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1. INTRODUCTION 

Every human has a distinctive gait that contains unique information about a person’s 

health [1], making it an ideal topic for a clinical study to assess fundamental 

kinematics of human motion [2], identify developing pathologies [3], or aid 

rehabilitation process [4]. Apart from clinical applications, human gait analysis finds 

application in various fields such as sports, computer games, surveillance, human 

recognition, modeling, and some other fields [5], [6]. 

The act of walking is defined by the constant repetition of gait cycles marked by 

specific occurrences, called gait events. The gait events are heel strike, the moment 

when the foot hits the ground, and toe-off, which describes the moment of foot 

leaving the ground. A complete cycle is identified by the period of time and specific 

motion patterns occurring between two homolateral heel strikes. A gait cycle can be 

divided into two main phases: the stance phase, a period of time when the foot is in 

contact with the ground, and the swing phase, the period of time where the foot is 

flying. Stance and swing are the two main phases that can also further spread in 

smaller sub-phases. The sub-phases nomenclature varies in the literature, but they 

can be described as follows (see Figure 1.1): initial contact, loading response, mid 

stance, terminal stance, and pre-swing, initial swing, mid-swing, and terminal swing. 

The gait events are following one another and together conclude human gait. 

 

Figure 1.1 Phases and Sub-Phases of the gait cycle [7] 
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Gait analysis focuses on the study of the broad range of the parameters that 

characterize human gait, such as, for example, gait cycle time, cadence, walking 

velocity, step length, stride duration, stride length, swing, and stance percentage of 

the gait cycle, swing and stance time [8]. Gait parameters, in turn, are calculated 

based on the occurrence and duration of gait events [8]. The occurrence of changes in 

the normal gait may point to the development of various diseases, such as, for 

instance, Parkinson’s disease, where a decrease in cadence [9] (number of steps per 

minute) occurs.  

There are various methods to evaluate human gait but they all can be categorized into 

two main groups, namely clinician's direct assessment and data-driven methods [10]. 

The first method is based on the visual observation of the doctor and his evaluation of 

the gait. Even when it is attempted to categorize and classify gait with questionnaires 

and scales, these methods rely completely on the clinicians' expertise [1] and 

therefore they are highly subjective. Conversely, the other category of methods relies 

on quantitative data obtained from the sensors and devices capturing human gait. 

These methods enable recording and quantifying human locomotion and then through 

data processing techniques produce objective data for gait analysis and evaluation. 

The data-driven gait analysis, in turn, can be distinguished into three main groups: 

image processing, floor sensors, and inertial wearable sensors [10]. An overall 

summary of these methods along with their strengths and weaknesses is provided in 

Table 1.1. The most accurate system derives from image processing and is called the 

optoelectronics motion capture method. This system provides undoubtedly the best 

quality data for gait analysis of clinical interest. Light-reflecting markers are placed on 

specific anatomical points of the body and, recorded by multiple infrared cameras, 

allow reconstruction of human motion in its complexity. However, this methodology 

has some limitations ([11], [12]), being restricted to the laboratory environment, as it 

requires a large amount of expensive equipment and personnel to carry out the 

experiment [13]. It also introduces certain limitations to the parameters of the 

experiments, primarily the length of the walking path, due to the limited field of view 

of the cameras. It has also been pointed out in [12], [14] that in-laboratory monitored 

walking gait and outdoor day to day walking gait may differ, as in lab walking is often 

scripted according to the research purposes and walking gait might be unrealistic due 

to psychological factor. The predecessor of optoelectronics gait analysis is a camera-

based method, where gait analysis is done through direct image (video recordings) 

processing and this approach shares the same restrictions. Similar limitations apply to 

the floor sensors methods [15], where the study subject walks along the platform 

equipped with pressure sensors. Moreover, rather than the measuring kinematic 
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characteristics of motion, force plates enable the investigation of the dynamic 

components of the gait. 

Table 1.1 Gait analysis methods classification 

 

Clinician’s 

visual 

observation 

Data-driven methods 

Image processing Floor Sensors Wearables 

S
tr

e
n
g
th

s
 

Doesn't require 

expensive 

equipment, nor 

personnel to 

carry out the 

gait evaluation 

Allows precise 3D 

capturing of human 

motion and enables 

comprehensive gait 

analysis and 

quantification 

Enables gait analysis 

based on the Ground 

Reaction Forces, 

Produces reliable 

data for gait analysis 

Cost-effective, 

Allows gait 

investigation in 

the real-life 

conditions, 

Sensors are 

tiny and 

lightweight 

W
e
a
k
n
e
s
s
e
s
 

Subjective, 

Doesn't allow 

to quantify gait 

parameters, 

Evaluation 

based on 

clinician's skills 

and expertise 

A large cost of the 

equipment, Requires 

a considerable 

amount of personnel 

for an experiment, 

Experiment is 

restrained to the lab 

environment 

A large cost of the 

equipment, Requires 

a considerable 

amount of personnel 

for an experiment, 

Experiment is 

restrained to the lab 

environment 

Lack of 

standardization 

regarding 

sensor 

placement, 

data reporting, 

and processing 

techniques 

 

The third group of objective methods which implements wearable sensors enables 

overcoming these limitations. This caused a growing amount of research, in the past 

two decades, utilizing inertial sensors [16]. Initially, data collection was performed 

using accelerometers only. Subsequent advances in microelectronics now allow for the 

widespread use of Inertial Measurement Units (IMUs) for wearable sensors. An IMU 

combines an accelerometer, gyroscope, and magnetometer, allowing for a more 

comprehensive kinematic assessment of the gait. When data are combined properly, 

the three sensors can be used to complement each other, improving both the efficacy 

and quality of the gathered data. The state-of-the-art wearable sensors ([17], [18]) 

now make ubiquitous use of IMUs for human gait analysis. Once mounted on the test 

subject, these devices can record linear acceleration, angular velocity, and magnetic 

field data which is later processed for gait analysis. The major advantage of this 

method is its flexibility in the test environment, as no special laboratory equipment 

nor large personnel is required to carry out data gathering. Also, it provides an 
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opportunity for the data collection for an extended period of time in the real-world 

environment, when the proper battery life time is assured. 

Despite such rapid growth in the amount of research implementing IMUs for gait 

analysis, there are still problems to be solved. One of those problems is the lack of 

standardization for data gathering and evaluation methods [11]. Another gap that is 

infrequently addressed in the literature is optimal sensor placement. The placement of 

sensors varies broadly, mainly according to the investigation purpose and the 

algorithm used afterward. Most commonly met are foot, shank, and thigh, however, 

there remains little justification or critical evaluation of sensor placement and 

sensitivity to the attachment method for studies of the walking gait [13]. 
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2. LITERATURE REVIEW 

The purpose of the literature review was to examine previous studies and identify the 

optimal inertial sensor placement, for the robust and accurate gait data collection. 

Along with that, algorithms that are applied for data processing, together with their 

advantages and disadvantages were considered.  

Table 2.1 provides the summary of all the keywords combinations that were used 

during the literature review along with a quantity of the given results. Only 

publications of the past 10 years were taken into consideration. 784 research papers 

in total were found. After removing duplicates and unrelated studies based on the title 

and abstract scanning, 34 studies in total were considered for the full-text 

investigation. 

Table 2.1 Keywords combinations used for literature review 

Keywords combinations Search results 

Wearable IMU gait analysis 180 

IMU gait event extraction 27 

IMU gait event detection 63 

IMU gait analysis placement 83 

IMU mounting gait analysis 72 

Wearable gait analysis sensor location 161 

IMU optimal placement gait analysis 53 

Wearable optimal placement gait analysis 145 

 

Out of 34 research papers, 18 conducted experiments exploiting wearable sensors for 

gait analysis or investigated the efficiency of various algorithms. Seven of those 

studies ([14], [19]–[24]) utilized sensors located on the lower back, chest, or wrist. 

They were removed from the final analysis, due to findings in [4], [13], [21], [25], 

where authors concluded that for a more comprehensive gait analysis lower limbs, and 

feet specifically, seem to be the best choice. Indeed, the closer the sensor to the foot, 

the wider range of motion it will be able to record, and therefore produce better data 

for further analysis. This was best highlighted in [26] where the research group was 

investigating the sensor’s accuracy for gait analysis in the following four locations: L5 
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spinal cord, thighs, shanks, and foot. Results of this study showed that sensors when 

placed on the L5 resulted in the worst accuracy. Hence, based on these conclusions in 

the present MSc Thesis the focus will be placed on the investigation of sensor 

performance placed on the lower limb. 

2.1 Sensor placement 

Table 2.2 summarizes findings regarding sensor placements and fixation methods. In 

terms of the sensor location, three main areas can be highlighted, one for each body 

segment: thigh, shank, and foot. Sensors were placed on healthy subjects as well as 

on subjects with pathological gait caused by various conditions (e.g. Parkinson's 

disease, Cerebral Palsy, stroke survivors). For both healthy and abnormal gait shanks 

and foot located sensors were giving the best results for gait events recognition, 

reaching over 90% alignment with gold standard systems used as a reference. 

Three studies ([26]–[28]) were investigating how the sensor's location influences the 

gait events identification, and thus gait analysis. The study group in [26] consisted of 

22 patients with Neurological diseases, where only the stroke group had a 

considerable population (11 patients) and the other 9 were representatives of four 

other diseases. As the result of this research, the authors highlighted that for 

neurological gait, shanks might be the optimal sensor placement. In [27] authors were 

investigating the influence of the sensor locations on gait recognition for children with 

Cerebral Palsy, whereas in [28] researchers investigated specific foot locations, not 

concerning other parts of the human body. 

Studies also vary significantly in the number of utilized sensors. However, as 

highlighted in [25], at least two sensors, one for each lower limb, should be utilized. 

This is because a single sensor doesn't provide enough data for comprehensive gait 

analysis, especially in the case of pathological, asymmetrical gait. 

For sensor mounting, straps, sometimes combined with elastic belts, are preferred 

over the tape, presumably due to better fixation. However, no cross-comparison 

between these two methods was found. Interestingly, in none of the revived studies 

the soft-tissue artifact, as the relative motion between skin and sensor, was taken into 

account. This may cause discrepancy which directly influences the accuracy and 

robustness of the data collection [3]. Additionally, the review paper [29] highlights 

that relative linear and angular displacement is lower when sensors are mounted on 

the shanks and ankles, which is coherent with the results of the aforementioned 

studies. 
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As to the identified gait events, it can be seen from Table 2.2  that mainly researchers 

are targeting Heel Strike (HS) and Toe-Off (TO), and only one study [27] approached 

to quantify 6 gait events. This is due to the fact that HS and TO stand-alone enable 

estimation of the broad range of the spatial and temporal parameters for an extensive 

gait analysis. 

To conclude, there is still a lack of agreement on the optimal sensor location for 

accurate gait events detection [15], [30]. Moreover, evidence is present that for 

pathological gait general optimal sensor location might not be established, due to high 

variability in the gait abnormality for the specific disease. Therefore, as pointed out 

in [31], the sensor location should be based on the purpose of the application and, for 

pathological gait analysis, the target group of the study. Regardless of the study 

group, straps are preferred to fix the sensor on the subject, and HS and TO are the 

gait events that enable broad, quantitative gait analysis. 



 

 

 

Table 2.2 Details regarding sensor placement identified during literature review classified by the sensor location, reasoning of the location, mounting system and target 

gait events of the research, heal strike (HS), flat foot(FF), mid-stance (MSt), heal off (HO), toe-off (TO) and mid-swing (MSw) 

Nr. 
Study 

ref 
Year Purpose of the study Sensor Location 

Placement 

Justification 
Mounting System 

Identified gait 

events 

1 [32] 2017 

Validation of the algorithm for 

the spatial gait parameters 

estimation based on Initial 

Contact detection 

Shanks NONE Straps HS 

2 [33] 2017 
Heel strike and Toe-Off events 

recording using accelerometers 

Waist, wrist, and both 

ankles 

Based on the 

previous studies 

utilizing tested 

algorithms 

Elastic band and 

Velcro straps 
HS and TO 

3 [34] 2017 

IC and TC contact identification 

to estimate stance and swing 

time; assess 4 different data 

processing algorithms 

The instep of the foot 

and mid-shank 
NONE Suitable elastic belts HS and TO 

4 [35] 2017 

Development and validation of 

the new method for HS and TO 

gait events identification 

Shanks and Thighs 
To repeat 

previous studies 

Elastic open-patella 

knee brace with 

sewn-in straps 

HS and TO 

5 [31] 2018 

HS and TO gait events 

identification for temporal 

parameters calculations 

Trunk (at L5 level), 

shanks (about five 

centimeters above 

lateral malleolus), and 

feet (on the dorsal 

surface of each shoe) 

To repeat 

previous studies 
NOT MENTIONED HS and TO 

6 [26] 2018 

Investigate how sensor 

placement influences the 

accuracy of gait event 

identification 

7 sensors in total; L5, 

thighs, shanks, and 

foot 

Investigation of 

the sensor 

placement on its 

performance 

Medical-grade tape 
HS and TO 
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Nr. 
Study 

ref 
Year Purpose of the study Sensor Location 

Placement 

Justification 
Mounting System 

Identified gait 

events 

7 [28] 2018 

Analyze how sensor location on 

the foot influences the data 

collecting process 

Metatarsal, Proximal 

phalange, side 

metatarsal, Talus, and 

Achilles tendon 

Investigation of 

the sensor 

placement on its 

performance 

Self-designed case 

and attached to the 

foot with Velcro 

elastic belt 

HS and TO 

8 [36] 2018 

Real-Time gait event 

identification to feed algorithm 

for robot control 

The backside of the 

foot 

Purpose of the 

application 

Custom designed 

mounting 
HS and TO 

9 [27] 2018 

Evaluate how sensor 

placement influences the 

accuracy of the gait events 

detection in children with CP 

Thighs and shanks, 

feet 

Investigation of 

the sensor 

placement on its 

performance s 

Hypoallergenic 

adhesive film 
HS and TO 

10 [25] 2019 

Evaluate what data, 

acceleration, angular velocity, 

or both, provides the most 

accurate gait events 

identification 

Side of the foot NONE Straps 
HS, FF, MSt, HO, 

TO, and MSw, 

11 [37] 2020 

Validation of an IMU gait 

analysis algorithm for gait 

monitoring in daily life 

situations 

Top of the foot NONE NOT MENTIONED HS and TO 
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2.2 Utilized sensors and data analysis methods 

A summary of utilized sensors and data analysis methods is presented in Table 2.3. It 

can be noticed that predominantly commercially available IMUs are utilized, with only 

one research group [35] using the self-made sensor. Only one study [33] reported 

using the accelerometer stand-alone, whereas all others were utilizing IMUs. High 

inconsistency was noticed in terms of reported sensor parameters, where even 

sensitivity and dimensions are not always specified. Similar inconsistency is present in 

the sampling frequency preferred for experiments. The most commonly met is 50 Hz 

(three times), however, eight other studies used a frequency that exceeds it at least 

twice, with one study [25] using a frequency of 400 Hz. 

As to raw data filtering, the investigated studies were varying significantly. Only 

two studies, [25] and [35], declared to use raw data for the analysis. Among applied 

data filters, the most commonly utilized were Kalman, Savitzky-Golay, and 

Butterworth filters. For analyzed data representation Bland-Altman plot and Boxplot 

have been used frequently. 

Both angular velocity and acceleration data were used for gait analysis, noticing no 

consistency. Despite magnetometer being present in the vast majority of utilized 

devices, it wasn't used at all.  Among 28 data analysis processes that were discussed 

in the studies, gait events were identified based on acceleration 15 times and 12 times 

based on the angular velocity. One study [25] went in-depth to analyze what data, 

acceleration or angular velocity, is more suitable for gait identification. Researchers 

used different configurations of the signal (e.g. both acceleration and angular velocity 

from both feet, acceleration from both feet, angular velocity from both feet, single foot 

acceleration, etc.) to feed a Hidden Markov Model based algorithm. It was found that 

angular velocity alone or a combination of both acceleration and angular velocity gives 

the best accuracy for HS and TO gait events identification. This is coherent with a 

systematic review made in 2016 [4], where authors concluded that angular velocity of 

the foot shows the best performance among other inertial quantities.  

Predominantly acceleration or angular velocity peaks identification method is used for 

HS and TO gait events recognition. Alternatively, another common method was an 

analysis of the wavelet transform of the sensor signal. In terms of automatic gait 

event extraction primarily self-developed algorithms were used. It is worth mentioning 

that all studies except for one [26] used either an optoelectronics system, force 

plates, or a combination of the two as the ground truth for the comparison. These 
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systems are considered to be the gold standard in the field of gait analysis and 

therefore serve as a reference point for validating wearable devices.   



 

 

 

Table 2.3 Details regarding data analysis methods and utilized sensor identified during literature review classified by type of sensor, sampling frequency, utilized data 

filter, and data processing method, accelerometer (ACC), gyroscope (GYRO), magnetometer (MAG), Neural Network (NN), Hiden Markov Model (HMM) 

Nr 
Study 

ref 
Year 

Utilized sensor 

Sampling 

frequency 

Commercial/

Custom made 

Sensor Raw 

Data Filtering 
Data Processing 

ACC GYRO MAG 

1 [32] 2017 
3-axes; 

±16 g 

3-axes; 

±2000 ⁰/s 
- 256 Hz 

NOT 

MENTIONED 
PRESENT 

Finding the first derivative of the acceleration 

(Jerk), which peaks identify HSs 

2 [33] 2017 
3-axes; 

±8 g 
- - 128 Hz Commercial 

NOT 

MENTIONED 

Composite acceleration 

Acceleration peaks identification using 

thresholds 

HS and TO detection based on the stride 

duration approximation using data from the 

accelerometer 

Acceleration wavelet transform 

Symbol based method that uses piecewise 

linear segmentation followed by clustering to 

symbolize the 2-axis acceleration signal 
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Nr 
Study 

ref 
Year 

Utilized sensor 

Sampling 

frequency 

Commercial/

Custom made 

Sensor Raw 

Data Filtering 

Data Processing 

ACC GYRO MAG 

Domain knowledge based on the gait cycle 

and gait event frequency detection using data 

from the accelerometer 

3 [34] 2017 
3-axes; 

±160 m/s2 
3-axes; 

±1200 ⁰/s 
- 50 Hz Commercial PRESENT 

Acceleration relative minimum peaks 

Acceleration relative minimum peaks for TO 

and mid-swing; HS as a linear interpolation 

between the sample above the zero rate and 

the sample below the zero rate just after the 

mid-swing events 

Acceleration continuous wavelet form 

Scalar continuous Hidden Model Markov with 

data from the gyroscope 

4 [35] 2017 
3-axes; 

±160 m/s2 

3-axes; 

±2000 ⁰/s 
- 50 Hz Custom 

RAW DATA 

ANALYSIS 

Angular velocity noise zero-crossing method 

which is based on the inverted pendulum 

model of the gait 

5 [31] 2018 
3-axes; 

±8 g 

3-axes; 

±1000 ⁰/s 
- 285 Hz Commercial 

NOT 

MENTIONED 

Acceleration peak identification and zero-

crossing 

Acceleration/ Angular velocity continuous 

wavelet transform 

Angular Velocity peaks identification 
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Nr 
Study 

ref 
Year 

Utilized sensor 

Sampling 

frequency 

Commercial/

Custom made 

Sensor Raw 

Data Filtering 

Data Processing 

ACC GYRO MAG 

6 [26] 2018 
3-axes; 

±16 g 

3-axes; 

±2000 ⁰/s  
148 Hz Commercial 

NOT 

MENTIONED 
Angular Velocity peaks identification 

7 [28] 2018 
3-axes; 

±8 g 

3-axes; 

±500 ⁰/s 
- 50 Hz Commercial PRESENT Acceleration peak identification for mid-swing 

8 [36] 2018 3-axes 3-axes - 150 Hz Commercial PRESENT 

Heuristics and zero-crossing method based on 

the angular velocity 

Gait sequence and peak angular acceleration 

Acceleration maximum and minimum peaks 

Acceleration maximum peak and zero-crossing 

Angular velocity wavelet decomposition 

Single-axis angular velocity thresholds taken 

from the baseline signal 

Manual identification by visual inspection of 

gyroscope signal 

9 [27] 2018 3-axes 3-axes - 100 Hz Commercial 
NOT 

MENTIONED 

Angular Velocity peaks identification 

Angular velocity peaks identification and norm 

Acceleration of the feet 

10 [25] 2019 3-axes 3-axes - 400 Hz Commercial 
RAW DATA 

ANALYSIS 

Acceleration and Angular velocity rule-based 

sliding window method (peaks identification, 

flat-zone detection, zero-crossing) that was 

fed to NN\HMM hybrid model 

11 [37] 2020 3-axes 3-axes - 128 Hz Commercial PRESENT Angular velocity negative peaks 
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2.3 Literature review conclusions 

Through the selected keywords a total of 34 research papers have been analyzed and 

summarised in this literature review. The main outcome of the conducted survey is the 

general lack of standardization regarding protocols, devices, and analysis methods 

applied. Furthermore, the following conclusions can be made: 

 Shanks and foot are the most suitable locations for comprehensive gait 

analysis, however, exact placement should be considered based on the purpose 

of the application and the population investigated. 

 Straps are preferred as a mounting method for better fixation. 

 Both angular velocity and acceleration are suitable for identifying gait events. 

 Peaks identification method produces agreeable results in comparison to the 

gold standard reference systems. 

More uncertainty remains in terms of the necessity of data filtering, optimal sampling 

frequency, and algorithms for automatic gait events extraction. 

2.4 Aims of the Thesis 

The main aim of this MSc thesis is to develop and validate an automatic gait events 

detection system utilizing TalTech's miniature wearable IMU. The developed system is 

aimed to be utilized for gait analysis in clinical applications. To achieve that, the 

following sub-goals have been outlined: 

 Develop a sensor mounting system for the lower limb of the human body that 

will assure firm fixation and convenient utilization. 

 Validate the sensor for gait analysis versus a camera-based approach. 

 Develop a data filtering system to limit noise and soft-tissue artifacts. 

 Develop and implement an automatic gait events identification algorithm. 

 Implement the algorithm on the study group to validate the developed system.  
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3. MATERIALS AND METHODS 

This chapter contains a complete overview of the data-acquisition set-up, materials, 

and tools that were involved, as well as a description of the methodology, data 

processing and exploited statistical methods. The sections of this chapter were 

organized according to the actual timeline of the thesis project. Since outcomes of this 

thesis might be used in conferences and future works, for the entire content of the 

manuscript a dot instead of the comma was used as a decimal value indicator. 

3.1 Materials and Tools 

This section outlines the materials and tools used in this master thesis. Among them 

are the TinyTag motion sensor, the custom casing that was designed and 3D printed, 

along with materials used for filter development. 

TinyTag 

TinyTag is a small motion and pressure logger for human and animal gait analysis 

developed by TalTech's Centre for Environmental Sensing and Intelligence, 

Department of Computer Systems. This device is designed to be used in hospitals, 

rehabilitation clinics, and outdoors. In its essence, it is an IMU device that also has 

pressure and temperature sensors. Due to lack of the communication systems, it is 

equipped with a removable SD card for data storage and a lithium-polymer battery for 

power (see Figure 3.1). Battery size and capacity can be adjusted according to the 

objectives of the performed task. The sensor also has a real-time clock that provides 

the timestamp of every measurement once the sensor is activated. Sensor activation 

is done through the magnetic switch. Charging and data transfer are carried out 

through 4 pins in the head of the sensor. 

Dimensions of the sensor and utilized battery are captured in Figure 3.2. Together, 

their weight results in 5.2 grams. Once switched on, it records acceleration, angular 

velocity, and magnetic field in 3 axes, as well as pressure and temperature. However, 

for gait analysis, only accelerometer data were utilized. Acceleration was recorded at 

the frequency of 100 Hz, with an accelerometer set to the range of ±8 g with the 

sensitivity of 1/4096 g. The sensor stores the data as a .txt file. 

 



 

22 

 

 

Figure 3.1 Image of the final embodiment of the device, after assembly and testing 

 

Figure 3.2 TinyTag and Lithium battery dimensions, all dimensions are given in millimeters 

Sensor casing design and mounting system 

As it was concluded in the literature review, a mounting system with straps is 

preferred over adhesive double-sided tape or any other tape-alike material. Straps 
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allow more firm attachment of the sensor and enable quick relocation of the sensor, 

within one experiment, from one mounting location to the other. Therefore, the 

mounting system consisted of a custom casing, designed and later 3D printed, and a 

strap.  

For design, Solidworks 2021 (Dassault Systèmes, France) was used. The complete 

design is shown in Figure 3.3. The main dimensions of the casing are depicted in 

Figure 3.4. During the experiments, as will be better described later, the sensor had to 

be switched on at the beginning of every trial and switched off at the end. For that, 

the casing was purposefully left uncovered since the sensor is turned on with the 

magnetic switch.  

 

Figure 3.3 Sensor’s casing design 

 

Figure 3.4 Sensor’s casing main dimensions, all dimensions are given in millimeters 
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Once designed, the casing was 3D printed with the Durable Resin [38]. This material 

allowed keeping the mass low whilst securing the required precision and casing’s 

toughness despite the tiny dimensions (51 x 46 x 18 mm). 

The sensor was installed inside the casing with double-sided tape, which, given the 

low mass of the device, was sufficient to secure firm fixation. Additionally, USB Micro-

B Breakout Board [39] was installed in the casing with two 4 mm screws and soldered 

to the pins of the TinyTag. This allowed convenient and time-efficient charging and 

data collection from the sensor via Micro USB without removing it off the casing. 

The last step to complete the mounting system was adding the straps. For this, Velcro 

straps, with a width of 20 mm, were fixed to the casing body with metal clips. The 

final version of the system used in this master thesis can be seen in Figure 3.5 

 

Figure 3.5 Final assembly of the sensor’s casing 

Buffer materials for mechanical damper 

At first, in order to develop a data filtering system, an approach with a mechanical 

damper was considered. Buffer materials were fulling the role of the damper, aiming 

to reduce the noise in the high-frequency signal and limit soft-tissue artifacts (skin 

movement). For that, three different materials were used, with two distinct 

thicknesses for each. Two of them were silicon-based compounds Zhermack Elite 

Double 16 [40] and Zhermack Elite double 22 [41]. The remaining third material 

utilized in the experiments was Sorbothane, which is a synthetic viscoelastic urethane 

polymer with remarkable shock absorption properties and a very high damping 

coefficient [42], [43].  
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According to the datasheets available on the Zhermack website, Zhermack Elite 

double 16 has the hardness of 16 on the Shore A scale (see Figure 3.6), and second 

Zhermack silicon has the hardness of 22 on the same scale. As to the Sorbothane, 

according to the manufacturer’s datasheet, the 2.5mm and 6.4mm Sorbothane sheets 

have the hardness of 40 and 30 on the Shore 00 scale respectively. Materials that 

belong to Shore 00 hardness scale have a spring force of 113 g, whereas materials 

from Shore A on the same scale have a spring force of 822 g [44]. 

 

Figure 3.6 Share Hardness Scale [44] 

Whilst Sorbothane is commercially available in the shape of sheets of different 

thicknesses, Zhermack Elite double products are distributed as liquids and have to be 

cast to obtain a solid form. For that, custom molds were designed and 3D printed (see 

Figure 3.7), using the same material as for the casing. 
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Figure 3.7 Designs of the molds, all dimensions are given in millimeters 

Once molds were printed, Zhermack silicones were cast in two different thicknesses of 

3 and 5 mm. As to the sorbothane, the sheets of thickness 2.5 mm and 6.4 mm were 

used, which allowed producing rectangular pads matching the dimensions of the mold. 

Concluding, three different materials with two thicknesses were prepared for testing 

the efficiency of a mechanical filter approach (see Figure 3.8). 

 

Figure 3.8 3D printed molds and materials used in the Pilot study 2 

1 – Sorbothane (2.5 mm), 2 – Zhermack ED 16 (3 mm), 3 – Zhermack ED 22 (3 mm), 4 – 

Zhermack ED 16 (5 mm), 5 – Zhermack ED 22 (5 mm), 6 – Sorbothane (6.4 mm). 
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3.2 Methodology 

In order to target the research questions of the master thesis, the data acquisition 

process was based on collecting n – number of repetitions of the selected task, where 

n depends on the stage of the project. Tests were performed with the sensor placed at 

three different locations, described in detail below, on the right lower limb.  

Throughout this master thesis three data acquisition processes were carried out, 

strictly connected to a specific aim of the project: 

1) Data acquisition for the TinyTag validation for gait analysis purposes versus 

camera-based method – Pilot study 1  

2) Data acquisition for evaluation of dumping materials efficiency – Pilot study 2 

3) Data acquisition from the study group of 10 people to evaluate the algorithm 

performance – Experimental study 

The summary of all experiments performed, specifying involved equipment, the 

number of subjects, and the amount of repetitions is presented in Table 3.1. 

Table 3.1 Summary of the data acquisitions that were performed with involved measurement 

systems, number of participants, and number of repetitions 

Data acquisition 
Systems 

Subjects 
Repetitions 

IMU Camera Ankle Shank Foot 

Pilot study 1 x x 1 male 5 5 5 

Pilot study 2 x   1 male 30 30 30 

Experimental study x   
5 male  50 50 50 

5 female 50 50 50 

 

Whereas three separate data collection processes were performed, to keep continuity 

and assure gait pattern repeatability, the set-up shown in Figure 3.9 was implemented 

for every experiment. It consisted of 4.5 meters walkway, the beginning, and end of 

which were marked with double-sided tape, and a 40 cm gap before the beginning 

mark of the walkway, also marked with a tape. 



 

28 

 

 

Figure 3.9 Data acquisition set-up 

The subject was initiating each data acquisition whilst located at the beginning of the 

gap (see Figure 3.9 for better visualization). After turning on the sensor, the subject 

was starting to walk with the left leg and continued towards the end of the walkway at 

the self-selected pace. Once reaching the end of the passage subject was asked to 

turn off the sensor. Within each dataset, four full steps were completed, three of 

which (the first 3 complete gait cycles) were the area of interest for further analysis. 

For simplification, within this master thesis, a complete gait cycle duration (i.e. stride 

time) is considered to be a period of time between the TO and the consequent TO of 

the same lower limb.  

During all the experiments data were collected from three different locations – shank, 

ankle, and top of the foot (further referred to as foot). These locations were chosen 

based on the outcomes of the literature review, as they provide the most suitable data 

for comprehensive clinical gait analysis.  

On the shank, the sensor was located at the mid-point between the head of the fibula 

and the lateral malleolus (see Figure 3.10 and Figure 3.11). To position the sensor in 

the mid-point, measurements were done for each subject before the beginning of the 

experiment. On the ankle, the sensor was placed above the lateral malleolus 

(see Figure 3.12). Lastly, the sensor was located on top of the foot, over the laces 

(see Figure 3.13). 
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Figure 3.10 Distance measurement for the sensor positioning on the shank 

 

 

Figure 3.11 Sensor attached to the shank with arrows representing axes of the accelerometer 
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Figure 3.12 Sensor attached to the ankle with arrows representing axes of the accelerometer 

 

Figure 3.13 Sensor attached to the foot with arrows representing axes of the accelerometer 

Pilot study 1 

As mentioned in section 2.4, the first objective of the thesis was to validate the 

TinyTag sensor's suitability for gait analysis. For that, a camera-based method was 

chosen as a ground truth reference. The set-up of this study is presented below (see 

Figure 3.14) and consisted of the set-up shown in Figure 3.9 with the addition of the 
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camera. The video recordings were made with Sony ALPHA 6000 (24.3MP, 30fps). The 

camera was located at the distance sufficient to capture all 4 strides, at the height of 

80cm. Every experiment was initiated by turning on a camera and sensor. Once both 

were recording, the subject was asked to walk at a self-selected speed until the end of 

the passage and switch off the sensor. After that, the camera recording was also 

stopped.  

For Pilot study 1, five repetitions with the sensor placed at each of the locations were 

made by a single subject. Thus, 15 datasets were collected in total.  

 

Figure 3.14 Set-up for the Pilot study 1  

Validation of the system was made based on the comparison of two parameters: 

1) The ability of the sensor to record all the major gait events (heel strikes and 

toe-offs) occurrences 

Since the number of gait events was predefined by the experiment set-up, it was 

manually checked how many gait events were properly identified. 

2) Durations of the three complete gait cycles  

Gait cycle durations were calculated for both measurement systems. The recordings 

from the camera were processed with Kinovea [45] (version 0.9.5). Kinovea is the 

standard software for frame-by-frame video processing that allowed extracting the 

timestamps at which consequent gait events occurred. The results were summarised 

in the Excel table to further calculate strides duration. 

Based on the timestamps of the gait events the stride duration, or the duration of a 

single complete gait cycle, was calculated for each repetition. As mentioned before, 

the duration of the single gait cycle is a period of time from the TO event to the 

consequent TO event of the same leg. Thus, the step duration (SD) was calculated 

following the equation: 



 

32 

 

𝑆𝐷 = 𝑇𝑂𝑖+1 −  𝑇𝑂𝑖,     (3.1) 

where: SD – stride duration, TO – toe-off gait event, i – number of gait event. 

Next, a similar procedure was completed for accelerometer data. To estimate the 

strides duration from TinyTag’s acceleration data, it was necessary to pre-process the 

‘.txt’ file obtained from the sensor in Excel, combining acceleration in all three axes 

collected by the sensor included in the logger. For that, total acceleration or the 

magnitude of the acceleration vector was calculated following the formula: 

𝑎 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 ,     (3.2) 

where: a – magnitude of the acceleration vector, ax – acceleration on x-axis, ay – 

acceleration on y-axis, and az – acceleration on z-axis. 

The Excel files were afterward processed with the open-source scientific environment 

Spyder IDE [46]. To identify peaks corresponding to the gait event of interest a 

custom Python code was prepared. The peaks were identified with the “find_peaks” 

function from the “scipy.signal” add-in library. For this study threshold for the peaks 

was specified manually for each dataset. 

Timestamps obtained from the data processing with Spyder IDE were captured in 

centiseconds, therefore they had to be converted into seconds for further analysis. 

Thus, equation 3.1 for stride duration calculation transformed into: 

𝑆𝐷 =
 𝑇𝑂𝑖+1− 𝑇𝑂𝑖

100
,     (3.3) 

where: SD – stride duration, TO – toe-off gait event, i – number of gait event. 

Having SD calculated with two methods, the comparison was made by finding the 

difference in the results. For that, SD calculated with TinyTag data was subtracted 

from SD calculated with a camera-based method. 

Pilot study 2 

The second data acquisition process was made in order to collect the data for 

mechanical damper development. For that, 3 different materials, with 2 distinct 

thicknesses were used, along with the TinyTag sensor. The sensor was attached to the 

subject’s lower limb using the custom-made casing described in 3.1 (Figure 3.5). The 

data-acquisition set-up was the same as described in section 3.2. All the repetitions 

were made by the same person, to keep the consistency of the gait pattern. Having 

that, there were 6 batches of 15 datasets (5 repetitions per sensor location) for each 

material mentioned in chapter 3 (Buffer materials for mechanical damper). Thus, in 

total there were 90 datasets.  
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The data was processed similarly as described in the previous subsection. First, the 

magnitude of the acceleration vector was calculated following equation (3.1) and 

furtherly processed with Spyder IDE to identify the peak occurrences corresponding to 

the gait events. 

To evaluate the impact of the buffer material on the desired outcome the “number of 

peaks per single dataset” approach was taken. Meaning, that the number of peaks 

identified in data with buffer material was compared to the number of peaks in 

datasets without a buffer material (referred to as control study). Since within one 

single experiment three complete gait cycles were studied, ideally, a single dataset 

should consist of seven consequent peaks. Four corresponding to the TO events, and 

three to the HS gait events.  

Experimental study 

Lastly, in order to test the performance of the developed gait events identification 

algorithm 10 volunteers were involved. The group of 10 volunteers consisted of five 

male and five female subjects. A summary of the demographic parameters of the 

study group is provided in Table 3.2. Each volunteer of the study group had no 

previous history of injuries in the lower limbs.  

Table 3.2 Demographic parameters of the study group 

Gender Age Mass Height 

5 male 23 - 37 65 - 92 kg 165 – 183 cm 

5 female 28 - 39 55 – 65 kg  162 – 170 cm 

All subjects followed the set-up described in 3.2 and performed 10 repetitions per 

every sensor location. This resulted in 30 datasets per person and consequently 300 

datasets in total. 

Every dataset was then processed in Excel to calculate the magnitude of the 

acceleration vector (following equation 3.2). Then the gait events identification 

algorithm was applied. 

Since the set-up of every experiment was predefined by a concrete number of steps 

made by every subject, the efficiency evaluation of the algorithm was based on the 

number of gait events identified correctly by the algorithm. All three locations were 
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studied separately to evaluate whether the sensor location influences the reliability of 

the algorithm. 

3.3 Numerical filter 

Based on the results of the mechanical damper approach the numerical filter method 

was also considered. This approach is oriented toward manipulation on the dataset at 

the post-processing stage, rather than impacting the data acquisition process itself. 

For that, Savitzky-Golay (S-G) data smoothing filter was applied. S-G is a digital filter 

that is meant for smoothing oversampled signals corrupted by noise. This filter is 

widely used in signal processing as it allows a significant smoothing of noisy data while 

preserving the height and width of the original signal. It is also commonly applied in 

gait analysis [28], [47], [48]. S-G filter’s smoothing effect is achieved by fitting the 

subsequent data sets of a certain window length with the low-degree polynomial 

function. Then by convolution of these polynomials, the smoothed signal is 

achieved. [49]–[51] 

Since this filter is broadly used in data processing, it is available in Spyder IDE as a 

part of the signal processing library “scipy.signal” and is called “savgol_filter”. When 

implemented, as a function input it requires a dataset to be analyzed, along with 2 

parameters: window length and order of the polynomial. To achieve meaningful results 

these two parameters have to be carefully considered; therefore, an additional study 

was executed in order to find suitable parameters. 

At first polynomial order was chosen experimentally. Linear and quadratic functions 

turned out to be insufficient for smoothing accelerometer data. Third-order 

polynomial, on the other hand, proved to be a suitable choice. The cubic function 

assures desirable data smoothening without losing important information. Thus, for all 

the data processing with the S-G filter, a third-order polynomial was chosen. 

Differently, to evaluate the influence of the window length on the filtered data, the 

distance between the peak occurrence (on the timeframe axis) in the raw data was 

compared to the occurrence of the same peak in the filtered data with different 

window sizes. The result of subtraction of the filtered timestamp from the original 

peak timestamp was calculated for several window lengths. The window length 

parameter for the final algorithm was chosen based on the findings from this study. 

To evaluate the efficacy of the numerical filter, a similar method as in Pilot study 2 

was considered, examining the number of peaks per dataset.  
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3.4 Automated gait events identification 

algorithm 

This section contains a detailed explanation of the idea behind the automated gait 

event identification algorithm as well as tools that were used to achieve it. At first, the 

following subsections cover theoretical aspects of the utilized tools, and then the 

algorithm’s logic is described. 

Matrix profiling 

Matrix profiling is a novel approach for automated time-series segmentation. It is 

based on the fundamental concept of “conservation of pattern”, which means that 

events in a time series that are meaningful and can be segmented tend to be self-

similar. The idea was first introduced in 2016 by Eamonn Keogh and colleagues [52], 

and has been intensively studied and applied in a broad range of research and 

industrial applications including finance, animal and human kinematics, and genomics. 

In its essence, the matrix profiling algorithm exploits the idea of comparing the 

Euclidian distances between two subsequences of a fixed length (motifs) in the given 

time series. The reference subsequence motif can be generated by recursively 

increasing the length of the selected time series, or it can be predefined by the user. 

In this work, the motif was manually defined. The parameters of the motif are the 

signal length, which describes the time frame of the motif, and the shape, which 

describes how data changes within this time frame. The algorithm then returns an 

array that consists of the Euclidian distance between a given motif and corresponding 

subsequence at every point in the studied dataset. Extracting the lowest value from 

this array then will point to the subsequence in the analyzed dataset that is nearest to 

the motif it was compared to. Extracting the highest value of Euclidian distance will 

point to the discord or anomaly. In other words, the piece of signal that is unlike any 

other in the given dataset [53]–[55]. 

An example of a motif (orange) and a discord (red) taken from an example gait time 

series used in this study is shown in Figure 3.15. As can be seen from the figure, the 

“Motif” is repeated several times, whereas the “Discord” is unique and is not repeated. 

This principle was exploited in this master thesis, since the human gait has a highly 

repetitive pattern, especially when multiple datasets of a single subject are analyzed. 

   



 

36 

 

 

Figure 3.15 An Examples of a “Motif” and “Discord” found in the real-world human gait data  

Peak identification   

As it was concluded in the literature review, peak identification is the most common 

approach in gait analysis for identifying gait events. Therefore, this principle was also 

exploited in this master thesis since a major outcome of the automated gait events 

identification algorithm has to be occurrences of the gait events within a given 

dataset. For peaks identification algorithms a threshold value is usually required. 

Within this master thesis, different threshold values were used in the final version of 

the algorithm. The threshold value was mainly based on the sensor location of the 

studied dataset. 

Novel gait analysis data processing 

For this thesis work, the newly developed automated data processing method was 

used. It included 3 data processing algorithms: 

1) Filtering the raw data with the S-G data processing tool 

2) Matrix profiling, for highlighting common gait patterns (motifs) in the separate 

datasets  

3) Peaks identification, for specifying time occurrences of the gait events in 

analyzed datasets 

In contrast to existing methods which require extensive user inputs, the proposed 

method in this work allows very quick analysis of the large massifs of data. The logic 

behind the algorithm was following the waterfall implementation of the ideas described 

above. At first, data were filtered with pre-set S-G parameters and checked with 

matrix profiling to identify 3 consequent strides in the analyzed dataset. Once done, 
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the three steps, that were the area of interest of the study, were separated from the 

whole dataset. Then the peaks identification function, which also comes as a built-in 

library in the Spyder IDE and is called “find_peaks”, was applied to the separated 

dataset. The threshold value was specified based on the analyzed location: for the 

sensor located on the shank, it was equal to 12 m/s2, and for the ankle and 

foot 13 m/s2.   

The same algorithm was applied separately to all 3 batches (one batch per location) of 

data from a single study subject. Two different approaches of matrix profiling were 

tested, namely – General Motif and Subject-Based Motif. Within this master thesis, a 

Motif is identified as a signal that represents a human gait pattern. Since the purpose 

of the research was to find and identify three consequent strides, or seven gait events, 

within its boundaries, the motif included three strides.  

For the general motif approach, the motif was defined manually based on the single 

dataset from Pilot study 2. Every location had a separate motif. Then, once applied to 

the analyzed dataset, the function looked for the portion of the gait cycle that is most 

similar to the predefined motif. The outcome of the algorithm was a graphical 

representation of the found motif overlaid over the raw data, along with an array of 

gait events timestamps and a number of peaks found in the identified gait pattern 

match (Figure 3.16).  

 

Figure 3.16 An example of a general motif approach output 

For the second approach, the motif was specified for each subject separately, based 

on the first dataset from the batch of the studied subject. Once the program is 

executed, the first filtered dataset of the currently analyzed batch is graphically 
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presented to the user, along with peaks identified within an analyzed dataset (Figure 

3.17). The program then asks the user to input two values, which will define the 

beginning and the end of the motif. Once these values are introduced, the algorithm 

runs through all datasets and presents the results in the manner identic to the general 

motif approach seen previously (Figure 3.16). The efficiency of both approaches was 

concluded based on whether the algorithm is able to find all seven gait events 

correctly. 

 

Figure 3.17 An example of a subject-based motif definition process 

A schematic representation of both approaches is captured in Figure 3.18. 

All the major Python codes that were used throughout this MSc thesis are available on 

GitHub, following the link given in APPENDIX 2. Along with that, in the same appendix, 

a code for a subject-based motif method is available as an example. 
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Figure 3.18 Schematic representation of the gait event identification algorithm with general 

motif and subject-based motif approaches 
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4. RESULTS AND DISCUSSION 

This chapter presents the results of the studies described in Chapter 3 along with their 

discussion. Similar to the previous chapter, it is organized in a manner coherent with 

the timeline of the thesis project.   

4.1 TinyTag validation for gait analysis 

To validate the TinyTag adequacy for gait analysis evaluation of two parameters was 

performed. Using recordings from the camera as a reference, the number of HS and 

TO events occurring was calculated, as well as stride duration.  

At first, the occurrence of the events in the videos was labeled, reporting in a table the 

timestamps at which the certain gait events occurred. An example of the HS is shown 

in Figure 4.1, and an example of the TO gait event is presented in Figure 4.2.  

 

Figure 4.1 An example of the heel strike event of the right leg extracted from the video 

recordings 



 

41 

 

 

Figure 4.2 An example of the toe-off event of the right leg extracted from the video recordings 

The results of the video labeling are summarized in the table given in APPENDIX 1. 

Based on the results, with equation (3.1), stride durations were calculated. The 

summary of these calculations is presented in Table 4.1. 

Table 4.1 Summary of the stride durations calculated based on the video recordings 

Sensor location and 

number of repetition 

Stride duration in [s] 

Stride1 Stride2 Stride3 

SHANK_1 1.23 1.14 1.20 

SHANK_2 1.20 1.14 1.16 

SHANK_3 1.17 1.17 1.20 

SHANK_4 1.16 1.14 1.20 

SHANK_5 1.17 1.10 1.13 

ANKLE_1 1.20 1.10 1.14 

ANKLE_2 1.14 1.10 1.13 

ANKLE_3 1.13 1.14 1.13 

ANKLE_4 1.11 1.10 1.17 

ANKLE_5 1.13 1.10 1.17 

FOOT_1 1.14 1.10 1.13 



Table 4.1 continued 

42 

 

Sensor location and 

number of repetition 

Stride duration in [s] 

Stride1 Stride2 Stride3 

FOOT_2 1.10 1.14 1.13 

FOOT_3 1.20 1.10 1.17 

FOOT_4 1.14 1.10 1.14 

FOOT_5 1.16 1.14 1.13 

 

After that, the same procedure was done for the accelerometer data. Sensor data 

were processed in Excel to calculate the magnitude of the acceleration vector 

(equation 3.2). Then the Excel file was imported to the Spyder IDE in order to identify 

the peak occurrences. For convenience, the x-axes of the datasets were transferred to 

centiseconds or cs (1cs= 0.01s). An example of such a procedure is shown in Figure 

4.3.  
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Figure 4.3 Example of the peaks identification process in Spyder IDE 
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As can be seen from the figure, due to the high frequency and sensitivity of the sensor 

the raw data from the accelerometer has multiple peaks per single gait event. To the 

best of the author’s knowledge, there is no agreement among researchers regarding 

which of the peaks should be identified as a gait event. Therefore, within this master 

thesis, the highest peak was identified as the gait event. The summary of the gait 

events identified with the TinyTag is presented in the table in APPENDIX 1. 

Then, with equation 3.3 stride durations for accelerometer data were found. The 

results are summarised in Table 4.2. 

Table 4.2. Summary of the stride durations calculated based on the TinyTag data 

Sensor location and 

number of repetition 

Stride duration in [s] 

Stride1 Stride2 Stride3 

SHANK_1 1.22 1.15 1.18 

SHANK_2 1.19 1.16 1.16 

SHANK_3 1.16 1.17 1.19 

SHANK_4 1.15 1.13 1.16 

SHANK_5 1.19 1.11 1.12 

ANKLE_1 1.13 1.17 1.07 

ANKLE_2 1.11 1.12 1.14 

ANKLE_3 1.10 1.11 1.12 

ANKLE_4 1.10 1.12 1.12 

ANKLE_5 1.09 1.11 1.14 

FOOT_1 1.12 1.14 1.08 

FOOT_2 1.18 1.03 1.13 

FOOT_3 1.14 1.11 1.20 

FOOT_4 1.14 1.07 1.17 

FOOT_5 1.14 1.13 1.09 

 
Based on the stride duration calculations the comparison between the two approaches 

was performed, by finding a difference between respective stride durations for each 

experiment. The results are summarised in Table 4.3. 

Table 4.3. Summary of the comparison between the camera and IMU data-based methods for 

gait events identification

Sensor location and 

№ of repetition 

Difference in Stride duration [s] 

Stride1 Stride2 Stride3 

SHANK_1 0.01 -0.01 0.02 

SHANK_2 0.01 -0.02 0.00 



Table 4.3 continued 
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Sensor location and 

№ of repetition 

Difference in Stride duration [s] 

Stride1 Stride2 Stride3 

SHANK_3 0.01 0.00 0.01 

SHANK_4 0.01 0.01 0.04 

SHANK_5 -0.02 -0.01 0.01 

ANKLE_1 0.07 -0.07 0.07 

ANKLE_2 0.03 -0.02 -0.01 

ANKLE_3 0.03 0.03 0.01 

ANKLE_4 0.01 -0.02 0.05 

ANKLE_5 0.04 -0.01 0.03 

FOOT_1 0.02 -0.04 0.05 

FOOT_2 -0.08 0.11 0.00 

FOOT_3 0.06 -0.01 -0.03 

FOOT_4 0.00 0.03 -0.03 

FOOT_5 0.02 0.01 0.04 

Mean absolute error 0.03 

 

As can be seen from the calculations, on average, the difference between Stride 

durations calculated based on two different methods is 0.03 s. Since both negative 

and positive values were occurring, for total mean error an absolute value of the 

subtraction result was used. Higher deviations were noticed in three datasets 

(ANKLE_1, FOOT_2, and FOOT_3) with a difference reaching 0.11 seconds in the 

worst-case scenario for one particular dataset. Despite that, in most datasets, the 

difference remained very low, around ±0.01 s.  

The frame rate of the camera is 30 FPS, resulting in a camera mean error of 

0.033 seconds (1/30 = 0.033 s). The calculated mean absolute error of the TinyTag 

(0.03 s) is lower than the camera framerate. Therefore, the TinyTag sensor is able to 

collect adequate data for gait analysis in comparison to the camera-based method, the 

Gold standard method in the field. 

4.2 Mechanical damper  

As was noticed during the TinyTag accelerometer data processing and can be seen in 

Figure 4.3, the number of peaks recorded by the sensor per single gait event generally 

varies from two to five peaks. Having that, in addition to a lack of agreement among 

researchers concerning which of these peaks should be considered as gait event 
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occurrence, it was attempted to reduce the number of peaks by adding a buffer 

material aiming at damping the noise and limiting soft-tissue artifacts and excessive 

vibrations. As described in section 3.2 (Pilot study 2), in total 90 datasets were 

gathered using three different materials with two distinct thicknesses. To evaluate the 

impact of the buffer material on the data acquisition process the number of peaks per 

dataset approach was considered. The summary of the study is provided in Table 4.4. 

As can be seen from the table, in the control study, which represents an analysis of 

the data with no buffer material, around 26 peaks, on average, are found in a single 

dataset. Knowing that seven gait events are of interest within this study, it results in 

roughly four peaks per single event. The lowest value was noticed in Ankle data, with 

about 23 peaks per dataset, whereas the worst results were highlighted in the foot 

data, reaching around 29 peaks. 

Based on the results of the peak identification captured in the table below, it is evident 

that the use of buffer materials did not introduce any decrease in the number of peaks 

per single dataset. In fact, it can be noted from the last row of the table, that provides 

the average of the peaks identified with every material, the number of peaks 

increased with the addition of the buffer material. Additionally, ankle sensor location 

provided the lowest number of peaks per dataset in all conditions, averaging this time 

at around 27 peaks in 30 studied samples. The highest number was instead noted in 

the shank data, with 30 peaks per dataset on average. 

Having these results, it was concluded that the mechanical damper approach is 

insufficient for the data smoothing and noise reduction that is required for the 

development of the automated gait events identification algorithm. 
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Table 4.4 Summary of the mechanical damper development study. Where: Control Study data that was gathered without buffer material, while other 

columns correspond to studied buffer materials with their thickness given in the brackets. 

Material Control Study 
Zhermack ED 

16 (3 mm) 

Zhermack ED 

16 (5 mm) 

Zhermack ED 

22 (3 mm) 

Zhermack ED 

22 (5 mm) 

Sorbothane  

(2.4 mm) 

Sorbothane 

(6.4 mm) 

Ankle1 23 25 29 26 28 25 29 

Ankle2 24 29 26 28 28 25 30 

Ankle3 23 26 32 29 28 24 29 

Ankle4 24 27 27 25 29 25 26 

Ankle5 24 26 30 29 26 24 28 

Shank1 21 24 27 32 28 28 27 

Shank2 26 29 26 31 32 33 36 

Shank3 28 28 29 28 32 32 29 

Shank4 25 31 29 32 32 32 30 

Shank5 26 29 28 31 32 31 32 

Foot1 29 26 26 27 28 26 28 

Foot2 30 30 27 27 29 28 29 

Foot3 30 28 29 29 27 27 28 

Foot4 27 27 26 31 29 25 27 

Foot5 28 26 26 26 30 25 28 

Average 25.9 27.4 27.8 28.7 29.2 27.3 29.1 



 

48 

 

4.3 Numerical filter and its parameters 

As it was concluded in the previous section, the results of the mechanical damper were 

highly unsatisfying. Therefore, data smoothing based on the Savitzky-Golay filter was 

considered. However, as was already mentioned earlier in 3.3, this filter requires two 

parameters (window length and polynomial order) as an input. It was stated earlier that 

third-order polynomial was found to be the optimal choice. This section contains results, 

and their discussion, of the studies that were executed in order to find the optimal 

window length parameter for a numerical filter. On top of that, results and a discussion 

of numerical filter performance evaluation are presented. 

Window length for Savitzky-Golay filter 

One of the required S-G parameters is window length which is identified as a portion of 

data points that the filter will attempt to fit in one polynomial. During the experiments, it 

was noted that the larger the window length the bigger is the peak shift to either 

positive or negative direction from the original (unfiltered) timestamp. Thus, this study 

was executed to evaluate the influence of the window length on the peak occurrence 

shift, furtherly referred to as a phase shift, in order to define the optimal window length 

for the final gait analysis algorithm. The graphical representation of two particular cases 

of the phase shift, which are drawn as an example, is shown in Figure 4.4 for the ankle 

and Figure 4.5 for the shank. On the graphs, the original data is shown in blue and all 

the data filtered with different window lengths are consequently marked. The peaks are 

marked with the dots, and as was mentioned earlier, at the given gait event range (grey 

box on the plots), the highest acceleration is considered to be the gait event occurrence. 

As can be seen from the graphs, the larger gets the window length the larger gets the 

phase shift. The same study was applied to every dataset gathered during the 

Experimental study, therefore 300 datasets were analyzed. The summary of this study is 

represented by box plots in Figure 4.6, Figure 4.7, and Figure 4.8. 

Each entity on the box plots summarizes the phase shift with increasing window length 

across all the studied locations. Thus, it includes 100 datasets per location. The smallest 

variability occurred in the ankle data, whereas foot and shank showed similar results. 

Across all the locations, the phase shift distribution was rather consistent and was 

increasing gradually with the growth of the window length. From the graphs, it is seen 

that once window length approaches the value of 59 cs (0.59 s) the phase shift gets up 

to the region of 0.1 s. Based on the results of the TinyTag validation for gait analysis 

(Table 4.2), it can be seen that on average stride duration is 1.13 seconds. Having that, 
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0.1 s is roughly 10% of the stride duration. Therefore, it was decided that window length 

above 49 cs would introduce too dramatic changes into raw data, to keep the gait 

analysis results reliable. 

It can also be noted from Figure 4.4 that for window length values below 29, smoothed 

data has more than one peak for gait events. However, for other sensor locations, 

window length 29 also was producing more than a single peak for HS events, as can be 

seen from Figure 4.5. Since the target of the data filtering was to achieve one peak per 

gait event, window lengths below 39 were concluded to be insufficient, despite producing 

desirable results for ankle location. Based on the results of this study window length of 

39 cs was chosen (see Figure 4.5, purple) and afterward adopted for the final gait 

analysis algorithm. This window length, while smoothing data to the point of desired 

single peak per gait event, kept phase shift in the range of roughly 5 cs or 0.05 s, as can 

be seen from the box plots. 
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Figure 4.4 Example of the phase shift caused by window length parameter of the S-G filter in ankle dataset 1 of Subject 1 
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 Figure 4.5 Example of the phase shift caused by window length parameter of the S-G filter in shank dataset 1 of Subject 4
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Figure 4.6 Window Length Phase shift for sensor positioned on the ankle, where W9 – W69 

correspond to the studied window length for the S-G filter 

 

Figure 4.7 Window Length Phase shift for sensor positioned on the shank, where W9 – W69 

correspond to the studied window length for the S-G filter 
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Figure 4.8 Window Length Phase shift for sensor positioned on the foot, where W9 – W69 

correspond to the studied window length for the S-G filter 

Numerical filter performance evaluation 

To evaluate numerical filter numbers of peaks per dataset were monitored. For that, 

datasets acquired during Pilot Study 2 were used. The summary of this study is 

presented in Table 4.5, and for better visualization, the results of the mechanical 

damper smoothing were kept.  

For this study S-G filter with a window length of 39 cs with a third-order polynomial 

was applied. As can be seen from the table, the numerical filter introduces compelling 

changes in the outcome. In all cases, the number of identified peaks is close to the 

desired seven peaks, with exceptions in some datasets with the sensor located on the 

shank and one dataset from the foot location, whereas for mechanical damper number 

of peaks varies in a range from 24 to 36 peaks. 

Based on the results of this particular study it was also highlighted that, with the given 

set-up, the ankle could be the most suitable location for gait analysis with wearable 

IMU, since in all conditions the number of peaks identified with the numerical filter was 

equal to seven. On top of that, since the number of peaks in the control study doesn’t 

differ significantly from studies with buffer materials, for further data acquisition they 

were not used. 
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 Table 4.5 Summary of the numerical filter development study. Where: Control Study – data that was gathered without buffer material, other columns of first raw – 

studied buffer material with its thickness given in the brackets, Mech. D – sum of gait events identified with mechanical damper, Num. F. – sum of gait events identified 

with numerical filter 

Material 

Control Study 
Zhermack ED    

16 (3 mm) 

Zhermack ED    

16 (5 mm) 

Zhermack ED    

22 (3 mm) 

Zhermack ED    

22 (5 mm) 

Sorbothane  

(2.4 mm) 

Sorbothane    

(6.4 mm) 

Mech. D Num. F Mech. D Num. F Mech. D Num. F Mech. D Num. F Mech. D Num. F Mech. D Num. F Mech. D Num. F 

Ankle1 23 7 25 7 29 7 26 7 28 7 25 7 29 7 

Ankle2 24 7 29 7 26 7 28 7 28 7 25 7 30 7 

Ankle3 23 7 26 7 32 7 29 7 28 7 24 7 29 7 

Ankle4 24 7 27 7 27 7 25 7 29 7 25 7 26 7 

Ankle5 24 7 26 7 30 7 29 7 26 7 24 7 28 7 

Shank1 21 7 24 7 27 7 32 7 28 7 28 7 27 7 

Shank2 26 7 29 7 26 8 31 7 32 8 33 7 36 7 

Shank3 28 7 28 8 29 8 28 7 32 7 32 7 29 7 

Shank4 25 7 31 8 29 7 32 7 32 7 32 7 30 7 

Shank5 26 7 29 8 28 9 31 7 32 7 31 7 32 7 

Foot1 29 7 26 7 26 7 27 7 28 7 26 7 28 7 

Foot2 30 7 30 7 27 7 27 7 29 7 28 7 29 7 

Foot3 30 8 28 7 29 7 29 7 27 7 27 7 28 7 

Foot4 27 7 27 7 26 7 31 7 29 7 25 7 27 7 

Foot5 28 7 26 7 26 7 26 7 30 7 25 7 28 7 

Average 26.7 7.1 29.5 7.2 27.8 7.3 28.7 7.0 29.2 7.1 27.3 7.0 29.1 7.0 
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4.4 Efficiency of the developed algorithm 

The efficiency of the automated gait events identification algorithm was evaluated 

based on the number of gait events the algorithm was able to identify correctly with 

reference value being predefined by the data acquisition set-up. As shown in Figure 

3.18, for matrix profiling, two approaches were tested, based on general and subject-

based motif. To further estimate the accuracy of the developed algorithm and evaluate 

the influence of the sensor’s location on the algorithm’s accuracy, results are 

presented individually for each location. Two approaches with general and subject-

based motif were evaluated separately; however to better visualize the results they 

are presented within the same table. 

The results of this study are captured in Table 4.6 for the ankle, Table 4.7 for the 

shank, and Table 4.8 for the foot. In the tables, every row represents the summary of 

10 repetitions per location. Columns, on the other hand, report in how many 

repetitions, out of 10 performed, all seven gait events were identified correctly. For 

example, in Table 4.6, Subject 7 has 100% in “General Motif” and 100% in “Subject-

Based Motif”. This means, that for every repetition this particular study subject 

performed, all gait events were identified correctly. On the contemporary, for 

Subject 3 in Table 4.8, the general motif approach managed to identify all seven gait 

events correctly in 7 out of 10 repetitions performed, whereas for the subject-based 

motif approach, within the same 10 datasets of this subject all seven gait events were 

identified correctly in all 10 repetitions. Therefore, if “Correct detection”  is 100% then 

all seven gait events were identified correctly in 10 all repetitions. If however, it is 

10%, then only in 1 dataset all gait events were found, and so on.  

Table 4.6 Matrix profiling accuracy evaluation for a sensor located on the ankle

ANKLE 
Correct detection 

General Motif Subject-Based Motif 

Subject 1 50% 60% 

Subject 2 100% 100% 

Subject 3 50% 100% 

Subject 4 20% 80% 

Subject 5 70% 90% 

Subject 6 20% 60% 

Subject 7 100% 100% 
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ANKLE 
Correct detection 

General Motif Subject-Based Motif 

Subject 8 50% 100% 

Subject 9 70% 90% 

Subject 10 100% 100% 

Mean 63% 88% 

 

Table 4.7 Matrix profiling accuracy evaluation for a sensor located on the shank

SHANK 
Correct detection 

General Motif Subject-Based Motif 

Subject 1 30% 60% 

Subject 2 60% 60% 

Subject 3 20% 90% 

Subject 4 100% 100% 

Subject 5 100% 100% 

Subject 6 100% 100% 

Subject 7 100% 100% 

Subject 8 40% 70% 

Subject 9 80% 60% 

Subject 10 100% 100% 

Mean 73% 84% 

 

Table 4.8 Matrix profiling accuracy evaluation for a sensor located on the foot 

FOOT 
Correct detection 

General Motif Subject-Based Motif 

Subject 1 20% 80% 

Subject 2 80% 90% 

Subject 3 70% 100% 

Subject 4 80% 100% 

Subject 5 70% 100% 

Subject 6 80% 90% 

Subject 7 100% 100% 
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FOOT 
Correct detection 

General Motif Subject-Based Motif 

Subject 8 20% 90% 

Subject 9 70% 80% 

Subject 10 100% 80% 

Mean 69% 91% 

From the results of this study, it can be noted that overall, the subject-based motif 

approach shows better efficiency than the general motif. For the general motif case, 

the best accuracy was found to be when the sensor is located on the shank, with the 

foot being only 4% lower. Among subject-based motif results, foot resulted being the 

most accurate, showing on average 91% of gait events being correctly detected, with 

all seven gait events being identified correctly in every repetition in four datasets. 

Additionally, for every repetition of each subject, a number of peaks per dataset was 

calculated (similarly to Mechanical Damper and Numerical filters comparison in Table 

4.5). Results of the calculations show that for ankle, on average 7.2 peaks per dataset 

were identified, whereas for shank and foot 8.53 and 7.7 peaks respectively were 

found. 

Outcomes of this study point out that with a given set-up, subject-based motif results 

in the best gait events identification accuracy. With regards to the location, the ankle 

and foot are showing similarly high accuracy, 88 and 91% respectively, whereas the 

ankle shows a lower score in the number of peaks per dataset.  

To conclude, matrix profiling is a very efficient approach for data mining; however, its 

simplicity also introduces some flaws for such specific tasks as gait events 

identification. This data processing approach simply finds the lowest Euclidian 

distance, without taking into consideration the specific goals of the task. An example 

of this is highlighted in Figure 4.9. As can be seen from the figure, indeed, the 

algorithm has found the motif that is matching general gait cycle pattern (orange). 

However, since the area of interest of this study is seven consequent gait events 

starting with the first TO of the right leg (green rectangle), it can be noted that the 

algorithm missed the first stride (TO1 and HS1). Having that, further improvements to 

the algorithm are required.  
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Figure 4.9 An example of matrix profiling finding a motif that does not match the purpose of the study 
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5. CONCLUSIONS 

The main objective of this work was to develop an automated gait event detection 

system implementing a new miniature IMU sensor developed at TalTech. First, a 

custom mounting system, consisting of 3D printed durable resin casing and straps was 

designed in order to assure firm fixation of the sensor and its flexible application in 

different locations on the lower limb of the human body. Next, the sensor was 

validated for human gait analysis, utilizing a camera-based method as a ground truth 

reference. The results showed that stride duration calculated based on these two 

methods had a mean absolute difference of only 0.03 seconds, which with a given 

average stride duration of 1.13 seconds represents an insignificant deviation. 

Once validated, a data filtering system was developed in order to smooth the raw IMU 

data, which was too noisy for an efficient automated gait event identification system 

development. For this, two approaches were attempted, namely a mechanical damper 

and a numerical filter. Experiments were made with a sensor located on three different 

positions: shank, ankle, and foot. With a mechanical damper, it was attempted to 

smooth the data by implementing buffer materials between the sensor casing and the 

human body that aimed to limit the noise and decrease the influence of the soft-tissue 

(skin movement) artifacts. Thus, as the result, it was expected to achieve seven peaks 

per dataset that describe three consequent strides. The results of this attempt, 

however, proved buffer materials being unable to achieve this task. Whereas in the 

control study, which did not utilize buffer materials, the average number of peaks was 

25.9, datasets with buffer materials resulted in 27.3 – 29.2 peaks per dataset. 

The mechanical damping approach was found to have no positive impact on the 

recorded data. Instead of mechanical damping, a Savitzky-Golay numerical filter was 

implemented to smooth the data. Identically, a cross-comparison of the number of 

peaks per dataset in filtered and unfiltered data was made. The numerical filter 

method was applied to the same datasets as for the mechanical damper and the 

results highlighted significant improvements. The number of peaks decreased from 

27.3 – 29.2 to 7.0 -7.3 peaks per dataset. Additional analysis was made in order to 

identify optimal parameters for the S-G filter, and it was found that for the developed 

algorithm a third-order polynomial with a window length of 39 centiseconds (0.39 

seconds) is the preferable choice. 

Lastly, an automated gait events identification signal processing method was 

developed combining numerical filtering of the data, a novel data mining algorithm 

called matrix profiling, and a peak identification function. The newly developed 
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algorithm was implemented on the datasets that were obtained from the study group 

consisting of 10 healthy subjects. Three different sensor locations were studied, 

namely shank, ankle, and foot. Thus, in total 300 datasets (10 repetitions for each 

location per every study subject) were analyzed. Two different approaches of the data 

processing were considered: a general motif, where the same motif was applied to all 

datasets, and a subject-based motif, where a motif was specified for each subject and 

study location separately. Results of this study highlighted that overall, the subject-

based motif method is significantly more efficient, showing better accuracy for every 

location. It was also noted that ankle and foot locations provide the highest efficiency 

for the subject-based motif method, resulting in 88 and 91% of correct detection 

respectively. Another important finding was the number of peaks per dataset, 

whereas, with desired seven peaks per dataset, the lowest score was highlighted in 

the ankle, with an average of 7.2 peaks per dataset across the analyzed batch of data. 

For foot and shank, this number was 7.7 and 8.53 respectively. Having that, it was 

concluded that overall, with a given experiment set-up a subject-based motif approach 

with the sensor located on the ankle or foot is a preferable method for automated gait 

event identification gait analysis due to the lowest number of peaks per dataset and 

highest correct detection.  

Whereas gait analysis with wearable sensors has been known for over two decades, 

this work proposes a gait analysis approach that significantly decreases time-

consuming data processing. It also provides data-supported suggestions concerning 

the sensor attachment system and its location on the lower limb that results in about 

90% accuracy of gait events detection utilizing the proposed automated data 

processing approach. 

Despite the proposed data processing method showing high efficiency for gait events 

identification in a differentiated group of healthy subjects’ data, they rarely are a 

target of clinical analysis. Therefore, in future works to further validate the developed 

data processing system a study with the group of subjects with abnormal gates is 

required. On top of that, while the subject-based motif method is showing great 

efficiency, it still requires, though limited, input from the user. Thus, improvements to 

achieve further automatization are to be considered.  



 

61 

 

6. KOKKUVÕTE 

Käesoleva töö peamine eesmärk oli arendada automaatne kõnnisündmuste (gait 

event, ingl. k.) tuvastamise süsteem, mis rakendab TalTechis välja töötatud uut 

miniatuurset IMUga andurit (inertsiaalandurit). Kõigepealt kavandati ja 3D-prinditi - 

korpusest ja rihmadest koosnev spetsiaalne kinnitussüsteem, et tagada anduri 

stabiilne kinnitamine ja selle paindlik kasutamine erinevates kohtades inimkeha 

alajäsemetel. Seejärel valideeriti andur inimese kõnnianalüüsiks, kasutades 

kaamerapõhist meetodit, mis on alustõeks. Tulemused näitasid, et nende kahe 

meetodi alusel arvutatud sammu kestuse keskmine absoluutne erinevus oli ainult 0,03 

sekundit, mis keskmise sammu kestust 1,13 sekundit arvestades on ebaoluline 

kõrvalekalle. 

Pärast valideerimist töötati välja andmete filtreerimissüsteem, et siluda IMU 

toorandmeid, mis olid liiga mürarikkad, et arendada tõhusat automaatset 

kõnnisündmuste tuvastamise süsteemi. Selleks prooviti kasutada kahte lähenemisviisi, 

nimelt mehaanilist summutust ja numbrilist filtrit. Katsed tehti kolmel erineval 

positsioonil asuva anduriga: säärel, pahkluul ja jalalabal. Mehaanilise filtri abil püüti 

andmeid siluda, rakendades anduri korpuse ja inimkeha vahel puhvermaterjali, mille 

eesmärk oli piirata müra ja vähendada naha liikumise artefaktide mõju. Sellega loodeti 

saavutada seitse piiki andmekogumi kohta, mis kirjeldavad kolme järjestikust sammu. 

Katse tulemused näitasid siiski, et puhvermaterjalid ei suuda antud ülesannet täita. 

Kui võrdlusuuringus, kus puhvermaterjale ei kasutatud, oli keskmine piikide arv 25,9, 

siis puhvermaterjalidega andmekogumite puhul saadi 27,3 – 29,2 piiki andmekogumi 

kohta. 

Leiti, et mehaaniline summutamine ei mõjuta salvestatud andmeid positiivselt ja selle 

asemel kasutati andmete silumiseks Savitzky-Golay numbrilist filtrit. Samamoodi 

võrreldi piikide arvu andmekogumi kohta filtreeritud ja filtreerimata andmetes. 

Numbrilise filtri meetodit rakendati samade andmekogumite suhtes, kui mehaanilise 

summutuse puhul ja tulemused näitasid märkimisväärset paranemist. Piikide arv 

vähenes 27,3-29,2 piigilt 7,0-7,3 piigini andmekogumi kohta. S-G-filtri optimaalsete 

parameetrite kindlaksmääramiseks tehti täiendav analüüs ja leiti, et väljatöötatud 

algoritmi jaoks on eelistatavad valikud 3. järgu polünoom ja akna pikkus 

0,39 sekundit. 

Lõpuks töötati välja automaatne kõnnisündmuste tuvastamise signaalitöötlusmeetod, 

mis ühendab andmete numbrilise filtreerimise, uudse andmekaevealgoritmi, mida 

nimetatakse maatriksprofiiliks, ja piikide tuvastamise. Välja töötatud uut algoritmi 
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rakendati andmekogumite suhtes, mis saadi 10 tervest isikust koosnevast 

uurimisrühmast. Uuriti kolme erinevat sensori asukohta, nimelt säärt, pahkluud ja 

jalalaba. Seega analüüsiti kokku 300 andmekogumit (10 kordust iga asukoha kohta ja 

iga uuritava kohta). Andmete töötlemisel kaaluti kahte erinevat lähenemisviisi: üldine 

lähenemine, mille puhul rakendati sama meetodit kõigi andmekogumite suhtes, ja 

subjektipõhine lähenemine, mille puhul määrati lahendus iga subjekti ja uuringukoha 

jaoks eraldi. Selle uuringu tulemused näitasid, et üldiselt on subjekti- ja 

asukohapõhine meetod oluliselt tõhusam, näidates iga asukoha puhul paremat 

täpsust. Samuti täheldati, et anduri asukohad hüppeliigesel ja jalalabal on kõige 

tõhusamad subjektipõhise  lähenemise puhul, tulemuseks on vastavalt 88% ja 91% 

korrektset tuvastamist. Teine oluline leid oli piikide arv andmekogumi kohta. Madalaim 

tulemus oli pahkluu puhul, kus analüüsitud andmepartiis oli keskmiselt 7,2 piiki 

andmekogumi kohta (soovitud tuvastatavate piikide arv andmekogumi kohta oli 7). 

Jalalaba ja sääre puhul oli see arv vastavalt 7,7 ja 8.53, Selle põhjal järeldati, et antud 

katse ülesehituse puhul on üldjuhul eelistatavam meetod kõnnisündmuste 

automaatseks tuvastamiseks kõnnianalüüsis subjektipõhine lähenemisviis, mille korral 

sensor asub pahkluu või jalalaba peal.  See lähenemine annab kõige vähem piike 

andmekogumi kohta ja kõige rohkem õigeid tulemusi.  

Kuigi kõnnianalüüs kantavate anduritega on tuntud juba üle kahe aastakümne, 

pakutakse käesolevas töös välja kõnnianalüüsi lähenemisviis, mis vähendab 

märkimisväärselt aeganõudvat andmetöötlust. Samuti antakse andmetel põhinevaid 

soovitusi anduri kinnitussüsteemi ja selle asukoha kohta alajäsemetel, mille 

tulemuseks on umbes 90% täpsus kõnnisündmuste tuvastamisel, kasutades pakutud 

automaatset andmetöötlusmeetodit. 

Hoolimata sellest, et väljapakutud andmetöötlusmeetod näitab suurt tõhusust 

kõnnisündmuste tuvastamisel tervete isikute andmetes, on nad harva kliinilise 

analüüsi sihtmärgiks. Seetõttu on edaspidi vaja väljatöötatud andmetöötlussüsteem 

täiendavaks valideerimiseks uuringut ebanormaalse kõnnakuga subjektide rühmaga. 

Lisaks sellele, kuigi subjektipõhine meetod näitab suurt tõhusust, nõuab see siiski 

kasutaja sisendit, kuigi piiratud määral. Seega tuleb kaaluda täiustusi, et saavutada 

edasine automatiseerimine. 
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APPENDIX 1 

This Appendix contains tables that were obtained during data labeling and served as a 

basis for Stride Duration calculations described in 4.1. Table 1 contains timestamps 

that were obtained from video processing with Kinovea. Based on these results stride 

durations in Table 4.1 were calculated. Table 2 in turn, contains timestamps of the gait 

events that were obtained from the IMU data. Based on these results stride durations 

in Table 4.2 were calculated.  

Table 1 Timestamps of the Gait Events obtained from the video recordings 

Sensor location and 

№ of repetition 

Occurrence of the gait event [s] 

TO1 HS1 TO2 HS2 TO3 HS3 TO4 

SHANK_1 10.98 11.48 12.21 12.68 13.35 13.85 14.55 

SHANK_2 23.99 24.46 25.19 25.66 26.33 26.79 27.49 

SHANK_3 12.61 13.08 13.78 14.25 14.95 15.42 16.15 

SHANK_4 11.48 11.94 12.64 13.11 13.78 14.25 14.98 

SHANK_5 12.08 12.54 13.25 13.68 14.35 14.81 15.48 

ANKLE_1 14.68 15.18 15.88 16.32 16.98 17.45 18.12 

ANKLE_2 9.54 9.98 10.68 11.11 11.78 12.24 12.91 

ANKLE_3 11.98 12.44 13.11 13.58 14.25 14.68 15.38 

ANKLE_4 12.14 12.58 13.25 13.71 14.35 14.81 15.52 

ANKLE_5 7.21 7.67 8.34 8.78 9.44 9.91 10.61 

FOOT_1 8.07 8.54 9.21 9.68 10.31 10.78 11.44 

FOOT_2 8.04 8.51 9.14 9.61 10.28 10.71 11.41 

FOOT_3 12.61 13.11 13.81 14.25 14.91 15.38 16.08 

FOOT_4 11.84 12.34 12.98 13.45 14.08 14.55 15.22 

FOOT_5 11.38 11.91 12.54 13.01 13.68 14.15 14.81 

 

Table 2 Timestamps of the Gait Events obtained from the IMU data 

Sensor location and 

№ of repetition 

Occurrence of the gait event [s] 

TO1 HS1 TO2 HS2 TO3 HS3 TO4 

SHANK_1 1849 1904 1971 2025 2086 2143 2204 

SHANK_2 728 785 847 903 963 1017 1079 



Table 2 continued 
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Sensor location and 

№ of repetition 

Occurrence of the gait event [s] 

TO1 HS1 TO2 HS2 TO3 HS3 TO4 

SHANK_3 601 655 717 772 834 888 953 

SHANK_4 557 609 672 724 785 838 901 

SHANK_5 595 651 714 766 825 879 937 

ANKLE_1 536 587 649 701 766 814 873 

ANKLE_2 678 728 789 842 901 954 1015 

ANKLE_3 718 768 828 881 939 992 1051 

ANKLE_4 608 658 718 764 830 881 942 

ANKLE_5 589 640 698 750 809 861 923 

FOOT_1 738 781 850 894 964 1003 1072 

FOOT_2 665 705 783 825 886 929 999 

FOOT_3 699 740 813 852 924 965 1044 

FOOT_4 630 671 744 783 851 895 968 

FOOT_5 579 627 693 733 806 846 915 
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APPENDIX 2 

This appendix contains an example of the code that was developed during this master 

thesis. This particular code is the final version of the subject-based motif data 

processing method. Note that all codes that were developed during this MSc Thesis are 

available on GitHub, following the link: 

https://github.com/jtuhtan/Andrii_B_MSc_Python_Code 

import numpy as np 

import pandas as pd 

from scipy.signal import find_peaks 

import stumpy 

import os 

 

from scipy.signal import savgol_filter 

from matplotlib import pyplot as plt 

 

plt.rcParams["figure.figsize"] = [30,15] 

plt.rcParams['xtick.direction'] = 'out' 

plt.rcParams["font.size"] = '20' 

 

#upload the data 

Ref_path = r'' 

Ref_files = os.listdir(Ref_path) 

 

i = 0 

Ref_acceleration = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

acceleration = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

NumOfPeaks = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

time = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

peaks_array_higher = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

peaks_array_lower = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

peaks_array_filtered = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

indx_array = [1,1,1,1,1,1,1,1,1,1] 

profile_match_array = [1,1,1,1,1,1,1,1,1,1] 

Ref_Acceleration_39 = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

acceleration_39 = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

Resam_Acc = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

Chopped_Acc = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

distance_profile_array = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] 

 

Ref_Location = 'Ankle' 

location = Ref_Location 

name = "Subject 1" 

 

#SavGol funciton to define reference matrix 

def Ref_SavGol_39 (i): 

    #applying the Sav_Gol filter 

    ACC_filtered = savgol_filter(Ref_df.averagea, 39, 3) 

    #the filtered signal is stored into an array 

    Ref_Acceleration_39[i] = ACC_filtered 

    return Ref_Acceleration_39[i] 

https://github.com/jtuhtan/Andrii_B_MSc_Python_Code
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#upload the data into Python environment 

for Ref_file in Ref_files: 

    if Ref_file.endswith(".xlsx") and Ref_file.startswith(Ref_Location): 

        Ref_df = pd.read_excel(os.path.join(Ref_path, Ref_file)) 

        Ref_df.columns = ['time','stamp','battery', 

'pressure','temperature','ax','ay','az','gx','gy','gz','mx','my','mz','averagea'] 

        Ref_acceleration[i] = Ref_df.averagea 

        time[i] = Ref_df.time 

        Ref_Acceleration_39[i] = Ref_SavGol_39(i) 

        i += 1 

 

#set the threshold based on the location of the sensor 

if Ref_Location == 'Ankle': 

    y = 13 

elif Ref_Location == 'Shank': 

    y = 12 

elif Ref_Location == 'Foot': 

    y = 13 

 

#find peaks in filtered data 

peaks,_ = find_peaks(Ref_Acceleration_39[0], height=y) 

peaks_array_filtered[11]=peaks 

 

#a function to find boundaries for the motif 

def Ref_Peaks(i): 

    print('Threshold value: ' + str(y)) 

    print ("Peaks time stamps in raw data: ", peaks_array_filtered[11]) 

    plt.plot(Ref_Acceleration_39[i], linewidth = '3', label = 'Filtered data') 

    plt.axhline(y, linewidth = '3', color = 'r',label = 'Threshold') 

    #plt.suptitle(name + ' ' + Ref_Location + ' '+ str(i), fontsize='30') 

    plt.legend(fontsize = 30) 

    plt.xlabel('Time Stamp, [cs]', fontsize=30) 

    plt.ylabel('Acceleration, [m/s^2]', fontsize = 30) 

    plt.grid(True, 'both') 

    plt.show() 

 

#-------------------------Motif Definition----------------------------------# 

 

#Cut out the Motif 

Ref_Peaks(0) 

print ("Start: ",end='') 

start = int(input()) #specify first gait event 

start = start - 20 

print ("End: ",end='') 

end = int(input()) #specify last gait event 

end = end + 20 

 

gaitCyclePattern = Ref_Acceleration_39[0][start:end] #define the motif 

print ('Start: ' + str(start), 'End: ' + str(end)) 

 

#---------------------------Matrix Profiling-------------------------------------------# 

 

def SavGol_39 (i): 

    #applying the Sav_Gol filter 

    ACC_filtered = savgol_filter(df.averagea, 39, 3) 

    #the filtered signal is stored into an array 
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    acceleration_39[i] = ACC_filtered 

    return acceleration_39[i] 

def PlotMatch(i): 

    plt.plot(acceleration[i], label = 'Filtered data: ' + str(i+1)) 

    plt.plot(range(indx_array[i],indx_array[i] + len (gaitCyclePattern)), 

acceleration[i][indx_array[i]:indx_array[i]+len(gaitCyclePattern)], label = 'Motif', 

linewidth = 4) 

    plt.suptitle('Match in ' + name + "'s dataset number: " + str(i+1), fontsize='30') 

    plt.grid(True, 'both') 

    plt.legend() 

    plt.show() 

 

path = Ref_path 

files = os.listdir(path) 

name = path.split('\\') 

name = name[-1] 

#Upload the data and apply Sav_Gol filter upon it 

i = 0 

for file in files: 

    if file.endswith(".xlsx") and file.startswith(location): 

        df = pd.read_excel(os.path.join(path, file)) 

        df.columns = ['time','stamp','battery', 

'pressure','temperature','ax','ay','az','gx','gy','gz','mx','my','mz','averagea'] 

        acceleration[i] = SavGol_39(i) 

        i += 1 

 

#Run the matrix profiling through all datasets         

i = 0 

for i in range (0,10): 

    distance_profile = stumpy.mass(gaitCyclePattern, acceleration[i]) 

    distance_profile_array[i] = distance_profile 

    indx = np.argmin(distance_profile) 

    indx_array[i] = indx 

    i += 1 

 

#Chop out the Motif 

i = 0 

for i in range(0,10): 

    profile_match = acceleration[i][indx_array[i]:indx_array[i]+len(gaitCyclePattern)] 

    profile_match_array[i] = profile_match 

    i+=1 

 

#find peaks in the chopped Motif 

i = 0 

for i in range (0,10): 

    peaks,_ = find_peaks(profile_match_array[i], height=y) 

    peaks_array_filtered[i]=peaks 

    NumOfPeaks[i] = len(peaks) 

    i+=1 

#plot every dataset with peaks array 

i = 0 

for i in range (0,10): 

    PlotMatch(i) 

    print('Peaks: ', peaks_array_filtered[i]) 

    print('Number of Peaks in Profile Match: ', NumOfPeaks[i]) 

    i += 1 

 


