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Introduction

Materials with microstructure have been in use throughout the history of human civil-
isation: wood and marble in earlier times, followed by alloys, crystallites, ceramics,
composite and functionally graded materials later. It is possible to claim that in re-
ality solid matter has always some sort of microstructure. Surely, the first humans
who grabbed for sticks and rocks did not understand the character of microstructure
of primitive instruments they used. As our technological applications become more
sophisticated, the ideas of better usage of microstructure of materials are also grow-
ing thanks to better understanding of the behaviour of materials. Human civilisation
has after all significantly advanced since sticks and rocks and many new materials
are nowadays designed bearing in mind the microstructure in them.

The driving force for the present study is to understand better the wave propaga-
tion in nonlinear materials with microstructure. The Mindlin—-Engelbrecht—Pastrone
model, a nonlinear dispersive model with microstructure taken into account through
microstructure-related parameters [12, 13, 14, 28, 29], is used where from the full
system of equations (FSE) a hierarchical equation (HE) is derived by making use of
the slaving principle. The main motivation for comparison of the FSE and HE so-
lutions, which forms the core of the second half of the present work, is related to
possible practical applications in the nondestructive testing of microstructured mate-
rials, although the present study is purely theoretical.

The results of the present thesis are presented in six scientific papers. In Publications
1-111 [46, 47, 48] the HE solutions are investigated. In Publications IV-VI[38, 49, 50]
the HE and FSE solutions are investigated and compared.

Several papers by other authors must be highlighted as highly relevant in the context
of the present work. In [13] the foundation of the Mindlin—Engelbrecht—Pastrone
model is formulated. In [12] the detailed derivation process as well as dispersion
analysis and discussion about the acceptable level of simplifications for the model
are presented. In [28, 29] the inverse problem for the HE is investigated, the con-
ditions necessary for the existence of the solitary wave solution are derived and the
asymmetry of solitary waves as a result of nonlinearity in microstructure is described.
This forms the main foundation for solving numerically the HE and FSE and for in-
vestigating the differences between the FSE and HE solutions. The study [37] must
be mentioned as the main motivation for defining ‘combined parameters’ yj and }/12
in the same way as it is done for the dispersion analysis of the Mindlin—Engelbrecht—
Pastrone model.

The thesis is organized as follows. Section 1 starts with the description of the his-
tory of solitons and solitary waves and ends with a short list of famous equations
with terms needed for the formation of solitons. Section 2 describes microstruc-
tured material models in general and introduces the Mindlin—Engelbrecht—Pastrone
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model. Section 3 contains the statement of the problem as well as the description
of the numerical scheme. In Section 4 results are presented, followed by discussion.
Conclusions can be found in Section 5.
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1. Solitary waves and solitons

The past few centuries can be seen as a triumph of linear physics. Starting with
Maxwell’s equations, quantum mechanics with its superposition principle and mathe-
matical tools of physics like Fourier transform, perturbative expansions plus other in-
trinsically linear methods are the best known examples. On the other hand, it is clear
that nonlinear phenomena cannot be discarded without losing description accuracy
in many models, for example, in Navier—Stokes equations, gravitational theory and
collective effects arising from the interaction between particles in solid state physics.
In the past half-century significant progress has been made in the understanding of
nonlinear phenomena. For example, concepts of the strange attractor and the soliton,
both being properties of nonlinear systems, were introduced. The strange attractor is
linked to the idea of chaos in a system which is described by deterministic equations,
usually with a relatively low number of degrees of freedom. Solitons, on the other
hand, tend to appear in systems a with relatively large number of degrees of freedom.
So it is apparent that adding degrees of freedom to the system does not always make
the behaviour of that system more complex. Collective effects can lead to spatially
coherent structures, which result in self-organization. One of the remaining open
questions is the coexistence of coherent structures and chaos in nonlinear systems

[91.
1.1. History

When writing about the history of solitons or solitary waves it is not possible to skip
John Scott Russell’s observations in 1834. John Scott Russell, a hydrodynamic en-
gineer, was riding his horse along a canal near Edinburgh and saw ‘the great solitary
wave’, which he followed for a few miles before losing it in the meanders of the
canal. He dedicated 10 years of his life to studying this phenomenon. Theoretical
understanding of John Scott Russell’s observation emerged in 1895 with derivation
of the Korteweg—de Vries (KdV) equation. It should be mentioned that this equation
was in implicit form also described in the earlier study of Joseph Valentin de Boussi-
nesq that was published in 1872. Because of its remarkable mathematical properties
(the simplest model equation capable of solitonic solutions), the KdV equation can
be considered as one of the prototype equations of soliton theory. Many nonlinear
equations can have solitonic solutions like, for example the Boussinesq equation,
the sine-Gordon equation and the nonlinear Schrodinger equation from the selec-
tion of more classical ones. The ‘rediscovery’ of solitary waves in modern physics
was in 1965, when John Zabusky and Martin David Kruskal investigated the Fermi—
Pasta—Ulam problem (proposed a decade earlier by the named persons) [9, 10]. The
Fermi—Pasta—Ulam problem deals with the question of how a one-dimensional crys-
tal evolves towards the thermal equilibrium. When the first computers became more
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accessible this problem was studied numerically by using a relatively simple model
of a chain of particles, linked by the quadratic interaction potential, but also by weak
nonlinear interaction and with fixed ends. One of the consequences of the numeri-
cal experiment was the rediscovery of the KdV equation at the continuum limit, and
Zabusky and Kruskal coined the term ‘soliton’.

A significant amount of the studies on solitons or solitonic structures in non-
integrable systems are nowadays numerical. A possibility of finding exact analytical
solitonic solutions for corresponding equations remains a rarity even with modern
mathematical methods.

1.2. Solitons

A soliton can be described as a stable particle-like state of a nonlinear system [10].
Another way of describing the phenomenon we call soliton is through its properties.
A soliton is a wave in the nonlinear environment that (1) has a stable form, (2) is lo-
calized in space and (3) restores its speed and structure after interaction with another
soliton [11]. Solitons emerge when there is a balance in the system between disper-
sive and nonlinear effects. In essence it can be said that solitons are nonlinear waves
that behave between interactions like linear waves. A solitary wave is usually a wave
in the nonlinear environment where all the key properties of solitons are not strictly
fulfilled. For example, if the interaction between two waves is not entirely elastic (or
it is not possible to observe the interaction) or if the form of the wave is not suffi-
ciently stable in time, then the wave is often called a solitary wave to distinguish it
from the soliton.

In the context of this work solitons (and solitary waves) are understood through the
three observable properties mentioned before [11]. As the interactions between soli-
tary waves are not fully elastic, in the present work the term ‘solitary wave’ is mostly
preferred, although in many cases the distortions from the interactions over shorter
integration intervals are small enough, so that the stronger term ‘soliton’ could be
used.

1.3. Solitonic equations

The KdV equation
Uy + Uty + Uy = 0 (D

is probably the best-known equation with solitonic solutions. It has the simplest
terms needed for solitonic solution — a nonlinear term uu, and a dispersion term
. The subscript x denotes the spatial partial derivative (often noted by & in the
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moving frame of reference) and subscript # (often noted by 7 in the moving frame of
reference) — a partial derivative with respect to time. Here the usual coefficients
have been discarded. There are many fields in physics where the KdV equation
emerges in addition to the shallow water waves for which it was initially derived.
For example, the atomic lattice model in the Fermi—Pasta—Ulam problem or acoustic
solitons in plasmas. Some modifications of the KdV equation have mixed derivatives
in the dispersive term like, for example, the Benjamin—Bona—Mahony equation [1] or
higher-order derivatives in addition to usual ones like, for example, the modifications
of the KdV equation presented in papers [7, 27, 40, 45].

The Boussinesq equation
Uy — Uxx — uix — Uy = 0 (2)

emerges, for example, in shallow water theory and when dealing with nonlinear lat-
tices. The usual coefficients have here also been discarded. Equation (2) is one of
the simplest model equations which can have solitonic solutions that travel in op-
posite directions. When dropping nonlinearity and dispersion from the Boussinesq
equation, all that is left is the classical wave equation.

The sine-Gordon equation
Uy — Uy = sin(u) 3)

is the third of the classical models with solitonic solutions. It emerged from the field
theory. This equation (or some of its modifications) is usually involved when topo-
logical solitons are present. The sine-Gordon equation emerges, for example, when
dealing with Josephson junctions, moving of dislocations in crystals or behaviour of
some of the elementary particles.

The nonlinear Schrodinger equation
uxx—&—iu,—l—\u\zu:O @)

is the fourth of the classical model equations where solitonic solutions are possible.
In equation (4) u is a complex function. It appears in many areas of physics, for
example in nonlinear optics, heat transfer in solids, superconductivity and plasma
physics, to name a few. The nonlinear Schrédinger equation usually gives rise to the
envelope solitons [10].

In a nutshell, the nonlinearity tries to make the wave steeper, while the dispersion
tries to smear the wave over a wider area. Thus it is possible that if the nonlinear
and dispersive effects balance each other, then solitary waves and solitons can exist
in such a system.

The KdV equation (1) is an evolution equation or a so-called one-wave equation,
while the Boussinesq equation (2) is a two-wave equation like the classical wave
equation, i.e., it describes waves moving to the right and left. The analysis of the
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KdV equation has revealed many important features of solitons, but not all. The
Boussinesq equation (2) permits us to analyse also the soliton emerging process,
including trains moving to the right and to the left, ‘head-on’ collisions of solitons,
etc. This is why in this thesis attention is devoted to two-wave models.

16



2. Mathematical models of microstructured materials

The microstructure in a material causes dispersive and dissipative effects. Micro-
structured materials can be characterized by existing space-scales in the matter like,
for example the lattice period, the size of the grain or the distance between micro-
cracks, which introduce a scale dependence into the governing equations (see, e.g.,
[12, 17, 34]). As mentioned earlier, when we have dispersive as well as nonlinear
effects and if these two effects are in balance, solitons and solitary waves can exist
in such media. Solitary wave type solutions are of special interest as under sui-
table material parameters they tend to maintain their shape relatively well and thus it
might be possible to extract information about material parameters by examining the
solitary wave after it has propagated for some distance through the material (see, for
example, [28]).

2.1. Microstructured material models

Two ubiquitous ways can be used when dealing with material models: the discrete
approach and the continuum approach.

In the discrete approach one starts usually from lattice theory (see, for example, [2,
34, 35]) and treats volume elements of matter as point masses with some distribution
over the whole scale and some interaction laws between those point masses. The
simplest model would be a 1D infinite chain of particles connected by springs (often
known as the Born—Karman model).

In the continuum approach it is possible to distinguish between two approaches (see
[35] and references therein). The first is to model each microstructural component
separately through the classical continuum theory (i.e., microstructure is considered
as inhomogeneous classical continuum). The second approach is to use homogeneous
continuum and to take into account the influence of the microstructure as an averaged
quantity. In the second case further segmentation is possible, depending on the way
how the averaged influence of the microstructure is taken into account:

e A phenomenological approach where additional terms are added to the energy
functional or to the constitutive relation.

e A statistical approach where from an inhomogeneous classical continuum aver-
age values of the state parameters are computed to give enhanced field equati-
ons.

e A continualization approach where starting from a discrete model a continuum
model is retrieved.
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In the classical continuum view one starts with some conservation laws and ends up
with a solid composed of volume elements dV, with some physical properties in each
material volume being defined [15, 16, 33, 36].

From the viewpoint of the microstructure the implementation of the discrete approach
is relatively simple. It is usually sufficient to take two or more different ‘particles’ in
the lattice model and microstructure-related effects emerge naturally in the governing
equations. A straightforward way of dealing with the microstructure in continuum is
assigning some additional degrees of freedom to each material volume dV. In the
present work the separation of the macro- and microstructure is preferred, allowing
either formulating conservation laws for both structures separately [15, 16, 36] or
taking microstructural quantities into account in one set of conservation laws [33].
When separating the macro- and microstructure it is possible to consider both struc-
tures inertial (as done in [15, 16, 36]) or to suppose that microstructural quantities
behave non-inertially, which, in turn, leads to the formalism of internal variables (as
done in [33]). Even when separating the micro- and macrostructure there are many
ways to choose the degrees of freedom. For example, allowing deformations of the
microstructure results in the Mindlin model, while keeping the microstructure rigid
but allowing rotational degree of freedom results in the Cosserat model [8, 23].

2.2. Mindlin—Engelbrecht—Pastrone model

In the present work a model derived by Engelbrecht and Pastrone [12, 13, 14, 28, 29]
is applied to describe wave propagation in nonlinear dispersive media with micro-
structure. The model is based on Mindlin’s and Eringen’s earlier works [15, 16, 36].
In this model the microelement is taken as a deformable cell with an additional as-
sumption that the deformation gradient is small, thus allowing one to express mi-
crodeformation in terms of macrodisplacement. Balance laws are formulated sepa-
rately for the macro- and microscale. In order to clarify the principal essence and the
role of the parameters of the model, we repeat here the basic steps of modelling.

In the 1D case the Lagrangian L is expressed as follows:
Loy, 1,9
L:K_Wa Kzzput—’—zl(pt’ W:W(ux:(Pv(Px)' (5)
Here K is the kinetic energy, ¥ is the free (potential) energy, / is the microinertia,

¢ is the microdeformation, u is the macrodisplacement, p is the macroscale density,
and partial derivatives are denoted by subscripts.

Equations of motion are derived by making use of Euler-Lagrange equations

JdL JL oL JL JL JL
(a—m)ﬁ(aux);v“ (a—@)ﬁ (awx);%:“ ©

18




resulting in

aw aw ow
pus — (a_ux)xzo’ Iy — (a—%)x+%:07 (7
where partial derivatives
oW oW )4
0_8_ux’ n—a—%, T—%, (8

can be interpreted as follows: ¢ as the macrostress, 1 as the microstress and 7 as the
interactive force. Equations of motion can be then presented in the familiar form

puy = Ox, 1Q; =1 —1. 9)

In order to take into account the nonlinearity in the micro- and macroscale, one can
write the free energy as

N, M
—ui-l-g(p)?. (10)

A B C
W=+ 5(P2+ 5‘P3+D(Pux+ G

2 X
Here A,B,C,D are material parameters responsible for the linear part of the model
and N, M are responsible for the nonlinearity in the macro- and microscale, respec-
tively [28, 29]. Making use of the free energy function (10) and the governing equa-
tions derived through the Euler-Lagrange equations, one arrives at equations of mo-
tion

puy = D(Px + Aty +Nuxux,\'a

)
1oy = COp + M@y — Bo — Du,.
For further analysis dimensionless variables and parameters
At I U,
X:i, T:L, U:l, §="2, =2 (12)
L, VPLo U, L2 L,

are introduced [28, 29]. Here U, and L, are the amplitude and the wavelength of the
initial excitation, and /, is the characteristic scale of the microstructure. In the 1D
case above we have 11 different parameters — 8 of them are material (6 free energy
parameters, macroscale density and microinertia) and 3 are geometrical (the ampli-
tude and the wavelength of the initial excitation and the scale of the microstructure).
Making use of change of variables (12), one arrives at dimensionless equations of
motion

DL NU,
Urr = TUOQ)X + TLOUXUXX + Uxx,
0 0 (13)
Cp BpLy = DpUsL,,, . Mp

QDTT:ZQDXX— 17 ¢ 17 X+E§DX(PXX-
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Equations (13) are referred to as the full fystem of equations (the FSE for short)
below. Making use of the slaving principle (see [12] for details) allows one to derive
a single equation in terms of macrodisplacement U from the FSE:

e
UTT—bUXX—%(U)Z()X:(S (BUTT_VUXX"" TU)%X> . (14)
XX
Equation (14) is hierarchical in Whitham’s sense [14, 51]. In terms of deformation

V' = Uy equation (14) can be expressed as

V5
Vir — bVXX — % (Vz)XX =0 (ﬁVTT - }/Vxx+ T (Vx)§{> . (15)
XX

Constants in equations (14) and (15) in terms of material and geometrical parameters
" p*  NU, , ID* _ CD? L= D*MU, 16
wHean P v ape - ape, (19
Equations (14) and (15) can be considered as an approximation of the FSE (13) and
are referred to as the hierarchical equations (HE) below. The HE in deformation
terms (15) is used in the part of the thesis dealing only with the HE, while the HE
in displacement terms (14) is used in the part of the thesis where both the FSE and
HE are solved under the same material and geometrical parameters. A characteristic
feature of the investigated governing equations (equations (13), (14) and (15)) is that,
unlike the evolution equations, these describe two waves instead of one. This gives us
an opportunity to analyse also head-on collision of waves. Furthermore, according
to [5], the HE (14) and (15) are of Boussinesq type and therefore one can expect
solutions of soliton type.

b=1-

In the present thesis equations (13), (14) and (15) are used for the numerical simula-
tion of wave propagation in microstructured solids.

2.3. Combined parameters

Three combined parameters are used. Parameters yj and ylz combine the linear parts
of the material parameters [12, 37] describing macro- and microstructure and inter-
action between those

D? y pC
szl—bzﬁa 712232%7 (17)
while parameter yy is related to nonlinearity
A DM
== . 18
W L BND (18)

Parameters b, 7, B, 1 and A are defined by expressions (16).
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2.4. Dispersion

The dispersion type for the HE can be determined by the sign of quantity (see [12]
for details):

Ir=1l-7-7% (19)

One can interpret ¥; as dimensionless speed of short waves and (/1 — 7% as the di-
mensionless speed of long waves. If I is positive, we have the normal dispersion
case, if negative, we have the anomalous dispersion case and if it is equal to zero, we
have the dispersionless case.
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Figure 1: Domain in the y2—y? plane where the difference between acoustic branches
of dispersion curves for the HE and FSE is less than 5%.
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Figure 2: Dispersion curves, y2 = 0.5, 77 = 0.85.

According to the dispersion analysis carried out in [37], acoustic branches of the
dispersion curves of the HE and FSE are close to each other in the domain between
solid curves in Fig. 1, which corresponds to 5% difference between acoustic branches
at the dimensionless wavenumber & = 1.5 (£ = k\/(41)/(Bp) (Fig. 2), where k is
the wavenumber). The dashed line in Fig. 1 corresponds to parameter combinations
that result in the dispersionless case for acoustic branches of the FSE and HE. In Fig.
2 one can see an example of dispersion curves at y? = 0.5 and 7 = 0.85 (the point
is marked with ‘x’ in Fig. 1). The quantity 7 is the dimensionless frequency and the
dotted vertical line represents & = 1.5 where difference between acoustic branches of
the HE and FSE is calculated. One can see that the FSE also has a second, so-called
‘optical’ branch, while the HE has only the acoustic branch: in Fig. 2 the dashed line
represents the acoustic branch of the HE, the solid line represents acoustic branch of
the FSE and the dash-dotted line represents the optical branch of the FSE.
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3. Statement of the problem and the numerical method

Below, the main motivation for problem selection is presented, followed by the state-
ment of the problem. The description of the numerical method is given in subsection
3.2. The accuracy of the numerical scheme is discussed in Appendix A.

3.1. Statement of the problem

The underlying driving force for the present study is to understand better the wave
propagation in nonlinear materials with a microstructure. Much research has been
done in the field and there are already several theories capable of describing wave
propagation within such materials (see, for example, [4] and [16] and references
therein). However, the Mindlin—Engelbrecht—Pastrone model has certain advantages.
For example, it starts from the energy function and arrives at equations of motion that
satisfy balance laws and causality without the need of adding more terms into equa-
tions in ad-hoc style just to make things fit. Applications of the theory are possible
in a relatively straightforward manner, although interpretation of the microstructure-
related parameters will need some work. Possible practical application in the nonde-
structive testing of nonlinear materials with microstructure is another strong motiva-
tor for the present study. Comprehensive description for the HE and FSE in the linear
case has been provided in [37] through dispersion analysis, with the main focus on
finding domains in the parameter space where the HE is a good approximation of the
FSE.

The goals of the present study are

e to simulate numerically the propagation and interaction of solitary waves in
Mindlin-type microstructured solids modelled by the FSE (13) and HE (14),
(15) for different values of parameters;

e to characterize and analyse the space-time behaviour of solutions;

e to analyse the character of interactions in terms of solitons, i.e., to understand
whether solitary waves that emerge from initial pulses interact elastically or
not;

e to estimate the influence of microlevel nonlinearity on the solutions of the HE

(15);

e to estimate the influence of combined parameters 94 and 7; on the character of
solutions of the FSE (13) and HE (14) in the linear and nonlinear cases;
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e to analyse the behaviour of the solutions against the results obtained from (lin-
ear) dispersion analysis [37]:

— to clarify the different behaviour of solutions of nonlinear equations (13)
and (14) in the anomalous and normal dispersion cases;

— to estimate the concurrency between solutions of the FSE (13) and HE
(14) in domains predicted in [37].

3.2. Numerical method

There are many numerical methods that can be used to solve nonlinear differen-
tial equations, for example the finite difference methods, the Galerkin method, the
Hopscotch method, the Fourier expansion method, the split-step Fourier method and
the spectral and pseudospectral methods. All the named methods have some advan-
tages and disadvantages that should be taken into account when used. The pseu-
dospectral method (PSM) is a well established method, used frequently to solve dif-
ferential equations under localized as well as harmonic initial conditions. The ad-
vantages and disadvantages of the PSM have been examined in several papers (see
[18, 19, 20, 22, 42, 43] and references therein) and the method has been found to be
adequately accurate and stable at a relatively low number of grid points.

In the present thesis PSM based on the discrete Fourier transform (DFT)[18, 19, 20,
32,43, 44] is applied. The version of the DFT used is:

(k.1 = Flo] = S, utiax. e (- 2245), (0)
=0

where n is the number of space-grid points, AX = 27 /n is the space step, i is the
imaginary unit, k = 0,41,42,...,4(n/2 — 1), —n/2, F denotes the DFT and F~!
denotes the inverse DFT. Basically, the idea of the PSM is to approximate space
derivatives by making use of the DFT

9mu_ isem
Cn =F 0RO, e

and then to use standard ordinary differential equation (ODE) solvers for integration
with respect to time.

The regular PSM algorithm is derived for u;, = @ (u,uy, 1, ..., upy) type equations.
In our case, however, we have also a mixed partial derivative term 0 fUrryx in the
HE (14) and (15) and thus the standard PSM has to be modified [25, 26, 43]. There-
fore we rewrite the HE (14) so that all partial derivatives with respect to time are in
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the left-hand side of the HE

V8
Urr — 6BUrrxx = bUxx + % (U)z()x -0 (YUXX - 2U§X> ) (22)
XX

and introduce a new variable ® = U — 6 BUyy. After that, making use of properties
of the DFT, one can express the variable U and its spatial derivatives in terms of the
new variable ®:

_ F(®) a"u _1 [ Gk)"F (D)
U=F'|—1_ —— =F |2 23
{1+6[3k2}’ X 1+ 58K (23)
Finally, equation (14) can be rewritten in terms of the variable ®
AV
®rp = bUxx + % (U3), -8 (yUXX - TU}(X> ‘ (24)
Xx

In equation (24) all partial derivatives of U with respect to X are calculated in terms
of @ by using expression (23) and therefore one can apply the PSM to numerical
integration of equation (24). Equation (15) is solved in the same way as equation
(14). The FSE (13) is reduced to the system of first-order differential equations which
are solved by the standard PSM without any further modifications.

The calculations are carried out with the Python package SciPy [30], using the FFTW
library [21] for the DFT and the F2PY [39] generated Python interface to the ODE-
PACK Fortran code [24] for the ODE solver.
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4. Results

Publications I-VI can roughly be divided into two groups: the first group where the
main focus is on the HE in deformation terms and the second group where both the
HE and FSE are studied.

The first group is composed of three papers. In Publication I the HE in deformation
terms (15) is used. It is noted that if interacting waves have equal amplitudes, then a
negligible phase shift can be detected, while if interacting waves have different am-
plitudes, then the interaction results in a more distinctive phase shift. Two cases are
considered, one with nonlinearity present in the microstructure and the other with
nonlinearity absent in the microstructure. In both cases, however, nonlinearity is
present in the macrsoscale. The interactions are described as near-elastic. The main
focus is on head-on collision and overtaking interaction is addressed in the discussion.
In Publication II the HKdV (describing wave propagation in dilatant granular mate-
rial) solutions are compared to the solutions of the HE. For the HE it is demonstrated
how a single bell-shaped initial condition splits into two bell-shaped waves propa-
gating in opposite directions and these, in turn, split further into soliton-like waves
during evolution. In Publication III a detailed analysis is carried out for the head-on
collision of the waves represented by the HE presented in deformation terms. Phase
shifts, inelasticity of interactions, the depression zone after the passing compression
wave and different amplitudes of the waves propagating in opposite directions are
noted as effects related to near-solitonic behaviour and microstructure nonlinearity.

The second group contains three papers. In Publication I'V the HE (14) and FSE (13)
are compared from the standpoint of (linear) dispersion analysis. Additional oscilla-
tions in the solutions of the FSE are detected when compared to the solutions of the
HE. A hypothesis is proposed in the discussion linking those additional oscillations
to the presence of the optical branch in the FSE dispersion curves. In Publication V
the solutions of the FSE and HE are compared under three dispersion cases (normal,
anomalous, dispersionless) with emphasis placed on phase shifts between the main
pulses of the propagating wave structures. The quality of the approximation (the HE)
is discussed. In Publication VI solutions of the FSE and HE are compared along the
fixed dispersion (weak normal) line in the combined parameter space. Both the linear
and nonlinear cases are considered. Oscillations present in the solutions of the FSE
but not in the HE are noted, as well as asymmetry between waves propagating in
opposite directions. Nonlinear effects are discussed.

The present thesis is based on Publications [-VI mentioned above. In papers of the
first group, dealing with the HE (15) in deformation terms, parameters (16) are in-
serted directly into model equations. In the second group, dealing with the HE (14)
and FSE (13) in displacement terms, combined parameters are used. Combined pa-
rameters are defined by linking together geometrical and material parameters. Three
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Figure 3: Example of the solution of the FSE in the nonlinear case (y2 = 0.8, 3 = 0.5
and yy = 0.5).

microstructure-related parameters are used for changing values of the combined pa-
rameters.

The main results are divided into two subsections. The first subsection deals with the
HE in deformation terms and combines results from the papers of the first group. The
second subsection contains comparison of the FSE and HE solutions under combined
material parameters and combines results from the second group of publications.

Before moving on to results it stands to reason to provide a preliminary glance at
a typical solution of the model equations under used initial conditions. A typical
example of the solution of the FSE can be seen in Fig. 3, where on the horizontal
axis there is spatial coordinate X and on the vertical axis time 7. Solutions of the
HE are visually similar to those presented in Fig. 3 with just small differences in the
amplitudes and phases.
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4.1. The HE in deformation terms

The present section is based on Publications I-III.

In theoretical applications it is often preferred to use model equations in terms of de-
formation, because deformation is dimensionless as opposed to displacement which,
as a rule, is a quantity with dimension. In the present case, however, there is no
significant difference between model equations in terms of deformation (15) and in
terms of displacement (14), because as a result of change of variables (12) these are
both in dimensionless form. Solutions of equations (15) and (13) are similar if initial
conditions of the same type are used. However, a bell-shaped wave in deformation
terms is a kink wave in terms of displacement.

4.1.1. The problem and conditions for the existence of single solitary wave so-
lutions

In the present case it is more comfortable to use parameters (16) directly as opposed
to going through the free energy parameters (10). Equation (15) is non-integrable
but it is possible to find its travelling wave solution V(X — ¢T') in the form of an
asymmetric solitary wave, using numerical integration under asymptotic boundary
conditions (i.e., U,Uy,Uyxy,... = 0 if X — =oo). Janno and Engelbrecht [28, 29]
have found analytic conditions for the existence of single solitary wave solutions:

2—b 50 Bcz—y 3>ﬂ
Br—y~ 7 \e—b p’ 25
u#0, B—y#0, F—b#0,

where parameters b, 3,y,A, 1 are given in (16) and c is a characteristic speed of the
system. If A = 0, then (15) admits analytical bell-like solitary wave solutions [28, 41]

V(X—cT) :AsechZM,
e 3(c?—b) L 2—b (26)
T 5(Ber—7v)

Three problems are of importance from the viewpoint of soliton dynamics: (i) the ex-
istence of solitary waves, (ii) the emergence of solitary waves and (iii) the interaction
of solitary waves. The last one is important in order to prove the solitonic character
of solitary waves, i.e., to understand if the solitary waves are able to propagate at
a constant speed and shape and to restore these quantities after interactions. If yes,
then we can call those solitary waves solitons. The last two problems are the key
issues investigated in Publications I-III, while the first problem has been solved by
Janno and Engelbrecht in [28, 29] for the HE (15). In addition to (ii) and (iii), the
influence of microstructure on the character of solutions is investigated, in particular
the influence of the microlevel nonlinear parameter A.
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4.1.2. Numerical scheme

For numerical integration the DFT based PSM is used (see Section 3.2. for details).
As equation (15) is in terms of deformations, a new variable (used to circumenvent the
issue of mixed derivatives in the equation) is also introduced in terms of deformations

O =V —8BVyy, 27
and the variable J and its spatial derivatives are expressed in terms of the variable ®
as

F(®) I"v Pl (ik)"F (D)
1+68Bk2)° oxm 1+8Bk2 |

Similar to the HE in displacement terms (24), equation (15) is rewritten in terms of
the variable @

y=r| 28)

VS
Orr = bVyx + % V2] 6 (Wxx - Tf [V)ﬂx) . 29)
XX

Equation (29) can be solved with the use of the PSM after reducing it to a system of
two first-order differential equations.

4.1.3. Parameters and initial conditions

Equation (15) is integrated numerically under localized initial conditions. In the case
of 4 = 0 the analytical solution is known in the form of a single symmetric bell-like
solitary wave (26). The analytical solution

2
V(X,0) = 3 4%scch? ”(Xf_g) 0 <X < 2k, (30)
i=1
is used as the initial condition in the present numerical simulation in the case of
A =0 as well as A # 0. Initial amplitudes 49, 49 and widths s, and sz, correspond
to different initial speeds cy,co; & are initial phase shifts and & is an integer. In
the case of cjc; < 0 it is possible to observe head-on collision and in the case of
c1cy > 0 overtaking interaction (under periodic boundary conditions this is true for
both ¢ > ¢; and ¢] < ¢3).

Several parameter sets, fulfilling conditions (25) for the existence of solitary wave
type solution for (15), were considered. For example,

b=0.719, u=2083, &=025 p=45.04, y=09375,

31
2=2083, c=0, A=1, s=0.05. 1)

As can be seen in (31), the initial phase speed is equal to zero. This can be interpreted
as starting from the peak of interaction and the initial condition will split into two

waves with initially equal amplitudes propagating in opposite directions. Under this
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parameter set solitary wave emergence and head-on interaction of solitary waves with
equal amplitudes are investigated.

Under the second set both head-on and overtaking interactions are investigated. Pa-
rameters

b=07683, ©=0.125 §=9, B=7.6452, y=6.1817,

(32)
c1=09, =-09, A;=4,=1, 1 =173=0.65

are used to investigate the head-on collision of solitary waves with equal amplitudes.

For the head-on collision of solitary waves with different amplitudes equation pa-
rameters are the same as in (32), but initial speeds and widths of initial pulses are
different:

=09, ¢=-09115, A =1, A =15, 3q=065 s =0.202. (33)

Parameter A has three different values (0, 0.0025 and 0.005) in (32) and (33). In the
case of overtaking interaction speeds c; and c¢; are both positive.

4.1.4. Results and discussion

In Publications I and III parameter set (32) and (33) is in use, while in Publication II
parameter set (31) is used.

In Publication I head-on collision and overtaking interactions were studied over time
intervals 0 < 7" < 500. The length of the space interval was 247 for the equal initial
amplitude case and 967 in the case of non-equal amplitudes. It was found that for
A = 0 (analytical solution known) and for relatively small values of A the behaviour
of solitary waves was very close to that of the solitons for the considered time and
space intervals. It was possible to show that interaction between solitary waves with
equal amplitudes has a very small phase shift, while phase shifts are larger in the case
of interacting solitary waves with different amplitudes.

In Publication II the length of the space interval was 2007 in combination with a rel-
atively long time interval 0 < 7" < 5000. It was demonstrated that the initial bell-like
pulse splits into several bell-shaped waves with different amplitudes and propagation
speeds (Fig. 4) and with nearly solitonic behaviour. Interactions were described as
nearly elastic.

Findings of Publications I and II are expanded in Publication III where the time in-
terval 0 < 7" < 3000 is used and the space period is 607, allowing observation of 29
interactions between the waves propagating in opposite directions.

For determining the influence of microstructure nonlinearity related parameter A on
the character of solutions, head-on collision of solitary waves was studied in the case
of equal amplitudes as well as when the amplitudes were not equal.
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Space

Figure 4: Emergence of trains of solitons in the case of model equation (15) — time-
slice plot over two space periods.

Waveprofile minima and maxima against time can be observed in Fig. 5 in the case
of L =0 and A = 0.005 when interacting waves have equal initial amplitudes (49 =
A9 = 1.0) and in Fig. 6 when interacting waves have different initial amplitudes
(A(l’ =1.0 and Ag = 1.5). In the case of A = 0 in Fig. 5 it can be seen that the waves
propagating in opposite directions have equal amplitudes, however, in the case of
A # 0 amplitudes evolve to be different for waves propagating in opposite directions.
It must be noted that the difference between the cases A = 0 and A # 0 is very small
in Fig. 6 where initial amplitudes are different.

In Figs. 7 and 8 the cumulative phase shift of solitary waves propagating to the left
and to the right can be observed when solitary waves have equal amplitudes as well
as when they have different amplitudes. The cumulative phase shift is found by com-
paring actual trajectories of solitary waves with straight lines of X; = &; + ¢, where
c is the initial speed of the solitary wave +£0.9 (when solitary waves have equal am-
plitudes and ¢; = 0.9, ¢; = —0.9115 when they have different amplitudes). It can be
seen that in the case of A = 0 phase shifts are equal for both solitary waves during
interactions (Fig. 7). However, in the case of A # 0 the phase shifts of solitary waves
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Figure 5: Waveprofile maxima and minima against time, ¢; = —c¢, = 0.9, A = 0 (top)

and A = 0.005 (bottom).

propagating in opposite directions are not equal, as can be seen in Fig. 7. In the case
of A = 0 the cumulative phase shift is 0.43% of the length of the space period, while
in the case of A # 0 the cumulative phase shift is 0.64% for the left propagating pulse
and 0.23% for the right propagating pulse. When interacting solitary waves have dif-
ferent initial amplitudes, different phase shifts can be observed even in the case of
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Figure 6: Waveprofile maxima and minima against time, ¢; = 0.9, ¢ = —0.9115,
A =0 (top) and A = 0.005 (bottom).

A = 0. In the case of A # 0 the phase shifts are slightly stronger, but overall, the
influence of parameter A on the character of interaction is small (Fig. 8). Cumula-
tive phase shifts of the solitary waves are considerably stronger (4.78% for the right
propagating pulse and 1.75% for the left propagating pulse) than in the case of equal
amplitudes regardless of the parameter A value.
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Figure 7: Cumulative phase shift of left and right propagating solitary waves, ¢; =
—c; =0.9, A =0 (top) and A = 0.005 (bottom).

In summary, the numerical simulations showed that the initial bell-like pulse (26) is
altered to that of asymmetric shape during propagation in the case of A > 0. In the
case of A = 0 the initial pulse (26) propagated at a constant speed and shape until
the first interaction. However, it was apparent that interactions were not fully elastic.
Even in the case of A = 0 the initial symmetric bell-like pulse was morphed into
asymmetric one and some radiation was generated during interactions (Publication
ID). In the case of A = 0 and 49 = Ag the asymmetry was very weak after the very
first interactions. However, the higher the number of interactions, the more distinctive
the asymmetry. In the case of A‘l) #* Ag the shape of the higher wave had only minor
distortions, while the shape of the lower amplitude wave was subject to stronger
distortions. The asymmetry of the pulse was reflected in the altering of the shape of
the compression region of the pulse as well as in the emergence of the depression
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Figure 8: Cumulative phase shift of left and right propagating solitary waves, ¢; =
0.9, c; = —0.9115, A = 0 (top) and A = 0.005 (bottom).

zone beside the compression region (Publication IIT). Phase shifts, characteristic of
soliton-type interactions, can be easily traced in the case of 4} # 4. In the case
of A(l) = A% even the cumulative phase shifts over long time intervals were small
compared to the considered space interval and/or distance travelled by interacting
waves. If L =0 and A(l) = AZ, then the phase shifts during interactions were equal
for both solitary waves. If A # 0 or A(l) #* A(Z) then the phase-shifts during interactions
were different. Parameter A had stronger influence on the character of the solutions if
A} = A3. Over short time intervals and at a small number of interactions the behaviour
of the solution was very close to the solitonic behaviour in all considered cases. The
higher the number of interactions and the longer the time interval, the more the initial
and the restored waveprofiles differed. Key results from the present subsection are
listed in Conclusions.

35



4.2. The HE and FSE in displacement terms

From the theoretical point of view there is no difference between using the model
equation either in deformation terms or displacement terms. Usually the model equa-
tion in deformation terms is preferred in theoretical works as a more convenient one,
while in practical applications often model equations in the displacement terms are
preferred. The main reason for using model equations in displacement terms in the
present case is the more convenient shape of an initial condition, as a bell-shaped
wave in deformation terms is a kink wave in terms of displacement, however, a kink
wave is inconvenient to handle under periodic boundary conditions. A bell-shaped
wave in displacement terms is straightforward to handle under periodic boundary
conditions even when shifting into deformation. After all, it is a matter of prefer-
ence. A bell shape is preferred in the present case for the ease of visualization and
numerical analysis.

The present section is based on the second group of publications (Publications [V—
VI). The structure of the section is the following: (i) initial and boundary conditions;
(i1) material parameters; (iii) conserved quantities; (iv) analysis of results. Tables and
figures (besides those presented in the text) can be found in Appendix B.

4.2.1. Initial and boundary conditions

In Section 4.2. the numerical simulation of propagation of solitary waves in Mindlin
type microstructured solids is carried out by numerically integrating HE (14) and FSE
(13) under sech?-type localized initial conditions and periodic boundary conditions

U(X,0) =U,sech®B,X, U(X,T)=U(X+2kmr,T), m=12,..., (34

where k = 6, i.e., the total length of the spatial period is 127. For the amplitude and
the width of the initial pulse we use the values U, = 1 and B, = /2. Initial phase
speed is taken to be zero, which can be interpreted as starting from the peak of the
interaction of two waves propagating in opposite directions. For the FSE two more
initial conditions are needed for the microdeformation. We assume that at 7 = 0
the microdeformation and the corresponding velocity are zero, i.e., ¢(X,0) = 0 and
¢r(X,0) = 0. The integration interval is from zero to 7y = 100. In all considered
cases two solitary waves that propagate in opposite directions emerge from the initial
pulse (34).

4.2.2. Material parameters

The nonlinear and linear cases are both considered. In the nonlinear case material
parameters M and N are chosen so that yy = 0.5. Parameters

A=12, D=5 p=10, =38 (35)



Figure 9: Points and sections under detailed view in the yj — )/12 plane.

are the same for all cases while non-constant material parameters have the values

WwB?
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B=—
12y, 5

N=1land0, M= and 0, (36)
where B is used to change the values of 7y, C is used to change the values of ; and

M is used to change the values of A so that yy = 0.5, i.e.,

25 5C 125M

bl = = . 37

g NTag WT 37
Geometrical parameters /, = 1, L, = 50, U, = 1 are taken the same for all cases. In
the dimensionless model equations only material parameter ratios are important, so

we have used ‘dimensionless’ parameters (16) giving convenient ratios.

Ya=
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Three combined parameters (yAz, )/12 and yy) collect 8 material and 3 geometrical pa-
rameters defined above. As mentioned before, most material and all geometrical pa-
rameters are kept constant and only three microstructure-related material parameters
are used to change the values of the combined parameters. In the analysis parameters
yj and ylz are changed from 0.05 to 0.95 with a step of 0.05 (19 steps), resulting in
361 points in the y2 — y? plane. Nonlinearity-related parameter ¥y is changed from
zero value (nonlinearity only in macroscale) up to 0.95 with a step of 0.05 (20 steps)
plus an additional ‘undefined’ value for the fully linear case. Altogether this provides
7581 points covering the combined parameter domain. Analysis of numerical results
demonstrated that the influence of parameter Yy on the character of the solution was
relatively weak in the considered domain and therefore only the value yy = 0.5 is
used in the present study. In all points energy conservation and pseudomomentum
conservation was monitored.

Locations in parameter domain where examples are provided are marked by circles
in Fig. 9. The corresponding set of figures can be found in Appendix B, whereas the
numbers close to circles in Fig. 9 show the figure number where the example can be
found. The dashed line represents the dispersionless case (I = 0), while dash-dotted
lines represent the anomalous (I' = —0.2) and normal (I" = 4-0.2) dispersion cases
investigated below (the quantity I" is defined by equation (19)). Dotted lines represent
fixed values of y2 and 7 where the difference between solutions of the FSE (13) and
HE (14) is analysed in detail. In Fig. 9, in the domain between thick solid lines, the
difference between acoustic branches of dispersion curves of the FSE and HE is less
than 5% at a fixed dimensionless wavenumber of & = 1.5 (see Section 2.4.).

4.2.3. Conserved quantities

One of the conditions needed for solitonic solutions is that the system must be conser-
vative. In the present case energy conservation and pseudomomentum conservation
are checked. It is relatively straightforward to check energy conservation for the FSE
by just adding up kinetic and free energy (E = W + K) and observing if this quan-
tity is conserved over the integration interval. As our solutions are for the governing
equations in dimensionless form, we have to express the free and kinetic energy in
dimensionless form for the FSE as follows:

AU? B C DU, NU? M
W= o U2 232, > 2 o U o U3 3
22 X0y Pt T s Yt s P )
AU? Al
K ="22U} + =— 07
22 Tt
The total energy density
— 1
E(T)= 3 E(X.T) (39)

is conserved (deviation from constant value is under allowed errors 10~7, see Ap-
pendix A) over the observed y12 — yAZ domain for all of the considered parameter com-
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Figure 10: Conservation of pseudomomentum log,,(Pr — bx) against yj and ]/12 The
FSE in the nonlinear case (yy = 0.5).

binations. In (39) » is the number of grid points and 7 is dimensionless time.

A second convenient quantity that should be conserved for the FSE is pseudomomen-
tum [5, 6, 12, 14]. In dimensionless form conservation of pseudomomentum can be
expressed as Pr — by = 0, where Pr is the time derivative of pseudomomentum in
dimensionless form

2 2
o

Al Al AU AU
Pr=—|— = 20 UrUyr + 222Uy U 40
T pLg(PT(PXT-FpLg(PX(PTT-F 3] TUxr + 3 xUrr (40)
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and by is the spatial derivative of the Eshelby stress in dimensionless form

B M, ., C Al
by =—@@x — | 77 (@x)" +730x | Oxx — —5 Q7 PxT
LO Lu Lu pLo (41)
NU; AU? AU?
- ( i (Ux)* + NES UX) Uxx = 3" UrUxr.
[ o o

As over the considered 77 — ¥4 domain the defined quantities are changed by sev-
eral orders in magnitude, we visualize them in the logarithmic scale. Pseudomo-
mentum conservation for the FSE is fulfilled for the linear case with deviation from
zero value under allowed error margins. In the nonlinear case (Fig. 10) pseudomo-
mentum conservation is not strictly fulfilled but deviation from zero value is small:
—8.5< logm |PT — bX‘ < —5.

4.2.4. Analysis of results

The behaviour of the quantities presented in Tables 1-12 (see Appendix B) is anal-
ysed first and then the examples are discussed afterwards.

Characteristics under investigation

Several characteristics of the pulses emerging from the initial condition and propa-
gating in opposite directions are tracked. The observed effects can be roughly divided
into two groups: the first group where it is easy to quantify some characteristics of the
waves (amplitude loss, speeds, difference between solutions) and the second group
where it is harder to attach a numerical characteristic to the observations (tails as-
sociated with the pulses, peakons [3, 31] (short for ‘peaked soliton’), elasticity of
interactions).

First, it is possible to calculate average speeds of the pulses. The average speed of the
pulse can be compared to the characteristic speed of the system. The characteristic
speed cp (denoted as cp in [37]) and the average speed c,,, are calculated as

D2 AX,
Co = l—— Cavg:Ta

o “2)

where 4,B,D are material parameters and AX; is the distance the pulse peak has
travelled during the considered time interval 7'. The characteristic speed ¢y can be in-
terpreted as the speed of the very long waves in the system. Unless otherwise noted,
we take 7' = 100. The results of the calculations are presented in Tables 1-6 (see Ap-
pendix B). Note that the calculated speed actually belongs to the peak of the wave.
One might get different results by finding some other point to track in the wavepro-
file (for example, by tracking the wave front at a fixed amplitude value or by using
some averaged value for the entire wave structure propagating in the same direction).
Because there exist minor differences between the speeds of waves propagating in
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opposite directions, separate tables are produced for the pulses propagating to the
left and right in the nonlinear cases. For the nonlinear FSE Tables 1 and 2 show the
average speed of the left and right propagating pulses, respectively. In the linear case
there is no speed difference between the left and right propagating waves, so Table
3 presents average speeds for the linear FSE. For the nonlinear HE, speeds of left
and right propagating pulses can be found in Tables 4 and 5, respectively. Linear HE
speed is presented in Table 6.

A second quantity that can be easily quantified is the loss of the amplitude of the pulse
by the end of integration. The amplitude loss of the pulse by the end of integration
is calculated in per cent compared to the initial amplitude after the splitting of the
initial single pulse into two pulses that have amplitudes 49 = 0.5. Amplitude loss is
calculated as

Aend
AA =100 —
00 4

-100, (43)

where A4.,, is the amplitude of the pulse at the end of integration. Under some pa-
rameter combinations interaction of waveprofiles happens in close proximity of the
end of integration. In these cases extrapolation is used to estimate the amplitude at
the end of integration. In the nonlinear cases the quantity A4 is different for pulses
propagating in opposite directions. For the nonlinear FSE Table 7 presents amplitude
losses for the pulse propagating to the left and Table 8 for the pulse propagating to
the right. In the linear case pulses propagating in opposite directions have equal am-
plitudes. For the linear FSE amplitude loss by the end of integration is presented in
Table 9. For the nonlinear HE Tables 10 and 11 show amplitude losses for the pulses
propagating to the left and right, respectively, while Table 12 shows amplitude loss
for the linear HE. The essence of the amplitude losses is exposed in the discussion.

In order to calculate the difference between the solutions of the HE and FSE the
quantity AS is introduced as

1
A = ;ZAi, A = [UTE (X, Ty) = U (X, Ty ) (44)

where # is the number of grid points. In the dispersion analysis [37] the quantity
calculated was the difference between acoustic branches of the dispersion curves at
one specific dimensionless wavenumber, while quantity (44) calculates the average
difference between the FSE and HE solutions at the end of integration. It should be
noted that while (43) could be used to trace differences in the main pulse amplitudes,
quantity (44) takes into account also differences in the tail parts of the waveprofiles.
The quantity AS against yj and }/12 is presented in Figs. 35 and 36 (Appendix B) for
the linear and nonlinear cases, respectively. In Figs. 37-45 the difference between
solutions of the FSE (13) and HE (14) is shown in 6 sections at fixed values of yj and
}/12 and in 3 dispersion-related sections (I' = —0.2,0,4-0.2) pointed out in Fig. 9.
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Some of the effects are best exposed with the help of examples. For that end in
Fig. 9 locations in the yjfylz domain where examples (Figs. 20-34) are presented are
marked by circles. The effects that are easiest to expose with the help of examples are,
for example, observations about tails associated with the main pulses and emergence
of peakons (short for ‘peaked soliton’).

Average speeds of waves

Average speeds (42) of the pulses are presented in Tables 1-6 in Appendix B. The
accuracy of the calculation of the speeds is = 10™> (number of grid points for the
speed calculations is 2'°, i.e., AX = 5.75 x 10~*). In the tables the direction of the }/12
axis has been reversed compared to Fig. 9, so the parameter combinations resulting
in the dispersionless case are located on the diagonal from the lower left corner to
the upper right corner in the tables and dispersion is of normal type above and of
anomalous type under that diagonal.

It is possible to see that average speeds of the pulses decrease in the direction of
increasing yj and increase in the direction of increasing }/12, however, the influence
of ylz is weak. Taking a look at characteristic speed ¢y (42), one can note that the
calculated average speeds are smaller than or equal to the characteristic speed in
the case of normal dispersion, while in the anomalous dispersion case the calculated
speeds are greater than or equal to the characteristic speed. In the dispersionless case
the calculated speeds tend to be close (or in most cases equal) to the characteristic
speeds.

In the nonlinear cases minor differences can be noted in the average speeds between
pulses propagating to the right and to the left. The pulses propagating to the left tend
to be faster than these propagating to the right (other than two small subdomains, see
Figs. 18 and 19 in Appendix B). However, it must be noted that the speed differences
are too small to show any noticeable effect over the considered integration interval
in the presented examples. In the linear cases there is no speed difference between
waves propagating in opposite directions.

Under some parameter combinations distortions from the oscillations associated with
pulses are too strong or the interaction event is too close to the end of integration
to get reliable measurements. For this reason a shorter time interval was used for
measuring the average speed. The location of waveprofile peaks was found at 7 = 95
for Y2 =0.5; T =90 for 3 = 0.1 and y = 0.45; T = 85 for y> = 0.4, y> = 0.65 and
y2=0.70; T = 50 for 3 = 0.75 and y3 = 0.8; T = 25 for y; = 0.85...0.95.
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Amplitude losses

In order to quantify the behaviour of the solutions over the considered parameter
domain, we introduced the quantity A4 (43), which describes the amplitude loss of
the main pulses in per cent compared to the initial amplitude (after the splitting of
the initial pulse). Amplitude losses are presented in Tables 7-12 in Appendix B.
As mentioned, in the tables the direction of the ¥? axis has been reversed compared
to Fig. 9, i.e., the parameter combinations resulting in the dispersionless case are
located on the diagonal from the lower left corner to the upper right corner, and
dispersion is of normal type above that diagonal and of anomalous type under it. The
physical interpretation of amplitude losses is given in the subsection ‘Examples and
discussion’.

At a glance it can be noted that in general amplitude losses increase with increasing
yj as well as with the distance from the dispersionless case. Maximum amplitude
losses are 66% for the nonlinear FSE and HE right propagating pulses at high values

of ¥% and .

For the FSE (Tables 7-9) in the nonlinear dispersionless case the amplitude is prac-
tically maintained for the pulse propagating to the left (losses up to 1% can be seen),
while for the pulse propagating to the right amplitude loss is from 0% (yj =0.05)
up to 29% (y2 = 0.95). Examples for the dispersionless case can be found in Figs.
20, 24, 27, 30 and 34 from the lowest value of yAz to the highest value. Following
lines I = const, parallel to the dispersionless case diagonal, it is clear that ampli-
tude losses increase with increasing y2. In the linear case no amplitude difference
can be detected between waves propagating in opposite directions. Examples for the
anomalous dispersion case can be found in Figs. 23, 26, 29, 32 and 33, while exam-
ples for the normal dispersion case in Figs. 21, 22, 25, 28 and 31. In the linear case
the amplitude losses of the pulses are greater than the amplitude losses of the pulses
propagating to the left but lower than these of the pulses propagating to the right in
the nonlinear cases (see Tables 7-9).

For the HE (Tables 10-12) the same trends can be drawn as for the FSE in the non-
linear and linear cases. However, minor differences can be noted in details. For the
nonlinear HE in the dispersionless case amplitude losses of the pulses propagating to
the right (from 0% up to 32%) are greater than these of the pulses propagating to the
left (amplitude gain from 0% up to 2%).

Comparison of the HE and FSE solutions

In order to calculate the difference between the solutions of the HE and FSE, we
introduced the quantity AS, defined by equation (44). In dispersion analysis [37]
the difference between acoustic branches of the dispersion curves at one specific
dimensionless wavenumber is calculated, while the quantity AS calculates the average
difference between solutions of the FSE and HE at the end of integration.
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Results of dispersion analysis [37] can be compared to the results obtained here (Figs.
35 and 36). In dispersion analysis up to 5% difference between acoustic branches of
the dispersion curves at a specific dimensionless wavenumber is considered ‘good’,
while in the present case the average difference between solutions of the FSE and HE
at the end of integration AS < 1072 is considered ‘good’. It must be admitted that
both of those numbers are relatively arbitrary. From results (Figs. 35 and 36) one can
note that the domain which is good in dispersion analysis sense is a subdomain in the
domain which is good in the sense of AS, excluding a small region.

Concurrency of solution is good (AS < 1072), in case of normal dispersion even if
we are outside the domain predicted by dispersion analysis. Moreover, AS has the
smallest values in the region ¥ < 0.15, which is not predicted by dispersion analysis.
In this region lines AS = const are nearly vertical, i.e., they practically do not depend
on the value of T" and the dispersion type. In general, the quantity AS increases if 3
and y12 increase simultaneously. The linear case has negligibly lower or equal values
of AS compared to the nonlinear case.

For a more detailed comparison of the quantity AS between the linear and nonlinear
cases several sections of the ¥ — 77 plane are presented. In Fig. 9 these sections are
marked by dotted lines for fixed 2 and 77 values, by dash-dotted lines for the anoma-
lous and normal dispersion type sections, and a dashed line marks the dispersionless
case. Sections are provided at y5 = 0.05 (Fig. 37), y3 = 0.5 (Fig. 38), y3 = 0.95 (Fig.
39), 7 = 0.05 (Fig. 40), ¥? = 0.5 (Fig. 41), 1 = 0.95 (Fig. 42) and for three fixed
values of the I" at I' = —0.2 (Fig. 43) for the anomalous dispersion case, I' = +0.2
(Fig. 44) for the normal dispersion case and I' = 0 (Fig. 45) for the dispersionless
case.

In the ¥ = 0.05 section in Fig. 37 the quantity AS has lower values for the linear
case, however, the difference between linear and nonlinear cases is negligible (note
the logarithmic scale) and the concurrency of solutions is good. In the nonlinear
case the concurrency gets better in the domain around the line I" = 0 (dispersionless
case), while in the linear case the concurrency of the solutions is relatively constant
and better than in the nonlinear case over the whole section. Three examples are
provided along this section in Figs. 20-22. Note the ‘peakon’-type waveprofile for
the nonlinear FSE and HE in Fig. 20 at ylz = 0.95 in the dispersionless case, while no
peakon emerges in the linear case.

In the yj = 0.5 section in Fig. 38 the difference between the linear and nonlinear cases
is negligible and differences between solutions are small enough to be considered
good. Local minima exist around the dispersionless case (¥ = 0.5) in the interval
of 0.25 < ylz < 0.75. Three examples are provided for this section in Figs. 26-28.
It can be noted that in the nonlinear dispersionless case one of the waveprofiles has
morphed into a peakon by the end of integration.
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In the yj = 0.95 section in Fig. 39 the concurrency of solutions can be considered
good (AS < 1072) around the dispersionless case )/12 < 0.4. This observation is con-
firmed by three examples provided in Figs. 32-34. The differences between solutions
are small (especially in the nonlinear case for the waveprofiles that has morphed into
peakon), in the dispersionless case example in Fig. 34 although it must be admitted
that solutions of the HE and FSE do have different amplitudes. The same can be
stated for the second example located at )/12 = 0.25 (Fig. 33). However, in the exam-
ple located at )/12 = 0.95 (Fig. 32) the concurrency between solutions of the HE and
FSE has visibly deteriorated, with a better agreement between linear and nonlinear
cases (comparing the nonlinear FSE to the linear FSE) than between solutions of the
HE and FSE (comparing the nonlinear HE to the nonlinear FSE).

Next three sections are presented along horizontal lines at fixed values of ylz (Figs.
40-42). All three figures demonstrate quite clearly that the concurrency of solutions
between the FSE and HE deteriorates in the direction of increasing y2. The difference
between linear and nonlinear cases is negligible. At the value of ylz =0.05 in Fig. 40
the concurrency of solutions remains good at all values of yj. At higher values of ylz,
however, the concurrency can no longer be considered good at all values of y2. In
Fig. 41 the concurrency is good at yj < 0.85 and in Fig. 42 at yj <0.7.

The last three sections are considered at fixed values of the quantity I": a anomalous
dispersion case, a dispersionless case and a normal dispersion case. The anomalous
dispersion case I' = —0.2 section in Fig. 43 and the normal dispersion case I'= +0.2
section in Fig. 44 are remarkably similar (note that Fig. 43 covers the interval from
y2 = 0.25 up to y3 = 0.95, while Fig. 44 covers from 73 = 0.05 up to ¥ = 0.75)
other than the direction of tails if looking also at examples. The concurrency of the
solutions of the FSE and HE is good in all three cases. In the dispersionless case
in Fig. 45 the concurrency of solutions is marginally better (= 0.05) at the same
values of yj than in the anomalous and normal dispersion cases that have values
closer together.

In the domain of parameters, where according to dispersion analysis the difference
of dispersion curves of the HE and FSE is less than 5%, the agreement between so-
lutions of the HE and FSE is good. It must be noted that as long as the dispersion
is weak enough and integration interval considered is short enough (7" < 100), the
concurrency between solutions of the FSE and HE is good. Overall differences be-
tween solutions are small at low values of ¥% and 7 and increase with the mentioned
parameters. The shape of the ‘good’ agreement domain is similar to the one predicted
by dispersion analysis, although there exists an additional domain at low yAZ values
(however, it must be noted that good agreement there is logical, as microstructure-
related terms are weaker at low values of yj)‘ In general, the linear case has slightly
smaller differences between solutions of the FSE and HE than the nonlinear case,
although the difference is small enough to be called negligible.
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Specifically: (i) good agreement between solutions of the FSE and HE exists in the
considered domain of parameters except at high values of yj and y12; (ii) the differ-
ences between solutions of the FSE and HE increase if ¥} and 7} increase simulta-
neously; (iii) at low values of yj there exists a region where the difference between
solutions is very small and which was not predicted by dispersion analysis.

Examples and discussion

Examples in Figs. 20-34 in Appendix B are provided in the sets of three in the
direction of increasing 3 and decreasing ¥}. The structure of the figures is described
at the beginning of Appendix B. The main focus is on the area, where according
to dispersion analysis, the concurrency of the solutions of the HE and FSE should
be good, however, two examples are provided also in the corners of the parameter
domain as ‘far’ as possible from the expected domain of good concurrency.

The first three examples in Figs. 20-22 show remarkable stability of the solutions at
combinations of material parameters resulting in low values of the combined param-
eter y3. Regardless of remarkable stability, it is obvious that there is a fundamental
difference between linear and nonlinear cases. In the linear case propagating waves
are symmetric with respect to X = 67 (coordinate of the peak of the initial pulse),
while in the nonlinear cases waves propagating in opposite directions evolve dif-
ferently (different amplitudes, for example) over the considered integration interval.
Even the ‘strongest’ (in the sense of the quantity I" (19)) considered normal disper-
sion case in Fig. 22 has only very small differences compared to the dispersionless
case.

The next three examples in Figs. 23-25 show that with increasing ¥ the tails ap-
pear in the normal and anomalous dispersion cases and that difference between the
amplitudes of waveprofiles propagating in opposite directions increases. In the dis-
persionless case the pulse propagating to the right has a peakon profile, while the
pulse propagating to the left has gained width. In the normal and anomalous disper-
sion cases close-ups of the bottom sections demonstrate small tails. In the case of
normal dispersion a tail appears in the opposite direction of the propagation of the
pulse, and vice versa in the case of anomalous dispersion. At the top right panel of
the figure, showing minima and maxima against time, it is possible to see that in the
case of normal and anomalous dispersions the maximum of the lower pulse starts
dropping after the first interaction. Tails are too small to be visible on the contour
plots (the lowest amplitude registered in the contour plot is 0.01).

Three examples at yj = 0.5 (Figs. 26-28) could be described as the most expressive
of the behaviour of the solutions of the HE and FSE. All interesting effects are strong
enough to be visible but not strong enough to overwhelm the main pulses. The pulses
are far enough from each other and the tails small enough to be fully separated at the
end of integration. Figures 26 and 28 show anomalous and normal dispersion cases,
respectively, while the dispersionless case can be seen in Fig. 27. The tails associated
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with the propagating pulses appear relatively fast even before the first interactions in
anomalous and normal dispersion cases. Differences between solutions of the FSE
and HE are easily detectable in the close-up sections of the figures with nonlinear
HE pulses having higher amplitudes than the nonlinear FSE pulses by the end of
integration.

The penultimate set of examples at yAZ = 0.75 in Figs. 29-31 does not bring any
new effects on the table compared to the examples observed so far. The tails of the
waveprofiles are stronger and amplitude losses higher for the main pulses in the case
of anomalous and normal dispersion cases.

However, the last set of examples at yj = 0.95 in Figs. 32-34 is more interesting
than to the previous examples as it starts with the strongest anomalous dispersion
case considered. As noted earlier, the concurrency of the solutions of the HE and
FSE worsens with increasing y2. In Fig. 32 the situation is as ‘bad’ as it can get
within the considered set of parameters. From the provided example it is indeed
immediately apparent that the concurrency of the solutions of the FSE and HE is
not good. However, the last two examples (712 =0.25 and 7/11 = 0.05) demonstrate
that even at high values of }/AZ good concurrency between solutions can be achieved
if dispersion is weak (|I'| < 0.3). One more thing to note is the small oscillations in
Fig. 34. It should be mentioned that those exist only in the case of the FSE and not
in the HE. The amplitude of those oscillations is between 10~3 (high values of yAz)
and 1073 (low values of yj) under the used material parameters (Figs. 27 and 30).
Compared to the amplitude of the main pulses in the solutions, the oscillations can
be considered negligible. It has been pointed out (for example in [38]) that the FSE
has both optical and acoustic dispersion branches, while the HE has only the acoustic
branch that might be related to this phenomenon.

Considering the examples on average speeds presented in Tables 1-6, we should men-
tion that what we are actually measuring is the speed of the peak of the waveprofile
main pulse. Depending on the dispersion type, waveprofiles are deformed, shifting
the peak in the direction of the tail associated with the waveprofile. In the normal dis-
persion case the tail appears behind the pulse and in the anomalous dispersion case
in front of the pulse. So one could argue that ‘true’ speed of the wave structure can
be calculated in the dispersionless case. However, normal and anomalous dispersion
cases have one significant qualitative difference when compared to the dispersionless
case for the nonlinear FSE and HE. In the dispersionless case waves propagating in
opposite directions have equal average speeds regardless of their amplitude, while in
the anomalous and normal dispersion cases average speeds of the pulses tend to have
some correlation with the amplitude of the pulse. It is also worth keeping in mind
that the parameters in use are, in fact, combined by collecting material and geomet-
rical parameters. So the behaviour of solutions can, in turn, be more complex than
easily observed in the domain of the three combined parameters, as is, for example,
the existence of two subdomains (Figs. 18 and 19) in the nonlinear cases where the
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wave propagating to the right is faster than the wave propagating to the left.

On the basis of the examples on amplitude losses presented in Tables 7—12 it should
be pointed out that when main pulses lose amplitude, the tails associated with the
waveprofiles are stronger. It stands to reason that in the normal and anomalous dis-
persion cases the main cause of amplitude losses is dispersion. No tails occur in the
dispersionless case, however waveprofiles morph during the evolution. The pulse
propagating to the right morphs into a peakon (thinner, lower amplitude, sharp peak),
while the pulse propagating to the left maintains the amplitude exceptionally well
and morphs into a profile that is wider than the initial sech?-type profile. In the cases
where dispersion is either normal or anomalous, the pulse propagating to the right has
a lower amplitude but the tail associated with it has a higher amplitude than the tail
associated with the pulse propagating to the left. In the linear case no such morphing
happens and propagating waveprofiles are symmetric with respect to X = 6. In this
sense the FSE and HE behave in the same way in the linear and nonlinear cases.

The examples demonstrate that the quantity AS is good for describing the average
difference between solutions of the HE and FSE, but it does overlook some details,
for example, asymmetry between solitary waves propagating in opposite directions
(emerging under most parameter combinations in the nonlinear cases) and the pres-
ence of additional oscillations in the FSE but not in the HE. It is also worth pointing
out that differences (in waveprofiles) between the linear and nonlinear cases are rel-
atively large for some parameter combinations. This is not reflected in Figs. 35-45,
showing that the quantity A® (difference between solutions of the HE and FSE) has
values of the same order of magnitude in the linear and nonlinear cases.

Soliton-like behaviour can be observed at low values of parameter yj as well as when
the dispersion related parameter I" is small. The solitonic behaviour is easiest to spot
in the provided figures in the top right panel where two the highest maxima and two
lowest minima are shown. At the lowest values of ¥ < 0.15 one can see maxima
of interacting waveprofiles restored consistently even after several interactions. At
higher values of yj the amplitudes are not restored everywhere in the considered
parameter domain but only when parameter I is low. There is a rough rule of thumb:
the lower the value of 7 - |T'|, the closer the behaviour of the solutions to the solitonic
behaviour. However, even when the quantity yj -|T| has low values, some changes
can be noticed in the waveprofiles as interactions between waveprofiles are not fully
elastic but only almost elastic. The solitonic behaviour is very similar to the one
observed in Section 4.1. where the HE in deformation terms (15) was investigated.
Although the interactions are not fully elastic, for all practical purposes, when dealing
with a low enough number of interactions, it is possible to consider the waves at low
values of parameter yj or weak enough dispersion to be solitons.
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Overall it is clear that nonlinearity or lack of it has a quite significant effect on the
behaviour of the solutions of the HE and FSE. For example, the emergence of peakon-
type waves in the nonlinear dispersionless cases is an interesting phenomenon (ob-
served, for example, in Publication V).

In general, the speed of the wave mainly depends on parameter yj, with smaller
corrections introduced by parameter ylz (17). This is in agreement with the physical
interpretation of the parameters where y; is interpreted as dimensionless speed of

short waves and {/1— 73 as the dimensionless speed of long waves. The location
of the tails related to the main pulse clearly depends on the dispersion type. This
phenomenon is easily explained considering the meaning of the dispersion-related
parameter I in the present context. For example, in the case of anomalous dispersion
the harmonics with a shorter wavelength propagate at a higher phase speed than these
of longer waves, causing the tail to appear in the direction of propagation.

Concluding remarks

In the present subsection the main focus was on the solutions of the FSE and confirm-
ing that those behave in the same way as the solutions of the HE. The confirmation
of the similarity between solutions of the FSE and HE is essential, as for the HE the
inverse problem has been solved in [28], opening a door towards practical applica-
tions.

To sum up, we can say that the model equations give in most cases similar results
and the HE (14) is good a approximation of the FSE (13). The best concurrency
between solutions of the HE and FSE were found at low values of parameter 3. Sev-
eral interesting effects were observed — in the nonlinear cases waves propagating
in opposite directions evolve differently, while no such effect was noticed in the lin-
ear case. Moreover, nonlinearity introduces additional effects that are not present in
the linear cases like, for example, the emergence of peakon-type waveprofiles in the
nonlinear dispersionless cases. More specifically — in the nonlinear dispersionless
cases the pulses propagating to the left maintain the amplitude exceptionally well and
morph into a profile that is wider than the initial sech’-type profile, while the pulses
propagating to the right morph into a peakon-like shape (thinner, lower amplitude,
sharp peak). From the speeds of the pulses it is clear that the speed of the main pulse
decreases with increasing }’i and has minor corrections from parameter ylz In addi-
tion, it was noted that the speed of the main pulse was higher than or equal to the
characteristic speed of the system ¢( (42) in the normal dispersion case and smaller
than or equal to it in the anomalous dispersion case. An interesting phenomenon can
be highlighted regarding the amplitudes of the pulses — the higher the main pulse,
the lower the amplitude of the associated tail and vice versa. One could say that tails
form a more significant part of the wave structure by the end of the integration inter-
val with increasing y3. Amplitude loss depends on the values of quantities y% and T,
For a fixed value of yAz, the greater the |T'| the greater the amplitude loss. The next ob-
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servations related to the amplitude and wave shape show that the smaller the quantity
y% |, the closer the behaviour of the solutions of the HE (14) and FSE (13) to the
solitonic behaviour. In conclusion, we may say that predictions from linear disper-
sion analysis (in the domain where acoustic branches of dispersion curves of the FSE
and HE differ less than 5% solutions of the FSE and HE have good concurrency, and
solutions behave differently in the normal and anomalous dispersion cases) hold also
for the nonlinear cases. However, nonlinearity introduces additional effects (asym-
metry between pulses propagating in opposite directions, formation of peakons, etc.)
not taken into account by (linear) dispersion analysis. In addition, numerical results
for the FSE (13) and HE (14), considered in the present subsection, confirm previous
analytical [28, 29] and numerical (Publications I-III) results for the HE (15). Key
results from the present subsection are presented in Conclusions in a more structured
way.
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5. Conclusions

The central aim of the present thesis was investigation of wave propagation and inter-
action in Mindlin-type microstructured solids. For this reason numerical solutions of
three model equations were analysed — the FSE (13) and HE (14) in the displacement
terms as well as the HE (15) in terms of deformations.

The results have been published in six papers that can be grouped as follows: (i)
Publications I-1II are dedicated to the propagation and interaction of deformation
waves covered by the HE (15); (ii) publications IV-VI deal with the propagation and
interaction of displacement waves covered by the FSE (13) and HE (14).

Combined parameters yAz and ylz (17) define the speed of long and short waves, re-
spectively (see Subsection 2.3.). The greater parameter y2, the smaller the speed of
long waves and the greater parameter y?, the greater the speed of short waves. On the
other hand, the values of parameters 4,D,p and 7 are fixed (see Subsection 4.2.2.),
and the smaller the value of B, the greater the value of ¥2 and the greater the value of
C, the greater the value of ylz

A note about asymmetry between waves propagating in opposite directions should
be highlighted. This effect is present in all studied nonlinear cases, however, strength
of the observed effect does not depend only on the nonlinear parameters but also on
ratios between free energy parameters. Under some parameter combinations (like
the ones used to study the HE (15), for example) microstructure nonlinearity is the
driving force of such effect, while under some other parameter combinations (like
the ones used to study the FSE (13) and HE (14)) macroscale nonlinearity can be the
main driving force.

More specifically it is possible to highlight the following results:

e The hierarchical equation (15).

1. Numerical simulations show that the initial symmetric bell-like pulse (26)
is altered to that of asymmetric shape during propagation in the case of
A > 0. In the case of A = 0 the initial pulse (26) propagates at a constant
speed and shape until the first interaction. However, it is apparent that
interactions are not fully elastic as even in the case of A = 0 the initial
symmetric bell-like pulse is morphed into ansymmetric one during inter-
actions. Some radiation is generated during interactions in both cases.

2. The asymmetry of the pulse is reflected by the altering of the shape of
the compression region of the pulse as well as in the emergence of the
depression zone beside that of compression.

3. In the case of A =0 and A(l) = Ag the asymmetry is very weak after the
very first interactions. However, the higher the number of interactions,
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the more distinctive the asymmetry. In the case of A(l) #* A‘z) the shape of
the higher wave has only minor distortions, while the shape of the lower-
amplitude wave is subject to stronger distortions.

. Phase shifts, characteristic of soliton-type interactions, can be easily

traced in the case of A(l) #* A%. In the case of A(l) = A(Z) even the cumulative
phase shift over long time intervals is small compared to the considered
space interval and/or the distance travelled by interacting waves.

.IfA=0and 4} = A%, then the phase shifts during interactions are equal

for both solitary waves. If A # 0 or 4} # 43, then the phase shifts during
interactions are different.

Parameter A has stronger influence on the character of the solutions in
the cases where 4} = 43.

Over short time intervals and a small number of interactions the be-
haviour of the solution is very close to the solitonic behaviour in all con-
sidered cases. The higher the number of interactions and the longer the
time interval, the greater the difference between the initial and restored
waveprofiles.

e The hierarchical equation (14) and full system of equations (13).

1.

The model equations give in most cases similar results and therefore the
HE (14) is a good approximation of the FSE (13) (see Section 4.2.).

. The best concurrency between solutions of the HE and FSE can be found

at low values of parameter yj < 0.15 In the parameter domain yAz <0.15
the effect of parameter y12 can be considered negligble.

. There are small oscillations in front of the propagating wave structure

for the higher values of parameter ¥ in the case of the FSE. According
to Publication IV, the reason for this effect may be the existence of the
optical branch of the dispersion curve (besides the usual acoustic one) in
the case of the FSE.

. The speed of the main pulse decreases with increasing yj and has minor

corrections from parameter ylz

. The speed of the main pulse is higher than or equal to the characteristic

speed ¢ (42) of the system in the normal dispersion case and smaller than
or equal to it in the anomalous dispersion case.

. The higher the amplitude loss of the main pulse, the higher the amplitude

of the associated tail and vice versa.

. The direction of the asymmetry of waveprofiles is dependent on the dis-

persion type and nonlinearity accelerates the emergence of asymmetry.
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8. In the nonlinear cases waves propagating in opposite directions evolve
differently, while in the linear cases such effect cannot be observed. The
linear cases are symmetric with respect to X = 67 (the length of the space
period is 127).

9. In the nonlinear dispersionless cases the pulse propagating to the left
maintains the amplitude exceptionally well and is wider than the ini-
tial sech’-type profile. The pulse propagating to the right morphs into
a peakon-like shape (thinner, lower amplitude, sharp peak).

10. The tails emerge faster and form a more significant part of the wave struc-
ture by the end of the integration interval with increasing yj.

11. The smaller the quantity ¥ - |T'|, the closer the behaviour of the solutions
of the HE (14) and FSE (13) to the solitonic behaviour.

12. Predictions from linear dispersion analysis (solutions of the FSE and HE
have good concurrency in the domain where acoustic branches of disper-
sion curves of the FSE and HE differ less than 5% and behave differently
in the normal and anomalous dispersion cases) hold also for the nonlinear
cases. However, nonlinearity introduces additional effects (asymmetry
between pulses propagating in opposite directions, formation of peakons,
etc.) not taken into account by (linear) dispersion analysis.

Prospective studies

Several effects that need further investigation must be pointed out. First, asymmetry
between waveprofiles propagating in opposite directions can be observed in the non-
linear cases for all considered model equations. However, the physical background of
this phenomenon needs additional analysis. Another interesting effect is the appear-
ance of additional low-amplitude oscillations in the solutions of the FSE that are not
present in case of the HE. Several other aspects would also deserve more attention:
(i) proper evaluation of wave profile speed (measuring the ‘centre’ of the waveprofile
and tracking its speed); (ii) phase shifts during interactions (there is negligible phase
shift if waves have equal amplitudes but in the nonlinear cases they do not have equal
amplitudes, so small phase shifts are present); (iii) tracking the speed of harmonics
and comparing results with linear dispersion analysis in order to determine the effect
of nonlinearity on dispersion; (iv) as in case of the FSE (13) and HE (14) interactions
between solitary waves propagating in opposite directions are not entirely elastic, the
effect of interactions on the evolution of those waves needs detailed analysis, as done
in Publication III for the solitary waves that correspond to the HE (15); (v) discrete
spectral analysis [43] should be applied to more detailed analysis of the time-space
behaviour of solutions (including possible recurrence of the initial state); etc. Cer-
tainly, the long-term objective is to carry out physical experiments according to the
results of numerical experiments and to apply the considered models in nondestruc-
tive evaluation of materials.
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Abstract

The focus of the thesis is on wave propagation in Mindlin-type nonlinear microstruc-
tured materials in one-dimensional setting. Model equations are two-wave equations
derived by Engelbrecht and Pastrone [13]. Three versions of the model equations are
studied: (a) the full system of equations (13) in terms of displacement, (b) the hier-
archical model equation (14) in terms of displacement and (c) the hierarchical model
equation (15) in terms of deformation. Equations (14) and (15) are of the Boussinesq
type. The full system of equations (13) is derived from Euler-Largange equations
by determining the suitable free energy function, while equations (14) and (15) are
approximations of equation (13) derived by application of the slaving principle [12].

Model equations, nonlinear partial differential equations with mixed derivatives, are
solved numerically with pseudospectral method. The initial condition used is a bell-
shaped waveprofile. In the case of hierachical equations a change of variables is
employed to enable the application of the pseudospectral method.

The key results of the thesis are: (i) the hierarchical equation (14) is a good approx-
imation to the full system of equations, (ii) if there exists nonlinearity in microstruc-
ture, then propagating waveprofiles evolve to be asymmetric and waves propagating
in opposite directions evolve differently in time, (iii) interactions between propagat-
ing solitary waves are not fully elastic, however, over short time intervals and over a
low number of interactions the behaviour of waves is soliton-like, (iv) concurrency
of the solutions of the full system of equations (13) and hierarchical equation (14)
degrades if parameters }/f, (linked to the speed of the long waves in the system) and
ylz (linked to the speed of the short waves in the system) increase simultaneously, (V)
in the nonlinear dispersionless case a ‘peakon’-type waveprofile can emerge.

The results of the thesis have been presented in seven international conferences and
published in six scientific papers, five of them in journals indexed by IST Web of
Science.
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Kokkuvote

Kéesolevas t60s uuritakse tithedimensionaalset lainelevi Mindlini-tiitipi mitte-
lineaarsetes mikrostruktuursetes materjalides. Mudelvorrandid on kahe-laine vor-
randid, mis on tuletatud Engelbrechti ja Pastrone poolt [13]. Mudelvdrranditest on
uuritud kolme erinevat versiooni: (a) ndndanimetatud tdielik vorrandisiisteem (13)
(siiretes), (b) hierarhiline vorrand (14) (siiretes), (c) hierarhiline vorrand (15) (defor-
matsioonides). Vorrandid (14) ja (15) on Boussinesq tiiipi. Vorrandisiisteem (13)
on saadud Euleri-Lagrange vorranditest ja hierarhilised vorrandid (14) ja (15) on
vorrandi (13) aproksimatsioonid, mis on tuletatud allutusprintsiibi [12] abil.

Mudelvorrandid  (segaosatuletistega mittelineaarsed diferentsiaalvdrrandid) on
lahendatud numbriliselt lokaliseeritud algtingimuste ning perioodiliste raja-
tingimustega. Algtingimusena kasutatakse sech’-tiiiipi lainerofiili. Numbriliseks
integreerimiseks on kasutatud pseudospektraalmeetodit kusjuures hierarhiliste vor-
randite korral on kasutatud muutujavahetust, mis muudab vdimalikuks pseudo-
spektraalmeetodi rakendamise.

To66s on leitud, et: (i) hierarhiline vorrand (14) on tiieliku vorrandisiisteemi (13)
kvaliteetne lahend, (ii) juhul kui mikrotaseme mittelineaarsust on arvesse voetud
(vastav parameeter on mudelvdrrandites nullist erinev), siis muutuvad lained ku-
jult ebastimmeetriliseks ning lisaks omandavad erinevates suundades levivad lained
erineva kuju, (iii) interaktsioonid iiksiklainete vahel on ndrgalt mitteelastsed, kuid
suhteliselt lithikeste ajavahemike ja viikeste interaktsioonide arvu korral kiituvad
formeerunud tiksiklained véga sarnaselt solitonidele, (iv) kokkulangevus tdieliku vor-
randististeemi (13) ja aproksimatsiooni (14) vahel halveneb parameetrite yj (seotud
pikkade lainete kiirusega siisteemis) ja 712 (seotud liihikeste lainete kiirusega siis-
teemis) samaegsel kasvamisel, (v) juhul kui siisteemis dispersioon puudub, kuid mit-
telineaarsus eksisteerib on vdimalik ‘peakon’-tiitipi laineprofiilide teke.

Kiesoleva t66 tulemused on esitatud seitsmel rahvusvahelisel konverentsil ja avalda-
tud kuues teadusartiklis rahvusvaheliselt tunnustatud erialaajakirjades ja konverentsi-
kogumikes, millest viis on indekseeritud ISI Web of Knowledge poolt.
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Appendix A: Accuracy

One of the simplest approaches to determining the adequate number of grid points
is to compare solitary waves at the end of integration and find the number of grid
points where no longer significant changes occur in the shape. Direct comparison of
solitary waves has higher sensitivity to the number of grid points used than spectral
characteristics or conservation laws that tend to stabilize at a lower number of grid
points than waveprofiles, as will be observed in the present case. Spectral character-
istics and conservation laws are mentioned in the present appendix in the text without
figures.

Under a wide domain of parameters for equations (13), (14) and (15) it is reasonable
to examine solutions in several points in the parameter domain. For cheking of the
numerical accuracy first two equations (13) and (14) are used. We will consider
three points in the middle of our parameter domain for normal dispersion, anomalous
dispersion and for the dispersionless case. As the PSM is used, even a relatively
low number of grid points is adequate. However, as the goal is to compare solutions
directly, it is important to have a sufficiently high number of grid points to see all
the needed details, with keeping the number of grid points as low as possible to
keep the processor time consumption reasonable. The particular ODE solver used
from the ODEPACK library [24] is ‘Isoda’. Allowed error margins for the numerical
integration are rtol = 1077, atol = 107, nsteps = 5 x 10%, for the relative error,
absolute error and maximum number of sub-steps allowed per time step (AT = 0.2),
respectively.

To choose the dispersion type in the points parameter C is used. All other parameters
are the same for all the points: material and geometrical parameters 4 = 12, B =
4.167, D=5.0, N=1.0, M=0.290, p =10.0, / =8.0, [, = 1.0, L, = 50.0, U, =
1.0, € =0.02, 6 =0.02.

Waves at the end of integration were examined with grid points numbering from
n=32(2%) up to n= 8192 (2'3). In addition to direct comparison of waveprofiles,
spectral characteristics (spectral density and cumulative spectrum) [43] and energy
conservation were checked. Figures 11 to 16 are presented only for the comparison
of waveprofiles as other characteristics settle into stable values at a lower number of
grid points. Panels in Figs. 11 to 16 are: close-up views of the left pulse peak (panel
(A)), right pulse peak (panel (B)), left pulse bottom section (panel (C)) and right pulse
bottom section (panel (D)). Close-up areas of the bottom sections are marked by a
box in the bottom panel, while for peaks boxes are omitted to keep the main figure in
the bottom readable.

The normal dispersion case point (yj = 0.5, ]/12 = 0.3, y = 0.5) with parameter
C =12.88. In the normal dispersion case the lowest number of grid points that
gives satisfactory accuracy for the solitary wave is 512 for the FSE (Fig. 11) and 256
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Figure 17: Processor time 7}, against the number of grid points # in the logarithmic
scale.

for the HE (Fig. 12). For the tail part of the wave profile 512 grid points would be
adequate for both equations.

It must be noted that in the sense of spectral densities a considerably lower number of
grid points is capable of giving satisfactory accuracy. No significant differences can
be spotted in the first 9 spectral components when we have more than 64 grid points.
the number of spectral components in the Fourier series is n/2, i.e., if n = 32, one
has 16 spectral components, if » = 64, one has 32 spectral components, and so on.

Kinetic and free (potential) energy expressions in dimensionless form can be found in
Subsection 4.2.3. (see equation (38)). Total energy is the sum of potential and kinetic
energy E = K + W. From the standpoint of energy conservation, it is possible to say
that » = 128 would be an adequate number of grid points.

As for the density of total energy (see equation (39) in Subsection 4.2.3.) only n =32
gives a different result than a higher number of grid points. However, looking at
free energy W and kinetic energy K it is possible to find differences between n = 32,
n =64 and n = 128, while » > 256 has no significant changes compared to n = 128.
The same can be observed in the dispersionless and anomalous dispersion cases.
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The dispersionless case point (yj =0.5, )/12 =0.5, yv = 0.5) with parameter C = 4.8.
In the dispersionless case one can observe that for the FSE (Fig. 13) and the HE (Fig.
14) the lowest number of grid points that gives satisfactory accuracy for the peak
of the solitary wave is 1024 points. While in the dispersionless case there is no tail
(amplitude of oscillations' that can be seen in Fig. 13 is ~ 10~3), it must be noted
that to get an accurate representation of the oscillations in the FSE, one needs 1024
grid points or more.

The anomalous dispersion case point (yAZ =0.5, ¥ = 0.7, yv = 0.5) with parameter
C = 6.72. In the anomalous dispersion case the lowest number of grid points that
gives satisfactory accuracy for the peak of the solitary wave and the tail part is 512
points for the FSE (Fig. 15) and HE (Fig. 16).

Processor time T, measured is for obtaining solutions to the HE and FSE in the
presented points. Time is measured in seconds and presented in the logarithmic scale
in Fig. 17. As one can observe in Fig. 17 processor time consumption increases at
the rate that is expected for the PSM with the increasing number of grid points [18,
19, 20], i.e., roughly exponential growth (note the logarithmic scale on the vertical
axis). Considering all the points observed, it is reasonable to pick 2'° = 1024 grid
points to guarantee acceptable accuracy for the numerical analysis of solutions. With
the use of 1024 grid points the numerical experiment consumed roughly 33 days of
processor time. Full coverage of the parameter domain used in the thesis with 2048
grid points would have taken roughly 108 days of processor time (estimate is based
on test runs in several parts of the parameter domain in addition to points presented
here, even a higher number of grid points was examined only in the presented three
points).

IThe origin of these oscillations is discussed in Subsection 4.2.4.

65



Appendix B: Tables and figures

The behaviour of the solutions of the FSE (13) and HE (14) is characterised with the
help of 12 tables and 28 figures.

Tables 1-6 show average speeds (42) of the main pulses for the solutions of the FSE
and HE in the nonlinear and linear cases. Tables 7—12 show amplitude losses (43) by
the end of integration for the main pulses of the solutions of the FSE and HE in the
nonlinear and linear cases.

Tables are followed by two figures (Figs. 18 and 19) showing two subdomains where
the waves propagating to the right are faster than the waves propagating to the left for
the nonlinear FSE and HE.

Fifteen example points shown in Fig. 9 are used to give an overview of the behaviour
of the solutions over the yAz—ylz domain in the nonlinear and linear cases. In order to
present detailed description of the behaviour of the solutions, Figs. 20-34 are divided
into seven panels. In the top left panel there is the contour plot of the solution of the
nonlinear FSE which characterizes the time-space behaviour of the solution. In the
top right panel the two highest maxima and two lowest minima of waveprofiles are
plotted against time (the nonlinear FSE). It should be noted that in most of the non-
linear cases waves propagating in opposite directions end up with different maxima
and minima. In the bottom panel waveprofiles at the end of integration are presented
for three cases: a nonlinear FSE, a linear FSE and the nonlinear HE. Waveprofiles
that correspond to the linear HE are not provided, as they behave qualitatively in the
same way as these corresponding to the linear FSE and skipping them makes fig-
ures easier to read. The middle four panels contain close-up views of the left pulse
peak (panel (A)), right pulse peak (panel (B)), left pulse bottom section (panel (C))
and right pulse bottom section (panel (D)). Close-up areas of the bottom sections are
marked by a box in the bottom panel, while for peaks boxes are omitted to keep the
main figure in the bottom readable.

Differences between solutions of the FSE (13) and HE (14) are highlighted in Figs.
35-45. In Figs. 18-19 the quantity AS (44) is plotted against yj and ylz for the linear
and nonlinear cases, respectively. In Figs. 37—45 the quantity AS is plotted against
}/12, yAz and I along different straight lines in the yj — ylz plane (see Fig. 9).
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Figure 18: Speed differences between pulses propagating to the left and right for the
FSE in the nonlinear case. Black — the pulse propagating to the right is faster; white
— the pulse propagating to the left is faster; grey — equal speeds.
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Figure 19: Speed differences between pulses propagating to the left and right for the
HE in the nonlinear case. Black — the pulse propagating to the right is faster; white
— the pulse propagating to the left is faster; grey — equal speeds.
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Abstract. The modelling of wave propagation in microstructured materials should be able
to account for various scales of microstructure. In the present paper governing equations
for 1D waves in microstructured material are presented, based on the Mindlin model and the
hierarchical approach. The governing equation under consideration has an analytical solution
only in limit cases, therefore numerical analysis is carried out. Numerical solutions are found
in the case of localized initial conditions by employing the pseudospectral method. Special
attention is paid to the solitonic character of the solution.

Key words: microstructured solids, Mindlin model, solitary waves, solitons.

1. INTRODUCTION AND MODEL EQUATIONS

The modelling of wave propagation in microstructured materials (alloys,
crystallites, ceramics, functionally graded materials, etc.) should be able to
account for various scales of microstructure [ ~3]. The scale-dependence involves
dispersive as well as nonlinear effects. It is widely known that the balance between
these two effects may result in the emergence of solitary waves and solitons.

Propagation of solitary waves in microstructured solids is analysed by making
use of different models (see [3°] and references therein). However, the crucial
point related to the derivation of governing equations is the distinction between
nonlinearities on macro- and microlevel, together with proper modelling of
dispersive effects. In [6=8] the Mindlin model [?] and hierarchical approach by
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Engelbrecht and Pastrone [] is used in order to derive governing equations. Basic
model equations for 1D waves in microstructured material are

pust = 0g, Iy =ng —T. (D

Here wu denotes the macrodisplacement, ) the microdeformation, p the
macrodensity, I the microinertia, o the macrostress, 7 the microstress, 7 the
interactive force, x space coordinate, and ¢ time. The free energy function is
considered in the following form:

1 1 1 1 . 1 )
W= Eaui + §B¢2 + §Cw§ + Dipuy + 8Nug + 8M¢;§, 2)
where a, B, C, D, M, and N are constants. Then, using the formulae

J_owo oW oW 5
_8ux’ n_ad)x7 —81/17

Egs (1) are expressed in terms of variables u and 1:
put = gy + NugUee + Dby,  Itpy = Cthpy + Mpythye — Duy — Bp. (4)

After introducing dimensionless variables X = x/L, T = tcy/L, U = u/Uy,
the scale parameter 6 = [2/L? (L and Uy can be amplitude and wavelength of the
initial excitation, respectively; c3 = a/p and l is the scale of the microstructure) and
making use of the slaving principle [?], the following hierarchical model equation
is obtained from Eqs (4):

A
Urr —bUxx — g (UX)x —6 (ﬁUTT - YUxx — 51/2§U)2(X> =0, (5
XX

where b, 11, 3, ~, and \ are constants (see ["'®] for details). If the scale parameter &
is small, then the wave process is governed by properties of the macrostructure, and
vice-versa, if J is large, then properties of the microstructure govern the process.
For future analysis Eq. (5) is expressed in terms of deformation v = Ux and lower-
case letters « and ¢ are used for dimensionless coordinate and time:

A
v = W+ 5 (07) 6 (Bou = )y — 825 (@] ©

Equation (6) admits the analytic solitary wave solution

»(x — ct) 3(c2 —b) [ 2-b
'U(I_Ct):ASeChzf, A= T, = m (7)

only if A = 0 [78]. If A # 0, one can find a travelling wave solution v(z — ct)
for Eq. (6) in the form of an asymmetric solitary wave by numerical integration
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under asymptotic boundary conditions. The analytic conditions for the existence of
solitary waves modelled by Eq. (6) are given by Janno and Engelbrecht in [78]:

b 2 —y\*  4x?
p#O, Bt =y #0, —b#0, —5— >0, <52 ”) > ®
B —~ ) 1

In the present paper the interaction of sech?-shaped waves (7) is analysed
numerically.

2. STATEMENT OF THE PROBLEM AND NUMERICAL TECHNIQUE

The main goals of the present paper are (i) to simulate numerically the
interactions between solitary waves (7); (ii) to estimate the influence of the
microlevel nonlinear parameter A on the solution, and (iii) to examine the solitonic
character of the solution. For this reason Eq. (6) is integrated numerically under the
initial conditions

- iz — &)
v(z,0) = A;sech? 222 SY 0 <z < 2km. (©)]
(x,0) ; 5
Here amplitudes A; and the widths s; (: = 1,2) correspond to different initial
speeds ¢; # cg and &; are initial phase shifts. It is clear that if ¢c;co < 0, head-on
collision and if c;co > 0, the overtaking interaction takes place, and the lower the
value of »;, the wider the initial solitary wave.

For numerical integration the pseudospectral method (PsM) based on the

discrete Fourier transform (DFT) ['1%1] is used and therefore periodic boundary

conditions

v(x,t) = v(x + 2k, t) (10)
are applied. The idea of the PsM is to approximate space derivatives making use
of the DFT and then to use standard ODE solvers for integration with respect to
time. Due to the mixed partial derivative term §3vs,.., the model Eq. (6) cannot be
directly integrated by the PsM. Therefore we introduce a new variable ® and apply
properties of the DFT:

Q=1 —0fvz, = F_l[(l + 6ﬁw2)F(U)]7
_ [ F(@) } R [uw)”m)] | o
1+ 68w? ox" 1+ 68w?

Here w =0,4+1,4+2,...,4+(N/2 — 1), —N/2, i is the imaginary unit, N denotes
the number of space-grid points, F' the DFT, and F~! the inverse DFT. Finally the
equation

A
Dy = {bv + %1)2 — 0YUze — 53/25(123)1} (12)

95



is solved numerically by the PsM under initial and boundary conditions (9) and
(10), respectively. Calculations are carried out using the SciPy package ['2]: for
the DFT the FFTW [!3] library and for the ODE solver the F2PY ['*] generated
Python interface to the ODEPACK Fortran code ['°] are used.

3. RESULTS AND DISCUSSION

Three different interaction cases are considered in the present section.
Travelling wave solutions in the form of an asymmetric solitary wave can exist for
all considered sets of parameters, i.e., parameters for Eq. (6) and initial condition
(9) are chosen according to conditions (8).

In order to analyse head-on collision of solitary waves with equal amplitudes,
the case where parameters for Eq. (6) are b =0.7683, p=0.125, § =9,
[ =17.6452, v = 6.1817, A = 0, solitary wave speeds c; = 0.9 and ¢y = —0.9,
the corresponding amplitudes A; = A2 = 1.0 and widths 37 = 30 = 0.65 is
considered. Numerical integration is carried out for 0 < ¢ < 500 and the length of
the space period is 247. The amplitudes of the waves increase during interactions
and initial amplitudes are restored after interactions (Fig. 1a) like in the case of
Boussinesq models ['®]. The amplitude of the wave profile attains a value close
to the double initial amplitude at every “peak’ of the interaction in the considered
time interval. However, the behaviour of the amplitude curve between interactions
varies essentially — the more interactions have taken place, the more distinctive
the changes are. Analysis of trajectories of single waves demonstrates that unlike
Boussinesq models, solitary waves are not phase shifted during interactions in the
present case. This phenomenon is reflected in Fig. 1b — after eleven interactions two
solitary waves are still in the same phase. However, the shape of initial waves (9) is
altered during interactions and it is clear that, instead of initial symmetric bell-like
waves, asymmetric solitary waves are formed, shown at t = 460.8. Therefore the

(a) (b)

U /\ ]“

A |
N

0 =
0 100 200

= EeN SN e L ey )|

300 406 0 10 20 30 40 50 60 70
t X

Fig. 1. Head-on collision of solitary waves with equal amplitudes. (a) Waveprofile minima and
maxima against time. (b) The initial waveprofile and the waveprofile after eleven interactions
att = 460.8.
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interaction process is near elastic (i.e. the height of waves is restored but the initial
shape is slightly altered after interactions) in the present case.

In order to examine head-on collision of solitary waves with nonequal
amplitudes, the case where parameters for Eq. (6) are b = 0.7683, p = 0.125,
6=9, B=7.6452, v=6.1817, A =0, solitary wave speeds c¢; = 0.9 and
cg = —0.9115, the corresponding amplitudes A; = 1.0, A3 = 1.0 and widths
21 = 0.65, s = 0.202 is considered. Numerical integration is carried out for
0 <t <500 and the length of the space period is 967. In the present case the
behaviour of the waveprofile maxima and minima is similar to the case considered
above, i.e., during the interaction the amplitude attains the value close to A; + As,
between interactions both solitary waves restore initial values, and the behaviour
of the amplitude curves between interactions varies depending on the number
of passed interactions (Fig. 2a). The analysis of trajectories of solitary waves
demonstrates that in the present case solitary waves are phase shifted during
interactions and in Fig. 2b one can see that after three interactions at t = 335.2
the distance between solitary waves is changed compared to that at ¢ = 0. Like
in the previous case, both solitary waves are asymmetric after several interactions
(more distinctive asymmetry can be detected for the lower one). Nevertheless, one
can conclude that the interaction process is near elastic in the present case.

During overtaking interaction both solitary waves are phase shifted but do not
restore their shape after the interaction. This case is not analysed in the present
paper.

Numerical experiments with A # 0 were carried out in order to estimate
the influence of microlevel nonlinearity. Analysis of solutions for A = 0 and
A = 0.005 demonstrates that in the case of head-on interaction, both solutions
practically coincide — maximal differences between corresponding waveprofiles,
ie. maxy,(v(t,z)|x=0 — v(t,2)|x=0.005), are of order 0.01. For A = 0.5 the
microlevel nonlinear effects are stronger and they are able to change the character
of interactions. In Fig. 3 the waveprofile maxima and minima reflect head-on
collision, which is less elastic than for A = 0.

(@) (b)

=== (x, 0)
— v(x,335.2)
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Fig. 2. Head-on collision of solitary waves with nonequal amplitudes. (a) Waveprofile minima
and maxima against time. (b) The initial waveprofile and the waveprofile after two interactions
att = 335.2.
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Fig. 3. Head-on collision of solitary waves with equal amplitudes. Waveprofile minima and
maxima against time for A = 0.5.

4. CONCLUSIONS

The characteristic feature of the governing equation (6) is that, unlike the well-
known evolution equations, it describes two waves instead of one. A similar
situation occurs for waves in rods [°]. This gives us an opportunity to analyse
also head-on collisions of waves.

In the case of A = 0, bell-like solitary waves (9) can propagate with constant
speed and shape, but during head-on collisions the initial symmetric shape changes
to asymmetric. In the case of A # 0, the initial symmetric shape is altered even
before the first interaction. Analysis of the results of our numerical experiments
demonstrates that for A = 0 and for relatively small values of A interactions
between solitary waves are near elastic. Consequently, the behaviour of solitary
waves is very close to solitonic behaviour. If initial waves have speeds ¢c; = —ca,
then solitons do not become phase-shifted during interactions. The higher the
value of A, the less elastic the head-on collision and therefore the less solitonic
the behaviour of interacting waves. The overtaking interaction is not elastic either
for A = 0 or for A # 0.

Numerical experiments in order to analyse the long-time behaviour of solutions
over a wide range of material parameters and initial conditions are in progress.
Clearly, the two-wave governing equation, possessing solitary wave type solutions,
needs more attention in the future.
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Deformatsioonilainete interaktsioonist
mikrostruktuursetes tahkistes
Andrus Salupere, Kert Tamm, Jiiri Engelbrecht ja Pearu Peterson

Mikrostruktuursetes tahkistes toimuva lainelevi modelleerimisel tuleb arvesse
votta erinevaid mikrostruktuuri mastaape. PShivorrandite tuletamisel on eriti olu-
line mikro- ja makrotaseme mittelineaarsete efektide eristamine ning dispersiiv-
sete efektide adekvaatne modelleerimine. Artiklis vaatluse all olevate iihedimen-
siooniliste lainete levi kirjeldavate vorrandite tuletamisel on kasutatud Mindlini
mikrostruktuurse materjali mudelit ja lainehierarhiate teooriat. Kuna kasutatavatele
vorranditele eksisteerivad analiititilised lahendid vaid teatavatel piirjuhtudel, siis
on lahendite leidmisel ja tulemuste analiiiisimisel kasutatud numbrilisi meetodeid.
Péhitdhelepanu on podratud lahendi solitonilise iseloomu selgitamisele.
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Solitons in Microstructured Media
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Abstract. Wave propagation in microstructured media is simulated numerically making use of two
different models. In the first case a Korteweg—de Vries type equation is used for modeling 1D
wave motion in granular materials. In the second case a Boussinesq type equation is applied for
modeling 1D wave motion in Mindlin type microstructured solids. Both equations are integrated
numerically under localized initial conditions by employing the discrete Fourier transform (DFT)
based pseudospectral method. Emergence of trains of solitons is demonstrated in both cases.

Keywords: Solitons, Korteweg-de Vries type equation, Boussinesq type equation, pseudospectral
method, granular materials, microstructured solids.
PACS: 05.45.Yv, 02.60.Cb

INTRODUCTION

Microstructured materials (alloys, ceramics, functionally graded materials, etc) are char-
acterised by various scales of microstructure. This circumstance should be taken into
account when wave propagation in such materials is modeled [1, 2, 3]. The scale-
dependence involves dispersive as well as nonlinear effects and it is widely known, that
the balance between these two effects may result in emerging of solitary waves and
solitons.

Two examples of microstructured materials are considered in the present paper. In the
first case one-dimensional wave propagation in dilatant granular materials is studied.
Corresponding model equation

Mt‘f’uux‘f’aluxxerﬁ (I/it‘f’mfix‘f’ O‘zuxxx)xx =0 (D

is derived by Giovine and Oliveri [4]. Here variable « is bulk density, x — space coordi-
nate, t — time; ¢; and o are macro- and microlevel dispersion parameters, respectively,
and JB is a parameter involving the ratio of the grain size and the wavelength. Equation
(1) consists of two Korteweg—de Vries (KdV) operators: the first describes the motion in
the macrostructure and the second (in the brackets) — the motion in the microstructure.
Equation (1) is clearly hierarchical in the Whitham’s sense — the parameter 8 controls
the influence of the microstructure [5]. Due to that kind of hierarchy the equation (1)
could by called hierarchical Korteweg—de Vries (HKdV) equation.
In the second case a Boussinesq-type [6] equation

=0 2)

xxx

A
= b= £ (7) = 8 (Bvu - o) + 8725 (2)

CP1067, Applications of Mathematics in Engineering and Economics ‘34—AMEE ‘08, edited by M. D. Todorov
© 2008 American Institute of Physics 978-0-7354-0598-1/08/$23.00
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is used in order to model one-dimensional wave propagation in microstructured solids.
Here v is deformation, x — space coordinate, t — time, b, i, 8, B, and y are material
parameters (see [7, 8] for details). In order to derive equation (2) the Mindlin model [9]
of continua with microstructure and hierarchical approach by Engelbrecht and Pastrone
[1] is applied. This equation is referred below as the MEP equation.

The main goal of the present paper is to simulate numerically the emergence of trains
of solitons by means of two different material models. For this reason model equations
(1) and (2) are integrated numerically under localised initial conditions. Results are anal-
ysed in terms of solitonics, i.¢., the goal is to understand whether or no solitary waves
that emerge from initial sech’-type pulse propagate at constant speed and amplitude and
interact elastically. Interaction of solitary waves is called elastic, if they restore their
speed and amplitude after interactions. During elastic interaction solitons may experi-
ence phase shift. In turn, if interactions between solitary waves are elastic they are called
solitons.

NUMERICAL TECHNIQUE

In the present paper the discrete Fourier transform (DFT) based pseudospectral method
(PsM) [10, 11] is used for numerical integration of model equations, i.¢., for numerical
simulation of wave propagation. Let us introduce the DFT and the inverse DFT (IDFT)
as follows:

N-1 .
Ulk,t) =Fu=Y u(jAx,t)exp <—M> , 3)
j=0 N

“)

- 1 27i jk
u(jAx,t) =F UN;U(kJ)exp(— N )

Here u(x,t) is a periodic function (with space period 27, i.e., 0 < x < 27), N — the
number of space grid points, Ax = 27 /N — the space step, i — the imaginary unit,
k=0,£1,42,...,£(N/2 —1),—N/2 are wavenumbers, F denotes the DFT and F~!
the IDFT. Space derivatives of function «(x,¢) can now be calculated making use of
properties of the DFT [12, 13]:

d"u(x, isoan
#:F V[(iK)"Fu] 5)

If the length of the space period for u(x,?) is not 27, but 2mzm, then one must use quantity
k/m instead of k in last formulae:

M:F*I {<§>Fu} . (6)

ax" m
In a nutshell the idea of the PsM is very simple. If a PDE is given in a general form

ur = D (1, liy, txy, . . .) @)
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then one can formally reduce the latter to ODE
up =¥ (u) ®)

making use of formulae (6), which can be considered as numerical differential operators.
The ODE (8) can now be integrated with respect to time variable ¢ by standard ODE
solvers. The method is called pseudospectral because integration with respect to time is
carried out in physical space and the Fourier transform related quantities are used only
for calculation of space derivatives.

The HKAV equation (1) includes mixed partial derivative term Buy,,. Therefore the
usual PsM algorithm cannot be applied directly and one has to introduce suitable change
of variables. At first the HKdV equation is rewritten in the form

(u + ﬁ%cx); + (u + 3B”xx> Uy + ((xl + ﬁu> Uxx + ﬁoquxxxx =0 (9)

and a variable
¢ =u+ B Uxx (10)

is introduced. Making use of the DFT and its properties the last expression can be
rewritten in form

¢ =F ! (Fu)+ BF ' (—=k*Fu) =F ' [(1— BK*) Fu] . (11)
In turn, the variable « and its space derivatives can be expressed from (11) in terms of
variable ¢:
_ F¢ d"u 1 [(ik)"F¢
—fp-! —p! . 12
{1—ﬁk2}’ Ix" {l—ﬁk2 (12

It 1s clear, that in order to avoid division by zero, on¢ can consider only such values for
parameter B which result in 1 — B2 # 0. Finally equation (9) is rewritten in the form

¢t = _(M‘f’ 3ﬁuxx>ux_ (al +ﬁu) Uxxx — Oﬂzﬁlftxxxxm (13)

where the variable « and its space derivatives could be expressed in terms of ¢ according
to formulae (12). Therefore equation (13) can be considered as an ODE with respect to
variable ¢ and could be integrated numerically making use of standard ODE solvers.

The MEP equation (2) includes a mixed partial derivative term & Bvy, and therefore
it is rewritten in the form

(V2>xx + &YV + 63/2& (‘%)xxx =0 (14

(V - 6ﬁ"xx>tt — by — E 2

2

and new variable
0 =v—08Bve =F ' (Fv) = 8BF ' (—IPFv) =F '[(1+8BK)Fy] (15

is introduced. From the latter variable v and its space derivatives can be expressed in
terms of variable ¢:

vFl{ F¢ } ‘%Fl{(ik)nw} (16)

1+ 8Bk? ax" 1+ 8Bk?
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Finally we can rewrite equation (14) in the form
O = bv+%v2—6wxx—63/2% (%), (17)

XX

where variable v and its space derivatives are expressed through new variable ¢ making
use of expressions (16).

RESULTS AND DISCUSSION

Emergence of trains of solitons from localised initial excitation will be discussed in
the present section in case of the HKdV as well as in case of the MEP equations. For
this reason both equations are integrated numerically by PsM under sech”-type initial
conditions and periodic boundary conditions.

The HKdV Equation

The HKAV (1) is integrated under initial condition

— 12a
u(x70):Asech2x6x07 §—y/—  0=x<lem,  xo-—8w (I8

where A is the amplitude and 6 the width of the initial pulse. It is clear that the latter
is the analytical solution of KdV equation that corresponds to the first KAV operator in
equation (1).

Numerical experiments are carried out for O0<a; <1, 0<ap <1 and B =
111.11,11.111,1.111,0.111,0.0111. These particular values of S are selected in
order to to avoid division by zero in expressions (12). The number of space grid
points is n = 1024 and the length of the time interval is ¢y = 100. Ilison and Salupere
[14, 15, 16] have demonstrated that depending on values of material parameters ¢,
and B solutions of different types can emerge from initial sech?-shape wave. Here we
demonstrate a case where the solution type is a train of KdV solitons. This solution type
appears for ap < ¢ in cases of f = 111.11 and § = 11.111, i.e., in cases when the
influence of the microstructure is relatively strong but microlevel dispersion parameter
is smaller than that of the macrolevel.

In the present paper the following values of material parameters are considered:
o1 =04, ap =0.01 and B = 111.11. Amplitude of the initial pulse is A = 4. Time-
slice plot (Figure 1) and pseudocolor plot (Figure 2) demonstrate the formation of train
of solitons in the beginning of integration interval and subsequent interactions between
emerged solitons. In Figure 3 the initial wave profile at t = 0 and waveprofile at t = 18.7
(just before emerged solitons start to interact) is plotted against space coordinate x. In
this figure eight solitons can be clearly detected. However, the formation of soliton train
is not finished at t ~ 18.7 — Figure 2 demonstrates that trajectory of the ninth soliton
appears only for ¢ > 35. Analysis of numerical results demonstrate that the amplitude of
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the ninth soliton is of order of 0.025 and therefore it is hard to distinguish it in time-slice
plot in Figure 1 or in amplitude curves in Figure 4. Furthermore, a very small amplitude
tail can be detected besides the soliton train. The behaviour of the emerged solitons
is practically identical to these emerged in case of KdV equation (see Figures 1-4):
(1) the higher solitons in the train (three higher solitons in the present case) are higher
than the initial pulse, (i1) the higher the soliton the higher its speed, (iii) if two solitons
interact then the amplitude (height) of the higher soliton decreases during interactions,
(iv) after interactions solitons restore their initial amplitude and speed. For these reasons
the considered type of solution is called train of KdV solitons.

For other sets of material parameters (from the same domain, ie., oo < o1 and
B =111.11 or B = 11.111) the tail that forms besides the train of solitons can be
more distinctive, but it does not influence the behavior of emerged solitons essentially
— it only causes small amplitude oscillations of amplitudes of solitons. Nevertheless,
the character of the interactions remains practically elastic because of the amplitudes
oscillate with respect to the initial level and speeds of solitons are not altered.

The MEP Equation

In [17] we studied head on collisions of solitary waves over long time intervals.
Notwithstanding that interactions were not completely elastic we concluded that the
behavior of the solution was very close to solitonic. Here the MEP equation is integrated
under initial conditions

v(x,0) =Asech? B(x—xp),  0<x<200m,  xo=1007. (19)

In the numerical experiment, discussed below, values A = 1 and B = 0.05 are the pulse
amplitude and width respectively, ¢ = O is the initial phase velocity and b = (.719,
u=2.083,6 =0.25 B =45.040, y=9.375, L = 2.083 are the equation parameters. The
time-space behavior of the solution can be observed in Figures 5-9. The MEP equation
is of Boussinesq type and therefore contrary to the HKdV equation, waves going to the
left as well as to the right can emerge. Figures 5 and 6 demonstrate that two solitons
that propagate to the right and two solitons that propagate to the left form in the present
case. Because of the fact that the phase velocity of the initial wave is zero, solitons
going to the right and solitons going to the left have equal amplitudes and equal speeds.
In Figures 7 and 8 some typical wave profiles are plotted against space coordinate x.
Time moment ¢ = 418 corresponds to the beginning of the integration interval before
interactions, at t+ = 1128 and ¢ = 4525 interactions between the two highest solitons
take place, at r = 1845 interaction between the higher and the lower solitons and at
t = 2704 between the two lower solitons take place. In Figure 9 amplitudes of solitons
are plotted against the time. It is clear, that interactions between emerged solitons are
not completely elastic — Figures 5-8 demonstrate that each interaction produces small
amplitude radiation. The more interactions have taken place the more distinctive the
radiation is (see Figures 7 and 8). During interactions the amplitudes of waves increase
and after interactions they are almost restored on the initial level. However, amplitudes of
waves are not constant between interactions but oscillate with respect to the initial level.
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FIGURE 5. Emergence of trains of solitons in case of the MEP model — time-slice plot over two space
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FIGURE 6. Emergence of trains of solitons in case of the MEP model — pseudocolor plot over two
space periods
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FIGURE 9. Amplitudes of solitons against time in case of the MEP model

These oscillations are caused by the radiation produced during interactions. Therefore
the more interactions have taken place the more distinctive are the oscillations of soliton
amplitudes (see Figure 9). The speed of waves is not altered during interactions. To sum
up, one can say that interactions between emerged localized waves are almost elastic
and thereof we call them solitons.

Of course, for different values of parameters of the MEP equation and of the initial
pulse the number of emerged solitons can be higher than two. If other parameters (except
the width By) are fixed, then the smaller the parameter By (the wider the initial pulse)
the larger the number of solitons in the train.

CONCLUSIONS

In the present paper propagation and interaction of solitons is studied in case of the
HKAdV as well as in case of the MEP model. Corresponding equations are integrated
numerically under sech’-type initial conditions making use of the PsM. Analysis of
numerical results demonstrates that emerged solitary waves practically restore their
amplitudes and speeds throughout interactions. Therefore the interactions are practically
elastic and the emerged solitary waves can be called solitons in both considered cases.
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Abstract

In the present paper 1D wave propagation in microstructured solids is modelled based on the Mindlin theory and hierarchical approach. The
governing equation under consideration is non-integrable therefore it is analysed numerically. Propagation and interaction of localised initial
pulses is simulated numerically over long time intervals by employing the pseudospectral method. Special attention is paid to the solitonic

character of the solution.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and model equations

Wide application of microstructured materials (like alloys,
crystallites, ceramics, functionally graded materials, etc.) in
technology needs also proper testing methods in order to eval-
uate the properties of such materials. This need is especially
acute because microstructural properties affect considerably the
macrobehaviour of a compound material or a structure. In most
general terms, microstructure means the existence of grains,
inclusions, layers, block walls, etc., and the influence of
anisotropy. There are powerful methods in continuum mechan-
ics in order to describe the influence of such irregularities of
media starting from early works of Cosserats and Voigt up
to contemporary formulations. Corresponding models should
be able to account for various scales of microstructure (see
[1-4] and references therein). The scale-dependence involves

* Corresponding author at: Centre for Nonlinear Studies, Institute of Cyber-
netics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn,
Estonia.

E-mail addresses: salupere@ioc.ee (A. Salupere), kert@cens.ioc.ee
(K. Tamm), je@ioc.ee (J. Engelbrecht).

0020-7462/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
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dispersive as well as different non-linear effects and if they are
balanced then solitary waves and/or solitons may emerge.

Solitary waves in microstructured solids are analysed using
different models (see [4—6] and references therein). However,
the crucial point related to the derivation of governing equa-
tions is to distinguish between non-linearities on macro- and
microlevel together with proper modelling of dispersive effects.
In [7-9] the Mindlin model [10] and hierarchical approach by
Engelbrecht and Pastrone [4] is used in order to derive govern-
ing equations. By Mindlin [10], microstructured material is in-
terpreted as an elastic continuum including microstructure that
could be “a molecule of a polymer, a crystallite of a polycrys-
tal or a grain of a granular material”. This microstructure is
modelled by microelements within the macrostructure. Accord-
ing to Eringen and Mindlin [1,10] fundamental balance laws
should be formulated for macro- and microlevel separately. For
1D model this approach results in equations of motion in the
following form:

PUi = 0y,

Iy, =n, —1. (1
Here u is the macrodisplacement, ¥ the microdeformation, p
the macrodensity, / the microinertia, ¢ the macrostress, n the
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microstress and 7 the interactive force. The free energy function
is considered in the following form:

W =W, + Ws,
Wy = Lau? + LBY* + JCy2 + Dyu,,
W3 = tNud + LMy, )

where a, B, C, D, M, N are constants. Here the quadratic term
W, gives rise to the linear stress and the cubic W3—to the non-
linear part of stress. Then using the formulae

ow ow ow 3)
g = s = — T=—0
oy T oy, o

Eqgs. (1) are expressed in terms of variables u and

pusy = auyxy + Nuyityy + Dlva
I'vbtt = Clpxx + M!//xl//xx — Duy — Bl//~ (4)

Next, slaving principle [4,7] is applied (in order to eliminate
the microdeformation y from latter equations) and in terms of
dimensionless variables X =x /L, T =tco/L, U =u/ Uy, scale
parameter § = [2/L? (L and Uy are amplitude and wavelength
of the initial excitation, respectively; c(z) =a/p and [ is the scale
of the microstructure) Egs. (4) result in the hierarchical model
equation

Ly — 0L, =0,

u
Ly =Urr —bUxx — E(U§>X,

Ly= (ﬁUTT —Uxx — 51/2%U§X) , 6))
XX

where L is macrostructure wave operator and L, microstruc-
ture wave operator. New dimensionless material constants
b,u, f,y and A are introduced during change of variables
and they are directly related to constants a, B, C, D, M, N in
free energy expression (2) (see [8,9] for details). If the scale
parameter 0 is small then the wave process is governed by
properties of the macrostructure and vice versa, if ¢ is large,
then properties of the microstructure govern the process.

For future analysis Eq. (5) is expressed in terms of deforma-
tion v = Uy and lower-case letters x and ¢ are used for dimen-
sionless coordinate and time.

Vit — by, — g(vz)m

— O(Bvrt — Par)an + 53/2§[<vx>2]m —o0. ©)

The full derivation of governing equation (6) can be found in
[7.8].

Eq. (6) is non-integrable but it is possible to find its travelling
wave solution v(x — ct) in the form of an asymmetric solitary
wave using numerical integration under asymptotic boundary
conditions (i.e. u, uy, Uxy, ... — 0, if x — 400). The ana-
lytic conditions for the existence of solitary waves modelled by

Eq. (6) are given by Janno and Engelbrecht in [8,9]:

t—b ([icz—y>3 4)2
>0, >

Pz —y c2—b w2’

w#0,

Bt —9#0, 2—b#0. )
In the case of 4 =0 the non-linearity in the microscale is ne-
glected and Eq. (6) admits bell-like solitary wave solution [6,9]

—ct
v(x —ct)=A sechzu(%c),

2
A:3(c —h)’ v ‘cz—b . @®)
1 3(Be* =)

From the viewpoint of soliton dynamics, three problems are
of importance: the existence of solitary waves, the emergence
of solitary waves and the interaction of solitary waves. The
latter is important in order to prove the solitonic character of
solitary waves, i.e. to understand whether solitary waves are
able to propagate at constant speed and shape and to restore
these quantities after interactions. If yes, these solitary waves
are called solitons. Here in this paper the basic model is a
two-wave equation with complicated dispersive and non-linear
terms. The existence of solitary waves is proved by Janno and
Engelbrecht [8,9], the preliminary analysis of emergence of
trains of solitary waves is presented in our earlier study [11]
and here we present the preliminary results on interaction of
solitary waves. The notion of solitary waves is used because
the elastic interaction should prove whether these waves are
solitons or not. As it is shown below, the problem is complicated
and needs further analysis.

2. Statement of the problem and numerical technique

In the present paper the propagation and the interaction of
localised initial pulses in microstructured materials (governed
by Eq. (6)) is simulated numerically over long time intervals.
Two goals are stated (i) to examine the solitonic character of
the solution and (ii) to estimate the influence of the microlevel
non-linear parameter 4 on the solution.

For this reason Eq. (6) is integrated numerically under lo-
calised initial conditions

2 P
ix—q
w0 =) A?sechz%, 0<x <2kn. ©)
i=1

Initial amplitudes A? and the widths »; (i =1, 2) correspond to
different initial speeds c¢| # c¢p, &; are initial phase shifts and
k is integer. It is clear that in case cjc2 <0 head-on collision
and in case of cjcp > 0 overtaking interaction takes place (if
periodic boundary conditions are applied then this is true as in
case ¢1 > ¢y as well as in case ¢ < ¢).

For numerical integration discrete Fourier transform (DFT)
based pseudospectral method (PsM) [12,13] is used and
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therefore periodic boundary conditions
v(x,t) =v(x + 2km, t) (10)

are applied.

In a nutshell, the idea of the PsM is to approximate space
derivatives making use of DFT and then to use standard ODE
solvers for integration with respect to the time. Due to the
mixed partial derivative term df vy, the model Eq. (6) cannot
be directly integrated by PsM. Therefore we introduce new
variable

D =v— 5fvy,. (11)
In terms of DFT the latter can be presented in the form
&= F'[(1 4+ 3p0?)F(v)], (12)

where F denotes the DFT, F~! the inverse DFT and @ =
+1,+2,...,£(N/2—-1), —N/2. Then variable v and its spa-
tial derivatives are expressed in terms of the variable @

[ F@)
v=r [l-i-éﬁwz]’

d"v 1 [Go)"F(®)
=F = 13
ox" |: 1 + dpw? (13)
Finally, Eq. (6) can be rewritten in terms of variable @
A
By = |bo+ 507 — oy — 2202, (14)
2 2 x

(v and its space derivatives are calculated making use of ex-
pressions (12) and (13)). In order to simulate the propagation
and the interaction of localised pulses, Eq. (14) is solved nu-
merically by PsM under initial and boundary conditions (9) and
(10), respectively.

Calculations are carried out using SciPy package [14]: for
DFT the FFTW [15] library and for ODE solver the F2PY [16]
generated Python interface to ODEPACK Fortran code [17] is
used.

3. Results and discussion

In the present section two different head-on interaction cases
are considered. In the first case solitary waves of equal am-
plitude propagate at equal initial speed in opposite directions
(c1 = —c2 = 0.9) and in the second case solitary waves of
different amplitude propagate at initial speeds ¢; = 0.9 and
¢2=—0.9115. Five parameters for Eq. (6) are fixed: b=0.7683,
1=0.125,0=9, f=17.6452, y=6.1825, but A has three differ-
ent values 0, 0.0025 and 0.005. For |¢;|=0.9115 and |¢;| =0.9
conditions (7) are satisfied for all considered values of param-
eter 1. We stress here that if conditions (7) are satisfied, then
travelling wave solutions in the form of single asymmetric soli-
tary wave can exist for Eq. (6) [8,9]. Numerical integration is
carried out for 0Lt <6000, wave profiles are saved at every

At = 0.5, the length of the space period is 607 and the number
of space-grid points is n = 1024. According to expression (8)2
amplitude A = 1.00 corresponds to the speed |c;| = 0.9 and
amplitude A=1.50 to the speed |c;|=0.9115. In all considered
cases amplitudes of solitary waves increase during interactions
and decrease after interactions. If initial amplitudes, shapes
and velocities are restored after interactions—Ilike in case of
Boussinesq models—then such solitary waves can be called
solitons.

In [18] the same interaction types were studied for remark-
ably shorter time intervals (0 <t <500). For the equal initial
amplitude case the length of the space interval was 247 and in
the case of non-equal amplitudes 967. It was found that for A=0
and for relatively small values of parameters the behaviour of
solitary waves was very close to that of solitons for the consid-
ered time and space intervals. Interaction between equal am-
plitude solitary waves was found to take place without phase
shifts, but if interacting waves have different amplitude, then
both were phase-shifted.

3.1. Head-on collision of solitary waves with equal amplitudes

In the present subsection the interaction between two soli-
tary waves having initial velocities are ¢; =—c>=0.9 and equal
initial amplitudes Ag = 1.00 is studied. In Fig. 1, wave-profile
maxima (heights) are plotted against time for two different val-
ues of parameter /. In the beginning of the integration interval
(t <500) height at “peaks” of interaction A’ (“peaks” of in-
teraction correspond to local maxima of amplitude curves in
Fig. 1) is close to double initial amplitude of interacting soli-
tary waves. However for ¢ > 500 the amplitude A’ increases
apparently, cf. Fig. 2 where the amplitude A’ is plotted against
time for different values of A. For <1000 all three curves
practically coincide, but for higher values of ¢ they diverge
essentially—the higher the value of A the lower the values of
Af. At t = 3000 the value of A’ is more than 6% higher than
double initial amplitude of interacting solitary waves for all
three values of A.

The length of time intervals between “peaks” of interac-
tion does not depend on /4 and is between values 104.63 and
104.71. It is clear from Fig. 1 that for # < 500 interacting soli-
tary waves more or less restore their initial heights for certain
time intervals. However, for higher values of ¢ such a phe-
nomenon does not take place. Furthermore, for A > 0 right- and
left-propagating solitary waves have different heights Ar and
AL between interactions. In Fig. 3 averaged amplitudes Af
and A{ are plotted against the number of interactions. Values
of A% and A} after kth interaction are obtained by averaging
amplitudes of right- and left-propagating solitary waves over
time intervals where both amplitudes have near constant val-
ues between kth and (k + 1)th interactions (cf. Fig. 1). Anal-
ysis of single wave profiles and data in Fig. 3 demonstrate
that for >0 amplitude A} > A? until 15th interaction and
vice versa Ay < A after 15th interaction. The higher the value
of A the higher the amplitude Ap and the lower the ampli-
tude AR at r = 3000. This phenomenon depicts the behaviour
at the given set of parameters and the critical value can be
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Fig. 3. Averaged amplitudes between interactions A and Aj against the
number of interactions in case of ¢; = —cp =0.9.

changed at other sets. It is evident that the averaged ampli-
tudes tend to certain limits at larger number of interactions.
The fact that amplitudes are not restored after interactions in-
dicates that interactions between solitary waves are not elastic,
i.e., a certain exchange of energy takes place between soli-
tary waves during interaction. One can see below that the
initial symmetric shape of solitary waves is also altered during
interactions.

Between interactions both solitary waves propagate practi-
cally at initial speed. In order to estimate phase shifts during
interactions the actual trajectories of solitary waves are com-
pared with straight lines x; = &; 4+ 0.9¢, i.e., with phase-shift
free trajectories (&; are initial phase shifts, cf. (9)). In Fig. 4
cumulative phase shift in space is plotted against the number
of interactions. The cumulative phase shift is calculated as av-
erage deviation between two considered trajectories over time
interval f; + 25 <t <fk41 — 25 (time moments #; and #;4 cor-
respond to kth and (k + 1)th interactions, respectively). For
the case 4 = 0 both waves are shifted by the same extent and
the cumulative phase shift after 28th interaction is about 0.81
which is 0.43% of the length of the space period. For 4> 0
phase shifts for right- and left-propagating solitary waves are
different—right-propagating solitary wave is less phase-shifted
than that of the left-propagating. However, compared to the
length of the space period the cumulative phase shift is less
than 1% in all considered cases.

Janno and Engelbrecht have shown in [8,9] that for Eq. (6)
exists symmetric bell-shaped travelling wave solution for A=0
and asymmetric travelling wave solution—for A > 0. In our nu-
merical experiments single solitary wave (8) propagates at con-
stant amplitude and speed in case of 2 =0. In case of /1 > 0 the
initial symmetric solitary wave is deformed to that of asym-
metric. Numerical analysis of interactions of solitary waves (8)
demonstrate that due to interactions initial symmetric solitary
waves are deformed to that of asymmetric even in case 4 = 0.
This phenomenon can be observed in Fig. 5 where maximally
separated wave profiles are plotted besides wave profiles at
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interaction “peaks”. The asymmetry of solitary waves is clearly
visible in Fig. 6 where solitary waves are plotted at r =0 and at
time moment when they are maximally separated after 28th in-
teraction (the left solitary wave is propagating to the right and
the right one to the left). It is clear that the higher the value of
/, the more asymmetric is the corresponding wave. Due to the
asymmetry both waves are partly located below zero. Physi-
cally such a phenomenon can be interpreted as region of depres-
sion (v > 0 correspond to compression). The depression region
is always located behind the propagating wave and the more
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Fig. 5. Timeslices of wave profiles at r = 0, at interaction “peaks” and at
time moments when two solitary waves are maximally separated in case of
¢l =—-cp=0.9and 1=0.
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Fig. 6. Initial wave profile and maximally separated wave profiles after 28th
interaction in case of ¢ = —cp =0.9.

interactions have taken place the stronger it is (cf. wave-profile
minimum curve in Fig. 1).

3.2. Head-on collision of solitary waves with non-equal
amplitudes

In the present subsection we discuss interactions between
two solitary waves having initial amplitudes A(l) = 1.00 and
Ag = 1.50 and initial velocities ¢; =0.9 and ¢, = —0.9115. In
Fig. 7 amplitude curves are plotted for 2=0 and 1=10.005. In
the beginning of the integration interval the amplitude of waves
at “peak” of interactions A’ is close to the sum of initial am-
plitudes like in the previous case. However, unlike the previous
case the amplitude A’ is decreasing during the integration time
interval. In Fig. 8 amplitudes A’ are plotted against time for
three different values of parameter 1. The higher the value of 4
the larger the decrease of the amplitude A’. The length of time
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intervals between “peaks” of interaction does not depend on 4
(like in the previous case) and is now between values 103.35
and 104.00.

The behaviour of the higher (left-propagating) solitary wave
between interactions is practically independent on the value of
the parameter A—after the first interaction the initial ampli-
tude is practically restored, but then the average amplitude A}
decreases and after the 15th interaction near r = 1500 retains
constant value (see Figs. 7 and 9). The amplitude of the lower
(right-propagating) solitary wave behaves between interactions
just the other way round—the amplitude A} is practically con-
stant in the beginning of the interaction interval and starts to
decrease after the 12th interaction near ¢t = 1200. Furthermore,
up to the 12th interaction the right-propagating solitary wave
practically restores its initial height.

Both solitary waves propagate between interaction at initial
speed and we calculate the cumulative phase shift in the same
way like in the previous case. Results are presented in Fig. 10
for three values of parameter A. In the present case the maximal
value of the cumulative phase shift is near 9 (in previous case it
was up to 1.2). Up to the 21st interaction the left-propagating,
i.e., the higher solitary wave is more phase-shifted than that of
the right-propagating for all three values of 4. After that the
cumulative phase shift for the right-propagating, i.e., the lower
solitary wave increases rapidly from the value near 2.5 up to the
value near 9 without reference to the value of the parameter A.

The larger the number of interactions the more asymmetric
is the lower solitary wave. Due to the asymmetry, the part of the
wave profile behind it is located below zero like in the previous
case. For higher values of r wave-profile minimum has values
close to zero only for very short time intervals near “peaks”
of interactions (Fig. 7). In Fig. 11 solitary waves are plotted at
t =0 and at time moment when they are maximally separated
after 28th interaction (the left solitary wave is propagating to
the right and the right one to the left) for three values of A. In
the present case parameter 4 has very weak influence on the
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shape of the wave profile—amplitude of the lower solitary wave
decreases slightly when /4 increases, but one cannot distinct
three profiles in case of the higher solitary wave.

4. Conclusions

Well known and widely used evolution equations (Korteweg—
de Vries equation and its modifications for example) are one-
wave equations (the order of time derivative is 1), i.e., they are
able to govern only overtaking interactions of solitary waves.
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Fig. 11. Initial wave profile and maximally separated wave profiles after 28th

interaction in case of ¢y =0.9 and ¢y = —0.9115.

Eq. (6) (used in the present paper) is a two-wave equation (the
order of time derivative is 2) and therefore gives us possibility
to analyse also head-on collisions of waves.

In case of A = 0 single symmetric bell-like solitary wave
(8) is an analytical solution of Eq. (6) and it propagates with
a constant speed and shape. Our numerical simulations have
demonstrated that in case of 4 > 0 the symmetric shape of initial
single bell-like solitary wave (8) is altered to asymmetric shape
during propagation. In the present paper the head-on collision
of two sech?-shape localised initial pulses is studied in case
of =0 as well as A > 0. Material parameters for Eq. (6) and
initial conditions (9) were chosen according to conditions (7),
i.e., for all considered sets of parameters travelling wave solu-
tions in the form of single asymmetric solitary wave can exist
for Eq. (6).

Main results are the following:

e Interactions between solitary waves are not completely elas-
tic even in case of 4 =(0—during interactions the symmetric
shape of initial waves is altered to that of asymmetric. In
case of =0 and A0 = Ag the asymmetry is very weak af-
ter very first interactions. However, the higher the number
of interactions, the more distinctive the asymmetry without
reference to the values of parameter A and initial velocities.
In case of A(l) # Ag the shape of the higher solitary wave is
altered only slightly, but that of the lower one significantly.

The asymmetry of the pulse is reflected in the altering of the

shape of compression region of the pulse (v > 0) as well as

in the emergence of depression zone (v < 0) beside that of
compression. This phenomenon is more distinctive in case
of A? # AY.

e Phase shifts, characteristic for soliton type interactions, can
be easily traced in case of A? # A(z). In case of A? = Ag even
the cumulative phase shift over long time intervals is small
compared to the considered space interval and/or distance
travelled by interacting waves.
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In the beginning of the integration interval the height (am-
plitude) of interacting waves is practically restored between
interactions. For higher values of 7 the height can be altered
remarkably. In case of AY = Ag heights of right- and left-
propagating waves are restored on unequal levels.

e The non-linearity of the microstructure (parameter A) has
stronger influence on the character of solution in the case of
equal initial amplitudes A? = Ag (cf. set of Figs. 1-4, 6 with
Figs. 7-11).

Over short time intervals and small number of interactions
the behaviour of the solution is very close to the solitonic
behaviour in all considered cases. The higher the number of
interactions and the longer the time interval the more the
initial and the restored wave profiles differ.

In order to explain phenomena described in this paper in
more detail, a further analysis based on energy distribution
and spectral changes is needed. Clearly, two-wave interactions
differ from one-wave interactions. The special analysis of one-
wave interactions is presented in [19,20], the same should be
done for this model.
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Abstract. The Mindlin-type model is used for describing longitudinal waves in
microstructured solids. This model involves explicitly the internal parameters and
therefore tends to be rather complicated. An hierarchical approximation is derived,
which is able to grasp the main effects of dispersion with wide variety of parame-
ters. Attention is paid to the internal degrees of freedom of the microstructure and
their influence on the dispersion effects. It is shown how the internal degrees of
freedom can change the effects of dispersion.

1. Introduction

It is well recognized by modern science, that matter is not continuous but has an internal
structure. Clearly this microstructure plays a significant role when modelling wave
propagation — waves that have a wavelength shorter than a certain threshold value, “feel”
the microstructure.

There are two approaches in modelling the microstructure - one group of models are
based on lattice theory [1-3], another on continuum theory [4-6].

In the discrete approach the volume elements of the matter are treated as point masses
with a defined distribution and some interaction between the discrete masses. The gov-
erning equations are then deduced following the Newton’s law.

In the microcontinuum theory, the macro- and microstructure of the continua are
separated. Then the conservation laws for both structures should either be separately
formulated [4,5], or the microstructural quantities (cells) are separately taken into ac-
count in one set of conservation laws. Engelbrecht er al. [6] have derived the one-
dimensional model for longitudinal waves in microstructured materials based on
Mindlin model [5]. This model will be the basis of our analysis. These governing
equations of wave motion tend to be rather complicated and therefore there is a need
for simplification. A slaving principle is used in order to derive a hierarchical
asymptotic Whitham-type model.

T.-T. Wu and C.-C. Ma (eds.), [UTAM Symposium on Recent Advances of Acoustic 349
Waves in Solids, TUTAM Bookseries 26, DOI 10.1007/978-90-481-9893-1 33,
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An important effect caused by microstructure is dispersion. A wave packet can be
viewed as a collection of harmonic waves. If such a wave travels through a microstruc-
tured material, then different harmonics “feel” the microstructure according to their
wavelength and travel with different speeds. The variation of phase velocity with
wavenumber is the hallmark of dispersion [7,8].

Generally if there is N particles per unit cell in discrete model, then N dispersion
curves appear (3N in case of 3D model). The lower curve is called an acoustic
branch, the upper curves are called optical branches and they only appear when there
are at least 2 particles per unit cell. Optical branches are said to reflect the internal
degrees of freedom [1,9].

Because of the inclusion of the microstructure, the dispersion curves derived from the
1D microcontinuum model, also give two distinct curves [4,6,9]. As in discrete model
these curves are acoustical and optical modes where an optical modes are interpreted as
internal degrees of freedom or “internal modes”[5,9]. The dispersion curve derived from
the Whitham-type approximate model has only an acoustical branch. It means that the
approximate model does not account directly for internal degrees of freedom. The au-
thors have shown that this approximation is acceptable with wide variety of parameters.
However the question that remains is when the internal modes can be ignored.

2. The Basic Model

The basic model is that of Mindlin [5] and we follow the presentation of its ideas in [6]. The
main idea is to distinguish between macro- and microdisplacements u, (x,,7) and
uj' (x,.,,t) , respectively. Assuming that microdisplacement is defined in coordinates xk',
moving with a microvolume (cell), we define uj/ = xk’%. (x,,t), where @, 1s an arbitrary
function. Tt is clear that actually it is the microdeformation while Ju’! / du! = J'u;; = @,.
Further we consider the simplest 1D case and drop the indices i and j.

Now the fundamental balance laws can be formulated separately for macroscopic and
microscopic scales. Introducing the Lagrangian L = K —W, formed from the kinetic
and potential energies

K=%puf+%l(pﬁ, W=Wu,e,e,), 2.1)

where p and I denote the macroscopic density and the microinertia, respectively, we can
use the corresponding Euler-Lagrange equations:

(ﬁj +££] _(ﬁJ:o, (Q] J{ﬁj -[@jzo. 2.2)
du, ) \du, ) \Jdu dp, ) \do. ) \dp
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Here and further, the indices x and 7 denote differentiation.
The partial derivatives

c=0W/du, n=IW/dp,, F=IW/dp, (2.3)

are recognized as the macrostress, the microstress and the interactive force, respectively.
The simplest potential energy function describing the influence of a microstructure is a
quadratic function

W %aui + Agu, +%B(o2 +%C(pf, 24)

where a,A,B,C denote material constants. Introducing Eq. (2.4) into Eq. (2.3) we get finally

putt = auxx + A¢X’ I¢n‘ = C¢)Xx - Aux - B(D (25)

This is the governing system of two second-order equations that can also be represented in the
form of one fourth-order equation

(2 2 2 2 22 2
U, = (Co _CA)MXX -pP (”n Gl )U +pq (”n ~ColUy )“ ) (2.6)

where material parameters c(f =al p, cf =C/lI, cj =A? / pB, p2 =1/ B, are in-
troduced. The parameters ¢,, ¢, caare velocities while p is a time parameter. This is the basic
linear equation governing 1D longitudinal waves in microstructured solids. It has been shown
by Sun ez al. that Mindlin type model can also be used for modeling wave dispersion in lay-
ered media [10].

An approximation of Eq. (2.6) can be obtained by using the slaving principle. It is sup-
posed that the inherent length-scale / is small compared with the wavelength L of the excita-
tion. The following dimensionless variables and parameters are introduced U=w/U,, X=¥/L,
T=ci/L, O=( l/L)2 e=UyL, where U is the amplitude of the excitation. In addition it is as-
sumed that [ :plz [ and C=FC *, where I is dimensionless and C" has the dimensions of stress.

Next the system (2.5) is rewritten in its dimensionless form and the slaving principle [11] is
applied. Then we get finally

2 2 2
Up = [I_C_QJ Uxy +c_§(UTT _C_IZUXXJ ’ @7
o cy o o

where cBZ =L2/p2 =BL%/I. Note that cp involves the scales L and [ and ¢, includes the interaction
effects through parameter A. Restoring dimensions, Eq. (2.7) yields

Uy = (Cé _sz\ )uxx + pzci (Mtl _Clzuxx )xx : (2.8)

This is an example of the Whitham-type hierarchical equation.
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3. Dispersion Analysis
The dispersion relations for Egs. (2.6) and (2.8) are

w2=<c§—ci)k2+p2(a)2—c§ 2)(a)z—c]2k2), -
a)2=(coz—cj)k2—pch‘(a)2—clzkz)kz. G

In order to reduce the number of independent variables, the wave number, the fre-
quency and the propagation speeds are normalized defining E=pcok, N=p@ y=cs/cy,
yi=c/cy. Using these new quantities the dispersion relations (3.1) assume the forms

(1-R)8 47 -8)(r -7¢").
(-7)§ -7 (1 -7E)E

where the parameters 74 and % have the values 0< 74</ and 0< y;<[ respectively.

n’
, (3.2)
n

The characteristic dispersion curves are shown in Fig. 3.1. The full dispersion rela-
tion (3.2a), which is represented by the continuous line, represents two distinct
branches — acoustical and optical. The acoustical branch is analogous to the case of
elastic vibrations where all the cells move in unison. These are external modes. The
optical branch reflects the role of the internal modes, which involve the distortion of
the cells [5,9].

The optical branch is always concave, the acoustical branch can be either concave
or convex or linear, which represents anomalous, normal or no dispersion respectively.
This concavity and convexity of the acoustic dispersion curve shows explicitly the in-
fluence of basic material properties [12].

The full model (2.6) and approximate model (2.7) can be compared using nu-
merical analysis. The initial value problem in dimensionless form under periodic
boundary conditions is solved using the pseudospectral method [13]. The initial profile
is chosen U(X,0 )=sech2 (xkX/2), where xis the width of the profile.

Figures 3.2 and 3.3 show the results of the numerical analysis. Figure 3.2 represents
the case when acoustical branch is concave (anomalous dispersion). It is clear from
the numerical experiment that although there are small differences between the full
model (2.6) and approximation (2.7), the approximation is able to display the main ef-
fects of dispersion i.e. the type of the dispersion.

Figure 3.3 shows a numerical experiment in case when there is no dispersion in ap-
proximate dispersion relation (3.2b) and in the acoustic branch of the full dispersion
relation (3.2a). The approximate model indeed shows no dispersion effects — the initial
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profile moves with constant speed and shape. The full model (2.6) however displays a
small effect of dispersion, which is due to the optical bra nch or internal modes. The
dispersion effects do not appear immediately, but may take some time to appear.
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Fig. 3.1 The characteristic dispersion curves. Solid lines represent full dispersion relation,
dashed line represents approximate dispersion relation.
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Fig. 3.2 The solutions of full model (solid line) and approximation (dashed line), in case of
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Fig. 3.3 The solutions of full model (solid line) and approximation (dashed line), in case of
YA=0.9 and 'Y1=0.7.



354 T. Peets and K. Tamm

4. Final Remarks

The numerical analysis demonstrates that the full and approximate models
give in most cases similar results. There are however conditions when ap-
proximate dispersion curve (3.2b) coincides well with the acoustic branch of
the full dispersion curve (3.2a), but the numerical experiment gives different
types of dispersion for the full model (2.6) and for the approximation (2.7).
This is likely to be present when acoustic curve displays normal dispersion.

These effects need further investigations and will be presented in further
publications.

Acknowledgements: The authors gratefully acknowledge the financial support from Estonian
Science Foundation.
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Abstract. The Mindlin—Engelbrecht—Pastrone model is applied to simulating 1D wave propagation in microstructured solids. The
model takes into account the nonlinearity in micro- and macroscale. Numerical solutions are found for the full system of equations
(FSE) and the hierarchical equation (HE). The latter is derived from the FSE by making use of the slaving principle. Analysis
of results demonstrates good agreement between the solutions of the FSE and HE in the considered domain of parameters. For
numerical integration the pseudospectral method is used.

Key words: nonlinearity, microstructured solids, solitons, dispersion, pseudospectral methods.

1. INTRODUCTION

Microstructured materials are characterized by the existence of intrinsic space-scales in matter, like the
lattice period, the size of a grain or a crystallite, or the distance between the microcracks, etc., which
introduce the scale-dependence into the governing equations (see, e.g., [3,5,15,22,23] and references
therein). The scale-dependence involves dispersive as well as nonlinear effects. If these two effects are
balanced, solitons and solitary waves can exist in such media.

For numerical simulation of wave propagation in nonlinear dispersive media with the microstructure a
model derived by Engelbrecht and Pastrone [2,11,12] is employed in the present paper. The model is based
on Mindlin’s and Eringen’s earlier works [4,17]. In this approach the microelement is taken as a deformable
cell and balance laws are formulated separately for macro- and microscale. At first the Lagrangian

1 1
L=K=W, K=spu+3I¢g}, W=W(u.0,00), M

is introduced. Here K is the kinetic energy, W is the free energy, / is the microinertia, ¢ is the
microdeformation, u is the macrodisplacement, p is the macroscale density, and partial derivatives are
denoted by subscripts. In order to take into account the nonlinearity in micro- and macroscale, the free
energy W can be written as follows:

4, B, C Ny M
W:5u§+5<p2+5¢3+D<pux+gu§+g@3. )

*Corresponding author, salupere@ioc.ce
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Here A4, B,C, D are material parameters responsible for the linear part of the model and N, M are responsible
for the nonlinearity in macro- and microscale, respectively [11,12]. Making use of the free energy
function (2) and Euler-Lagrange equations, we obtain the equations of motion

Puy :D(px +Auxx +Nuxuxx> I(Ptt :C(pxx +M(px(pxx_B(p_Dux~ (3)

For further analysis dimensionless variables X = x/L,, T = (V/4t)/(\/PL,), U = u/U,, § = 2/L2, € =
U, /L, are introduced [11,12]. Here U, and L, are the amplitude and the wavelength of the initial excitation,
and /, is the characteristic scale of the microstructure. All together we have eleven different parameters —
eight of them are material (six free energy parameters, macroscale density, and microinertia) and three are
geometrical (the amplitude and wavelength of the initial excitation and the scale of the microstructure). The
change of variables results in the dimensionless equations of motion

DL NU, C BpL? DpU,L
2oy + ——UyxUyxx + Uxy, QDTT:A_’;(PXX* Pro gy  ZPZo%0

Mp
a0, L, Ux+——0xoxx. (4)

Urr =
rr Al Al AlL,

Equations (4) are referred to as the full system of equations (FSE for short) below. By applying the slaving
principle [3,21], a single equation can be derived in terms of the macrodisplacement U from the FSE:

yRvEs
Urr — bUyx — % (U)Z()X =4 (BUTT —YUxx + 2U)2(X> . Q)
Xx

Equation (5) is written in the form that makes its hierarchical nature (in Whitham’s sense) clearly visible.
In terms of material and geometrical parameters, constants in (5) are: b = 1 — (D?/AB), u = (NU,)/(AL,);
B = (ID*)/(pI2B?), y = (CD?)/(AB*12), A = (D*MU,)/(AB*I3L,). Equation (5) can be considered as an
approximation of FSE (4) and is referred to as the hierarchical equation (HE) below. On the other hand,
HE (5) is of Boussinesq type [1].

In papers [26-28] we studied the interaction and solitonic character of emerging solitary waves in case
of the HE. The main aim of this paper is to compare the propagation of sech’-type solitary waves in the
Mindlin-type microstructured solid for the HE and FSE in the range of parameters where both the macro-
and microstructure are to be taken into account. The existence of the solution of the inverse solitary wave
problem for the HE is proved in [11]. Therefore it is important to estimate the accuracy of the approximation
(the HE) in the domain of parameters where dispersion curves for the HE and FSE differ less than 5%.

The paper is organized as follows. In Section 2 the problem is stated and the numerical technique is
described. Results are presented in Section 3 and conclusions are drawn in Section 4.

2. STATEMENT OF THE PROBLEM AND NUMERICAL TECHNIQUE

In order to simulate numerically the propagation of solitary waves in Mindlin-type microstructured solids,
HE (5) and FSE (4) are numerically integrated under sech’-type localized initial conditions and periodic
boundary conditions

U(X,0) =U,sech’ kX, U(X,T)=UX+2mnr,T), m=123,.... (6)

For the amplitude and width of the initial pulse we use the values U, = 1 and k¥ = 7/2. For numerical
integration the pseudospectral method based on the discrete Fourier transform (DFT) is used. Periodic
boundary conditions have period of 127, i.e., m = 6 in (6). Initial phase speed is taken to be zero, which can
be interpreted as starting from the peak of the interaction of two waves propagating in opposite directions.
For the FSE two more initial conditions are needed for the microdeformation. We assume that at 77 = 0 the
microdeformation and the corresponding velocity are zero, i.e. ¢(X,0) =0 and ¢r(X,0) =0.
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The goals of the present paper are: (i) to solve HE (5) and FSE (4) under localized initial conditions for
the weak normal dispersion case; (ii) to compare solutions of the HE and FSE for the linear and the nonlinear
case; (iii) to compare solutions of the HE and FSE along a weak normal dispersion line (see Section 3 for
details).

The DFT-based pseudospectral method (PSM) [6,14,24,25] is applied in numerical integration in the
present paper. In a nutshell, the idea of the PSM is to approximate space derivatives making use of the
DFT and then to use standard ODE solvers for integration with respect to time. However, the regular PSM
algorithm is derived for u; = ®(u, 1y, uay, . . .,y ) type equations, but we have also a mixed partial derivative
term 8 BUrrxx in HE (5) and therefore the standard PSM has to be modified [9,10,24,26,28]. Therefore we
rewrite HE (5) so that all partial derivatives with respect to time are in the LHS of the HE, and introduce a
new variable ® = U — 6 BUyy. After that, making use of properties of the DFT, we can express the variable
U and its spatial derivatives in terms of the new variable ®:

F(® " ik)"F(®
g [ @ ] TGnE@)) .
1+ 6842 axm 1+ 6Bk?
Here F denotes the DFT, F~! the inverse DFT, k = +1,42,...+ (n/2—1),—n/2, and n is the number of
space-grid points. Finally, equation (5) can be rewritten in terms of the variable ®:

Ve
@7 =bUyx + % (U)Z()X -0 <7UXX - TU)Z(X> . (8
XX

In equation (8) all partial derivatives of U with respect to X are calculated in terms of @ by making use of the
expression (7). Therefore one can apply the PSM for numerical integration of equation (8). Full system of
equations (4) is reduced to the system of first-order differential equations which are solved by the standard
PSM without any further modifications.

In the present paper calculations are carried out with the Python package SciPy [13], using the FFTW
library [7] for the DFT and the F2PY [20] generated Python interface to the ODEPACK Fortran code [8] for
the ODE solver.

3. RESULTS

The dispersion type for the HE can be determined by the sign of the quantity I' = 1 — ylz — 72, where
v: = (D?)/(4B), } = (pC)/(AI); see [3] for details. One can interpret 7 as the dimensionless speed of

short waves and /1 — yj as the dimensionless speed of long waves. If I is positive, we have the normal
dispersion case, if I is negative, we have the anomalous dispersion case, and if I is equal to zero, we have
the dispersionless case.

According to the dispersion analysis carried out in [19], acoustic branches of the HE and FSE are close to
cach other in the area between solid curves in Fig. 1, which corresponds to 5% difference between acoustic
branches for the dimensionless wavenumber & = 1.5 (§ = k+/(41)/(Bp), where k is the wavenumber). The
FSE also has a second, so-called ‘optical’ branch. The dotted line corresponds to parameter combinations
that result in the dispersionless case for acoustic branches. We have solved the stated problem for values
of material and geometrical parameters that result in yj — 7/12 plane points along the line I' = 0.05 (Fig. 1).
Here we discuss three cases in detail: points P1, P9, and P18 in Fig. 1. For the nonlinear case we define an
additional parameter yy = A/u = (D3M)/(B3NI3), describing the relation between nonlinearity in macro-
and microscale. According to equation (5), A is responsible for the microscale nonlinearity and p for the
macroscale nonlinearity. In the nonlinear case material parameters M and N are chosen so that yy = 0.5.
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[+==T=0---T=0.05 Q P1 O P9 { PI8s— 5%

Fig. 1. Domain in the yjfylz plane where the difference between acoustic branches of dispersion curves for the HE and FSE is less
than 5%.

Nondimensional material parameters A= 12, C= 9, D= 5, N= 1, p = 10, and geometrical parameters
l,=1,L,=50,U, =1 for all cases. The parameters /, B, M vary, giving the following values for yj and y12:

Pl:y3 =005 ¥ =090; B=125/3; 1=25/3; M=15625/54;
B

P9: 2 =045 % =050, B=125/27; I=15; M =15625/39966; ©)

P18: 12 =0.90; ¥ =0.05; B=125/54; I=150; M =15625/314928.

The parameter yy = 0.5 in the nonlinear case and has no value in the linear case (in the linear case N and M
are zero). The integration interval is from zero to 7y = 100. In all considered cases two solitary waves that
propagate in opposite directions emerge from the initial pulse (6). For point P1 five interactions between the
emerged solitary waves take place in the time interval 0 < 7" < 100. For points P9 and P18 the number of
interactions in the time interval 0 < 7" < 100 is three and one, respectively.

3.1. Numerical results

Dispersion analysis carried out in [19] shows good agreement between acoustic branches of the HE and FSE
at the chosen datapoints. However, it does not take into account the optical branch of the FSE and nonlinear
effects. At P1 we can see that agreement between solutions of the HE and FSE is almost perfect even after
five interactions of the two emerged solitary waves (Fig. 2). The left pulse in Fig. 2 is propagating to the right
and the right pulse to the left. Analysis of the results demonstrates that in the linear case (lighter curves) the
right and the left propagating waves are practically identical. However, in nonlinear cases (darker curves) the
solitary waves propagating to the right are sharper, narrower, and slightly lower than the right propagating
solitary waves in linear cases. Vice versa, the pulses propagating to the left are wider in nonlinear cases. The
waveprofiles that correspond to the HE and the waveprofiles that correspond to the FSE practically coincide
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Fig. 2. Waveprofiles at the end of the integration interval for yzA =0.05 and ylz = 0.9 (point P1 in Fig. 1).

in linear as well as in nonlinear cases. In order to measure the difference between solutions of the HE and
FSE, we introduce the quantity

n
A
ASZZZ', where A, = [UH(X;, Ty) —USH (X, T)) | (10)
i1

and n is the number of gridpoints. In the linear case AS = 4.98 x 107 and in the nonlinear case
AS =5.15 x 1079 at point P1.

At point P9 the agreement between the solutions of the HE and FSE is good. In Fig. 3 waveprofiles are
plotted at the end of the integration interval (when three interactions between the emerged solitary waves
have taken place). All waveprofiles are asymmetric. Like at point P1 the left pulse in Fig. 3 is propagating to
the right and the right pulse is propagating to the left. One can see that in the nonlinear case again the right

---H]é nonlin
0.45- }
0.4
0.03
0.35+ i
0.48 0.48 0.02
0.3
0.01
0.25 0.467
= 0
0.2
£ 0.44 % -0.01
0.15 : af
A i ] =
o1l ‘\ i il 0.02
. i 0.42 i
0051 i i i -0.03 i ‘ ;
17.6 20.120.2 203 16 18 19 20
: VRV
| | | | | | |

0 5 10 15 20 25 30 35
0< X<I2rm

Fig. 3. Waveprofiles at the end of integration for yj =0.45 and ylz = 0.5 (point P9 in Fig. 1).



123

K. Tamm and A. Salupere: Propagation of solitary waves
VN A DI
= \\\\\\\\=///// i
N——— < Il
lidh

NS
. \\//////////
—+—— —
\\\////
\\

W
\

I
TRR

\

v/
\)

Ve ———
a\\\_\—/_////;, /
.

\ ,/
s
T\
Y

\ 0
///
7
Wi\

900
=

0
A
\)

g
.

2
W
W

\\ \ SSS————
.\\\///,_. W R \
\\\ S — /l/;/{/f,»mg ) / //// ‘
N—+—— ////‘\?, A 4;,\\\\ 7 /«fﬂ,
VA% AL

73

AR
"
7
W
ST

bidy
O

U 4\
)

R
\\\\V/ // iy

Fig. 4. Time-slice plot of the solution of the linear HE for yi =0.9 and ylz = 0.05 (point P18 in Fig. I).

propagating wave is sharper and lower than the left propagating wave. However, now waves that correspond
to the FSE are visibly lower than these of the HE. In the linear case both the right and left propagating
waves have the same amplitude, and symmetry U (x — 67,¢) = U(67 —x,7). In all cases a small tail is
formed behind the solitary wave. In nonlinear cases the tails have higher amplitudes than in the linear case.
In the linear case AS = 8.02 x 10~* and in the nonlinear case AS = 8.17 x 10~* at P9.

In order to characterize the time-space behaviour of the solution at point P18, the time-slice plot over
two space periods is presented in Fig. 4. In the present case the initial solitary wave is deformed to the wave
having the shape similar to the Airy function Ai(X). Single waveprofiles in Fig. 5 demonstrate that after
one interaction of the two emerging wave structures the agreement between the solutions of the HE and

0.2{]===HE nonlin
——FSE nonlin
+=-=-HE lin

0.15 FSE lin

IS

———
e

25 25.5 ‘
20 25

E . g \ " y
; N
26 26,5 i 5
30 35

10 15
0< X<I2m

Fig. 5. Waveprofiles at the end of integration for yj =0.9 and ]/12 = 0.05 (point P18 in Fig. 1).
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FSE is good at P18. Like at points P1 and P9 the waves propagating to the left and to the right have equal
amplitudes in linear cases. However, now the amplitude is higher in case of the FSE. In the nonlinear case
the situation is similar to that of at points P1 and P9 — waves that propagate to the right are lower than those
propagating to the left. Unlike in previous cases, additional oscillations that propagate in front of the main
wave-structure are generated for the FSE. These oscillations are practically identical in linear and nonlinear
cases (see Fig. 5). In the linear case AS = 0.0185 and in the nonlinear case AS = 0.0190 at P18.

4. DISCUSSION AND CONCLUSIONS

Moving along the weak normal dispersion line T" = 0.05 (Fig. 1) to the right (y2 increases), the differences
between the solutions of the HE and FSE increase (Fig. 6).

IsH Nonlinear
— © - Linear

& o ©- .
©-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

v,

Fig. 6. Quantity AS against yj at 7 =100.

As noted above, there are significant oscillations in front of the propagating wave-structure for higher
values of }/AZ in case of the FSE (Fig. 5). In case of the HE one cannot detect such oscillations (Figs 4
and 5). This might be due to the fact that according to the dispersion analysis carried out in [18], the FSE
has besides the acoustic dispersion curve, a second higher frequency curve. This so-called optical branch
reflects internal degrees of freedom according to the hypothesis in [16] and can have a visible effect on the
solutions of the FSE, similar to the results shown, for example, in [18]. However, the emergence and origin
of those oscillations need futher analysis.

Overall, we may conclude that if we stay in the domain of parameters, where according to the dispersion
analysis the difference between dispersion curves of the HE and FSE is less than 5%, we have, indeed, a
good agreement between solutions of the HE and FSE. Specifically: (i) predictions from the dispersion
analysis hold also for the nonlinear cases, however, the nonlinearity introduces additional effects not taken
into account by the linear dispersion analysis; (ii) following the weak normal dispersion line, the agreement
between the solutions of the HE and FSE weakens if 2 increases; (iii) the nonlinearity amplifies the
asymmetry between the waveprofiles propagating in opposite directions.

As the interactions between waveprofiles propagating in opposite directions are not entirely elastic, the
effect of interactions on the evolution of those waveprofiles needs detailed analysis as done in [28] for the
solitary waves that correspond to the HE.
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Uksiklainete formeerumine Mindlini-tiiiipi mikrostruktuursetes tahkistes

Kert Tamm ja Andrus Salupere

Lainelevi modelleerimiseks Mindlini-tiiipi mikrostruktuursetes tahkistes on kasutatud Jiiri Engelbrechti
ja Franco Pastrone tuletatud mudelit. Vaadeldav mudel kirjeldab mikrostruktuuriga fiiiisikaliselt mitte-
lineaarset materjali, kus mittelineaarsus esineb nii mikro- kui makrotasandil. Numbrilised lahendid on leitud
nn téielikule vorrandisiisteemile (4) ja sellest allutusprintsiibi abil tuletatud hierarhilisele vorrandile (5).
Saadud lahendeid on vdrreldud nii lineaarsel kui mittelineaarsel juhul. On niidatud, et vaadeldud para-
meetrite piirkonnas on lahendite kokkulangevus hea.
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Abstract

The Mindlin model and hierarchical approach by Engelbrecht and Pastrone are
used for modelling 1D wave propagation in microstructured solids. After introduc-
ing the free energy function, one gets from Euler-Lagrange equations a system of
equations of motion. Making use of the slaving principle, a nonlinear hierarchical
wave equation can be derived. Equations are solved numerically under localized ini-
tial conditions. For numerical integration the pseudospectral method based on the
Fourier transform is used. The influence of free energy parameters on the character
of dispersion and wave propagation is studied. Numerical results of hierarchical ap-
proximation and the full equation system will be compared and the quality of the
approximation will be discussed.

Key words: Nonlinearity, Microstructured solids, Solitons, Dispersion, Granular
materials, Pseudospectral methods

1 Introduction

In applications of microstructured materials adequate testing methods are
needed in order to evaluate the properties of such materials. Studies involv-
ing nonlinear wave propagation in continuous media with microstructure have
considerably increased in the recent years (see e.g. [3,6,17,23,24] and references
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therein). Microstructured materials are characterized by the existence of in-
trinsic space-scales in matter like the size of a grain or a crystallite, lattice
period, distance between the microcracks, etc., that introduce some scale-
dependence into the governing equations [3]. The scale-dependence involves
dispersive as well as nonlinear effects, and if these two effects are balanced,
solitary waves and solitons can exist in such media.

The basic model derived by Engelbrecht and Pastrone [4] is based on Mindlin’s
and Eringen’s earlier works. In this approach the microelement is taken as
a deformable cell (with rigid cells one would get the Cosserat model). The
displacement u of a material particle in terms of macrostructure is defined
by its components u; = x; — X;. At each material point there is attached a
microstructure described kinematically by a microdisplacement «" defined by
its components u; = 2; — X;. If the displacement gradient is small, one can
assume that the origin of the coordinates 2; and X, moves with the macroscale
displacement u. This is one of Mindlin’s basic assumptions, which allows one
to express microdeformation in terms of macrodisplacement. The fundamental
balance laws for microstructured materials can be formulated separately for
macro- and microscale [5]. In the 1D case the balance laws can be derived
from the Lagrangian

L=K-W (1)
formed from the kinetic and potential energies

L

21%?7 W= W (tz, ¢, pa). (2)

Loy
K= 5P +
Here p denotes the macroscopic density, I the microinertia, u the macrodis-
placement and ¢ the microdeformation. The subscript = denotes the spatial
partial derivative and the subscript ¢ the partial derivative with respect to
time. Using Euler-Lagrange equations, one will arrive at the equations of mo-

tion
ow ow ow
PUt — <auz>w:07 I@tt_<6—%>x+%_0. (3)
The partial derivatives
o oW oW o 6_W @
s "o T o

are known as the macrostress, microstress and interactive force, respectively
[3]. With the use of (4), equations of motion (3) take a familiar form

puw =0, ITpy =1, —T. (5)
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In the 1D nonlinear case the free (potential) energy W can be written as

A B C N . M .

W= 5“?; + 5802 + 5995 + Doug + gui + g@iv (6)
where parameters A, B, C, D are responsible for the linear part of the model
and N, M are responsible for the nonlinearity in macro- and microscale, re-
spectively [12]. Inserting energy function (6) into equations (4) and (5) results
in the equations of motion

PUt = DQO:E + Auzz + Nuz“/zzv

7

For further analysis dimensionless variables are introduced [12]:

T At U 2 A
X=" T=,== = =2 =2
L’ Voo VT Ay 0 2 T I, (8)

Here A, is the amplitude of the initial excitation, L, is the wavelength of the
initial excitation and [, is the characteristic scale of the microstructure. Making
use of expressions (8), the dimensionless equations of motion are obtained:

DL, NA,
Urr = A—AO('OX + A—LOUXUXX +Uxx, o
Cp BpL? _ DpA,L, Mp

= Lox— U .
Yrr AISDXX AT ) Al X+AILDS0X<PXX

Equations (9) are referred to as the ‘Full Equation System’ (FES for short)
below. Applying the slaving principle [3,22], a single equation in terms of the
macrodisplacement U can be derived from the FES:

UTT — bUXX + 05H(U)2()X = 6(ﬂUTT — ')/UXX — ().E)\/S/\U)Q(X)XX7 (10)

where

D? NA, 1D? CD? _ D3MA,

Ea M= ALO7 6 >\_ (]‘]‘)

b=1- - = . .
pi2B> T AR ABSBL,

Equation (10) is hierarchical in Whitham’s sense and can be considered as
an approximation of FES (9). Equation (10) is referred to as ‘the hierarchical
equation’ (HE) below. On the other hand, the HE is of Boussinesq type [2]. In
a nutshell, the slaving principle is a technique that allows elimination of the
microdeformation ¢ from FES (9). The corresponding procedure is described
in detail in papers [3,20]. It is clear that the macrodisplacement w is easier to
measure than the microdeformation ¢. Therefore the macrodisplacement u can
be used in applications. Furthermore, Janno and Engelbrecht have proved the
existence of the solution of the inverse solitary wave problem for the HE; i.e.,
they have shown that material parameters in equation (10) can be determined
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from wave propagation parameters (wave speed, amplitude changes or phase
shifts) [12].

The main aim of this paper is to compare the propagation of sech®type solitary
waves in the Mindlin-type microstructured solid for the HE and FES in the
range of parameters where both macro- and microstructure are taken into
account. The paper is organized as follows. In Section 2 the problem is stated.
In Section 3 the numerical technique is described. Different dispersion cases
are introduced and discussed in Section 4, followed by relevant discussion and
conclusions.

2 Statement of the problem

In order to simulate numerically the propagation of solitary waves in Mindlin-
type microstructured solid, equations HE (10) and FES (9) are numerically in-
tegrated under the sech-type localized initial conditions and periodic bound-
ary conditions

B,X
2

U(X,0) = A,sech?( ), UX,T)=UX+2kr,T), k=12,.., (12)

where A, = 1 is the amplitude of the initial pulse and B, = 7 is the width
parameter. For numerical integration the pseudospectral method (PSM) based
on the discrete Fourier transform (DFT) is used. Periodic boundary conditions
have period of 2x. For speed we use the initial condition

U(X,0)r = —c-U(X,0)x, with UX,T)=U(), ¢=X—cT, (13)

where c is the phase speed of the initial wave. If the nonlinearity is sufficiently
weak one can use

2
c:,/l—f—B., (14)

as the initial phase speed estimate that corresponds to the phase speed of the
classical wave equation. For the FES two more initial conditions are needed
for microstructure;

Pp(X,0)=0,  ¢(X,0)r=0. (15)

The goals of the present paper are:

(1) To solve HE (10) and FES (9) under localized initial conditions for three
different cases:
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e dispersionless case,
e normal dispersion case,
e anomalous dispersion case.
(2) To compare solutions of the HE and FES for the linear and nonlinear
case.

3 Numerical technique

As stated in Section 2, the DFT-based PSM (7,16,25,27] is applied in numerical
integration in the present study. We use the following version of the DFT:

O(k,t) = FU = S° U(jAz, ) exp <—2ﬂzjk> , (16)

Jj=0

where n is the number of space-grid points, Ax = 27/n — the space step, i —

the imaginary unit, & = 0,£1,42,...,+(n/2 — 1), —n/2 and F denotes the

DFT. Now partial derivatives of U with respect to the space coordinate X
o
oxn

where F~! denotes the inverse DFT. According to the idea of the PSM, the
partial derivatives with respect to the space coordinate are approximated by
making use of formula (17), thereby reducing a PDE to an ODE and allowing
for straightforward integration with an ODE solver.

F=4 [(ik)"F(U)] (17)

The regular PSM algorithm is derived for u; = ®(u, uy, Uog, .. ., Unz) type
equations. However, in our case HE (10) includes a mixed partial derivative
and therefore the standard PSM has to be modified [10,11,26,28]. We start by
writing HE (10) so that all partial derivatives with respect to time are in the
LHS. In order to apply the PSM, we have to introduce a new variable

I1D?

d=U— =
B*L3p

Uxx. (18)

Expression (18) can be rewritten as

o =F" Kl + Blzlz;pk2> F(U)} : (19)

From equation (19), in turn, the dimensionless macrodisplacement U can be
expressed as

F(®)

ID2 1.9
1+ BZL%pk

=F! (20)
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Taking (20) into account, partial derivatives of U can be expressed as

SXZ — ! 71(%) ,qu)lzz : (21)
T Bz,

which allow us to express the HE in the form suitable for the application of
the PSM

D? CD?
Oy = (1 — AB) Uxx — MUXXXX
0 (22)
N MeD?*\/5 2
+ JUXUXX + W (UXXUXXXX + UXXX> .

In other words, in equation (22) all partial derivatives of U with respect to X
are calculated in terms of ® by making use of expression (21).

In the present paper calculations are carried out with the package SciPy [14]
using: the FETW library [8] for the DFT and the F2PY [21] generated Python
interface to the ODEPACK Fortran code [9] for the ODE solver.

4 Results and discussion

According to papers [3,13], the dispersion type can be determined by the sign
of quantity

D>, pC

F:]'iﬂ)/%i’y[%h Where 7124:@7 ’Yl*AI

(23)

Here 71 can be interpreted as the dimensionless speed of short (high-frequency)

waves and /1 — % as the dimensionless speed of long (low-frequency) waves.
If T is positive, we have the normal dispersion case (the phase speed is higher
than the group speed), if negative, the anomalous dispersion case (the group
speed is higher than the phase speed) and if equal to zero, we have the dis-
persionless case (the phase speed and the group speed are equal).

All together we have 11 different parameters — 8 physical (6 energy parame-
ters, macroscale density and microinertia) and 3 geometrical (amplitude and
wavelength of the initial excitation and the scale of the microstructure).

According to the (linear) dispersion analysis carried out in [20], the dispersive
properties of the FES and HE are in good agreement in the range of parameters
shown in Fig. 1. Solid lines in the figure represent a 5% difference between the
acoustical branches of the dispersion curves of the HE and FES and the dashed
line represents all parameter combinations resulting in the dispersionless case
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Fig. 1. Domain in the ¥4 —~# plane where the HE and FES are in good agreement.

ie., I' = 0. In [20] the good agreement between the FES and the HE is defined
as smaller than the 5% difference between the acustical branches of the HE
and FES at the dimensionless wavenumber & = ky/(AI)/(Bp) = 1.5, where k
is the wavenumber and A, I, B, p are the same parameters as in (9) and (11).
In Fig. 1 above the dashed line we have the anomalous dispersion type and
under the dashed line the normal dispersion type. We say that between those
two solid curves we have good agreement between the HE and the FES (in
the sense of dispersion).

Three dispersion cases are considered below, with the following values of pa-
rameters. (1) For the dispersionless case:

A=12, B=11, C=7 D=5 N=0andl, M =0and0.1; (24)
A,=1, l,=1, L,=15, p=13, I =09.3551,;
resulting in 44 = 0.1894 and ~? = 0.8106, marked with a square in Fig. 1.

(2) For the normal dispersion case:

A=12, B=11, C=7 D=5 N=0andl, M =0and0.1; (25)
A, =1, l,=1, L,=15, p=13, I =10.2897,
resulting in ¥4 = 0.1894 and 77 = 0.7370, marked with a diamond in Fig. 1.

(3) For the anomalous dispersion case:

A=12, B=11, C=7 D=5 N=0andl, M =0andO0.1;

2
Ay=1, l,=1, L,=15 p=13, I ==8.4206; (26)
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resulting in %4 = 0.1894 and 7# = 0.9006, marked with a circle in Fig. 1.

The only parameter that is different in sets (24), (25) and (26) is microinertia
I. In the linear case we will set free energy parameters N and M to zero and
in the nonlinear case to 1 and 0.1, respectively. The integration interval is
from T = 0 to T = 50. However, in the figures below, the waveprofiles and
phase diagrams are presented at 7" = 49 when the waveprofiles are located
in the middle of the space period. The curves that correspond to the HE are
plotted by (red) dashed lines and the curves corresponding to the FES by
(black) solid lines. Phaseplots are used to highlight small differences in the
waveprofiles and to emphasise the asymmetry of the propagating pulses. For
the harmonic wave Ux — U phaseplot results in a circle and in the case of the
sech?-type profile, has the shape of a water drop.

0.7~ 0.98
067 96
OS5 gt
.
047 .02
03
0.9
021
0.1F
o :
0 1 2 4 s 6

3
0< X<2n

Fig. 2. Waveprofiles at T' = 49 for the linear dispersionless case.

0.7

0.
0.6
0.75 /
0.5~ p
A
0.7
2 g4k
03F 065
021
06735 325

0.1

3
0< X<2n

Fig. 3. Waveprofiles at T' = 49 for the nonlinear dispersionless case.
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4.1 Dispersionless case

In the dispersionless case (see Figs. 2-7) we have good agreement between the
results of the HE and FES as predicted by the dispersion analysis in [20]. In the
linear case the waveprofiles practically coincide at the end of the integration
interval (see Figs. 2, 4 and 6). Figure 4 demonstrates that in case of the HE
as well as the FES the pulse propagates with a constant amplitude and small
deviation between the HE and the FES takes place at the very beginning
of the integration interval. Small differences in the waveprofiles are easier to
spot in the phase diagram in Fig. 6. In the nonlinear dispersionless case the
agreement between the waveprofiles is better (Figs. 3, 5 and 7). However, in
that case the waveprofile morphs into a peakon-type profile [1,15], as can be
seen in Figs. 3 and 7, and the amplitude of the pulse decreases more than 20%
during the integration interval (Fig. 5).

1 1 - T T
0.8 : B 0.8 \
0.6 0.6

=} =)

0.4 0.4
0.2 0.2

0 0

0 10 20 30 40 50 0 10 20 30 40 50
T T

Fig. 4. Waveprofile minima and maxima  Fig. 5. Waveprofile minima and maxima
for the linear dispersionless case. for the nonlinear dispersionless case.

Fig. 6. Phaseplot Ux — U at T'=49 for  Fig. 7. Phaseplot Ux — U at T = 49 for
the linear dispersionless case. the nonlinear dispersionless case.
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Fig. 8. Waveprofiles at T' = 49 for the linear normal dispersion case.

3
0< X<2m

Fig. 9. Waveprofiles at 1" = 49 for the nonlinear normal dispersion case.

4.2 Normal dispersion case

In the normal dispersion case (see Figs. 8-13) we have good agreement between
the results of the HE and FES. In the linear case the waveprofiles almost
coincide at the end of the integration interval (Fig. 8) and waveprofile maxima
and minima are in good agreement during the whole integration interval (Fig.
10). Good agreement between the waveprofiles is apparent in the phaseplot at
T =49 in Fig. 12. In the nonlinear case the ‘main part’ of the waveprofile has
even better agreement than in the linear case (cf. Figs. 9 and 13). However,as
can be seen in Figs. 9 and 13, differences in the ‘tail part’ of the waveprofile are
more distinctive for the nonlinear case. In the nonlinear normal dispersion case
the amplitude of the pulse decreases more than 25% during the integration
interval (Fig. 11).

10
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Fig. 10. Waveprofile minima and max-  Fig. 11. Waveprofile minima and max-
ima for the linear normal dispersion ima for the nonlinear normal dispersion
case. case.

0.5

Fig. 12. Phaseplot Ux —U at T' =49 for ~ Fig. 13. Phaseplot Ux —U at T' = 49 for
the linear normal dispersion case. the nonlinear normal dispersion case.

0.9

0.8

3
0< X<2m

Fig. 14. Waveprofiles at 7' = 49 for the linear anomalous dispersion case.

4.8 Anomalous dispersion case

In the anomalous dispersion case(see Figs. 14-19) we have good agreement
between the results of the HE and FES regarding time dependencies of wave-
11
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Fig. 16. Waveprofile minima and max-  Fig. 17. Waveprofile minima and max-
ima for the linear anomalous dispersion  ima for the nonlinear anomalous disper-
case. sion case.

0 0.2 0.4 0.6 0.8 0.2 0.4 0.6
U U

Fig. 18. Phaseplot Ux — U at T' = 49  Fig. 19. Phaseplot Ux — U at T' = 49
for the linear anomalous dispersion for the nonlinear anomalous dispersion
case. case.

profile maxima and minima (Figs. 16 and 17) and the shape of the ‘main
part’ of the waveprofile (Figs. 14, 15, 18 and 19). However, noticeable differ-
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ences between the ‘tail parts’ of the waveprofiles that correspond to the HE
or the FES can be detected for the nonlinear case (Figs. 15 and 19). In case
of anomalous dispersion the speed of short waves is higher than that of long
waves and therefore the tail is formed in front of the pulse.

4.4 Discussion

The difference between solutions of the HE and FES in the ‘tail part’ of the
waveprofile is more distinctive in the nonlinear anomalous case (see Fig. 19)
than in the nonlinear dispersionless (see Fig. 7) and nonlinear normal dis-
persion case (Fig. 13). This might be due to the fact that according to the
dispersion analysis carried out in [19], the FES has besides the acoustical dis-
persion curve, another, higher-frequency curve. This so-called optical branch
reflects the influence of internal degrees of freedom according to a hypothesis
posed in [19] and has certain influence on the solutions of the FES, similar
to the results shown, for example, in [18]. Our analysis has shown that the
optical branch in the FES is not strong enough to dominate over the acous-
tical branch and to give rise to the situation where the HE and FES have
different dispersion types. This phenomenon, however, needs further analysis.
In the dispersionless case the solution of the FES has very small oscillations
with anomalous character (optical branch is of the anomalous dispersion type)
but it is not entirely clear whether they are caused by the optical branch or
have some other character. For example, application of incorrect initial speed
estimate can cause the initial pulse to split into two waves, where one is prop-
agating in the direction defined by the initial phase speed and the other in the
opposite direction.

One can to see that the direction of the asymmetry of waveprofiles is dependent
on the dispersion type (Figs. 8 and 9 versus Figs. 14 and 15) and that the
nonlinearity accelerates the emergence of asymmetry (Figs. 8,12,14 and 18
versus 9,13,15 and 19).

5 Conclusions

We have good agreement between the solutions of the HE and FES if we stay
in the domain of parameters where according to the dispersion analysis, the
difference of dispersion curves of the HE and FES is less than 5%.

e Dispersionless case
(1) For the dispersionless case we have good agreement between solutions of
the HE and FES.
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(2) In the linear case the waveprofile conserves its shape and maximum am-
plitude.

(3) In the nonlinear case the waveprofile morphs into a peakon-type profile
and loses over 20% of its maximum amplitude over the integration interval.

e Normal dispersion case

(1) For the normal dispersion case we have good agreement between the so-
lutions of the HE and FES.

(2) In the linear case the waveprofiles that correspond to the HE practically
coincide with these corresponding to the FES.

(3) In the nonlinear case the ‘main pulses’ of the HE and FES are in good
agreement, but small differences can be detected in the ‘tail part’.

(4) The maximum amplitude of the waveprofile decreases more than 5% for
the linear case and more than 25% for the nonlinear case.

e Anomalous dispersion case

(1) In the anomalous dispersion case we have good agreement between the
solutions of the HE and FES.

(2) In the linear case the solutions of the HE and FES practically coincide.

(3) In the nonlinear case the ‘main pulses’ of the HE and FES are in good
agreement, but noticeable differences can be detected in the ’tail part’.

(4) The maximum amplitude of the waveprofile decreases more than 5% for
the linear case and more than 25% for the nonlinear case.

e The direction of the asymmetry of waveprofiles depends on the dispersion

type.
e Nonlinearity accelerates the emergence of the asymmetry of waveprofiles.

The interaction of solitary waves that correspond to the FES needs detailed
analysis as done in [29] for solitary waves corresponding to the HE.
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