)

item = all_items [randint (0, len (all_items) − 1)]

print (item. text)

item. click ()

driver . find_element_by_id(’AddToCartText’). click ()

driver .find_element_by_name(’checkout’) . click ()

WebDriverWait(driver , 10) . until (

EC.presence_of_element_located ((By.ID, "checkout_email_or_phone"))

)

driver . find_element_by_id(’checkout_reduction_code’) .send_keys(’TALTECH’)

driver . find_element_by_id(’checkout_reduction_code’) .send_keys(Keys.RETURN)

driver .find_element_by_xpath(" // input [@id=’checkout_email_or_phone’]").

send_keys(’username’+str (random.randint (0,999))+’@gmail.com’)

driver . find_element_by_id(’ checkout_shipping_address_last_name ’) .

send_keys(’LastName’+str(random.randint (0,99)))

driver . find_element_by_id(’ checkout_shipping_address_address1 ’) .

send_keys(’ Tester Lane’+str (random.randint (0,99)))

city = [" Tallinn " , "Tartu" , "Parnu"]

driver . find_element_by_id(’ checkout_shipping_address_city ’) .

send_keys(random.choice(city))

driver . find_element_by_id(’ checkout_shipping_address_zip ’) .

send_keys(random.randint(10000,15000))

driver .find_element_by_xpath(" // button [@id=’continue_button’]") . click ()

WebDriverWait(driver , 10) . until (

EC.element_to_be_clickable ((By.ID, " continue_button "))

63

)

driver .find_element_by_xpath(" // button [@id=’continue_button’]") . click ()

driver . find_element_by_id(" continue_button ") . click ()

WebDriverWait(driver , 10) . until (

EC.presence_of_element_located ((By.CLASS_NAME, "os−order−number"))

)

assert ’Thank you for your purchase’ in driver . title

print (driver .find_element_by_class_name(’os−order−number’))

@classmethod

def tearDownClass(cls) :

cls . driver . close ()

cls . driver . quit ()

if __name__ == ’__main__’:

unittest .main(testRunner=HtmlTestRunner.HTMLTestRunner

(output=’/Users/azad/Desktop/IgavestiWithoutPOM/Reports’))

64

Appendix 2 - Full test suite with POM

Github link of full test suite: https://github.com/azadnsu/IgavestiWithPOM

Github link of two login tests: https://github.com/azadnsu/IgavestiLoginTests

65

https://github.com/azadnsu/IgavestiWithPOM
https://github.com/azadnsu/IgavestiLoginTests

	List of Figures
	List of Tables
	Introduction
	Background
	Problem

	Testing of web applications
	Definition of Testing
	Types of Testing
	According to the Way of Testing
	According to Depth
	According to Scope

	Continuous Integration and deployment
	Test Automation Approaches

	Evaluation of the Tools
	Criteria for choosing the tools
	Comparison of tools
	Selenium
	Watir
	Test Complete
	QTP
	Ranorex
	Load Runner

	UI Automation- Page Object Model and other design patterns
	Page Object Model
	Other design patterns
	Dependencies
	Python
	Selenium Webdriver
	Webdriver manager
	Unittest
	HTML Reports

	Implementation and Results
	Proceed to Test Automation
	Test suite with Page Object Model
	Analysis

	Summary
	Bibliography
	Appendices
	Appendix 1 - Full test suite without POM
	Appendix 2 - Full test suite with POM

