
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Marina Nekrassova 153070IAPM

APPLICATION

OF THE DELTA DEBUGGING ALGORITHM

TO FINE-GRAINED AUTOMATED

LOCALIZATION

OF REGRESSION FAULTS

IN JAVA PROGRAMS
Master’s thesis

Supervisor: Juhan Ernits

 PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Marina Nekrassova 153070IAPM

AUTOMATISEETITUD SILUMISE

RAKENDAMINE VIGADE

LOKALISEERIMISEKS JAVA

RAKENDUSTES

Magistritöö

Juhendaja: Juhan Ernits

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Marina Nekrassova

08.01.2018

4

Abstract

In software development, occasionally, in the course of software evolution, the

functionality that previously worked as expected stops working. Such situation is

typically denoted by the term regression. To detect regression faults as promptly as

possible, many agile development teams rely nowadays on automated test suites and the

practice of continuous integration (CI). Shortly after the faulty change is committed to

the shared mainline, the CI build fails indicating the fact of code degradation. Once the

regression fault is discovered, it needs to be localized and fixed in a timely manner.

Fault localization remains mostly a manual process, but there have been attempts

to automate it. One well-known technique for this purpose is delta debugging algorithm.

It accepts as input a set of all changes between two program versions and a regression

test that captures the fault, and outputs a minimized set containing only those changes

that directly contribute to the fault (in other words, are failure-inducing). In previous

studies developing this approach, only coarse-grained changes produced by an ordinary

textual differencing tool was used as a basis for experiments, which led to performance

issues and worsened the accuracy of localization. The goal of the current thesis is to

substitute textual differencing with abstract syntax tree differencing and investigate the

effects of such replacement on time behavior and output of delta debugging process.

As a result of this thesis, a prototypical AST differencing-based implementation

of delta debugging tool has been built and evaluated on a set of real regressions

collected from a large enterprise information system written in Java language. The

evaluation shows that switching to AST differencing brings improvement in terms of

effectiveness, performance, accuracy, and plausibility of the output.

This thesis is written in English and is 52 pages long, including 4 chapters, 14

tables, and 5 figures.

5

Annotatsioon

Automatiseeritud silumise rakendamine vigade

lokaliseerimiseks Java rakendustes

Tarkvara evolutsiooni käigus juhtub aeg-ajalt, et mingi funktsionaalsus, mis

varem töötas korralikult, enam ei tööta. Sellist olukorda nimetatakse tarkvara

regressiooniks. Et avastada regressioonivead võimalikult kiiresti, paljud agiilsed

arendusmeeskonnad kasutavad tänapäeval automaatteste ning pidevat integratsiooni

(Continuous Integration ehk CI). Vahetult pärast seda, kui vigane muudatus on

integreeritud ühiskasutatavasse keskkonda, CI ülesanne nurjub, mis viitab koodi

kvaliteedi halvenemisele. Kui regressiooniviga on avastatud, tuleb see lokaliseerida ja

õigeaegselt parandada.

Vea lokaliseerimine jääb enamasti manuaalseks protsessiks, kuid seda on püütud

automatiseerida. Seoses sellega on delta-silumise algoritm üks hästi tuntud meetod,

millele antakse sisendina ette hulk muudatusi sama programmi eri versioonide vahel

ning ebaõnnestunud regressioonitest. Algoritmi väljundiks on minimeeritud hulk, mis

sisaldab ainult neid muudatusi, mis otseselt põhjustavad regressiooni. Varasemates

uuringutes kasutati muudatuste saamise eesmärgil ainult lähtekoodi failide harilikku

tekstilist võrdlust, mille tõttu saavutatavad jõudlus ja täpsus ei olnud optimaalsed.

Käesoleva magistritöö eesmärgiks on tekstilise võrdluse asendamine abstraktsete

süntaksipuude võrdlusega ning sellise asendamise mõju uurimine delta-silumise

protsessi ajalisele käitumisele ja väljundile.

Käesoleva töö tulemusena on loodud delta-silumise tarkvara prototüüp, mis

põhineb süntaksipuude võrdlemisel. Prototüübi hindamiseks on kasutatud reaalsed

regressioonivead, mis on kogutud ühest Java keeles kirjutatud suuremahulisest ettevõtte

infosüsteemist. Hindamine näitab, et üleminek süntaksipuude võrdlusele mõjub

positiivselt; paranenud on nii tõhusus, jõudlus, täpsus, kui ka väljundi usutavus.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 52 leheküljel, 4 peatükki,

14 tabelit, 5 joonist.

6

List of abbreviations and terms

AST Abstract Syntax Tree

CI Continuous Integration

DBMS Database Management System

IoC Inversion of Control

RT Regression Test

SIR Software-Artifact Infrastructure Repository

TBD Trunk-Based Development

TDD Test-Driven Development

VCS Version Control System

7

Table of contents

Introduction .. 10

1. Background and related work ... 12

1.1. Motivational drivers ... 12

1.1.1. CI-related motivation for the automated debugging of software

regressions ... 12

1.1.2. Automatic defect localization in the context of automated software repair 16

1.2. Existing approaches for localizing regressions .. 20

1.3. Delta debugging ... 21

1.3.1. Operating principle ... 21

1.3.2. dd+ algorithm .. 24

1.3.3. Inconsistent configurations and their influence on efficiency 28

2. Methodology ... 31

2.1. Overall workflow ... 31

2.2. Requirements and assumptions .. 32

2.3. Selection of a tree differencing algorithm ... 35

2.3.1. Abstract syntax trees and AST differencing ... 35

2.3.2. Comparison of available tree differencing tools... 36

2.4. DDFine: A prototypical implementation ... 38

3. Evaluation.. 43

3.1. Research questions ... 43

3.2. Experimental setup .. 44

3.3. Statistics tracker and collected metrics .. 45

3.4. Alternate implementation based on textual differencing (DDPlain) 46

3.5. Results .. 47

3.5.1. Overview .. 47

3.5.2. Effectiveness (RQ1, RQ2) .. 48

3.5.3. Performance (RQ3-RQ5) .. 51

3.5.4. Accuracy and plausibility (RQ6, RQ7) .. 54

4. Conclusions and future work .. 57

4.1. Discussion .. 57

4.2. Threats to validity .. 58

4.3. Future work .. 60

References .. 62

8

List of figures

Figure 1. A. Zeller’s delta debugging algorithm dd+ [1] .. 25

Figure 2. Overall workflow of DDFine application ... 31

Figure 3. ChangeDistiller’s modification descriptor and related entities 38

Figure 4. Distribution of fine-grained changes in the sample data (by type) 48

Figure 5. Example of problematic handling of changes in if-then-else blocks 59

9

List of tables

Table 1. Example of searching for a minimal failure-inducing change set using dd+ 26

Table 2. More complex example of dd+ usage, involving increase of granularity 27

Table 3. More complex example of dd+ usage, involving increase of granularity

(continued) .. 28

Table 4. Requirements specification of the system .. 33

Table 5. Relaxed requirements for the prototypical implementation 34

Table 6. Modification operators supported by DDFine .. 41

Table 7. Metrics collected for each execution and their relation to research questions . 46

Table 8. Overall effectiveness of DDFine and DDPlain on the subject samples 48

Table 9. Overall effectiveness of DDFine and DDPlain on the subject samples

(continued) .. 49

Table 10. Performance-relevant data of DDFine and DDPlain obtained on the subject

samples ... 51

Table 11. Performance-relevant data of DDFine and DDPlain obtained on the subject

samples (continued) .. 52

Table 12. Statistical properties of DDFine and DDPlain delta debugging phase duration

value sets .. 53

Table 13. Accuracy of localization and results of the manual assessment by 3 developers

 .. 55

Table 14. Agreements of the manual assessment by 3 developers 56

10

Introduction

In recent years, numerous approaches were proposed for automatic test-based

software fault localization. Specifically, considerable effort was exerted to develop

effective methods to automatically isolate source code changes that induce test-

detectable regression faults. One of the techniques actively utilized for this purpose is a

delta debugging algorithm, developed by A. Zeller (Saarland University) and presented

to the scientific community in his article from 1999 entitled “Yesterday, my program

worked. Today, it does not. Why“? [1]. A variation of this algorithm relevant in the

context of the current thesis accepts a set of changes in the source code as an input and

produces a 1-minimal set of failure-inducing changes as its output. It belongs to the

divide-and-conquer family of algorithms and guarantees linear worst-time complexity.

Dozens of studies have been conducted since the publication of Zeller’s paper

with the aim to evaluate the effectiveness, correctness and performance of delta

debugging. In addition several tools were built to prove the concept, but none of those

tools have reached maturity and grown into a commercial product. The main reason for

that seems to be insufficient performance due to typical presence of large number of

unresolved test cases after initial splitting iterations. Another concern that is of interest

to thesis author is lack of research targeted at solving the problem of effective

automated regression fault localization for programs written in the Java language.

Therefore, the goal of this work is to find optimized solution to the stated problem for

Java programs. To the author’s best knowledge, there exists only one alternative

approach (DARWIN [2]) which is principally different from delta debugging, but this

method’s scalability is limited to that of SMT solvers and this complicates its

application in a fully automated mode on industrial-scale applications.

To give the reader a better understanding of the context of this work, we should

mention right away that the primary motivation driver for this study is the presumed

potential of weaving technology for automatic fault localization into continuous

integration software with the purpose of reducing total time spent on repairing

regressions. An intriguing side-effect of the developed method lies in the increased

precision of the localizing source of regression. The latter implies gaining better

prospects for using this method in conjunction with automated software repair

techniques. Chapter 1 provides the complete overview of the motivation.

11

The main contribution of this work is a prototype implementation of a regression

fault localization tool which is targeted at achieving better performance in the above

sketched main use case scenario, and providing a well-grounded answer to the question

of practical applicability of this optimized version in enterprise-scale Java software

development. A prototypical approach described in Chapter 2 of the current thesis

combines delta debugging with abstract syntax tree differencing. Unlike previous

research, which used the change sets produced by ordinary textual diff tool as an input

for delta debugging procedure, this work attempts to perform code manipulations on a

more fine-grained level and operates with changes detected between abstract syntax

trees of the two program versions. We hypothesize that raising the granularity level will

promote the consistency of randomly composed configurations and decrease the number

of unresolved configurations, thus improving the overall performance of the algorithm.

On the other hand, raising the granularity theoretically leads to a larger number of

configurations to assess, therefore the achievable performance gain is not immediately

obvious. The practical experiment conducted in the scope of this work shall clarify these

concerns.

The prototype is evaluated on a data set of real regression faults collected from a

large Java-based enterprise information system; the observations are documented in

Chapter 3. During working on this thesis, the author faced the problem of absence of

ready-to-use benchmarks for evaluation of regression defect localization tools. Neither

broadly known in Java world Defects4J [3] nor Software-artifact Infrastructure

Repository (SIR) [4] contained the required test data; therefore the only viable option

was to gather it manually from the project well-familiar to the thesis author. Using the

information extracted from a real history of source code changes done by a professional

team during the ordinary course of software development throughout a year brings

additional credibility to the evaluation process.

Finally, in Chapter 4 we discuss the results and give an assessment of the

developed technique. This chapter also provides some insights into directions of future

work.

12

1. Background and related work

1.1. Motivational drivers

1.1.1. CI-related motivation for the automated debugging of software regressions

During the last decade, continuous integration (CI) has become a mainstream

practice in professional agile software development. Its main purpose is to facilitate

early detection of integration problems by frequent merging of developer individual

working copies to a shared mainline located at the integration server. To support this

approach, numerous tools are available; they largely differ in characteristics and

capabilities [5], but share common operating principles. Normally CI software is

configured in such a way that it polls periodically the project’s VCS repository to

determine changes on specific branch. If new source code revisions are found, CI server

updates its local working directory and immediately triggers a build job. A build is a

complicated process that typically involves compiling, packaging, deployment, database

schema migration, as well as running various automated tests. Intermediate results are

constantly communicated back to the developers, most usually through some sort of

visual representation, sometimes called ‘build light indicator’. The exact form of such

indicator representing current state of the build may range from web-accessible

dashboard displayed on a separate flat screen monitor mounted near the ceiling to more

exotic things like colored lava lamps [6]. The information about failing build might also

be conveyed in the form of audial warning. Ultimately, the most important requirements

are that this indicator is at any time accessible to entire team and each team member is

aware that if the build is failing, then commits are disallowed.

Constant feedback on the actual state of the build enables to reduce the time

between introducing problematic changes and the moment when the team discovers the

problem and starts to solve it. Combined with the disciplined adherence of the team

members to the policy of not committing code to remote repository in case the mainline

is broken, such feedback allows preventing further build degradation and reduces the

effort needed to localize and eliminate the cause of the failure. However, the flip side of

this policy is that team members who are ready to commit their changes have to wait

until the responsible person resolves the problem. Switching to other development

activities during this time is oftentimes not desirable because it is a well-known fact that

human context switching is associated with significant loss of productivity [7] [8].

13

Depending on the build configuration, sense of responsibility of individual team

members, established practices, and current stage of release life cycle, the ‘commit

window’ during the day might be as small as a couple of hours. Given the above facts, it

is natural that fixing the build is considered one of the highest priority tasks in most

development teams that use continuous integration. It was also recognized as a priority

activity by such major agile proponents as Martin Fowler and Kent Beck [9]. Reducing

the time needed to repair the build is thus of key importance to improving team’s

overall productivity.

There are a multitude of reasons why a build can fail; therefore, handling the

particular situation with unacceptably frequent failures should begin with gathering

statistical data about causes of failures and costs of fixing. Although, in order to achieve

the best possible results, one should collect the data using utility integrated into CI

software itself (for example, Build Failure Analyzer plugin for Jenkins [10]), prioritize

the most critical problems using some formal method, and develop effective

countermeasures, in the presence of evident predominant reason the procedure might be

simplified down to treating this concrete reason. Author’s personal observations, made

on large enterprise software projects that utilize continuous integration, show that, in a

typical CI pipeline configuration, given a project with reasonably well-developed test

suite, the most influential cause of build degradation is failure of automated tests,

contributing to the largest amount of total time spent on mainline recovery.

One obvious reason for this is that often developers refuse to verify their changes

by running all tests in their local environment before they make a commit to a remote

repository. Not always is that a sign of insufficient discipline and development culture –

in large teams practicing trunk-based development, where commits to mainline occur

very often, it is generally not possible to run the whole test suite locally between each

two consecutive commit attempts. If the first commit attempt of developer A failed

because head revision had already been updated by another developer B, developer A

needs to merge B’s changes to the local copy before reattempting the commit. Like

every codebase update, merging may introduce new bugs and, with a good test suite,

automated tests are likely to catch at least some of them. However, if it takes relatively

long time to run all the tests locally, developer A is tempted to skip this step and

reattempt the commit with unverified changes – otherwise, there is a high chance that in

14

the meanwhile the local copy becomes outdated again. Therefore, there always remains

a risk that the problem is discovered only when some tests fail on a CI build pipeline.

Above described scenario is probably the most prevalent way to break the build,

but there are also many other widespread causes for that to happen. Particularly

noteworthy among those are differences between execution environments. The same

test might pass successfully on a local development environment, but fail when being

run during CI build. Sometimes this might indicate a problem with the test itself, as is

the case with time-dependent tests. Yet another common mistake is writing a test case

which relies on the particular order of elements inside dataset. For example, according

to the query specification of SQL, in order to guarantee a specific order inside a

returned result set, one must use ORDER BY clause. However, most relational DBMSs,

including Oracle, tend to fetch the same data in the same order, provided that the query

execution plan did not change. In an another environment, the execution plan for the

same query might be completely different, which will lead to producing results in

another order. To the less experienced developer, who is accustomed to looking only for

functional mistakes within the main codebase, understanding that the real culprit is the

incorrectly written test can take quite a while. Finally, randomly failing tests, especially

those revealing issues rooted in concurrency violations, constitute a separate major class

of test failures; reproducing and fixing the underlying cause possesses unique

challenges.

Although a test might be failing on CI environment since it was firstly added to

the source code repository, the much more usual scenario is that this test had

successfully passed previously and the failure started to occur due to the lately made

code changes (here and further by ‘code changes’, if not explicitly stated otherwise or

clearly inferred from context, we mean changes made in main codebase, and not in test

code). In this case, assuming that the test itself is correct, it is said that software

regression was introduced. Apart from the most trivial cases, when the cause is

immediately obvious from inspecting the exception stack trace or a developer is well

familiar with project’s codebase, handling the regression defect involves manual

inspecting of source code modifications between last-known-good and broken revisions.

Code diffs are a valuable source of information which guides a developer towards fault

localization and issuing a fix.

15

The fastest approach to reconciling regressions is arguably reverting commits

made since the last-known-good (in the context of particular failing test) revision from

the mainline, reproducing the problem locally, fixing it, and committing the fixed

version to the remote repository. Thus, trunkbaseddevelopment.com, a notable web

resource about the same name approach, recommends this policy, stating that “The best

implementations are going to perform automatic rollback of a broken commit that lands

in the trunk. The developer gets notified and they get to fix it quietly on their

workstation” [11]. Contrary to the latter recommendation, we claim that such setup

cannot be universally adopted, because in certain settings it is not scalable enough. With

a large automated test base and high rate of commits to mainline, it is highly probable

that by the time the CI build gets broken because of newly failed test case and the team

becomes aware of this event, another developer(s) has already made their commit(s)

with unverified changes, therefore reverting ‘guilty’ revision would be disruptive for

them (what we are ultimately pursuing to avoid).

Another interesting alternative to consider is the idea of “pending head”, or

“delayed commit”, described by Martin Fowler in his 2007 web article [12], and widely

adopted by many development teams today. It is proposed to use short-lived private

feature branches for the regular development, have a continuous integration server to

perform an integration build, and, if successful, automatically commit the changes to

mainline. Fowler claims that “this way you never got broken code into the mainline of

the project”, but nothing is said about realistic throughput achievable with this

technique. The method implies a strictly sequential workflow, with queueing commits

in the processing chain, so the downside of reduced throughput is evident. It is also

unclear how the problem with arising merging conflicts is solved when a pending-head

branch gets automatically updated with the true project head – not every source code

merge can be performed without manual intervention. Fowler himself admits that he

was not enough motivated to introduce this method in his company because of its

relative complexity and concludes the article by stating: “As usual the people-issue is

often a more important issue to deal with before introducing more complicated

technology“. Last but not least, another blog article with a brief overview of build

pattern in question contains a valuable remark about its potentially detrimental effect of

forming a non-healthy attitude when a single person is made exclusively responsible for

the mistake [13].

file:///C:/Users/juhan/AppData/Local/Temp/trunkbaseddevelopment.com

16

 Having described two possible strategies, we are now ready to shortly discuss the

most common option. The preferred practice is that a dedicated team member, usually

the one who introduced the failure, tries to fix the regression locally without reverting

the mainline. It means that during that time the build remains broken and other

developers are prohibited to commit to mainline in order to not complicate the situation

further. Therefore, there is a need to find a correct fix as soon as possible. Having a

reliable technique that would allow to at least partially automate this process by

localizing the fault could significantly shorten the time needed to produce a correct

patch and be thus of a great practical value. The domain of execution is not very

relevant: the fault localization tool might be installed on a local development machine

(for example, bundled as IDE plugin) or directly on a CI server (be a part of CI

software). Important is the speed-up gained by such semiautomatic regression resolution

process.

1.1.2. Automatic defect localization in the context of automated software repair

A more ambitious perspective that drives the motivation for automated fault

localization is the ability of the latter to serve as an input for automatic bug-fixing. The

idea of automated software repair is relatively new; it started being actively explored

only about 15 years ago. One possible definition of automated repair is as follows:

„Automatic repair is the transformation of an unacceptable behavior of a program

execution into an acceptable one according to a specification“ [14]. Specification can be

defined in a multitude of different ways, ranging from formal specification – with the

most notable example arguably being the design-by-contract approach popularized by

Bertrand Meyer in his Eiffel language, – to the most implicit forms such as a natural

language phrase. With the emergence of Extreme Programming (XP) and Test-Driven

Development (TDD) paradigm, in the vast majority of modern object-oriented software

projects, a collection of test cases validating a set of software program behaviors started

to act as an implicit specification of this program. Such specification is sometimes

informally called Specification by Example, whereas a collection of test cases is

commonly known as a test suite.

A narrower term is ‘oracle’, which denotes a part of specification that captures

acceptable output. Within the test suite, oracles take the form of assertions, which

compare actual output to the expected at the end of test cases. In the context of

automated repair, one may draw a distinction between bug oracles and regression

17

oracles: the former serve to reveal an incorrect behavior, while the latter are required to

preserve the existing correct behavior and guard against introducing new regressions.

To skip ahead, most of the existing test-suite based fault localization and automated

repair techniques operate on the more coarse-grained test case level rather than

individual assertion level; in the role of bug oracles are failing test cases, while the

passing test cases serve as regression oracles. Based on the above, the problem of test-

suite based automated repair can thus be roughly formulated as follows: „given a

program and its test suite with at least one failing test case, create a patch that makes the

whole test suite passing“ [14]. Note that this definition does not tell anything about

actual correctness of the produced patch as it is perceived by experienced developer.

The only measure of patch plausibility is test-adequacy; therefore, availability of highly

effective test suite is a key precondition for performing automatic repair attempt.

Automated repair techniques heavily rely on accurate fault localization.

Identifying the precise location where a fault occurred is crucial to repairing the fault.

Many fault localization techniques have been developed during recent years; according

to the survey made by Wong et al. [15], all of them can be classified into 8 distinct

categories. The most prominent of them is the spectrum-based category, contributing to

the largest fraction of recently published papers. This is a group of relatively simple

methods united by the same basic idea. A test suite with at least one failing test case

which exposes a bug is executed against a program. The statistics on the number of

failed and passed test cases for each program unit (most commonly, a statement), as

well as total number of failed and passed tests, is collected during test execution. For

every unit, a suspiciousness score indicating the degree to which execution pattern of

the unit is related to the failure pattern is then calculated using heuristics. The units are

then ranked according to the suspiciousness level – the higher priority for repair is given

to the actually faulty statement, the better the result of fault localization is considered.

Different spectrum-based techniques use different heuristic formulas and the

effectiveness of those techniques is not equal, as is shown by controlled experiment

conducted by Assiri and Bieman in 2016 [16]. Another study conducted in 2009 by

Santelices et al. [17] shows that effectiveness of localizing various kinds of faults is

closely related to concrete coverage type – statement, branch, or du-pairs, – used in each

case to calculate suspiciousness rank and no single type of coverage performs

universally well for all types of faults.

18

The next logical step after identifying a faulty statement or block is to attempt to

replace it with the correct one. A number of various generic methods have been

proposed recently, most notably relying on generate-and-validate technique. Statement

with the highest suspiciousness rank is taken from the queue and a random mutation

operator, optionally, parameterized with context information taken from elsewhere in

the program, is applied to this statement, thus producing a new version of the program.

Modified statement is called a candidate patch. This patch is validated against all test

cases in the available test suite. Failure of at least one test leads to abandoning patch

under validation and generating a new one. If no suitable patches are found, the process

is repeated with the next most suspicious statement. The procedure terminates if a

validated patch is found or if predefined time limit is exceeded.

A variation of this technique, called GenProg [18], was proposed in late 2000s as

a general method for fixing software defects. Its main novelty is that it relies on genetic

algorithm for finding a suitable patch. At the beginning of each generation a set of

random candidate patches represented as the ordered list of abstract syntax tree edits is

produced via mutation. A fitness function (defined as weighted average of passing and

failing test cases) is then applied to select the best parent individuals from the set. Next,

a crossover operation is applied pairwise on the chosen parents, so that a set of edits

corresponding to the second parent is appended to the first parent’s set, and then each

element is removed with probability ½. The resulting offspring individuals together

with parents are mutated again and each candidate patch is evaluated against the whole

test suite. If no valid candidate patch is found, the generation cycle is repeated, with the

result of previous iteration serving as incoming population. As usual, the procedure is

over when a validated patch is found or the resources are exhausted.

Despite still being generally considered a state-of-the-art approach, the

effectiveness of GenProg remains controversial. Although the results reported by the

authors of GenProg are very promising – in a study conducted in 2012 by Le Goues et

al [19] it is claimed that 55 out of 105 bugs were fixed by their system – the later study

by Qi et al [20] shows that most of the produced patches are incorrect. Qi et al theorize

that in many cases the results could have been better if the search space, in principle,

contained successful patches (which in case of GenProg are synthesized from existing

source code taken elsewhere from the program) or the space itself was narrower. They

also blame weak test suites as a major impediment to generating acceptable patches.

19

Another study conducted by Smith et al. in 2015 [21] confirms that the quality of the

produced patches largely depends on the coverage of the repair test suite. Weak test

suite used as an input for patch generation leads to producing a fix that passes all

available tests, but fails to generalize and is therefore functionally incorrect. They call

such phenomenon ‘overfitting’, drawing analogies with similar problem frequently

occurring in machine learning.

Analysis of the existing body of knowledge concerning application of GenProg

shows that at the time of writing this document (Autumn 2017), presumably, none of

the previous studies have considered using this method in the specific domain of the

automated repair of regression faults, although some of the authors make assumptions

that a history of program modifications might be utilized for improving accuracy of the

results. For example, of great interest is the article of Martinez et al [22] in which they

claim that „as many as 52% of commits are composed entirely of previously existing

tokens“. Given the earlier discussed context of continuous integration environment,

where differences between two consecutive program versions are relatively small

compared to the total codebase size and regressions are detected promptly, one may

hypothesize that reducing GenProg’s fault space to contain only a minimal set of

failure-inducing changes represented on a fine-grained level may substantially improve

the overall efficiency of the method. Combined with adaptation of fix ingredient

selection strategy in order to explore the search space containing relevant ingredients

from both program versions (reference program and buggy program), this gives better

prospects for ability of GenProg to synthesize a correct patch – which is indirectly

supported by findings of Martinez et al [22].

To conclude this section, we should mention that actual adaptations of GenProg

implementation are out of scope of this work due to time considerations. However, the

improved method of localizing regression faults developed in this thesis can serve as

solid foundation for proposed GenProg modifications and contribute to developing

alternative methods targeted specifically at automatic fixing of regressions. As we

concentrate our efforts on finding a solution for programs written in Java language, it is

also worth noting here that there already exists a publicly available open source

reference implementation of GenProg in Java, called Astor [23]

(https://github.com/SpoonLabs/astor), so the results of this work can be directly

applicable for its further development.

https://github.com/SpoonLabs/astor

20

1.2. Existing approaches for localizing regressions

Speaking of possible solutions to the formulated problem – localization of

regression faults using two program versions – studying the existing literature on the

topic revealed two principally different methodologies: DARWIN (Dawey Qi et al [2])

and delta debugging (Zeller [1]).

DARWIN is a method developed in 2009 by a group of researchers from National

University of Singapore. Essentially, it is a combination of enhanced version of

symbolic execution called concolic execution and constraint solving. Its main idea is to

generate an alternative input t' for a buggy program P' which would satisfy the

following rules:

 In reference program P, input t' is following the same execution path as given

input t that passes for program P, but fails for buggy program P';

 In buggy program P', input t' and given input t follow different execution

paths [2].

The differences of traces obtained by executing P' with both input t and t' are then

compared and observed distinction is translated into the cause of failure.

According to the evaluation conducted by authors of the method, DARWIN has a

number of significant strengths, compared to delta debugging:

 Ability to discover so-called unmasking regressions. Those are types of

defects that existed already in version P, but were unhidden by the changes

expressed as difference between P and P'. Zeller’s delta debugging, by design,

is not capable to reveal such defects, because in this scenario the actual faulty

statement is not contained within the set of changed statements.

 Ability to tolerate large amount of changes between reference and buggy

program. Contrary to this, Zeller’s method works well only with relatively

small amount of modifications. However, it is not a substantial impediment for

us, given the circumstance that we intend to use our developed method in a

scenario that presumes close similarity of the two versions.

Nonetheless, the above mentioned strengths of DARWIN are outweighed by its

weaknesses:

21

 Method is not suited well for localizing faults which are not triggered by

changes in control flow of the program. In particular, it means that regression

defects that are caused by wrong assignments can generally not be diagnosed

by this approach. To overcome this problem, authors utilize instrumentation of

the program with predicates in order to artificially create branch conditions

and alter control flow, but they admit that: (1) there remains an uncertainty

about applicability of this solution to all possible cases, (2) the instrumentation

negatively affects the performance (overhead is ~20%).

 Since DARWIN is grounded on the SMT solving, its scalability largely

depends on that of SMT solvers. Also, path condition size grows exponentially

with the size of the program – a phenomenon known as ‘path explosion’ takes

place [24]. Although authors claim that they were able to successfully tackle

this issue using heuristics and evaluated their method with several real-world

examples, the number of these examples is too small to generalize results. In

the absence of other controlled experiment studies, we consider this drawback

too serious to employ this method for our purposes.

Taking into account these considerations, the selection of delta debugging

approach as a ground for experiments appears to be more promising for the purpose of

solving the stated problem. Let us have a detailed look at how this technique works.

1.3. Delta debugging

1.3.1. Operating principle

Delta debugging is a powerful technique which allows to automatically isolate a

cause of failure. Multiple typical applications of this algorithm exist, such as narrowing

down the failure-inducing program input or even failure-inducing sequence of user

interactions (Zeller [25]) (which may be viewed as a variation of the former case), but in

its most classical form it operates on the changes to the program code. Its basic idea is

to obtain a difference between reference and faulty version of the program, in a form of

independent chunks serving as units of change (‘deltas’), and perform systematic testing

of selected subsets of changes until a minimal failure-inducing change set is found. In

order to determine the outcome of each trial, a regression test (RT) capturing a fault of

current interest, is used as a bug oracle. A trial consists of four distinct phases (which

closely resemble standard Four-Phase testing pattern [26]):

22

- Setup. A subset of delta chunks is applied to the reference program version;

the constructed version is recompiled.

- Exercise. A RT is executed against the new version and outcome is captured.

- Teardown. A working area is restored; all modifications to the reference

version are undone.

- Verify. An outcome of the RT is evaluated and, depending on the result, a

delta debugging algorithm follows one or another execution path.

The process stops when there is detected a change set that satisfies the following

condition: removing of any individual change from this set and applying such reduced

set to the baseline will cause the RT to not fail anymore. In this case, we say that a

regression fault is localized.

From the description provided above, it is not clearly understood, how many

combinations of changes is supposed to be tested in order to achieve the stated goal.

The naïve approach to solving this challenge through a brute force method is to test all

2n possible combinations, which renders inadequate any attempt to apply such

automated debugging procedure to a real-size problem. The optimizations proposed by

Zeller in his paper [1], which serve as a basis for his optimized version of delta

debugging algorithm called dd+, allow to substantially reduce the number of

combinations to be tested and thus devise a much more effective way of delta

debugging. At the ground of enhanced technique lies the observation that proper

decomposition of difference descriptor into delta chunks allows for making informed

assumptions regarding the possibility that particular selected subset of chunks contains a

minimal failure-inducing set. The subsets themselves are not chosen arbitrarily, but

rather according to the certain pattern that takes into account the intermediate results

obtained at the previous stages of the algorithm execution. On each step, algorithm

evaluates the current subset and, depending on the outcome, gradually reduces the size

of the search space, until no further reduction is possible. At this point, the search space

contains the minimal set we are looking for, and the algorithm ends.

The next logical question is how exactly a solid representation of difference

between two program versions could be split in order to be suitable for conducting an

optimized search? What properties should the delta chunks satisfy?

23

Before proceeding to the listing of properties and explanation of the algorithm

itself, we should provide some definitions to facilitate the understanding. The following

is a succinct digest of the information provided in the Sections 2 and 3 of the original

paper [1] combined with some additional clarification:

 Configuration. Given that 𝐶 = {Δ1, Δ2, … , Δ𝑛} is the set of all possible

chunks Δ𝑖 , a subset 𝑐 ⊆ 𝐶 is called a configuration. Configurations are to be

applied to the reference program version.

 Baseline. An empty configuration (i.e. such that 𝑐 = ∅) is called a baseline.

Baseline applied to the reference program version is the reference version

itself.

 Testing function is a function defined in the form 2𝑐 → {✘,✔, ? }, where C is

the set of all possible changes and {✘,✔, ? } are the encoded test outcomes. (

✘, or FAIL) stands for the outcome when a test failed in the same way as in

the faulty program version; (✔, or PASS) means that test passed successfully,

and (?, or UNRESOLVED) corresponds to the situation when test resulted in

an indeterminate result (such as compilation failure or it produced a failure

different to the original one). A testing function is to be applicable to any

configuration 𝑐 ∈ 2𝑐. We will refer to this function later in this work by an

identifier test.

 Failure-inducing change set is a set 𝑐 ⊆ 𝐶 that satisfies the

following: ∀𝑐′(𝑐 ⊆ 𝑐′ ⊆ 𝐶 → 𝑡𝑒𝑠𝑡(𝑐′) ≠✔). In other words, applying any

superset of a failure-inducing change set leads to a non-successful test

outcome (either FAIL or UNRESOLVED).

 Minimal failure-inducing change set is a set 𝐵 ⊆ 𝐶 , for which the following

holds: ∀𝑐 ⊂ 𝐵(𝑡𝑒𝑠𝑡(𝑐) ≠✘). In other words, applying any proper subset of a

minimal failure-inducing change set leads to a non-failing test outcome.

According to the provided definitions, preconditions regarding a reference and a

faulty program version to be used as an input for delta debugging could be formulated

in the following way: 𝑡𝑒𝑠𝑡(∅) =✔ and 𝑡𝑒𝑠𝑡(𝐶) =✘.

When decomposing a differential descriptor into chunks, the following properties

must be fulfilled by the resulting complete configuration 𝐶 (consisting of all changes):

24

- Monotony. If applying some subset of changes leads to a failing test outcome,

applying any configuration that includes this subset will lead to a non-

successful test outcome (FAIL or UNRESOLVED). Using a definition given

above, in case of monotone complete configuration, any superset of a failure-

inducing change set is also failure-inducing. More formally:

∀𝑐 ⊆ 𝐶 (𝑡𝑒𝑠𝑡(𝑐) =✘ → ∀c′ ⊇ 𝑐 (𝑡𝑒𝑠𝑡(𝑐′) ≠✔))

This works the other way around as well. If applying some subset of changes

leads to a successful test outcome, applying any configuration that is a subset

of the given subset will lead to a non-failing test outcome. Formally:

∀𝑐 ⊆ 𝐶 (𝑡𝑒𝑠𝑡(𝑐) =✔ → ∀c′ ⊆ 𝑐 (𝑡𝑒𝑠𝑡(𝑐′) ≠✘))

In practice, this property allows us to narrow down the search space.

- Unambiguity. We assume that only one change set causes a failure and not

several disjoint change sets independently. Formally:

∀𝑐1, 𝑐2 ⊆ 𝐶 (𝑡𝑒𝑠𝑡(𝑐1) =✘ ∧ test(c2) =✘ → 𝑡𝑒𝑠𝑡(𝑐1 ∩ 𝑐2) ≠✔)

In practice, this means that once a failure-inducing change set is found, there

is no need to search the complement for other failure-inducing sets.

Another property which is not strictly mandatory, but is highly desirable, is

consistency. Consistency means that within a given complete configuration, any

randomly combined configuration produces a deterministic test result:

∀𝑐 ⊆ 𝐶 (𝑡𝑒𝑠𝑡(𝑐) ≠ ?)

Failing to fulfil this property leads to considerable decrease of algorithm efficiency, as

will be discussed below.

1.3.2. dd+ algorithm

To begin with, Figure 1 displays the formal definition of Zeller’s delta debugging

algorithm dd+:

25

Figure 1. A. Zeller’s delta debugging algorithm dd+ [1]

For any smaller case of dd3, a recursion invariant 𝑡𝑒𝑠𝑡(𝑟) ≠✘ ∧ 𝑡𝑒𝑠𝑡(𝑐 ∪ 𝑟) ≠✔ ∧

𝑛 ≤ |𝑐| holds.

We will omit non-essential details for the sake of brevity and outline only main

ideas necessary for understanding the subsequent material.

Dd+ is, by definition, a recursive divide-and-conquer algorithm. The base case of

the recursion is reached when the current configuration consists of only a single element

(“found” case), or when there are no further recursion steps possible and the currently

processed configuration becomes the only candidate for being the failure-inducing one

(“nothing left” case). Otherwise, we start splitting the current configuration into 𝑛

subsets 𝑐1, … , 𝑐𝑛 (initially, 𝑛 = 2) and test each subset and its complement separately.

The most useful case here is “found in 𝑐𝑖”, since it allows to immediately reduce the

search space to a proper subset 𝑐𝑖 of a current configuration. “Interference” denotes a

situation when testing both subset and its complement separately produces in each case

a positive test result, so this indicates that a failure is caused by a combination of some

changes from both subsets. “Preference” case happens when testing a subset produced

an indeterminate result, but the complement of this subset passed the test; we assume

that the first subset contains failure-inducing changes (possibly in combination with

some changes from the complement subset – that is why it remains applied in the

subsequent invocations). Finally, if no other choices are possible, we increase the

granularity of search by splitting the current configuration into [twice] more subsets

26

(“try again” case), in the hope that it will raise the chances of getting a consistent

configuration.

One final remark before we move on to the concrete example is that through the

recursive calls certain “safe” changes may remain applied; those changes are denoted by

a literal 𝑟.

Let us now have a look at the example demonstrating the mechanics of dd+.

Consider the Table 1, where every line represents a configuration. ‘⨀’ stands for a

change that is included in the configuration, and ‘.’ (a dot) represents an excluded

change. In the analyzed example, a combination of changes ∆4 and ∆5 is a minimal

failure-inducing change set, and ∆5 depends on ∆4 (i.e. it cannot be applied without

applying ∆4). Cells with a light-green background correspond to the changes that remain

applied in the current trial.

Step 𝒄𝒊 ∆𝟏 ∆𝟐 ∆𝟑 ∆𝟒 ∆𝟓 ∆𝟔 ∆𝟕 ∆𝟖 test Progress

1 𝑐1 ⨀ ⨀ ⨀ ⨀ ✔

2 𝑐2 ⨀ ⨀ ⨀ ⨀ ? prefer 𝑐2

Decision: “preference”

3 𝑐1 ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ . . ✘ 𝑐1 fails

4 𝑐2 ⨀ ⨀ ⨀ ⨀ . . ⨀ ⨀ ✔

Decision: “found in 𝑐𝑖”

5 𝑐1 ⨀ ⨀ ⨀ ⨀ ⨀ . . . ✘ ∆5 found

6 𝑐2 ⨀ ⨀ ⨀ ⨀ . ⨀ . . ✔

Decision: “preference” – search the other half now

7 𝑐1 ⨀ ⨀ . . ⨀ ⨀ ⨀ ⨀ ?

8 𝑐2 . . ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ✘ 𝑐2 fails

Decision: “found in 𝑐𝑖”

9 𝑐1 . . ⨀ . ⨀ ⨀ ⨀ ⨀ ?

10 𝑐2 . . . ⨀ ⨀ ⨀ ⨀ ⨀ ✘ ∆4 found

Result: {∆𝟒, ∆𝟓}.

Table 1. Example of searching for a minimal failure-inducing change set using dd+

27

As shown, it took only 10 trials to find a set of changes causing a failure for a

configuration consisting of 8 changes (compare with 28 = 256 trials required in a brute-

force approach!). Now let us show a more complex example (see Table 2 and Table 3),

where more than two changes (∆2, ∆5, ∆7) imply each other and are at the same time

failure-inducing.

Step 𝒄𝒊 ∆𝟏 ∆𝟐 ∆𝟑 ∆𝟒 ∆𝟓 ∆𝟔 ∆𝟕 ∆𝟖 test Progress

1 𝑐1 ⨀ ⨀ ⨀ ⨀ ?

2 𝑐2 ⨀ ⨀ ⨀ ⨀ ? split again

Decision: “try again”, n = 4, |𝑐′| = 8

3 𝑐1 ⨀ ⨀ ?

4 𝑐2 . . ⨀ ⨀ ✔

5 𝑐3 ⨀ ⨀ . . ?

6 𝑐4 ⨀ ⨀ ?

7 𝑐1̅ . . ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ?

8 𝑐2̅ ⨀ ⨀ . . ⨀ ⨀ ⨀ ⨀ ✘

9 𝑐3̅ ⨀ ⨀ ⨀ ⨀ . . ⨀ ⨀ ?

10 𝑐4̅ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ . . ? split again

Decision: “try again”, n = 6, |𝑐′| = 6

11 𝑐1 ⨀ . ⨀ ⨀ ✔

12 𝑐2 . ⨀ ⨀ ⨀ ?

13 𝑐3 . . ⨀ ⨀ ⨀ . . . ?

14 𝑐4 . . ⨀ ⨀ . ⨀ . . ✔

15 𝑐5 . . ⨀ ⨀ . . ⨀ . ?

16 𝑐6 . . ⨀ ⨀ . . . ⨀ ✔

17 𝑐1̅ . ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ✘

18 𝑐2̅ ⨀ . ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ?

… to be continued on the next page

Table 2. More complex example of dd+ usage, involving increase of granularity

28

Step 𝒄𝒊 ∆𝟏 ∆𝟐 ∆𝟑 ∆𝟒 ∆𝟓 ∆𝟔 ∆𝟕 ∆𝟖 test Progress

19 𝑐3̅ ⨀ ⨀ ⨀ ⨀ . ⨀ ⨀ ⨀ ?

20 𝑐4̅ ⨀ ⨀ ⨀ ⨀ ⨀ . ⨀ ⨀ ✘

21 𝑐5̅ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ . ⨀ ?

22 𝑐6̅ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ ⨀ . ✘ nothing

left Result: {∆𝟐, ∆𝟓, ∆𝟕} – mutual intersection of failed complements 𝑐1̅, 𝑐4̅, 𝑐6̅.

) Table 3. More complex example of dd+ usage, involving increase of granularity (continued)

To summarize, in theory, behavior of dd+ is tolerable even in presence of fair

amount of inconsistency. Still, compared to the case when configuration is completely

consistent, the negative impact of inconsistency on performance turns out to be

significant.

1.3.3. Inconsistent configurations and their influence on efficiency

In the ideal case, when failure is caused by only a single change and each set of

arbitrarily taken chunks forms a consistent configuration, the complexity of the

algorithm is logarithmic. If there are multiple changes constituting a minimal failure-

inducing change set, the complexity degrades down to linear – consider the extreme

case when each pair of testable subsets causes interference, because every single change

in the complete configuration is failure-inducing, and only a combination of all of them

forms a minimal change set responsible for regression.

Things change when inconsistency comes into play, which is very common in

practice. Indeed, given the sufficiently large subset of ordinary text chunks representing

the modification done between two program versions, the possibility that, when

applying it to a reference version, the resulting code will be compilable is not very high.

Of course, as was shown, handling the inconsistency is the integral part of dd+ and

proposed tactics of coping with it (see cases “preference” and “try again” of the formal

definition) will eventually lead to the correct result. Splitting to more subsets of the

smaller size works reasonably well, since it leads to less difference between known

consistent configuration (either baseline or complete) and a current configuration under

test, hence the chances of successful compilation are higher. However, with more

subsets, more trials have to be performed, and as we know, each trial is relatively

expensive, because it involves compilation. Furthermore, despite that Zeller claims the

worst-case complexity of the complete version of his algorithm to be still linear (only

29

“requires twice as many tests” [1]), we argue that, according to the provided definition,

the time complexity of dd+ due to “try again” maneuver is more likely on the order of

O(𝑛 ∙ log 𝑛). All this moves us further away from the theoretical examples shown

earlier in this section and brings us closer to reality, in which proper strategy for

reducing the degree of inconsistency prior to delta debugging, or avoiding inconsistency

altogether, becomes essential.

This problem is acknowledged already in the seminal paper by Zeller [1] and

some strategies are proposed there for tackling inconsistency. Author specifically

advises to try grouping mutually related fragments on the basis of certain common

characteristics – example of this are statements involving definition and usage of the

same variable. Another suggestion is to try ordering the fragments in a way that will

allow predicting the outcome of the test without actually conducting it. Both solutions

imply, to a certain extent, structural analysis of the program and tie the implementation

to the concrete programming language. The case studies given in the publication display

a remarkable positive effect of such optimizations; however, the exact methodology

used to implement them is not explained. Without this knowledge, the usefulness of

reported results is compromised, because it is extremely difficult to reproduce exactly

the same preconditions and repeat the experiment with another data set, let alone

generalize the technique to other real-world examples.

Upon reading the paper and analyzing the flow of discussion, one circumstance

immediately attracts attention. Namely, the input on which Zeller’s implementation

operates, are the ordinary text chunks produced by a text differencing tool. Not only

does this induce a lot of noise to the obtained diff – since it makes it hardly possible to

filter out the changes clearly irrelevant to the regression, – but it also jeopardizes the

precision of fault localization. Even if the result of delta debugging run against such

input consists of only a single (textual) chunk, this chunk may itself span dozens of

source code lines, so that browsing it for a particular statement causing a failure still

requires considerable manual effort. The more correct way seems to perform

differencing between reference and faulty version on the abstract syntax tree (AST)

level, so that each chunk was represented by a descriptor of a comparatively small

modification done to AST node. The operation of applying configuration to the

reference version can thus be expressed as rolling the selected set of AST node-level

changes to the reference program’s abstract syntax tree. In addition to the advantages

30

already mentioned, the alleged effect of switching to high-granularity mode is the

reduction of inconsistency, since the finer-grained modifications shall improve the

chances of successful compilation.

Searching through the scientific literature did not reveal any publications

elaborating on the idea presented. Most probably this is due to the fact that the

comprehensive libraries for performing tree differencing emerged only recently.

Specifically, the active development of these tools for Java language began about 10

years ago; the following chapter will give a brief overview over existing products. At

the time of Zeller’s first publication on the subject [1], presumably, there were no such

tools available for any of the other widespread OOP languages.

To conclude the chapter, we formulate the objective of the current work as

follows: The goal is to develop an improved method for localizing regression faults,

which aims to increase the performance and accuracy by utilizing the output of AST

tree differencing as input for delta debugging. A secondary objective is to evaluate the

suitability of developed method in the typical scenario of trunk-based development,

where a regression is introduced by a new commit and is promptly detected by a

continuous integration tool. Since, unlike textual diff of the source code, complete tree

differencing solution is not a language-agnostic technique, our implementation is tied to

the particular programming language, which affects the choice of particular tools. As a

basis for experiments we choose Java language, because it is the most familiar

programming language to the author of the thesis.

The next chapter presents the prototypical implementation of a tool that utilizes

the proposed approach.

31

2. Methodology

2.1. Overall workflow

Figure 2 displays the simplified workflow of our prototypical implementation

called DDFine.

Figure 2. Overall workflow of DDFine application

32

The minimally required input is a test that executes a regression fault to be

localized, and two program versions: a reference and a faulty. The whole process

consists of three phases: initialization, source code differencing, and delta debugging. In

the first phase, a working directory is prepared and evaluation context initialized. The

second phase calculates the difference between the source code of a reference and a

faulty version of the program and produces the set of minimal non-intersecting changes

that could be applied to the reference version. Finally, in the delta debugging phase, the

main action takes place – subsets of changes detected at the previous step are

systematically applied to the reference version, with test re-execution and anticipation

of the next candidate subset to try (as described in 1.3.1). The process stops when no

further progress can be made or when a time limit of 60 minutes is exceeded.

2.2. Requirements and assumptions

In order to assess the genuinely achievable potential of the presented technique for

the purposes of incorporating it into CI software, the prototype must simulate the

characteristics of the final product as closely as possible. Therefore, as a first step of the

prototype design process we elicit key functional requirements for the system and

identify the realistic assumptions concerning the nature of the input. For the reading

convenience and ease of reference, every requirement is given a short ID and data is

organized in a table format.

Req. ID Requirement Definition

REQ.01 Source code differencing must support modifications done both on structural

level (adding, removing, moving, renaming of files and directories) and on

the level of a single file.

REQ.02 On the level of a single file, changes must be identified with preciseness of

AST tree node. Consequently, if the failure can be attributed to a set of

changes done on a file level, the result of localization is a minimal set of

modified AST nodes.

REQ.03 If the failure is caused by a new or deleted structural unit (file or directory),

the localization is repeated multiple times with increasing the granularity to

narrow down to minimally detectable AST node modification(s).

REQ.04 A mechanism used for source code differencing must produce a set of non-

overlapping changes, since monotony of configuration is a prerequisite for

conducting delta debugging.

33

REQ.05 Changes produced by the source code differencing mechanism must be in a

format that allows applying them to the reference version.

REQ.06 The differencing module must support all types of source code modifications

that are considered syntactically and semantically correct for the given

language (Java).

REQ.07 The system should not differentiate between input test cases that fail in faulty

version with assertion failure or due to unexpected exception; both kinds of

faults must be treated uniformly.

REQ.08 When executing a regression test and verifying results, in case of test failure

the system must be able to compare error message and stack trace against the

original message and original stack trace. If during a trial the regression test

failed for a different reason, the result of the trial must be considered as

UNRESOLVED.

REQ.09 It must be possible to configure the maximum time limit for a single run. The

practically reasonable limit for an automated localization is 60 minutes since

the regression was detected on CI; after this period the negative cumulative

effect of impeding the normal merging process arguably outweighs the effort

spent by a developer to find the cause of the problem.

REQ.10 In case of terminating an attempt in the middle of delta debugging phase, the

intermediate results are reported to the user.

REQ.11 The system must be run in command-line mode.

REQ.12 The system should not require user interaction of any kind; it must be

completely autonomous.

Table 4. Requirements specification of the system

Certain assumptions are made regarding the input provided to the system, given

the restrictions imposed by the delta debugging technique itself and the intended usage

scenario. Here is the list of the assumptions that are not checked by the system and are

expected to be true when a new execution is triggered:

 Both reference and faulty version provided as input are compilable. All

external dependencies required for compilation are provided.

 Provided the regression test correctly captures the fault to be fixed in the

faulty version and does not need to be adjusted due to modifications

introduced between the two versions. It passes successfully in the reference

version.

 The regression test exists in both versions and is unchanged between them.

 There are no changes in external dependencies of the debugged application.

34

 Test outcome is consistently repeatable between invocations.

 Test failure is not related to the execution environment setup. The necessary

setup for executing the test is prepared.

 The provided reference version corresponds to the source code commit which

is an immediate predecessor of a commit that introduced a regression in the

given faulty version. The fact that the two versions are consecutive implies the

relatively low number of source code modifications to evaluate.

 In a faulty version, there exists only one reason for a failure of the provided

test case. The failure is caused by a single set of changes and not by multiple

sets independently. In other words, the complete configuration is

unambiguous.

 There can be multiple unrelated regression bugs introduced in the faulty

version. Provided test case captures the bug to be localized during particular

execution.

In addition, some of the requirements not strictly essential for the evaluation are

relaxed or even dropped altogether in order to save effort and time required for the

prototype development. The table below shows the adjusted requirements, together with

summarizing the scope and impact of the appropriate modification. Numeric part of

identifiers corresponds to the same part of matching original requirement’s identifier.

Req. ID Difference to original requirement

pREQ.01 Changes related to moving and renaming of files and directories are not

identified as such by the prototype; they are reflected simply as additions

and deletions of structural units. This impacts potentially achievable

performance, because it makes impossible to apply those ‘harmless’

changes to the reference version in advance (as a kind of pre-optimization

step).

pREQ.04 It is not completely verified whether a differencing mechanism to be used

produces strictly disjoint set of changes in all the cases. The accuracy of the

result might be compromised to a certain degree.

pREQ.05 For the prototype, it is enough that ~50% of all detected changes could be

applied.

Table 5. Relaxed requirements for the prototypical implementation

Requirement REQ.03 is dropped for the prototype. As a consequence, in some

cases the fault might be localized with the granularity of a structural unit, and not an

AST node.

35

Since source code differencing mechanism is one of the central parts of the

designed system, the justification of a choice of the proper tool that satisfies the related

requirements deserves closer attention. We skip the details concerning the detection of

changes on the structural level (files and directories) since it is a trivial programming

task and does not need further explanation, and move straight to the more engaging

aspect: the internals of the method used to identify fine-grained changes on the single-

file level.

2.3. Selection of a tree differencing algorithm

2.3.1. Abstract syntax trees and AST differencing

Abstract syntax trees are a common form of representing structure of computer

programs. In computer science literature, they are often contrasted with concrete syntax

trees, otherwise called parse trees. The difference between the two is that parse tree

reflects the exact syntactic structure of a program written in a language according to its

context-free grammar [27], whether abstract syntax tree enables a more succinct view

on the structure, in a way that simplifies conducting program analysis and perform

program transformation [28]. Probably the most well-known application of abstract

syntax trees is compilers; however, it is not the way of usage we are mainly interested in

for the purpose of this work.

Abstract syntax tree differencing, or AST differencing, is a compelling idea that

began to evolve in the early 2000s. As the name implies, it is a procedure that computes

the difference between ASTs of two versions of the same program. Output produced by

this procedure is commonly called an edit script; in essence, it is a sequence of edit

actions made to the first AST in order to obtain the second one. The eventual goal is to

reflect the actual change made by developer as clearly as possible; therefore, the

existing tree differencing realizations strive to find a minimal edit script. Unlike its

textual counterpart, most notably represented by Myers algorithm [29], tree differencing

works at a considerably higher level of granularity than a whole text line and is able to

deal not only with insert and delete edit actions, but also with updates and moves. The

latter makes AST differencing irreplaceable for analyzing just source code changes,

since refactorings involving moving of statements naturally occur in the course of

software evolution. Besides, being inherently a structure-centric method, tree

36

differencing effectively dismisses mere formatting changes and thus serves as a first

filter for retaining the potentially regression-relevant changes only.

There exist several competing algorithms for performing AST differencing. They

vary in details, but share a common working principle. First, they traverse both trees to

identify matching pairs of parent nodes, with the restriction that each node may be

included into only one pair. Additionally, the nodes are considered as matching based

on their labels. On the second step, the actual generation of edit script takes place, based

on the mappings determined at previous step. For this part, there are already developed

optimal algorithms of complexity O(𝑛2) (see, for example, the work by Chawathe et al.

[30]), so that ongoing research concentrates on finding the optimized solution for the

first problem.

It turns out that even if considering only three types of edit actions – insertions,

deletions and updates, – the best exact algorithm for computing mappings between

ASTs has cubic complexity, as proven by Pawlik et al. [31]. Addition of the fourth

operation – move – makes the problem NP-hard. In practice, tree differencing

algorithms resort to heuristics to tackle excessive complexity. The optimizations can be

targeted at particular edit action type, such as move-actions thoroughly surveyed by

Dotzler et al. in 2016 [32], or be generic. The recent articles on the topic mention only

three general-purpose AST differencing algorithms which have a significant impact:

GumTree, ChangeDistiller, and RTED.

2.3.2. Comparison of available tree differencing tools

Detailed evaluation of above mentioned state-of-the-art algorithms is clearly out

of scope of this work, so in order to justify the selection of concrete tool to build the

prototype on, it is reasonable to rely on the lately published comparative articles on the

matter. Among the articles that appeared within the last 5 years, the best cited paper that

presents the results of empirical evaluation of the most promising tree differencing

techniques is “Fine-grained and accurate source code differencing” by Falleri et al.

(2014) [33]. Although the reported research findings cannot be considered absolutely

trustworthy – the authors of the paper conduct the comparison in the context of

evaluating their own developed technique (GumTree), – the described experiment setup

and public availability of research dataset convincingly demonstrate the effort applied to

provide the unbiased information. Based on experimental findings by Falleri et al, at

least one technique can be ruled out from further consideration immediately: RTED.

37

Compared to other two, this algorithm has too high time and space complexity and is

not practically applicable to real data. Additionally, it is not able to identify move-

actions, which is a crucial drawback for our target scenario.

This leaves us with two choices: GumTree or ChangeDistiller. Both algorithms

have reference implementations available in public domain (see [34] and [35],

correspondingly), and both have an integrated AST parser for Java language. In the

above-referred study, the authors show the evidence of superiority of GumTree over

ChangeDistiller, in terms of performance and edit script size. In spite of this, there is

another factor that becomes definitive when deciding between two differencing

implementations to be used in the designed fault localization tool: the degree to which it

satisfies the requirements REQ.04, REQ.05, REQ.06. As stated before, requirements

REQ.04 and REQ.05 have less strict versions pREQ.04 and pREQ.05 devised

specifically for building the prototype; on the other hand, requirement REQ.06 is

absolutely essential both for the final product and the prototype. As for REQ.05, data

structure describing the single modification done to AST node must contain all the

necessary information to “replay” the arbitrary set of changes on the original AST.

Likewise, data structure representing the abstract syntax tree extracted by parser should

support operation of applying given set of changes.

Surprisingly, neither GumTree’s nor ChangeDistiller’s APIs were designed with

out-of-the-box support of rolling up selected modifications to original tree in mind. As

of autumn 2017, available reference implementation of ChangeDistiller uses internally a

standalone version of Eclipse compiler called ECJ, which contains an AST parser

module that provides only a read-only view on the tree. Contrary to this, GumTree’s

implementation for Java utilizes standard Eclipse JDT compiler which allows

manipulating the tree [36], but ties its users to Eclipse platform and is thus intended for

development of Eclipse plug-ins, and not standalone applications. Even worse, in both

GumTree and ChangeDistiller implementations, the data structures used as descriptors

of detected AST node changes are purely representational, in the sense that they do not

hold a reference to the instance of modified node itself or its parent node. What they are

is an abstract representation of a change that contains sufficient information for a

developer to visually identify the proper place in the code, but not enough to apply the

change to the tree directly and trigger recompilation.

38

Searching for a way to quickly overcome this impediment for the prototyping

purposes leads to a solution in which the subject of manipulation during delta

debugging phase is, again, source code of the reference program version. Figure 3

shows the descriptor (class SourceCodeChange) of a fine-grained change detected by

ChangeDistiller, together with some of the related classes.

Figure 3. ChangeDistiller’s modification descriptor and related entities

As is seen from the class diagram above, class SourceCodeChange references through

a composition relationship class SourceRange, which stores start and end position of a

changed entity and its parent in the source document. Furthermore, the changes are

classified according to taxonomy, with each change type being assigned a significance

level – exactly as explained in an article by Fluri et al [37]. In total, ChangeDistiller

distinguishes between 48 types of changes (defined as constants in ChangeType

enumeration, not shown on the diagram). Compared to this, the descriptor of GumTree

does not provide any reference to the location of the change in the source code

document. Given the other restrictions described earlier and the roughly estimated effort

of adapting GumTree to satisfy the requirements, it was decided to exclude it from the

further consideration.

2.4. DDFine: A prototypical implementation

This section presents a prototype DDFine created as a practical part of the thesis.

The source code of the prototype is publicly hosted on GitHub and is accessible via

URL http://bit.ly/2zCnTZe.

http://bit.ly/2zCnTZe

39

The prototype implements the workflow described in 2.1. It is written in Java 8

and leverages the Spring Framework ver. 4.3.11 as an IoC container and a provider of

core application services. For smooth dependency management and easy configuration,

Spring Boot 1.5.7 is used. The project is built with Maven; instructions on how to set up

the project locally and run the example can be found on this page: http://bit.ly/2AagbT8.

Application is launched from the command line (REQ.11) and does not require user

interaction (REQ.12).

As a part of Spring application context startup, an initialization of evaluation

context for the current execution takes place. To minimize performance overhead,

almost no specific validation of the input, besides basic checking for presence of

mandatory arguments, is done at this stage; it is expected that all the assumptions listed

in 2.2 hold. The sequence of the actions taken during initialization phase can be

summarized as follows:

1. Using paths to project root of reference and faulty version, build in-memory

representations of both projects’ structure. The prototype works with Maven

projects only and expects that they follow standard hierarchical layout for

multi-module Maven projects.

2. Prepare working directory for conducting a delta debugging session.

Reference version is copied over to the temporary directory and compilation is

triggered via Maven Invoker plugin. Like in the previous step, an in-memory

representation of the project’s clone in the working directory is created and

stored in the evaluation context for the future reference.

3. Using a test method given as input, obtain the original stack trace of the

failure. The faulty version is compiled and a test is executed; the result

(instance of Throwable) is stored in the evaluation context in order to

perform later the exact comparison, as described in REQ.08.

4. Finally initialize a statistics tracker, which is used to gather various metrics

during particular execution. The tracked metrics and a method used to collect

them will be explained in Chapter 3 (Evaluation).

The source code differencing phase begins with comparing reference and faulty

project hierarchies to determine possible structural changes. Only changed directories

and .java files are considered. Consistent with requirement pREQ.01, moving and

renaming of structural entities is not fully supported by the prototype. Instead, all

http://bit.ly/2AagbT8

40

structural changes are initially classified into 5 groups: added files, removed files, added

directories, removed directories, and modified files. The first four types are represented

by data structure MinimalStructuralChange, which is one kind of chunks serving

as input to delta debugging function. Modified files are run through ChangeDistiller

(REQ.02, REQ.06); the detected fine-grained changes are represented by instances of

MinimalChangeInFile – another kind of chunk for delta debugging. No exact

validation for monotony is performed (pREQ.04). However, as a tiny pre-optimization

step, certain types of insignificant changes that cannot possibly contribute to regression

and are not required for compilation are filtered out at this point. Such changes are, for

example, changes in ordinary comments and Javadoc comments.

The central part of the whole solution is, of course, a delta debugging phase.

Searching the Internet for available open-source implementations of delta debugging

algorithm brought up several competing realizations in Java, but upon closer

investigation none of them deemed to be compliant with dd+ definition given in 1.3.2.

Ultimately, the JAR library containing the seemingly proper implementation of dd+

(confirmed by decompiling the library) was found in an archive containing the sources

for Eclipse plugin called DDState: https://www.st.cs.uni-

saarland.de/eclipse/ddstate_sources.zip. The .jar file is extracted and included in /lib

folder of prototype sources (ddcore.jar).

As recalled from Section 1.3.1, each delta debugging trial starts with applying

selected subset of chunks to the reference version stored in working directory. Section

2.3.2 explains why direct manipulation of reference version AST is too difficult at the

moment, and why, as a workaround, it was decided to apply modifications to the source

code of the reference version instead. To meet the requirement pREQ.05, a preliminary

support of 25 types of changes was implemented (out of 48 detectable by

ChangeDistiller). The types of changes, for which modification operators were created,

are selected on the basis of estimated frequency of occurrence in the real projects and

ease of implementation. Here is a table of changes supported by DDFine:

Group Change type Significance

level INSERT STATEMENT_INSERT LOW

REMOVING_CLASS_DERIVABILITY CRUCIAL

https://www.st.cs.uni-saarland.de/eclipse/ddstate_sources.zip
https://www.st.cs.uni-saarland.de/eclipse/ddstate_sources.zip

41

REMOVING_METHOD_OVERRIDABILITY CRUCIAL

REMOVING_ATTRIBUTE_MODIFIABILITY HIGH

INCREASING_ACCESSIBILITY_CHANGE MEDIUM

DECREASING_ACCESSIBILITY_CHANGE HIGH

ADDITIONAL_FUNCTIONALITY LOW

ADDITIONAL_OBJECT_STATE LOW

ADDITIONAL_CLASS LOW

PARAMETER_INSERT HIGH

PARENT_INTERFACE_INSERT CRUCIAL

UPDATE STATEMENT_UPDATE LOW

INCREASING_ACCESSIBILITY_CHANGE MEDIUM

DECREASING_ACCESSIBILITY_CHANGE HIGH

PARAMETER_RENAMING MEDIUM

PARAMETER_TYPE_CHANGE HIGH

METHOD_RENAMING MEDIUM

CONDITION_EXPRESSION_CHANGE MEDIUM

ATTRIBUTE_TYPE_CHANGE HIGH

RETURN_TYPE_CHANGE HIGH

DELETE REMOVED_FUNCTIONALITY HIGH

STATEMENT_DELETE MEDIUM

ALTERNATIVE_PART_DELETE MEDIUM

REMOVED_OBJECT_STATE HIGH

PARAMETER_DELETE HIGH

Table 6. Modification operators supported by DDFine

Due to high complexity and limited time available, no modification operators for move-

related changes were created for the prototype. Minor adaptations were made to

ChangeDistiller to allow for preserving information about positions of inserted nodes.

42

The next step is to compile the resulting code in the working directory and

execute a regression test. Since a full build was already performed during initialization

phase, the subsequent builds are done incrementally. Again, a Maven Invoker plugin is

used to do so. Method execute() of interface

org.apache.maven.shared.invoker.Invoker returns a result of invocation that

contains an exit code. A non-zero value indicates build failure, so that the result of the

trial can be immediately marked as UNRESOLVED. Otherwise, the trial proceeds to

test execution.

To execute a failing test case, a JUnit API class JUnit4TestAdapter is used.

Both the definition of a test class and JUnit runner classes have to be loaded with the

same class loader that does not delegate to the system class loader; the good explanation

of why this is so is given in [38]. The class loader is initialized with URLs of classpath

resources which consist of paths to JUnit library, paths to target/classes and

target/test-classes directories of the project under test, and paths to all external

dependencies needed for building and test execution. To minimize running time, the

paths for external dependencies that are required for the project on which the evaluation

is carried out were collected once using Maven Dependency plugin (mvn

dependency:build-classpath), so that during initialization they are loaded from

the prepared file.

After the test is executed, the working directory is restored to match the reference

version. The result of test execution is compared against the original Throwable

obtained from the evaluation context. In conformance with requirement REQ.07, there

is no differentiation between tests failing due to assertion error or due to the exception.

For the delta debugging phase duration there is established a time limit of 60

minutes (REQ.09). If, by that time, an algorithm did not complete, the process is

interrupted. In either case, the report with results is available to the user (REQ.10). The

report from execution that was terminated due to timeout may contain the failure

inducing change set which is not truly minimal, but it still could be useful enough to

guide the developer to the right place in the code.

The prototype was thoroughly assessed using a dataset collected by the author of

the thesis. The next chapter gives the insights into the details of evaluation process.

43

3. Evaluation

3.1. Research questions

In the process of evaluation, answers to the research questions listed below are

sought. To avoid repetitive statements, each question is assumed to be pertinent in the

context of localizing regression faults under specific circumstances outlined in Section

1.1.1.

- RQ1. What is the effectiveness of the developed technique in comparison with

the textual diff-based approach? Using either of those approaches, how strong

is the possibility to get the 1-minimal failure-inducing change set within at

most 60 minutes of automated debugging?

Answer to this question will give a good understanding of the practical

applicability of delta debugging for our purposes, as well as clarify

whether the modification proposed in this thesis gives any advantage over

‘conventional’ version.

- RQ2. What is the average degree of advancement achievable during

unsuccessful execution caused by timeout? Which approach better reduces

failure-inducing change set within 60 minutes of debugging phase?

This question tackles the problem of applicability at a slightly different

angle. The answer to it shows how useful, in general, delta debugging is.

Even if the attempt was interrupted due to timeout and the returned change

set is not minimal, it is probably still small enough to help conveniently

localize the faulty code.

- RQ3. How performant is the developed solution compared to the one based

on the textual differencing? Does switching the source code differencing and

patching technique alone bring a benefit in terms of statistically significantly

reduced fault localization time?

As was stated earlier, one of the main objectives of this thesis is to develop

a more efficient fault localization technique than that relying on textual

differencing, so answering this question is essential to assess the result of

the effort taken.

- RQ4. Does switching to AST differencing help to promote the consistency of

complete configurations? Does it lead to less unresolved trials?

44

Lack of consistency was identified before as primary reason of delta

debugging performance degradation [1], therefore the percentage of

unresolved cases is another measure of solution’s efficiency.

- RQ5. Does AST differencing produce fewer chunks than textual differencing?

The lower the number chunks to process, the less iterations are needed to

find the minimal set. The computation cost of delta debugging is linearly

dependent on the problem size.

- RQ6. What is the accuracy rate of the developed technique, as measured in

average number of lines of code that a developer has to review manually after

localization is completed? Is it better or worse, compared to the old version?

The point of this question is to clarify if finer-grained differencing leads

also to significantly more precise localization, which is one of this thesis’s

objectives.

- RQ7. Are the results produced by the developed solution generally more

plausible to average developers than the results produced by the old

technique?

Answer to this question will give an idea of how valuable the developed

technique is for the goal of speeding up the process of fixing introduced

regression faults.

3.2. Experimental setup

Already at the beginning of working on this thesis it became evident that samples

for evaluation of the developed prototype will have to be collected manually. Author

carefully inspected two widely known scientific databases containing real faults

gathered from various open-source Java projects – Defects4J [39] and SIR [4] – none of

them turned out to be suitable for experimentation. The main problem with both data

sets is that neither of them stores the information about reference project versions, i.e.

versions that are not yet affected by fault. At best, besides buggy project version, the

test sample also points to the version in which the fault was fixed, but this information

is not useful enough. Moreover, the buggy version provided with the sample is, in most

cases, not the first version where the particular bug was introduced. To sum up, the

existing benchmarks are not targeted for studies concentrating on regression faults.

The alternate way of obtaining sample data – to resort to automated fault seeding

– was briefly considered but discarded because of insufficient evidence that, in the

45

analyzed scenario, such replacement is equivalent to the real fault introduced by

developer. This intuition is supported by the empirical study conducted by Just et al. in

2014 [40], where they conclude that due to the fact that a lot of categories of real faults

cannot in practice be simulated by commonly used mutation operators, the results

derived from evaluating fault localization technique on seeded faults do not generalize

to real faults.

Eventually, the data suitable for analysis was collected from a large-scale project

(500k LoC) the author is closely familiar with. The method used to select sample

revisions consists of two parts. First, the reports from continuous integration tool were

manually monitored over a period of 1 year and observed cases of regression were

tracked down. These cases constitute around 30% of all gathered samples. Another 70%

were retrieved through browsing the history of VCS commits in the project’s source

code repository. Several searches with different keywords were performed, targeted at

finding the revisions with particular commit messages indicating that a commit author

was attempting to deal with the noticed regression. Such indicative keywords are, for

instance, “fix”, “failing”, “failed”, “test”, “tests”, “stest”, “revert”, “rollback”, “ignore”,

“temporarily”, “regression”, and various combinations thereof. Having found these

‘base’ revisions, it was nearly trivial to obtain the corresponding ‘faulty’ and ’reference’

revisions.

The samples were prefiltered in accordance with assumptions specified in section

2.2; those not compliant were eliminated from the selection. Additionally, from the

further consideration were excluded the samples where regression manifested itself in

the failed automated customer acceptance tests, because these tests are too slow to be

invoked repeatedly during delta debugging. Two samples were also removed for the

reason that the AST diffs between reference and faulty version contained modifications

not implemented in the prototype. No other form of preselection was performed.

The total sample size after eliminating unfit examples is 32. This includes both

different faulty revisions and different failed tests within the same revision.

3.3. Statistics tracker and collected metrics

For each execution, the detailed statistical data is gathered using performance

instrumentation via AOP. Data is recorded to the embedded HSQLDB database.

Database is committed to project’s GitHub repository and can be accessed through

46

DataManagerRunner application included into the main codebase. The evaluation-

relevant parameters being tracked are listed in a table below:

 Parameter Relevant to research questions

G
E

N
E

R
A

L
 E

X
E

C
U

T
IO

N
 I

N
F

O

duration of preparation phase RQ3

duration of change distilling phase RQ3

duration of delta debugging phase RQ3

total execution time RQ3

total number of detected structural changes RQ5

total number of detected fine-grained

changes
RQ5

number of detected significant changes RQ2, RQ5

number of lines to inspect after localization RQ6

number of delta debugging trials RQ2, RQ4

outcome (1/0 – registered manually) RQ1, RQ2, RQ6, RQ7

D
IS

T
IL

L

E
D

C
H

A
N

G
E

S

type of distilled change RQ7

path to affected unit RQ7

location in the source document RQ7

D
E

L
T

A
 D

E
B

U
G

G
IN

G

T
R

IA
L

S

outcome of the trial RQ1, RQ2, RQ4, RQ7

distilled changes used in trial RQ1, RQ2, RQ7

duration of preparing working area RQ3

duration of recompiling RQ3

duration of test execution RQ3

duration of restoring working area RQ3

Table 7. Metrics collected for each execution and their relation to research questions

The resulting set is not registered separately; it is derived from the last failed trial.

3.4. Alternate implementation based on textual differencing (DDPlain)

One last point to note before proceeding to results is that for performing the

comparisons suggested by questions in 3.1, the reference textual diff-based

implementation has been built. It relies on the robust google-diff-match-patch library

47

[41] which, in turn, implements Myers difference algorithm. The prototype has

undergone minimal modifications to switch to another source code differencing method;

the core logic stays the same as presented in 2.4. Source code of the alternate

implementation DDPlain is available at URL http://bit.ly/2ixaGta. For each of the

samples collected for evaluation, two tests were performed: one with AST differencing

version, another with version that utilizes plain textual differencing. Below is the report

of experimental findings.

3.5. Results

3.5.1. Overview

All trials were carried out on a PC with Intel(R) Core(TM) i7-4600U CPU @ 2.10

GHz 2.70 GHz, 16 GB RAM, Windows 7 Professional 64 bit. Result of each trial was

reviewed and assessed manually by the author of the thesis. As an aid in assessment of

localization quality, where possible, the matching bug-fixing revisions found in VCS

history were used.

In the subsequent material, the reference version will be shortly referred to as P,

faulty version as P', and bug-fixing version as P''.

Some of the key distinctive features of the data used for evaluation are:

- number of modified paths between P and P': median=6, avg=8, min=2,

max=15

- time between committing P' and P'' to master branch (time spent by a

developer to fix regression): median=138, avg=270, min=14, max=1171

minutes

- number of failed tests per P': 1 to 14

- distribution by nature of failure: unexpected exceptions – 53%, assertion

errors – 47%

- distribution by kind of regression tests: unit tests (all external dependencies

are mocked) – 34,4%, integration tests (“slow”, dependencies are not mocked,

require Spring context initialization and a database with the test data) – 65,6%

- average number of detected changes between P and P': 27

- average number of detected fine-grained changes per modified file: 16

- distribution of fine-grained changes by change group: inserts – 44,7%, updates

– 33,7%, deletes – 21,6%

- distribution of fine-grained changes by exact change type:

http://bit.ly/2ixaGta

48

Figure 4. Distribution of fine-grained changes in the sample data (by type)

3.5.2. Effectiveness (RQ1, RQ2)

Table 8 and Table 9 summarize the combined data for RQ1- and RQ2-relevant

metrics.

Sam-

ple ID

DDFine DDPlain

Outc.

Time

-out?

Perc.

reduc

ed

Targ.

perc.

Red.

per

iter.

Outc. Time-

out?

Perc.

reduc

ed

Targ.

perc.

Red.

per

iter.

08d5e ✔ 97 97 2.14 ✔ 99 99 3.67

20585 ✔ 83 83 0.47 ✔ 42 86 0.16

32c44 ≅ 87 93 0.51 ✔ 92 92 0.31

39e8a ✔ 7 98 0.03 ✔ 13 99 0.13

3d20e ✔ 85 85 0.56 ✔ 97 97 1.73

40dd0 ✔ 0 97 0 ✔ 0 92 0

48a20 ✔ 96 96 2.12 ✔ 99 99 4.40

48fb7 ✔ 82 82 0.56 ✔ 96 96 1.95

50e16 ≅ 87 93 0.62 ✔ 92 92 0.71

Table 8. Overall effectiveness of DDFine and DDPlain on the subject samples

265; 31%

158; 18%

126; 15%

56; 7%

44; 5%

41; 5%

36; 4%

32; 4%

28; 3%

24; 3%

42; 5%

STATEMENT_INSERT

STATEMENT_UPDATE

STATEMENT_DELETE

ADDITIONAL_FUNCTIONALITY

ADDITIONAL_OBJECT_STATE

PARAMETER_TYPE_CHANGE

REMOVED_OBJECT_STATE

METHOD_RENAMING

RETURN_TYPE_CHANGE

CONDITION_EXPRESSION_CHANGE

OTHER

49

Sam-

ple ID

DDFine DDPlain

Outc.

Time-

out?

Perc.

reduc

ed

Targ.

perc.

Red.

per

iter.

Outc. Time-

out?

Perc.

reduc

ed

Targ.

perc.

Red.

per

iter.

543a9 ≅ 86 94 0.62 ✔ 92 92 2.71

5442e ✔ 10 98 0.03 ✔ 13 99 0.13

59c1f ✔ 0 98 0 ✔ 13 99 0.13

5d3fe ✔ 4 98 0.04 ✔ 0 99 0

62b22 ✔ 97 97 2 ✔ 99 99 3.88

65f80 ≅ 89 92 0.59 ✔ 92 92 0.51

6659f ≅ 87 91 1.20 ✔ 51 90 0.28

6ac2b ≅ 87 93 0.68 ✔ 91 91 0.72

771c7 ✔ 83 83 0.47 ✔ 43 86 0.16

8699b ≅ 82 90 0.62 ✔ 99 99 0.59

ad958 ≅ 87 93 0.71 ✔ 92 92 1.13

b0077 ✔ 94 94 1.71 ✔ 81 99 0.61

b4a6a ✔ 38 92 0.08 ✔ 36 95 0.04

c2fef ✔ 0 98 0 ✔ 0 99 0

c3998 ✔ 0 98 0 ✔ 13 99 0.13

c7c12 ≅ 79 81 0.60 ✔ 90 90 0.87

cc542 ≅ 87 93 0.69 ✔ 95 95 0.71

d10e4 ✔ 6 98 0.03 ✔ 13 99 0.14

d34c6 ✔ 94 94 1.81 ✔ 96 96 1.08

d3528 ≅ 89 93 0.80 ✔ 97 97 1.25

dca56 ≅ 87 93 0.70 ✔ 92 92 1.50

fb8bb ≅ 89 90 0.72 ✔ 99 99 0.71

fdc9a ≅ 86 91 0.73 ✔ 92 92 1.02

Table 9. Overall effectiveness of DDFine and DDPlain on the subject samples (continued)

In total, DDFine was able to find minimal failure-inducing change set in 9 cases

out of 32. In 14 more cases (denoted by ≅ sign), the resulting set was quite close to

minimal, only containing 1-2 excessive chunks. Further analysis shows that the cause of

this is that output produced by ChangeDistiller sometimes has some overlapping

50

chunks, i.e. the complete configuration is not completely monotonic. In the rest 9 cases,

DDFine failed to complete delta debugging within 60 minutes and was terminated due

to timeout.

For DDPlain, 19 trials ended successfully: the resulting set had no excessive

textual chunks and could not be minimized further. In all other trials, the execution was

terminated due to timeout. Unlike with DDFine, there were no trials where the resulting

set had only some unnecessary chunks; the outcome was either a complete success or a

complete failure. However, it should be noted here that in half of the “successful”

DDPlain cases, the minimal set spanned more source code lines than the corresponding

set computed by DDFine. This will be further discussed in section 3.5.4.

When comparing two implementations directly, it turns out that if we consider ≅-

cases as successful, too, then in 4 trials DDFine outperformed DDPlain by being able to

produce positive outcome when DDPlain failed completely. There were no opposite

cases. In the remaining trials, either both implementations succeeded, or both failed.

Altogether, effectiveness rate of DDFine is ~72%, while for DDPlain it is about 59%.

Therefore, the answer to RQ1 is: DDFine is generally more effective than DDPlain,

and has slightly better chances to localize minimal failure-inducing change set within

60 minutes of automated debugging.

As for unsuccessful trials, three derived characteristics come into play.

“Percentage reduced” (3rd leftmost column) shows ratio by which it was possible in the

given trial to reduce original set with all detected significant changes. “Target

percentage (4th column) displays the ideally achievable reduction for particular

implementation, from complete set to a minimal. The third characteristic, “Reduction

per iteration” (5th column), is the ratio of eliminated chunks to the total number of

iterations in the particular trial.

To answer RQ2, only the trials that were interrupted due to timeout will be

considered. Among such trials, DDFine, in average, scored only 8% for degree of

achieved advancement, while DDPlain showed an average of 26% reduction (target

percentages shown in tables were normalized to 100%). Therefore, DDPlain is

presumably better at reducing original change set within 60 minutes of automated

debugging.

51

3.5.3. Performance (RQ3-RQ5)

Table 10 and Table 11 show the summary of measurements completed for

comparing the performance of the two approaches. All time intervals are specified in

minutes.

Sam-

ple ID

DDFine DDPlain

Prep.

+ diff

phase

De-

bug.

phase

Total

exec.

time

Perc.

of

unr.

trials

Num.

of sig.

cha-

nges

Prep.

+ diff

phase

De-

bug.

phase

Total

exec.

time

Perc.

of

unr.

trials

Num.

of sig.

cha-

nges

08d5e 27.6 22.4 51.5 0 31 19.6 19.4 40.3 0 62

20585 25.1 43.8 70.2 57 44 25.5 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 72 42

32c44 22.8 15.2 39.4 30 15 19.9 24.5 45.6 41 31

39e8a 22.0 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 88 43 20.6 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 88 119

3d20e 22.3 12.4 36.0 44 12 32.1 14.0 47.3 0 27

40dd0 19.8 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 50 65 20.2 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 98 87

48a20 21.3 15.5 37.7 0 32 45.5 16.7 63.4 0 62

48fb7 21.6 12.9 35.8 42 12 24.9 20.4 47.1 0 27

50e16 22.1 13.7 37.3 33 16 20.5 24.6 46.4 43 33

543a9 22.5 13.5 37.5 31 14 28.7 26.6 56.7 38 26

5442e 22.1 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 87 53 21.0 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 88 109

59c1f 26.8 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 86 40 20.4 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 85 79

5d3fe 28.7 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 84 35 27.5 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 89 119

62b22 24.2 16.5 41.9 0 31 19.4 21.5 42.8 0 70

65f80 23.6 13.4 38.5 37 15 22.9 24.5 48.7 44 25

6659f 21.7 13.1 36.6 29 11 19.5 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 59 30

6ac2b 29.3 16.3 47.4 35 17 26.7 25.1 53.0 40 29

771c7 31.8 53.5 87.1 59 37 23.0 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 76 42

8699b 33.4 18.8 54.3 33 18 19.5 27.1 48.5 39 26

ad958 23.6 16.3 42.0 31 19 19.9 24.6 45.8 48 33

b0077 18.1 18.7 37.9 11 32 28.1 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 52 64

Table 10. Performance-relevant data of DDFine and DDPlain obtained on the subject samples

52

Sam-

ple ID

DDFine DDPlain

Prep.

+ diff

phase

De-

bug.

phase

Total

exec.

time

Perc.

of

unr.

trials

Num.

of sig.

cha-

nges

Prep.

+ diff

phase

De-

bug.

phase

Total

exec.

time

Perc.

of

unr.

trials

Num.

of sig.

cha-

nges

b4a6a 25.5 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 82 26 22.0 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 80 50

c2fef 23.8 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 90 43 32.6 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 86 121

c399

8

33.6 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 86 41 20.2 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 88 85

c7c12 22.5 13.9 37.9 23 16 19.9 24.2 45.7 37 32

cc542 22.7 13.6 37.7 32 15 19.9 24.8 46.0 41 24

d10e

4

24.9 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 87 40 28.3 ̶̶̶̶̶̶̶̶̶ ̶̶̶̶̶̶̶̶̶ 87 99

d34c

6

20.3 15.1 36.4 12 31 19.9 32.1 53.3 37 67

d352

8

22.2 14.1 37.7 24 20 19.6 24.7 45.6 33 23

dca56 24.9 13.9 40.2 36 13 27.4 33.2 62.5 41 19

fb8bb 23.0 13.4 37.9 33 21 28.3 34.2 64.5 39 29

fdc9a 22.7 14.1 38.3 45 12 27.4 24.9 53.6 52 28

Table 11. Performance-relevant data of DDFine and DDPlain obtained on the subject samples (continued)

Durations of three main phases – preparation, differencing, and delta debugging –

were measured separately in order to gain better understanding of effort distribution.

Unexpectedly, for source code differencing phase, the time duration was marginally

small: in average, it took only ~10 seconds for DDFine (ChangeDistiller) and ~7

seconds for DDPlain (Diff, Match, and Patch) to obtain the difference between two

given versions. Therefore, in the tables above, timings of this phase are merged with

timings of preparation phase (1st column, “Preparation + differencing phase”), which is

mainly comprised of I/O operations and compilation. Time duration of delta debugging

phase (2nd column) and total execution time (3rd column) are shown only for trials

which were not interrupted abnormally because of timeout. The total running time

slightly exceeds the sum of phase durations; it also includes the time required for final

clean-up of the working directory.

The mean time required to complete the first two phases for the subject project is

~24 minutes. In principle, these computations could be triggered in parallel by CI build,

so that by the time a regression is detected, a large part of the fault localization work is

already finished.

53

The most relevant values are definitely the durations of debugging phase. The

data collected during executions has the following statistical properties:

Method Percentiles Mean Std.

deviation

Min Max

50% 75% 90% 95% 99%

DDFine 14.1 16.5 22.4 43.8 53.5 18.0 10.0 12.4 53.5

DDPlain 24.6 26.6 33.2 34.2 34.2 24.6 5.1 14.0 34.2

Table 12. Statistical properties of DDFine and DDPlain delta debugging phase duration value sets

From this data it could be inferred that even that in 90% of the cases DDFine was able

to efficiently minimize the failure-inducing change set within as little as 22.4 minutes,

still, at least each 20th execution resulted in extreme duration of debugging phase. The

degree of variability, expressed by sample standard deviation, was almost twice as high

(10.0) as for DDPlain implementation (5.1). In general, DDPlain shows more uniform

distribution for duration of debugging phase and tends to demonstrate more predictable

performance.

Nevertheless, in case of DDFine, the debugging, on average, took considerably

less time (18 minutes) than for DDPlain (24.6 minutes). Based on the statistical

properties of the sample, it could be concluded that the observed difference is

statistically significant (P-value is 0.0128). Consequently, the answer to RQ3 is:

DDFine yielded ~27% statistically significantly better performance than DDPlain.

 To understand the cause of the difference, it makes sense to have a closer look at

the gathered statistical information about delta debugging trials. The time taken by test

re-execution does not depend on the particular technique – on average, it took ~12

seconds between all trials. The same holds for time needed to restore working area after

each debugging trial; this only takes about 11 milliseconds. However, contrary to

intuitive expectation, the mean time required to prepare and recompile working area for

the next debugging trial did not differ significantly between techniques: ~59 seconds for

DDFine and ~52 seconds for DDPlain. The real problem in case of DDPlain was the

total number of trials, which is 63% more than for DDFine. Furthermore, the average

percentage of unresolved trials was also higher for DDPlain (51%), compared with

DDFine’s 44%. So, for RQ4 the answer is: yes, switching to AST differencing has a

positive effect on the consistency of complete configurations.

 The data reveals that the biggest impact on performance stems from the average

problem size. After filtering out the insignificant changes, the complete configuration

54

built by DDFine consisted, on average, of 26.9 chunks, whereas DDPlain’s

configuration had 54.0 chunks, i.e. twice more. In 7 cases out of 32, DDFine was able to

filter out 1-2 chunks irrelevant for fault localization, but this did not affect the problem

size by more than 0.2 chunks. All in all, the definitive answer to RQ5 is that AST

differencing produces approximately twice fewer chunks than textual differencing, this

contributing to the better overall performance of DDFine in comparison with DDPlain.

3.5.4. Accuracy and plausibility (RQ6, RQ7)

For answering questions RQ6 and RQ7, which both aim to assess practical

usefulness of the output produced by the delta debugging technique, two kinds of

evaluation, automatic and manual, were performed. As a basis for comparing the

accuracy of localization, during automated evaluation, for the trials that ended normally

the statistics tracker recorded the number of source code lines that corresponded to the

found minimal failure-inducing set of chunks. After automatic evaluation was

completed, a survey was conducted to determine the perception of results by 3

developers who are familiar with the project codebase. Each participant was asked to

review pairwise the output of DDFine (1) and DDPlain (2) for 19 trials that ended

successfully (i.e. without timeout) for both techniques, and choose the variant that, to

their opinion, more clearly points to the place that has to be fixed (1 or 2,

correspondingly). Optionally, the rater could decide that neither DDFine nor DDPlain

point to the right spot to fix with enough preciseness (↓↓), or that both were equally

good (↑↑). In a few cases where the output of DDFine and DDPlain was identical, only

the last two answer options were made available, and the controls corresponding to the

‘preferential’ answers were disabled. The information about the nature of regressions, as

well as the exact fixes, was provided to the raters beforehand. The assessment was

conducted in a blind manner, i.e. a developer did not know which of the two outputs

was originating from which source (DDFine or DDPlain). Despite that, in many cases

this could be easily guessed from the context, since DDPlain’s output tends to be more

coarse-grained.

Table 13 below summarizes the data gathered for 19 trials that were efficient for

both DDFine and DDPlain:

55

Sampl

e ID

Number of lines to review Voting results by developers

DDFine DDPlain #1 #2 #3

08d5e 1 1 ↑↑ ↑↑ ↑↑

32c44 4 7 1 1 ↓↓

3d20e 1 1 ↓↓ ↓↓ ↓↓

48a20 1 2 ↑↑ ↑↑ 1

48fb7 1 1 ↑↑ ↑↑ ↑↑

50e16 8 14 1 ↓↓ 1

543a9 9 20 1 1 ↓↓

62b22 1 1 ↑↑ ↑↑ ↑↑

65f80 5 9 1 ↑↑ ↑↑

6ac2b 13 11 2 ↓↓ ↓↓

8699b 10 23 ↓↓ 1 ↓↓

ad958 3 5 1 ↑↑ ↑↑

c7c12 4 9 1 1 1

cc542 6 16 1 ↓↓ 1

d34c6 1 1 ↑↑ ↑↑ ↑↑

d3528 19 25 ↓↓ ↓↓ ↓↓

dca56 3 4 1 2 ↑↑

fb8bb 4 12 1 1 1

fdc9a 11 14 ↓↓ ↓↓ ↓↓

Table 13. Accuracy of localization and results of the manual assessment by 3 developers

The mean number of source lines of code that developers had to review was 5.5

for DDFine and 9.3 for DDPlain, so it could be stated with confidence that the accuracy

of fault localization is significantly better when DDFine is used (RQ6). As the

questionnaire shows, this value correlates well with the developers’ perceived

satisfaction with the output to be assessed; if the minimal set spanned more than 10

lines, the raters never considered the result useful. On the contrary, if the output

contained only 1-5 lines, as a rule, it was accepted by a rater as plausible. One

remarkable exception to this is the output for sample 3d20e which was commonly

rejected by all raters in spite of being very short. The reason for this is that the failure-

inducing code was not within the set of modified lines; rather the modification

56

unmasked the previously existing bug. The behavior of the code under test was altered

by adding an invocation to the buggy method that existed already in the earlier program

version, and such unmasking regressions are not detectable in principle by delta

debugging technique. Other than that, it is worth noting that in several cases the output

of DDFine could be even more concise if ChangeDistiller did not fail to return

completely disjoint set of chunks, so there is a potential for further improvement.

In total, the raters performed 3 × 19 = 57 evaluations and reviewed 2 × 19 = 38

outputs each. Table 14 shows the summary of raters’ agreements for the question about

output quality (based on the data from Table 13):

Answer

option

Full

(3/3)

Majority

(2/3)
“1” 2 4

“2” 0 0

↑↑ 4 3

↓↓ 3 2

Table 14. Agreements of the manual assessment by 3 developers

In 2 / 19 (10.5%) of evaluation items, the raters fully agreed that DDFine produced

better output than DDPlain. In 4 / 19 (21.1%) more cases, the majority of the raters

considered DDFine’s output to be better than that of DDPlain. There were no items

where at least the majority of developers would prefer the output of DDPlain. For (4 +

3) / 19 (36.8%) evaluation items, at least 2 of 3 developers decided that the output of

DDFine and DDPlain is equally good, whereas in (3 + 2) / 19 (26.3%) items at least 2 of

3 raters considered the output to be equally bad. The overall agreement �̅� between raters

was 0.632, which indicates substantial degree of agreement. The Kappa coefficient κ

(fixed-marginal multirater kappa), which shows the confidence level of the observed

degree of agreement, was 0.464, which clearly indicates that the agreement is above

chance. To conclude, there is statistically significant evidence that the results produced

by DDFine are, to a certain extent, more plausible to average developers than those

produced by DDPlain (RQ7).

57

4. Conclusions and future work

4.1. Discussion

Overall, the implementation of delta debugging algorithm that relies on the output

of AST differencing convincingly demonstrated the superiority over conventional

version that utilizes textual differencing. The improvements were achieved in terms of

effectiveness, performance, accuracy of fault localization, as well as plausibility of the

output. Unlike in previous studies on delta debugging technique, which took a broad

view of its applicability, current work focuses on one particular use case scenario

involving the localization of regression faults introduced during integration of

individual developer’s changes into a shared mainline. The comparative evaluation

conducted using 32 randomly selected real examples of regression inducing commits to

the source code repository showed promising early evidence of the practical

applicability of the technique in question for the purpose of aiding developers in finding

problematic changes. The proof-of-concept prototype built in this work may serve as

foundation for creating elaborated framework targeted at efficient localization of

regressions, and the findings reported in the Chapter 3 of this thesis justify the choice of

tree differencing as the recommended source code differencing method to be used by

such a framework.

It could be argued that instead of dealing with consequences that arise from

tampering the main body of code with buggy changes, the development team could

concentrate on preventive measures and switch to safer development and integration

practices. One competitive alternative to trunk-based development (or, TBD) is feature-

based workflow, which, in its simplest form, involves creating a separate branch for

working on particular feature and initiating a pull request once the work is completed.

Direct commits to mainline can be disallowed altogether; merging process might force

mandatory preliminary integration of changes from the mainline into feature branch,

running the complete test suite, and having someone to review and approve the changed

code. More complex variations of this workflow, like GitFlow model [42], prescribe the

exact branching scheme encompassing not only a development, but also a release

management process. Although such course of action naturally influences the

developers to put more effort into stabilizing the code before integrating their changes

into the main development branch and significantly lessens the risk of code quality

deterioration, it comes with its own cost and cannot be universally recommended for

58

each type of project and every development team. Thus, for example, in one web article

comparing and contrasting TBD and GitFlow, it is stated that GitFlow is ill-suited for

teams consisting mostly of senior developers, since the infrastructure and overhead

costs would probably outweigh the potential benefits [43]. In addition to that, thesis

author’s personal experience shows that introducing a new branching model in the large

(>50 contributors) and diverse development team is associated with major initial loss of

productivity and negative attitude of many team members who find themselves

struggling with the learning curve of the new process and feel that this impacts their

performance. In any case, switching the development workflow in order to get relief

from the broken builds does not seem to be a decent strategy in a situation when the

project is under high time pressure and development speed is of a main concern.

Another option to consider requires even more radical change to the established

development process, and therefore would work best for ‘greenfield’ projects: the

adoption of TDD practices. In conjunction with applying systematic regression test

selection techniques, like those described in the 2011 article by Cibulski and Yehudai

[44], this could allow to detect up to 90% of the bugs, while having to run locally only a

tiny part of the whole test suite each time a code change is made. The main argument

against this approach is that acceptance of TDD style alone demands considerable mind

shift among the team who is not accustomed to using it daily, so it hardly could be

envisioned as a quick and efficient solution to the stated problem.

Referring back to the prototypical implementation created as a practical part of

this thesis, there are many more concerns left to address before attempting to turn it into

a ready-to-use product. There are also certain doubts regarding generalizability and

correctness of the obtained evaluation results. The rest of this chapter’s sections shortly

summarize the factors that could have an effect on the derived conclusions and outline

the possible directions for future research.

4.2. Threats to validity

The main obstacle to generalizability of presented results is the fact that the

evaluation was performed using examples collected from a single closed source project

and the data used is not available to the general public for review. Although the thesis’s

author recognizes the usage of trunk-based development and continuous integration in

the analyzed project as typical, there remains a risk that the code integration practices

materialized in evaluation items are to some extent affected by the team-specific habits

59

and conventions, which might lessen the value of this work for the broad audience. The

proper way to mitigate this risk would be, of course, to carry out extended evaluation

involving examples taken from various open-source projects, but due to time limitation

it is impossible to conduct additional tests for the purpose of this thesis.

Apart from concerns about general applicability of the drawn conclusions to other

contexts, there also remains a certain level of uncertainty about the absolute correctness

of both prototypes. As is mentioned in section 2.4, those interested in further

development of automated debugging techniques currently face the problem of lack of

openly available reference implementation of dd+ algorithm. The library used in the

built prototypes originates from the dd+ author’s web page, but it is not confirmed to be

fully compliant with the optimal workflow sketched in 1.3.2. It could be useful to re-

implement the algorithm from scratch and redo the evaluation using the same test data.

Although it is not expected that the outcome of direct comparison would be principally

different (i.e. in favor of the version based on textual differencing), there might be some

improvement in absolute measures of performance and effectiveness of both prototypes.

Similarly to what was stated above, another factor that could possibly affect the

correctness and impact the measured values are the flaws in ChangeDistiller library and

imperfection of realized modification operators. When evaluating DDFine, the author

manually analyzed several cases characterized by unusually high number of unresolved

debugging iterations. In all cases, the underlying cause of the problem was the inability

of ChangeDistiller to discover changes in generic type arguments in the parameterized

types used as method return types, which led to compilation failures. Yet another issue

is related to specifics of manipulating changes in control flow statements. Consider the

following simple example:

Figure 5. Example of problematic handling of changes in if-then-else blocks

Provided that both if-then-else statements belong to the same parent node in the AST of

the program and are correctly identified as matching nodes by ChangeDistiller, the latter

will output two inserted nodes as the result of differencing: a node corresponding to

60

else-if branch and a node corresponding to else branch. Both nodes are treated as

independent chunks during debugging phase, and can end up in the different subsets.

Now, if we try to insert only the else branch and do it in a naïve way, without

considering the change in semantics of else-statement in the absence of preceding else-if

block, we will inadvertently modify the control flow of the program and get a new

version which is semantically not a result of incremental application of selected changes

to the original version. The new else branch will be executed each time when a <= 10,

whereas the original else was triggered when a < 0. As a consequence, delta

debugging algorithm might not be able to discern the minimal set or could even include

in the output the chunks totally irrelevant for the failure. All this suggests that, as was

anticipated, the simplistic approach taken in the PoC prototype does not take into

account all nuances of a complex OOP language, and for the final product some form of

pre-normalization of ‘distilled’ chunks has to be implemented.

4.3. Future work

Due to the unexpected impediments described in 2.3.2 and lack of suitable ready-

to-use benchmarks, the initially planned scope of this work had to be adjusted and a

number of interesting optimization tricks was left for future experiments. Among the

most promising ideas are to group interdependent changes into larger logical chunks

(using libraries that provide automated refactoring support for Java) and exclude the

chunks irrelevant for the failure by using code coverage information collected during

execution of a failing test. Grouping promotes the consistency of configurations, leading

to a smaller number of unresolved test outcomes, and pre-filtering of groups reduces the

total problem size for delta debugging. Applying both measures together might have a

tremendous positive effect on performance and effectiveness of the technique.

One of the most important challenges to overcome in the future DDFine versions

is proper realization of applying tree edit operations to the abstract syntax tree. As was

discussed in 2.3.2, neither of the suitable libraries for calculating tree edit scripts

currently has out-of-the-box support for this functionality. Adaptation of a chosen

library for that purpose is a relatively time-consuming task; for instance, the rough

estimate of the total time required to adapt ChangeDistiller is 5000-7000 man-hours.

Finally, it would be useful to conduct a separate study devoted to investigating the

real effects of using automated debugging tools on the overall productivity of

development team. Contrary to intuitive belief that minimizing the number of changes

61

to review to only a tiny subset will lessen the total time spent on fixing a regression

fault, this might not always be the case. Fixing the regression bug rarely means simply

reverting the affected code parts, the context of change is also important. Moreover,

there are other factors influencing the success of applying fault localization aiding

techniques, like developer’s level of experience, familiarity with project codebase,

quality of automated tests, etc. Since most of those characteristics are not directly

measurable, deriving an optimal strategy for making decision over suitability of delta

debugging for the particular project is a good candidate for further research.

62

References

[1] A. Zeller, "Yesterday, my program worked. Today, it does not. Why?," in Software

Engineering—ESEC/FSE’99, Springer Berlin Heidelberg, 1999.

[2] D. Qi, A. Roychoudhury and Z. Liang, "DARWIN: An Approach to Debugging

Evolving Programs," ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 21, no. 3, p. [Article 19], 2012.

[3] R. Just , D. Jalali and M. D. Ernst, "Defects4J: A database of existing faults to

enable controlled testing studies for Java programs," in Proceedings of the 2014

International Symposium on Software Testing and Analysis, ACM, 2014.

[4] "Software-artifact Infrastructure Repository," [Online]. Available:

http://sir.unl.edu/portal/index.php. [Accessed 6 May 2017].

[5] "Comparison of continuous integration software - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software.

[Accessed 18 March 2017].

[6] K. W. Collier, in Agile Analytics: A Value-Driven Approach to Business

Intelligence and Data Warehousing, Boston, Addison-Wesley, 2011, p. 281.

[7] "Multitasking: Switching costs," [Online]. Available:

http://www.apa.org/research/action/multitask.aspx. [Accessed 19 March 2017].

[8] "The Invisible Problem Wrecking Your Productivity And How To Stop It,"

[Online]. Available: http://blog.trello.com/why-context-switching-ruins-

productivity. [Accessed 19 March 2017].

[9] M. Fowler, "Continuous Integration," [Online]. Available:

https://martinfowler.com/articles/continuousIntegration.html. [Accessed 19 March

2017].

[10] "Build Failure Analyzer," [Online]. Available: https://wiki.jenkins-

ci.org/display/JENKINS/Build+Failure+Analyzer. [Accessed 19 March 2017].

[11] "Trunk Based Development: Observed habits," [Online]. Available:

https://trunkbaseddevelopment.com/observed-habits/#powering-through-broken-

builds. [Accessed 20 March 2017].

[12] M. Fowler, "PendingHead," [Online]. Available:

https://martinfowler.com/bliki/PendingHead.html. [Accessed 20 March 2017].

[13] "Build Pattern: Gated Commit," [Online]. Available:

http://osherove.com/blog/2013/1/20/build-pattern-gated-commit.html. [Accessed

20 March 2017].

63

[14] M. Monperrus, "Automatic Software Repair: a Bibliography," Unitversity of Lille,

2015.

[15] W. E. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, "A survey on software fault

localization," IEEE Transactions on Software Engineering, vol. 42, no. 8, pp. 707-

740, 2016.

[16] F. Y. Assiri and J. M. Bieman, "Fault localization for automated progam repair:

effectiveness, performance, repair correctness," Software Quality Journal, pp. 1-29,

2016.

[17] R. Santelices, J. A. Jones, Y. Yu and M. Harrold, "Lightweight fault-localization

using multiple coverage types," in Proceedings of the 31st International

Conference on Software Engineering, IEEE Computer Society, 2009.

[18] "GenProg | Evolutionary Program Repair," [Online]. Available:

http://dijkstra.cs.virginia.edu/genprog/. [Accessed 3 March 2017].

[19] C. Le Goues, M. Dewey-Vogt, S. Forrest and W. Weimer, " A systematic study of

automated program repair: Fixing 55 out of 105 bugs for $8 each," in 34th

International Conference on Software Engineering (ISCE), IEEE, 2012.

[20] Z. Qi, F. Long, S. Achour and M. Rinard, "An analysis of patch plausibility and

correctness for generate-and-validate patch generation systems," in Proceedings of

the 2015 International Symposium on Software Testing and Analysis, ACM, 2015.

[21] E. K. Smith, E. T. Barr, C. Le Goues and Y. Brun, "Is the cure worse than the

disease? Overfitting in automated program repair," in Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, ACM, 2015.

[22] M. Martinez, W. Weimer and M. Monperrus, "Do the fix ingredients already exist?

An empitical inquiry into the redundancy assumptions of program repair

approaches," in Companion Proceedings of the 36th International Conference on

Software Engineering, ACM, 2014.

[23] M. Martinez and M. Monperrus, "ASTOR: A Program Repair Library for Java," in

Proceedings of ISSTA, Demonstration Track, 2016.

[24] "Symbolic execution - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Symbolic_execution#Path_Explosion. [Accessed 22

March 2017].

[25] A. Zeller, "Simplifying and Isolating Failure-Inducing Input," IEEE Transactions

on Software Engineering, vol. 28(2), pp. 183-200, 2002.

[26] "Four Phase Test at XUnitPatterns.com," [Online]. Available:

http://xunitpatterns.com/Four%20Phase%20Test.html. [Accessed 24 October

2017].

64

[27] "Parse tree - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Parse_tree. [Accessed 14 November 2017].

[28] "Abstract syntax tree - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Abstract_syntax_tree. [Accessed 14 November 2017].

[29] "Diff utility - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Diff_utility. [Accessed 15 November 2017].

[30] S. Chawathe, A. Rajaraman, H. Garcia-Molina and J. Widom, "Change detection in

hierarchically structured information," ACM SIGMOD Record, vol. 25, no. 2, pp.

493-504, 1996.

[31] M. Pawlik and N. Augsten, "RTED: a robust algorithm for the tree edit distance,"

in Proceedings of the VLDB Endowment, 5(4), 334-345., 2011.

[32] G. Dotzler and M. Philippsen, "Move-optimized source code tree differencing," in

Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering, Singapore, 2016.

[33] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez and M. Monperrus, "Fine-grained

and Accurate Source Code Differencing," in Proceedings of the International

Conference on Automated Software Engineering, Västeras, Sweden, 2014.

[34] "GumTreeDiff/gumtree: A neat code differencing tool," [Online]. Available:

https://github.com/GumTreeDiff/gumtree. [Accessed 19 November 2017].

[35] "sealuzh / tools-changedistiller / wiki / Home - Bitbucket," [Online]. Available:

https://bitbucket.org/sealuzh/tools-changedistiller/wiki/Home. [Accessed 19

November 2017].

[36] "Eclipse Corner Article: Abstract Syntax Tree," [Online]. Available:

http://www.eclipse.org/articles/article.php?file=Article-

JavaCodeManipulation_AST/index.html. [Accessed 19 November 2017].

[37] B. Fluri, M. Würsch, M. Pinzger and H. C. Gall, "Change Distilling: Tree

Differencing for Fine-Grained Source Code Change Extraction," IEEE Transaction

on Software Engineering, vol. 33, no. 11, pp. 725-743, 2007.

[38] "java.lang.Exception: No runnable methods exception in running JUnits - Stack

Overflow," [Online]. Available: https://stackoverflow.com/a/29865611. [Accessed

27 November 2017].

[39] "rjust/defects4j: A Database of Existing Faults to Enable Controlled Testing

Studies for Java," [Online]. Available: https://github.com/rjust/defects4j. [Accessed

29 November 2017].

[40] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes and G. Fraser, "Are

mutants a valid substitute for real faults in software testing?," in Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Software

65

Engineering, Hong Kong, 2014.

[41] "google-diff-match-patch - Google Code Archive," [Online]. Available:

https://code.google.com/archive/p/google-diff-match-patch/. [Accessed 1

December 2017].

[42] "Introducing GitFlow," [Online]. Available:

http://datasift.github.io/gitflow/IntroducingGitFlow.html. [Accessed 22 December

2017].

[43] "Git Flow vs. Trunk Based Development," [Online]. Available:

https://www.toptal.com/software/trunk-based-development-git-flow. [Accessed 22

December 2017].

[44] H. Cibulski and A. Yehudai, "Regression Test Selection Techniques for Test-

Driven Development," in 2011 IEEE Fourth International Conference on Software

Testing, Verification and Validation Workshops, Berlin, 2011.

