
Tallinn 2016

Faculty of Information Technology

Department of Computer Science

TUT Centre for Digital Forensics and Cyber Security

ITC70LT

Onur Aydin Korkmaz, Student No: a122792

 COMPREHENSIVE ANALYSIS OF
CYBER ATTACKS AND MALWARE

USING LOW- AND HIGH-

INTERACTION HONEYPOT

MADAL- JA KÕRGINTERAKTIIVSETE

MEEPURKIDE KASUTAMINE

KÜBERRÜNNAKUTE JA PAHAVARA
KOMPLEKSANALÜÜSIKS

Master Thesis

Truls T. Ringkjob

Master’s Degree in Cyber Security

Lecturer IT college, Visiting Lecturer TTÜ

Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to

the literature and the work of others have been referred to. This thesis has not been presented

for examination anywhere else.

Author: Onur Aydin Korkmaz

25.05.2016

1

Abstract

Today’s cyber threats are sophisticated, well- funded, organized and cybercrime

operations can cause major loss to organizations, national infrastructure. Malware is the

major actor as threat to the security of networks and cause crucial security risks to the

systems. There are solid tools to protect systems that mitigate the risks but mostly about

against known or identified vulnerabilities. Honeypot is a decoy tool; an approach to

observe attackers and uncover some of the threats.

In this thesis, the role and concept of honeypot with its advantage and disadvantage in

security was studied. A low-interaction honeypot was used to collect malware and data.

Then real services were installed, local and virtual network systems were created,

virtual hosts were implemented on two more IP addresses that made honeypot high-

interaction. A practical analysis of attacks and exploited vulnerabilities was made to

understand attack patterns, attacker’s behaviors and methods. The collected data was

compared between low interaction and high interaction honeypot. The analysis offers a

model to set up a system to collect efficiently malware samples. This system runs a low-

interaction honeypot that listens as many IP in the network and minimum number of

secured real services. The real services helped to receive more connections but not for

collecting more malware samples. In order to lure attackers, running real systems with

honeypot was risky and unfortunately the system was compromised and host based

forensics was done.

This thesis is written in English and is 62 pages long, including 7 chapters, 10 figures

and 11 tables.

2

Annotatsioon

Tänasel päeval on küber ohud väga aktuaalne teema. Küberrünnakud võivad tek itada

firmadele väga suurt kahju - nii rahaliselt kui ka maine poolest. Pahavara on üks

suuremaid ohu faktoreid võrgu turvalisuses ja see tekitab suuri turvalisuse ohte

süsteemi. Süsteemi kaitsemiseks on olemas tarkvara, mis aitab ohte vähendada. Meepott

on tarkvara, mis aitab anda ülevaate ründajatest ning leida üles ohud.

Lõputöös kasutati madal- ja kõrginteraktiivset meepotti. Analüüsiti kogutud andmeid ja

pakutakse välja mudel, et efektiiselt koguda pahavara näiteid.

Lõputöö on kirjutatud eesti keeles ning sisaldab teksti 62 leheküljl, 7 peatükki, 10

joonist, 11 tabelit.

3

Table of abbreviations and terms

IDS Intrusion detection system

IPS Intrusion prevention system

LAMP Linux, Apache, MySQL, PHP

DMZ Demilitarized zone

VM Virtual machine

SMB Server Message Block

DDoS Distributed Denial of Service

SQL Structured Query Language

SSH Secure Shell

HVM Hardware virtual machine

PV Para virtualization

SA System administrator

TLS Transport Layer Security

MSRPC Microsoft Remote Procedure Call

XMPP Extensible Messaging and Presence Protocol

LTS Long term supported

LAN Local Area Network

ISP Internet Service Provider

MD5 Message-digest Algorithm

NLP Natural Language Processing

4

T-SNE t-Distributed Stochastic Neighbor Embedding

LSI Latent Semantics Indexing

ERM Entity relationship model

DCE/RPC Distributed Computing Environment / Remote Procedure Calls

SRVSVC the Server Service Remote Protocol

DSSETUP Active Directory Services Setup

PNP Plug and Play

DCOM Distributed Component Object Model

RPCSS Remote Procedure Call System Service

ICMP Internet Control Message Protocol

SMTP Simple Mail Transfer Protocol

5

Acknowledgments

I would like to thank my supervisor Truls T. Ringkjob to have it made possible for me

to work on my master thesis and his understanding and availability as well as his

thoughtful guidance, supplying necessary equipment.

I also thank to all my teachers of my master programme who efficiently prepared me for

this master’s thesis.

6

Table of Contents

1. Introduction ... 10

1.1. Background and Motivation .. 10

1.2. Scope of study .. 11

1.3. Research goals.. 12

1.4. Contribution of thesis... 12

2. Honeypots .. 14

2.1. History of honeypot ... 15

2.2. Types of honeypots .. 15

2.3. Honeypot deployment on a network .. 16

2.4. Value of honeypot in security .. 17

2.5. Drawbacks and shortcoming of honeypot.. 21

3. Low-interaction honeypots and design.. 23

3.1. Low-Interaction honeypots .. 23

3.2. Dionaea .. 24

3.2.1. Protocols ... 24

3.2.2. Modules .. 25

3.2.3. Configuration file.. 26

3.2.4. Utils... 26

3.2.5. Privileges .. 26

3.3. Design .. 26

4. Low to High Interaction .. 30

4.1.1. Server installation ... 30

7

4.1.2. Tapping ... 30

4.1.3. Honeyd.. 31

4.2. Security .. 33

4.2.1. Detection of VMs ... 33

4.2.2. Detection of honeypots ... 33

4.3. Avoiding Dionaea service identification.. 34

4.4. Iptables ... 35

5. Analysis of data and attackers’ behavior ... 38

5.1. Value of data .. 38

5.2. Machine1.. 39

5.3. Machine2.. 44

5.4. Machine3.. 45

5.5. Collected malwares .. 48

5.5.1. The purpose of malwares that targeted the system 49

6. Forensics of honeypot.. 52

6.1. System Description .. 52

6.2. Login and System Logs ... 53

6.3. Network logs .. 54

7. Summarizing the research ... 55

7.1. Conclusion ... 55

References... 57

Appendix... 61

1. List of SQL queries.. 61

8

List of Figures

Figure 1. Honeypot deployment in network ..17

Figure 2. Honeypot taxonomy based on honeypots’ data ..19

Figure 3. Taxonomy of information protection mechanism ..19

Figure 4. TCP/UDP port activity ..25

Figure 5. Honeypot placement in network ..27

Figure 6. Machine3 Network Schema ...31

Figure 7. Virtual network schema ...32

Figure 8. Entity relationship model for decision tree ..39

Figure 9. Machine1 connections graphic ...41

Figure 10. Machine3 connections graphic ...46

9

List of Tables

Table 1. Defensible actions Matrix..20

Table 2. Machine1 statistical results..40

Table 3. Machine1 SQL login info ..41

Table 4. Machine1 List of exploited vulnerabilities ..42

Table 5. Machine2 statistical results..44

Table 6. Machine2 malware/connections table ...44

Table 7. Machine2 SQL login info ..44

Table 8. Machine2 List of exploited vulnerabilities ..45

Table 9. Machine3 statistical data ...46

Table 10. Machine3 SQL login info ..47

Table 11. Machine3 Exploited Vulnerabilities ..47

10

1. Introduction

Since the first PC virus appeared, hacking is industrialized, distinct threat cycles

appeared and it is challenging to detect, understand and stop. In order to protect a

system, there are security measures to be taken but can stop some part of them. The

system misconfiguration, poor patch management practices implemented by system and

network administrators, code, design, not updated software, unsecure network and

especially the user can cause vulnerability. The human is the weakest part of chain in

security that the most common cyber threats targeting users are caused by malware. In

2015, there were 230,000 new types of malware each day and 21 million new threats in

second quarter according to PandaLabs report [1]. The cyber criminals use existing part

of code in order to implement new types of malware that a llows them quickly develop

signature of new dangerous software and create zero-day exploits. The attackers use a

set of malware repeatedly in different attacks and past methods to try to exploit any

vulnerability. The attackers prey on human weakness in order to lure insiders to

inadvertently provide them access. Honeypot has similar aim; it lures attackers but

interact with them collects as much as information about attacker and attacks [2] while

keeping them away from critical systems. Honeypot try to trap attacker with emulated

services that looks like real systems or with real services that is useful tool together with

other security implementations. Honeypot detects malwares and known/unknown

attacks (zero-day attacks), observes network to prevent new infections in early stage and

allows analyzing attacks, attacker’s behavior, tactics and methods. What makes

honeypot interesting to study is to have these advantages over other security tools, it

focuses on malware and unknown vulnerabilities in system caused by human and it

collects all the information in database to analyze. It can make us to hold upper hand to

fool attacker and strength the security with the gathered information. Honeypot may

introduce risk to system; it is possible attacker can detect honeypot and honeypot can be

compromised as anything coded by humans can be compromised.

1.1. Background and Motivation

The topic of the thesis was proposed to me by my supervisor Truls Ringkjob. It is an

exciting topic related to security and made me look into working on collected large data,

11

finding a new malware, observing behavior of attackers and attack patterns. It was first

time I studied on honeypots and improving security of a server and running a server.

Having a secured system, waiting to be attacked and hoping nothing will happen is a

mostly common attitude. The system will be compromised when we are just about

careless about security. Anti-virus software, firewalls and IDSs are important tools for

security but greatly limited due to vast number of false positive (misclassified) and false

negative (non-detected) and can create false sense of security [3]. Honeypot lures the

attackers, logs activities in. This advantage of honeypot motivated me to set up a

honeypot to analyze the collected data, the attacker’s behavior and methods, collected

malware and their purposes so that I could understand and observe what’s happening in

the system and learn how intruders attempt to gain access to a system.

I attended 2014 Honeynet Project Workshop in Warsaw, Poland from 12-14 May 2014,

[4] and met specialists. It was all over great experience.

1.2. Scope of study

The study focuses on attacker, collecting malware, security models, and previous works

on honeypots and connecting events from attacks to understand behavior and methods

of attacker. It was researched what is the effect of low- and high- interaction honeypots

in security among other tools with its advantages and disadvantages, models and risks of

using honeypot. To collect malware and information about network activity, low-

interaction honeypot is used. Real services were installed and virtual hosts were

implemented; a local and a virtual network system are created that seems there are many

computers in network. These real services made honeypot high interaction. It was

necessary to filter network traffic; basic firewall rules are written and network

commands are implemented. The differences between low interaction and high

interaction of honeypots about their collected data and effect about collecting number of

malware are studied. The useful information can be extracted from each one’s collected

data to improve security of the system. Also 2 more IPs used by tapping to increase

collected data. Scope of study includes forensics of the compromised server since

attacker took control of the honeypot that is one of biggest drawback of the honeypot

and undesired event.

12

1.3. Research goals

The aim of this research is to develop a system that gathers malwares through a

honeypot and if the honeypot catches a new malware or file, analyze it and understand

what its purpose. Real systems and additional honeypot (Honeyd) were implemented to

lure attacker (the attacker might think to intrude a LAN or more than one server) and

feint attacker about operating system, services, network and security of the system.

This system gives useful information about level of attacker, whether attacks were

organized or type of attacks happened, offered URLs to understand what attackers are

looking for most or if the system is secured enough or what should be done additional

for security.

The research goals;

- Comparison of low and high interaction honeypot for collecting malware; when

few real services ran among honeypot.

- Efficiency of honeypot to improve security of a system.

- Making connections from collected data and analyzing attacker’s behavior,

methods, attack patterns and purpose of malwares

- How attacker compromised the system and what attacker did on it

1.4. Contribution of thesis

The most valuable contribution is both running low and high interaction honeypot in

order to learn more about attacker and how honeypot can be useful or harmful for

security.

- The role of honeypot as a decoy system in security; the previous works were

researched about honeypot how to implement honeypot in system according the

goal which to achieve. It has advantage over other security tools which should

be used among them since it is not a good security tool alone. Honeypot is a

deception tool in security models; it can be used as early warning system since

any interaction to honeypot is suspicious and it makes system more difficult to

understand for attacker with selected services to run. All these benefits bring

risks to system or systems in network.

13

- Detailed comparison of high and low interaction honeypots through analyzing

data; although high interaction honeypot receives more interests, the attacks

shifts to different types, there are more aggressive attacks and honeypot collects

less malware samples. Only using more IP addresses in network helped to

collect more malware samples.

- The collected data by honeypots gave useful information about attack patterns,

types and attacker’s behavior (by analyzing and using models for malware,

offers, links, connections etc.) This data can be useful to implement new IDS

rules, to know vulnerabilities which attackers are interested in system, to learn

whether attacks are organized and which attack models are used etc. with

advanced SQL queries

- Why and how the server was compromised while running honeypot. Since it is

host based forensics, there were not much information about whole

compromising process.

14

2. Honeypots

It is a decoy system or fake server that intended to make it appears to attacker as if the

system running known vulnerabilities. It is in an isolated environment and open to

attacks so any interaction to it is malicious probably done by intruder, attacker. It helps

to detect and identify the target and methods of exploiting by collected information [5].

It buys time to system administrator to secure system, also helpful to network

administrator to make observation, analyze attacks from captured data and malwares,

discover security holes and gives information about network threats.

It is easy to deploy but there are many different configurations/designs, depends on

what is desired. Honeypot does not have a single task or a role. Honeypots can achieve

tarpitting, detection, countering spam, information gathering, etc. It can be designed for

different goals for example diverting attacks and keep attackers stay on the system long

enough to collect information about attacker’s activity [6]. Honeypot becomes perfect

tool together conjunction with firewall and IDSs [7]; honeypot can detect attack that

bypassed a firewall and IDS. With a honeypot any process can be detected, like

encrypted data that IDSs cannot do that [8]. If attacker does not aware of honeypot,

virtualized systems and networks; honeypot collect attacker’s data and give time to

security implementers and possibility to patch vulnerabilities. It is possible attacker can

detect honeypot and honeypot can be compromised as anything coded by humans can

be compromised.

There are new security models and malware detection systems are implemented against

attackers. Honeypots do not replace other traditional security systems, the y are an

additional tool. In a security model, multi- level security controls are needed. Denying

unauthorized access and isolate system (IDS and firewall) is not enough, attacker can

succeed in penetrating. Degradation and obfuscation mechanism (encryption,

stenography, anti- fingerprinting) can slow attacker. As a deception mechanism

honeypot can be used with these security controls to collect attacker’s behavior and put

attacker in a risk. Honeypots have drawbacks; it is important to make design and

operate honeypot in order to maximize their effectiveness.

15

2.1. History of honeypot

It is not clear how the term honeypot was founded; the concept of honeypot was first

described by Clifford Stoll in 1989 after a hacker had unauthorized access into

computer in Lawrence Berkeley National Laboratory. In his book Cuckoo’s Egg, he

wrote “Detecting the hacker was easy; I’d just camp out in my office alongside two

terminals. One terminal for working, another to watch the system…” [9]. The hacker

was captured by a physical honeypot. In 1991 Bill Cheswick published his experiences

in “An evening with Berferd” [10] that he developed fake services, password files and

wrote a script to pull fake service activity from the logs. He did a honeypot almost

looked like today’s honeypots. Both of them dealt with advanced attackers. Honeypot

systems were researched and deployed within military, government and commercial

organizations before 90s but very little of it was public knowledge [11]. In 1997 Dr.

Fred Cohen developed Deception Tool Kit [12] that was designed and coded

executables to respond hacker probes as they are vulnerable systems. It was first

honeypot solutions available to the security community. In 1999, a non profit research

group of security professionals under Honeypot Project that Lance Spitzner founded

started to research black hat community and shared what they learned. In 2001 one

community released all research methods in series of paper known as “Know your

enemy” [13] that helped develop awareness, credibility and value of honeypots.

Following next year honeypots started to capture new, unknown attacks. On the other

side black hat community released an article named “Local Honeypot Identification” in

Phrack magazine during 2003 to detect honeypots or defeat honeypots [14]. In fact both

side faced similar challenges; both want to monitor activities conducted on the systems

they control.

2.2. Types of honeypots

Classification according to the purpose;

- Research honeypots: the primary usage is to learn attacker’s motive, methods,

tools and collect malware. Any attempt to create new security measures through

research allow to face new threats [15]. It is primarily used by companies or

corporations.

16

- Production honeypots; the primary usage is to increase security [16]. It is

typically deployed with a certain goal or intent in mind. They are easy to use but

capture only limited information [17].

Classification according to level of interaction;

- Low-interaction honeypots; it allows limited interaction for an attacker or

malware that reduce risk to a minimum. It can be compared to passive IDS. All

services offered are emulated.

- High- interaction honeypots; it provides complex interactions with attackers by

incorporating actual operating system and services. It captures large amount of

information about attacker. Since it uses actual operating system, when it is

compromised it can be used as base to launch attacks in whole network [18].

- Hybrid honeypots; Low-interaction honeypots are not powerful and high-

interaction honeypots are too expensive, it offers benefit of both by using their

own specialty [16].

Classification according to type of exploitable resources

- Server-side honeypots; the honeypot acts as a server. There are many specialized

types of honeypots to detect attacks on web applications, SSH, industrial control

systems, VoIP, bluetooth, USB etc.

- Client-side; Honeypot acts as a client application [19].

2.3. Honeypot deployment on a network

Honeypot can be deployed in a variety of locations on a network; it depends on goal.

Conceptually honeypots can be placed at three main locations; external, in the DMZ and

internal.

17

Figure 1 – Honeypot deployment in network

Honeypot deployed externally detects all activities, zero-day vulnerabilities and collect

large amount of malware. The risk for internal network doesn’t increase. It reduces

amount of alerts produced by external firewall. By placing honeypot external doesn’t let

locate or trap internal attackers easy [20] because firewall limit out-bound traffic. DMZs

are not fully accessible as only needed services are allowed to pass the firewall.

Honeypot deployed in the DMZ is appropriate for detection intruders. It can collect

information, malware and external attacks to the services allowed by the DMZ’s

firewall. It is most complex placement model. Opening all corresponding ports on the

firewall is time consuming and risky [21]. A router can be placed between the DMZ‘s

firewall to add a layer for data control. It is not the best early-warning indicator for

internal network but can detect unauthorized actions from internal network [22].

Honeypot deployed inside of network provides semantic-rich view on various aspects of

system dynamics and it creates early-warning system but it has administrative overload

[23]. A production honeypot can be placed to internal network.

2.4. Value of honeypot in security

Honeypots can be implemented in different ways depends on the aim to achieve in

security. The honeypot goal is to capture as much as information about activity of

attacker. Honeypots serve protocols, modules, virtual operating systems; can be

anything vulnerable to lure attacker.

Any interaction to honeypot is suspicious. It keeps valuable information about malicious

activity; it collects smaller, higher-value and datasets since it only logs illegitimate

18

activity. It is an extra layer of protection when placed internal. It shields servers from

direct attacks, if decoy compromised, the real server is safe. It detects, deflects and

prevents security breaches. When deployed external, it overcomes the resources

problem; it captures activities directed to; when it is deployed same network, system is

not overwhelmed by the traffic and any old computer can monitor millions of IP

address. Honeypots work in any IP environment, are adaptable in variety of

environment; can be anything to be simulated.

It can detect and respond to unknown or zero-day attacks and it works in encrypted

environments. It gives possibilities to discover new forms of attack. Comparing to other

security tools, honeypots do not require known attack signatures, unlike IDS which have

better coverage of attacks, honeypot gets less false positives; no big volumes (less but

more valuable data is collected), it distinguishes benign and hostile traffic. [24]. This

makes honeypot an early warning system; honeypot can lure attacker and detects attacks

that IDS/IPS systems missed and IDS/IPS systems can redirect attacker to honeypot to

keep productions resources safe. It will alert hostile activity in network. This way it

buys time to SA to secure system. Honeypot shares some values with other tools; “Sink

Holes are the network equivalent of a honey pot.” [25]. Unlikely firewall, it allows

connection but not out.

Honeypot best practices are; distraction (it keeps attackers from real systems), deception

(it has false/emulated services, data, files etc.), psychological operations (disinformation

-providing attacker false information) and perception (presenting false capabilities that

gives different perception of activity in organization), intelligence gathering (hacker

tools, method, attack signature). [26]

Honeypot taxonomy

All the pieces of data honeypot collects can be gathered as a classified scheme in a

relationship through cyber security incidents. Based on Sandia’s taxonomy [27], it is

modified related to honeypot based on data, the honeypot taxonomy in figure 2;

19

Figure 2 - Honeypot taxonomy based on honeypots’ data [28]

Honeypot is the Negative Information and Deception Mechanism in taxonomy of

information protection mechanisms (figure 3), especially for detecting abnormal user

who tries to access the information where IDS can’t detect [29].

Figure 3 - Taxonomy of information protection mechanisms [29]

20

Honeypot as defensive deception

Auguste Kerckhoffs in the 19th century stated that a cryptosystem should be secure even

if everything about the system, except the key, is public knowledge. It simply

emphasizes that defences should not rely on only one dimension of security [30]. As

long as deception stays undetected, deception makes attack complexity even greater and

turn complexity advantage for defender. Developing good deception techniques benefit

from good data on attack patterns. In defensible or action matrix of cyber kill chain,

honeypot is used for this purpose in a phase. Kill Chain is an intelligence-driven and

intrusion-centric security model introduced by Lockhead Martin Corporation. It is a

phase-based model to describe the stages of an attack but also helps inform ways to

prevent such attacks. It aims to stop the attack at earlier phase so that the attacker has

less information, less likely someone use that information to complete attack later

because attacker has to complete all phases successfully. This model gives information

about attacker, how system is safe and idea to enhance for secure system.

Whenever a specific attacker has progressed beyond a certain point in the cyber kill

chain, administrator can easily disconnect and wrap up a honeypot, terminate

compromised image and it can be used for forensics or analysis or redirect malicious

outbound communication to internal honeypots to identify compromised hosts.

Phase Detect Deny Disrupt Degrade Deceive Destroy

Reconnaissance Web
analytics

Firewall ACL

Weaponization NIDS NIPS

Delivery Vigilant
user

Proxy filter In-line
AV

Queuing

Exploitation HIDS Patch DEP

Installation HIDS “chroot” jail AV

C2 NIDS Firewall
ACL

NIPS Tarpit DNS
redirect

Actions on
Objectives

Audit log Quality of
Service

Honeypot

Table 1 - Defensible actions Matrix

21

Equally as important as thorough analysis of successful compromises is synthesis of

unsuccessful intrusions. If defenders implement countermeasures faster than their

known adversaries evolve, they maintain a tactical advantage.

2.5. Drawbacks and shortcoming of honeypot

The honeypots are worthless if no one attacks them and they introduce risks. It can lure

attackers to network and cause them to launch further attacks [31]. Depends on goal, if

it is placed internal or with preliminary firewall, it is required to adjust firewall. It is one

of the biggest drawbacks that made honeypot never reached its expected success, it

brings administrative overhead by adding complexity to network that requires close and

strict management, resources [32] and analyst overload from collected data. Cloud-

based security solutions solve zero-day attacks problem with low cost in this way.

Honeypot alone is not proper security tool; there is a need multiple detection

methodologies, not just a honeypot for security [33].

Honeypot has legal ethical concerns; entrapment, privacy, liability. Honeypot lure

attacker to provoke crimes. It may not be entrapment if is someone is induced to do

something they would not normally do and bad guy has already decided to commit

unauthorized activity. Honeypot captures data about an attacker; transactional and

content information. Low interaction honeypots collects transactional information like

IP address, time and date of communication. There are many different legal statues

which privacy statues will apply is unsolved. It is not required to get consent of attacker

with a banner. Honeypot can be a liability if it is compromised to take control of other

systems, resources. Honeypots are no different than firewalls, IDS with vulnerability

[34].

Detection Risk of honeypot

Honeypot is a deception tool and it needs to be covert. Honeypot and stenography share

same characteristics; once the existence of the honeypot/communication channel is

discovered by attacker. If attacker watches out carefully for signs of deception, he will

find it soon or later. [35]. Once attacker understands server is running honeypot but not

real system, an attacker can avoid or bypass the honeypot network or introduce

misleading data into a honeypot.

22

There are several ways to detect a honeypot. Especially low interaction ones have

some unique characteristics, which can be finger printed, such as hardcoded

strings, specific service banners or incorrect protocol implementation [36]. In arms race,

honeypot attackers and developers had back and forth. Detection of honeypot is a big

risk, most of honeypots are open source and user should follow potential honeypot

problems and wait developers to fix the issue.

Shortcomings of choice of this technology

Honeypot has no production/actual value; it captures attacks targeting it only. A low

interaction honeypot captures automated basic attacks. It captures less information

about attacker than high interaction honeypots. Gathering malware depends on

capability of low interaction honeypot. Due to the types of vulnerabilities and protocols

emulated, collection of malware types is limited.

There is roughness of simulation; a more accurate simulation would be more expensive.

Simulated operational services are limited and can fail to interact with unknown attack

before the vulnerability itself is triggered [37].

23

3. Low-interaction honeypots and design

3.1. Low-Interaction honeypots

Low interaction honeypots started as relatively simple network emulation tools and

evolved in many ways over in 16 years. Over the years there have been many regular

cycles in the arms race. Researchers/developers tried to improve better collection of

data to know attacker’s tools, behavior and faced efforts to fingerprint, detect honeypots

[38]. Early honeypots often simply captured data off the wire via a pocket logger that

attackers find detecting such monitoring difficult but they can be defeated easily. Use of

encrypted protocols by attackers made developers to use keyloggers or patched

command shells but detect or disable them were easy for skilled attackers. Later on, the

attackers developed rootkit tool but developers modified a rootkit to develop a

nonkernel program named Sebek. Sebek was a significant advance over earlier

honeypots but it had shortcomings; capturing data was partly successful. Sebek2

overcame many of shortcomings and could hide its network traffic at the kernel level

[39]. In 2006 Nepenthes is released. Low interaction honeypots extended to effectively

develop a method to collect malware. Nepenthes came over two problems; first one by

emulating more complex protocols and secondly scalability that allowed to deploy

many honeypots in parallel. The actual work is carried out by several modules [40].

Limitation of nepenthes was collecting only autonomously spreading malware and

possibility of detection [16]. Dionaea is created by Markus Kotter for Summer of Code

2009 as a successor of Nepenthes. Dionaea had improvements over Nepenthes in

malware acquisition, attack accuracy and logging. Nepenthes used pattern matching on

attack communications payloads to detect attacks that had drawback when attacks were

made to complex protocols like SMB. Dionaea solved this problem by emulating SMB

and MSRPC protocols. Dionaea can detect exploitation of unknown vulnerabilities with

Libemu x86 emulator by automatically detecting shellcode within a payload [41].

Among the server side honeypots which specifically designed to collect malwares are

Honeybow, Sebek, Amun, Dionaea, Nepenthes and Google Hack Honeypot [19][43].

Honeybow is outdated and not supported, Amun project is not active, Google Hack

Honeypot is a simple web honeypot and it has no active user community/public mailing

list. Nepenthes is rendered obsolete by Dionaea [19]. In May 2014, during Honeynet

24

Project Workshop in Warsaw, Poland, David Watson (Chief Research Officer for the

Honeynet Project), Angelo Dell’Aera (Chief Executive Officer of the Honeynet

Project), Emiliano Martinez (software engineer at VirusTotal) highly recommended

Dionaea. Dionaea was chosen for the purpose of collecting malware and data.

3.2. Dionaea

Dionaea is written in C with an interface based on Python that makes it easy to add new

modules without recompiling the base. It supports IPv6, IPv4 and Transport Layer

Security (TLS) and has real time notification using XMPP. A SQLite 3 database logs

the information on each attack and can also produce graphical statistics. It has one of

long term supported (LTS) honeypot.

Dionaea honeypot can

- Identify OS with fingerprints that come from IP stack with p0f

- Emulate services

- Has real time notifications

- Collect data in database that easily read or make graph of the data

- Can reply attacks for testing or troubleshooting purposes, by modifying bistreams it is

possible to create a metasploit module.

3.2.1. Protocols

Dionaea emulates SMB, HTTP, HTTPs, FTP, TFTP, MSSQL, MySQL, SIP, EPMAP

protocols. TFTP functions as a TFTP server. HTTP, HTTPs act as a web server. SMB

and EPMAP protocols are essential to collecting malware with dionaea.

SMB protocol

SMB is the protocols for Windows PCs to share files, printers, directories. It is the most

attacked port for windows machines because of its long standing history of bugs.

Conficker worm [42], one of fastest and largest worm, spread through this protocol.

Dionaea implements a python-based version of the Windows Server Message Block

25

(SMB) protocol as main protocol that allowing it to be properly establish sessions

before being exploited by attacking machines. Other low-interaction honeypots cannot

simulate this vulnerability that makes Dionaea take advantage over other honeypots

[43]. Dionaea tries to provide very detailed emulations of vulnerable services but

attacker can perform only certain operations; dissemination of malware, shellcode etc.

Only if certain actions occurred after acceptance of connection, then these ones

considered as an attack. Some attacks may not create valid SMB session depends on

session created by windows api or metasploit even vulnerability is emulated properly. If

valid SMB session is created and attacker could send shellcode, libemu may fail to

handle or detect properly. Another issue about SMB protocol is about ISPs and source

of attacks; ISPs scan their customer machines for vulnerability (default being to scan the

machine if specifically not requested to) then they can block whichever port. [44]. In

figure, there are decreasing of sources targets 445 ports over the years;

Figure 4 – TCP/UDP port activity [45].

3.2.2. Modules

- Pcap; it detects rejected connections just to record this information.

- Curl; it is used to transfer files from and to server.

- Emu; it is used to detect, profile and if required to execute shellcode.

26

- Python; it allows controlling some scripts that dionaea uses such as logxmpp,

readlogsqltree.py, gnuplotsql, logsql.

- P0f; it gives information about the attackers operating system.

3.2.3. Configuration file

The configuration file is changed according to desired conditions; collect malware and

hardening security. Logging part is changed to observe attacker behavior after making

changes in network. P0f module is opened to collect more information about

connections. HTTP, HTTPs, FTP, TFTP, mirror services are removed to emulate.

Dionaea has 3 modes to listen; a specific IP, more than one address and IPv6. The log

levels are all, debug, info, message, warning, critical, error. Dionaea logs are quite

verbose, logrotate can be activated.

3.2.4. Utils

Dionaea utilities are written in Python that is useful for quick information and visual

view of the attacks. Dionaea utilities are in dionaea/modules/python/util/

- Readlogsqltree.py gives the report about connections according to time

requested

- Gnuplotsql.py is a python script that runs queries on sqlite database and creates

graphs and index of the data.

3.2.5. Privileges

Dionaea can drop privileges, to run certain action that needs privileges; it creates child

process at start up to run these processes. This just make more difficult to get root

access to the system.

3.3. Design

Among honeypots Dionaea is the most preferable honeypot for the purpose of collected

malware. It has good quality of collecting data, reliability and many support tools [46].

It was placed in DMZ in IT Collage at Solaris server and it has a public IP. Xen Server

27

was preferred as server. Dionaea is suitable for unix systems and Ubuntu server was

chosen. At first Zyntal was used as router but for the first running it was removed.

Figure 5 – Honeypot placement in network

Xen Server

Xen Server is completely open source and free, offers more agility and flexibility than

other virtualization software. Most commands are used related to network and virtual

machines are;

xe vif-unplug, vif-destroy, vif-create, template-list,
template-param-set, vm-install, vm-disk-list

Other install media template is not supported by Xen Server so it will be created as

HVM guests; it is not able to use the native high-performance drivers (PV drivers)

included in modern kernels. It is necessary to copy Ubuntu 10.04 template for Ubuntu

12.04.

xe vm-install template=Ubuntu\ Lucid\ Lynx\ 10.04\ \(64-bit\)
sr-name-label=Local\ storage new-name-label="Ubuntu Precise
(64-bit)"

Ubuntu Server

The recommended OS for installing dionaea is Ubuntu or Debian Linux. Ubuntu Server

12.04 is used because it has kernel version 2.7 that allows more to do with virtual

networking. Version 10 was used but it doesn’t support some apps in research then later

28

Dionaea installed to 12.04 version. It is confirmed that ISPs doesn’t block network

traffic and ports are open.

Dionaea configuration file

Only SMB, EPMAP, MSSQL, MySQL protocols are chosen for services to work in

Dionaea. FTP does not currently have exploit detection so it is disabled for security

reasons.

More than one address chosen; addrs = { eth0 = ["0.0.0.0"] }

Running dionaea

Before running it, the file permissions were changed to nobody and nogroup;

sudo chown nobody:nogroup /opt/dionaea/var/dionaea –R

dionaea - l all,-debug -L '*' – running command

It is possible to decide how detailed logging can be. Dionaea can be run as daemon;

sudo /opt/dionaea/bin/dionaea -u nobody -g nogroup -w /opt/dionaea -p

/opt/dionaea/var/run/dionaea.pid –D

To check if dionaea is running; ps -ef | grep dionaea

To check which ports Dionaea is listening; netstat -tnlp | grep dionaea

Nmap scan give information which Dionaea services are running. Any unskilled

attacker can understand easily that server is running honeypot, emulated services;

29

PORT STATE SERVICE VERSION
21/tcp open ftp Dionaea honeypot ftpd
135/tcp open msrpc ?
443/tcp open ssl/https ?
445/tcp open microsoft-ds Dionaea honeypot smbd
1433/tcp open ms-sql-s Dionaea honeypot MS-SQL server
3306/tcp open mysql MySQL 5.0.54
5060/tcp open sip (SIP end point; Status: 200 OK)
5061/tcp open ssl/sip (SIP end point; Status: 200 OK)
5060/udp open sip (SIP end point; Status: 200 OK)

For dionaea logs, the logrotate is activated. ./readlogsqltree.py -t $(date '+%s')-1*3600

/opt/dionaea/var/dionaea/logsql.sqlite – it lists the connections for last one hour.

30

4. Low to High Interaction

Honeypot attractiveness can be increased by advertising honeypot involve assigning

domain names, running various servers or providing eye-catching content [46]. The real

systems will be running that brings more risk but more information about attack and

attacker [47]. The compare of data from low and high interaction is important for the

research.

4.1.1. Server installation

These servers are installed for research purposes;

 DNS server

 LAMP (Linux, Apache, MySQL, PHP) server

With DNS server attacker may think that there is a LAN in network to intrude. LAMP

server is installed to make attacker to think there is a webserver.

Basic network layout designed with DNS server;

4.1.2. Tapping

Dionaea can listen to list of IPs in network and bind a service to each IP. Tap interface

creates purely virtual interface. Tap works with Ethernet frames. Many tap interfaces

can be created as how many free IP there is. Tap interfaces are connected with bridge so

no physical interface is used. Multimac [48] package was used to create taps. Different

IP and MAC addresses are assigned to each taps.

31

./multimac 1 (it will create tap0 and tap1)

sudo brctl addbr br0
sudo brctl addif br0 eth0
sudo brctl addif br0 tap0 tap1
sudo ifconfig eth0 down
sudo ifconfig eth0 0.0.0.0 up
sudo ifconfig tap0 0.0.0.0 up tap1 0.0.0.0 up
sudo ifconfig br0 193.40.194.133 up
sudo ifconfig tap1 hw ether e4:3c:e9:15:42:e6
sudo ip addr add 193.40.194.132 dev tap1
sudo ifconfig tap1 193.40.194.132 up
sudo route add default gw 193.40.194.220
sudo ifconfig tap0 promisc sudo ifconfig br0 promisc
sudo nmap –iflist

Zenmap network schema;

Figure 6: Machine3 Network Schema

4.1.3. Honeyd

Honeyd is a low interaction honeypot client that creates virtual hosts in a network. It can

be configured to act like a real operating system or router, switch; the hosts can be

configured to run arbitrary services, and their personality can be adapted so that they

32

appear to be running certain operating systems. There are approximately 1000

personalities of OS’s to be chosen. Any services like FTP, HTTP, and SMB can be

configured for those operative systems to activate. Honeyd can be used to defeat

fingerprinting; option –p for nmap, option –x to react ICMP fingerprinting tools.

Operating system, router and service specification made into

/etc/honeypot/honeydstats.conf file;

create windows
set windows default tcp action reset
set windows default udp action reset
set windows default icmp action block
set windows personality "Microsoft Windows 2000 SP2"
add windows tcp port 80 "sh /usr/share/honeyd/scripts/win32/win2k/iis.sh $ipsrc$
add windows udp port 137 open
add windows tcp port 137 open
bind 193.40.194.133 windows

Running honeyd with options;

honeyd -d -i eth0 -f honeyd.conf -p nmap.prints -x xprobe2.conf -a nmap.assoc -0 pf.os
-l /var/log/honeyd/honeyd-packet.log -s /var/log/honeyd/honeyd-service.log

193.40.194.134

Running Honeyd with these options will give IP personalities desired for the machines

in network. After creating taps and bridge with multimac, assigning windows OS with

honeyd, whole virtual network will look like this;

Figure 7: Virtual network schema

33

4.2. Security

One of the main reason attackers’ concern to know if they are dealing with honeypot,

they don’t want their methods known, especially if they are going to perform zero-day

attack. Attackers and honeypot developers came up with different methods to protect

themselves.

4.2.1. Detection of VMs

Virtual machines (VM) became useful tool to set them up as honeypots. VM helps to

analyze samples with the benefit of snapshot, multiple operating systems, easy to

monitoring and isolation [49]. There are different ways to detect VMs. It is possible to

detect from its hardware. There specific pieces of hardware that are not configurable but

it is possible to patch VM binary to different are values. Another way is the fingerprint

of VM; MAC address of the network interface (with arp –a command to get cached

MAC address) or from interface (with ipconfig or ifconfig /all command). It can be

possible to detect VM from I/O backdoor [50]. Malware also can detect if it is VM or

not On average, one in five malware samples will detect virtual machines and abort

execution. A malware can figure out if it is in a virtual machine with blue pill [51]. Blue

pill tool runs single machine language instruction; takes location of the Interrupt

Descriptor Table Register and stores it in table.

4.2.2. Detection of honeypots

Latency is biggest issue about detection of honeypots. Honeypots are logging as the

attacker using the machine and execution of commands processed by honeypot can take

longer than it has to be. Reply of services like dropped packages or discrepancies in

network behaviour can raise suspicion. The common exploits sent to server named in

banner can give uncommon response and give conclusion of honeypot to attacker. Many

or uncommon open ports from a scan can give strong hint that machine is running

honeypot [52].

Detection of Honeyd

Honeyd can respond to malformed network packet as it has received a valid packet that

is not expected to get this response. Honeyd handling to fingerprinting visa TCP/IP

34

stack interactions can raise suspicions; it is needed to validate six major NMAP scan

types for that [53]. Another way to understand is checking semantic errors in

configuration [54].

4.3. Avoiding Dionaea service identification

After installation Dionaea, Nmap scan reveals Dionaea services in HTTP, SMB, SQL

and HTTPS; cat /usr/share/nmap/nmap-service-probes | grep Dionaea

- match ftp m|^220 Welcome to the ftp service\r\n| p/Dionaea honeypot ftpd/

- match http m|^HTTP/1\.0 200 ... </html>\n$| p/Dionaea honeypot httpd/

- match microsoft-ds ... p/Dionaea honeypot smbd/

- match ms-sql-s p/Dionaea honeypot MS-SQL server

There is need to change 4 files before compiling Dionaea;

ftp.py  the line self.reply(WELCOME_MSG, "Welcome to the ftp service"), welcome

message is changed to “Home server”

smbfields.py  the line OemDomainName: WORKGROUP changed to Webserver and

the line Servername is changed to Homeserver.

mssql.py  the line r.VersionToken.TokenType = 0x00 changed to 0xAA

connection.c  in the line X509_NAME_add_entry_by_txt Nepenthes Development

Team is changed to Home Web Server.

Nmap scan after changes, Dionaea name is removed;

35

4.4. Iptables

The network rules had to be flexible not to block everything but also allow attacker to

try to exploit. For example if there are more than 5 connections in 30 seconds, this IP is

going to be blocked for some minutes.

In Dionaea logs it is observed that there can be undesirable automated attacks from

connections. The rules below prevent these attacks;

Clearing all rules in firewall

iptables -F

iptables -X

Creating three new chains to filter the attacks

iptables -N ATTKED

iptables -N ATTK_CHECK

iptables -N SYN_FLOOD

Dropping not syn incoming packets;

iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

Drop fragmented packets

iptables -A INPUT -f -j DROP

Drop Xmas packets

iptables -A INPUT -p tcp --tcp-flags ALL ALL -j DROP

Drop null packets against Nmap null scan

iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP

Forwarding any incoming tcp packets in the SYN_FLOOD chain

iptables -A INPUT -p tcp --syn -j SYN_FLOOD

Using hashlimit module to create database of each ip in order to drop any packet that

exceed 100 packet per second and keep it in database for 3600 seconds

36

iptables -A SYN_FLOOD -p tcp --syn -m hashlimit --hashlimit
100/sec --hashlimit-burst 3 --hashlimit-htable-expire 3600 --
hashlimit-mode srcip --hashlimit-name testlimit -j ACCEPT

Any other packets that are not matched as syn flood will be forwarded in

ATTK_CHECK chain

iptables -A SYN_FLOOD -j ATTK_CHECK

Accept legitimate traffic

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j
ACCEPT

Keep all IPs matched below for 1800 seconds, if there is no incoming packet from same

IP, it removes the IP from database BANNED

iptables -A INPUT -p tcp -m tcp --dport 135 -m recent --update
--seconds 1800 --name BANNED --rsource -j DROP

iptables -A INPUT -p tcp -m tcp --dport 445 -m recent --update
--seconds 1800 --name BANNED --rsource -j DROP

All new packet with destination port 135 and 445 are forwarded to ATTK_CHECK

chain.

iptables -A INPUT -p tcp -m tcp --dport 135 -m state --state
NEW -j ATTK_CHECK

iptables -A INPUT -p tcp -m tcp --dport 445 -m state --state
NEW -j ATTK_CHECK

Set up log options for the chain ATTKED drop any packet in that chain putting the

source ip in BANNED chain

iptables -A ATTKED -m limit --limit 5/min -j LOG --log-prefix
"IPTABLES (Rule ATTKED): " --log-level 7

iptables -A ATTKED -m recent --set --name BANNED --rsource -j
DROP

Defining new chain for incoming packets that are not matched as attack

iptables -A ATTK_CHECK -m recent --set --name ATTK

Put IP to ATTK chain if it hits 20 times in 180 seconds

37

iptables -A ATTK_CHECK -m recent --update --seconds 180 --
hitcount 20 --name ATTK --rsource -j ATTKED

Put IP to ATTK chain if it hits 6 times in 60 seconds

iptables -A ATTK_CHECK -m recent --update --seconds 60 --
hitcount 6 --name ATTK --rsource -j ATTKED

Permit rest of the traffic

iptables -A ATTK_CHECK -j ACCEPT

save ip tables; sudo /sbin/iptables-save

38

5. Analysis of data and attackers’ behavior

5.1. Value of data

Dionaea use incident handler that is logsql python script. It writes interesting incidents

to a sqlite database, one of the benefits of this logging is the ability to cluster incidents

based on the initial attack when retrieving the data from the database.

The data collected by honeypot gives idea about;

- Attacks are organized or not; attacks were carries out by same person or some

group

- Level of attacker; it is automated or professional or amateur hobbyist

- Attacker’s behaviour; what attacker were looking for or attacker’s intention

- Identify anomalous malicious activity that targeted vulnerability; new

IDS/firewall rules can be generated

It is expected that the attacker use a set of malware repeatedly in different attacks; in

database files can appear in different names and variants and attacker change IP

addresses for different attacks. From datasets which include files, IP addresses left by

attacker, it can be easily figured out level of attacker whether same folder is used again

even by different source IPs. For different files like binary files, using file similarities

with block hashing algorithm, context triggered piecewise hashing (fuzzy hashing),

bloom filter hashing to find out whether folders arranged or malicious binary improved.

The result will expose level of attack and attacker and same malwares that has totally

different file names and MD5 hashes [55].

There can be similarities in attacks in database. One of the models to analyze attack

similarities to use document-term matrix which each attack is a document, malware

used in an attack is a word. If malware1 was not used in attack1 but malware1 is most

similar to malware2 and malware2 was used in attack1 then the similarity is 90%. Use

of malware hashes in Natural Language Processing (NLP) technique is for malicious

language processing in static analysis and in T-SNE (t-Distributed Stochastic Neighbor

Embedding) technique to illustrate segmentation of attacks and in Latent Semantics

Indexing (LSI) to compute the similarity level for the attack pairs.

39

Dionaea database has a total of 26 tables. Connection table is the main table and other

tables are dependent. The entity relationship model for dionaea database can be seen in

Figure 8.

mssql_commands

connection INTEGER PRIMARY
KEY,

offers

mssql_fingerprints

connection_type TEXT,

downloads

mysql_command_args

connection_transport TEXT,

mysql_command_ops

connection_protocol TEXT,

dcerpcbinds

mysql_commands

connection_timestamp
INTEGER,

connection_root INTEGER,

dcerpcrequests

p0fs

connection_parent INTEGER,

resolves

local_host TEXT,

dcerpcservices

local_port INTEGER,

remote_host TEXT,

dcerpcserviceops

remote_hostname TEXT,

remote_port INTEGER

 Figure 8; Entity relationship model for data analysis

The related tables are grouped in ERM model in order to have pre-classified datasets.

P0fs and resolves tables have the information for honeypot firewall logs and required

rules to secure high interaction honeypot against organized and Ddos attacks etc.

MySQL/mysql stores commands and arguments to compromise the service, user names

and passwords in brute force attacks. Downloads and offers has data of MD5 hashes,

offered files and URLs; these data is useful to analyze attack and file similarities.

Dcerpc tables have information about exploited and targeted vulnerabilities/services that

is very valuable information about attacker’s behavior. For this data, decision tree

technique can be used to distinguish malicious traffic from legitimate one in order to

create IDS rules [56].

5.2. Machine1

First machine run only Dionaea for 57 days and 16 days as high- interaction with DNS

server and LAMP server. During only Dionaea was running it could collect 17 malware

and during high- interaction no malware was collected.

40

Quantitative analysis

Quantitative analysis gives general idea. The data in The Table and Graph is from the

main table (Connections) where all other tables are dependent to. Connections table has

column of connectionID, connection type, connections protocol, time, local port, remote

host. Since attacker change IP for different attacks, attacks become anonymous; only

peak of connections, correlation of connections through protocols and other parameters

included can give useful information about whether attacks were organized or

conducted by same group/person, whether there are persistent IPs, type of attacks and

effects of systems/servers running etc.

After first time Dionaea started to run, it had 5222 accepted connections out of 58352

[Q1] that 27.82 percentages of connections are to SMB protocol where Dionaea collects

malware (Table 2). Dionaea collected 17 malware during this period. There are distinct

55 offers and 34 download of md5 hashes, 18 of them are unique, offered by 11

different URLs.

Comparison of low-interaction and high interaction through connections can be viewed

in Table 2 and Figure 9;

Machine 1 Low-interaction [Q4] High-interaction[Q4]

 Honeypot
Runtime

RF (%) DNS Server and
LAMP

RF (%) Total

Days 57 16
connections accepted [Q2] 3584 100 1638 100 5222

Connections to SMBD [Q3] 997 27.82 58 3.54 1055
Number of malware 17 0 17
SipSession [Q3] 33 0.92 23 1.40 56
epmapper 68 1.90 33 2.01 101

emulation 7 0.20 0 7
ftpd 45 1.26 22 1.34 67
httpd 431 12.03 887 54.15 1518
mssqld 1439 40.15 205 12.52 1644

mysqld 542 15.12 207 12.64 749
remoteshell 22 0.61 3 0.18 25

Table 2 – Machine1 statistical results

41

Figure 9 – Machine1 connections graphic

There are 2199 attempt for logins to mysql and mssql from unique 223 source IP, 3551

mssql command, 695 mysql command argument [Q5] can be seen in Table 3;

Number User Protocol
1473 sa mssql

487 root mysql
106 admin mysql

106 mysql mysql
19 mssql

2 IASISUGEL mysql

2 ddfdffdfdfdfd mysql
1 cron mysql

1 database mysql
1 lemon mysql

1 opensips mysql

Table 3 – Machine1 SQL login info

Exploited vulnerabilities are 5 different Microsoft Security Bulletins (From Table 4;

MS08-67 – 84 times, MS04-12 – 40 times, MS04-11 – 10 times, MS05-39 – 10 times

and MS03-26 – 1 time) and Dionaea couldn’t relate 391 unique services targeted to

known security bulletin. This may happen if they are new vulnerabilities for Microsoft

security bulletin.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

100

200

300

400

500

600

700

800

900

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

Connection correlation

high-interaction malware total smbd

42

Vulnerability [Q6] Low-interaction [Q7] High-interaction [Q7]

MS08-67 68 16
MS04-12 36 4

MS04-11 10 0
MS05-39 10 0

MS03-26 1 0

Table 4 – Machine1 List of exploited vulnerabilities

Data analysis

After real services which DNS and LAMP server installed, even though there are more

records per day, there is significant decrease for SMB protocol to be targeted. Httpd got

majority of connections during this period. This shows that server became suspicious

with unrelated open ports and there were more interest to real systems, eventually

Dionaea couldn’t collect any malware.

There are 3 interesting things in Figure 9. First one, there is a positive correlation

between total connections (blue) and connections to SMB protocol (red) but not for

collection of malware (green) at low interaction period. Second one, there is no positive

correlation between total and connections to SMB protocol during high interaction

period. Third one, there are 3 peak points related to connections in the graph;

Peak 1; It has high number of connections in 3 following days; Day 1 has 148 (6 httpd,

30 mssqld, 109 mysqld, 3 smbd), Day 2 has 164 (69 httpd, 24 mssqld, 4 mysqld, 65

smbd), Day 3 has 339 (13 httpd, 30 mssqld, 2 mysqld, 293 smbd) connections. Most of

these connections are from India. It is suspicious to be an organized attack.

Peak 2; It has 351 connections (123 http, 24 mssqld, 202 smbd). Two IPs (from China

and Virginia, USA) has 227 of these connections to SMB protocol which no malware

was collected.

Peak 3; there are 819 connections out of 823 which targeted to httpd from one IP from

Chicago, USA. There is not much information, it maybe application layer D-dos attack

(HTTP flood) taking half an hour long. It is one-off attack from this IP during all period.

43

In only suspicious time interval, different IPs has many connections right after HTTP

flood in one hour time intervals. Amateur hobbyists or professionals may conduct it

[Q11];

Connections | remote host | local port | 1 hour time interval

The services called related to targeted vulnerabilities (at picture below) are SRVSVC

(attempted to run NetPathCanonical to convert a path into a canonical name),

ISystemActivator (attempted to run RemoteCreateInstance to execute the buffer

overflow), DSSETUP (attempted to call DsRolerUpgradeDownlevelServer to query the

configuration of an Active Directory domain member system), PNP (attempted to run

PNP_QueryResConfList to exploit a buffer overflow vulnerability in the Windows Plug

and Play) and DCOM (attempted to run RemoteActivation to exploit a stack buffer

overflow in the RPCSS service) [Q6].

The picture below shows how many times attacker had tries through which service for

each malware [Q7]

44

5.3. Machine2

The machine ran as high interaction honeypot including Dionaea, LAMP and DNS

server for 6 days.

Machine 2 High Interaction
Honeypot

RF (%)

Days 6

connections accepted 381 100
Connections to SMBD 222 58.27

Number of malware 1
epmapper 1 0.26

emulation 1 0.26
ftpd 3 0.79

httpd 28 7.35

mssqld 114 29.92
mysqld 12 3.15

Table 5 – Machine2 statistical results

SMB had 58.27 % of connections that is higher ration than previous machine (Table 5).

During 6 days it could collect only 1 malware on the day which had the highest number

of connection (Table 6);

smb connections Malware
D1

22

 D2

24
 D3 16 47
 D4 196 228 1

D5 6 27
 D6 4 33

Table 6 – Machine2 malware/connections table

The login usernames for the attempt to access for mssql and mysql (Table 7);

Number User Protocol
109 sa mssql

6 root mysql

Table 7 – Machine2 SQL login info

45

The type and number of exploited vulnerabilities (Table 8)

Vulnerability Number

MS08-67 5

MS04-12 4

MS04-11 4

MS05-39 4

Table 8 – Machine2 List of exploited vulnerabilities

Only interesting connection in the data is that 210.71.170.3 made 175 connections to

smb protocol that took 2 hours 18 minutes.

P0f has detected 250 operating systems; 20 of them empty and other 230 of them has

these operating systems and details [Q8];

176|Windows|XP SP1+, 2000 SP3
34|Windows|2000 SP4, XP SP1+
20||
11|Windows|XP/2000 (RFC1323+, w+, tstamp-)
4|Windows|2003 (2)
3|Linux|2.6, seldom 2.4 (older, 4)
2|Windows|XP/2000 while downloading (leak!)

The last one XP/2000 while downloading (leak!) is suspicious. In the connections, this

IP belongs to 210.71.170.3 and it probed 178 times to port 445 in one attack. This is a

botnet attack. It tried to exploit 4 different Microsoft security bulletins [Q10];

2|210.71.170.3|2015-04-17|MS04-12|445
2|210.71.170.3|2015-04-17|MS04-11|445
1|210.71.170.3|2015-04-17|MS08-67|445
2|210.71.170.3|2015-04-17|MS05-39|445

5.4. Machine3

The machine3 run 12 days in total and collected 6 malware. First it started to run

listening 3 IPs in network. 8 days later, DNS and LAMP server installed. 2 days later

Honeyd installed to give personalities to other 2 IPs.

46

Machine 3 Honeypot (3 IPs)
Runtime

High Interaction Honeyd Total

 IP1 IP2 IP3 IP1 IP2 IP3 IP1 IP2 IP3

Days 8 2 2 12

connections accepted 181 13 144 47 9 18 33 32 209 688

Connections to SMBD 97 4 65 12 8 9 7 181 383
Number of malware 3 1 2 6

epmapper 4 4 7 2 2 7 26
emulation 3 1 2 6

mssqld 66 7 63 16 6 6 33 24 24 226
mysqld 9 1 8 12 1 2 17 5 6 50

remoteshell 2 2 4

Table 9 – Machine3 statistical data

In first day, Dionaea collected 4 malware from unique source IPs. Number of total

connection began to decrease and also collection of malware. After LAMP and DNS

server installed, total number of connection started to increase and after honeyd

installation, there was significant increase in total number of connection and connection

to SMB protocol.

Compare to machine1, when only Dionaea was running standalone, machine3 had better

performance about number of malware collected. The reason Dionaea was listening to

different IPs and it had no fingerprints against scans.

Figure 10 – Machine3 connections graphic

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

Malware

Total

IP1

IP2

IP3

47

The number of records of names used to login mssql and mysql (Table 10);

Number User Protocol

201 Sa mssql

22 Root mysql

3 administrator mysql

Table 10 – Machine3 SQL login info

The exploited vulnerabilities with numbers (Table 11)

Vulnerability Low-interaction High-interaction Honeyd Total

MS08-67 25 2 2 29

MS04-12 17 6 2 25

MS04-11 12 4 2 18
MS05-39 14 4 2 20

Table 11 – Machine3 Exploited Vulnerabilities

The services used to exploit vulnerabilities;

25|MS04-12|000001a0-0000-0000-c000-000000000046|ISystemActivator|RemoteCreateInstance|4

29|MS08-67|4b324fc8-1670-01d3-1278-5a47bf6ee188|SRVSVC|NetPathCanonicalize|31

18|MS04-11|3919286a-b10c-11d0-9ba8-00c04fd92ef5|DSSETUP|DsRolerUpgradeDownlevelServer|9

20|MS05-39|8d9f4e40-a03d-11ce-8f69-08003e30051b |PNP|PNP_QueryResConfList|54

P0f has detected 38964 operating systems; 28867 of them empty and other 10097 of

them has these operating systems and details [Q8];

2|Linux|2.4 (Google crawlbot) - (spammer from misconfigured Linux mail server)
2|Novell|NetWare 5.0
8|ExtremeWare|4.x
22|Linux|2.6? (barebone, rare!)
537|SunOS|4.1.x
5260|Linux 4268|Windows
28867||

48

Link type of these connections [Q9];

6654|ethernet/modem
1982|pppoe (DSL)
509|sometimes DSL
264|
208|GPRS, T1, FreeS/WAN
195|(Google/AOL)
189|IPv6/IPIP
32|sometimes modem
26|ISDN ppp
18|IPIP tunnel
12|PIX, SMC, sometimes wireless
4|vLAN
4|vtun

5.5. Collected malwares

Dionaea collected many malwares, unfortunately all of them are known (Clamav

detected). There could be unknown malware. Malware analysis can be done by dynamic

analysis (analyzing stack in memory and dumb of live memory), static analysis (file

printing, strings, disassembly etc.)

Hash value and IP addresses about received malware by machine3 with ClamAV;

1|dca8713db4f5b7b84a66b51d925e7f9c|88.160.196.174 - Worm.Allaple-2 FOUND
1|d09151e0d22e416302602c3a9939ec83|84.237.234.179 - Worm.Allaple-2 FOUND

1|c2d8dd5025217b458d0daec026ab8670|193.248.19.76 - Worm.Allaple-316 FOUND
1|ab4f1dbe0ce781ae69dc4cfc8857a483|200.35.53.121 - Trojan.Spy-78857 FOUND

1|3875b6257d4d21d51ec13247ee4c1cdb|110.5.16.69 - Worm.Allaple-306 FOUND
1|3875b6257d4d21d51ec13247ee4c1cdb|113.37.124.51 Worm.Allaple-306 FOUND
1|2f672e2bb137b65bf163bcec2057863a|64.166.97.82 - Worm.Allaple-2 FOUND

file *

2f672e2bb137b65bf163bcec2057863a: PE32 executable (GUI) Intel 80386, for MS Windows
3875b6257d4d21d51ec13247ee4c1cdb: PE32 executable (GUI) Intel 80386, for MS Windows
ab4f1dbe0ce781ae69dc4cfc8857a483: PE32 executable (GUI) Intel 80386, for MS Windows
c2d8dd5025217b458d0daec026ab8670: PE32 executable (GUI) Intel 80386, for MS Windows
d09151e0d22e416302602c3a9939ec83: PE32 executable (GUI) Intel 80386, for MS Windows
dca8713db4f5b7b84a66b51d925e7f9c: PE32 executable (GUI) Intel 80386, for MS Windows

From machine2;

4715dd7a260ec8821a7b621948610795: Worm.Allaple-315 FOUND

From machine1;

49

5.5.1. The purpose of malwares that targeted the system

Worm.Allaple and win32 Virut derivatives

Hash; 2f672e2bb137b65bf163bcec2057863a (Worm.Allaple-2),

Hash; ab4f1dbe0ce781ae69dc4cfc8857a483 (W32/VIRUT)
Hash; c2d8dd5025217b458d0daec026ab8670: (Worm.Allaple-316)

Hash; 952098cf3c65cfcb52282d8959ddffd3 (NetWorm.Win32.Allaple.GEN)

Description; These malware are self replicating and spread by network and removable

disks or through shared files with another infected computers. It uses polymorphic

encryption.

Function; It affects files, registry files and network communication. It runs as service in

network and try to access other computers in LAN.

50

Worm.Allaple.B injects other viruses or malware into the computers by opening

backdoors on system and able to send your personal information to hackers by

connecting your computer to remote servers. All viruses belonging to the Virut family

also contain an IRC-based backdoor that provides unauthorized access to infected

computers.

Backdoorbot derivatives

Hash; dca8713db4f5b7b84a66b51d925e7f9c (Backdoorbot)

Hash; 3875b6257d4d21d51ec13247ee4c1cdb (Bakdoor.Robt)

Description; It allows the computer to be remotely controlled by another user. It is used

for financial purposes. By attacker it is used for schemes such as pay per install, sending

spam emails, and harvesting personal information and identities are all ways to generate

revenue.

Function; When executed it copies to Windows system folder as a random file name. It

modifies registry run section to load automatically on the next startup. It can be used to

perform Dos attack on other computers. Due to the backdoor abilities, the hacker can

steal data from the infected systems. It also disables antivirus and security settings in the

infected system.

RemAdm-ProcLaunch – Hacktool (hash; 8b48f59fb263b1b3ed5f9f2a8cd8fd26)

This remote access program is a command line tool that can be used to remotely execute

processes on target systems. A user, however, must specify several parameters to

properly use this tool.

It is essentially harmless but its ability makes it attractive to users with malicious intent.

Worm.gen.[variant]

Hash; 8d2932dffe1b62d81df3dcd47f7799bc (Worm.Generic.432900)
Hash; d78e79d86b15ed5732c5ddd002f5d38d (Worm.Generic.428092)

Generic Worm does not spread automatically using its own means. It needs an attacking

user's intervention in order to reach the affected computer. The means of transmission

used include, among others, floppy disks, CD-ROMs, email messages with attached

51

files, Internet downloads, FTP, IRC channels, peer-to-peer (P2P) file sharing networks,

etc.

Unlike single-file detections which identify unique files, a Generic Detection looks for

broadly applicable code or behaviour characteristics to evaluate a file's potential for

causing harm.

Win32/Autorun variants (INF/GEN)

Hash; c99e235fd91a121bbf193c471229d07b (W32/Autorun.worm.aapq)

Description; It is to detect for 'autorun.inf' files that may be used by worms when

spreading to local, network, or removable drives.

Function; It creates a file named 'autorun.inf' in the root of the targeted drive. An

autorun.inf file is a Windows instruction file associated with the Autorun feature; the

file instructs the operating system what actions it may take with certain files (Open

Files, Copy Files, etc) when a drive is accessed.

A malicious program may subvert the Autorun feature to automatically execute a

malicious file when the host drive is opened or trick the user into executing a malicious

file, usually by using social engineering techniques

dumpsys.exe

Hash; 4a6e5980ad7d1a4bbe71ec46fa96755e (Trojan.Downloader)

It starts servers listening on 127.0.0.1:0. It makes SMTP requests and possibly sending

spam and it generates some ICMP traffic.

52

6. Forensics of honeypot

The server was placed in DMZ in IT Collage network. Somebody hacked honeypot and

installed gateway tapping software. By using Arp poisoning, it took over the IP of

default gateway and could access to traffic. This hack was not perfect and real gateway

couldn’t get packets anymore that firewall discovered all those attempts.

A virtual machine was used to install low-interaction honeypot. After 4 days later

installing real services and using tapping, the server was compromised. Every individual

involving running honeypot was ready for this kind of incident. I didn’t panic and did a

quick assessment and reported problem to system administrator. In recent Computer

Security Incident Handling Guide by NIST [57], the incident response life cycle;

Figure 11 - Incident Response Life Cycle

6.1. System Description

The honeypots were running on virtual machine. After the inc ident, a snapshot was

taken so preservation of evidence was kept. The analysis of state of machine;

1. $/etc/init/rc-sysinit.conf shows the system normally boots into runlevel 2

2. $ sudo who –b shows system rebooted on 2016-05-07 18:14

3. $ last - f /var/log/wtmp wtmp begins Sun May 8 06:25:07 2016

4. Installed and running security tools are apparmor, chkrootkit, ufw, openSSH,

denyhosts,

5. The open ports are 3306, 139, 80, 53, 953, 443, 445, 1122

6. The last record Dionaea received was 2015-05-20, 05:30:07 and last sql entry

2015-05-20 02:30:07

53

The existing users and groups in the machine are;

$ getent passwd | awk -F: '{print $1}' | while read name; do groups $name; done
root : root
nobody : nogroup
sshd : nogroup
hopelesslopster : hopelesslopster adm cdrom sudo dip www-data plugdev lpadmin
sambashare
honeyd : honeyd

SSH service configuration shows that it doesn’t allow root login;

$/etc/ssh/sshd_config
PermitRootLogin no
RhostsRSAAuthentication no
HostbasedAuthentication no
#IgnoreUserKnownHosts yes

Comparion of passwd and shadow is OK

$pwck -r /etc/passwd
$pwck -r /etc/shadow

6.2. Login and System Logs

There can be information about a malware incident, attacker IP addresses, compromised

user accounts/services and installation of rootkits.

1. $ last - f wtmp; all logins seems legitimate

hopeless hvc0 Thu May 21 14:05 - crash (352+04:09)
hopeless hvc0 Thu May 21 14:05 - 14:05 (00:00)
hopeless hvc0 Wed May 20 07:30 - 14:02 (1+06:32)
hopeless hvc0 Wed May 20 07:30 - 07:30 (00:00)

2. $ less /var/log/syslog syslog1 restart May 20 07:29:28

3. Chkrootkit found nothing, no infected rootkits

4. There is no result in auth.log for connection

sudo cat /var/log/auth.log | grep "Accepted password"

sudo cat /var/log/auth.log | grep "(sshd:session): session opened"

5. ls -lrt | tail -15; nothing suspicious about last modified files

6. lastlog: OK

7. find / -name ’.*’ | grep ’\.[\.]*[^\!-~][^\!-~]*’ : OK

54

8. find / -type f -user root -perm -4000 -exec ls - l {} \; OK

9. grep '[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}' /var/log/auth.log ; OK

6.3. Network logs

There was no capture of traffic during the compromising. Only netstat command gave

the result below, it is not sure if it is related to IP that compromised the system because

the command was run right after incident handling.

#netstat –anp

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
udp 0 768 193.40.194.133:50913 192.58.128.30:53 ESTABLISHED -

Country: United States
Hostname: j.root-servers.net

55

7. Summarizing the research

The server ran low-interaction honeypot Dionaea almost for 2 months. Later DNS

server is installed to show like there is a local network. Honeyd honeypot is used to

change fingerprints of operating systems. A virtual network, services and IP are created

with taps. For each machine network and firewall rules are written, SQL queries are

used for data analysis.

Only safe and efficient system would be running real machines with hardened security.

In this research two level of honeypot ran to collect data and a comparison of data made

to understand level and types of attacks, whether attacks were organized or not,

attacker’s behavior from exploited vulnerabilities and what the attackers were looking

for. Creating virtual network and IP improved the system. Honeypot could listen to

more IPs as they are real machines and services. It is observed that in any change of

network or services; there were more connections to honeypot that means it is a very

interactive environment with attacker. Hiding operating system or labeling them

differently didn’t change efficiency since attacker is still looking for vulnerability,

chatting with services with packages. It didn’t help to fool the attacker.

7.1. Conclusion

The main idea of the thesis is to focus on malwares and analyze purpose of these

malwares. It would be a great achievement to collect a new malware. The low

interaction honeypot Dionaea is an efficient honeypot to collect malware and makes

very easy to analyze attacks with well designed database. High- interaction honeypot

couldn’t help to increase efficiency of collecting malware samples. Although there were

more connections to honeypot and SMB protocol where Dionaea collects malware, the

high- interaction honeypot collected no malware samples. Adding two more IPs for

Dionaea increased collection of malware without real services running. From these

conclusions, this design can be proposed to collect malware samples efficiently; a low-

interaction honeypot running on as many IPs on network with few real services. The

service identification of honeypot should be prevented and low-interaction honeypot

should run few services including SMB protocol. The running real or honeypot services

should be logical; it shouldn’t give suspicion to attacker.

56

There are severe concerns to run a system like this and security should be taken

seriously. Honeypot is a potentially dangerous tool. Both honeypot and virtual machines

have vulnerability. It is recommended to place honeypot in DMZ. The person who

implements this kind of system should excel his skills before doing it. Especially for

running high- interaction honeypot requires advanced knowledge of firewall and

network rules because honeypot is a helpful tool, not a standalone security tool;

honeypot should run among other security tools.

Besides knowledge of security, it is needed to have Python knowledge to change

modules and knowledge about network rules to respond attacks efficient in Dionaea and

SQL experience to analyze collected big sized data.

The proposed system can be enhanced depends on resources like hardware, network. In

this design, low- and high- interaction honeypots were installed on a single server but

many virtual machines were used and operating system, tools were open source. It had

limitations due to hardware and knowledge.

Honeypots are very useful for security but it has important drawback like requiring

continues rule implementation for high interaction. Low interaction honeypot has

limited risk and excellent tool for beginner to learn about network traffic, attack types

and patterns, attacker’s behavior, tools and methods

Reasons for failure;

- Server is in DMZ; it requires advanced skills for firewall rules when real

systems are installed.

- The idea of using more IPs applied much more later

- It requires good knowledge about Linux kernel support and network rules to

keep system secure while taking more risk

57

References

1. Pandalabs report Q2 2015, April - June 2015 – Panda Security.

(http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-Q2-

EN.pdf) (15.06.2015) (Article from quarterly report)

2. Phil Bandy, Michael Money & Karen Worstell, IDFAQ: What is a honeypot? Why do I

need one? (https://www.sans.org/security-resources/idfaq/what-is-a-honeypot-why-do-i-

need-one/1/11) (01.02.2001) (Article from a database)

3. Dar Ning Kung, An Evolution in Security: Intrusion Prevention

(https://www.giac.org/paper/gsec/3594/evolution-security-intrusion-prevention/104648)

(02.10.2003) (Article from Global Information Assurance Certification Paper)

4. The Honeynet Project, The Honeynet Project Workshop 2014

(warsaw2014.honeynet.org) (12-14.05.2014) (Reference for honeynet project)

5. Lance Spitzner. Honeypots: Tracking Hackers. September 13, 2002. ISBN: 0-321-

10895-7 (Book)

6. William Stallings. Cryptography and Network Security: Principles and Practices

November 16, 2005. ISBN 0-13141098-9 (Book)

7. L. J. Locher. Maximum Windows 2000. January 2001. ISBN-13: 075-2063319659

8. R. C. Joshi, Anjali Sardana, Honeypots: A New Paradigm to Information Security, CRC

Press, 2011 (Book)

9. Clifford Stoll, The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer

Espionage, 1989. (Book)

10. Bill Cheswick, An Evening with Berferd, 1991 (Book)

11. Al-Sakib Khan Pathan, The State of the Art in Intrusion Prevention and Detection, 1st

edition, 2014. (Book)

12. The Deception ToolKit (http://all.net/dtk/dtk.html) (website)

13. The Know Your Enemy (http://old.honeynet.org/papers/kye.html) (website)

14. Joseph Corey, Local Honeypot Identification, Phrack Inc. 2003, September

(http://repo.hackerzvoice.net/depot_ouah/p62-0x07.txt) (Article)

15. Maria Manuela Cruz-Cunha, Irene Maria Portela, Handbook of Research on Digital

Crime, Cyberspace Security, and Information Security. 1st edition, IGI Global, 2014.

(Book)

16. Provos, Niels; Holz, Thorsten, Virtual Honeypots: From Botnet Tracking to Intrusion

Detection. Addison-Wesley Professional. July 2007. (Book)

17. Thomas M. Thomas, Donald Stoddard, Network Security First-Step. 2nd edition, Cisco

Press, 2014. (Book)

58

18. Eric Cole, Ronald L. Krutz, James Conley, Network Security Bible By, 2005. (Book)

19. ENISA. Proactive Detection of Security Incidents, November 11, 2012 (Many authors)

(Publication)

20. Reto Baumann, Cristian Plattner, Honeypots, 2002 (White paper)

21. R. C. Joshi, Anjali Sardana, Honeypots: A New Paradigm to Information Security, CRC

Press, 2011. (Book)

22. Roger A. Grimes, Honeypots for Windows, Apress; 2005 edition (Book)

23. L. J. Locher. Maximum Windows 2000. January 2001. ISBN-13: 075-2063319659

24. Greene, Barry Raveendran & Danny Macpherson, Sinkholes: A Swiss Army Knife ISP

Security Tool Version 1.8. Nano, 2003 (Book)

25. Keith D. Willett, Information Assurance Architecture, Auerbach Publications, 2003

(Book)

26. John D. Howard, Thomas A. Longstaff, A Common Language for Computer Security

Incidents, Sandia National Laboratories, 1998. (Report)

27. Pavol Sokol, Patrik Pekarčík, Tomáš Bajto, Data Collection and Data Analysis in

Honeypots and Honeynets, 2015 (spi.unob.cz/papers/2015/2015-19.pdf) (Article)

28. Mohammed H Almeshekah, Eugene H. Spafford, The Case of Using Negative

(Deceiving) Information in Data Protection, CERIAS Tech Report 2015-11. (Article)

29. Mohammed H. Almeshekah, Eugene H. Spafford, Using Deceptive Information in

Computer Security Defenses, 2014. (Article)

30. Miles A. McQueen Wayne F. Boyer, Deception Used for Cyber Defense of Control

Systems, May 2009 (Book)

31. L. J. Locher. Maximum Windows 2000. January 2001. ISBN-13: 075-2063319659

32. Stilianos Vidalis, Eric Llewellyn, Christopher Tobb, ICIW2007- 2nd International

Conference on Information Warfare & Security, 2007. (Article)

33. David Watson, Low Interaction Honeypots Revisited

(https://www.honeynet.org/node/1267), 2015 (Article)

34. Lance Spitzner, Honeypots: Are They Illegal?

(http://www.symantec.com/connect/articles/honeypots-are-they-illegal), 2010, (Article)

35. Thorsten Holz and Frederic Raynal, Detecting Honeypots and other suspicious

environments, IEEE, 2005. (Article from an journal)

36. Slavcho Manolov, Roumen Trifonov, The Honeypots – Effective tools for proactive

detection of computer security incidents, Proceedings of the International Conference

on Information Technologies, Bulgaria, 2013 (Conference Paper)

37. Specification of Advanced Methods for Incident and Security Threats' Detection and

Mitigation in a Multi-Domain Environment, GEANT report, 2011. (many author)

59

38. David Watson, Low Interaction Honeypots Revisited

(https://www.honeynet.org/node/1267), 2015 (Article)

39. Wiliam Mccarty, The honeynet arms race, IEEE, 2003. (Article)

40. The Nepenthes Platform: An Efficient Approach to Collect Malware, Nepenthes Team

(many author), RAID'06 Proceedings of the 9th international conference on Recent

Advances in Intrusion Detection, 2006. (Conference paper)

41. Internet Infrastructure Review, Internet Initiative Japan May 2011 (report)

42. Kelly Burton, The Conficker Worm, accessed on 06.11.2015.

(https://www.sans.org/security-resources/malwarefaq/conficker-worm.php) (article)

43. Michael Ligh , Steven Adair, Blake Hartstein, Malware Analyst's Cookbook, 1st

edition, 2010. (Book)

44. Gibson Research Corporation, 2008, accessed on 20.01.2016.

(https://www.grc.com/port_445.htm) (article)

45. Internet Storm Center, SANS. (https://isc.sans.edu/port.html?port=445)

46. ENISA. Proactive Detection of Security Incidents, November 11, 2012 (Many authors)

(Publication)

47. Mohssen Mohammed, Al-Sakib Khan Pathan, Automatic Defense Against Zero-day

Polymorphic Worms in Communication Networks, Auerbach Publications; 1st edition.

(Book)

48. Multimac (https://www.primianotucci.com/os/multimac) (package source)

49. Tom Liston, On the Cutting Edge: Thwarting Virtual Machine Detection, SANS

Internet Storm Center, 2006. (Article)

50. Thorsten Holz and Frederic Raynal, Detecting Honeypots and other suspicious

environments, IEEE, 2005. (Article from a journal)

51. Joanna Rutkowska & Alexander Tereshkin, Bluepilling the Xen Hypervisor. Invisible

Things Lab, 2008 (Article)

52. Sylconia (http://books.gigatux.nl/mirror/honeypot/final/ch09lev1sec1.html) (website)

53. Craig Valli, Honeyd – A OS Fingerprinting Artifice, Conference Proceeding, Edith

Cowan University, 2011. (Conference paper)

54. Simon Innes, Craig Valli, Honeypots: How do you know when you are inside one,

Proceedings of Australian Digital Forensics Conference, 2006, 78-83. (Book)

55. Richard Xie, Hunting for Honeypot Attackers: A Data Scientist’s Adventure, 2015.

Accessed on 21.04.2016. (https://www.endgame.com/blog/hunting-honeypot-attackers-

data-scientist%E2%80%99s-adventure). (Article)

56. Pedro Henrique Matheus, Using Decision Trees to Extract IDS Rules from Honeypot

Data, International Journal of Cyber-Security and Digital Forensics. (Article from an e-

journal)

60

57. Computer Security Incident Handling Guide, Recommendations of the National

Institute of Standards and Technology, Special Publication 800-61, Revision 2 (Book,

many author)

61

Appendix

1. List of SQL queries

1. select count(*) from connections;

2. select count(*) from connections where connection_type = 'accept';

3. select count(*), connection_protocol from connections where connection_type =

'accept' group by connection_protocol;

4. select count(*), connection_protocol as cp, date (connection_timestamp,

'unixepoch') as date from connections group by date, cp;

5. select count(logins.login_username||logins.login_password) as count,

logins.login_username, logins.login_password,

connections.connection_protocol, connections.local_port from logins,

connections where connections.connection = logins.connection group by

(logins.login_username||logins.login_password) order by count desc;

6. SELECT COUNT(*), dcerpcserviceop_vuln,

dcerpcrequests.dcerpcrequest_uuid, dcerpcservice_name,

dcerpcserviceop_name, dcerpcrequest_opnum FROM dcerpcrequests JOIN

dcerpcservices ON(dcerpcrequests.dcerpcrequest_uuid ==

dcerpcservices.dcerpcservice_uuid) LEFT OUTER JOIN dcerpcserviceops

ON(dcerpcserviceops.dcerpcserviceop_opnum = dcerpcrequest_opnum AND

dcerpcservices.dcerpcservice = dcerpcserviceops.dcerpcservice) WHERE

dcerpcserviceop_vuln is not NULL and dcerpcserviceop_vuln != '' GROUP BY

dcerpcrequests.dcerpcrequest_uuid,dcerpcservice_name,dcerpcrequest_opnum

ORDER BY COUNT(*) DESC;

7. select count(*),date (connection_timestamp, 'unixepoch') as date ,

dcerpcservice_uuid as suuid ,dcerpcserviceop_vuln as vuln, local_port from

connections as c, dcerpcbinds as db, dcerpcrequests as dreq, dcerpcserviceops as

sop, dcerpcservices as serv where c.connection = db.connection and

db.connection = dreq.connection and dreq.dcerpcrequest_uuid =

serv.dcerpcservice_uuid and serv.dcerpcservice = sop.dcerpcservice and

sop.dcerpcserviceop_opnum = dreq.dcerpcrequest_opnum and

dcerpcserviceop_vuln != '' group by suuid, date, vuln order by date;

62

8. select count(*), p0f_genre, p0f_detail as d from p0fs group by p0f_genre, d;

9. select count(*), p0f_link from p0fs where p0f_genre <> '' group by p0f_link

order by count(*) desc;

10. select count(*), remote_host, date (connection_timestamp, 'unixepoch') as date ,

dcerpcservice_uuid as suuid ,dcerpcserviceop_vuln as vuln, local_port from

connections as c, dcerpcbinds as db, dcerpcrequests as dreq, dcerpcserviceops as

sop, dcerpcservices as serv where c.connection = db.connection and

db.connection = dreq.connection and dreq.dcerpcrequest_uuid =

serv.dcerpcservice_uuid and serv.dcerpcservice = sop.dcerpcservice and

sop.dcerpcserviceop_opnum = dreq.dcerpcrequest_opnum and

dcerpcserviceop_vuln != '' and remote_host = "210.71.170.3" group by suuid,

date, vuln order by date;

11. select count(*), remote_host, local_port, datetime (connection_timestamp,

'unixepoch') as date from connections where date (connection_timestamp,

'unixepoch') = '2015-04-09' group by strftime('%Y%m%d%H0',

connection_timestamp, 'unixepoch') + strftime('%M', connection_timestamp,

'unixepoch')/60 order by date;

