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Annotation 

 

Performance Comparison of MongoDB and PostgreSQL with JSON types 

 

Traditional SQL database management systems (DBMSs) and NoSQL systems are different. 

SQL DBMSs on the one hand feature a data model that requires explicit definition of database 

schema. In addition, they allow its users to ensure consistency of data as well as support 

transactions that span multiple statements and have strict properties (ACID). On the other hand, 

this focus on strict consistency makes them hard to scale horizontally and the system do not 

perform well under the high load of large data volumes or/and concurrent access. Whereas 

NoSQL systems offer great capabilities of horizontal scaling, flexible data models that do not 

require explicit schema definition at the database level, and good performance under the high 

load of large data volumes or/and concurrent access. On the other hand, NoSQL systems 

generally place less strict requirements to transactions (BASE), making the systems built on top 

of these systems prone to the data inconsistencies. Many of them treat each single operations 

as an atomic transactional unit but do not allow developers to group multiple statements 

(operations) to one atomic unit (transaction). Consequently, software developers must 

continuously choose between data consistency and performance when developing a new 

product. 

The introduction of JSON data types in PostgreSQL, one of the most widely used traditional 

SQL DBMS, has given rise to debates as to whether one can use SQL systems in a manner that 

offers the data model’s flexibility and performance of NoSQL systems, while still being able to 

use many advantages and advanced features that the SQL systems offer. 

The goal of this work is to create a set of benchmarks and to measure the performance of 

PostgreSQL with JSON types and compare it with the performance of a NoSQL system 

(MongoDB in particular) from the perspective of a real world Java application. The use of 

PostgreSQL with JSON types means that database contain base tables (tables) with JSON or 

JSONB types. The performance measurement is conducted from the viewpoint of database 

usage by modern software systems meaning that connection with a DBMS is not established 

through some console application but instead by using some API. The target audience of this 

performance measurement is software developers who write programs in Java. The 

measurements will be made by using PostgreSQL 9.4.1 and MongoDB 3.0.2. 
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Annotatsioon 

 

MongoDB ja JSON tüüpe kasutava PostgreSQLi jõudluse võrdlemine 

 

Traditsioonilised SQL-andmebaasisüsteemid ja NoSQL süsteemid on erinevad. 

SQL-andmebaasisüsteemid pakuvad andmebaasi skeemi ilmutatud kujul defineerimist nõudva 

andmemudeli. Samuti võimaldavad need oma kasutajatel tagada andmete terviklikkust ning 

aitavad saavutada transaktsioonidele kehtestatud rangete nõudmiste täidetuse (ACID). Teisest 

küljest muudab andmete terviklikkuse range tagamine süsteemide horisontaalselt skaleerimise 

keerulisemaks ning suurte andmemahtude ja samaaegsete kasutajate arvu korral väheneb 

oluliselt süsteemi jõudlus. NoSQL süsteemid pakuvad horisontaalse skaleeruvuse võimekust, 

paindlikke andmemudeleid, mis ei nõua andmebaasi tasemel andmebaasi skeemi ilmutatud 

kujul defineerimist ning head töövõimet suurte andmemahtude või/ja samaaegsete kasutajate 

arvu korral. Samas esitavad NoSQL süsteemid transaktsioonidele enamasti leebemad nõudeid, 

mis muudab nende abil realiseeritud süsteemid altiks andmete terviklikkuse rikkumise suhtes 

(BASE). Samuti käsitlevad paljud NoSQL süsteemid iga andmemuudatuse operatsiooni 

atomaarsena, kuid ei võimalda koondada mitut operatsiooni kokku üheks atomaarseks tervikuks 

(transaktsiooniks). Sellest lähtuvalt peavad tarkvaraarendajad tegema pidevalt valikuid 

andmete terviklikkuse ja süsteemi jõudluse vahel. 

JSON andmetüüpide kasutuselevõtt PostgreSQL-is, kui ühes kõige laialdasemalt kasutatavas 

traditsioonilises SQL-andmebaasisüsteemis, on tekitanud arutelu, kas SQL süsteeme saaks 

kasutada nii, et pannakse kokku NoSQL süsteemide andmemudelite paindlikkus ning nende 

süsteemide jõudlus, saades samal ajal endiselt osa SQL süsteemide paljudest eelistest. 

Käesoleva töö eesmärk on luua mõõtlusaluste kogum ning mõõta JSON tüüpe pakkuva 

PostgreSQL jõudlust ja võrrelda seda NoSQL süsteemide jõudlusega. Jõudluse mõõtmine 

toimub ühe reaalse Java rakenduse näitel. PostgreSQL-i koos JSON tüüpidega kasutamine 

tähendab, et andmebaasis on baastabelid (tabelid), kus on JSON või JSONB tüüpi veerud. 

Mõõtmisi teostatakse viisil, mis arvestab andmebaaside kasutamisega tänapäevaste 

tarkvarasüsteemide poolt. See tähendab, et andmebaasisüsteemiga ühenduse loomiseks ei 

kasutata mitte konsoolirakendusi, vaid mõnda programmiliidest. Selle töökiiruse uuringu 

sihtrühmaks on tarkvara arendajad, kes kirjutavad rakendusi Javas. Mõõtmisi tehakse 

PostgreSQL 9.4 ja MongoDB 3.0.2 põhjal. 
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Abbreviations and a Glossary of Terms 

ACID The model of transactions support in DBMS featuring Atomicity, 

Consistency, Isolation, and Durability. 

API Application Programming Interface – “collection of invocation methods 

and associated parameters used by one piece of software to request actions 

from another piece of software” [1] 

BASE The model of transactions support in DBMS featuring Basic Availability, 

Soft state, and Eventual consistency. 

Benchmark “A procedure, problem, or test that can be used to compare systems or 

components to each other or to a standard” [2] 

BSON Binary JSON – “a binary-encoded serialization of JSON-like documents.” 

[3] 

CMS Content Management System – “a piece of software that is used to 

organize, manage or change the content of a website.” [4] 

DAO Data Access Object – a software design pattern that provides an abstract 

interface to persistence mechanism. 

DBMS DataBase Management System – “a collection of integrated services 

which support database management and together support and control the 

creation, use and maintenance of a database” [5] 

EnterpriseDB The leading worldwide provider of PostgreSQL software. [6] 

EntityManager Interface used to interact with the persistence context in JPA specification. 

GitHub Web based source code repository used to publish open-sourced projects. 

Hibernate Object-relational mapping framework for the Java language. 

Horizontal 

Scalability 

Ability to add more machines into the pool of resources, thus increasing 

system’s overall performance. 

Java Object-oriented programming language supported by Oracle Corporation. 

JDBC Java DataBase Connectivity – a Java API that can access any kind of 

tabular data, especially data stored in a Relational/SQL Database. [7] 

JIT Just-In-Time compiler – a compiler that performs source code compilation 

during the execution of the program. 

JMH Java Microbenchmarking Harness framework – a Java harness for 

building, running, and analyzing nano/micro/milli/macro benchmarks 

written in Java [8] 
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JPA Java Persistence API – “the Java Persistence API provides Java developers 

with an object/relational mapping facility for managing relational data in 

Java applications.” [9] 

JSON JavaScript Object Notation – data interchange/representation format. 

JSONB Data type introduced by PostgreSQL. Differs from JSON by that the data 

is stored in a decomposed binary format. 

JVM Java Virtual Machine –n abstract computing machine, used to execute and 

run Java applications. [10] 

MMAPv1 MongoDB’s default storage engine. 

MongoDB An open-source document database and the leading NoSQL database. [11] 

ORM Object-Relational Mapping – the technique of bridging the gap between 

the object model and the relational/SQL model. [12] 

POJO Plain Old Java Object – a regular Java object. 

Polyglot 

Persistence 

The idea of using different data storage technologies for different kinds of 

data in the scope of one application. [13] 

PostgreSQL One of the most widely used SQL database management systems that is 

also very sophisticated and is open-source. 

PostgreSQL 

operator ‘->’ 

Operator for accessing JSON object field or JSON array element through 

the SQL query. 

SQL Structured Query Language – standardized database language for 

managing databases. ISO/IEC 9075 [14]. 

SQL Dialect An implementation of SQL standard that is specific to a particular SQL 

DBMS. 

SQL Join A generic operator that combines rows from two or more tables in a SQL 

database based on a search condition (join condition; Boolean value 

expression). 

WiredTiger Storage engine that was included into release of MongoDB 3.0. It offers 

an improved performance and data compression as opposed to MMAPv1. 
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Introduction 

Enterprise level software development nowadays, at the era of the Web applications, is 

impossible without making them to use databases. Every e-shop, blog, entertainment portal, 

CMS (Content Management System) based sites, etc. is using the services of a database 

management system (DBMS) (either directly or through cloud) for data management. In each 

product, there could be parts that have to process different amounts of stored data, that have 

different amounts of simultaneous data access, and that have different requirements for data 

processing. These aspects of the data management immensely influence on the application’s 

overall performance. Moreover, application’s database layer often becomes a performance 

bottleneck. Therefore, when building an application, it is extremely important to provide the 

best possible performance at the database layer. 

The rapid growth of the Web, the size of stored data, and the number of users has revealed that 

current mainstream (traditional) SQL DBMSs are not capable to provide a suitable performance 

and scalability. This makes industry-leading companies, such as Google, Facebook, Amazon, 

and EBay, to search new solutions for the modern data management. One line of research has 

led to the NoSQL systems. These systems are developed with good scalability, data model 

flexibility, and performance of data management operations in mind. However, some of the 

habitual features of DBMSs were dropped in order to achieve the goal. Support to strict form 

of transactions that satisfy ACID properties are one of these. Consequently, nowadays when it 

is necessary to choose a DBMS for an application, one is choosing between SQL and NoSQL 

systems, making tradeoffs between performance, scalability, and ease of development. 

PostgreSQL tried to offer some capabilities of the NoSQL systems with introduction of JSON 

data type in year 2012 and more sophisticated JSONB data type in 2014. In this sense 

PostgreSQL has become a multi-model system meaning that it makes it possible to build up 

databases by using building blocks of different data models (tables and their surrounding 

ecosystem of SQL; documents of the document-oriented model). 

One may think of this as a revolutionary development, because one of the oldest SQL systems 

now offers the flexibility of a documents-based NoSQL data model. Furthermore, the leading 

worldwide provider of PostgreSQL software presented a performance comparison of 

PostgreSQL (with JSON data types) with a leading NoSQL system MongoDB. It shows that 

PostgreSQL can outperform NoSQL system in case of both data reading and data writing. 
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The goal of this thesis is to create a set of benchmarks and to test what performance PostgreSQL 

with JSON data types can offer for a real application written in Java. Moreover, the goal is to 

verify as to whether the PostgreSQL can actually outperform MongoDB as some recent 

benchmarking results claim. The use of PostgreSQL with JSON types means that database 

contains base tables (tables) with JSON or JSONB types. The performance measurement is 

conducted from the viewpoint of database usage by modern software systems meaning that 

connection with a DBMS is not established through some console application but instead by 

using some API. The target audience of this’ performance measurement is software developers 

who have to create Java programs that interact with a DBMS in this way. PostgreSQL 9.4.1 and 

MongoDB 3.0.2 will be used for the testing. The general idea of creating benchmarks and 

testing the performance of DBMSs from the point of view of APIs should be useful to any 

developer regardless of a programming language or a DBMS. 

The thesis is organized as follows. The first chapter will briefly cover the theoretical 

background that stands behind SQL and NoSQL systems and Java specific technologies for 

database communication. The second chapter will describe the performance comparison of 

PostgreSQL and MongoDB that has been done by EnterpriseDB (the leading worldwide 

provider of PostgreSQL software). Moreover, the analogous performance comparison of 

PostgreSQL and MongoDB most recent versions will be done with the same performance 

benchmarking method. The third chapter will give an overview of the Java application’s 

database layer, which will serve as a platform for experimenting and benchmarking. It will 

define design of the possible database layer implementations using PostgreSQL with JSON data 

types and MongoDB. Additionally, the performance measurement method will be described as 

well as a brief description of how benchmarks were written by the author. The fourth chapter 

will thoroughly describe the experiments and benchmarks, which will be based on the specified 

designs. The fifth chapter will include the analysis of the benchmarking results, providing 

summary tables and charts. In this chapter, the author will explain which design has the best 

performance. Finally, the summary of the work will be presented and future work offered. 
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1 Theoretical Background 

Comparison of different database management systems, their features, and applications 

assumes that concepts and ideas behind these systems are clear and understandable. This 

chapter will try to describe, without going deeply into details, primary properties, pros and cons 

of classic SQL Database Management Systems (DBMS) and NoSQL systems. As the present 

work will focus on performance measurements and usage of databases in real world application 

written with Java programming language, possibilities of interoperability between Java 

applications and databases are also covered. 

1.1 NoSQL Systems 

What is NoSQL? As it turned out, this term has no strong definition; it is just a commonly used 

name for a set of DBMSs that have different ideas compared to SQL and relational systems 

about how to organize, present, store, and retrieve data. Martin Fowler has outlined some 

common, but not definitional, characteristics of NoSQL systems [15]: 

 Not using the relational data model (nor the SQL language) 

 Open source 

 Designed to run on large clusters 

 Based on the needs of 21st century web properties 

 No explicitly defined schema, allowing fields to be added to any record without 

controls. Of course, the data must have schema or otherwise the users would not know 

how to use the data but this knowledge of schema resides in the application code that 

accesses the database. 

The most significant characteristic, in which NoSQL systems differ from SQL DBMSs, is their 

underlying data model that determines building blocks of databases, possible generic operations 

in these databases, and possible types of constraints that the system can enforce in case of the 

databases. Although there are dozens of NoSQL systems, their data models primarily fall into 

one of the following four categories [16] [17]: 

 Key-Value Models – Every item in the database is stored as an attribute name or key, 

together with its value. The value, however, is entirely opaque to the system. It means 

that data can only be queried by the key.  

o Applications: Narrow set of applications that only query data by a single key 

value. The appeal of these systems is their performance and scalability, which 

can be highly optimized due to the simplicity of the data access patterns. 

o Examples: Riak, Redis, Memcached, Berkeley DB, Couchbase, etc. 
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 Wide Column Models – Wide column stores or column family stores, use a sparse, 

multi-dimensional sorted map to store data. Each record can vary in the number of 

columns that are stored and one can nest columns inside other columns called super 

columns. One can group columns together for access in column families or can spread 

columns across column families. Data is retrieved by primary key per column family. 

o Applications: Narrow set of applications that only query data by a single key 

value. 

o Examples: Cassandra, HBase, Hypertable. 

 Graph Models – Graph-based systems use graph structures with nodes, edges and 

properties to represent data. In essence, data is modeled as a network of relationships 

between specific elements. Its main appeal is that it makes it easier to model 

relationships between entities in an application. 

o Applications: Graph databases are useful in cases where relationships are core 

to the application, like social networks. 

o Examples: Neo4j, HyperGraphDB, OrientDB, or FlockDB. 

 Document Models – Documents-based systems store data in documents. These 

documents typically use a structure that is like JSON, XML, BSON, and so on. 

Documents contain one or more fields, where each field contains a typed value, such as 

a string, date, binary, or array. Rather than spreading out a record across multiple 

columns and tables, each record and its associated data are typically stored together in 

a single document. This simplifies data access and reduces or even eliminates the need 

for joins and complex transactions. 

o Applications: A wide variety of applications due to the flexibility of the data 

model, the ability to query on any field, and the natural mapping of the document 

data model to objects in modern programming languages. 

o Examples: MongoDB, CouchDB, Terrastore, OrientDB, RavenDB. 

1.1.1 MongoDB 

MongoDB was chosen in this thesis as a representative of the world of NoSQL systems for 

several reasons. 

 MongoDB is the most popular NoSQL DBMS according to Knowledge Base of 

Relational and NoSQL Database Management Systems in April 2015 [18]. 

 MongoDB is an open-source document DBMS that provides high performance, high 

availability, and automatic scaling.  

 It uses JSON structure for its documents. 
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 Learning curve: it has a very solid and informative documentation; it has a whole 

MongoDB University with free courses such as M101J: MongoDB for Java Developers 

(which author of the thesis successfully completed). 

Key features of MongoDB are [19]: 

High Performance 

MongoDB provides high performance data persistence. In particular, it provides the following. 

 Support for embedding related data into one document (embedding a document 

within a document) reduces I/O activity on DBMS. In case of consuming such 

documents, applications may need to issue fewer queries and updates to complete 

common operations. Generally, embedding provides better performance for read 

operations. This kind of organization of data makes it possible to update related data 

in a single atomic write operation [20]. 

 Indexes support faster queries and can include keys from embedded documents and 

arrays. 

High Availability 

To provide high availability, MongoDB’s replication facility, called replica sets, provide the 

following. 

 Automatic failover. 

 Data redundancy. 

A replica set is a group of MongoDB servers that maintain the same data set, providing 

redundancy and increasing data availability. 

Automatic Scaling 

MongoDB provides horizontal scalability as a part of its core functionality. 

 Automatic sharding distributes data across a cluster of machines. 

 Replica sets can provide eventually-consistent reads for low-latency high 

throughput deployments. 
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1.2 SQL Database Management Systems 

Each SQL Database Management System (SQL DBMS) is a DBMS where one can use SQL 

database language and can build up databases based on the underlying data model of SQL (SQL 

model). This data model has been created based on the relational data model. 

SQL/relational and NoSQL data models are very different. SQL model presents data in tables. 

Tables are organized into columns, and each column stores one type of data (integer, real 

number, character strings, date, etc.). Each row of a table represents a true proposition of some 

portion of the world and a table is collection of such propositions that all conform to the same 

predicate represented by the table heading that determines the meaning of the table. A 

difference from NoSQL systems is that one has to explicitly define the database schema. 

Tables reference each other through foreign keys that values are stored in columns as well. The 

SQL/relational model lends it very well to building up databases and DBMSs as layered systems 

to separate concerns [21]. External level contains views to the data. Conceptual level specifies 

base data structures, constraints to these, and generic high-level operations to access data. 

Internal level deals with data storage and implementing algorithms for executing the high-level 

operations. 

The SQL/relational model allows us to potentially minimize the amount of required storage 

space, because databases can be designed in a manner that minimizes data redundancy at the 

logical database level by applying the normalization theory and the principle of orthogonal 

design. Normalization theory deals with redundancy within one table and the orthogonal design 

theory across tables. How much their application influence the data size on disk depends on the 

implementation of the DBMS. It could be that at the logical level, redundancy is almost 

eliminated but at the internal database level there is a lot of redundancy to speed up certain 

database operations. 

Reduction of a storage space at the internal database level was once very important, when disk 

storage was very costly. Reduction of redundancy at the logical database level is important 

because it helps us avoid inconsistencies, separate unrelated facts from each other, simplify 

enforcement of certain integrity constraints, and increase the speed of certain update operations. 

However, redundancy reduction comes at expense of increased complexity when looking up 

data. The desired information has to be collected from many tables and combined before it can 

be provided to the application. Similarly, when writing data, the write needs to be coordinated 

and performed on many tables. This complexity though can be resolved by implementing a 

virtual data layer that presents denormalized data to applications that need the data. This virtual 
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data layer belongs to the external database level. By making the views updatable, it also 

simplifies the update operations. 

Some advantages of a SQL DBMS (at least those that are important in the current thesis): 

 Efficient storage – Separation of conceptual and internal database level allows 

implementers of DBMSs to use advanced techniques like packing to reduce the footprint 

of data on disk. 

 Avoidance of update anomalies – The data model makes it possible to design 

databases in a manner that reduces data duplication and thus also the number of update 

anomalies. The process is guided by the Database Normalization theory and the 

orthogonal database design principle [22]. The update anomalies occur if replacing the 

value in a field of a row requires replacing values in other fields as well or 

inserting/deleting a fact is only possible if some logically unrelated fact in the context 

of this operation is also inserted/deleted. Update anomalies could cause inconsistent 

data, burden the system, and complicate application development. 

 Transactions – transaction is an atomic unit consisting of one or more operations. The 

results of all operations may be applied (committed) or refused (rolled back), if one of 

the operations fail or on any other reason. 

 Declarative data manipulation language with different generic relational operators 

like join or union – a possibility to retrieve data from one more tables by declaring the 

expected outcome not the low-level algorithm how to achieve the desired result. 

 Tools – due to a long-lasting domination of the SQL DBMSs there are a huge variety 

of different tools and utilities, which offer a great support to the users of these systems. 

Hibernate ORM is, probably, the most significant one for Java developers. 

1.2.1 PostgreSQL JSON Data Types 

Although most popular SQL DBMS’s support a wide variety of system-defined data types such 

as text, numbers, Boolean, or even arrays of the values with these types, it was impossible to 

store a set of arbitrary values as a value of one column. The database schema ensures that each 

field must contain at most one value of the data type of the column. If the DBMS provides a 

limited set of system-defined types and does not allow us to define new types or makes it too 

complex by placing on it unnecessary restrictions, then it reduces the flexibility of the usage of 

the data model. 

This was somewhat changed by PostgreSQL since the introduction of the JSON data type in 

release 9.2 in 2012 [23] and further improvement of this and introduction JSONB data type in 
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release 9.4 in 2014 [24]. Of course, one can assume that it is possible to store JSON data in 

columns of the text data type, but PostgreSQL’s JSON data types have the advantage of 

enforcing that each stored value is valid according to the JSON rules. 

There are two JSON data types: json and jsonb in PostgreSQL. Each type is a named set of 

values. These types contain almost identical sets of values. The major practical difference is 

one of efficiency in case of internal representation of the values. In case of json data type the 

system stores an exact copy of the input text, which processing functions must reparse on each 

execution. On the other hand, jsonb data is stored in a decomposed binary format that makes it 

slightly slower to input due to added conversion overhead, but significantly faster to process, 

since no reparsing is needed. jsonb also supports indexing, which can be a significant advantage 

[25]. 

These JSON types bring the advantage of database schema flexibility of NoSQL databases to 

the SQL database. Of course, they also bring with them a problem that data could be duplicated 

in different json values at the logical database level that makes it easier to register inconsistent 

data. To avoid that, programmers have to do more work and system has to do more work to 

replace multiple json values with one operation. One could create views that present to data 

consumers (applications) json values that are constructed on the fly based on values taken from 

the base tables that do not contain such values. Investigation of such views is not a task of this 

thesis. 

1.3 Java and Databases 

Every modern programming language has support of connectivity and communication with 

databases. Nevertheless, Java platform was selected for the current thesis because the author 

has a strong knowledge of Java language and Java-based technologies. 

In this section, different possibilities of communication between Java application and databases 

are overviewed. 

1.3.1 JDBC 

JDBC or Java DataBase Connectivity is a Java built-in functionality for the communication 

with SQL DBMSs. It is a “low-level” API that makes it possible to use databases by 

applications. 

Offering a simple and portable abstraction of the proprietary client programming interfaces 

offered by database vendors, JDBC allows java programs to fully interact with the DBMS (and 

by doing it use the databases). This interaction is heavily reliant on SQL, offering developers a 
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chance to write queries and data manipulation statements in the database language. These 

statements are executed and processed by using a simple Java programming model [12]. Caveat 

is that although JDBC’s programming interfaces are portable, the SQL is not. Despite the 

ongoing attempts to standardize it, every SQL DBMS is using its own dialect of the SQL. 

JDBC helps developers to conduct the following activities in the Java applications. 

1) Connect to a database 

2) Send queries and update statements to the database 

3) Retrieve and process the results received from the database in answer to a query 

Pros of using JDBC in applications. 

 Performance – because JDBC is the lowest possible abstraction level for interacting 

with a DBMS, it should provide the best performance in means of communication with 

the DBMS. 

 Control – due to the same reason, developer is in control of every detail of 

communication with DBMS, be this query composition, data processing, or a 

transaction management. 

Cons of using JDBC in applications. 

 Developer productivity and ease of development – developer should write a lot of code 

to perform a little. Data retrieved from a database should generally be manually 

transformed to the business objects. It becomes a tedious work, when there are many 

relationships/associations between objects, such as One-to-Many, Many-to-One, and/or 

Many-to-Many. 

 Portability – using JDBC usually means that application is bound to a particular SQL 

DBMS. 

 No cache. 

However, the JDBC is not the only option. 

1.3.2 ORM and JPA 

“The domain model has a class. The database has a table. They look pretty similar. It should be 

simple to convert one to the other automatically.” [12] The technique of bridging the gap 

between the object model and the relational/SQL model is known as object-relational mapping 

or simply ORM. The term comes from the idea that concepts from one model are mapped onto 
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another, with the goal of introducing a mediator to manage the automatic transformation of one 

to the other [12]. 

Following these concepts several commercial and open-source products were developed, such 

as Hibernate or TopLink.  

Hibernate, for instance, takes care of the mapping from Java classes to database tables and 

provides data query and retrieval facilities. It can significantly reduce development time 

otherwise spent with manual data handling with SQL and JDBC. Hibernate’s design goal is to 

relieve the developer from 95% of common data persistence-related programming tasks by 

eliminating the need for manual, hand-crafted data processing using SQL and JDBC [26].  

As Hibernate, and other persistence APIs became ensconced in applications and met the needs 

of the application very well, the need of one standardized API arose. This API is the Java 

Persistence API or JPA. 

The Java Persistence API deals with: 

 the way SQL data is mapped to Java objects ("persistent entities"),  

 the way that these objects are stored in a SQL database so that they can be accessed at 

a later time,  

 the continued existence of an entity's state even after the application that uses it ends. 

In addition to simplifying the entity persistence model, the Java Persistence API standardizes 

object-relational mapping [27]. 

Pros of using ORM and JPA in applications. 

 Ease of development – object-relational mapping with Hibernate and JPA is completely 

metadata-driven and uses domain model’s POJOs – Plain Old Java Objects. JPA 

automatically generates SQL queries and manages entity dependencies. Developer 

should not write conversions between domain objects and database tables as it is being 

done automatically by JPA. 

 Portability – JPA generates queries according to the specified SQL dialect. 

 Cache – JPA uses caching a lot. It takes place transparently for a developer. 

Cons of using ORM and JPA in applications. 

 Performance – a slightly worse performance comparing with pure JDBC. JPA is the 

ORM framework based on JDBC, thus it adds load of data processing, query generation, 
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and so on. In addition, automatically generated queries are often not the most optimized 

ones. 

1.3.3 MongoDB Java Driver 

Standard tools, such as JDBC, Hibernate, and JPA are not suitable for the usage with non-SQL 

databases (at least at the moment of writing this thesis in the spring of 2015). That is, vendors 

of NoSQL systems should provide their own facilities for programming languages to make 

possible communication with their products. 

MongoDB Java Driver is a library provided by MongoDB team for Java platform. It is similar 

to JDBC, with the difference that it has different API, and allows to connect only to MongoDB 

DMBS. 

MongoDB driver, as well as JDBC, facilitates management of the following three programming 

activities. 

1) Connecting to a database. 

2) Sending queries and update statements to the database. 

3) Retrieving and processing the results received from the database in answer to a query. 

1.4 ACID vs. BASE 

In the context of using database management systems in software development, transactions 

are very important. The aspect of how transactions are managed by a DBMS influences the 

performance and code complexity of programs that use the services of the DBMS. Thus, it is 

important to understand the principles standing behind transactions in SQL and NoSQL 

systems. 

ACID 

Mostly every SQL DBMS supports transactions with the ACID qualities. These qualities are as 

follows [28]. 

 Atomicity – Either the task (or all tasks) within a transaction are performed or none of 

them are from the point of view of invoker. If one element of a transaction fails, the 

entire transaction fails. 

 Consistency – The transaction must meet all protocols or rules defined by the system 

at all times. These rules are expressed in terms of constraints implemented in the system 

in a declarative or procedural manner. All the transactions must not violate those 

protocols and the database must remain in a consistent state as the result of a transaction.  
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 Isolation – No transaction should see data changes in a database made by an incomplete 

transaction. This is required for consistency of data within a database. SQL defines four 

different isolation levels. The higher is isolation the better it ensure consistency but also 

the more it starts to hamper performance because of locking of data elements that is 

typically used to achieve isolation. 

 Durability – Once the transaction is complete, it will persist as complete, and cannot 

be undone; it will survive system failure, power loss and other types of system 

breakdowns. 

However, providing all these properties means that the system becomes incompatible with 

availability and performance in very large systems. The main reason is that support of ACID 

features means that the system is going to have limited capabilities of processing concurrent 

requests. Additionally, a horizontal scalability becomes a non-trivial task while still providing 

all ACID features. 

CAP Theorem 

The CAP Theorem was presented by Eric Brewer in 2000. “The central tenet of the theorem 

states that there are three essential system requirements necessary for the successful design, 

implementation and deployment of applications in distributed computing systems. They are 

Consistency, Availability and Partition Tolerance – or CAP” [28]. 

 Consistency refers to whether a system operates fully or not. Does the system reliably 

follow the established rules within its programming according to those defined rules? 

Do all nodes within a cluster see the most recently written data they are supposed to 

see? 

 Availability. Is the given service or system available when requested? Does each 

request get a response as to whether it is failure or success within reasonable amount of 

time? 

 Partition Tolerance represents the fact that a given system continues to operate even 

under circumstances of partial data loss or partial system failure. A single node failure 

should not cause the entire system to collapse. 

“Theorem: You can have at most two of these properties for any shared-data system”. The 

theorem says that if one is willing to have the Consistency and the Availability (ACID), the 

Partition Tolerance should be left out. This is the case in systems where data is in one node 

(server). However, in case of a distributed system, partition tolerance is usually expected and 
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thus the choice is between relaxing consistency or availability requirements. One should note 

that different parts of the same system might require different decisions in terms of CAP 

theorem. For instance, in case of some parts availability is more important in case of other 

consistency is more important. 

BASE 

The BASE is an alternative to the ACID providing the Availability and the Partition Tolerance. 

These are principles adopted by most of the NoSQL systems (MongoDB in particular). The 

idea is that it is enough for the database to eventually be in a consistent state, rather than 

requiring consistency after every transaction. BASE principles are characterized as follows 

[28]. 

 Basic Availability – the system does guarantee the availability of the data as regards 

CAP Theorem; there will be a response to any request. Nevertheless, that response could 

still fail to obtain the requested data or the data may be in an inconsistent or changing 

state. 

 Soft state – the state of the system could change over time, so even during times without 

input there may be changes going on due to ‘eventual consistency,’ thus the state of the 

system is always ‘soft’. 

 Eventual consistency: The system will eventually become consistent once it stops 

receiving input. The data will propagate to everywhere it should sooner or later, but the 

system will continue to receive input and is not checking the consistency of every 

transaction before it moves onto the next one. 

From the perspective of software developer, the main difference between ACID and BASE 

transactions is that in case of ACID it is possible control transactions manually. Thus, it is 

possible to issue several data operation requests in scope of one transaction. Whereas in case of 

BASE transactions, the one data operation request means the one transaction, and there is no 

possibility to obtain more control over it. 
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2 PostgreSQL JSON Data Type vs. MongoDB 

2.1 Performance 

The introduction of the JSON and JSONB data types allowed developers to use PostgreSQL as 

a NoSQL system. EnterpriseDB (the leading worldwide provider of PostgreSQL software) even 

carried out a series of performance tests showing that PostgreSQL as a NoSQL system can 

outperform MongoDB. 

The initial set of tests by EnterpriseDB compared MongoDB v2.6 to PostgreSQL v9.4 beta, on 

single machine instances. Both systems were installed on Amazon Web Services 

M3.2XLARGE instances with 32GB of memory. EDB found that PostgreSQL outperforms 

MongoDB in selecting, loading, and inserting complex document data in key workloads 

involving 50 million records [29]. 

 Ingestion of high volumes of data was approximately 2.1 times faster in PostgreSQL 

 MongoDB consumed 33% more the disk space 

 Data inserts took almost 3 times longer in MongoDB 

 Data selection took more than 2.5 times longer in MongoDB than in Postgres 

Chart on Figure 1 shows relative performance comparison in terms of the amount of time spent 

on execution of corresponding operations. The higher value means that more time was spent. 

Therefore, the higher value is worse. 

 

Figure 1. MongoDB 2.6 and PostgreSQL 9.4 Relative Performance Comparison [29] 

These are amazing results for PostgreSQL. However, at the moment of writing the thesis (spring 

2015) the current version of MongoDB is 3.0.2. According to the MongoDB 3.0 release 

announcement, it brings massive improvements to performance and scalability, enabled by 
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comprehensive improvements in the storage layer [30]. Moreover, support for different storage 

engines was added. Thus, the improved version of the default engine MMAPv1 and the new 

one WiredTiger are available out-of-box. The following was promised in the announcement: 

 7-10x better write performance, 

 Up to 80% less storage with compression (only using WiredTiger). 

The MongoDB 2.6 and PostgreSQL 9.4 Relative Performance Comparison was made with the 

open-sourced testing framework “pg_nosql_benchmark”. The framework is developed by 

EnterpriseDB and publicly available at EnterpriseDB’s GitHub repository [31]. 

The introduction abstract, describing the framework, from the GitHub repository’s Web page 

is the following [31]: 

“This is a benchmarking tool developed by EnterpriseDB to benchmark MongoDB 2.6 (BSON) 

and Postgres 9.4 (JSONB) database using JSON data. The current version focuses on data 

ingestion and simple select operations in single-instance environments - later versions will 

include a complete range of workloads (including deleting, updating, appending, and complex 

select operations) and they will also evaluate multi-server configurations. 

This tool performs the following tasks to compare of MongoDB and PostgreSQL: 

 The tool generates a large set of JSON documents (the number of documents is defined 

by the value of the variable json_rows in pg_nosql_benchmark) 

 The data set is loaded into MongoDB and PostgreSQL using mongoimport and 

PostgreSQL's COPY command. 

 The same data is loaded into MongoDB and PostgreSQL using the INSERT command. 

 The tool executes 4 SELECT Queries in MongoDB & PostgreSQL.” 

The framework firstly generates the defined in configuration amount of JSON test data, then it 

generates PostgreSQL and MongoDB specific data for insertion based on JSON test data. 

At the moment of writing this thesis (April 2015), there was no MongoDB 3.0 and PostgreSQL 

9.4 performance comparisons found on the Web. Consequently, the author decided to perform 

such comparison as a part of this thesis. The same testing framework was used, although it 

required a couple of minor changes in order to work with the latest MongoDB. 

What were the minor changes in the framework? 
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The “pg_nosql_benchmark” framework consists of one Linux Bash shell base script 

“pg_nosql_benchmark” and a set of functions in separate files “common_func_lib.sh”, 

“mongo_func_lib.sh”, and “pg_func_lib.sh”. It was necessary to change parameters (such as 

usernames, passwords, and network addresses of PostgreSQL and MondoDB servers) in the 

base script, in order to get the script working in the local environment. A problem appeared 

with the size value of the disk space used by MongoDB. The reason is that newer version of 

MongoDB has changed format of its command output. The issue was fixed by the author. The 

problem was that one of the functions in “mongo_func_lib.sh” expected the output from 

MongoDB command execution in one format. However, the output format of the same 

command in the new version has changed. 

Tests of this thesis were made on Lenovo ThinkPad laptop with Intel Core i5-3320M @ 2.60Hz, 

8GB RAM, 120GB SSD storage, Ubuntu 14.04 LTS 64-bit, PostgreSQL 9.4.1, and MongoDB 

3.0.2. These characteristics allowed setting the maximum number of documents to around one 

million. 

Chart on Figure 2 illustrates the results of the tests made by the author of the thesis. The higher 

value means that more time was spent by the DBMS. Therefore, the higher value is worse. 

 

Figure 2. MongoDB 3.0 and PostgreSQL 9.4 Relative Performance Comparison 

The results of the tests showed that PostgreSQL still outperforms MongoDB in selecting and 

inserting complex document data. 

 Data insertion still takes almost three times longer in MongoDB. 

 Data selection takes almost three times longer in MongoDB than in PostgreSQL. 
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 MongoDB consumes three times more the disk space with MMAPv1 storage engine and 

1.8 times more with WiredTiger engine. Data compression in WiredTiger is working 

well. 

However, data loading became faster in MongoDB and outperformed PostgreSQL. 

Performance benchmarking recap 

The MongoDB and PostgreSQL relative performance comparison showed that PostgreSQL is 

generally two to three times more performant than MongoDB. However, benchmarking tool, 

which the author used for the benchmarking, is created and distributed by EnterpriseDB. This 

company provides support and tools for PostgreSQL. In addition, the tool is using console 

applications provided by PostgreSQL and MongoDB. These are psql and mongo, respectively. 

The tool calls separate console commands for every action. Thus, there is a probability that 

performance of these console applications may significantly influence benchmarking results. 

Moreover, usually console applications are used for databases maintenance, debugging, etc., 

not for software development. 

Real world applications are using databases through the provided API, thus the real 

performance measurement should be made through the API by using applications. 

2.2 Field of Application 

Every tool should be properly used in right scenarios in order to get the best results. This is true 

for the DBMSs as well.  

When to use a NoSQL (MongoDB in particular) [32] system? 

 High Write Load is Expected – MongoDB by default prefers high insert rate over 

transaction safety. If it is necessary to load many facts (propositions) that have low 

business value, then MongoDB should fit. 

 High Availability in an Unreliable Environment – setting replicaSet (set of servers 

that act as Master-Slaves) is easy and fast. Moreover, recovery from a node (or a data 

center) failure is instant, safe, and automatic. 

 Scalability (and Data Sharding) – databases scaling is hard (performance of 

operations based on a single MySQL table will degrade when crossing the 5-10GB 

threshold per table [32]). If it is necessary to partition and shard the database, MongoDB 

has a built-in easy solution for that. 
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 Data is Location Based – MongoDB has built in spatial functions. Thus, finding 

relevant data from specific locations should be fast and accurate. 

 Schema is Not Stable – as MongoDB database is schema-less. It means that one does 

not have to explicitly define schema at the database level. Therefore, adding a new field 

is straightforward. It does not affect old rows (or documents) and will be instant. 

 Data Set is Going to be Big (starting from 1GB)  

 

When to use a SQL DBMS? 

 Data Consistency – database normalization in SQL databases allows the DBMS to 

store a fact only once in a table and set references to it in other tables. 

 Data Linking – if a table has a relationship with the same or another table, then it is 

possible to join these tables in order to retrieve all necessary information with one 

request. 

 Transactions – if one works with critical data, then there must be guarantees from the 

DBMS that all the registered data is consistent and conforms to predefined rules. There 

must also be possibility to put multiple statements together to one transaction. 

 Separation of Concerns – different people are dealing with programming and database 

management. Different database levels (external, logical, internal) allow developers to 

achieve different goals. 

2.2.1 Alternative Opinions 

There are different opinions as to whether one should use a NoSQL or a SQL DBMS. 

The first is the idea of Polyglot Persistence introduced by Martin Fowler [13]. It means that 

each enterprise that has decent size could have a variety of different data storage technologies 

for different kinds of data.  

The second opinion, very thoroughly described by Sarah Mei in her article “Why You Should 

Never Use MongoDB” [33], is that one should very carefully think as to whether to use 

documents-based NoSQL systems. The point is that NoSQL data storage is effective only when 

there are no relationships between documents. That is, all necessary data should be accessible 

through the one document. The problem arise then due to some reasons (e.g. requirements from 

a client), it is no longer possible to avoid relationships between different documents.  

There are only two bad solutions to that problem: data duplication or documents linking. 
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Data duplication in this context means that every time when a document D should reference to 

the data in some other document the data is copied (duplicated) to D in the form of embedded 

documents. In this way, D will become a hierarchy of embedded documents. This is dangerous, 

because updating one document now means the need to walk through all the other documents 

where this updated document appears to change the data in all those different places. This is 

very error-prone and often leads to inconsistent data and mysterious errors, particularly when 

dealing with deletions. 

Documents linking in NoSQL means that application should issue a separate request to DBMS 

for every linked document due to the lack of join feature. It will significantly degrade 

performance of the application and increase difficulty of development. 
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3 Research and Design 

3.1 Goal 

Currently (spring 2015), only the EnterpriseDB has officially conducted a performance 

comparison of PostgreSQL with JSON data types and MongoDB database. However, as was 

stated in section 2.1, this comparison has shortcomings. The utilized testing framework uses 

console applications provided by both DBMSs (psql and mongo), to accomplish benchmarked 

actions. The purpose of these programs is to provide direct access to DBMSs for performing 

administrative, maintenance, debugging, etc. actions. Applications do not use these. 

The goal of the present work is to measure performance of the PostgreSQL with JSON data 

types and compare it to performance of the MongoDB database from the perspective of a real 

world Java application. 

3.2 Description 

Experiments are based on a real world Java web application named “FlowGrab” and developed 

at ByteLife Solutions [34]. The author of the present thesis fulfills a role of the lead developer 

in “FlowGrab’s” development team. Application features and overall architecture are not 

important for the experiments’ design, thus only the database layer (DAO and domain objects 

classes) is described. 

Although, the goal is to compare PostgreSQL with JSON data types and MongoDB, there is 

one design with standard “SQL + JPA + Hibernate” approach. This is the currently working 

solution of the application. 

Application business layer communicates with a database through a package of Data Access 

Object (DAO) classes and Model classes, which correspond to the application domain objects. 

There are 17 DAO classes to manage 28 model classes listed in Table 1. 

Table 1. Java application's DAO and Domain Object classes. 

DAOs Domain Objects/Models 

BlacklistedNameDAO.java BlacklistedName.java 

CarouselContentDAO.java CarouselContent.java 

CategoryDAO.java Category.java 

CommitChangeLogDAO.java CommitChangeLog.java 

EnduserDAO.java EnduserContact.java 

Enduser.java 

EnduserRole.java 

EnduserSocialMedia.java 

EnduserTeamDAO.java EnduserTeam.java 
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DAOs Domain Objects/Models 

LicenceDAO.java Licence.java 

MergeResultDAO.java MergeResult.java 

PackageElement.java 

NotificationDAO.java Notification.java 

PluginVersionDAO.java PluginVersion.java 

ProjectDAO.java ProjectCategory.java 

ProjectComment.java 

Project.java 

ProjectTag.java 

ProjectSubscriberDAO.java ProjectSubscriber.java 

ProjectVersionDAO.java File.java 

ProjectVersion.java 

ReleasedProjectVersion.java 

ProjectVersionDownloadDAO.java ProjectVersionDownload.java 

RoleTypeDAO.java RoleType.java 

TagDAO.java Tag.java 

TeamDAO.java TeamContact.java 

Team.java 

TeamSocialMedia.java 

 

DAO classes accept domain object instances for create and update operations and return 

domain object instances for find operations. It is noteworthy that some of the domain objects 

have One-to-Many associations with other objects. The author illustrates associations between 

domain objects on Figure 3. 
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Figure 3. Class diagram of application domain objects. 

It is easy to notice, that there are “lightweight” objects with no associations, as well as several 

“heavy” objects with multiple associations. 

In this thesis, nine designs will be used to evaluate the performance of PostgreSQL and 

MongoDB. The designs differ in how the DAO classes are implemented (what technology is 

used to communicate with a database). Table 2 describes the DBMS and technologies used in 

case of each design. 

Table 2. List of Designs. 

Design Identifier DBMS Technologies 

Design 1 PostgreSQL JPA + Hibernate 

Design 2 PostgreSQL with JSON JPA + Hibernate 

Design 3 PostgreSQL with JSONB JPA + Hibernate 

Design 4 PostgreSQL with JSON JDBC + JSON processing in Java 

Design 4a PostgreSQL with JSON JDBC 

Design 5 PostgreSQL with JSONB JDBC + JSON processing in Java 

Design 5a PostgreSQL with JSONB JDBC 

Design 6 MongoDB MongoDB Java Driver 

Design 6a MongoDB MongoDB Java Driver 
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3.2.1 Notes for designs with JPA and Hibernate 

3.2.1.1 Associations loading 

JPA specification defines two major strategies of loading associations (LAZY and EAGER). The 

EAGER strategy is a requirement that all associations’ data must be eagerly fetched with the 

base object (generally it means that JPA provider will generate one SQL query with joins in 

order to get all required data within single request). The LAZY strategy means that associations’ 

data should be fetched lazily when it is first time accessed (separate queries are issued on 

demand). 

The LAZY loading is commonly used to defer the loading of the attributes or associations of an 

entity or entities until the point at which they are needed. On the other hand, the eager loading 

is an opposite concept in which the attributes and associations of an entity or entities are fetched 

explicitly and without any need for pointing them. 

In “FlowGrab” Web application, most of the associations are fetched using LAZY initialization. 

However, for the sake of the experiment, this was changed to be EAGER for the most of them. 

The author did it in order to make all designs to fetch an equal amount of data in benchmarks. 

3.2.1.2 Cache 

Another important note that Hibernate extensively uses cache mechanisms. There are two levels 

of cache: the first-level cache and the second-level cache. 

The second-level cache is the optional cache and it requires third-party cache providers in order 

to work. Although, it is used in the application, it was disabled for the experiments. 

The first-level cache is the Session cache and is the mandatory cache through which all requests 

must pass. The Session object keeps an object under its own power before committing it to the 

database. When an entity is queried for the first time, it is retrieved from the database and stored 

in the first level cache associated with hibernate session. If the same object is queried again 

within the same session object, it will be loaded from the cache without issuing a query to the 

database. 

If multiple updates to an object are issued, then Hibernate tries to delay doing the update as 

long as possible to reduce the number of update SQL statements issued. When the session is 

closed, all the objects being cached are lost and either persisted or updated in the database. 

There is no documented possibility to disable the first-level cache in Hibernate, although it is 

allowed to manually delete all entries from the cache. In experiments with Hibernate, each 

benchmark is operating in context of one Session object. In order to ensure that query to a 
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database is issued after every operation (except for the new data insertions), Hibernate is 

ordered to send all pending queries to the database and cache is cleared. 

3.2.2 Designs 

Next, the author presents a description of the designs. Details and measurement results for each 

experiment based on these designs will be described in chapter 4. Firstly, some general remarks. 

Designs 1–5 are for PostgreSQL. Design 6 is for MongoDB. Designs 2, 3, 4, 4a, 5, and 5a use 

tables with JSON or JSONB columns. 

Tables in  case of designs  2, 4, 4a have a form:  

Table(PK, [FK_1, ... , FK_n], column_of_JSON_data_type). 

Tables in  case of designs 3, 5, 5a have a form:  

Table(PK, [FK_1, ... , FK_n], column_of_JSONB_data_type). 

where PK means the primary column and FK_n means a foreign key column. Only designs of 

MongoDB (6 and 6a) use embedded documents. 

 

Design 1 – Standard implementation meaning that the tables do not have JSON or JSONB 

columns.  

 Each domain object is mapped to a table 

 Each domain object’s property is mapped to a table’s column using JPA annotations. 

 JPA’s entity manager (EntityManager), using Hibernate, automatically generates SQL 

queries, manages associations, and processes domain objects’ data. 

Design 2 and Design 3 

 Each domain object is mapped to a table.  

 All primary and foreign keys are mapped to the corresponding fields of domain objects 

(to preserve JPA’s automatic association management). 

 Other properties are automatically serialized into JSON before sending request and 

deserialized after receiving response to/from the database.  

 JPA’s entity manager (EntityManager) automatically generates SQL queries, manages 

associations, and processes domain objects’ data. 

 Custom Hibernate data types were implemented in order to support PostgreSQL’s JSON 

and JSONB types. 
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Design 4 and Design 5 

 Each domain object corresponds to a table. 

 All primary and foreign keys are mapped to the corresponding fields of domain objects 

 Other properties are manually serialized into JSON before sending request and 

deserialized after receiving response to/from the database. 

 JDBC is used for the communication with database. 

 Developer writes SQL queries, manages associations (mostly through the SQL joins), 

and processes domain objects’ data manually. 

 JPA annotations are removed from the domain objects. 

SELECT-query example:  

 “SELECT id, data FROM category” 

, where data is of JSON or JSONB type. 

Design 4a and Design 5a – Alternative to Designs 4 and 5. They differ by how the JSON data 

is handled. JSON data processing is removed from the application and given to the DBMS and 

thus, perhaps, making these designs more performant. 

SELECT-query example:  

 “SELECT id, data->’category_name’, data->’deleted’, data->’created’, 

data->’modified’ FROM category” 

, where data is of JSON or JSONB type. 

Design 6 

 Each domain object correspond to a MongoDB collection. 

 Each domain object instance is one document in a collection. MongoDB Java Driver is 

used for communication with the database. 

 Developer writes queries, manages associations, and processes domain objects’ data. 

 The main problem with this design is how to manage associations. As it was stated in 

section 2.2.1, there are two solutions: data duplication and/or documents linking. Data 

duplication is not an option for this application, due to the number of associations and 

the fact that associated objects may be changed relatively often. The latter will lead to 

additional operations that increases the workload of the system and may cause data 

inconsistencies. Therefore, the linking of documents was chosen. 
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 This design operated with MongoDB MMAPv1 storage engine. 

Design 6a – differs from Design 6 by that the WiredTiger storage engine was used instead of 

MMAPv1. 

3.3 Measurements 

We made performance measurements by using the benchmarking tool developed by the Oracle 

OpenJDK and JRE team. This tool is the Java Microbenchmarking Harness (JMH) framework. 

JMH is a Java harness for building, running, and analyzing benchmarks written in Java [8]. Its 

distinctive advantage over other frameworks is that the same developers in Oracle who 

implement the JIT (Just-In-Time compiler) develop it. The reason is that compiler does 

assortment of code optimizations during the compilation process. Some of these optimizations 

should be considered by the author of benchmarks and by the benchmarking tool itself. The 

JMH is silently trying to bypass some of the optimizations. This allows to receive a more precise 

performance measurement results. 

 

How JMH works?  

The necessary minimum is to annotate a method, whose performance is to be measured, with 

@Benchmark annotation. There are also some guidelines to follow in the documentation. When 

run, JMH will disable or prevent compiler optimizations and will iteratively measure method’s 

execution time. After benchmarking is done, JMH provides an average execution time with the 

value of measurement uncertainty (error) for every executed benchmark. 

Example of output: 

Benchmark                           Mode  Cnt   Score   Error  Units 

JMHSample_08_DeadCode.baseline      avgt    5   0.361 ± 0.235  ns/op 

JMHSample_08_DeadCode.measureRight  avgt    5  23.164 ± 0.346  ns/op 

JMHSample_08_DeadCode.measureWrong  avgt    5   0.322 ± 0.070  ns/op 

 

JMH has five modes how it will measure performance. These modes are listed in Table 3. 

Additionally, it allows setting different measurement time units, from nanoseconds to days. 
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Table 3. JMH Benchmark Modes 

Benchmark 

Mode 

Description 

Throughput “Operations per unit of time. Runs by continuously calling Benchmark 

methods, counting the total throughput over all worker threads. The 

mode is time-based, and it will run until the iteration time expires.” 

[35] 

AverageTime “Average time per operation. Runs by continuously calling Benchmark 

methods, counting the average time to call over all worker threads. 

This is the inverse of Throughput, but with different aggregation 

policy. The mode is time-based, and it will run until the iteration time 

expires.” [35] 

SampleTime “Samples the time for each operation. Runs by continuously calling 

Benchmark methods, and randomly samples the time needed for the 

call. This mode automatically adjusts the sampling frequency, but may 

omit some pauses, which missed the sampling measurement. The mode 

is time-based, and it will run until the iteration time expires.” [35] 

SingleShotTime “Measures the time for a single operation. Runs by calling Benchmark 

once and measuring its time. The mode is work-based, and will run 

only for a single invocation of Benchmark method.” [35] 

All “Meta-mode: all the benchmark modes.” [35] 

 

The simplest Benchmark listing is on Figure 4. 

 

Figure 4. The simplest JMH benchmark code listing. 

JMH allows configuring a number of warmup iterations and a number of measurement 

iterations. The purpose of warmup iterations is to minimize the influence of a “cold start”, when 

system allocates resources, prepares connections, and so on. Warmup iterations are not taken 

into account when measurement results are processed. 

The full raw output of the running CategoryDAOBenchmark is listed on Figure 4 with 

Benchmark mode set to Throughput, five warmup iterations and ten measurement operations: 
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# JMH 1.6.1 

# VM invoker: /usr/lib/jvm/java-8-oracle/jre/bin/java 

# Warmup: 5 iterations, 1 s each 

# Measurement: 10 iterations, 1 s each 

# Timeout: 10 min per iteration 

# Threads: 1 thread, will synchronize iterations 

# Benchmark mode: Throughput, ops/time 

# Benchmark: com.bytelife.flowhub.dao.CategoryDAOBenchmark.findAll 

 

# Run progress: 0.00% complete, ETA 00:00:15 

# Fork: 1 of 1 

# Warmup Iteration   1: 1146.256 ops/s 

# Warmup Iteration   2: 2475.241 ops/s 

# Warmup Iteration   3: 3170.098 ops/s 

# Warmup Iteration   4: 3680.288 ops/s 

# Warmup Iteration   5: 2449.903 ops/s 

Iteration   1: 2411.434 ops/s 

Iteration   2: 2353.496 ops/s 

Iteration   3: 2413.627 ops/s 

Iteration   4: 2517.253 ops/s 

Iteration   5: 2458.682 ops/s 

Iteration   6: 2487.218 ops/s 

Iteration   7: 3151.686 ops/s 

Iteration   8: 2449.350 ops/s 

Iteration   9: 2496.540 ops/s 

Iteration  10: 2471.994 ops/s 

 

Result: 2521.128 ±(99.9%) 342.735 ops/s [Average] 

 Statistics: (min, avg, max) = (2353.496, 2521.128, 3151.686), stdev = 

226.698 

 Confidence interval (99.9%): [2178.393, 2863.863] 

 

# Run complete. Total time: 00:00:17 

 

Benchmark                      Mode  Cnt     Score     Error  Units 

CategoryDAOBenchmark.findAll  thrpt   10  2521.128 ± 342.735  ops/s 

 

For the actual DAO classes benchmarking 10 warmup and 20 measurement operations on a 

single JVM were used. 

3.4 Test Data 

Data used for benchmarking is the same as it is for unit testing, which is from ten to twenty 

rows in every table. This amount of data is the average amount that is fetched from the database 

with one query in an average web application, according to the experience of author. 
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4 Experiments 

Benchmarks, used to measure performance of designs, are written by the author of the thesis 

utilizing the JMH framework. The unit tests of the application’s DAO classes were taken as a 

basis for the benchmarks. 

In total nine designs were proposed (see section 3.2.2). Therefore, there are nine experiments 

implemented: one experiment per design. Correlation between designs and experiments is listed 

in Table 4. 

Table 4. Correlation between designs and experiments. 

Design Experiment DBMS Technologies 

Design 1 Experiment 1 PostgreSQL JPA + Hibernate 

Design 2 Experiment 2 PostgreSQL with JSON JPA + Hibernate 

Design 3 Experiment 3 PostgreSQL with JSONB JPA + Hibernate 

Design 4 Experiment 4 PostgreSQL with JSON JDBC + JSON processing in 

Java 

Design 4a Experiment 4a PostgreSQL with JSON JDBC 

Design 5 Experiment 5 PostgreSQL with JSONB JDBC + JSON processing in 

Java 

Design 5a Experiment 5a PostgreSQL with JSONB JDBC 

Design 6 Experiment 6 MongoDB MongoDB Java Driver 

Design 6a Experiment 6a MongoDB MongoDB Java Driver 

 

Experiment consists of the design-specific DAO classes’ implementation and 92 unique 

benchmarks. There are 66 benchmarks for SELECT operations, which include  

 fetching of the “lightweight” domain objects’ data with no associations, 

 fetching of the domain objects’ data with varying number of associations, 

 fetching of the domain objects’ data while filtering it (using WHERE clause in SQL 

statement or its counterpart for MongoDB), 

 fetching of the domain objects’ data while grouping and counting occurrences (using 

COUNT(*) and GROUP BY in SQL or theirs counterpart for MongoDB). 

There are 16 benchmarks for INSERT operations, which include 

 insertion of the “lightweight” domain objects’ data with no associations, 

 insertion of the domain objects’ data with varying number of associations. 

There are 10 benchmarks for UPDATE operations. 
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Totally, there are 92 benchmarks for every JMH’s benchmark mode and there are four modes. 

All the operations in case of these benchmarks are non-conflicting meaning that the system 

does not have to block execution of certain statements or roll them back to ensure consistency. 

The code of benchmarks are mostly the same for all experiments. The major difference is that 

a cache cleaning operation was added to the majority of benchmarks that use Hibernate. The 

essential work was done for the implementation of DAO classes according to the different 

designs. Appendix 1 contains a table that shows the number of physical lines of code in case of 

different DAO classes. 

 

The benchmarks are reusable for any versions of PostgreSQL and MongoDB, because they 

depend only on DAO classes interface. It is only necessary to change DAO implementations, 

if other versions of PostgreSQL or MongoDB have different API. 

Time unit for the measurements is milliseconds (ms). 

JMH was configured to perform ten warmup and twenty measurement operations on a single 

JVM. 

PostgreSQL and MongoDB DBMSs were used "as is". No additional configuration were made 

after their installation. Moreover, there were no additional indexes created neither for 

PostgreSQL nor for MongoDB. Both DBMSs automatically create indexes for the 

row/document primary key/ID. The creation of additional indexes is considered as "premature 

optimization" by the author. In Donald Knuth's paper "Structured Programming with go to 

Statements" [36], he wrote: "Programmers waste enormous amounts of time thinking about, or 

worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency 

actually have a strong negative impact when debugging and maintenance are considered. We 

should forget about small efficiencies, say about 97% of the time: premature optimization is the 

root of all evil. Yet we should not pass up our opportunities in that critical 3%." That is, in 

opinion of the author, additional indexes should be created only if there are performance issues, 

and the average application should be able to work well without additional indexes. 

This chapter presents aggregated results of benchmarking divided into four categories per 

measurement mode for each experiment. 

4.1 Experiment 1 

DAO classes measured in this experiment are real application classes with the difference that 

the most associations’ initialization is changed from LAZY to EAGER, and cache was disabled. 
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JPA’s EntityManager is used to cooperate with the database. JPA provider is Hibernate ORM. 

Listing of the simple DAO method is on Figure 5: 

 

Figure 5. Example of CategoryDAO.findById() method in Experiment 1 (Experiment 2, and 3). 

Table 5 and the chart on Figure 6 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the first 

experiment. When benchmarking is done, JMH provides an average execution time with the 

value of measurement uncertainty (error) for every executed benchmark (“±” in this and the 

following tables).  

Table 5. Experiment 1 measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 1.613 ± 0.057 0.056 ± 0.005 0.113 ± 0.006 

AverageTime (ms/op) 9.805 ± 0.231 20.188 ± 1.877 9.668 ± 0.583 

SampleTime (ms/op) 9.742 ± 0.134 19.911 ± 0.454 9.642 ± 0.229 

SingleShotTime (ms/op) 14.320 ± 2.396 16.344 ± 3.116 15.195 ± 3.038 

 

 

Figure 6. Experiment 1 results chart. 
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4.2 Experiment 2 

Experiment 2 uses the JPA and the Hibernate to map a String value, which contains serialized 

JSON object with the values of entity’s properties, to a PostgreSQL table’s column of JSON 

data type. Entity preserves all getters and setters for its properties, but values are actually stored 

in JSON format into the inner property named ‘data’. 

The Hibernate does not have built-in support for PostgreSQL data type JSON. However, it 

offers a simple and flexible way for necessary extensions. It was necessary to define a new data 

type for Hibernate in order to use the new PostgreSQL’s JSON data type. This is done by 

implementing the Hibernate’s interface UserType as demonstrated on Figure 7… 

 

Figure 7. Listing of Hibernate's custom UserType for PostgreSQL's JSON data type support. 

…and registering this implementation with the Hibernate’s runtime through a custom Dialect, 

which extends the default PostgreSQL dialect (see Figure 8). 

 

Figure 8. Extended Hibernate's PosgtreSQL dialect to support PostgreSQL's JSON data type. 

The last thing is to annotate entity’s property ‘data’, that it should be mapped to the 

StringJsonUserType as demonstrated on Figure 9. 

 

Figure 9. Listing of Json User Type mapping to an entity's property. 
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With these steps accomplished, Hibernate will automatically map values from the 

PostgreSQL’s columns of type JSON to the annotated with 

@Type(type = “*.StringJsonUserType”) entity’s properties of type String. 

DAO classes are unchanged. 

Table 6 and chart on Figure 10 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the second 

experiment. 

Table 6. Experiment 2 measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 1.566 ± 0.056 0.059 ± 0.005 0.095 ± 0.006 

AverageTime (ms/op) 7.459 ± 0.236 18.859 ± 1.533 11.145 ± 0.626 

SampleTime (ms/op) 7.340 ± 0.119 18.618 ± 0.416 11.042 ± 0.250 

SingleShotTime (ms/op) 11.135 ± 1.877 18.313 ± 3.462 16.337 ± 3.391 

 

 

Figure 10. Experiment 2 results chart. 

 

4.3 Experiment 3 

Experiment 3, similarly to the previous experiment, uses the Hibernate to map a String value 

with a serialized JSON object to a PostgreSQL table’s column of JSONB data type. Entity 
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The Hibernate does not have built-in support for PostgreSQL data type JSONB. In order to use 

the new JSONB data type it was necessary to define a new data type for the Hibernate. This is 

done exactly the same way like in the second experiment, with a difference in the custom 

PostgreSQL dialect as demonstrated on Figure 11. 

 

Figure 11. Extended Hibernate's PosgtreSQL dialect to support PostgreSQL's JSONB data type. 

The Hibernate will automatically map values from the PostgreSQL’s columns of type JSONB 

to the annotated entity’s properties of type String. 

DAO classes are unchanged. 

Table 7 and chart on Figure 12 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the third 

experiment. 

Table 7. Experiment 3 measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 1.588 ± 0.053 0.064 ± 0.005 0.101 ± 0.007 

AverageTime (ms/op) 7.915 ± 0.267 17.605 ± 1.398 10.613 ± 0.688 

SampleTime (ms/op) 7.744 ± 0.122 17.482 ± 0.395 10.542 ± 0.246 

SingleShotTime (ms/op) 11.721 ± 2.086 16.107 ± 3.210 14.979 ± 3.485 
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Figure 12. Experiment 3 results chart. 

 

4.4 Experiment 4 

Experiment 4 completely changes the implementation of DAO classes. Support of the JPA and 

the Hibernate is removed from the project, along with the JPA and the Hibernate specific 

annotations from the domain object classes, EntityManager, and persistence configuration files. 

Each domain object corresponds to a table, all primary and foreign keys correspond to columns, 

and other properties are manually serialized to JSON before data writing and deserialized after 

data reading to/from the database. JDBC is used for the communication with database. 

Developer writes SQL queries, manages (mostly through the SQL joins) associations, and 

processes domain objects’ data. 

SQL select query example: 

 SELECT id, data FROM category WHERE id = cast(? as uuid); 

Figure 13 demonstrates an example of the simplest DAO class method. 
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Figure 13. Example of CategoryDAO.findById() method in Experiment 4 (and Experiment 5). 

Table 8 and chart on Figure 14 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the fourth 

experiment. 

Table 8. Experiment 4 measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 1.193 ± 0.032 0.102 ± 0.004 0.114 ± 0.006 

AverageTime (ms/op) 23.116 ± 1.108 10.702 ± 0.357 9.169 ± 0.380 

SampleTime (ms/op) 22.867 ± 0.502 10.531 ± 0.233 9.079 ± 0.211 

SingleShotTime (ms/op) 30.856 ± 6.215 13.033 ± 3.211 11.545 ± 2.883 

 

 

Figure 14. Experiment 4 results chart. 
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There is one major performance issue with this experiment. For the JSON string that is received 

from the database, the Java API for JSON Processing is used. It seems that the API has poor 

performance. It drastically degrades the results of performance measurements. 

Solution to this problem is introduced and implemented in the alternative experiment, 

Experiment 4a. 

 

4.5 Experiment 4a 

Experiment 4a is an alternative implementation of the fourth experiment. Implementation of 

DAO objects in this experiment uses PostgreSQL system-defined operator ‘->’ in SQL queries 

to get JSON object field by key. As a result, non-performant JSON processing is removed from 

the Java code, improving overall performance of the benchmarks. 

SQL select query example: 

 SELECT 

   id, 

   data->'category_name' as category_name, 

   data->'deleted' as deleted, 

   data->'created' as created, 

   data->'modified' as modified 

 FROM category WHERE id = cast(? as uuid); 

Figure 15 demonstrates an example of the simplest DAO class method. 

 

Figure 15. Example of CategoryDAO.findById() method in Experiment 4a (and Experiment 5a). 

Table 9 and chart on Figure 16 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the Experiment 

4a. 
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Table 9. Experiment 4a measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 1.445 ± 0.038 0.132 ± 0.006 0.151 ± 0.009 

AverageTime (ms/op) 3.584 ± 0.123 7.869 ± 0.347 6.681 ± 0.373 

SampleTime (ms/op) 5.291 ± 0.078 7.727 ± 0.195 6.643 ± 0.179 

SingleShotTime (ms/op) 7.532 ± 1.391 8.728 ± 2.867 7.427 ± 2.333 

 

 

Figure 16. Experiment 4a results chart. 

 

4.6 Experiment 5 

Experiment 5 is almost the same as Experiment 4. It completely changes the implementation of 

DAO classes. Support of the JPA and the Hibernate is removed from the project, along with the 

JPA and the Hibernate specific annotations from the domain object classes, EntityManager, and 

persistence configuration files. 

The difference is that it uses PostgreSQL’s JSONB data type instead of JSON. 

Table 10 and chart on Figure 17 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the fifth 

experiment. 
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Table 10. Experiment 5 measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 1.214 ± 0.036 0.102 ± 0.004 0.115 ± 0.005 

AverageTime (ms/op) 24.000 ± 1.644 10.884 ± 0.402 9.181 ± 0.406 

SampleTime (ms/op) 13.198 ± 0.220 10.499 ± 0.239 9.111 ± 0.211 

SingleShotTime (ms/op) 31.252 ± 5.895 12.853 ± 2.936 10.841 ± 1.842 

 

 

Figure 17. Experiment 5 results chart. 

There is, same as in Experiment 4, one major performance issue with this experiment. For the 

parsing of JSON string, which is received from the database, the Java API for JSON Processing 

is used. It seems that API has a poor performance, drastically degrading the results of 

performance measurements. 

Solution to this problem is introduced and implemented in the alternative experiment, 

Experiment 5a. 

 

4.7 Experiment 5a 

Experiment 5a is an alternative implementation of the fifth experiment. Implementation of 

DAO classes in this experiment uses PostgreSQL system-defined operator ‘->’ in SQL queries 

to get JSONB object field by key. As a result, non-performant JSON processing is removed 

from the Java code, improving overall performance of the benchmarks. 
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Table 11 and chart on Figure 18 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the Experiment 

5a. 

Table 11. Experiment 5a measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 1.502 ± 0.041 0.132 ± 0.006 0.154 ± 0.010 

AverageTime (ms/op) 4.323 ± 0.148 7.843 ± 0.314 6.709 ± 0.369 

SampleTime (ms/op) 4.228 ± 0.068 7.918 ± 0.197 6.699 ± 0.179 

SingleShotTime (ms/op) 4.735 ± 1.080 9.034 ± 2.687 6.741 ± 2.559 

 

 

Figure 18. Experiment 5a results chart. 

 

4.8 Experiment 6 

Experiment 6 uses a MongoDB system. Each domain object correspond to a MongoDB 

collection. Each model instance is one document in the collection.  

This experiment operated with MongoDB MMAPv1 storage engine. 

Figure 19 demonstrates the simplest DAO class method. 

0

5

10

15

20

25

AverageTime SampleTime SingleShotTime

ms/op

Experiment 5a

SELECTS INSERTS UPDATES



41 

 

Figure 19. Example of CategoryDAO.findById() method in Experiment 6 (and Experiment 6a). 

Table 12 and chart on Figure 20 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the sixth 

experiment. 

Table 12. Experiment 6 measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 4.252 ± 0.165 2.869 ± 0.102 3.090 ± 0.141 

AverageTime (ms/op) 3.540 ± 0.283 0.432 ± 0.020 0.446 ± 0.012 

SampleTime (ms/op) 3.390 ± 0.084 0.423 ± 0.010 0.436 ± 0.003 

SingleShotTime (ms/op) 6.769 ± 1.596 2.807 ± 0.836 2.748 ± 0.486 

 

 

Figure 20. Experiment 6 results chart. 
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4.9 Experiment 6a 

The Experiment 6a is the same as the sixth experiment with the difference that MongoDB 

system is using the WiredTiger storage engine instead of the MMAPv1. 

Table 13 and chart on Figure 21 contain the average results for SELECTS, INSERTS, and 

UPDATES divided into four groups according to the measurement mode for the Experiment 

6a. 

Table 13. Experiment 6a measurements. 

 SELECTS INSERTS UPDATES 

Throughput (ops/ms) 5.058 ± 0.218 2.961 ± 0.156 2.981 ± 0.127 

AverageTime (ms/op) 3.311 ± 0.308 0.426 ± 0.020 0.454 ± 0.016 

SampleTime (ms/op) 3.197 ± 0.076 0.219 ± 0.010 0.224 ± 0.007 

SingleShotTime (ms/op) 5.977 ± 1.656 2.932 ± 1.037 3.159 ± 1.318 

 

 

Figure 21. Experiment 6a results chart. 
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5 Analysis of the Results 

This chapter presents summary tables of the experiments results and the analysis of these results 

for every type of operations. Each table contains measurement scores and their measurement 

uncertainty (errors) received using different JMH’s measurement modes for each experiment. 

There are two charts based on each table: the first one illustrates the results of measurements 

with Throughput mode, and the second one with three other modes (AverageTime, 

SampleTime, and SingleShotTime). 

The experiment with the best result is denoted with the green color in every summary table. 

Chapter is divided into 3 sections for every operation type: SELECTs, INSERTs, and 

UPDATEs. 

Important note 1. Although the AverageTime is a reverse of Throughput for a one separately 

taken benchmark, it is not true for the aggregated average values of all benchmarks. Explanation 

as seen by author follows. 

Let us assume that there are two benchmarks for one experiment with the following results: 

 Throughput (ops/ms) AverageTime (ms/op) 

Benchmark 1 𝑎 
1

𝑎
 

Benchmark 2 𝑏 
1

𝑏
 

 

The average Throughput for the experiment is 
𝑎+𝑏

2
 (ops/ms). 

The average AverageTime for the experiment is 

1

𝑎
+
1

𝑏

2
=

𝑎+𝑏

2𝑎𝑏
 (ms/op). 

It is obvious that the value of 
𝑎+𝑏

2𝑎𝑏
 is not the reverse value of 

𝑎+𝑏

2
. 

Important note 2. There are benchmarks that measure SELECT operations for the entities with 

no associations. These are the fastest benchmarks. There are also benchmarks that measure 

SELECT operations for the entities with varying number of associations. These may be 

significantly slower. For instance, benchmark ProjectDAOBenchmark.findById is fetching one 

Project domain object and all of its associations (there are five One-to-Many relationships) with 

Average Time of 52.587 ± 0.918 ms. In contrast, benchmark 
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CategoryDAOBenchmark.findById is fetching one Category domain object without any 

associations with Average Time of 0.366 ± 0.009 ms. 

SQL DBMSs allow using joins to fetch data of the base object with all its associations with one 

request. With NoSQL system, it is necessary to issue separate query for every association. It is 

important to note that the usage of joins does not mean that operation will be faster. 

Nevertheless, which approach is faster is going to be observed. 

Important note 3. Hibernate has a built-in cache mechanism (first-level cache), that cannot be 

disabled. In order to put other solutions in equal conditions, this cache was cleared after every 

operation, using EntityManager’s clear() method. 
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5.1 Summary of SELECT Operations Measurement Results 

SELECT operations is the data reading from the database. Due to the nature of Web 

applications, it has the most important influence on application’s overall performance. The 

reason is that in common Web application data reads happen more frequently than data writes. 

Multiple data read queries are issued to the application’s data layer with every request. 

Although usually application heavily facilitates different caching mechanisms, it is still very 

important that reads from the underlying DBMS were as fast as possible. 

Note. Results from experiments 4 and 5 may be omitted due to unnaturally slow operations 

execution time. The reason is that the Java API for JSON Processing is used for the JSON 

strings processing. It seems that the API has poor performance, drastically degrading the 

experiment’s performance measurements. 

Hereafter, two charts illustrating the experiments results and the summary table are presented.  

The first chart on Figure 22 demonstrates the Throughput values. The greater the value the 

better. 

 

Figure 22. SELECT operations throughput summary chart. 

The second chart on Figure 23 demonstrates values of AverageTime, SampleTime, and 

SingleShotTime. The smaller the value the better. 
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Figure 23. SELECT operations performance summary chart. 

 

Table 14 presents results for all experiments. The best and the worst values within every 

measurement mode are marked with stronger  and dashed outline respectively. The most and 

the least performant experiment is marked with green and red fill.  

Table 14. Experiments summary for SELECT operations. 

 Throughput 

(ops/ms) 

AverageTime 

(ms/op) 

SampleTime 

(ms/op) 

SingleShotTime 

(ms/op) 

Experiment 1 1.613 ± 0.057 9.805 ± 0.231 9.742 ± 0.134 14.320 ± 2.396 

Experiment 2 1.566 ± 0.056 7.459 ± 0.236 7.340 ± 0.119 11.135 ± 1.877 

Experiment 3 1.588 ± 0.053 7.915 ± 0.267 7.744 ± 0.122 11.721 ± 2.086 

Experiment 4 1.193 ± 0.032 23.116 ± 1.108 22.867 ± 0.502 30.856 ± 6.215 

Experiment 4a 1.445 ± 0.038 3.584 ± 0.123 5.291 ± 0.078 7.532 ± 1.391 

Experiment 5 1.214 ± 0.036 24.000 ± 1.644 13.198 ± 0.220 31.252 ± 5.895 

Experiment 5a 1.502 ± 0.041 4.323 ± 0.148 4.228 ± 0.068 4.735 ± 1.080 

Experiment 6 4.252 ± 0.165 3.540 ± 0.283 3.390 ± 0.084 6.769 ± 1.596 

Experiment 6a 5.058 ± 0.218 3.311 ± 0.308 3.197 ± 0.076 5.977 ± 1.656 

 

Table 15 demonstrates all experiments’ relative performance interrelation for SELECT 

operations.   
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How to read this table 

Let us assume that one wants to lookup how the second experiment (Exp2) correlates to the 

first experiment (Exp1). One is looking for Exp2 tagged row on X-axis and for Exp1 tagged 

column on Y-axis. Afterwards, one is searching for the intersection of found row and column. 

The intersection shows a value of 76% with green color. It means that the second experiment 

(Exp2) is 
100%

76%
= 𝟏. 𝟑 times more performant than the first experiment (Exp1). 

Now the inverse lookup: how the first experiment (Exp1) correlates to the second experiment 

(Exp2). One is looking for Exp1 tagged row on X-axis and for Exp2 tagged column on Y-axis. 

Afterwards, one is searching for the intersection of found row and column. The intersection 

shows a value of 131% with red color. It means that the first experiment (Exp1) is 
131%

100%
= 𝟏. 𝟑 

times less performant than the second experiment (Exp2). 

Table 15. Experiments relative comparison for SELECT operations. 

        y 

  x 
Exp1 Exp2 Exp3 Exp4 Exp4a Exp5 Exp5a Exp6 Exp6a 

Exp1 100% 131% 124% 42% 274% 41% 227% 277% 296% 

Exp2 76% 100% 94% 32% 208% 31% 173% 211% 225% 

Exp3 81% 106% 100% 34% 221% 33% 183% 224% 239% 

Exp4 236% 310% 292% 100% 645% 96% 535% 653% 698% 

Exp4a 37% 48% 45% 16% 100% 15% 83% 101% 108% 

Exp5 245% 322% 303% 104% 670% 100% 555% 678% 725% 

Exp5a 44% 58% 55% 19% 121% 18% 100% 122% 131% 

Exp6 36% 47% 45% 15% 99% 15% 82% 100% 107% 

Exp6a 34% 44% 42% 14% 92% 14% 77% 94% 100% 

 

The most performant experiment with PostgreSQL is Experiment 4a (JDBC + PostgreSQL 

JSON data type). It is 1.2 times more performant than the analogues experiment with JSONB 

data type (Experiment 5a). However, MongoDB with MMAPv1 storage engine (Experiment 6) 

is just a little faster, 1.01 times. 

MongoDB with WiredTiger storage engine showed slightly better results, than with MMAPv1 

engine. The former is 1.07 times faster than the latter.  

Summarizing, the most performant experiment with MongoDB showed 1.08-1.09 times better 

performance for SELECT operations than the most performant experiment with 
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PostgreSQL. Nevertheless, it is possible to conclude that PostgreSQL with JSON data type is 

able to compete with MongoDB in data reading. 

5.2 Summary of INSERT Operations Measurement Results 

INSERT operations mean writing new propositions to the database that do not replace existing 

propositions. Common Web application issues a relatively small number of inserts. 

Nonetheless, data write performance is important, because it may not benefit from the cache 

mechanisms (probably, except of some deferred write techniques). Usually data write is issued 

after some action of the user. The speed of the response depends on data write performance. 

Consequently, better execution speed of write operation means faster response time for the end 

user. 

Hereafter, two charts illustrating the experiments results and the summary table are presented.  

The first chart on Figure 24 demonstrates the Throughput values. The greater the value the 

better. 

 

Figure 24. INSERT operations throughput summary chart. 

The second chart on Figure 25 demonstrates values of AverageTime, SampleTime, and 

SingleShotTime. The smaller the value the better. 
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Figure 25. INSERT operations performance summary chart. 

Table 16 presents results for all experiments. The best and the worst values within every 

measurement mode are marked with stronger  and dashed outline respectively. The most and 

the least performant experiment is marked with green and red fill.  

Table 16. Experiments summary for INSERTS. 

 Throughput 

(ops/ms) 

AverageTime 

(ms/op) 

SampleTime 

(ms/op) 

SingleShotTime 

(ms/op) 

Experiment 1 0.056 ± 0.005 20.188 ± 1.877 19.911 ± 0.454 16.344 ± 3.116 

Experiment 2 0.059 ± 0.005 18.859 ± 1.533 18.618 ± 0.416 18.313 ± 3.462 

Experiment 3 0.064 ± 0.005 17.605 ± 1.398 17.482 ± 0.395 16.107 ± 3.210 

Experiment 4 0.102 ± 0.004 10.702 ± 0.357 10.531 ± 0.233 13.033 ± 3.211 

Experiment 4a 0.132 ± 0.006 7.869 ± 0.347 7.727 ± 0.195 8.728 ± 2.867 

Experiment 5 0.102 ± 0.004 10.884 ± 0.402 10.499 ± 0.239 12.853 ± 2.936 

Experiment 5a 0.132 ± 0.006 7.843 ± 0.314 7.918 ± 0.197 9.034 ± 2.687 

Experiment 6 2.869 ± 0.102 0.432 ± 0.020 0.423 ± 0.010 2.807 ± 0.836 

Experiment 6a 2.961 ± 0.156 0.426 ± 0.020 0.219 ± 0.010 2.932 ± 1.037 
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Table 17 demonstrates all experiments’ relative performance interrelation for INSERT 

operations. 

How to read this table 

Let us assume that one wants to lookup how the second experiment (Exp2) correlates to the 

first experiment (Exp1). One is looking for Exp2 tagged row on X-axis and for Exp1 tagged 

column on Y-axis. Afterwards, one is searching for the intersection of found row and column. 

The intersection shows a value of 93% with green color. It means that the second experiment 

(Exp2) is 
100%

93%
= 𝟏. 𝟎𝟕𝟓 times more performant than the first experiment (Exp1). 

Now the inverse lookup: how the first experiment (Exp1) correlates to the second experiment 

(Exp2). One is looking for Exp1 tagged row on X-axis and for Exp2 tagged column on Y-axis. 

Afterwards, one is searching for the intersection of found row and column. The intersection 

shows a value of 107% with red color. It means that the first experiment (Exp1) is 
107%

100%
= 𝟏. 𝟎𝟕 

times less performant than the second experiment (Exp2). 

Table 17. Experiments relative comparison for INSERT operations. 

        y 

  x 
Exp1 Exp2 Exp3 Exp4 Exp4a Exp5 Exp5a Exp6 Exp6a 

Exp1 100% 107% 115% 189% 257% 185% 257% 4673% 4739% 

Exp2 93% 100% 107% 176% 240% 173% 240% 4366% 4427% 

Exp3 87% 93% 100% 165% 224% 162% 224% 4075% 4133% 

Exp4 53% 57% 61% 100% 136% 98% 136% 2477% 2512% 

Exp4a 39% 42% 45% 74% 100% 72% 100% 1822% 1847% 

Exp5 54% 58% 62% 102% 138% 100% 139% 2519% 2555% 

Exp5a 39% 42% 45% 73% 100% 72% 100% 1816% 1841% 

Exp6 2% 2% 2% 4% 5% 4% 6% 100% 101% 

Exp6a 2% 2% 2% 4% 5% 4% 5% 99% 100% 

 

The most performant experiments with PostgreSQL are Experiment 4a (JDBC + PostgreSQL 

JSON data type) and Experiment 5a (JDBC + PostgreSQL JSONB data type). They showed 

almost identical results.  

MongoDB with WiredTiger storage engine showed slightly better results, than with MMAPv1 

engine. The former is 1.01 times faster than the latter, which is insignificant difference.  
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Summarizing, experiments with MongoDB showed approximately 18 times better 

performance for INSERT operations than the most performant experiment with PostgreSQL. 

5.3 Summary of UPDATE Operations Measurement Results 

Update operations is replacing some proposition in a database with a new proposition. Common 

Web application issues a relatively small number of updates. Data write performance is 

important, because it may not benefit from cache mechanisms (probably, except of some 

deferred write techniques). Usually data write is issued after some action of the user; the speed 

of the response depends on data write performance. Therefore, better execution speed of write 

operation means faster response time for the end user. 

Hereafter, two charts illustrating the experiments results and the summary table are presented.  

The first chart on Figure 26 demonstrates the Throughput values. The greater the value the 

better. 

 

Figure 26. UPDATE operations throughput summary chart. 

The second chart on Figure 27 demonstrates values of AverageTime, SampleTime, and 

SingleShotTime. The smaller the value the better. 
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Figure 27. UPDATE operations performance summary chart. 

Table 18 presents results for all experiments. The best and the worst values within every 

measurement mode are marked with stronger  and dashed outline respectively. The most and 

the least performant experiment is marked with green and red fill.  

Table 18. Experiments summary for UPDATES. 

 Throughput 

(ops/ms) 

AverageTime 

(ms/op) 

SampleTime 

(ms/op) 

SingleShotTime 

(ms/op) 

Experiment 1 0.113 ± 0.006 9.668 ± 0.583 9.642 ± 0.229 15.195 ± 3.038 

Experiment 2 0.095 ± 0.006 11.145 ± 0.626 11.042 ± 0.250 16.337 ± 3.391 

Experiment 3 0.101 ± 0.007 10.613 ± 0.688 10.542 ± 0.246 14.979 ± 3.485 

Experiment 4 0.114 ± 0.006 9.169 ± 0.380 9.079 ± 0.211 11.545 ± 2.883 

Experiment 4a 0.151 ± 0.009 6.681 ± 0.373 6.643 ± 0.179 7.427 ± 2.333 

Experiment 5 0.115 ± 0.005 9.181 ± 0.406 9.111 ± 0.211 10.841 ± 1.842 

Experiment 5a 0.154 ± 0.010 6.709 ± 0.369 6.699 ± 0.179 6.741 ± 2.559 

Experiment 6 3.090 ± 0.141 0.446 ± 0.012 0.436 ± 0.003 2.748 ± 0.486 

Experiment 6a 2.981 ± 0.127 0.454 ± 0.016 0.224 ± 0.007 3.159 ± 1.318 
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Table 19 demonstrates all experiments’ relative performance interrelation for UPDATE 

operations.   

How to read this table 

Let us assume that one wants to lookup how the second experiment (Exp2) correlates to the 

first experiment (Exp1). One is looking for Exp2 tagged row on X-axis and for Exp1 tagged 

column on Y-axis. Afterwards, one is searching for the intersection of found row and column. 

The intersection shows a value of 115% with red color. It means that the second experiment 

(Exp2) is 
115%

100%
= 𝟏. 𝟏𝟓 times less performant than the first experiment (Exp1). 

Now the inverse lookup: how the first experiment (Exp1) correlates to the second experiment 

(Exp2). One is looking for Exp1 tagged row on X-axis and for Exp2 tagged column on Y-axis. 

Afterwards, one is searching for the intersection of found row and column. The intersection 

shows a value of 87% with red color. It means that the first experiment (Exp1) is 
100%

87%
= 𝟏. 𝟏𝟓 

times more performant than the second experiment (Exp2). 

Table 19. Experiments relative comparison for UPDATE operations. 

       y 

 x  
Exp1 Exp2 Exp3 Exp4 Exp4a Exp5 Exp5a Exp6 Exp6a 

Exp1 100% 87% 91% 105% 145% 105% 144% 2168% 2130% 

Exp2 115% 100% 105% 122% 167% 121% 166% 2499% 2455% 

Exp3 110% 95% 100% 116% 159% 116% 158% 2380% 2338% 

Exp4 95% 82% 86% 100% 137% 100% 137% 2056% 2020% 

Exp4a 69% 60% 63% 73% 100% 73% 100% 1498% 1472% 

Exp5 95% 82% 87% 100% 137% 100% 137% 2059% 2022% 

Exp5a 69% 60% 63% 73% 100% 73% 100% 1504% 1478% 

Exp6 5% 4% 4% 5% 7% 5% 7% 100% 98% 

Exp6a 5% 4% 4% 5% 7% 5% 7% 102% 100% 

 

The most performant experiments with PostgreSQL are Experiment 4a (JDBC + PostgreSQL 

JSON data type) and Experiment 5a (JDBC + PostgreSQL JSONB data type). They showed 

almost identical results.  

MongoDB with MMAPv1 storage engine showed slightly better results, than with WiredTiger 

engine. The former is 1.02 times faster than the latter, which is insignificant difference.  
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Summarizing, experiments with MongoDB showed approximately 15 times better 

performance for UPDATE operations than the most performant experiment with 

PostgreSQL. 

5.4 Discussion 

According to the results of different measurements mentioned in this thesis, it is possible to 

conclude that the results of performance comparisons heavily depend on tools, which are used 

to accomplish the comparisons. Moreover, in case of each such comparison one should defined 

the target audience that representatives could make decisions based on the result of the 

performance comparison. For instance, in case of the present measurements and comparisons, 

the target audience is software developers. 

There were two different performance benchmarking approaches (that specify process and 

tools) described in this thesis. 

The first one was initially carried out by the EnterpriseDB. They developed and open-sourced 

a special testing framework for this purpose. It uses console applications provided by the 

vendors of DBMSs to execute database operations. Tests showed that INSERT and SELECT 

operations are, correspondingly, three and four and a half times more performant in 

PostgreSQL. These tests were made with MongoDB 2.6 and PostgreSQL 9.4 beta. However, at 

the time of writing this thesis (spring 2015) MongoDB 3.0.2 and PostgreSQL 9.4.1 were 

available. Therefore, in the context of this thesis, the author made new tests by using the same 

testing framework. According to this INSERT and SELECT operations are still at least three 

time more performant in PostgreSQL. 

However, the author assumed that there is a problem with this testing approach. The problem 

is that aforementioned testing framework is using console applications provided by DBMS 

vendors: psql and mongo. Probably it might be satisfactory for the target audience of system 

administrators. However, for the software developers the results of such performance 

measurement are at least unreliable. The reason is that applications are not using console 

applications to communicate with a database. They use a corresponding DBMS API and 

features of programming languages. That is, in order to make performance comparison of 

DBMSs for software developers, it is necessary to measure performance through an application 

by using the correct API. 

The goal of this thesis was to test what performance PostgreSQL with JSON data types can 

offer for real applications and to verify as to whether the PostgreSQL can outperform MongoDB 

in this context. To achieve the goal, the author took a real world Java application and 
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reconfigured its database layer and its DAO classes to use PostgreSQL and MongoDB with 

different configurations. In total nine different database/application designs were introduced, 

implemented, and performance of operations measured. The results are opposite to that the 

author received by using EnterpriseDB’s testing framework. MongoDB NoSQL DBMS 

outperforms PostgreSQL with JSON data types if used through some popular APIs.  

The main reason of faster data write in case of MongoDB may be that MongoDB uses the 

acknowledged write concern by default [37]. The acknowledged write concern means that the 

MongoDB confirms that it received the write operation and applied the change to the in-

memory view of data. It does not confirm that the write operation has persisted to the disk 

system. The other reason may be that transaction management through the API in the 

application in case of PostgreSQL may influence the overall performance. 

The tests also showed that the “standard” design of PostgreSQL with no use of JSON types lead 

mostly to slower performance than the designs with JSON types. 

Of course, one must understand that there are multiple criteria based on that to decide the usage 

of a particular technology, architecture, and design. Performance is only one of them and 

depending the context, it could be more or less important. 

The tests were made in the following context that affects the results of the benchmarking made 

for this thesis. 

 No additional configuration of DBMSs was made after their installation.  

 There were no additional indexes created neither for PostgreSQL nor for MongoDB. 

The only indexes used are the ones created automatically by the DBMS. 

 The tests were made on one computer not on cluster of computers where NoSQL 

systems are quite often used. 

 Each executed operation was treated as a transactional unit. No transactions that involve 

multiple operations were tested. PostgreSQL support multi-statement transactions and 

in MongoDB (3.0) one can emulate multi-statement “like” transactions by 

implementing two-phase commit algorithm in the application [38]. 

 Performance benchmarking was made only by using the application created in Java 

programming language. 

 As in case of console applications, it is not exactly clear how much the implementation 

of the APIs influences the overall performance. However, at least now the DBMSs are 

tested in a realistic situation from the point of view of developers. 
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Limitations of this work open up new avenues for future work. 

5.5 Future Work 

Future work should include additional experiments to explore the results in case of some other 

context than previously mentioned. For instance, some “correct” configuration and/or fine-

tuning of a DBMS may significantly improve its performance. One could create indexes to 

JSON data in both PostgreSQL and MongoDB and it should affect both read and write 

performance. Some other programming language than Java may show different results. 

It would be interesting to dig deep to the internals of PostgreSQL (because it is open source it 

is possible) to find out what could cause the performance problems.  

Moreover, results of the current work may have several implications for further research and 

analysis. 

It is obvious that a NoSQL system is great for writing high amounts of data, whereas SQL 

system is generally more reliable because of transactions. Let us assume that there is an 

application that operates over two sets of data. One set of data is very important (transactions 

between bank accounts) and the second set of data is not important, but just useful for some 

reason (for instance, it may some kind of “audit log” within the application). It would be 

interesting to compare real world application’s performance when it used only SQL DBMS and 

when it uses SQL DBMS for the first set of data and some NoSQL system for another set of 

data. This is the idea of Polyglot Persistence. Further investigation of “application managed 

transactions” is also interesting. This would allow developers to start to consider using NoSQL 

systems that do not support multi-statement transactions for the processing of important data. 
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Summary 

 

Performance Comparison of MongoDB and PostgreSQL with JSON types 

 

The goal of this work was to create a set of benchmarks, to measure the performance of 

PostgreSQL with JSON data types, and to compare it with the performance of MongoDB 

NoSQL system from the perspective of a real world Java application. This goal was inspired by 

the debates that introduction of JSON data types in PostgreSQL not only provides the flexibility 

of a documents-based data model but offers comparable or even better performance. 

Firstly, the author shortly described the theoretical background that stands behind SQL and 

NoSQL systems, as well as Java specific technologies for database communication. The second 

chapter described the performance comparison of PostgreSQL with JSON data type and 

MongoDB, which was firstly done by the EnterpriseDB (the leading worldwide provider of 

PostgreSQL software). Additionally, the author made a performance comparison of the newest 

(at the time of writing) PostgreSQL (9.4) and MongoDB (3.0) versions by using the same 

benchmarking framework. Both these comparisons showed that PostgreSQL actually 

significantly outperforms NoSQL system MongoDB. However, the author doubted the results, 

because the benchmarking tool was written and provided by EnterpriseDB. It is a company that 

provides support and tools for PostgreSQL. This tool uses console applications by calling 

separate console commands for every action. The performance of these console applications 

may significantly influence benchmarking results. Moreover, console applications are not used 

as mediators if an application wants to interact with a DBMS. 

The main part of the work started from the third chapter. There the author described the database 

layer of Java application, which served as a platform for experimenting and benchmarking. 

Most importantly, the different designs of possible database layer implementations were 

introduced and briefly described. Lastly, JMH, the tool utilized for performance benchmarks 

creation, was explained. 

The fourth chapter introduced the nine experiments based on the aforementioned designs. The 

author explained the implementation of database layer and corresponding benchmarks for every 

experiment. Aggregated results of benchmarking, divided into three categories for SELECT, 

INSERT, and UPDATE operations, were presented as well. 
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The fifth chapter presented an analysis of the outcomes of the experiments. It contains one 

section for every category of operations. Each section contains several summary charts and 

tables with the results of experiments.  

As a result of this work, the following conclusions about PostgreSQL (9.4) with JSON data 

types and MongoDB (3.0) performance comparison were made. 

 SELECT operations or data read performance from Java application in PostgreSQL with 

JSON data types is almost identical with MongoDB. 

 INSERT operations or data write performance from Java application in MongoDB is 18 

times more performant than in PostgreSQL with JSON data types. 

 UPDATE operations performance from Java application in MongoDB is 15 times more 

performant than in PostgreSQL with JSON data types. 

To summarize, the introduction of JSON data types in PostgreSQL does not mean that it may 

replace NoSQL systems. Performance of PostgreSQL for data write is drastically lower than 

the performance of the considered NoSQL system. The biggest merit of JSON data types in 

PostgreSQL is that it may offer certain flexibility of the document-based data model in a 

traditional SQL DBMS. Results of this work proved once more that one must find a proper tool 

for every problem. The DBMSs will come and go but the idea that one should get from this 

thesis is that it is both necessary and possible to test the performance of DBMSs from the point 

of view of software developers by using tools that are in their disposal. 
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Kokkuvõte 

 

MongoDB ja JSON tüüpe kasutava PostgreSQLi jõudluse võrdlemine 

 

Käesoleva töö eesmärk on mõõta JSON tüüpe pakkuva PostgreSQL andmebaasisüsteemi 

jõudlust ja võrrelda seda MongoDB NoSQL süsteemi jõudlusega reaalses Java rakenduses. 

Eesmärk sai inspiratsiooni aruteludest, kas JSON andmetüüpide kasutusvõimalus 

PostgreSQLis mitte ainult ei paku dokumendipõhise andmemudeli paindlikkust, vaid ka 

NoSQL süsteemidega võrreldavat või isegi paremat jõudlust. 

Esmalt kirjeldab autor lühidalt SQL-i ja NoSQL süsteemide teoreetilist tausta ning 

andmebaasidega suhtlemiseks mõeldud Java spetsiifilisi tehnoloogiaid. Teises peatükis 

kirjeldatakse JSON tüüpe pakkuva PostgreSQLi ja MongoDB  jõudluse võrdlust, mille viis 

esmalt läbi EnterpriseDB (juhtiv PostgreSQL tarkvara pakkuja). Lisaks teostas autor sama 

võrdlusraamistikku kasutades jõudluse võrdluse (töö kirjutamise ajal) kõige uuema 

PostgreSQL-i (9.4) ja MongoDB (3.0) versiooni vahel. Mõlemad võrdlused näitasid, et 

PostgreSQL pakub märgatavamalt paremat jõudlust kui NoSQL süsteem MongoDB. Autor 

kahtles nendes tulemustes, kuna kasutatud võrdlusraamistik on toodetud EnterpriseDB poolt. 

Sama ettevõte pakub ka tuge ja rakendusi PostgreSQL-le. See töövahend kasutab 

terminalirakendusi, kutsudes välja nende käsurea käske. Terminalirakenduse jõudlus võib 

märgatavalt mõjutada mõõtmiste tulemusi. Lisaks ei ole terminalirakendused kasutuse 

rakenduste ja andmebaasisüsteemide suhtluse vahendajatena. 

Töö põhiosa algab kolmandast peatükist, kus kirjeldatakse eksperimenteerimise ja mõõtmise 

platvormiks olnud Java rakenduse andmebaasikihti. Lühidalt on kirjeldatud erinevaid disaine 

andmebaasikihi realiseerimiseks ning lõpetuseks antakse ülevaade jõudluse mõõtmise 

rakendusest JMH. 

Neljandas peatükis tutvustatakse üheksat eelpool nimetatud eksperimentidel põhinevat disaini. 

Teostatud on andmebaasikihi realisatsioon ja loodud vastav mõõtmisraamistik igale 

eksperimendile. Esitatakse kogutud tulemused, mis on jaotatud kolme kategooriasse – 

SELECT, INSERT ja UPDATE operatsioonid. 

Analüüsi tulemused esitatakse viiendas peatükis, mis sisaldab alajaotust iga operatsioonide 

kategooria jaoks. Iga alajaotus sisaldab omakorda mitmeid skeeme ja tabeleid eksperimentide 

tulemuste kohta. 
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Käesoleva töö tulemusena jõuti andmebaasisüsteemide PostgreSQL (koos JSON 

andmetüüpidega) ja MongoDB jõudluse võrdlemisega järgmiste tulemusteni. 

 SELECT operatsioonid e andmete lugemise jõudlus Java rakendusest on PostgreSQLi 

(koos JSON tüüpidega) ja MongoDB korral peaaegu ühesugune. 

 INSERT operatsioonid e andmete kirjutamine Java rakendusest MongoDB on 18 korda 

kiirem kui PostgreSQL (koos JSON tüüpidega) korral. 

 UPDATE operatsioonid e andmete kirjutamine Java rakendusest MongoDB on 15 korda 

kiirem kui PostgreSQL (koos JSON tüüpidega) korral. 

Testid näitasid ka seda, et PostgreSQLi standardne disain kus JSON tüüpe ei kasutatud viis 

enamasti madalama jõudluseni kui disainid, kus kasutati JSON tüüpe. 

Kokkuvõtvalt, JSON andmetüüpide kasutuselevõtt PostgreSQL-is ei tähenda, et PostgreSQL 

võiks asendada NoSQL süsteeme. PostgreSQL-i andmete kirjutamise jõudlus on drastiliselt 

madalam kui jõudlus käsitletud NoSQL süsteemis. JSON andmetüüpide PostgreSQLi poolt 

toetamise suurim väärtus on, et see võib pakkuda teatavat dokumendipõhisest andmemudelist 

tulenevat paindlikust. Käesoleva töö tulemused tõestasid, et igale probleemile on vaja leida 

selle lahendamiseks sobiv vahend. Andmebaasisüsteemid tulevad ja lähevad. Idee mille lugeja 

võiks sellest tööst kaasa võtta on, et on vajalik ja võimalik hinnata andmebaasisüsteemide 

töökiirust tarkvaraarendajate vaatepunktist, kasutades nende käsutuses olevaid töövahendeid.  
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Appendix 1 

 

Table 20 shows the number of physical lines of code in case of different DAO classes. The 

number shows the actual code lines. Comments and blank lines were not included. 

Table 20. Source lines of code count for DAO implementations. 

 1 2, 3 4, 5 4a, 5a 6, 6a 

AbstractDAO.java 10 10 23 23 20 

BlacklistedNameDAO.java 8 8 31 48 32 

CarouselContentDAO.java 9 9 32 59 38 

CategoryDAO.java 12 12 55 63 35 

CommitChangeLogDAO.java 11 11 80 88 35 

EnduserDAO.java 56 56 440 427 196 

EnduserTeamDAO.java 24 24 132 171 59 

LicenceDAO.java 8 8 30 44 32 

MergeResultDAO.java 18 18 103 135 95 

NotificationDAO.java 33 33 145 181 86 

PluginVersionDAO.java 8 8 35 54 38 

ProjectDAO.java 65 67 620 596 259 

ProjectSubscriberDAO.java 29 29 109 121 49 

ProjectVersionDAO.java 71 72 251 307 211 

ProjectVersionDownloadDAO.java 7 7 31 31 23 

RoleTypeDAO.java 38 38 126 136 59 

TagDAO.java 30 30 111 145 189 

TeamDAO.java 24 24 224 232 99 

SUM 461 464 2578 2861 1555 

 


