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Abstract 

In software development, occasionally, in the course of software evolution, the 

functionality that previously worked as expected stops working. Such situation is 

typically denoted by the term regression. To detect regression faults as promptly as 

possible, many agile development teams rely nowadays on automated test suites and the 

practice of continuous integration (CI). Shortly after the faulty change is committed to 

the shared mainline, the CI build fails indicating the fact of code degradation. Once the 

regression fault is discovered, it needs to be localized and fixed in a timely manner. 

Fault localization remains mostly a manual process, but there have been attempts 

to automate it. One well-known technique for this purpose is delta debugging algorithm. 

It accepts as input a set of all changes between two program versions and a regression 

test that captures the fault, and outputs a minimized set containing only those changes 

that directly contribute to the fault (in other words, are failure-inducing). In previous 

studies developing this approach, only coarse-grained changes produced by an ordinary 

textual differencing tool was used as a basis for experiments, which led to performance 

issues and worsened the accuracy of localization. The goal of the current thesis is to 

substitute textual differencing with abstract syntax tree differencing and investigate the 

effects of such replacement on time behavior and output of delta debugging process.  

As a result of this thesis, a prototypical AST differencing-based implementation 

of delta debugging tool has been built and evaluated on a set of real regressions 

collected from a large enterprise information system written in Java language. The 

evaluation shows that switching to AST differencing brings improvement in terms of 

effectiveness, performance, accuracy, and plausibility of the output.  

This thesis is written in English and is 52 pages long, including 4 chapters, 14 

tables, and 5 figures. 
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Annotatsioon 

Automatiseeritud silumise rakendamine vigade 

lokaliseerimiseks Java rakendustes 

Tarkvara evolutsiooni käigus juhtub aeg-ajalt, et mingi funktsionaalsus, mis 

varem töötas korralikult, enam ei tööta. Sellist olukorda nimetatakse tarkvara 

regressiooniks. Et avastada regressioonivead võimalikult kiiresti, paljud agiilsed 

arendusmeeskonnad kasutavad tänapäeval automaatteste ning pidevat integratsiooni 

(Continuous Integration ehk CI). Vahetult pärast seda, kui vigane muudatus on 

integreeritud ühiskasutatavasse keskkonda, CI ülesanne nurjub, mis viitab koodi 

kvaliteedi halvenemisele. Kui regressiooniviga on avastatud, tuleb see lokaliseerida ja 

õigeaegselt parandada. 

Vea lokaliseerimine jääb enamasti manuaalseks protsessiks, kuid seda on püütud 

automatiseerida. Seoses sellega on delta-silumise algoritm üks hästi tuntud meetod, 

millele antakse sisendina ette hulk muudatusi sama programmi eri versioonide vahel 

ning ebaõnnestunud regressioonitest. Algoritmi väljundiks on minimeeritud hulk, mis 

sisaldab ainult neid muudatusi, mis otseselt põhjustavad regressiooni. Varasemates 

uuringutes kasutati muudatuste saamise eesmärgil ainult lähtekoodi failide harilikku 

tekstilist võrdlust, mille tõttu saavutatavad jõudlus ja täpsus ei olnud optimaalsed. 

Käesoleva magistritöö eesmärgiks on tekstilise võrdluse asendamine abstraktsete 

süntaksipuude võrdlusega ning sellise asendamise mõju uurimine delta-silumise 

protsessi ajalisele käitumisele ja väljundile. 

Käesoleva töö tulemusena on loodud delta-silumise tarkvara prototüüp, mis 

põhineb süntaksipuude võrdlemisel. Prototüübi hindamiseks on kasutatud reaalsed 

regressioonivead, mis on kogutud ühest Java keeles kirjutatud suuremahulisest ettevõtte 

infosüsteemist. Hindamine näitab, et üleminek süntaksipuude võrdlusele mõjub 

positiivselt; paranenud on nii tõhusus, jõudlus, täpsus, kui ka väljundi usutavus. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 52 leheküljel, 4 peatükki, 

14 tabelit, 5 joonist. 
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Introduction 

In recent years, numerous approaches were proposed for automatic test-based 

software fault localization. Specifically, considerable effort was exerted to develop 

effective methods to automatically isolate source code changes that induce test-

detectable regression faults. One of the techniques actively utilized for this purpose is a 

delta debugging algorithm, developed by A. Zeller (Saarland University) and presented 

to the scientific community in his article from 1999 entitled “Yesterday, my program 

worked. Today, it does not. Why“? [1]. A variation of this algorithm relevant in the 

context of the current thesis accepts a set of changes in the source code as an input and 

produces a 1-minimal set of failure-inducing changes as its output. It belongs to the 

divide-and-conquer family of algorithms and guarantees linear worst-time complexity. 

Dozens of studies have been conducted since the publication of Zeller’s paper 

with the aim to evaluate the effectiveness, correctness and performance of delta 

debugging. In addition several tools were built to prove the concept, but none of those 

tools have reached maturity and grown into a commercial product. The main reason for 

that seems to be insufficient performance due to typical presence of large number of 

unresolved test cases after initial splitting iterations. Another concern that is of interest 

to thesis author is lack of research targeted at solving the problem of effective 

automated regression fault localization for programs written in the Java language. 

Therefore, the goal of this work is to find optimized solution to the stated problem for 

Java programs. To the author’s best knowledge, there exists only one alternative 

approach (DARWIN [2]) which is principally different from delta debugging, but this 

method’s scalability is limited to that of SMT solvers and this complicates its 

application in a fully automated mode on industrial-scale applications. 

To give the reader a better understanding of the context of this work, we should 

mention right away that the primary motivation driver for this study is the presumed 

potential of weaving technology for automatic fault localization into continuous 

integration software with the purpose of reducing total time spent on repairing 

regressions. An intriguing side-effect of the developed method lies in the increased 

precision of the localizing source of regression. The latter implies gaining better 

prospects for using this method in conjunction with automated software repair 

techniques. Chapter 1 provides the complete overview of the motivation. 
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The main contribution of this work is a prototype implementation of a regression 

fault localization tool which is targeted at achieving better performance in the above 

sketched main use case scenario, and providing a well-grounded answer to the question 

of practical applicability of this optimized version in enterprise-scale Java software 

development. A prototypical approach described in Chapter 2 of the current thesis 

combines delta debugging with abstract syntax tree differencing. Unlike previous 

research, which used  the change sets produced by ordinary textual diff tool as an input 

for delta debugging procedure, this work attempts to perform code manipulations on a 

more fine-grained level and operates with changes detected between abstract syntax 

trees of the two program versions. We hypothesize that raising the granularity level will 

promote the consistency of randomly composed configurations and decrease the number 

of unresolved configurations, thus improving the overall performance of the algorithm. 

On the other hand, raising the granularity theoretically leads to a larger number of 

configurations to assess, therefore the achievable performance gain is not immediately 

obvious. The practical experiment conducted in the scope of this work shall clarify these 

concerns. 

The prototype is evaluated on a data set of real regression faults collected from a 

large Java-based enterprise information system; the observations are documented in 

Chapter 3. During working on this thesis, the author faced the problem of absence of 

ready-to-use benchmarks for evaluation of regression defect localization tools. Neither 

broadly known in Java world Defects4J [3] nor Software-artifact Infrastructure 

Repository (SIR) [4] contained the required test data; therefore the only viable option 

was to gather it manually from the project well-familiar to the thesis author. Using the 

information extracted from a real history of source code changes done by a professional 

team during the ordinary course of software development throughout a year brings 

additional credibility to the evaluation process. 

Finally, in Chapter 4 we discuss the results and give an assessment of the 

developed technique. This chapter also provides some insights into directions of future 

work.  
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1. Background and related work 

1.1. Motivational drivers 

1.1.1. CI-related motivation for the automated debugging of software regressions 

During the last decade, continuous integration (CI) has become a mainstream 

practice in professional agile software development. Its main purpose is to facilitate 

early detection of integration problems by frequent merging of developer individual 

working copies to a shared mainline located at the integration server. To support this 

approach, numerous tools are available; they largely differ in characteristics and 

capabilities [5], but share common operating principles. Normally CI software is 

configured in such a way that it polls periodically the project’s VCS repository to 

determine changes on specific branch. If new source code revisions are found, CI server 

updates its local working directory and immediately triggers a build job. A build is a 

complicated process that typically involves compiling, packaging, deployment, database 

schema migration, as well as running various automated tests. Intermediate results are 

constantly communicated back to the developers, most usually through some sort of 

visual representation, sometimes called ‘build light indicator’. The exact form of such 

indicator representing current state of the build may range from web-accessible 

dashboard displayed on a separate flat screen monitor mounted near the ceiling to more 

exotic things like colored lava lamps [6]. The information about failing build might also 

be conveyed in the form of audial warning. Ultimately, the most important requirements 

are that this indicator is at any time accessible to entire team and each team member is 

aware that if the build is failing, then commits are disallowed. 

Constant feedback on the actual state of the build enables to reduce the time 

between introducing problematic changes and the moment when the team discovers the 

problem and starts to solve it. Combined with the disciplined adherence of the team 

members to the policy of not committing code to remote repository in case the mainline 

is broken, such feedback allows preventing further build degradation and reduces the 

effort needed to localize and eliminate the cause of the failure. However, the flip side of 

this policy is that team members who are ready to commit their changes have to wait 

until the responsible person resolves the problem. Switching to other development 

activities during this time is oftentimes not desirable because it is a well-known fact that 

human context switching is associated with significant loss of productivity [7] [8]. 
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Depending on the build configuration, sense of responsibility of individual team 

members, established practices, and current stage of release life cycle, the ‘commit 

window’ during the day might be as small as a couple of hours. Given the above facts, it 

is natural that fixing the build is considered one of the highest priority tasks in most 

development teams that use continuous integration. It was also recognized as a priority 

activity by such major agile proponents as Martin Fowler and Kent Beck [9]. Reducing 

the time needed to repair the build is thus of key importance to improving team’s 

overall productivity. 

There are a multitude of reasons why a build can fail; therefore, handling the 

particular situation with unacceptably frequent failures should begin with gathering 

statistical data about causes of failures and costs of fixing. Although, in order to achieve 

the best possible results, one should collect the data using utility integrated into CI 

software itself (for example, Build Failure Analyzer plugin for Jenkins [10]), prioritize 

the most critical problems using some formal method, and develop effective 

countermeasures, in the presence of evident predominant reason the procedure might be 

simplified down to treating this concrete reason. Author’s personal observations, made 

on large enterprise software projects that utilize continuous integration, show that, in a 

typical CI pipeline configuration, given a project with reasonably well-developed test 

suite, the most influential cause of build degradation is failure of automated tests, 

contributing to the largest amount of total time spent on mainline recovery.  

One obvious reason for this is that often developers refuse to verify their changes 

by running all tests in their local environment before they make a commit to a remote 

repository. Not always is that a sign of insufficient discipline and development culture – 

in large teams practicing trunk-based development, where commits to mainline occur 

very often, it is generally not possible to run the whole test suite locally between each 

two consecutive commit attempts. If the first commit attempt of developer A failed 

because head revision had already been updated by another developer B, developer A 

needs to merge B’s changes to the local copy before reattempting the commit. Like 

every codebase update, merging may introduce new bugs and, with a good test suite, 

automated tests are likely to catch at least some of them. However, if it takes relatively 

long time to run all the tests locally, developer A is tempted to skip this step and 

reattempt the commit with unverified changes – otherwise, there is a high chance that in 
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the meanwhile the local copy becomes outdated again. Therefore, there always remains 

a risk that the problem is discovered only when some tests fail on a CI build pipeline. 

Above described scenario is probably the most prevalent way to break the build, 

but there are also many other widespread causes for that to happen. Particularly 

noteworthy among those are differences between execution environments. The same 

test might pass successfully on a local development environment, but fail when being 

run during CI build. Sometimes this might indicate a problem with the test itself, as is 

the case with time-dependent tests. Yet another common mistake is writing a test case 

which relies on the particular order of elements inside dataset. For example, according 

to the query specification of SQL, in order to guarantee a specific order inside a 

returned result set, one must use ORDER BY clause. However, most relational DBMSs, 

including Oracle, tend to fetch the same data in the same order, provided that the query 

execution plan did not change. In an another environment, the execution plan for the 

same query might be completely different, which will lead to producing results in 

another order. To the less experienced developer, who is accustomed to looking only for 

functional mistakes within the main codebase, understanding that the real culprit is the 

incorrectly written test can take quite a while. Finally, randomly failing tests, especially 

those revealing issues rooted in concurrency violations, constitute a separate major class 

of test failures; reproducing and fixing the underlying cause possesses unique 

challenges. 

Although a test might be failing on CI environment since it was firstly added to 

the source code repository, the much more usual scenario is that this test had 

successfully passed previously and the failure started to occur due to the lately made 

code changes (here and further by ‘code changes’, if not explicitly stated otherwise or 

clearly inferred from context, we mean changes made in main codebase, and not in test 

code). In this case, assuming that the test itself is correct, it is said that software 

regression was introduced. Apart from the most trivial cases, when the cause is 

immediately obvious from inspecting the exception stack trace or a developer is well 

familiar with project’s codebase, handling the regression defect involves manual 

inspecting of source code modifications between last-known-good and broken revisions. 

Code diffs are a valuable source of information which guides a developer towards fault 

localization and issuing a fix. 
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The fastest approach to reconciling regressions is arguably reverting commits 

made since the last-known-good (in the context of particular failing test) revision from 

the mainline, reproducing the problem locally, fixing it, and committing the fixed 

version to the remote repository. Thus, trunkbaseddevelopment.com, a notable web 

resource about the same name approach, recommends this policy, stating that “The best 

implementations are going to perform automatic rollback of a broken commit that lands 

in the trunk. The developer gets notified and they get to fix it quietly on their 

workstation” [11]. Contrary to the latter recommendation, we claim that such setup 

cannot be universally adopted, because in certain settings it is not scalable enough. With 

a large automated test base and high rate of commits to mainline, it is highly probable 

that by the time the CI build gets broken because of newly failed test case and the team 

becomes aware of this event, another developer(s) has already made their commit(s) 

with unverified changes, therefore reverting ‘guilty’ revision would be disruptive for 

them (what we are ultimately pursuing to avoid). 

Another interesting alternative to consider is the idea of “pending head”, or 

“delayed commit”, described by Martin Fowler in his 2007 web article [12], and widely 

adopted by many development teams today. It is proposed to use short-lived private 

feature branches for the regular development, have a continuous integration server to 

perform an integration build, and, if successful, automatically commit the changes to 

mainline. Fowler claims that “this way you never got broken code into the mainline of 

the project”, but nothing is said about realistic throughput achievable with this 

technique. The method implies a strictly sequential workflow, with queueing commits 

in the processing chain, so the downside of reduced throughput is evident. It is also 

unclear how the problem with arising merging conflicts is solved when a pending-head 

branch gets automatically updated with the true project head – not every source code 

merge can be performed without manual intervention. Fowler himself admits that he 

was not enough motivated to introduce this method in his company because of its 

relative complexity and concludes the article by stating: “As usual the people-issue is 

often a more important issue to deal with before introducing more complicated 

technology“. Last but not least, another blog article with a brief overview of build 

pattern in question contains a valuable remark about its potentially detrimental effect of 

forming a non-healthy attitude when a single person is made exclusively responsible for 

the mistake [13]. 

file:///C:/Users/juhan/AppData/Local/Temp/trunkbaseddevelopment.com
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 Having described two possible strategies, we are now ready to shortly discuss the 

most common option. The preferred practice is that a dedicated team member, usually 

the one who introduced the failure, tries to fix the regression locally without reverting 

the mainline. It means that during that time the build remains broken and other 

developers are prohibited to commit to mainline in order to not complicate the situation 

further. Therefore, there is a need to find a correct fix as soon as possible. Having a 

reliable technique that would allow to at least partially automate this process by 

localizing the fault could significantly shorten the time needed to produce a correct 

patch and be thus of a great practical value. The domain of execution is not very 

relevant: the fault localization tool might be installed on a local development machine 

(for example, bundled as IDE plugin) or directly on a CI server (be a part of CI 

software). Important is the speed-up gained by such semiautomatic regression resolution 

process. 

1.1.2. Automatic defect localization in the context of automated software repair 

A more ambitious perspective that drives the motivation for automated fault 

localization is the ability of the latter to serve as an input for automatic bug-fixing. The 

idea of automated software repair is relatively new; it started being actively explored 

only about 15 years ago. One possible definition of automated repair is as follows: 

„Automatic repair is the transformation of an unacceptable behavior of a program 

execution into an acceptable one according to a specification“ [14]. Specification can be 

defined in a multitude of different ways, ranging from formal specification – with the 

most notable example arguably being the design-by-contract approach popularized by 

Bertrand Meyer in his Eiffel language, – to the most implicit forms such as a natural 

language phrase. With the emergence of Extreme Programming (XP) and Test-Driven 

Development (TDD) paradigm, in the vast majority of modern object-oriented software 

projects, a collection of test cases validating a set of software program behaviors started 

to act as an implicit specification of this program. Such specification is sometimes 

informally called Specification by Example, whereas a collection of test cases is 

commonly known as a test suite. 

A narrower term is ‘oracle’, which denotes a part of specification that captures 

acceptable output. Within the test suite, oracles take the form of assertions, which 

compare actual output to the expected at the end of test cases. In the context of 

automated repair, one may draw a distinction between bug oracles and regression 
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oracles: the former serve to reveal an incorrect behavior, while the latter are required to 

preserve the existing correct behavior and guard against introducing new regressions. 

To skip ahead, most of the existing test-suite based fault localization and automated 

repair techniques operate on the more coarse-grained test case level rather than 

individual assertion level; in the role of bug oracles are failing test cases, while the 

passing test cases serve as regression oracles. Based on the above, the problem of test-

suite based automated repair can thus be roughly formulated as follows: „given a 

program and its test suite with at least one failing test case, create a patch that makes the 

whole test suite passing“ [14]. Note that this definition does not tell anything about 

actual correctness of the produced patch as it is perceived by experienced developer. 

The only measure of patch plausibility is test-adequacy; therefore, availability of highly 

effective test suite is a key precondition for performing automatic repair attempt. 

Automated repair techniques heavily rely on accurate fault localization. 

Identifying the precise location where a fault occurred is crucial to repairing the fault. 

Many fault localization techniques have been developed during recent years; according 

to the survey made by Wong et al. [15], all of them can be classified into 8 distinct 

categories. The most prominent of them is the spectrum-based category, contributing to 

the largest fraction of recently published papers. This is a group of relatively simple 

methods united by the same basic idea. A test suite with at least one failing test case 

which exposes a bug is executed against a program. The statistics on the number of 

failed and passed test cases for each program unit (most commonly, a statement), as 

well as total number of failed and passed tests, is collected during test execution. For 

every unit, a suspiciousness score indicating the degree to which execution pattern of 

the unit is related to the failure pattern is then calculated using heuristics. The units are 

then ranked according to the suspiciousness level – the higher priority for repair is given 

to the actually faulty statement, the better the result of fault localization is considered. 

Different spectrum-based techniques use different heuristic formulas and the 

effectiveness of those techniques is not equal, as is shown by controlled experiment 

conducted by Assiri and Bieman in 2016 [16]. Another study conducted in 2009 by 

Santelices et al. [17] shows that effectiveness of localizing various kinds of faults is 

closely related to concrete coverage type – statement, branch, or du-pairs, – used in each 

case to calculate suspiciousness rank and no single type of coverage performs 

universally well for all types of faults.  
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The next logical step after identifying a faulty statement or block is to attempt to 

replace it with the correct one. A number of various generic methods have been 

proposed recently, most notably relying on generate-and-validate technique. Statement 

with the highest suspiciousness rank is taken from the queue and a random mutation 

operator, optionally, parameterized with context information taken from elsewhere in 

the program, is applied to this statement, thus producing a new version of the program. 

Modified statement is called a candidate patch. This patch is validated against all test 

cases in the available test suite. Failure of at least one test leads to abandoning patch 

under validation and generating a new one. If no suitable patches are found, the process 

is repeated with the next most suspicious statement. The procedure terminates if a 

validated patch is found or if predefined time limit is exceeded. 

A variation of this technique, called GenProg [18], was proposed in late 2000s as 

a general method for fixing software defects. Its main novelty is that it relies on genetic 

algorithm for finding a suitable patch. At the beginning of each generation a set of 

random candidate patches represented as the ordered list of abstract syntax tree edits is 

produced via mutation. A fitness function (defined as weighted average of passing and 

failing test cases) is then applied to select the best parent individuals from the set. Next, 

a crossover operation is applied pairwise on the chosen parents, so that a set of edits 

corresponding to the second parent is appended to the first parent’s set, and then each 

element is removed with probability ½. The resulting offspring individuals together 

with parents are mutated again and each candidate patch is evaluated against the whole 

test suite. If no valid candidate patch is found, the generation cycle is repeated, with the 

result of previous iteration serving as incoming population. As usual, the procedure is 

over when a validated patch is found or the resources are exhausted. 

Despite still being generally considered a state-of-the-art approach, the 

effectiveness of GenProg remains controversial. Although the results reported by the 

authors of GenProg are very promising – in a study conducted in 2012 by Le Goues et 

al [19] it is claimed that 55 out of 105 bugs were fixed by their system – the later study 

by Qi et al [20] shows that most of the produced patches are incorrect. Qi et al theorize 

that in many cases the results could have been better if the search space, in principle, 

contained successful patches (which in case of GenProg are synthesized from existing 

source code taken elsewhere from the program) or the space itself was narrower. They 

also blame weak test suites as a major impediment to generating acceptable patches. 
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Another study conducted by Smith et al. in 2015 [21] confirms that the quality of the 

produced patches largely depends on the coverage of the repair test suite. Weak test 

suite used as an input for patch generation leads to producing a fix that passes all 

available tests, but fails to generalize and is therefore functionally incorrect. They call 

such phenomenon ‘overfitting’, drawing analogies with similar problem frequently 

occurring in machine learning. 

Analysis of the existing body of knowledge concerning application of GenProg 

shows that at the time of writing this document (Autumn 2017), presumably, none of 

the previous studies have considered using this method in the specific domain of the 

automated repair of regression faults, although some of the authors make assumptions 

that a history of program modifications might be utilized for improving accuracy of the 

results. For example, of great interest is the article of Martinez et al [22] in which they 

claim that „as many as 52% of commits are composed entirely of previously existing 

tokens“. Given the earlier discussed context of continuous integration environment, 

where differences between two consecutive program versions are relatively small 

compared to the total codebase size and regressions are detected promptly, one may 

hypothesize that reducing GenProg’s fault space to contain only a minimal set of 

failure-inducing changes represented on a fine-grained level may substantially improve 

the overall efficiency of the method. Combined with adaptation of fix ingredient 

selection strategy in order to explore the search space containing relevant ingredients 

from both program versions (reference program and buggy program), this gives better 

prospects for ability of GenProg to synthesize a correct patch – which is indirectly 

supported by findings of Martinez et al [22].  

To conclude this section, we should mention that actual adaptations of GenProg 

implementation are out of scope of this work due to time considerations. However, the 

improved method of localizing regression faults developed in this thesis can serve as 

solid foundation for proposed GenProg modifications and contribute to developing 

alternative methods targeted specifically at automatic fixing of regressions. As we 

concentrate our efforts on finding a solution for programs written in Java language, it is 

also worth noting here that there already exists a publicly available open source 

reference implementation of GenProg in Java, called Astor [23] 

(https://github.com/SpoonLabs/astor), so the results of this work can be directly 

applicable for its further development. 

https://github.com/SpoonLabs/astor
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1.2. Existing approaches for localizing regressions 

Speaking of possible solutions to the formulated problem – localization of 

regression faults using two program versions – studying the existing literature on the 

topic revealed two principally different methodologies: DARWIN (Dawey Qi et al [2]) 

and delta debugging (Zeller [1]). 

DARWIN is a method developed in 2009 by a group of researchers from National 

University of Singapore. Essentially, it is a combination of enhanced version of 

symbolic execution called concolic execution and constraint solving. Its main idea is to 

generate an alternative input t' for a buggy program P' which would satisfy the 

following rules: 

 In reference program P, input t' is following the same execution path as given 

input t that passes for program P, but fails for buggy program P'; 

 In buggy program P', input t' and given input t follow different execution 

paths [2]. 

The differences of traces obtained by executing P' with both input t and t' are then 

compared and observed distinction is translated into the cause of failure. 

According to the evaluation conducted by authors of the method, DARWIN has a 

number of significant strengths, compared to delta debugging: 

 Ability to discover so-called unmasking regressions. Those are types of 

defects that existed already in version P, but were unhidden by the changes 

expressed as difference between P and P'. Zeller’s delta debugging, by design, 

is not capable to reveal such defects, because in this scenario the actual faulty 

statement is not contained within the set of changed statements. 

 Ability to tolerate large amount of changes between reference and buggy 

program. Contrary to this, Zeller’s method works well only with relatively 

small amount of modifications. However, it is not a substantial impediment for 

us, given the circumstance that we intend to use our developed method in a 

scenario that presumes close similarity of the two versions. 

Nonetheless, the above mentioned strengths of DARWIN are outweighed by its 

weaknesses: 
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 Method is not suited well for localizing faults which are not triggered by 

changes in control flow of the program. In particular, it means that regression 

defects that are caused by wrong assignments can generally not be diagnosed 

by this approach. To overcome this problem, authors utilize instrumentation of 

the program with predicates in order to artificially create branch conditions 

and alter control flow, but they admit that: (1) there remains an uncertainty 

about applicability of this solution to all possible cases, (2) the instrumentation 

negatively affects the performance (overhead is ~20%). 

 Since DARWIN is grounded on the SMT solving, its scalability largely 

depends on that of SMT solvers. Also, path condition size grows exponentially 

with the size of the program – a phenomenon known as ‘path explosion’ takes 

place [24]. Although authors claim that they were able to successfully tackle 

this issue using heuristics and evaluated their method with several real-world 

examples, the number of these examples is too small to generalize results. In 

the absence of other controlled experiment studies, we consider this drawback 

too serious to employ this method for our purposes. 

Taking into account these considerations, the selection of delta debugging 

approach as a ground for experiments appears to be more promising for the purpose of 

solving the stated problem. Let us have a detailed look at how this technique works. 

1.3. Delta debugging 

1.3.1. Operating principle 

Delta debugging is a powerful technique which allows to automatically isolate a 

cause of failure. Multiple typical applications of this algorithm exist, such as narrowing 

down the failure-inducing program input or even failure-inducing sequence of user 

interactions (Zeller [25]) (which may be viewed as a variation of the former case), but in 

its most classical form it operates on the changes to the program code. Its basic idea is 

to obtain a difference between reference and faulty version of the program, in a form of 

independent chunks serving as units of change (‘deltas’), and perform systematic testing 

of selected subsets of changes until a minimal failure-inducing change set is found. In 

order to determine the outcome of each trial, a regression test (RT) capturing a fault of 

current interest, is used as a bug oracle. A trial consists of four distinct phases (which 

closely resemble standard Four-Phase testing pattern [26]): 
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- Setup. A subset of delta chunks is applied to the reference program version; 

the constructed version is recompiled.  

- Exercise. A RT is executed against the new version and outcome is captured.  

- Teardown. A working area is restored; all modifications to the reference 

version are undone.  

- Verify. An outcome of the RT is evaluated and, depending on the result, a 

delta debugging algorithm follows one or another execution path.  

The process stops when there is detected a change set that satisfies the following 

condition: removing of any individual change from this set and applying such reduced 

set to the baseline will cause the RT to not fail anymore. In this case, we say that a 

regression fault is localized. 

From the description provided above, it is not clearly understood, how many 

combinations of changes is supposed to be tested in order to achieve the stated goal. 

The naïve approach to solving this challenge through a brute force method is to test all 

2n possible combinations, which renders inadequate any attempt to apply such 

automated debugging procedure to a real-size problem. The optimizations proposed by 

Zeller in his paper [1], which serve as a basis for his optimized version of delta 

debugging algorithm called dd+, allow to substantially reduce the number of 

combinations to be tested and thus devise a much more effective way of delta 

debugging. At the ground of enhanced technique lies the observation that proper 

decomposition of difference descriptor into delta chunks allows for making informed 

assumptions regarding the possibility that particular selected subset of chunks contains a 

minimal failure-inducing set. The subsets themselves are not chosen arbitrarily, but 

rather according to the certain pattern that takes into account the intermediate results 

obtained at the previous stages of the algorithm execution. On each step, algorithm 

evaluates the current subset and, depending on the outcome, gradually reduces the size 

of the search space, until no further reduction is possible. At this point, the search space 

contains the minimal set we are looking for, and the algorithm ends. 

The next logical question is how exactly a solid representation of difference 

between two program versions could be split in order to be suitable for conducting an 

optimized search? What properties should the delta chunks satisfy? 
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Before proceeding to the listing of properties and explanation of the algorithm 

itself, we should provide some definitions to facilitate the understanding. The following 

is a succinct digest of the information provided in the Sections 2 and 3 of the original 

paper [1] combined with some additional clarification: 

 Configuration. Given that  𝐶 = {Δ1, Δ2, … , Δ𝑛} is the set of all possible 

chunks Δ𝑖 , a subset 𝑐 ⊆  𝐶 is called a configuration. Configurations are to be 

applied to the reference program version. 

 Baseline. An empty configuration (i.e. such that 𝑐 =  ∅) is called a baseline. 

Baseline applied to the reference program version is the reference version 

itself. 

 Testing function is a function defined in the form 2𝑐 → {✘,✔, ? }, where C is 

the set of all possible changes and {✘,✔, ? } are the encoded test outcomes. (

✘, or FAIL) stands for the outcome when a test failed in the same way as in 

the faulty program version; (✔, or PASS) means that test passed successfully, 

and ( ?, or UNRESOLVED) corresponds to the situation when test resulted in 

an indeterminate result (such as compilation failure or it produced a failure 

different to the original one). A testing function is to be applicable to any 

configuration 𝑐 ∈ 2𝑐. We will refer to this function later in this work by an 

identifier test. 

 Failure-inducing change set is a set 𝑐 ⊆  𝐶 that satisfies the 

following: ∀𝑐′(𝑐 ⊆ 𝑐′ ⊆ 𝐶 → 𝑡𝑒𝑠𝑡(𝑐′) ≠✔). In other words, applying any 

superset of a failure-inducing change set leads to a non-successful test 

outcome (either FAIL or UNRESOLVED). 

 Minimal failure-inducing change set is a set 𝐵 ⊆ 𝐶 , for which the following 

holds: ∀𝑐 ⊂ 𝐵(𝑡𝑒𝑠𝑡(𝑐) ≠✘). In other words, applying any proper subset of a 

minimal failure-inducing change set leads to a non-failing test outcome.  

According to the provided definitions, preconditions regarding a reference and a 

faulty program version to be used as an input for delta debugging could be formulated 

in the following way: 𝑡𝑒𝑠𝑡(∅) =✔ and 𝑡𝑒𝑠𝑡(𝐶) =✘. 

When decomposing a differential descriptor into chunks, the following properties 

must be fulfilled by the resulting complete configuration 𝐶 (consisting of all changes): 
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- Monotony. If applying some subset of changes leads to a failing test outcome, 

applying any configuration that includes this subset will lead to a non-

successful test outcome (FAIL or UNRESOLVED). Using a definition given 

above, in case of monotone complete configuration, any superset of a failure-

inducing change set is also failure-inducing. More formally: 

∀𝑐 ⊆ 𝐶 (𝑡𝑒𝑠𝑡(𝑐) =✘ → ∀c′ ⊇ 𝑐 (𝑡𝑒𝑠𝑡(𝑐′) ≠✔)) 

This works the other way around as well. If applying some subset of changes 

leads to a successful test outcome, applying any configuration that is a subset 

of the given subset will lead to a non-failing test outcome. Formally: 

∀𝑐 ⊆ 𝐶 (𝑡𝑒𝑠𝑡(𝑐) =✔ → ∀c′ ⊆ 𝑐 (𝑡𝑒𝑠𝑡(𝑐′) ≠✘)) 

In practice, this property allows us to narrow down the search space. 

- Unambiguity. We assume that only one change set causes a failure and not 

several disjoint change sets independently. Formally: 

∀𝑐1, 𝑐2 ⊆ 𝐶 (𝑡𝑒𝑠𝑡(𝑐1) =✘ ∧ test(c2) =✘ → 𝑡𝑒𝑠𝑡(𝑐1 ∩ 𝑐2) ≠✔) 

In practice, this means that once a failure-inducing change set is found, there 

is no need to search the complement for other failure-inducing sets. 

Another property which is not strictly mandatory, but is highly desirable, is 

consistency. Consistency means that within a given complete configuration, any 

randomly combined configuration produces a deterministic test result: 

∀𝑐 ⊆ 𝐶 (𝑡𝑒𝑠𝑡(𝑐) ≠ ? ) 

Failing to fulfil this property leads to considerable decrease of algorithm efficiency, as 

will be discussed below. 

1.3.2. dd+ algorithm 

To begin with, Figure 1 displays the formal definition of Zeller’s delta debugging 

algorithm dd+: 
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Figure 1. A. Zeller’s delta debugging algorithm dd+ [1] 

For any smaller case of dd3, a recursion invariant 𝑡𝑒𝑠𝑡(𝑟) ≠✘ ∧ 𝑡𝑒𝑠𝑡(𝑐 ∪ 𝑟) ≠✔ ∧

𝑛 ≤ |𝑐| holds. 

We will omit non-essential details for the sake of brevity and outline only main 

ideas necessary for understanding the subsequent material. 

Dd+ is, by definition, a recursive divide-and-conquer algorithm. The base case of 

the recursion is reached when the current configuration consists of only a single element 

(“found” case), or when there are no further recursion steps possible and the currently 

processed configuration becomes the only candidate for being the failure-inducing one 

(“nothing left” case). Otherwise, we start splitting the current configuration into 𝑛 

subsets 𝑐1, … , 𝑐𝑛 (initially, 𝑛 = 2) and test each subset and its complement separately. 

The most useful case here is “found in 𝑐𝑖”, since it allows to immediately reduce the 

search space to a proper subset 𝑐𝑖 of a current configuration. “Interference” denotes a 

situation when testing both subset and its complement separately produces in each case 

a positive test result, so this indicates that a failure is caused by a combination of some 

changes from both subsets. “Preference” case happens when testing a subset produced 

an indeterminate result, but the complement of this subset passed the test; we assume 

that the first subset contains failure-inducing changes (possibly in combination with 

some changes from the complement subset – that is why it remains applied in the 

subsequent invocations). Finally, if no other choices are possible, we increase the 

granularity of search by splitting the current configuration into [twice] more subsets 
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(“try again” case), in the hope that it will raise the chances of getting a consistent 

configuration.  

One final remark before we move on to the concrete example is that through the 

recursive calls certain “safe” changes may remain applied; those changes are denoted by 

a literal 𝑟. 

Let us now have a look at the example demonstrating the mechanics of dd+. 

Consider the Table 1, where every line represents a configuration. ‘⨀’ stands for a 

change that is included in the configuration, and ‘.’ (a dot) represents an excluded 

change. In the analyzed example, a combination of changes ∆4 and ∆5 is a minimal 

failure-inducing change set, and ∆5 depends on ∆4 (i.e. it cannot be applied without 

applying ∆4). Cells with a light-green background correspond to the changes that remain 

applied in the current trial. 

Step 𝒄𝒊 ∆𝟏 ∆𝟐 ∆𝟑 ∆𝟒 ∆𝟓 ∆𝟔 ∆𝟕 ∆𝟖 test Progress 

1 𝑐1 ⨀ ⨀ ⨀ ⨀ . . . . ✔  

2 𝑐2 . . . . ⨀ ⨀ ⨀ ⨀ ?  prefer 𝑐2 

Decision: “preference” 

3 𝑐1 ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ . . ✘  𝑐1 fails 

4 𝑐2 ⨀ ⨀ ⨀ ⨀ . . ⨀ ⨀ ✔  

Decision: “found in 𝑐𝑖” 

5 𝑐1 ⨀ ⨀ ⨀ ⨀ ⨀ . . . ✘  ∆5 found 

6 𝑐2 ⨀ ⨀ ⨀ ⨀ . ⨀ . . ✔  

Decision: “preference” – search the other half now 

7 𝑐1 ⨀ ⨀ . . ⨀ ⨀ ⨀ ⨀ ?  

8 𝑐2 . . ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ✘  𝑐2 fails 

Decision: “found in 𝑐𝑖” 

9 𝑐1 . . ⨀ . ⨀ ⨀ ⨀ ⨀ ?  

10 𝑐2 . . . ⨀ ⨀ ⨀ ⨀ ⨀ ✘  ∆4 found 

Result: {∆𝟒, ∆𝟓}. 

Table 1. Example of searching for a minimal failure-inducing change set using dd+ 
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As shown, it took only 10 trials to find a set of changes causing a failure for a 

configuration consisting of 8 changes (compare with 28 = 256 trials required in a brute-

force approach!). Now let us show a more complex example (see Table 2 and Table 3), 

where more than two changes (∆2,  ∆5,  ∆7) imply each other and are at the same time 

failure-inducing. 

Step 𝒄𝒊 ∆𝟏 ∆𝟐 ∆𝟑 ∆𝟒 ∆𝟓 ∆𝟔 ∆𝟕 ∆𝟖 test Progress 

1 𝑐1 ⨀ ⨀ ⨀ ⨀ . . . . ?  

2 𝑐2 . . . . ⨀ ⨀ ⨀ ⨀ ?  split again 

Decision: “try again”, n = 4, |𝑐′| = 8 

3 𝑐1 ⨀ ⨀ . . . . . . ?  

4 𝑐2 . . ⨀ ⨀ . . . . ✔  

5 𝑐3 . . . . ⨀ ⨀ . . ?  

6 𝑐4 . . . . . . ⨀ ⨀ ?  

7 𝑐1̅ . . ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ?  

8 𝑐2̅ ⨀ ⨀ . . ⨀ ⨀ ⨀ ⨀ ✘  

9 𝑐3̅ ⨀ ⨀ ⨀ ⨀ . . ⨀ ⨀ ?  

10 𝑐4̅ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ . . ?  split again 

Decision: “try again”, n = 6, |𝑐′| = 6 

11 𝑐1 ⨀ . ⨀ ⨀ . . . . ✔  

12 𝑐2 . ⨀ ⨀ ⨀ . . . . ?  

13 𝑐3 . . ⨀ ⨀ ⨀ . . . ?  

14 𝑐4 . . ⨀ ⨀ . ⨀ . . ✔  

15 𝑐5 . . ⨀ ⨀ . . ⨀ . ?  

16 𝑐6 . . ⨀ ⨀ . . . ⨀ ✔  

17 𝑐1̅ . ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ✘  

18 𝑐2̅ ⨀ . ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ?  

… to be continued on the next page 

Table 2. More complex example of dd+ usage, involving increase of granularity 
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Step 𝒄𝒊 ∆𝟏 ∆𝟐 ∆𝟑 ∆𝟒 ∆𝟓 ∆𝟔 ∆𝟕 ∆𝟖 test Progress 

19 𝑐3̅ ⨀ ⨀ ⨀ ⨀ . ⨀ ⨀ ⨀ ?  

20 𝑐4̅ ⨀ ⨀ ⨀ ⨀ ⨀ . ⨀ ⨀ ✘  

21 𝑐5̅ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ . ⨀ ?  

22 𝑐6̅ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ . ✘  nothing 

left Result: {∆𝟐, ∆𝟓, ∆𝟕} – mutual intersection of failed complements 𝑐1̅, 𝑐4̅, 𝑐6̅. 

) Table 3. More complex example of dd+ usage, involving increase of granularity (continued) 

To summarize, in theory, behavior of dd+ is tolerable even in presence of fair 

amount of inconsistency. Still, compared to the case when configuration is completely 

consistent, the negative impact of inconsistency on performance turns out to be 

significant.  

1.3.3. Inconsistent configurations and their influence on efficiency 

In the ideal case, when failure is caused by only a single change and each set of 

arbitrarily taken chunks forms a consistent configuration, the complexity of the 

algorithm is logarithmic. If there are multiple changes constituting a minimal failure-

inducing change set, the complexity degrades down to linear – consider the extreme 

case when each pair of testable subsets causes interference, because every single change 

in the complete configuration is failure-inducing, and only a combination of all of them 

forms a minimal change set responsible for regression. 

Things change when inconsistency comes into play, which is very common in 

practice. Indeed, given the sufficiently large subset of ordinary text chunks representing 

the modification done between two program versions, the possibility that, when 

applying it to a reference version, the resulting code will be compilable is not very high. 

Of course, as was shown, handling the inconsistency is the integral part of dd+ and 

proposed tactics of coping with it (see cases “preference” and “try again” of the formal 

definition) will eventually lead to the correct result. Splitting to more subsets of the 

smaller size works reasonably well, since it leads to less difference between known 

consistent configuration (either baseline or complete) and a current configuration under 

test, hence the chances of successful compilation are higher. However, with more 

subsets, more trials have to be performed, and as we know, each trial is relatively 

expensive, because it involves compilation. Furthermore, despite that Zeller claims the 

worst-case complexity of the complete version of his algorithm to be still linear (only 
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“requires twice as many tests” [1]), we argue that, according to the provided definition, 

the time complexity of dd+ due to “try again” maneuver is more likely on the order of 

O(𝑛 ∙ log 𝑛). All this moves us further away from the theoretical examples shown 

earlier in this section and brings us closer to reality, in which proper strategy for 

reducing the degree of inconsistency prior to delta debugging, or avoiding inconsistency 

altogether, becomes essential. 

This problem is acknowledged already in the seminal paper by Zeller [1] and 

some strategies are proposed there for tackling inconsistency. Author specifically 

advises to try grouping mutually related fragments on the basis of certain common 

characteristics – example of this are statements involving definition and usage of the 

same variable. Another suggestion is to try ordering the fragments in a way that will 

allow predicting the outcome of the test without actually conducting it. Both solutions 

imply, to a certain extent, structural analysis of the program and tie the implementation 

to the concrete programming language. The case studies given in the publication display 

a remarkable positive effect of such optimizations; however, the exact methodology 

used to implement them is not explained. Without this knowledge, the usefulness of 

reported results is compromised, because it is extremely difficult to reproduce exactly 

the same preconditions and repeat the experiment with another data set, let alone 

generalize the technique to other real-world examples. 

Upon reading the paper and analyzing the flow of discussion, one circumstance 

immediately attracts attention. Namely, the input on which Zeller’s implementation 

operates, are the ordinary text chunks produced by a text differencing tool. Not only 

does this induce a lot of noise to the obtained diff – since it makes it hardly possible to 

filter out the changes clearly irrelevant to the regression, – but it also jeopardizes the 

precision of fault localization. Even if the result of delta debugging run against such 

input consists of only a single (textual) chunk, this chunk may itself span dozens of 

source code lines, so that browsing it for a particular statement causing a failure still 

requires considerable manual effort. The more correct way seems to perform 

differencing between reference and faulty version on the abstract syntax tree (AST) 

level, so that each chunk was represented by a descriptor of a comparatively small 

modification done to AST node. The operation of applying configuration to the 

reference version can thus be expressed as rolling the selected set of AST node-level 

changes to the reference program’s abstract syntax tree. In addition to the advantages 
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already mentioned, the alleged effect of switching to high-granularity mode is the 

reduction of inconsistency, since the finer-grained modifications shall improve the 

chances of successful compilation. 

Searching through the scientific literature did not reveal any publications 

elaborating on the idea presented. Most probably this is due to the fact that the 

comprehensive libraries for performing tree differencing emerged only recently. 

Specifically, the active development of these tools for Java language began about 10 

years ago; the following chapter will give a brief overview over existing products. At 

the time of Zeller’s first publication on the subject [1], presumably, there were no such 

tools available for any of the other widespread OOP languages.  

To conclude the chapter, we formulate the objective of the current work as 

follows: The goal is to develop an improved method for localizing regression faults, 

which aims to increase the performance and accuracy by utilizing the output of AST 

tree differencing as input for delta debugging. A secondary objective is to evaluate the 

suitability of developed method in the typical scenario of trunk-based development, 

where a regression is introduced by a new commit and is promptly detected by a 

continuous integration tool. Since, unlike textual diff of the source code, complete tree 

differencing solution is not a language-agnostic technique, our implementation is tied to 

the particular programming language, which affects the choice of particular tools. As a 

basis for experiments we choose Java language, because it is the most familiar 

programming language to the author of the thesis.  

The next chapter presents the prototypical implementation of a tool that utilizes 

the proposed approach.  
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2. Methodology 

2.1. Overall workflow 

Figure 2 displays the simplified workflow of our prototypical implementation 

called DDFine. 

 

Figure 2. Overall workflow of DDFine application 
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The minimally required input is a test that executes a regression fault to be 

localized, and two program versions: a reference and a faulty. The whole process 

consists of three phases: initialization, source code differencing, and delta debugging. In 

the first phase, a working directory is prepared and evaluation context initialized. The 

second phase calculates the difference between the source code of a reference and a 

faulty version of the program and produces the set of minimal non-intersecting changes 

that could be applied to the reference version. Finally, in the delta debugging phase, the 

main action takes place – subsets of changes detected at the previous step are 

systematically applied to the reference version, with test re-execution and anticipation 

of the next candidate subset to try (as described in 1.3.1). The process stops when no 

further progress can be made or when a time limit of 60 minutes is exceeded. 

2.2. Requirements and assumptions 

In order to assess the genuinely achievable potential of the presented technique for 

the purposes of incorporating it into CI software, the prototype must simulate the 

characteristics of the final product as closely as possible. Therefore, as a first step of the 

prototype design process we elicit key functional requirements for the system and 

identify the realistic assumptions concerning the nature of the input. For the reading 

convenience and ease of reference, every requirement is given a short ID and data is 

organized in a table format. 

Req. ID Requirement Definition 

REQ.01 Source code differencing must support modifications done both on structural 

level (adding, removing, moving, renaming of files and directories) and on 

the level of a single file. 

REQ.02 On the level of a single file, changes must be identified with preciseness of 

AST tree node. Consequently, if the failure can be attributed to a set of 

changes done on a file level, the result of localization is a minimal set of 

modified AST nodes. 

REQ.03 If the failure is caused by a new or deleted structural unit (file or directory), 

the localization is repeated multiple times with increasing the granularity to 

narrow down to minimally detectable AST node modification(s). 

REQ.04 A mechanism used for source code differencing must produce a set of non-

overlapping changes, since monotony of configuration is a prerequisite for 

conducting delta debugging. 
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REQ.05 Changes produced by the source code differencing mechanism must be in a 

format that allows applying them to the reference version. 

REQ.06 The differencing module must support all types of source code modifications 

that are considered syntactically and semantically correct for the given 

language (Java). 

REQ.07 The system should not differentiate between input test cases that fail in faulty 

version with assertion failure or due to unexpected exception; both kinds of 

faults must be treated uniformly. 

REQ.08 When executing a regression test and verifying results, in case of test failure 

the system must be able to compare error message and stack trace against the 

original message and original stack trace. If during a trial the regression test 

failed for a different reason, the result of the trial must be considered as 

UNRESOLVED. 

REQ.09 It must be possible to configure the maximum time limit for a single run. The 

practically reasonable limit for an automated localization is 60 minutes since 

the regression was detected on CI; after this period the negative cumulative 

effect of impeding the normal merging process arguably outweighs the effort 

spent by a developer to find the cause of the problem. 

REQ.10 In case of terminating an attempt in the middle of delta debugging phase, the 

intermediate results are reported to the user. 

REQ.11 The system must be run in command-line mode. 

REQ.12 The system should not require user interaction of any kind; it must be 

completely autonomous. 

Table 4. Requirements specification of the system 

Certain assumptions are made regarding the input provided to the system, given 

the restrictions imposed by the delta debugging technique itself and the intended usage 

scenario. Here is the list of the assumptions that are not checked by the system and are 

expected to be true when a new execution is triggered: 

 Both reference and faulty version provided as input are compilable. All 

external dependencies required for compilation are provided. 

 Provided the regression test correctly captures the fault to be fixed in the 

faulty version and does not need to be adjusted due to modifications 

introduced between the two versions. It passes successfully in the reference 

version. 

 The regression test exists in both versions and is unchanged between them. 

 There are no changes in external dependencies of the debugged application. 
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 Test outcome is consistently repeatable between invocations. 

 Test failure is not related to the execution environment setup. The necessary 

setup for executing the test is prepared. 

 The provided reference version corresponds to the source code commit which 

is an immediate predecessor of a commit that introduced a regression in the 

given faulty version. The fact that the two versions are consecutive implies the 

relatively low number of source code modifications to evaluate. 

 In a faulty version, there exists only one reason for a failure of the provided 

test case. The failure is caused by a single set of changes and not by multiple 

sets independently. In other words, the complete configuration is 

unambiguous. 

 There can be multiple unrelated regression bugs introduced in the faulty 

version. Provided test case captures the bug to be localized during particular 

execution. 

In addition, some of the requirements not strictly essential for the evaluation are 

relaxed or even dropped altogether in order to save effort and time required for the 

prototype development. The table below shows the adjusted requirements, together with 

summarizing the scope and impact of the appropriate modification. Numeric part of 

identifiers corresponds to the same part of matching original requirement’s identifier. 

Req. ID Difference to original requirement 

pREQ.01 Changes related to moving and renaming of files and directories are not 

identified as such by the prototype; they are reflected simply as additions 

and deletions of structural units. This impacts potentially achievable 

performance,    because it makes impossible to apply those ‘harmless’ 

changes to the reference version in advance (as a kind of pre-optimization 

step).  

pREQ.04 It is not completely verified whether a differencing mechanism to be used 

produces strictly disjoint set of changes in all the cases. The accuracy of the 

result might be compromised to a certain degree. 

pREQ.05 For the prototype, it is enough that ~50% of all detected changes could be 

applied. 

Table 5. Relaxed requirements for the prototypical implementation 

Requirement REQ.03 is dropped for the prototype. As a consequence, in some 

cases the fault might be localized with the granularity of a structural unit, and not an 

AST node. 
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Since source code differencing mechanism is one of the central parts of the 

designed system, the justification of a choice of the proper tool that satisfies the related 

requirements deserves closer attention. We skip the details concerning the detection of 

changes on the structural level (files and directories) since it is a trivial programming 

task and does not need further explanation, and move straight to the more engaging 

aspect: the internals of the method used to identify fine-grained changes on the single-

file level. 

2.3. Selection of a tree differencing algorithm 

2.3.1. Abstract syntax trees and AST differencing 

Abstract syntax trees are a common form of representing structure of computer 

programs. In computer science literature, they are often contrasted with concrete syntax 

trees, otherwise called parse trees. The difference between the two is that parse tree 

reflects the exact syntactic structure of a program written in a language according to its 

context-free grammar [27], whether abstract syntax tree enables a more succinct view 

on the structure, in a way that simplifies conducting program analysis and perform 

program transformation [28]. Probably the most well-known application of abstract 

syntax trees is compilers; however, it is not the way of usage we are mainly interested in 

for the purpose of this work. 

Abstract syntax tree differencing, or AST differencing, is a compelling idea that 

began to evolve in the early 2000s. As the name implies, it is a procedure that computes 

the difference between ASTs of two versions of the same program. Output produced by 

this procedure is commonly called an edit script; in essence, it is a sequence of edit 

actions made to the first AST in order to obtain the second one. The eventual goal is to 

reflect the actual change made by developer as clearly as possible; therefore, the 

existing tree differencing realizations strive to find a minimal edit script. Unlike its 

textual counterpart, most notably represented by Myers algorithm [29], tree differencing 

works at a considerably higher level of granularity than a whole text line and is able to 

deal not only with insert and delete edit actions, but also with updates and moves. The 

latter makes AST differencing irreplaceable for analyzing just source code changes, 

since refactorings involving moving of statements naturally occur in the course of 

software evolution. Besides, being inherently a structure-centric method, tree 
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differencing effectively dismisses mere formatting changes and thus serves as a first 

filter for retaining the potentially regression-relevant changes only. 

There exist several competing algorithms for performing AST differencing. They 

vary in details, but share a common working principle. First, they traverse both trees to 

identify matching pairs of parent nodes, with the restriction that each node may be 

included into only one pair. Additionally, the nodes are considered as matching based 

on their labels. On the second step, the actual generation of edit script takes place, based 

on the mappings determined at previous step. For this part, there are already developed 

optimal algorithms of complexity O(𝑛2) (see, for example, the work by Chawathe et al. 

[30]), so that ongoing research concentrates on finding the optimized solution for the 

first problem. 

It turns out that even if considering only three types of edit actions – insertions, 

deletions and updates, – the best exact algorithm for computing mappings between 

ASTs has cubic complexity, as proven by Pawlik et al. [31]. Addition of the fourth 

operation – move – makes the problem NP-hard. In practice, tree differencing 

algorithms resort to heuristics to tackle excessive complexity. The optimizations can be 

targeted at particular edit action type, such as move-actions thoroughly surveyed by 

Dotzler et al. in 2016 [32], or be generic. The recent articles on the topic mention only 

three general-purpose AST differencing algorithms which have a significant impact: 

GumTree, ChangeDistiller, and RTED.  

2.3.2. Comparison of available tree differencing tools 

Detailed evaluation of above mentioned state-of-the-art algorithms is clearly out 

of scope of this work, so in order to justify the selection of concrete tool to build the 

prototype on, it is reasonable to rely on the lately published comparative articles on the 

matter. Among the articles that appeared within the last 5 years, the best cited paper that 

presents the results of empirical evaluation of the most promising tree differencing 

techniques is “Fine-grained and accurate source code differencing” by Falleri et al. 

(2014) [33]. Although the reported research findings cannot be considered absolutely 

trustworthy – the authors of the paper conduct the comparison in the context of 

evaluating their own developed technique (GumTree), – the described experiment setup 

and public availability of research dataset convincingly demonstrate the effort applied to 

provide the unbiased information. Based on experimental findings by Falleri et al, at 

least one technique can be ruled out from further consideration immediately: RTED. 
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Compared to other two, this algorithm has too high time and space complexity and is 

not practically applicable to real data. Additionally, it is not able to identify move-

actions, which is a crucial drawback for our target scenario. 

This leaves us with two choices: GumTree or ChangeDistiller. Both algorithms 

have reference implementations available in public domain (see [34] and [35], 

correspondingly), and both have an integrated AST parser for Java language. In the 

above-referred study, the authors show the evidence of superiority of GumTree over 

ChangeDistiller, in terms of performance and edit script size. In spite of this, there is 

another factor that becomes definitive when deciding between two differencing 

implementations to be used in the designed fault localization tool: the degree to which it 

satisfies the requirements REQ.04, REQ.05, REQ.06. As stated before, requirements 

REQ.04 and REQ.05 have less strict versions pREQ.04 and pREQ.05 devised 

specifically for building the prototype; on the other hand, requirement REQ.06 is 

absolutely essential both for the final product and the prototype. As for REQ.05, data 

structure describing the single modification done to AST node must contain all the 

necessary information to “replay” the arbitrary set of changes on the original AST. 

Likewise, data structure representing the abstract syntax tree extracted by parser should 

support operation of applying given set of changes. 

Surprisingly, neither GumTree’s nor ChangeDistiller’s APIs were designed with 

out-of-the-box support of rolling up selected modifications to original tree in mind. As 

of autumn 2017, available reference implementation of ChangeDistiller uses internally a 

standalone version of Eclipse compiler called ECJ, which contains an AST parser 

module that provides only a read-only view on the tree. Contrary to this, GumTree’s 

implementation for Java utilizes standard Eclipse JDT compiler which allows 

manipulating the tree [36], but ties its users to Eclipse platform and is thus intended for 

development of Eclipse plug-ins, and not standalone applications. Even worse, in both 

GumTree and ChangeDistiller implementations, the data structures used as descriptors 

of detected AST node changes are purely representational, in the sense that they do not 

hold a reference to the instance of modified node itself or its parent node. What they are 

is an abstract representation of a change that contains sufficient information for a 

developer to visually identify the proper place in the code, but not enough to apply the 

change to the tree directly and trigger recompilation. 



38 

 

Searching for a way to quickly overcome this impediment for the prototyping 

purposes leads to a solution in which the subject of manipulation during delta 

debugging phase is, again, source code of the reference program version. Figure 3 

shows the descriptor (class SourceCodeChange) of a fine-grained change detected by 

ChangeDistiller, together with some of the related classes. 

 

Figure 3. ChangeDistiller’s modification descriptor and related entities 

As is seen from the class diagram above, class SourceCodeChange references through 

a composition relationship class SourceRange, which stores start and end position of a 

changed entity and its parent in the source document. Furthermore, the changes are 

classified according to taxonomy, with each change type being assigned a significance 

level – exactly as explained in an article by Fluri et al [37]. In total, ChangeDistiller 

distinguishes between 48 types of changes (defined as constants in ChangeType 

enumeration, not shown on the diagram). Compared to this, the descriptor of GumTree 

does not provide any reference to the location of the change in the source code 

document. Given the other restrictions described earlier and the roughly estimated effort 

of adapting GumTree to satisfy the requirements, it was decided to exclude it from the 

further consideration. 

2.4. DDFine: A prototypical implementation 

This section presents a prototype DDFine created as a practical part of the thesis. 

The source code of the prototype is publicly hosted on GitHub and is accessible via 

URL http://bit.ly/2zCnTZe. 

http://bit.ly/2zCnTZe
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The prototype implements the workflow described in 2.1. It is written in Java 8 

and leverages the Spring Framework ver. 4.3.11 as an IoC container and a provider of 

core application services. For smooth dependency management and easy configuration, 

Spring Boot 1.5.7 is used. The project is built with Maven; instructions on how to set up 

the project locally and run the example can be found on this page: http://bit.ly/2AagbT8. 

Application is launched from the command line (REQ.11) and does not require user 

interaction (REQ.12).  

As a part of Spring application context startup, an initialization of evaluation 

context for the current execution takes place. To minimize performance overhead, 

almost no specific validation of the input, besides basic checking for presence of 

mandatory arguments, is done at this stage; it is expected that all the assumptions listed 

in 2.2 hold. The sequence of the actions taken during initialization phase can be 

summarized as follows: 

1. Using paths to project root of reference and faulty version, build in-memory 

representations of both projects’ structure. The prototype works with Maven 

projects only and expects that they follow standard hierarchical layout for 

multi-module Maven projects. 

2. Prepare working directory for conducting a delta debugging session. 

Reference version is copied over to the temporary directory and compilation is 

triggered via Maven Invoker plugin. Like in the previous step, an in-memory 

representation of the project’s clone in the working directory is created and 

stored in the evaluation context for the future reference. 

3. Using a test method given as input, obtain the original stack trace of the 

failure. The faulty version is compiled and a test is executed; the result 

(instance of Throwable) is stored in the evaluation context in order to 

perform later the exact comparison, as described in REQ.08.  

4. Finally initialize a statistics tracker, which is used to gather various metrics 

during particular execution. The tracked metrics and a method used to collect 

them will be explained in Chapter 3 (Evaluation).  

The source code differencing phase begins with comparing reference and faulty 

project hierarchies to determine possible structural changes. Only changed directories 

and .java files are considered. Consistent with requirement pREQ.01, moving and 

renaming of structural entities is not fully supported by the prototype. Instead, all 

http://bit.ly/2AagbT8
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structural changes are initially classified into 5 groups: added files, removed files, added 

directories, removed directories, and modified files. The first four types are represented 

by data structure MinimalStructuralChange, which is one kind of chunks serving 

as input to delta debugging function. Modified files are run through ChangeDistiller 

(REQ.02, REQ.06); the detected fine-grained changes are represented by instances of 

MinimalChangeInFile – another kind of chunk for delta debugging. No exact 

validation for monotony is performed (pREQ.04). However, as a tiny pre-optimization 

step, certain types of insignificant changes that cannot possibly contribute to regression 

and are not required for compilation are filtered out at this point. Such changes are, for 

example, changes in ordinary comments and Javadoc comments. 

The central part of the whole solution is, of course, a delta debugging phase. 

Searching the Internet for available open-source implementations of delta debugging 

algorithm brought up several competing realizations in Java, but upon closer 

investigation none of them deemed to be compliant with dd+ definition given in 1.3.2. 

Ultimately, the JAR library containing the seemingly proper implementation of dd+ 

(confirmed by decompiling the library) was found in an archive containing the sources 

for Eclipse plugin called DDState: https://www.st.cs.uni-

saarland.de/eclipse/ddstate_sources.zip. The .jar file is extracted and included in /lib 

folder of prototype sources (ddcore.jar). 

As recalled from Section 1.3.1, each delta debugging trial starts with applying 

selected subset of chunks to the reference version stored in working directory. Section 

2.3.2 explains why direct manipulation of reference version AST is too difficult at the 

moment, and why, as a workaround, it was decided to apply modifications to the source 

code of the reference version instead. To meet the requirement pREQ.05, a preliminary 

support of 25 types of changes was implemented (out of 48 detectable by 

ChangeDistiller). The types of changes, for which modification operators were created, 

are selected on the basis of estimated frequency of occurrence in the real projects and 

ease of implementation. Here is a table of changes supported by DDFine: 

Group Change type Significance 

level INSERT STATEMENT_INSERT LOW 

REMOVING_CLASS_DERIVABILITY CRUCIAL 

https://www.st.cs.uni-saarland.de/eclipse/ddstate_sources.zip
https://www.st.cs.uni-saarland.de/eclipse/ddstate_sources.zip
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REMOVING_METHOD_OVERRIDABILITY CRUCIAL 

REMOVING_ATTRIBUTE_MODIFIABILITY HIGH 

INCREASING_ACCESSIBILITY_CHANGE MEDIUM 

DECREASING_ACCESSIBILITY_CHANGE HIGH 

ADDITIONAL_FUNCTIONALITY LOW 

ADDITIONAL_OBJECT_STATE LOW 

ADDITIONAL_CLASS LOW 

PARAMETER_INSERT HIGH 

PARENT_INTERFACE_INSERT CRUCIAL 

UPDATE STATEMENT_UPDATE LOW 

INCREASING_ACCESSIBILITY_CHANGE MEDIUM 

DECREASING_ACCESSIBILITY_CHANGE HIGH 

PARAMETER_RENAMING MEDIUM 

PARAMETER_TYPE_CHANGE HIGH 

METHOD_RENAMING MEDIUM 

CONDITION_EXPRESSION_CHANGE MEDIUM 

ATTRIBUTE_TYPE_CHANGE HIGH 

RETURN_TYPE_CHANGE HIGH 

DELETE REMOVED_FUNCTIONALITY HIGH 

STATEMENT_DELETE MEDIUM 

ALTERNATIVE_PART_DELETE MEDIUM 

REMOVED_OBJECT_STATE HIGH 

PARAMETER_DELETE HIGH 

Table 6. Modification operators supported by DDFine 

Due to high complexity and limited time available, no modification operators for move-

related changes were created for the prototype. Minor adaptations were made to 

ChangeDistiller to allow for preserving information about positions of inserted nodes. 
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The next step is to compile the resulting code in the working directory and 

execute a regression test. Since a full build was already performed during initialization 

phase, the subsequent builds are done incrementally. Again, a Maven Invoker plugin is 

used to do so. Method execute() of interface 

org.apache.maven.shared.invoker.Invoker returns a result of invocation that 

contains an exit code. A non-zero value indicates build failure, so that the result of the 

trial can be immediately marked as UNRESOLVED. Otherwise, the trial proceeds to 

test execution. 

To execute a failing test case, a JUnit API class JUnit4TestAdapter is used. 

Both the definition of a test class and JUnit runner classes have to be loaded with the 

same class loader that does not delegate to the system class loader; the good explanation 

of why this is so is given in [38]. The class loader is initialized with URLs of classpath 

resources which consist of paths to JUnit library, paths to target/classes and 

target/test-classes directories of the project under test, and paths to all external 

dependencies needed for building and test execution. To minimize running time, the 

paths for external dependencies that are required for the project on which the evaluation 

is carried out were collected once using Maven Dependency plugin (mvn 

dependency:build-classpath), so that during initialization they are loaded from 

the prepared file.  

After the test is executed, the working directory is restored to match the reference 

version. The result of test execution is compared against the original Throwable 

obtained from the evaluation context. In conformance with requirement REQ.07, there 

is no differentiation between tests failing due to assertion error or due to the exception. 

For the delta debugging phase duration there is established a time limit of 60 

minutes (REQ.09). If, by that time, an algorithm did not complete, the process is 

interrupted. In either case, the report with results is available to the user (REQ.10). The 

report from execution that was terminated due to timeout may contain the failure 

inducing change set which is not truly minimal, but it still could be useful enough to 

guide the developer to the right place in the code. 

The prototype was thoroughly assessed using a dataset collected by the author of 

the thesis. The next chapter gives the insights into the details of evaluation process.  
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3. Evaluation 

3.1. Research questions 

In the process of evaluation, answers to the research questions listed below are 

sought. To avoid repetitive statements, each question is assumed to be pertinent in the 

context of localizing regression faults under specific circumstances outlined in Section 

1.1.1. 

- RQ1. What is the effectiveness of the developed technique in comparison with 

the textual diff-based approach? Using either of those approaches, how strong 

is the possibility to get the 1-minimal failure-inducing change set within at 

most 60 minutes of automated debugging? 

Answer to this question will give a good understanding of the practical 

applicability of delta debugging for our purposes, as well as clarify 

whether the modification proposed in this thesis gives any advantage over 

‘conventional’ version. 

- RQ2. What is the average degree of advancement achievable during 

unsuccessful execution caused by timeout? Which approach better reduces 

failure-inducing change set within 60 minutes of debugging phase? 

This question tackles the problem of applicability at a slightly different 

angle. The answer to it shows how useful, in general, delta debugging is. 

Even if the attempt was interrupted due to timeout and the returned change 

set is not minimal, it is probably still small enough to help conveniently 

localize the faulty code. 

- RQ3. How performant is the developed solution compared to the one based 

on the textual differencing? Does switching the source code differencing and 

patching technique alone bring a benefit in terms of statistically significantly 

reduced fault localization time?  

As was stated earlier, one of the main objectives of this thesis is to develop 

a more efficient fault localization technique than that relying on textual 

differencing, so answering this question is essential to assess the result of 

the effort taken. 

- RQ4. Does switching to AST differencing help to promote the consistency of 

complete configurations? Does it lead to less unresolved trials? 
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Lack of consistency was identified before as primary reason of delta 

debugging performance degradation [1], therefore the percentage of 

unresolved cases is      another measure of solution’s efficiency. 

- RQ5. Does AST differencing produce fewer chunks than textual differencing? 

The lower the number chunks to process, the less iterations are needed to 

find the minimal set. The computation cost of delta debugging is linearly 

dependent on the problem size. 

- RQ6. What is the accuracy rate of the developed technique, as measured in 

average number of lines of code that a developer has to review manually after 

localization is completed? Is it better or worse, compared to the old version? 

The point of this question is to clarify if finer-grained differencing leads 

also to significantly more precise localization, which is one of this thesis’s 

objectives. 

- RQ7. Are the results produced by the developed solution generally more 

plausible to average developers than the results produced by the old 

technique? 

Answer to this question will give an idea of how valuable the developed 

technique is for the goal of speeding up the process of fixing introduced 

regression faults. 

3.2. Experimental setup 

Already at the beginning of working on this thesis it became evident that samples 

for evaluation of the developed prototype will have to be collected manually. Author 

carefully inspected two widely known scientific databases containing real faults 

gathered from various open-source Java projects – Defects4J [39] and SIR [4] – none of 

them turned out to be suitable for experimentation. The main problem with both data 

sets is that neither of them stores the information about reference project versions, i.e. 

versions that are not yet affected by fault. At best, besides buggy project version, the 

test sample also points to the version in which the fault was fixed, but this information 

is not useful enough. Moreover, the buggy version provided with the sample is, in most 

cases, not the first version where the particular bug was introduced. To sum up, the 

existing benchmarks are not targeted for studies concentrating on regression faults. 

The alternate way of obtaining sample data – to resort to automated fault seeding 

– was briefly considered but discarded because of insufficient evidence that, in the 
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analyzed scenario, such replacement is equivalent to the real fault introduced by 

developer. This intuition is supported by the empirical study conducted by Just et al. in 

2014 [40], where they conclude that due to the fact that a lot of categories of real faults 

cannot in practice be simulated by commonly used mutation operators, the results 

derived from evaluating fault localization technique on seeded faults do not generalize 

to real faults. 

Eventually, the data suitable for analysis was collected from a large-scale project 

(500k LoC) the author is closely familiar with. The method used to select sample 

revisions consists of two parts. First, the reports from continuous integration tool were 

manually monitored over a period of 1 year and observed cases of regression were 

tracked down. These cases constitute around 30% of all gathered samples. Another 70% 

were retrieved through browsing the history of VCS commits in the project’s source 

code repository. Several searches with different keywords were performed, targeted at 

finding the revisions with particular commit messages indicating that a commit author 

was attempting to deal with the noticed regression. Such indicative keywords are, for 

instance, “fix”, “failing”, “failed”, “test”, “tests”, “stest”, “revert”, “rollback”, “ignore”, 

“temporarily”, “regression”, and various combinations thereof. Having found these 

‘base’ revisions, it was nearly trivial to obtain the corresponding ‘faulty’ and ’reference’ 

revisions. 

The samples were prefiltered in accordance with assumptions specified in section 

2.2; those not compliant were eliminated from the selection. Additionally, from the 

further consideration were excluded the samples where regression manifested itself in 

the failed automated customer acceptance tests, because these tests are too slow to be 

invoked repeatedly during delta debugging. Two samples were also removed for the 

reason that the AST diffs between reference and faulty version contained modifications 

not implemented in the prototype. No other form of preselection was performed. 

The total sample size after eliminating unfit examples is 32. This includes both 

different faulty revisions and different failed tests within the same revision.  

3.3. Statistics tracker and collected metrics 

For each execution, the detailed statistical data is gathered using performance 

instrumentation via AOP. Data is recorded to the embedded HSQLDB database. 

Database is committed to project’s GitHub repository and can be accessed through 
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DataManagerRunner application included into the main codebase. The evaluation-

relevant parameters being tracked are listed in a table below: 

 Parameter Relevant to research questions 

G
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duration of preparation phase RQ3 

duration of change distilling phase RQ3 

duration of delta debugging phase RQ3 

total execution time RQ3 

total number of detected structural changes RQ5 

total number of detected fine-grained 

changes 
RQ5 

number of detected significant changes RQ2, RQ5 

number of lines to inspect after localization RQ6 

number of delta debugging trials RQ2, RQ4 

outcome (1/0 – registered manually) RQ1, RQ2, RQ6, RQ7 
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type of distilled change RQ7 

path to affected unit RQ7 

location in the source document RQ7 
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outcome of the trial RQ1, RQ2, RQ4, RQ7 

distilled changes used in trial RQ1, RQ2, RQ7 

duration of preparing working area RQ3 

duration of recompiling RQ3 

duration of test execution RQ3 

duration of restoring working area RQ3 

Table 7. Metrics collected for each execution and their relation to research questions 

The resulting set is not registered separately; it is derived from the last failed trial. 

3.4. Alternate implementation based on textual differencing (DDPlain) 

One last point to note before proceeding to results is that for performing the 

comparisons suggested by questions in 3.1, the reference textual diff-based 

implementation has been built. It relies on the robust google-diff-match-patch library 
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[41] which, in turn, implements Myers difference algorithm. The prototype has 

undergone minimal modifications to switch to another source code differencing method; 

the core logic stays the same as presented in 2.4. Source code of the alternate 

implementation DDPlain is available at URL http://bit.ly/2ixaGta. For each of the 

samples collected for evaluation, two tests were performed: one with AST differencing 

version, another with version that utilizes plain textual differencing. Below is the report 

of experimental findings. 

3.5. Results 

3.5.1. Overview 

All trials were carried out on a PC with Intel(R) Core(TM) i7-4600U CPU @ 2.10 

GHz 2.70 GHz, 16 GB RAM, Windows 7 Professional 64 bit. Result of each trial was 

reviewed and assessed manually by the author of the thesis. As an aid in assessment of 

localization quality, where possible, the matching bug-fixing revisions found in VCS 

history were used. 

In the subsequent material, the reference version will be shortly referred to as P, 

faulty version as P', and bug-fixing version as P''.  

Some of the key distinctive features of the data used for evaluation are: 

- number of modified paths between P and P': median=6, avg=8, min=2, 

max=15 

- time between committing P' and P'' to master branch (time spent by a 

developer to fix regression): median=138, avg=270, min=14, max=1171 

minutes 

- number of failed tests per P': 1 to 14 

- distribution by nature of failure: unexpected exceptions – 53%, assertion 

errors – 47% 

- distribution by kind of regression tests: unit tests (all external dependencies 

are mocked) – 34,4%, integration tests (“slow”, dependencies are not mocked, 

require Spring context initialization and a database with the test data) – 65,6% 

- average number of detected changes between P and P': 27 

- average number of detected fine-grained changes per modified file: 16 

- distribution of fine-grained changes by change group: inserts – 44,7%, updates 

– 33,7%, deletes – 21,6% 

- distribution of fine-grained changes by exact change type:  

http://bit.ly/2ixaGta
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Figure 4. Distribution of fine-grained changes in the sample data (by type) 

3.5.2. Effectiveness (RQ1, RQ2) 

Table 8 and Table 9 summarize the combined data for RQ1- and RQ2-relevant 

metrics. 
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08d5e ✔  97 97 2.14 ✔  99 99 3.67 

20585 ✔  83 83 0.47  ✔ 42 86 0.16 

32c44 ≅  87 93 0.51 ✔  92 92 0.31 

39e8a  ✔ 7 98 0.03  ✔ 13 99 0.13 

3d20e ✔  85 85 0.56 ✔  97 97 1.73 

40dd0  ✔ 0 97 0  ✔ 0 92 0 

48a20 ✔  96 96 2.12 ✔  99 99 4.40 

48fb7 ✔  82 82 0.56 ✔  96 96 1.95 

50e16 ≅  87 93 0.62 ✔  92 92 0.71 

Table 8. Overall effectiveness of DDFine and DDPlain on the subject samples 
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CONDITION_EXPRESSION_CHANGE

OTHER
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Sam-

ple ID 

DDFine DDPlain 

Outc. 

 
Time-

out? 

Perc. 

reduc

ed 

Targ. 

perc. 

Red. 

per 

iter. 

Outc. Time-

out? 

Perc. 

reduc

ed 

Targ.

perc. 

Red. 

per 

iter. 

543a9 ≅  86 94 0.62 ✔  92 92 2.71 

5442e  ✔ 10 98 0.03  ✔ 13 99 0.13 

59c1f  ✔ 0 98 0  ✔ 13 99 0.13 

5d3fe  ✔ 4 98 0.04  ✔ 0 99 0 

62b22 ✔  97 97 2 ✔  99 99 3.88 

65f80 ≅  89 92 0.59 ✔  92 92 0.51 

6659f ≅  87 91 1.20  ✔ 51 90 0.28 

6ac2b ≅  87 93 0.68 ✔  91 91 0.72 

771c7 ✔  83 83 0.47  ✔ 43 86 0.16 

8699b ≅  82 90 0.62 ✔  99 99 0.59 

ad958 ≅  87 93 0.71 ✔  92 92 1.13 

b0077 ✔  94 94 1.71  ✔ 81 99 0.61 

b4a6a  ✔ 38 92 0.08  ✔ 36 95 0.04 

c2fef  ✔ 0 98 0  ✔ 0 99 0 

c3998  ✔ 0 98 0  ✔ 13 99 0.13 

c7c12 ≅  79 81 0.60 ✔  90 90 0.87 

cc542 ≅  87 93 0.69 ✔  95 95 0.71 

d10e4  ✔ 6 98 0.03  ✔ 13 99 0.14 

d34c6 ✔  94 94 1.81 ✔  96 96 1.08 

d3528 ≅  89 93 0.80 ✔  97 97 1.25 

dca56 ≅  87 93 0.70 ✔  92 92 1.50 

fb8bb ≅  89 90 0.72 ✔  99 99 0.71 

fdc9a ≅  86 91 0.73 ✔  92 92 1.02 

Table 9. Overall effectiveness of DDFine and DDPlain on the subject samples (continued) 

In total, DDFine was able to find minimal failure-inducing change set in 9 cases 

out of 32. In 14 more cases (denoted by ≅ sign), the resulting set was quite close to 

minimal, only containing 1-2 excessive chunks. Further analysis shows that the cause of 

this is that output produced by ChangeDistiller sometimes has some overlapping 
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chunks, i.e. the complete configuration is not completely monotonic. In the rest 9 cases, 

DDFine failed to complete delta debugging within 60 minutes and was terminated due 

to timeout. 

For DDPlain, 19 trials ended successfully: the resulting set had no excessive 

textual chunks and could not be minimized further. In all other trials, the execution was 

terminated due to timeout. Unlike with DDFine, there were no trials where the resulting 

set had only some unnecessary chunks; the outcome was either a complete success or a 

complete failure. However, it should be noted here that in half of the “successful” 

DDPlain cases, the minimal set spanned more source code lines than the corresponding 

set computed by DDFine. This will be further discussed in section 3.5.4. 

When comparing two implementations directly, it turns out that if we consider ≅-

cases as successful, too, then in 4 trials DDFine outperformed DDPlain by being able to 

produce positive outcome when DDPlain failed completely. There were no opposite 

cases. In the remaining trials, either both implementations succeeded, or both failed. 

Altogether, effectiveness rate of DDFine is ~72%, while for DDPlain it is about 59%. 

Therefore, the answer to RQ1 is: DDFine is generally more effective than DDPlain, 

and has slightly better chances to localize minimal failure-inducing change set within 

60 minutes of automated debugging. 

As for unsuccessful trials, three derived characteristics come into play. 

“Percentage reduced” (3rd leftmost column) shows ratio by which it was possible in the 

given trial to reduce original set with all detected significant changes. “Target 

percentage (4th column) displays the ideally achievable reduction for particular 

implementation, from complete set to a minimal. The third characteristic, “Reduction 

per iteration” (5th column), is the ratio of eliminated chunks to the total number of 

iterations in the particular trial.   

To answer RQ2, only the trials that were interrupted due to timeout will be 

considered. Among such trials, DDFine, in average, scored only 8% for degree of 

achieved advancement, while DDPlain showed an average of 26% reduction (target 

percentages shown in tables were normalized to 100%). Therefore, DDPlain is 

presumably better at reducing original change set within 60 minutes of automated 

debugging. 
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3.5.3. Performance (RQ3-RQ5) 

Table 10 and Table 11 show the summary of measurements completed for 

comparing the performance of the two approaches. All time intervals are specified in 

minutes. 

Sam-

ple ID 

DDFine DDPlain 

Prep. 

+ diff 

phase 

De-

bug. 

phase 

Total 

exec. 

time 

Perc. 

of 

unr. 

trials 

Num. 

of sig. 

cha-

nges 

Prep. 

+ diff 

phase 

De-

bug. 

phase 

Total 

exec. 

time 

Perc. 

of 

unr. 

trials 

Num. 

of sig. 

cha-

nges 

08d5e 27.6 22.4 51.5 0 31 19.6 19.4 40.3 0 62 

20585 25.1 43.8 70.2 57 44 25.5 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 72 42 

32c44 22.8 15.2 39.4 30 15 19.9 24.5 45.6 41 31 

39e8a 22.0 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 88 43 20.6 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 88 119 

3d20e 22.3 12.4 36.0 44 12 32.1 14.0 47.3 0 27 

40dd0 19.8 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 50 65 20.2 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 98 87 

48a20 21.3 15.5 37.7 0 32 45.5 16.7 63.4 0 62 

48fb7 21.6 12.9 35.8 42 12 24.9 20.4 47.1 0 27 

50e16 22.1 13.7 37.3 33 16 20.5 24.6 46.4 43 33 

543a9 22.5 13.5 37.5 31 14 28.7 26.6 56.7 38 26 

5442e 22.1 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 87 53 21.0 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 88 109 

59c1f 26.8 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 86 40 20.4 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 85 79 

5d3fe 28.7 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 84 35 27.5 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 89 119 

62b22 24.2 16.5 41.9 0 31 19.4 21.5 42.8 0 70 

65f80 23.6 13.4 38.5 37 15 22.9 24.5 48.7 44 25 

6659f 21.7 13.1 36.6 29 11 19.5 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 59 30 

6ac2b 29.3 16.3 47.4 35 17 26.7 25.1 53.0 40 29 

771c7 31.8 53.5 87.1 59 37 23.0 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 76 42 

8699b 33.4 18.8 54.3 33 18 19.5 27.1 48.5 39 26 

ad958 23.6 16.3 42.0 31 19 19.9 24.6 45.8 48 33 

b0077 18.1 18.7 37.9 11 32 28.1 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 52 64 

Table 10. Performance-relevant data of DDFine and DDPlain obtained on the subject samples 
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Sam-

ple ID 

DDFine DDPlain 

Prep. 

+ diff 

phase 

De-

bug. 

phase 

Total 

exec. 

time 

Perc. 

of 

unr. 

trials 

Num. 

of sig. 

cha-

nges 

Prep. 

+ diff 

phase 

De-

bug. 

phase 

Total 

exec. 

time 

Perc. 

of 

unr. 

trials 

Num. 

of sig. 

cha-

nges 

b4a6a 25.5 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 82 26 22.0 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 80 50 

c2fef 23.8 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 90 43 32.6 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 86 121 

c399

8 

33.6 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 86 41 20.2 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 88 85 

c7c12 22.5 13.9 37.9 23 16 19.9 24.2 45.7 37 32 

cc542 22.7 13.6 37.7 32 15 19.9 24.8 46.0 41 24 

d10e

4 

24.9 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 87 40 28.3 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 87 99 

d34c

6 

20.3 15.1 36.4 12 31 19.9 32.1 53.3 37 67 

d352

8 

22.2 14.1 37.7 24 20 19.6 24.7 45.6 33 23 

dca56 24.9 13.9 40.2 36 13 27.4 33.2 62.5 41 19 

fb8bb 23.0 13.4 37.9 33 21 28.3 34.2 64.5 39 29 

fdc9a 22.7 14.1 38.3 45 12 27.4 24.9 53.6 52 28 

Table 11. Performance-relevant data of DDFine and DDPlain obtained on the subject samples (continued) 

Durations of three main phases – preparation, differencing, and delta debugging – 

were measured separately in order to gain better understanding of effort distribution. 

Unexpectedly, for source code differencing phase, the time duration was marginally 

small: in average, it took only ~10 seconds for DDFine (ChangeDistiller) and ~7 

seconds for DDPlain (Diff, Match, and Patch) to obtain the difference between two 

given versions. Therefore, in the tables above, timings of this phase are merged with 

timings of preparation phase (1st column, “Preparation + differencing phase”), which is 

mainly comprised of I/O operations and compilation. Time duration of delta debugging 

phase (2nd column) and total execution time (3rd column) are shown only for trials 

which were not interrupted abnormally because of timeout. The total running time 

slightly exceeds the sum of phase durations; it also includes the time required for final 

clean-up of the working directory. 

The mean time required to complete the first two phases for the subject project is 

~24 minutes. In principle, these computations could be triggered in parallel by CI build, 

so that by the time a regression is detected, a large part of the fault localization work is 

already finished. 
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The most relevant values are definitely the durations of debugging phase. The 

data collected during executions has the following statistical properties: 

Method Percentiles Mean Std. 

deviation 

Min Max 

50% 75% 90% 95% 99% 

DDFine 14.1 16.5 22.4 43.8 53.5 18.0 10.0 12.4 53.5 

DDPlain 24.6 26.6 33.2 34.2 34.2 24.6 5.1 14.0 34.2 

Table 12. Statistical properties of DDFine and DDPlain delta debugging phase duration value sets 

From this data it could be inferred that even that in 90% of the cases DDFine was able 

to efficiently minimize the failure-inducing change set within as little as 22.4 minutes, 

still, at least each 20th execution resulted in extreme duration of debugging phase. The 

degree of variability, expressed by sample standard deviation, was almost twice as high 

(10.0) as for DDPlain implementation (5.1). In general, DDPlain shows more uniform 

distribution for duration of debugging phase and tends to demonstrate more predictable 

performance. 

Nevertheless, in case of DDFine, the debugging, on average, took considerably 

less time (18 minutes) than for DDPlain (24.6 minutes). Based on the statistical 

properties of the sample, it could be concluded that the observed difference is 

statistically significant (P-value is 0.0128). Consequently, the answer to RQ3 is: 

DDFine yielded ~27% statistically significantly better performance than DDPlain. 

 To understand the cause of the difference, it makes sense to have a closer look at 

the gathered statistical information about delta debugging trials. The time taken by test 

re-execution does not depend on the particular technique – on average, it took ~12 

seconds between all trials. The same holds for time needed to restore working area after 

each debugging trial; this only takes about 11 milliseconds. However, contrary to 

intuitive expectation, the mean time required to prepare and recompile working area for 

the next debugging trial did not differ significantly between techniques: ~59 seconds for 

DDFine and ~52 seconds for DDPlain. The real problem in case of DDPlain was the 

total number of trials, which is 63% more than for DDFine. Furthermore, the average 

percentage of unresolved trials was also higher for DDPlain (51%), compared with 

DDFine’s 44%. So, for RQ4 the answer is: yes, switching to AST differencing has a 

positive effect on the consistency of complete configurations. 

 The data reveals that the biggest impact on performance stems from the average 

problem size. After filtering out the insignificant changes, the complete configuration 
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built by DDFine consisted, on average, of 26.9 chunks, whereas DDPlain’s 

configuration had 54.0 chunks, i.e. twice more. In 7 cases out of 32, DDFine was able to 

filter out 1-2 chunks irrelevant for fault localization, but this did not affect the problem 

size by more than 0.2 chunks. All in all, the definitive answer to RQ5 is that AST 

differencing produces approximately twice fewer chunks than textual differencing, this 

contributing to the better overall performance of DDFine in comparison with DDPlain.  

3.5.4. Accuracy and plausibility (RQ6, RQ7) 

For answering questions RQ6 and RQ7, which both aim to assess practical 

usefulness of the output produced by the delta debugging technique, two kinds of 

evaluation, automatic and manual, were performed. As a basis for comparing the 

accuracy of localization, during automated evaluation, for the trials that ended normally 

the statistics tracker recorded the number of source code lines that corresponded to the 

found minimal failure-inducing set of chunks. After automatic evaluation was 

completed, a survey was conducted to determine the perception of results by 3 

developers who are familiar with the project codebase. Each participant was asked to 

review pairwise the output of DDFine (1) and DDPlain (2) for 19 trials that ended 

successfully (i.e. without timeout) for both techniques, and choose the variant that, to 

their opinion, more clearly points to the place that has to be fixed (1 or 2, 

correspondingly). Optionally, the rater could decide that neither DDFine nor DDPlain 

point to the right spot to fix with enough preciseness (↓↓), or that both were equally 

good (↑↑). In a few cases where the output of DDFine and DDPlain was identical, only 

the last two answer options were made available, and the controls corresponding to the 

‘preferential’ answers were disabled. The information about the nature of regressions, as 

well as the exact fixes, was provided to the raters beforehand. The assessment was 

conducted in a blind manner, i.e. a developer did not know which of the two outputs 

was originating from which source (DDFine or DDPlain). Despite that, in many cases 

this could be easily guessed from the context, since DDPlain’s output tends to be more 

coarse-grained.  

Table 13 below summarizes the data gathered for 19 trials that were efficient for 

both DDFine and DDPlain: 
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Sampl

e ID 

Number of lines to review Voting results by developers 

DDFine DDPlain #1 #2 #3 

08d5e 1 1 ↑↑ ↑↑ ↑↑ 

32c44 4 7 1 1 ↓↓ 

3d20e 1 1 ↓↓ ↓↓ ↓↓ 

48a20 1 2 ↑↑ ↑↑ 1 

48fb7 1 1 ↑↑ ↑↑ ↑↑ 

50e16 8 14 1 ↓↓ 1 

543a9 9 20 1 1 ↓↓ 

62b22 1 1 ↑↑ ↑↑ ↑↑ 

65f80 5 9 1 ↑↑ ↑↑ 

6ac2b 13 11 2 ↓↓ ↓↓ 

8699b 10 23 ↓↓ 1 ↓↓ 

ad958 3 5 1 ↑↑ ↑↑ 

c7c12 4 9 1 1 1 

cc542 6 16 1 ↓↓ 1 

d34c6 1 1 ↑↑ ↑↑ ↑↑ 

d3528 19 25 ↓↓ ↓↓ ↓↓ 

dca56 3 4 1 2 ↑↑ 

fb8bb 4 12   1 1 1 

fdc9a 11 14 ↓↓ ↓↓ ↓↓ 

Table 13. Accuracy of localization and results of the manual assessment by 3 developers 

The mean number of source lines of code that developers had to review was 5.5 

for DDFine and 9.3 for DDPlain, so it could be stated with confidence that the accuracy 

of fault localization is significantly better when DDFine is used (RQ6). As the 

questionnaire shows, this value correlates well with the developers’ perceived 

satisfaction with the output to be assessed; if the minimal set spanned more than 10 

lines, the raters never considered the result useful. On the contrary, if the output 

contained only 1-5 lines, as a rule, it was accepted by a rater as plausible. One 

remarkable exception to this is the output for sample 3d20e which was commonly 

rejected by all raters in spite of being very short. The reason for this is that the failure-

inducing code was not within the set of modified lines; rather the modification 
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unmasked the previously existing bug. The behavior of the code under test was altered 

by adding an invocation to the buggy method that existed already in the earlier program 

version, and such unmasking regressions are not detectable in principle by delta 

debugging technique. Other than that, it is worth noting that in several cases the output 

of DDFine could be even more concise if ChangeDistiller did not fail to return 

completely disjoint set of chunks, so there is a potential for further improvement. 

In total, the raters performed 3 × 19 = 57 evaluations and reviewed 2 × 19 = 38 

outputs each. Table 14 shows the summary of raters’ agreements for the question about 

output quality (based on the data from Table 13): 

Answer 

option 

Full 

(3/3) 

Majority 

(2/3) 
“1” 2 4 

“2” 0 0 

↑↑ 4 3 

↓↓ 3 2 

Table 14. Agreements of the manual assessment by 3 developers 

In 2 / 19 (10.5%) of evaluation items, the raters fully agreed that DDFine produced 

better output than DDPlain. In 4 / 19 (21.1%) more cases, the majority of the raters 

considered DDFine’s output to be better than that of DDPlain. There were no items 

where at least the majority of developers would prefer the output of DDPlain. For (4 + 

3) / 19 (36.8%) evaluation items, at least 2 of 3 developers decided that the output of 

DDFine and DDPlain is equally good, whereas in (3 + 2) / 19 (26.3%) items at least 2 of 

3 raters considered the output to be equally bad. The overall agreement �̅� between raters 

was 0.632, which indicates substantial degree of agreement. The Kappa coefficient κ 

(fixed-marginal multirater kappa), which shows the confidence level of the observed 

degree of agreement, was 0.464, which clearly indicates that the agreement is above 

chance. To conclude, there is statistically significant evidence that the results produced 

by DDFine are, to a certain extent, more plausible to average developers than those 

produced by DDPlain (RQ7). 
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4. Conclusions and future work 

4.1. Discussion 

Overall, the implementation of delta debugging algorithm that relies on the output 

of AST differencing convincingly demonstrated the superiority over conventional 

version that utilizes textual differencing. The improvements were achieved in terms of 

effectiveness, performance, accuracy of fault localization, as well as plausibility of the 

output. Unlike in previous studies on delta debugging technique, which took a broad 

view of its applicability, current work focuses on one particular use case scenario 

involving the localization of regression faults introduced during integration of 

individual developer’s changes into a shared mainline. The comparative evaluation 

conducted using 32 randomly selected real examples of regression inducing commits to 

the source code repository showed promising early evidence of the practical 

applicability of the technique in question for the purpose of aiding developers in finding 

problematic changes. The proof-of-concept prototype built in this work may serve as 

foundation for creating elaborated framework targeted at efficient localization of 

regressions, and the findings reported in the Chapter 3 of this thesis justify the choice of 

tree differencing as the recommended source code differencing method to be used by 

such a framework. 

It could be argued that instead of dealing with consequences that arise from 

tampering the main body of code with buggy changes, the development team could 

concentrate on preventive measures and switch to safer development and integration 

practices. One competitive alternative to trunk-based development (or, TBD) is feature-

based workflow, which, in its simplest form, involves creating a separate branch for 

working on particular feature and initiating a pull request once the work is completed. 

Direct commits to mainline can be disallowed altogether; merging process might force 

mandatory preliminary integration of changes from the mainline into feature branch, 

running the complete test suite, and having someone to review and approve the changed 

code. More complex variations of this workflow, like GitFlow model [42], prescribe the 

exact branching scheme encompassing not only a development, but also a release 

management process. Although such course of action naturally influences the 

developers to put more effort into stabilizing the code before integrating their changes 

into the main development branch and significantly lessens the risk of code quality 

deterioration, it comes with its own cost and cannot be universally recommended for 
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each type of project and every development team. Thus, for example, in one web article 

comparing and contrasting TBD and GitFlow, it is stated that GitFlow is ill-suited for 

teams consisting mostly of senior developers, since the infrastructure and overhead 

costs would probably outweigh the potential benefits [43]. In addition to that, thesis 

author’s personal experience shows that introducing a new branching model in the large 

(>50 contributors) and diverse development team is associated with major initial loss of 

productivity and negative attitude of many team members who find themselves 

struggling with the learning curve of the new process and feel that this impacts their 

performance. In any case, switching the development workflow in order to get relief 

from the broken builds does not seem to be a decent strategy in a situation when the 

project is under high time pressure and development speed is of a main concern. 

Another option to consider requires even more radical change to the established 

development process, and therefore would work best for ‘greenfield’ projects: the 

adoption of TDD practices. In conjunction with applying systematic regression test 

selection techniques, like those described in the 2011 article by Cibulski and Yehudai 

[44], this could allow to detect up to 90% of the bugs, while having to run locally only a 

tiny part of the whole test suite each time a code change is made. The main argument 

against this approach is that acceptance of TDD style alone demands considerable mind 

shift among the team who is not accustomed to using it daily, so it hardly could be 

envisioned as a quick and efficient solution to the stated problem. 

Referring back to the prototypical implementation created as a practical part of 

this thesis, there are many more concerns left to address before attempting to turn it into 

a ready-to-use product. There are also certain doubts regarding generalizability and 

correctness of the obtained evaluation results. The rest of this chapter’s sections shortly 

summarize the factors that could have an effect on the derived conclusions and outline 

the possible directions for future research. 

4.2. Threats to validity 

The main obstacle to generalizability of presented results is the fact that the 

evaluation was performed using examples collected from a single closed source project 

and the data used is not available to the general public for review. Although the thesis’s 

author recognizes the usage of trunk-based development and continuous integration in 

the analyzed project as typical, there remains a risk that the code integration practices 

materialized in evaluation items are to some extent affected by the team-specific habits 
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and conventions, which might lessen the value of this work for the broad audience. The 

proper way to mitigate this risk would be, of course, to carry out extended evaluation 

involving examples taken from various open-source projects, but due to time limitation 

it is impossible to conduct additional tests for the purpose of this thesis. 

Apart from concerns about general applicability of the drawn conclusions to other 

contexts, there also remains a certain level of uncertainty about the absolute correctness 

of both prototypes. As is mentioned in section 2.4, those interested in further 

development of automated debugging techniques currently face the problem of lack of 

openly available reference implementation of dd+ algorithm. The library used in the 

built prototypes originates from the dd+ author’s web page, but it is not confirmed to be 

fully compliant with the optimal workflow sketched in 1.3.2. It could be useful to re-

implement the algorithm from scratch and redo the evaluation using the same test data. 

Although it is not expected that the outcome of direct comparison would be principally 

different (i.e. in favor of the version based on textual differencing), there might be some 

improvement in absolute measures of performance and effectiveness of both prototypes.  

Similarly to what was stated above, another factor that could possibly affect the 

correctness and impact the measured values are the flaws in ChangeDistiller library and 

imperfection of realized modification operators. When evaluating DDFine, the author 

manually analyzed several cases characterized by unusually high number of unresolved 

debugging iterations. In all cases, the underlying cause of the problem was the inability 

of ChangeDistiller to discover changes in generic type arguments in the parameterized 

types used as method return types, which led to compilation failures. Yet another issue 

is related to specifics of manipulating changes in control flow statements. Consider the 

following simple example: 

 

Figure 5. Example of problematic handling of changes in if-then-else blocks 

Provided that both if-then-else statements belong to the same parent node in the AST of 

the program and are correctly identified as matching nodes by ChangeDistiller, the latter 

will output two inserted nodes as the result of differencing: a node corresponding to 
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else-if branch and a node corresponding to else branch. Both nodes are treated as 

independent chunks during debugging phase, and can end up in the different subsets. 

Now, if we try to insert only the else branch and do it in a naïve way, without 

considering the change in semantics of else-statement in the absence of preceding else-if 

block, we will inadvertently modify the control flow of the program and get a new 

version which is semantically not a result of incremental application of selected changes 

to the original version. The new else branch will be executed each time when a <= 10, 

whereas the original else was triggered when a < 0. As a consequence, delta 

debugging algorithm might not be able to discern the minimal set or could even include 

in the output the chunks totally irrelevant for the failure. All this suggests that, as was 

anticipated, the simplistic approach taken in the PoC prototype does not take into 

account all nuances of a complex OOP language, and for the final product some form of 

pre-normalization of ‘distilled’ chunks has to be implemented. 

4.3. Future work 

Due to the unexpected impediments described in 2.3.2 and lack of suitable ready-

to-use benchmarks, the initially planned scope of this work had to be adjusted and a 

number of interesting optimization tricks was left for future experiments. Among the 

most promising ideas are to group interdependent changes into larger logical chunks 

(using libraries that provide automated refactoring support for Java) and exclude the 

chunks irrelevant for the failure by using code coverage information collected during 

execution of a failing test. Grouping promotes the consistency of configurations, leading 

to a smaller number of unresolved test outcomes, and pre-filtering of groups reduces the 

total problem size for delta debugging. Applying both measures together might have a 

tremendous positive effect on performance and effectiveness of the technique. 

One of the most important challenges to overcome in the future DDFine versions 

is proper realization of applying tree edit operations to the abstract syntax tree. As was 

discussed in 2.3.2, neither of the suitable libraries for calculating tree edit scripts 

currently has out-of-the-box support for this functionality. Adaptation of a chosen 

library for that purpose is a relatively time-consuming task; for instance, the rough 

estimate of the total time required to adapt ChangeDistiller is 5000-7000 man-hours. 

Finally, it would be useful to conduct a separate study devoted to investigating the 

real effects of using automated debugging tools on the overall productivity of 

development team. Contrary to intuitive belief that minimizing the number of changes 
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to review to only a tiny subset will lessen the total time spent on fixing a regression 

fault, this might not always be the case. Fixing the regression bug rarely means simply 

reverting the affected code parts, the context of change is also important. Moreover, 

there are other factors influencing the success of applying fault localization aiding 

techniques, like developer’s level of experience, familiarity with project codebase, 

quality of automated tests, etc. Since most of those characteristics are not directly 

measurable, deriving an optimal strategy for making decision over suitability of delta 

debugging for the particular project is a good candidate for further research. 
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