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Introduction

The human gut microbiota has a crucial role in human health and disease. The bacteria
survive in the gastrointestinal tract due to their ability to use a wide source of dietary
and host-derived glycans as carbon source. The degradation and metabolism of these
glycans produces energy and bioactive compounds that maintain the intestinal
homeostasis of the host. However, imbalances in the microbiota composition and
metabolism are linked to multiple diseases, such as inflammatory bowel disease, obesity
and colorectal cancer. The onset of these diseases often begins with extensive
degradation of the gut mucus layer, making it penetrable to bacteria who trigger an
inflammatory response in the epithelium. Recent studies have shown that in addition to
its passive protective function, the mucus also plays a key role in selecting the host
microbiota composition. The main components of the mucus layer are large
glycoproteins called mucins. In healthy individuals the mucin degradation is kept in
balance by consumption of dietary fibres. These plant-derived polysaccharides are
largely indigestible to humans and reach the colon where the bacteria utilise them as the
preferred carbon source. However, in the absence of fermentable dietary fibres, some
bacteria can switch to alternative energy sources, such as degradation of mucins,
creating imbalances in the microbiota functions.

The microbiota-related diseases are increasingly common, especially in the
technologically advanced parts of the world where humans have gone through rapid
changes in their diet and lifestyle, altering their core microbiota composition. As a result,
the microbiota diversity decreases with every generation, until some species become
completely obsolete in said populations, lowering the functional potential of the host.
Dietary fibres have been studied as promising modulators of gut microbiota as they keep
a balance between fibre-degrading and mucin-degrading species. Moreover, these
polysaccharides can potentially selectively enhance growth of commensal gut bacteria
or increase the overall diversity of the consortium. Although some dietary fibres have
already been marketed as prebiotic food supplements, their effect is poorly defined due
to the large individual differences in consortia. Understanding the factors that influence
microbiota growth under various physiological conditions could be a key to developing
novel non-invasive and diet-based treatments to microbiota-related diseases.

This study aims to overcome some of these challenges by scanning the microbiota
growth space in a systematic way so that the results could be translated to broader
populations. The results are compiled into three scientific publications and a manuscript
that is currently in preparation. Publications | and Il explored the microbiota growth and
metabolism under physiologically relevant transit times and pH values. The effect was
elucidated in continuous cultures supplemented with porcine gastric mucin and two
different dietary fibres. The growth space study was continued in the supporting
manuscript (under preparation) where isothermal microcalorimetry was used for
high-throughput screening of a panel of dietary fibres for their potential to increase
microbiota diversity. Porcine colonic mucin was extracted in-house and used as an
intrinsic co-substrate for polysaccharide fermentation. The degradation and downstream
metabolism of selected dietary fibres and colonic mucin was elucidated combining
taxonomic sequencing and metabolomics with metaproteomics and mathematical
models. Potential prebiotic compounds were identified and their mechanisms of action
elucidated. We determined key species and enzymes for the breakdown of the studied
complex glycans. Additionally, a comprehensive review on the mucin utilization key



enzymes was compiled to support the findings of this study. The results of this
dissertation have been presented at scientific seminars and conferences. The novelty and
relevance of the findings for a broader audience has been recognised with a poster
presentation award from an international conference. Together, the results contribute
to a better understanding of the microbiota development and metabolism that can be
manipulated to maximise beneficial microbiota-host interactions.
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1 Literature review

1.1 Modulating the gut microbiota has immense health-beneficial
potential

The human gut microbiota is defined as the sum of microbes colonizing the human
gastrointestinal tract. About 99% of these microbes are bacteria, out of which 99%
inhabit the colon. The microbial density increases from the proximal to the distal colon
and from the epithelial cells towards the lumen (Sekirov et al. 2010). The latest estimations
deem the number of bacteria in the colon to be approximately 103 (Sender, Fuchs, and
Milo 2016). These bacteria are adapted to survive in the gut due to their ability to use a
wide range of polysaccharides, especially dietary fibres and host glycans, as carbon
source. The gut bacteria are a vital part of the human body as they help to ferment
otherwise indigestible foods and produce energy and host-beneficial bioactive
compounds. Moreover, they protect the host against invading species by competing for
nutrients and space.

The species richness of the gut community has been shown to be a pivotal marker of
the gut health. The richness and diversity reflect the stability and resilience of an
ecosystem, whereas reduced microbiota diversity has been shown to correlate with gut
diseases. It is estimated that the colon could house about 1000 different bacterial species
(Xu and Gordon 2003). By the age of three, each of us has acquired our own unique set
of bacteria that is similar to adult microbiota, although significant species-level changes
occur throughout childhood (Arrieta et al. 2014). The composition of bacterial communities
is affected by both internal and external factors (genetics, hormones, diet, lifestyle,
environment, industry). The large variety of these factors makes it impossible to define
a standard healthy gut microbiota composition. The average intestinal community of
Estonians, however, is dominated by Bacteroidetes and Firmicutes (56 and 34%,
respectively), followed by Proteobacteria (5%), Actinobacteria (1%) and others (Aasmets
et al. 2022). This high prevalence of the Gram-negative Bacteroides and the Gram-positive
Firmicutes is also common to microbiotas of individuals from other Western countries
(Wexler and Goodman 2017; Huttenhower et al. 2012). Yet, immense individual
differences in the gut communities give each person their own microbiota “fingerprint”.

The gut bacteria form an intertwined system where different species constantly
interact with each other through supportive (mutual or commensal) or inhibitory
(ammensal or competitive) relations. For example, this crosstalk between members of
the microbiota is used for degradation of complex glycans (Ostrowski et al. 2022).
Maintaining the bacterial diversity is crucial for the gut health and functional
homeostasis. Overconsumption of processed foods, urbanization and decreased physical
activity are considered primary reasons for the decrease in microbiota diversity in
technologically developed countries. The loss of keystone species can lead to disruptions
in the whole system. Indeed, lower microbiota diversity has been linked to diseases such
asirritable bowel disease (IBD) (Alam et al. 2020; Clooney et al. 2021) and obesity (Boroni
Moreira et al. 2012; Muscogiuri et al. 2019). Moreover, alterations in microbiota
composition are connected to neurodegenerative diseases like Parkinson’s disease (Xie
et al. 2022; Pereira et al. 2022). These diseases are an increasing problem, especially in
the Western world where the diet and lifestyle of people has gone through rapid changes
in a short amount of time. However, parameters like gut peristalsis and pH are largely
determined by the diet. Moreover, the gut mucus layer which is the first line of defence
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against inflammatory processes is also in a close dynamic relationship with the bacteria
and the diet. A better understanding on these relations could be a key to developing
non-invasive, diet-based treatments and preventions to diseases related to microbiota
changes. Modulating the gut microbiota in a favourable direction has immense potential
for the overall improvement of human health.

1.2 Gut transit rate and pH determine the physiological conditions for
the gut bacteria

Among the physiological parameters that have a major impact on the gut microbiota
composition and metabolism are the gut transit rate and the pH. The gut transit rate
describes the gut peristalsis and is defined as the rate of which the stool passes through
the gastrointestinal tract. It is often measured using Bristol Stool Scale (BSS) where a low
score reflects firm stool and slow transit, while a high score reflects loose stool and fast
transit (Lewis and Heaton 1997; Degen and Phillips 1996; Saad et al. 2010). The transit
time affects bacterial growth through nutrient availability as prolonged transit decreases
water activity and reduces nutrient mobility and enzymatic activity (Vandeputte et al.
2016). The transit also affects the epithelium-protecting mucus layer by disrupting it
through mechanical shear forces, transporting the mucus towards the rectum (Gayer and
Basson 2009). The gut transit rate is partially determined by the host diet as certain
polysaccharides bind water and increase the volume and moving rate of the stool
(Cummings 1984; Elia and Cummings 2007; de Vries, Miller, and Verbeke 2015).
The colonic transit rate is related to the bacterial growth rate which is described by
the Monod equation:
_ Hmax* S
=k + 9

where u is the specific growth rate of the cell at a steady state, S is the limiting substrate
and Ks is a constant describing the cell’s affinity to the substrate (Monod 1978). Through
this connection the transit rate selects for the gut bacteria. When the bacterial cell
growth does not match the colonic transit rate, it needs to adhere to the host (for
example, by getting trapped in the mucus layer) or it is washed out of the system
(K. Adamberg and Adamberg 2018; K. Adamberg, Raba, and Adamberg 2020). However,
the relationship between gut transit rate and cell growth rate is not linear because while
the density of bacteria increases along the colon, the moving rate decreases.

In continuous cultivation, the transit time is reflected in the parameter called the
dilution rate (D). The steady state in in vitro continuous cultivation is achieved by a
constant inflow of fresh medium and removal of the spent medium. This is done at a
constant rate, the dilution rate. The dilution rate controls the concentration and
availability of the substrate and is thereby directly related to the bacterial specific growth
rate u. However, the relationship between gut transit rate and the human health remains
to be understood. The slow transit rate positively correlates with both the species
richness and proteolytic activity (Cummings and Englyst 1987; Vandeputte et al. 2016).
While the first is considered as a marker for healthy gut, the latter is known to result in
the production of potentially harmful metabolites. These examples demonstrate the
need for a better understanding on how the transit rate determines the microbiota
composition and metabolism.

The degradation of food components, release of organic acids, bile salts and water
create a pH gradient along the gastrointestinal tract. The pH inside a healthy colon is
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neutral or mildly acidic (pH 6.0-7.5) (Nugent et al. 2001). However, the pH can increase
up to 8 in case of colorectal cancer (Kashtan et al. 1990; Ohigashi et al. 2013). Similarly,
alkaline pH has been shown to accompany the constipation that is typical to colorectal
cancer (Kojima et al. 2004). The colonic pH determines nutrient availability and enzymatic
activity, thereby affecting microbiota growth and metabolism. It also influences bile
solubility, ion availability and is an important factor determining the organization of the
protective mucus layer (Duncan et al. 2009; Ambort et al. 2012).

The pH of the colon is highly impacted by the choice of diet. Degradation of dietary
fibres in the proximal colon produces short-chain fatty acids (SCFAs) which lower the pH.
However, the pH rises towards the distal parts of the colon. When the dietary fibres are
utilised and the SCFAs absorbed, the bacteria begin to metabolize available proteins,
releasing peptides, ammonia and urea which increase the pH (Russell et al. 2011; Aguirre
et al. 2016). Moreover, the degradation of host mucin glycans releases amino sugars
which raise the pH (Ottman et al. 2017). Both the pH and gut transit rate are powerful
modulators of the gut microbiota composition and metabolism. Their manipulation
through diet could be a key to developing novel pre- or synbiotics.

1.3 Regular consumption of dietary fibres maintains the gut microbiota
richness and functional balance

Dietary fibres are a class of complex polysaccharides found in the plant cell walls. They
are the most structurally diverse compounds in the human diet. These polysaccharides
can be made of a variety of different sugar residues, both hexoses and riboses. They can
include either a- or B-linkages and can be branched at several positions on a single
monomer. Furthermore, they can form secondary structures or be linked to other common
biological molecules to form conjugates such as glycoproteins and lipopolysaccharides.
At the same time, they are largely undigestible by humans who lack the necessary
enzymes. Thus, the polysaccharides reach the colon where gut bacteria can harness their
vast repertoire of carbohydrate-active enzymes (CAZymes) to break down the fibres and
use the sugar residues for energy metabolism. These properties make dietary fibres
excellent for modulating the microbiota composition and metabolism. However, the use
of dietary fibres as prebiotics requires that they elicit similar effects in broad populations
— something that is complicated due to the interindividual variety of microbiota
composition. Nevertheless, recent studies have shown that, despite the large differences
in gut microbiota communities, more complex-structured dietary fibres can induce
similar changes in consortia of different people (Deehan et al. 2020; T. M. Cantu-Jungles
and Hamaker 2020; Thaisa M Cantu-Jungles et al. 2021).

The degradation of polysaccharides by gut microbiota is catalysed by different
CAZymes such as glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate
esterases (CEs) and sulfatases (Drula et al. 2022; Barbeyron et al. 2016). The CAZymes
are classified into families based on sequence-similarity. CAZymes of the same family
share a conserved fold, catalytic mechanism and active site residues. The GHs and
sulfatases can be either exo- or endo-active, depending on whether they hydrolyse
glycans from one end or within the glycan chain (Wardman et al. 2022). The gut
microbiota has been shown to encode for over 89 CAZyme families, whereas the human
proteome is limited to only 17 CAZymes (Bhattacharya, Ghosh, and Mande 2015; Drula
et al. 2022). The gut commensal genus Bacteroides is especially adapted to complex
glycan degradation (Kaoutari et al. 2013). For example, B. thetaiotaomicron can express
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at least 172 GHs (Xu et al. 2003). This rich repertoire of enzymes is needed to break down
complex fibres such as pectin. It has been showed that a single bacterium can encode 54
different enzymes to degrade this plant polysaccharide (Luis et al. 2018). The degradation
of polysaccharides by a bacterium can be carried out in a “selfish” mechanism where all
the degradation products are imported into their periplasm for downstream metabolism.
Alternatively, there can be crosstalk between members of the consortium in which case
the products of one species are shared with the other. The latter mechanisms are still
quite poorly understood as there is likely substantial overlap in the functional activities
of various species. Interestingly, it has been shown that the degradation of some dietary
fibres can have very specific geographical and/or cultural limitations. For example, some
enzymes that are required for the degradation of algal polysaccharides are found only in
populations whose diet regularly includes algae (Hehemann et al. 2010).

Consumption of dietary fibres in the diet helps to ensure the bacterial diversity in the
colon and to supress overgrowth of potential pathogens. Moreover, studies comparing
single fibres and fibre mixtures show the latter to increase the microbiota diversity more
effectively (Chung et al. 2018). The presence of dietary fibres in the colon is also needed
to maintain the balance between fibre-degrading and mucolytic species. A study with
mice demonstrated how the lack of dietary fibre induces overgrowth of mucus-degrading
bacteria resulting in a weakened and penetrable mucus layer (Desai et al. 2016).
Interestingly, even 1-day oscillations between fibre-free and fibre-rich diet induced
fluctuations in bacterial abundances, demonstrating how dynamic this system is.
Another study with mice showed how colonizing mice with a microbiota from normal-fed
littermates protected the mucus layer from degradation even in mice on Western
style diet (low in carbohydrates, high in saturated fats) (Schroeder et al. 2018).
Similarly, in humans the so-called Western style diet and lifestyle is associated with
decreased microbiota diversity and increased incidences of IBD (Martinez et al. 2015;
Vangay et al. 2018; Clemente et al. 2015). Regular consumption of various dietary fibres
is necessary to maintain the gut microbiota richness and to keep the fibre-degrading and
mucus-degrading species in balance. This homeostasis ensures that the epithelium
remains protected by the mucus layer.

1.4 Gastrointestinal epithelium is protected by the mucus layer

The gastrointestinal tract is lined with a mucus layer that protects and lubricates the gut
and is simultaneously an interaction site between the host and the bacteria. The mucus
is made of water (90-95%), electrolytes, lipids, proteins and other components (Paone
and Cani 2020). In the colon, the mucus forms two layers: an almost sterile and
structurally organized inner layer and a less defined outer layer that is mixed with
bacteria and faecal content (Johansson et al. 2008). The mucus thickness is determined
by the rate it is renewed by the epithelial cells and degraded by the microbiota and
peristaltic forces. In humans the inner mucus layer thickness is around 300 pum
(Gustafsson et al. 2012). Measuring the outer layer thickness is complicated due to its
unstructured nature, however it has been estimated to be double the thickness of the
inner layer (Johansson, Holmén Larsson, and Hansson 2011).

Mucins are glycoproteins that are the main structural and functional components
giving the mucus its gel-like properties. They bind water and protect the epithelium from
mechanical stress as the peristaltic forces move the faecal matter along the gut. Fresh
mucus is constantly secreted at a rate of ca 4 um/min, pushing the bacteria away from
the epithelium (Gustafsson et al. 2012). Due to constant renewal and secretion, the mucus
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performs as a surface cleaner, binding debris and bacteria and flushing them away from
the epithelium. It acts as a first line of defence against potentially harmful microbes and
compounds.

Mucins are continuously produced by goblet cells. The ratio of goblet cells to
enterocytes increases along the gastrointestinal tract, positively correlating with the
increase of bacterial numbers. In humans, this ratio begins at 4% in the duodenum
and grows up to 16% in the distal colon (Konig et al. 2016; Paone and Cani 2020).
The canonical goblet cells reside in the colonic crypts where they continuously secrete
fresh mucin. In addition, there are so-called “sentinel goblet cells” which are at the crypt
openings and secrete mucus in response to stress and bacterial invasion and are an
additional line of defence (G. M. H. Birchenough et al. 2016). Recently, another
sub-population of goblet cells was described: the intercrypt goblet cells (Nystréom et al.
2021). These cells have a distinct expression profile and they secrete mucus which is
more easily penetrable to smaller molecules and ions. It was shown that both the
canonical and intercrypt goblet cell mucus are needed for maintaining the barrier
function and protecting against colitis.

Mucins can be either transmembrane or secreted (Hansson 2020). The major mucin
in the colon is a secreted gel-forming mucin 2 (MUC2). It is over 5000 amino acids long
and weighs ca 2.7 MDa, with most of the molecular weight coming from the O-glycan
sidechains (Allen, Hutton, and Pearson 1998; Axelsson, Asker, and Hansson 1998).
The O-glycosylation gives the mucins their gel-forming properties. Moreover, these highly
variable glycans cover the mucin protein backbone densely and protect it from host
proteolytic and digestive enzymes as humans can cleave only a few glycan linkages
(Van Der Post et al. 2013). The bulk of the mucin protein backbone is made of repeating
Pro-Thr-Ser amino acids, called the PTS domain. The hydroxyl groups of Ser and Thr are
the attachment site for the first O-glycan sugar, the N-acetylgalactosamine (GalNAc),
while the structurally rigid Pro ensures that the mucin backbone remains unfolded in the
Golgi apparatus so that the O-glycosylation process can take place (Bennett et al. 2012;
Hansson 2020). The attachment of GalNAc residue to Ser or Thr initiates the
O-glycosylation, after which galactose (Gal), N-acetylglucosamine (GIcNAc), GalNAc,
N-acetylneuraminic acid (Neu5Ac) and sulphate groups can be added. The mucin
O-glycosylation varies greatly between species and spatially along the gastrointestinal
tract, being impacted by the host health, microbiota and enzymatic capabilities
(Rodriguez-Pifieiro et al. 2013; Holmén Larsson et al. 2013).

After its synthesis, the MUC2 protein goes under dimerization via C-terminal
disulphide bridges (in the ER) and subsequent trimerization via intermolecular disulphide
bridges of N-terminal von Willebrand domains (in the Golgi apparatus) (Hansson 2020;
Schroeder 2019). The resulting mucin oligomers are then packed into secretory vesicles
where low pH and high Ca?* concentration help to maintain the structural organization
(Ambort et al. 2012). Upon its secretion, the environmental changes and sudden
hydration cause the mucin proteins to significantly expand (100 to 1000-fold increase in
volume) and form 2D net-like sheets which interact with previously secreted mucins to
form the 3D mucus layer. This scaffold acts as a diffusion barrier, letting through ions,
nutrients, water, gases and other small molecules, while keeping the bacteria at bay.
The other secreted mucins of the gastrointestinal tract are MUC6, MUC5AC and MUC5B
(Hansson 2020). The latter are found in the stomach which is a common source for
commercial mucin production. Compared to the mucins in the colon, the gastric mucins
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contain less Neu5Ac and sulphate groups and are less uniform between individuals
(Larsson et al. 2009; Karlsson et al. 1997).

The transmembrane mucins cover the apical surface of the enterocytes (Hansson
2020; Paone and Cani 2020). Transmembrane mucins have an intracellular cytoplasmic
C-terminus, a transmembrane domain and one or multiple O-glycosylated PTS domains
which are connected to the N-terminus (Paone and Cani 2020; Pelaseyed and Hansson
2020). The transmembrane mucins form an approximately 1 um thick densely
glycosylated glycocalyx of enterocytes which protects the epithelium and is an important
host-microbiota interaction site (Hansson 2020).

1.5 The mucins and gut microbiota have a dynamic interplay

It has become clear that mucus is not just a passive barrier, but in fact is in a dynamic
relationship with the gut microbiota. The presence of bacteria is needed for the normal
turnover of the mucus layer and, in turn, the mucin glycans select for the bacteria that
can bind to mucins and utilise them as nutrient source (Johansson et al. 2015; Arike et al.
2020). Studies with germ-free (GF) and conventionally raised mice have demonstrated
how the mucus of GF mice is abnormal: the glycosylation of mucins is different,
the number of mucus-filled goblet cells is lower and the colonic inner mucus layer is
penetrable to bacteria (Szentkuti et al. 1990; Kandori et al. 1996). However, the effect is
reversed when the GF mice are colonised with a complex microbiota (Desai et al. 2016).
The opposing phenomena of mucin glycans selecting the bacteria was demonstrated in
a study with GF zebrafish and GF mice (Rawls et al. 2006). When the GF mice were given
bacteria from conventionally raised zebrafish, the mice selected out the bacteria which
were normal to mouse microbiota. The experiment was repeated in reverse with GF
zebrafish and the same effect was seen, demonstrating how the host glycans play a role
in selecting for the bacteria in microbiota.

The gut bacteria use their outermembrane proteins, lectins, adhesins, capsules, pili,
flagella and fimbriae to interact with the mucins (Paone and Cani 2020). The adhesion to
mucins is likely mediated through patches of specifically arranged glycans, not through
single, poorly accessible glycans. The adhered bacteria can then degrade the mucins,
utilising their wide repertoire of CAZymes. Different species use different strategies for
mucin O-glycan degradation to secure a niche for colonization. A recent study on
Bacteroides thetaiotaomicron sulfatases identified 11 sulfatases that were active on
mucin O-glycans and had the potential to remove all possible mucin sulphate groups
(Luis et al. 2021). Moreover, a single 35-Gal sulfatase (BT1636) was found to be crucial
for B. thetaiotaomicron growth on colonic O-glycans and in vivo colonization. In another
study a single sulfatase (BF3134) was identified as essential for Bacteroides fragilis in vivo
colonization (Donaldson et al. 2020). Ruminococcus gnavus, on the other hand, utilises
trans-sialidases which convert the terminal Neu5Ac into 2,7-anhydro-Neu5Ac that
cannot be metabolised by other gut bacteria (Tailford, Owen, et al. 2015; Bell et al. 2019).
Interestingly, a trans-sialidase knock-out strain of R. gnavus lost the ability to colonise
the mucus layer closer to the epithelium, showing a very specific niche that becomes
available to the bacterium with this enzyme. Bacteroides thetaiotaomicron has been
shown to modify mucus already before its secretion by specifically inducing fucosylation,
securing itself a nutrient niche (Bry et al. 1996). In contrast, B. thetaiotaomicron can
release Neu5Ac from mucin O-glycans, but cannot further metabolise this sugar, leaving
it to be consumed by other gut bacteria like Clostridium difficile and Salmonella
typhimurium who lack sialidase-activity (Ng et al. 2013). The bacterial metabolism of
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sugars from O-glycans produces SCFAs like acetate, propionate and butyrate which are
used by the epithelial cells for energy. Moreover, SCFAs can induce goblet cell
differentiation and alternate mucin O-glycosylation (Wrzosek et al. 2013). Clearly there
is a mutualistic relationship between the mucus and the bacteria.

However, imbalances in the microbiota composition and metabolism can lead to
extensive degradation of the mucins, rendering the mucus layer damaged and
penetrable. The pathogenic bacteria use their repertoire of mucin-degrading proteases,
chemotaxis and flagella to penetrate the mucus, move against the flow and reach and
adhere to the mucin glycans. The bacteria can also modify the mucus pH to destabilise
the structures, further facilitating their adhesion to the glycans. Additionally, the bacteria
might influence the expression and synthesis of mucins, allowing for an easier
colonization. Finally, the spread of pathogenic bacteria can be aided by commensals who
release sugar residues which the pathogens use for their proliferation in the mucus.
These mechanisms render the mucus layer penetrable to the bacteria, letting them pass
the first line of defence. Next, the sentinel goblet cells come into play by sensing the
increased levels of bacterial products and releasing mucus plumes to wash away the
pathogens. Finally, as the third defence mechanism, the goblet cells in the crypts
would empty to increase the mucus volume. However, the regeneration of mucins is
time-consuming and these defences cannot protect us against swarms of bacteria. If all
these defences fail, the bacteria will have access to the epithelial cells, triggering an
inflammatory response that can lead do the onset of disease.

It has been shown that alterations in the mucin O-glycosylation and mucus barrier
function have a crucial role in the onset of diseases like IBD, obesity and colorectal cancer
(Johansson et al. 2014; Schirmer et al. 2018; Schroeder et al. 2020; Coleman and Haller
2021). Patients with ulcerative colitis have a mucus layer that is penetrable to
bacteria-sized particles (Johansson et al. 2014). The barrier function usually returns in
patients who are in remission, although not always. Meanwhile, studies with MUC2
knock-out mice have shown that the resulting alterations in cell maturity and crypt
morphology from the lack of MUC2 lead the mice to spontaneously develop IBD and
colorectal cancer (Van der Sluis et al. 2006; Velcich et al. 2002).

The gut microbiota harbours members that are specialised to mucin degradation, such
as Akkermansia muciniphila, and species such as Bacteroides thetaiotaomicron and
B. caccae that are more flexible and can switch to host-derived mucin degradation in the
absence of dietary glycans. As these generalists make up a significant proportion of the
microbiota community, extensive degradation of mucin and the resulting inflammatory
reactions can be ameliorated with a fibre-rich diet. In a study with mice colonised with a
synthetic microbiota, including mucin specialists and generalists, the switch from fibre-rich
to fibre-free diet resulted in an increased expression and activity of mucin-targeting
CAZymes (Desai et al. 2016). At the same time, fibre targeting CAZymes activity and
expression decreased. This led to a decreased thickness of the mucus layer which
became susceptible to pathogenic Citrobacter rodentium invasion. Similar susceptibility to
C. rodentium infection has been noted in MUC2 knock-out mice (Bergstrom et al. 2010).
Together these results demonstrate how the balance between the bacteria and the diet
have a crucial role in maintaining a healthy mucus layer. However, these dynamics are
not always straightforward as exemplified by a study where administration of mucolytic
A. muciniphila to mice fed a high-fat diet instead led to the thickening of the mucus layer
(Everard et al. 2013). Understanding these complex relationships between the
microbiota, mucus and diet are a key to developing novel prebiotics and therapeutics.
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1.6 Downstream bacterial metabolism of glycans produces bio-active
compounds which can be either beneficial or toxic to the host

The glycans from dietary fibre and mucin degradation are hydrolysed into five- or
six-carbon monosaccharides which then undergo further catabolism by the gut microbiota.
As a result, a variety of metabolites are produced which are used by both the bacteria
and the host. The monosaccharides are first metabolised into phosphoenolpyruvate
(PEP), either via the glycolysis pathway (six-carbon substrates) or the pentose phosphate
pathway (five-carbon substrates). PEP is used for SCFA production, either directly or via
the formation of pyruvate. The latter pathway provides the cell with extra ATP. Acetate
can be produced either through decarboxylation of pyruvate, yielding acetyl-CoA which
is then hydrolysed to acetate, or from CO2 and formate over the Wood-Ljungdahl
pathway (Ragsdale and Pierce 2008). Propionate is usually produced either from PEP
through the TCA cycle utilising succinate and releasing CO2, or from lactate via the
acrylate pathway (Koh et al. 2016; Hetzel et al. 2003). Alternatively, some bacteria have
been shown to utilise a third pathway where propionate is produced via the hydrolysis
of propane-1,2-diol (Reichardt et al. 2014). Butyrate production can go either via the
classical pathway where two acetyl-CoA molecules form butyryl-CoA which is converted
to butyrate, or an alternative pathway using exogenously derived acetate to form
butyrate and acetyl-CoA (Duncan et al. 2002). All these pathways are driven by redox
equivalents NADH and H: and the partial pressures of H2 and COa.

Fibre-rich diets increase the microbial diversity and SCFA production. Acetate,
propionate and butyrate make up around 95% of the total SCFAs produced by the gut
microbiota and are usually made at a molar ratio of ca 60:20:20 (John H Cummings and
Englyst 1987; den Besten et al. 2013). The production is dependent of the host diet,
microbiota composition and other host factors. The diet dictates how much fermentable
substrate is available to the bacteria and different dietary fibres can result in different
profiles of the produced SCFAs. Similarly, the metabolism of bacteria varies and thereby
the community composition has a major impact on the profile of the SCFAs being
produced. Especially sensitive to changes in the diet are members of the Firmicutes and
Actinobacteria phyla who have specialised niche roles in the polysaccharide degradation
(Makki et al. 2018). In contrast, Bacteroides genus are considered generalists who can
easily switch to other glycan sources in the absence of fermentable polysaccharides.
The secreted SCFAs are used by the host in several physiological functions such as
maintaining the gut mucus layer, the epithelium (e.g., cell turnover and integrity of tight
junctions), controlling the gut motility and forming the pH gradient inside the
gastrointestinal tract (Kaiko et al. 2016; Dougherty et al. 2020; Bilotta et al. 2021;
Schroeder et al. 2018; G. Birchenough et al. 2019). Imbalanced SCFA profiles have been
associated with diseases like obesity, type 2 diabetes, metabolic syndrome and even
neurological disorders (Samuel et al. 2008; Ridaura et al. 2013; Canfora et al. 2019; Dalile
et al. 2019).

Polysaccharides like dietary fibres are the preferred substrate for gut bacteria.
However, when the fibre becomes depleted or the colonic pH is raised, the bacteria can
switch to fermentation of other substrates like dietary and host-derived proteins (Ratzke
and Gore 2018; Krautkramer, Fan, and Backhed 2021). These proteins are first hydrolysed
into peptides and amino acids using both the host and microbial enzymes (J. H. Cummings
and Macfarlane 1991). Fermentation of the amino acids results in lower amounts of
SCFAs and instead products like branched-chain fatty acids (BCFAs), amines, ammonia,
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phenols, indoles, sulphides and N-nitroso compounds are formed, some of which are
potentially toxic to the host (Smith and Macfarlane 1996; Krautkramer, Fan, and Backhed
2021; Fan and Pedersen 2021). A multitude of gut bacteria can catabolise basic amino
acids into amines with various biological effects on the host. For example, arginine is
catabolised into putrescine which enhances epithelial cell proliferation (Mouillé et al.
2003; Oliphant and Allen-Vercoe 2019). Putrescine can be further metabolised into
spermidine or spermine. All three arginine fermentation products improve gut integrity
by increasing tight junction protein expression and increasing mucus secretion (Chen
et al. 2007; Rao et al. 2012). Arginine can also be used for y-aminobutyric acid (GABA)
production via the formation of glutamate. Alterations in GABA levels and the concomitant
anxiety has been observed in mice with IBD (Bravo et al. 2011; Oliphant and Allen-Vercoe
2019). However, GABA can also be used for the production of succinate which can be
further converted into propionate. The catabolism of another basic amino acid, lysine,
produces cadaverine which has been shown to support cell proliferation and gut barrier
function (Nakamura et al. 2021; Bekebrede et al. 2020). However, the host-beneficial
effect needs further confirmation as elevated concentrations of cadaverine have also
been associated with ulcerative colitis (Le Gall et al. 2011). The aromatic amino acid
tyrosine can be converted into tyramine which has been shown to exert toxicity (del Rio
et al. 2018).

The lower production of SCFAs during protein fermentation leads to a higher luminal
pH, which in turn alters the structure and function of the microbiota (Raba, Adamberg,
and Adamberg 2021; Ratzke and Gore 2018; Duncan et al. 2009). These changes in
microbial metabolism and community structure can happen already after 24 hours of the
diet shift (Desai et al. 2016). A study with mice showed that the microbiota changes
induced by prolonged Western style diet, characterised by lowered amounts of dietary
fibre, were mostly reversible within a single generation (Sonnenburg et al. 2016).
However, continuation of this diet over multiple generations resulted in irreversible
extinction of selected species — an effect that progressively worsened with every
following generation. Similar effect has been shown in humans in a study comparing the
microbiota of non-western population to that of their first- and second-generation
immigrants in the USA (Vangay et al. 2018).

A similar microbial community can behave differently under various conditions.
The combined effects of transit time, pH and diet largely determine the microbiota
composition and their metabolism. Systematic studies of these parameters on a
standardised microbial community give valuable insight into the functionality of gut
microbiota. Understanding these dynamic relationships could be a key to maximising
the beneficial potential of gut microbiota in a wider population.
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2 Aims of the study

The main aim of this study was to investigate the growth space of faecal microbiota and
the enzymatic degradation and co-metabolism of dietary fibres and mucins. The specific
aims were as follows:

Apply continuous culture approach to cultivate complex faecal microbiota on
two dietary fibres (pectin and xylan) and porcine gastric mucin. Scan the
microbiota growth space under physiologically relevant dilution rates and
elucidate the co-metabolism of fibre and mucin.

Use continuous cultivation to further investigate the combined effect of pH
and dilution rate on the growth and metabolism of microbiota co-fermenting
mucin and a chosen dietary fibre, pectin.

Extract a unique substrate — porcine colonic mucin —and use it in the in vitro
study of microbial metabolism of a panel of dietary fibres. Compare the
results with widely used commercial porcine gastric mucins.

Determine the microbiota modulating potential of different dietary fibres
with various sugars and glycan linkages.

Apply metaproteomic approach to study the specific dietary fibres and
mucins co-degradation mechanisms and metabolic pathways. Combine the
high-throughput omics methods with a novel cell culture spheroid model to
study the potential effect of the microbial metabolites on goblet cells and
mucin production.

Support the experimental work with a review on the recent advances in
characterization of mucin degrading enzymes in relation to human health.
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3 Materials and Methods

Below is a summary of the methods used in this study. More details for every method
are provided in Publications I-1l and the supplementary Manuscript.

3.1 In vitro cultivation systems

The continuous cultivations of bacterial growth space studies were carried out in an
anaerobic bioreactor system (Biobundle™, Applikon) described in more detail in
Publications | and II. In a changestat culture the cells are kept in a quasi-steady state by
controlling the medium inflow and outflow by an algorithm:

N=Ny+a-t
where N is the parameter being changed, No the initial value of the changed parameter,
a the rate of changing the parameter N, and t the time.

The aim of Publication | was to elucidate the effect of dilution rate on the faecal
microbiota composition and metabolism (Figure 1). The dilution rate was either gradually
increased from 0.05 to 0.2 1/h or decreased from 0.2 to 0.05 1/h at a rate of 0.05 units
per day (Figure 1). The range of the dilution rates correlated to bacterial specific growth
rates, calculated from the colonic transit rate of digesta in people consuming Western
diets, that ranges between 40-140 h, and the estimated number of bacteria which ranges
from 108 to 10! cfu/g between the proximal colon and faeces. Samples were collected
from the bioreactors after every 0.01 D-units (1/h) and centrifuged at 14,000 g and 4 °C
for 5 min. The cell pellets and supernatants were stored at -80 °C or -20 °C, respectively,
until further analyses.

pH=7.0
5 _\ P1
° x
D =0.051/h
¢ 16S rRNA sequencing
= P2 * organic acids
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 gases
| |
- D=021/h
I P2
time

Figure 1. Schematic representation of the in vitro continuous cultivations from Publications I-Il.
The cultivations were carried out in bioreactor systems where the culture was first stabilised,
followed by smooth change of either the dilution rate (P1) or the pH (P2), keeping the cells in a
quasi-steady state. P1 — Publication I, P2 — Publication Il, D — dilution rate.

The combined effect of pH and dilution rate on microbial composition and metabolism
was studied in Publication Il. The dilution rate was kept at constant D = 0.05 or D = 0.2
1/h and the pH either gradually increased from 7.0 to 8.0 or decreased from 7.0 to 6.0
(Figure 1). The pH was controlled by the addition of 1M NaOH. The dilution rates were
chosen to represent slow and fast colonic transit rates. The tested pH range was chosen
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to mimic both the healthy colonic pH (pH = 6.1-7.5) and an inflamed colon (pH up to 8).
Samples were collected from the outflow after every 0.05 pH-units, separated into cell
pellets and supernatants and stored at -80 or -20 °C, respectively, until further analyses.
Details of culture conditions are provided in Publication II.

Co-metabolism of dietary fibres and mucins was studied in the supplementary
Manuscript by batch cultivations in an isothermal microcalorimeter (TAM IV, TA
Instruments). The cultures were grown in anaerobic conditions in sterile hermetically
sealed glass vials (Figure 2). The samples were collected after 72h of incubation,
separated into cell pellets and supernatants and stored at -80 and -20 °C, respectively,
until further analyses.

Manuscript ¢ 16S rRNA sequencing
e metaproteome

¢ organic acids

® amino acids and amines
® gases

e glycan analyses

o flow cytometry

® scanning microscopy

* metabolic modelling

Figure 2. Scheme of batch cultivations, done in an isothermal microcalorimeter using hermetically
sealed sterile glass vials. The medium in each vial was supplemented with the selected dietary fibre
and/or mucin. PCM — porcine colonic mucin, PecA — apple pectin, Xyl — xylan.

An in-house prepared defined growth medium (pH = 7.2 + 0.1) was used in all
cultivations (see Publications I-Il and Manuscript for the medium composition).
The medium was supplemented with 2.5 g/L of the chosen dietary fibre and/or mucin,
depending on the study (Table 1). The porcine colonic mucin (PCM), used in Manuscript
was in-house extracted from flushed porcine colons, acquired from a local butcher
(Saaremaa Meat Factory).

Table 1. List of substrates used in the Publications I-Il and the Manuscript.

Publication | Cultivation Substrate Supplier
method
P1 Chemostat, Beechwood xylan (Xyl) Sigma-Aldrich (USA)
A-stat,
De-stat
P1 Chemostat, Apple pectin (PecA) Sigma-Aldrich (USA)
A-stat,
De-stat
P2 D-stat Apple pectin (PecA) Sigma-Aldrich (USA)
Manuscript | Batch Arabinogalactan (AG) Sigma-Aldrich (USA)
Manuscript | Batch Amylopectin (AP) Sigma-Aldrich (USA)
Manuscript | Batch B-glucan (B-gluc) UNDERSUN
BIOMEDTECH (China)
Manuscript | Batch K-carrageenan (Car) Sigma-Aldrich (USA)
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Manuscript | Batch Furcellaran (Fur) Est-Agar AS (Estonia)

Manuscript | Batch Galactooligosaccharides Friesland Campina (The
(GOS) Netherlands)

Manuscript | Batch Dahlia inulin (InuD) Sigma-Aldrich (USA)

Manuscript | Batch High-performance inulin Beneo Orafti (Belgium)
(INUHP)

Manuscript | Batch High-soluble inulin (InuHSI) Beneo Orafti (Belgium)

Manuscript | Batch Apple pectin (PecA) Sigma-Aldrich (USA)

Manuscript | Batch Citrus pectin (PecC) Sigma-Aldrich (USA)

Manuscript | Batch Psyllium (Psy) Caremoli (Italy)

Manuscript | Batch Xylooligosaccharides (XOS) Anhui Elite Ind Co

(China)

Manuscript | Batch Beechwood xylan (Xyl) Sigma-Aldrich (USA)

Manuscript | Batch Porcine gastric mucin, Type Il | Sigma-Aldrich (USA)
(PGM)

Manuscript | Batch Porcine colonic mucin (PCM) | In-house

All cultures in Publications I-Il and Manuscript were inoculated with aliquots of the
same microbial consortium prepared from pooled faecal samples from seven healthy
adult donors. This strategy allowed us to overcome the interindividual differences in
community while enabling to draw conclusions based on the studied parameter and
compare the results of each study. The collection and handling of faecal samples was
approved by the Tallinn Medical Research Ethics Committee, Estonia (protocol No. 554).

3.2 DNA extraction, sequencing and bioinformatics

DNA was extracted from the cell pellets using PureLink Microbiome DNA extraction kit
(Thermo Fisher Scientific). The amplicons of Publication | were sequenced using Illumina
MiSeq 2 x 150 v2 platform in Estonian Genome Centre, University of Tartu, Estonia.
The sequencing libraries of Publication Il and Manuscript were prepared in-house with
Nextera XT Index Kit (Illumina) and the pooled libraries were sequenced using lllumina
iSeq 100 platform and il reagent kit.

The DNA sequence data was analysed with BION-meta (www.box.com/bion).
The consensus reads were aligned to the SILVA reference 16S rDNA database v123
(Publications | and Il) or v138 (Manuscript). The relative data of bacterial abundances
from 16S rRNA sequencing was converted into quantitative values (X;, g/L) using formula:

X,: = Xt - A,:
where i is the bacterial taxon, X: is the dry weight of the total biomass (g/I) and A; is the
relative abundance of taxon i in the sample.

3.3 Analysis of microbial metabolites

The culture supernatants were purified using 3 kDa cut-off filters (Amicon® Ultra 0.5 Filters,
Merck). The concentrations of organic acids were measured by high-performance liquid
chromatography (HPLC; Alliance 2795 system, Waters) equipped with Aminex HPX-87H
column (1,300 x 7.8 mm, 9 um particle size; BioRad). Refractive index (RI; model 2414,
Waters) and UV (210 nm; model 2487, Waters) detectors were used for quantification.
The chromatographic data were processed with Empower software (Waters).
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Amines and free amino acids were determined with ultra-performance liquid
chromatography (UPLC; Acquity, Waters). The standards and samples were derivatised
using AccQ:-Tag™ Ultra Derivatization Kit (Waters) and loaded onto AccQ:Tag Ultra RP
column (2.1x100 mm, 1.7 um particle size, 130 A pore size; Waters). Photodiode array
detector (PDA; 260 nm) was used for quantification. The data were processed with
Empower 2 software (Waters).

The gas composition was analysed using gas chromatography (Agilent 490 MicroGC
Biogas Analyzer, Agilent 269 Technologies Ltd.). CP-Molsieve 5A and CP-PoraPLOT U
capillary columns and a thermal conductivity detector (TCD) were used for separation
and quantification of gases. The gas volume of bioreactors in Publications | and Il were
recorded with MilliGascounter (Ritter).

3.4 Metaproteomics

The microbial cell pellets were dissolved in 60 pl of lysis buffer, heated at 95 °C for 5
minutes and ultrasonicated. Heating and sonication were repeated twice before
centrifugation at 14,000 g for 5 min. The cell lysates (30 ul) were digested with LysC and
trypsin using 30 kDa cut-off filters (NanoSep, Pall Life Sciences) according to Filter Aided
Sample Preparation (FASP) protocol (Wisniewski et al. 2009). The peptides were acidified
with trifluoroacetic acid (TFA) to a final concentration of 0.5 % and 15 ug of peptides
were cleaned and stored on C18-StageTip filters (Rappsilber, Mann, and Ishihama 2007)
at -20 °C until analysis.

The peptides were analysed in triplicates with an EASY-nLC 1000 system (Thermo
Fisher Scientific) connected to a Q-Exactive HF hybrid quadrupole-Orbitrap mass
spectrometer (Thermo Fisher Scientific) through a nanoelectrospray ion source.
The peptideds were separated with an in-house packed column (150 x 0.075 mm; New
Objective, Woburn; Reprosil-Pur C18-AQ 3 um particles; Dr Maisch). Full mass spectra
were acquired over a mass range 400-1600 m/z with a resolution of 60,000 (m/z 200)
after accumulation of ions to a 3e6 target value based on predictive AGC from the
previous full scan. Twelve most intense peaks with a charge state 22 were fragmented in
the HCD collision cell with normalized collision energy of 27%, and tandem mass spectra
were acquired in the Orbitrap mass analyzer with resolution of 15,000 and AGC target
value of 1e5. The dynamic exclusion was 30 s and the maximum allowed ion accumulation
times were 20 ms for full MS scans and 50 ms for tandem MS.

A custom database was constructed for the metaproteomic searches (see Manuscript).
Protein sequences for each taxon in the custom database were downloaded from
UniProt database (2021.01.14, uniprot.org), reference proteomes preferred where
possible. The final custom database contained 291 bacterial as well as pig and human
proteomes and was used for the final analysis of MS/MS spectra with MaxQuant (version
1.4) (Cox and Mann 2008).

3.5 Analysis of carbohydrate metabolism

All  identified proteins were annotated for CAZymes using dbCAN
(http://bcb.unl.edu/dbCAN2/blast.php). An automatic CAZyme annotation was carried
out with three bioinformatic tools: HMMER, DIAMOND and Hotpep.
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3.6 Mucin analyses

The protein composition of porcine gastric and colonic mucins (PGM and PCM,
respectively) was analysed with MS system as described for metaproteomics. The raw
MS/MS spectra were searched with MaxQuant (version 1.6.11.0) (Cox and Mann 2008)
against pig database downloaded from UniProt (2020.09.12).

Porcine gastric and colonic mucins were separated on composite agarose-
polyacrylamide (AgPAGE) gel, prepared according to the protocol of Schulz et al.
(Schulz, Packer, and Karlsson 2002) and stained with Alcian blue.

The O-glycans of the porcine mucins were separated on an in-house packed column
(10 cm x 250 um, 5 um porous graphite particles; Hypercarb, Thermo-Hypersil) and
analysed by LC-ESI/MS (Thermo Electron).

3.7 Spheroid culture

The spheroid cultures were generated from distal colon crypts isolated from transgenic
mice carrying mCherry-tagged human MUC2 (RedMUC2%) (G. M. H. Birchenough et al.
2016; Miyoshi and Stappenbeck 2013) and used at passage numbers 11-16 for all assays.
A wild-type (C57BL/6N; Taconic) mouse distal colon spheroid line was maintained
simultaneously and used at passage numbers 15-20 as a negative control in all assays.
The spheroid maintaining conditions and medium are described in more detail in
Manuscript.

All animal work was approved by the Swedish Laboratory Animal Ethic Committee in
Gothenburg, Sweden (ethical permits 2285-19, 3006-20) and conducted following the
guidelines of Swedish animal welfare legislation.

3.8 Flow cytometry

The effect of microbial metabolites on the intestinal cells was studied by treating the
colonic spheroids with culture supernatants and analysing the cells with the flow
cytometer (Beckman Coulter Life Sciences). The assay setup and analysis are described
in more detail in Manuscript.

3.9 Construction of metabolic networks and Flux Balance Analysis

The 100 most abundant taxa were divided into eight groups based on similar metabolism.
Combined metabolic networks for each group were built based on information from
public databases and combined to create a consortium type network. The relative
abundances of different species in consortia were used to calculate stoichiometric
coefficients. The final consortia metabolic network consisted of 2774 metabolites and
3752 reactions.

The Flux Balance Analysis (FBA) model was generated in Wolfram Mathematica
(version 8.01) using in-house software built in MatLab (Orth, Thiele, and Palsson 2010).
The FBA calculations were performed with an increasing automatic error step of £ 1% to
input fluxes until a feasible solution was found.
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3.10 Sequence-based metabolism mapping from metaproteomics

The metabolism of faecal cultures in Manuscript was mapped using an in-house database
of bacterial metabolism. The DNA sequences for enzymes for key metabolic reactions
were selected from the database and BLASTed using a local NCBI blastx function.
The resulting amino acid sequences were then mapped to the peptides from the
metaproteomic analysis. The sum of matching peptides per taxon was considered as
protein copy number. The taxa were divided into similar metabolic groups as in the
metabolic networks of the Flux Balance Analysis.

27



4 Results and discussion

This dissertation is based on three publications and an additional manuscript (in
preparation) studying the growth space of microbiota and the enzymatic degradation
and co-metabolism of dietary fibres and mucin. The main results are presented as a
summary and divided into sections. Detailed discussions are found in Publications Il
and the Manuscript.

4.1 The growth space of gut bacteria

4.1.1 Dilution rate selectively enhances slow- or fast-growing bacteria
(Publication I)

Continuous cultures are powerful tools for in vitro microbiota studies. They allow precise
control over parameters such as substrate concentration, dilution rate and pH, making it
possible to mimic various physiological conditions. Gut transit time is an important
parameter that determines the specific growth rate of microbes in the gut and it has
been shown that slow or fast transit time results in different microbiota. Hence,
continuous culture approach was chosen to get more insight into the growth and
metabolism of microbiota. The dilution rate of continuous culture imitates gut transit
rate and is directly related to cell specific growth rate by controlling the availability of the
substrate. The effect of dilution rate on the microbial community composition and
metabolism was studied with a series of changestat cultivations. The dilution rate was
either gradually increased from 0.05 - 0.2 1/h (A-stat) or decreased from 0.2 - 0.05 1/h
(De-stat) (Figure 1). The growth medium was supplemented with either apple pectin of
beechwood xylan as the dietary fibre source and porcine gastric mucin as the O-glycan
source (Table 1).

The dilution rate had a significant modulatory effect on the microbial composition.
The growth of mucolytic Akkermansia muciniphila was significantly enhanced by lower
dilution rate (Figure 3). In contrast, taxa such as Bifidobacterium, Faecalibacterium sp.
and a group of Lachnospiraceae were significantly increased at Dnigh. These results agree
with previous in vivo studies where the genera Akkermansia and Ruminococcus were
found to be more prevalent in people with slow colonic transit, while Lachnospiraceae
and Bifidobacterium correlate positively with high transit rate (Roager et al. 2016;
Vandeputte et al. 2016; K. Adamberg and Adamberg 2018).The genus Bacteroides
remained the prevailing taxon in all cultures at all dilution rates, demonstrating its key
role in the dietary fibre degradation. Some taxa were selectively enriched by a specific
substrate, especially Ruminococcaceae group UCG-013 which was one of the most
abundant taxa on pectin but was never detected in the xylan-containing medium.

The production of acetate was highly substrate-specific, with almost twice as much
acetate produced from pectin than from xylan (Figure 4). This is likely due to the
methylated and acetylated backbone of pectin which is easily converted into acetate and
carbon dioxide. As acetate made up nearly two thirds of all fermentation products at all
dilution rates, it meant that the carbon balance (Csubstrates - Cproducts) Was higher in
xylan-containing medium. The formation of other metabolites, especially propionate and
CO2, was strongly dilution rate-dependent. The concentrations of propionate and CO2
were significantly higher at Diow, positively correlating with the increased abundance of
propiogenic A. muciniphila at the same conditions. The anaerobic reductive TCA cycle
decarboxylation of succinate into propionate and CO: is beneficial as means to spend
excess NADH. Notably more CO: formed from pectin than from xylan. Interestingly,
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although the abundances of butyrate producers (Faecalibacterium sp. and
Lachnospiraceae) grew along with the increasing dilution rate, the concentrations of
butyrate remained stable, indicating that other metabolites were produced instead
(Figure 3 and Figure 4). These results establish the key role of dilution rate in the
development of microbial community and its metabolism.
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Figure 3. Bacterial taxa enriched on apple pectin (red) and xylan (blue) during A-stat (light colour)
and De-stat (dark colour) cultivations. Samples were divided into groups (D < 0.07 and D > 0.17) for
which mean values and standard deviations were calculated. Statistical significance was evaluated
with a single parametric t-test with Benjamini-Hochberg correction and differences in groups were
considered significant when p < 0.05. D - dilution rate (1/h).
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Figure 4. Fermentation product yields per carbohydrate consumed (mol/mol) on apple pectin (red)
and xylan (blue) during A-stat (light colour) and De-stat (dark colour). Samples were divided into
groups (D < 0.07 and D > 0.17) for which mean values and standard deviations were calculated.
Statistical significance was evaluated with a single parametric t-test with Benjamini-Hochberg
correction and differences in groups were considered significant when p < 0.05. D —dilution rate (1/h).

4.1.2 The pH and the dilution rate induce changes in the dynamics of mucus-
degrading species (Publication Il)

The pH of the gastrointestinal tract varies spatially and is highly dependent on the
individual’s dietary habits and health. However, the data on the influence of pH on the
development and metabolism of colonic microbiota are scarce. The combined effect of
pH and dilution rate on the composition and metabolism of faecal microbiota was
studied with changestat cultures. The pH was either smoothly increased from 7.0 - 8.0
or decreased from 7.0 - 6.0 (Figure 1). The cultivations were repeated at high and low
dilution rates (Dhigh = 0.2 1/h, Diow = 0.05 1/h). Apple pectin was used as a source of dietary
fibre and porcine gastric mucin as a source of mucin-type glycans (Table 1).
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The most abundant taxon at both dilution rates and the whole pH range was
Bacteroides ovatus (combining B. ovatus, B. thetaiotaomicron and B. xylanisolvens which
could not be differentiated with the chosen sequencing method) (Figure 5). This is in line
with the results from Publication |, showing central role of Bacteroides in dietary fibre
degradation. Yet, some Bacteroides species were sensitive to pH, with B. caccae and
B. vulgatus growing to higher abundance at lower pH, while B. cellulosilyticus and
B. uniformis preferred higher pH (Figure 5). The concentrations of acetate, one of the
main metabolites of Bacteroides, remained stable throughout the tested pH range
(Figure 6). These results highlight that the colonic pH could be a crucial factor in
determining the viability of various Bacteroides species in the gut, which in turn is
important for maintaining colonic homeostasis and health due to their primary role in
dietary fibre degradation.
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Figure 5. The dynamic changes in bacterial abundances (log scale) between pH 6.0 and 8.0 at dilution
rates Djow = 0.05 1/h (dark blue) and Dhign = 0.2 1/h (light blue). Dark and light pink dots indicate the
steady state conditions at pH 7.0, at Diow and D, respectively. Samples were divided into groups (pH
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Extending the results from Publication |, A. muciniphila was among the most abundant
taxa at Diow at the whole pH range (Figure 5). However, a surprising effect was seen at
Dhigh where the growth was significantly pH-dependent. A. muciniphila was not able to
compete and was washed out of the consortium at pH <6.5 (Dnigh) but grew into elevated
abundance at pH <7.5. The other slow-growing mucolytic taxon, Ruminococcaceae
UCG-013 group, was also more pH-sensitive at Dnign, While remaining one of the most
abundant species at Diww. In contrast, mucolytic Lachnoclostridium torques and
Bacteroides caccae had stable growths throughout the whole pH range at Dhigh, whereas
their growth was significantly affected by the pH at Diow. Lachnospira pectinoschiza was
among the most abundant species at Dnigh, Whereas it remained undetected at Diow.
Moreover, Lachnospiraceae unclassified preferred Dnigh, while Ruminococcaceae
unclassified grew into higher abundance at Diow. Interestingly, both the abundance of
commensal mucolytic Faecalibacterium sp. and the concentration of its main metabolite,
butyrate, significantly decreased at pH <7.5 (Figure 5 and Figure 6). The decrease of
butyrogenic species at higher pH agrees with previous studies showing a similar effect
(Chung et al. 2016; Reichardt et al. 2018). Butyrate is used by the epithelial cells to create
oxygen gradient in the intestinal crypts which is required for maintaining homeostasis
(Allaire et al. 2018). The concentrations of propionate followed the abundances of
propiogenic A. muciniphila, Ruminococcaceae UCG-013 and Bacteroides ovatus (Figure 5
and Figure 6). Propionate has been shown to promote epithelial turnover via enhancing
cell speed (Bilotta et al. 2021). These pH- and dilution rate-sensitive shifts in the
mucolytic species and their metabolites are likely to have an immense role on the
epithelium and the mucus layer. Changes in the mucus composition and penetrability are
heavily linked with diseases such as IBD and obesity (Johansson et al. 2014; Schirmer
et al. 2018; Schroeder et al. 2020; Coleman and Haller 2021). Thereby the changes in
mucin degradation and metabolism have important health concerns and warrant further
studies.

4.1.3 Complex dietary fibres support the development of highly diverse
consortia (Manuscript)

The dilution rate and pH were shown to be powerful modulators of the gut microbiota
composition and metabolism. Both parameters are heavily influenced by the host diet,
especially the consumption of dietary fibres. Fibres help to bind water to the chyme,
thereby affecting the gut transit rate. Moreover, the degradation of fibres by microbiota
produces metabolites such as short-chain fatty acids and amines which change the
colonic pH. Different fibres have been shown to modulate the microbiota composition
on species level. In addition, the more complex-structured fibres increase the gut
microbiota diversity via crosstalk that is needed to break down complex glycans. A panel
of 14 dietary fibres and oligosaccharides was used to study in vitro their potential to
increase microbiota diversity (Table 1). The batch cultivations were carried out in a
microcalorimeter system suitable for high-throughput screening (Figure 2).

The complexity of the fibre determined the growth of the consortia (Figure 7).
Oligosaccharides and fibres with simple linear structure were fermented rapidly in single
step, whereas the fibres with more complex bonds were degraded slowly in multiple
phases (Figure 7a). The slow multiphasic degradation reflects the need for specialist taxa
and/or crosstalk between the members of the microbiota. Indeed, the sequencing data
revealed the communities grown on simple glycans to be less diverse, consisting mainly
of fast-growing taxa such as Bifidobacterium (Figure 7b). As the complexity of fibre
increased, so did the diversity of consortia, especially the amounts of various Bacteroides

31



species. The genus Bacteroides has been shown to be especially adapted to dietary fibre
fermentation due to their large genomes that encode a variety of enzymes for
polysaccharide degradation (Drula et al. 2022). With every fibre, the addition of porcine
gastric mucin (PGM) prolonged the degradation and increased the microbiota diversity
due to the need for additional enzymes for the breakdown of complex O-glycans (Figure
7). Interestingly, with poorly degradable viscous psyllium and the algal fibres furcellaran
and k-carrageenan, the addition of PGM resulted in a community similar to that of sole
PGM (Figure 7b, Publication IIl Figures S1 and S2). This shows that in the absence of
fermentable fibre, the community develops to specialize on host O-glycan utilization.

a [cleS] Fur InuHP
200 GOS 200 Fur 200 = InuHP
af e GOS+PGM[ | eeeeeee FurePGM| | eesssees INUHP+PGM
150 150 = s = |[nUHP+PCM
100 100
50 50 Pt
.'..‘0' o (= .'~.
; 0 M—-—n—_ of & ¢
3 0 12 24 36 0 12 24 36
o
£ PecA Xyl
200 B-gluc 200 PecA 200 —_— Xyl
........ B-gluc+PGM sammmmns PecA+PGM memmneee XyHPGM
150 — = = B-gluc+tPCM| 150 — - = PecA+PCM| 150 = = = XyHPCM
time, h
b [Gos ][ Fur_][inurP |[B=gluc |[PecA |[ Xy ] B Escherichia/Shigella
Eggerthella
PGM - + - B I S @ @ M Bifidobacterium
PCM - . - . & Q Akkermansia
100 [ Collinsella
: . B Bacteroides
Catenibacterium
8075 M Faecalibacterium
S Streptococcus
g [ Solobacterium
2 0.50 Ruminococcus torques group
° Parabacteroides
2 028 M Eisenbergiella
g : = F 5 Lachnospiraceae
Olsenella
0.00 == .-- ..- -I si= 0 I | I Roseburia
W Other

Figure 7. Fermentation of dietary fibres and oligosaccharides by faecal microbiota. a, Heat
evolution of selected substrate fermentation. Solid line represents average microbial growth curve
on the selected poly- or oligosaccharide + 95% Cl, dotted line represents average microbial growth
curve on the selected poly- or oligosaccharide + mucin + 95% Cl. n=2-7. b, Community composition
on the selected substrates based on 16S rRNA sequencing. Average relative abundances of the top
17 genera. n=2-7. GOS — galactooligosaccharides, Fur — furcellaran, InuHP — high-performance
inulin, B-gluc — 8-glucan, PecA — apple pectin, Xyl — xylan, PGM — porcine gastric mucin, PCM — porcine
colonic mucin, Med — growth medium control.
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The initial screening of the dietary fibre panel was done with a commercially available
porcine gastric mucin as the O-glycan source. However, it is known that the mucin type
varies along the gastrointestinal tract, with MUC5AC and MUC2 as the main mucins of
the stomach and colon, respectively (Figure 8). On top of that, the two mucins share only
8% of their glycans, are differentially modified and our analysis suggests PGM to be
severely hydrolysed (Figure 8, Publication Ill Figure S3). These differences are likely to
significantly affect which bacteria can metabolise the glycans and thereby influence the
consortia composition. PCM was in-house produced as a source of colonic O-glycans.
The PCM was used in combination with three dietary fibres chosen for in-depth study of
fibre and mucin co-fermentation: apple pectin, xylan and B-glucan (Figure 7). The fibres
were chosen based on their distinctly different structures which require specific enzymes
encoded in different bacteria for the degradation. A known prebiotic high-performance
inulin was included as an easily degradable control.
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Figure 8. Analysis of PGM and PCM composition. a, Gel-forming mucins detected in different mucin
samples by mass-spectrometry. b, The number of different glycans identified from PGM and
PCM. MUC2 — Mucin-2, MUC5AC — Mucin-5AC, MUC6 — Mucin-6, PCM — porcine colonic mucin,
PGM — porcine gastric mucin.

Compared to fibre+PGM, the PCM in combination with fibre enhanced the growth of
gut commensals Bacteroides and Faecalibacterium and decreased the abundances of an
opportunistic pathogen Solobacterium and a pathobiont Collinsella (Figure 7). Surprisingly,
A. muciniphila, which did not grow on PGM or on any of its combinations with fibres,
dominated the culture grown on PCM and was highly abundant on the combination of
xylan+PCM (Figure 7). The most abundant taxa on inulin were Catenibacterium sp. and
Bifidobacterium (Publication Il Figure S5). The high abundances of Collinsella,
Streptococcus and Solobacterium were characteristic to p-glucan fermentation.
The fermentation of complex fibres pectin and xylan in combination with PCM boosted
the growth of various Bacteroides species. Pectin selectively increased the abundance
of B. thetaiotaomicron and B. vulgatus, while xylan enhanced the growth of B. vulgatus
and unclassified Bacteroides (comprised of B. acidifaciens, B. finegoldii, B. ovatus,
B. xylanisolvens and others which are inseparable with the used sequencing method)
(Figure 9). Furthermore, known mucolytic Bacteroides species, such as B. fragilis and
B. caccae abundances increased on fibre+PCM. These results further confirm Bacteroides
central role in complex polysaccharide degradation. Interestingly, Faecalibacterium

33



prausnitzii and Parabacteroides merdae were able to grow only if both the fibre and
mucin were available (Figure 9). For some species, such as Ruminococcus torques and
Eisenbergiella tayi, the abundance was driven by PCM in combination with complex
fibres pectin and xylan. R. torques is a known mucolytic species, while little is known of
the butyrogenic E. tayi (Tailford, Crost, et al. 2015; Bernard et al. 2017). However,
its concomitant growth with A. muciniphila is interesting and warrants a further
investigation. Together, these results show how the more complex glycans induce the
diversity of gut microbiota, especially by enhancing the growth of Bacteroides.
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Figure 9. Boxplots showing changes in microbial numbers (mg/l) grown on the selected substrates.
Colors indicate the choice of substrate, empty boxes represent samples from cultivation of fibre,
filled boxes represent samples from cultivation of fibre+PCM or sole PCM. All replicates shown
(two-tailed paired t-test, *p < 0.05). B-gluc — 8-glucan, InuHP — high-performance inulin, PecA — apple
pectin, Xyl — xylan, PCM — porcine colonic mucin.

Systematic studies where a standardised microbial community is grown under various
physiologically relevant conditions reveal the microbiota growth space. This information
is crucial to make population-wide claims on how the microbiota could react to dietary
interventions such as pre- and probiotics.

4.2 Microbiota co-metabolism of dietary fibres and mucins

4.2.1 The degradation of complex dietary fibres and mucin requires enzymes
from several CAZyme families (Publication Ill and Manuscript)

The degradation of dietary fibres by gut bacteria has been studied previously and the
information has been gathered into public databases which are continuously updated
(Drula et al. 2022; Barbeyron et al. 2016). However, the gastrointestinal tract is covered
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with another glycan source, the mucin. Some members of the microbiota can degrade
mucin. Specific species and mucin degradation patterns are associated with diseases
such as IBD and obesity. Yet, due to the unavailability of a suitable substrate the studies
of colonic mucin degradation are scarce. It has remained unclear how the utilization of
colonic mucin glycans affects the degradation of dietary fibres by the human microbiota.
The co-metabolism of PCM in combination with inulin, B-glucan, pectin and xylan by
faecal microbiota was studied by metaproteomics (Figure 10).
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Figure 10. The CAZymes detected after community growth on selected substrates. Enzymes
grouped by CAZyme families are shown as intensity of the protein level. For each protein the
respective bacterial genus is displayed colour coded on the left side. Three independent replicates
are shown. For accession numbers and full data see Publication Ill. PCM — porcine colonic mucin,
B-gluc — 8-glucan, InuHP — high-performance inulin, PecA — apple pectin, Xyl — xylan.
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The metaproteomic analysis with custom database detected over 21,000 protein
groups, out of which ca 3% were directly related to carbohydrate metabolism. Inulin was
primarily degraded by Bifidobacterium, Bacteroides and Catenibacterium species,
consistent with community composition analysis results (Publication Il Figure S5). The
glycoside hydrolases used for inulin degradation belonged to GH families 32 and 91 which
have been previously reported as fructose-active enzymes (Drula et al. 2022) (Figure 10).

B-glucan degradation was carried out by enzymes from GH families 1, 3 and 94, which
cleave the B-glucose linkages (Figure 10). Although Collinsella and Streptococcus were
among the most abundant taxa on B-glucan, only a few CAZymes were detected from
them: four from Collinsella and one from Streptococcus. However, three of these enzymes
were highly expressed on B-glucan, suggesting their central role in B-glucan degradation
(Figure 10).

The degradation of pectin relied heavily on Bacteroides species (Figure 10). Pectin
is a complex-structured dietary fibre consisting of three main polysaccharides:
homogalacturonan and rhamnogalacturonan (RG) | and II. Several enzymes were
detected which are known to be associated specifically with the degradation of RG I:
B-galactosidases (GH2), polygalacturonases (GH28), arabinofuranosidases (GH51 and
GH43), unsaturated rhamnogalacturonyl hydrolases (GH105), rhamnosidases (GH106)
and lyases of families 1, 9, 10 and 11. RG Il is one of the most complex polysaccharides
in nature and thus required additional enzymes for its breakdown, such as sialidases
(GH33), aceric acid hydrolases (GH127), rhamnosidases (GH78) and a-galactosidases
(GH95) (Figure 10). Some of the detected enzymes have been previously established as
critical for the degradation of pectin, namely a PL1 enzyme (Ndeh et al. 2017) and an
enzyme from PL27 enzyme (Munoz-Munoz et al. 2017).

Similar to pectin, the degradation of xylan was associated mainly with Bacteroides
species (Figure 10). The degradation was mainly carried out by PB-xylanases, B-
glucuronidases, arabinofuranosidases and B-xylosidases from GH families 10, 30, 43, 51,
67, 98, 115 and 120, several of which are found in previously characterised B. ovatus xylan
polysaccharide utilization loci (Rogowski et al. 2015). Interestingly, on both pectin and
xylan, the number of CAZymes from B. vulgatus was higher in the absence of mucin.

The degradation of sole PCM was mainly carried out by A. muciniphila, positively
correlating with its high abundance in the culture (Figure 7 and Figure 10). The addition of
fibres to PCM increased the abundances and the number of CAZymes detected from
mucolytic Bacteroides species, such as B. caccae, B. fragilis and B. thetaiotaomicron. Some
of the detected enzymes [Amuc 1835 (GH33), Amuc 1120 (GH95), Amuc 0290 (GH2) and
Amuc 1220 (GH89)] have been shown to be crucial for the growth of A. muciniphila on PGM
(Davey et al. 2022). On the other hand, the endo-active O-glycanases from GH16 (Crouch
et al. 2020) were only detected on sole PCM without fibre. Additionally, mucin O-glycan
degradation increased the expression of [-galactosidases from GH2, (-N-
acetylglucosaminidases from GH20 and GH84, a-fucosidases from GH29 and GH95, a-N-
acetylglucosaminidases from GH89 and sialidases from GH33. Moreover, multiple
sulfatases from A. muciniphila, B. fragilis and B. ovatus were detected, implying their
important role in the removal of the protective sulphate groups from mucin
O-glycans. The information about dietary fibre co-degradation with colonic mucin by
complex faecal microbiota is crucial to elucidate the potential prebiotic effect of the fibre.
The metaproteome-level analysis gives insight how various bacteria and their metabolism
is affected by the dietary fibre supplement. Moreover, we identified several new,
potentially substrate-specific CAZymes.
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4.2.2 Akkermansia muciniphila degrades the mucin protein in co-culture
(Manuscript)

The bacterial metabolism was evaluated by measuring the metabolites from spent
medium and by mapping the metaproteome data to metabolic pathways. The culture
grown on sole PCM had the highest concentration of propionate and the highest number
of propionate synthesis enzymes, which is characteristic to A. muciniphila who
dominated this community (Figure 7 and Figure 11).
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Figure 11. Metabolites from fermentation of selected substrates. a, Boxplots representing the
concentrations of selected metabolites (mmol/gDW) and pH. All replicates shown (two-tailed
paired t-test, *p < 0.05). b, Average (+SEM) enzyme counts for reactions related to specific
metabolite synthesis. n=3. ¢, Average (+SEM) enzyme counts per bacterial group for reactions
related to specific metabolite synthesis. n=3. B-gluc — 8-glucan, InuHP — high-performance inulin,
PecA — apple pectin, Xyl — xylan, PCM — porcine colonic mucin.

The culture was also defined by the most effective conversion of succinate into CO2
and propionate. A. muciniphila has been shown to produce succinate via the reductive
TCA cycle (Ottman et al. 2017). However, succinate can also be produced from GABA.
GABA is formed via the decarboxylation of glutamate (Glu), catalysed by Glu
decarboxylase. GABA itself was not detected from the spent medium but significant
amounts of Glu decarboxylase from A. muciniphila were detected from the culture of
sole PCM, suggesting that GABA was fully converted into succinate, followed by
conversion into propionate and CO: (Figure 11). Moreover, when acetyl-CoA — a necessary
intermediate metabolite —is produced using pyruvate-formate lyase in combination with
formate production, no NADH is released, which is needed for propionate synthesis.
The metaproteomic analysis showed A. muciniphila to overcome this obstacle by
primarily using pyruvate:ferredoxin oxidoreductase for the production of acetyl-CoA
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(Publication Il Figure S7). The latter pathway does not produce formate, agreeing with
its negligible concentration on PCM (Publication Il Figure 3).

Minor amounts of Glu were in the growth medium, but more could have been made
from proline (Pro) from MUC2. Indeed, Pro dehydrogenase was detected from
A. muciniphila on sole PCM (Figure 11). Likewise, increased amounts of threonine (Thr)
dehydratase were detected from sole PCM fermentation, indicating that the culture used
Thr for propionate production (Figure 11). As the backbone of MUC2 is made of repeating
Pro-Thr-Ser units, these data suggest that the bacteria grown on sole PCM, especially
A. muciniphila, were able to metabolise the protein backbone of MUC2. This was further
indicated by the neutral pH of the culture (Figure 11a). The metabolism of glycans results
in the formation of short chain fatty acids which lower the pH of the growth environment.
However, if A. muciniphila was able to utilise the MUC2 protein, free peptides were
released in addition to ammonia from amino sugar metabolism (Ottman et al. 2017)
which would act as a buffer and explain the neutral pH of the culture. Together, these
results support the hypothesis of MUC2 backbone being degraded by A. muciniphila.
This agrees with some of the previous studies with A. muciniphila pure cultures that
suggest this bacterium to be able to cleave mucin proteins (Davey et al. 2022; Meng
et al. 2021; Trastoy et al. 2020). However, it is surprisingly in contrast to a study which
demonstrated A. muciniphila’s inability to grow on colonic mucin in pure culture
(Luis et al. 2021). This highlights the need to study microbiota as a bacterial community
where each bacterium’s behaviour is impacted by its crosstalk with the other members.

4.2.3 The metabolites from complex dietary fibre fermentation affect goblet
cell mucin production (Manuscript)

The SCFAs and amines formed during glycan catabolism are bioactive compounds which
affect the host in a multitude of ways. Their effect on the mucus production, however, is
poorly understood. Amines like cadaverine and putrescine can improve cell proliferation
and gut barrier function, whereas tyramine has been shown to be potentially toxic to the
cells (Nakamura et al. 2021; del Rio et al. 2018; Bekebrede et al. 2020). Butyrate with its
anti-inflammatory properties has been long considered as a host-beneficial compound,
but a study with mouse spheroids demonstrated butyrate’s inhibitory effect on colonic
stem cell proliferation (Kaiko et al. 2016). It seems that the most effective enhancement
of gut barrier function derives from a mixture of metabolites from a diverse microbiota
(Park et al. 2016; Dougherty et al. 2020; Bilotta et al. 2021). To see if the resulting
metabolites from complex dietary fibre and PCM fermentation exert any effect on
colonic goblet cells or mucus production, a spheroid model was used. Primary cells from
transgenic mice, carrying mCherry-tagged human MUC2 were grown into spheroids and
treated with the supernatants from fermentation of complex glycans. The fluorescent
cell count and intensity was compared to the control cells to evaluate the increase of
goblet cells and MUC2, respectively (Figure 12). The metabolites from fermentation of
pectin and xylan had a positive effect on both the number of goblet cells and their
intensity, suggesting an enhanced production of MUC2. This result is in line with the
previous studies, as both pectin and xylan induced the most diverse consortia with
mixed-acids fermentation. However, these are preliminary results from a very complex
system and further studies are needed to elucidate the molecular mechanisms behind
this potentially beneficial effect.
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Figure 12. The effect of microbial metabolites on murine colonic spheroids and mCherry-tagged
MUC2 production. Counts and signal intensity of mCherry-positive goblet cells as a result of treating
the spheroids with metabolites from fermentation of the selected substrates, measured by flow
cytometry and normalized against medium control. Average + SEM, n=3-4. B-gluc — 8-glucan, InuHP
— high-performance inulin, PecA — apple pectin, Xyl — xylan, PCM — porcine colonic mucin.

4.2.4 The downstream metabolism of complex dietary fibres (Manuscript)

The fermentation of complex dietary fibres pectin and xylan resulted in the most diverse
microbial consortia. We saw that the breakdown of these glycans required enzymes from
several different CAZyme families and the downstream metabolism resulted in mixed
acids production. Furthermore, these metabolites exerted a potentially beneficial effect
on the colonic goblet cells and MUC2 production. These properties make pectin and xylan
potential prebiotic compounds to improve gut health. However, to elucidate their
beneficial effects it is important to understand their metabolism by complex faecal
microbiota. The downstream metabolism of sugars from complex glycans was investigated
by metaproteomics. The bacteria from cultures of pectin, xylan and PCM were divided into
groups of similar metabolism (see Materials and Methods). The enzymes for carbohydrate
metabolism reactions were mapped to the bacterial groups and the metabolic pathways
for substrate degradation were constructed (Figure 13). In parallel, an FBA model was
constructed and used to validate the results.

Both methods confirmed A. muciniphila to be the most active taxon on PCM (Figure
13 and Figure 14). A. muciniphila consumed mostly GIcNAc, GalNAc and fucose to
produce propionate, CO2 and acetate. The addition of pectin to the medium caused a
change in the consortium. A. muciniphila was not able to compete with the bacteroides
and butyric (especially F. prausnitzii) groups who were the most active taxa on
pectin+PCM. The bacteroides group was also the main active taxa on xylan+PCM.
The Bacteroides can produce propionate and acetate, while butyrogenic species
synthesise butyrate. The high abundance and activity of these species on complex
glycans agrees with the metabolites analysis showing mixed acids fermentation.
Interestingly, on xylan+PCM A. muciniphila was able to grow into high abundance
(Figure 7b). This reflects in the xylan+PCM metabolism, where A. muciniphila participates
in several of the pathways and more propionate is produced compared to pectin+PCM
(Figure 11a and Figure 13). The metaproteome analysis together with FBA calculations
suggest pectin and xylan to be potential prebiotics which enhance the activities of
commensal Bacteroides species, F. prausnitzii, A. muciniphila in addition to increasing
the overall microbiota diversity.
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Figure 13. The degradation of glycans from dietary fibres and mucin based on the metaproteomic
analysis. n=3. Fuc — fucose, Rha — rhamnose, GalNAc — N-acetylgalactosamine, GIcNAc —
N-acetylglucosamine, Neu5Ac — N-acetylneuraminic acid, GalUr — galacturonic acid, GlcUr —
glucuronic acid, 1,2-PED — propane-1,2-diol, GlycP — glycerone phosphate, G6P — a-D-glucose-6-
phoshphate, F6P — 8-D-glucose-6-phosphate, F1,6P — B-D-fructose-1,6-bisphosphate, GAP —
D-glyceraldehyde-3-phosphate, 2D3D-Gluconate- 2-dedhydro-3-deoxy-D-gluconate, Ribulose5P —
D-ribulose-5-phosphate, Xyl5P — D-xylulose-5-phosphate, PEP — phosphoenolpyruvate, R5P —
D-ribose-5-phosphate, Glu — glutamate, GABA — y-aminobutyric acid, SuccinylCoA — succinyl-
coenzyme A, AcetylCoA — acetyl-coenzyme A, PriopionylCoA — propionyl-coenzyme A.
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Figure 14. The degradation of glycans from dietary fibres and mucin and cross-feeding between
bacterial groups based on Flux Balance Analysis. The bacteria were divided into 8 groups based on
their similar metabolism (see text). n=3. PecA — apple pectin, Xyl — xylan, PCM — porcine colonic

mucin.
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5 Conclusions

The gut microbiota plays an integral role in maintaining the human health. Modulating
the gut microbiota composition and metabolism through dietary intervention could be a
key to preventing or treating diseases such as IBD, obesity and colorectal cancer. Dietary
supplements in the form of pre- and probiotics have been on the market for years.
However, their health claims are poorly defined due to the complexity of host-microbiota
interactions and the high individual differences in microbiota composition. The study
presented in this dissertation aimed to systematically elucidate the microbiota growth
space under a range of physiologically relevant conditions. Furthermore, the study
explored the mechanisms of dietary fibre and mucin co-metabolism. All experiments
were done with the same standardised microbial community to bypass the individual
variations of faecal sample donors and to allow comparison of results between
experiments. The resulting datasets offer valuable insight into the growth and metabolism
of complex gut microbiota under various conditions.

The first aim of the study was to scan the gut microbiota growth space at dilution rates
and pH range that mimic the physiological conditions of the colon in health and disease.
The mucus-degrading bacteria were especially susceptible to changes in the dilution rate
and the pH. The in vitro dilution rate correlates with gut transit rate. Together with pH
these parameters are directly related to and manipulated by the host diet. Modifying
either of the parameters significantly altered the ratios of the known mucolytic bacteria
in the consortium. Moreover, these fluctuations in the species abundances were also
reflected in the metabolite profiles. Imbalances in the mucus degradation and renewal
are directly related to several diseases. Mucolytic bacteria have a crucial role in
preserving colonic homeostasis and the varying growth rates and metabolism of different
species affects their mucin degradation efficiency. Therefore, it is important to maintain
a balance in the species abundances. The confirming of this highly dynamic nature of
mucin degraders makes them an interesting target for future therapies aimed at
improving the mucus barrier function.

The next aims were to extract porcine colonic mucin, a unique substrate, and to use
it in the in vitro fermentations to determine the modulating potential of various
dietary fibres in the absence or presence of intestinal mucins. One strategy to avoid
mucus penetrability is to keep the mucus- and fibre-degrading species in balance.
The most straightforward way to do this is to maintain a diverse gut microbiota. We saw
the bacterial diversity to be extremely dependent on the choice of substrate.
The simple-structured fibres and oligosaccharides did not need specialist taxa for
degradation. This benefitted the fast-growing saccharolytic species who outgrew other
bacteria and dominated the consortia. However, the breakdown of more complex fibres
required taxa with specific enzymatic capabilities. This increased the microbial diversity
and inter-species crosstalk. The growths of various Bacteroides species were especially
enhanced on complex glycans. This is likely due to the large genomes of the Bacteroides,
which encode many different CAZymes. Some very specific substrate preferences were
demonstrated, such as when Ruminococcaceae group UCG-013 became one of the most
abundant taxa on apple pectin, while it was not able to grow in the consortium in
xylan-supplemented medium. Specific modulatory effect was also demonstrated for
porcine gastric and colonic mucins. The differences in the structures and glycan
composition of these two mucins had a significant effect on selecting the composition of
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consortia grown on these substrates. Out of the tested substrates, the complex fibres
pectin and xylan induced the growth of the most diverse consortia.

The final experimental aim of the study was to apply metaproteomic analysis in
combination with targeted metabolomics to elucidate the degradation and co-metabolism
of dietary fibres and intestinal mucins. Additionally, a novel intestinal stem cell spheroid
model was used to study the potential effect of the microbial metabolites on goblet cells
and mucin production. The more diverse the microbial community, the more possibilities
for interactions between the bacteria there are, increasing the microbiota’s functional
capacity. We detected many of the glycan degradation enzymes which have been
previously described from pure cultures grown on the same dietary fibres as included in
this study. Furthermore, we identified some novel substrate-specific enzymes, hinting at
possible consortium-specific behaviour and/or crosstalk. For example, we showed how
Akkermansia muciniphila in the consortium was able to cleave the MUC2 protein. This
was a surprising result, as previous studies have shown A. muciniphila pure cultures to
be unable to grow on colonic mucins. The metaproteome-level analysis together with
mathematical modelling confirmed the Bacteroides to be the most active genus in
degradation of complex fibres pectin and xylan. Interestingly, while pectin simultaneously
enhanced the growth of various butyrate producers such as Faecalibacterium prausnitzii,
xylan increased the abundances of A. muciniphila. Both species are considered as
probiotics. These results demonstrate that the complex polysaccharides could be used
to selectively modulate the microbiota in a host-beneficial way. The diverse consortia
grown on pectin and xylan produced mixed acids and amines which had a positive effect
on the growth of colonic goblet cells and on MUC2 production. These aspects make
pectin and xylan promising candidates for prebiotics.

Lastly, the experimental work on mucin degradation was supported with a review on
the recent advances on characterization of mucin utilization enzymes of the bacteria.

The results of this dissertation provide valuable information on microbiota’s growth
and metabolism under a range of physiologically relevant conditions. We identified apple
pectin and xylan as potential candidates for prebiotics. Both dietary fibres have a complex
structure that requires specialist taxa and crosstalk for their breakdown. Similarly
important is the demonstration of the highly dynamic nature of the mucus degrading
species. As these bacteria have a major role in maintaining the gut mucus barrier
function, this information could be used for designing future therapies. The systematic
approach with standardised microbial community allows to interpret the results from
this study to a wider community.
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Abstract
Co-metabolism of mucins and dietary fibres by gut
microbiota

The gut microbiota is a crucial part of the host gastrointestinal system. It carries out vital
functions, such as degradation of indigestible complex dietary fibres from the diet.
The gut bacteria are adapted to utilising these substrates because of their large genomes
which encode various carbohydrate-active enzymes. Diet-derived fermentable
polysaccharides are the preferred carbon source for most gut bacteria. However, in the
absence or depletion of dietary fibres some bacteria can switch to other energy sources,
such as host-derived glycans like mucins. Mucins are large glycoproteins that are the
primary structural components of the epithelium-covering mucus layer. The mucus
lubricates the gastrointestinal tract and protects the epithelial cells from contact with
the bacteria. The mucus layer is constantly renewed by secretion of gel-like mucins by
goblet cells in the intestinal crypts. The degradation of mucins by select members of the
microbiota is part of the intestinal homeostasis and provides the host with energy and
bioactive compounds. Yet, when the gut microbial community becomes imbalanced, the
mucolytic taxa can overgrow the fibre-degrading species, leading to excess mucin
degradation. In this case the mucus barrier function gets impaired and the mucus
becomes penetrable to bacteria. When bacteria come into contact with the epithelium,
it can lead to inflammation and disease. Therefore, it is of utmost importance to maintain
a diverse gut microbiota where different taxa are in balance.

A way to support gut diversity is through dietary interventions such as consumption
of dietary fibres, either from food or as supplements. Several such prebiotics are already
on the market. However, their health claims are poorly defined due to the complexity
and large individual variances of the host-microbiota systems. Moreover, the studies on
dietary fibres utilisation by gut microbiota often neglect the presence of host glycans
such as mucins. The study presented in this dissertation aims to overcome these
obstacles by studying the mucin and dietary fibre co-metabolism systematically under
various physiologically relevant conditions. The microbial community was standardised
by pooling several faecal samples from healthy donors and using aliquots of the same
consortium as inoculums for every cultivation experiment in this study. This strategy
allows comparing the results between different experiments.

The microbiota growth space was studied in continuous and batch cultures. A range
of transit rates, pH values and substrates were scanned to elucidate their effect on
microbiota growth and metabolism. 16S rRNA sequencing, chromatography and mass
spectrometry were used to analyse the consortia composition and metabolism.
A spheroid model was used to assess substrates’ potential prebiotic effect to the host.
Finally, mathematical models were applied to validate the analytics.

All three studied parameters had significant microbiota modulating effects. Especially
susceptible to changes were the mucin degraders whose abundances varied greatly
under the range of tested conditions. This finding offers an interesting candidate for
future follow-up studies to find potential targets to improve the gut barrier function.
By manipulating the growth of different mucolytic species through diet, a desired
consortium could be achieved to either increase or decrease mucus degradation. On a
similar note, a surprising effect was demonstrated for mucin degrading Akkermansia
muciniphila. Previously it was shown that in pure cultures this bacterium is unable to
grow on porcine colonic mucins. However, this study showed it becoming the dominant
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species of coculture on porcine colonic mucin, utilising both the O-glycans and the mucin
protein. Additionally, the study demonstrates how the more complex-structured
polysaccharides increase the microbial diversity, especially the growth of various
Bacteroides species. The breakdown of these dietary fibres requires enzymes from
several different families and the downstream metabolism is carried out by multiple
bacterial groups. Finally, the work highlighted the suitability of a novel substrate, colonic
mucin, as co-substrate for microbiota growth studies.

Altogether, these results elucidate the growth and metabolism of complex microbiota
under conditions that mimic host physiological state in health and disease.
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Liihikokkuvote
Mutsiinide ja kiudainete kometabolism soolestiku
mikrobioota poolt

Soolestiku mikrobioota on oluline osa peremeesorganismi seedetraktist. Mikrobioota
tdidab eluks vajalikke funktsioone nagu toidus olevate seedumatute kiudainete
lagundamine. Soolestiku bakterid on selliste substraatide kasutamiseks adapteerunud
tanu nende suurtele genoomidele, mis kodeerivad erinevaid sisivesikute lagundamise
enstiime. Enamik soolestiku baktereid kasutavad siisiniku allikana eelistatult toidust
parit fermenteeritavaid poliisahhariide. Kuid kiudainete puudumisel véi otsa saamisel
suudavad moned bakterid lilituda GUmber ning kasutada teisi energiaallikaid, naiteks
peremehe poolt toodetud gliikaane nagu mutsiinid. Mutsiinid on suured gliikoproteiinid,
mis annavad epiteeliumi katvale limakihile tema struktuuri. See limakiht libestab
seedetrakti ja kaitseb epiteelrakke kokkupuute eest bakteritega. Soolestiku kriptides
asuvad karikarakud sekreteerivad jooksvalt geelitaolisi mutsiine, hoides niimoodi
limakihti pidevas uuendamises. Mutsiinide lagundamine valitud mikrobioota liikmete
poolt on osa soolestiku homoostaasist, varustades peremeest energia ja bioaktiivsete
tihenditega. Siiski, kui soole mikroobne kooslus ldheb tasakaalust valja, vdivad
mukoluitilised taksonid vétta voimu kiudaineid lagundavate liikide iile, millega kaasneb
leliigne mutsiini lagundamine. Sellisel juhul kannatab limakihi kaitsefunktsioon ja lima
vOib muutuda bakteritele ldbitavaks. Bakterite kontakt epiteeliumiga vGib viia pdletiku ja
haiguste tekkeni. SeetGttu on (limalt oluline sdilitada mitmekilgne soolestiku
mikrobioota, kus erinevad taksonid on omavahel tasakaalus.

Soolestiku mitmekesisust on vdimalik toetada ldbi toitumise, naiteks tarbides
kiudaineid kas toidust vGi toidulisanditena. Mitmed sellised prebiootikumid on juba turul,
kuid peremehe-mikrobioota slisteemid on keerulised ning suure individuaalse
erinevusega, mistottu on selliste toidulisandite tervisealaseid vditeid keeruline
defineerida. Lisaks sellele ei arvesta mikrobioota kiudainete tarbimise uuringud sageli
peremehe toodetud gliikaanide nagu mutsiinide olemasoluga. Selles vaitekirjas esitatud
uurimuse eesmargiks oli lahendada neid probleeme, uurides mutsiinide ja kiudainete
kometabolismi  sustemaatiliselt, imiteerides erinevaid flsioloogilisi tingimusi.
Mikroobikooslus standardiseeriti, segades kokku fekaaliproovid mitmelt doonorilt ning
kasutades sama koosluse alikvoote igas kultiveerimiskatses. Selline strateegia v8imaldab
vorrelda eksperimentide vahelisi tulemusi.

Mikrobioota kasvuruumi maaramiseks kasutati nii ldbivoolu kui annuskultuure.
Skaneeriti labikdigu kiiruste ja pH vahemikke ning erinevaid substraate et mdista nende
maoju mikrobioota kasvule ja metabolismile. 16S rRNA sekveneerimise, kromatograafia ja
massispektromeetria abil analtiUsiti koosluse koostist ja metabolismi. Sferoidmudeli abil
hinnati substraatide potentsiaalset prebiootilist efekti peremehele. Ldpetuseks
rakendati matemaatilisi mudeleid, et valideerida analidtilised tulemused.

K&ik kolm uuritud parameetrit avaldasid mikrobiootale olulist moduleerivat mdju.
Mutsiini lagundajad olid muutustele eriti vastuvétlikud ning nende osakaalud erinevates
tingimustes varieerusid oluliselt. See avastus pakub huvitava kandidaadi tulevastele
uuringutele, leidmaks potentsiaalseid sihtmarke, mille kaudu parandada soolestiku
kaitsefunktsiooni. Manipuleerides dieedi kaudu erinevate mukolttiliste liikide kasvu
voiks olla voimalik saavutada soovitud kooslus, mis kas suurendaks voi vdahendaks
limakihi lagudamist. Lisaks dnnestus demonstreerida Ullatavat efekti mutsiinilagundaja
Akkermansia muciniphila puhul. Varasemad uuringud on naidanud, et selle bakteri
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puhaskultuurid ei ole voimelised kasvama sea jamesoole mutsiini peal. Seevastu
kdesolevas uuringus demonstreeriti, kuidas A. muciniphila domineerib sea jamesoole
peal kasvatatud segakooslust ning tarvitab nii mutsiini O-gliikaane kui ka valgulist osa.
Lisaks ndidati siin t606s, kuidas keerulise struktuuriga kiudained suurendavad mikroobset
mitmekesisust, eriti erinevate Bacteroides liikide kasvu. Selliste pollisahhariidide
lagundamiseks oli vaja erinevatest perekondadest périt ensiime ning vabanenud
suhkruid kasutasid edasi mitmed bakterite rihmad. Lopetuseks nditasid uuringu
tulemused uudse substraadi, jAmesoole mutsiini, sobivust kosubstraadina mikrobioota
kasvu uuringutel.

Kokkuvotvalt selgitavad need tulemused mikrobioota kasvu ja metabolismi
tingimustes, mis imiteerivad peremehe fiisioloogiat nii terves kui haiguslikus seisundis.
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Use of Changestat for Growth Rate
Studies of Gut Microbiota

Kaarel Adamberg'?*, Grete Raba’ and Signe Adamberg’

" Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia, ? Center of Food
and Fermentation Technologies, Tallinn, Estonia

Human colon microbiota, composed of hundreds of different species, is closely
associated with several health conditions. Controlled in vitro cultivation and up-to-
date analytical methods make possible the systematic evaluation of the underlying
mechanisms of complex interactions between the members of microbial consortia.
Information on reproducing fecal microbial consortia can be used for various clinical
and biotechnological applications. In this study, chemostat and changestat cultures
were used to elucidate the effects of the physiologically relevant range of dilution rates
on the growth and metabolism of adult fecal microbiota. The dilution rate was kept
either at D = 0.05 or D = 0.2 1/h in chemostat cultures, while gradually changing
from 0.05 to 0.2 1/h in the A-stat and from 0.2 to 0.05 1/h in the De-stat. Apple
pectin as a substrate was used in the chemostat experiments and apple pectin or
birch xylan in the changestat experiments, in the presence of porcine mucin in all
cases. The analyses were comprised of HPLC for organic acids, UPLC for amino acids,
GC for gas composition, 16S-rDNA sequencing for microbial composition, and growth
parameter calculations. It was shown that the abundance of most bacterial taxa was
determined by the dilution rate on both substrates. Bacteroides ovatus, Bacteroides
vulgatus, and Faecalibacterium were prevalent within the whole range of dilution rates.
Akkermansia muciniphila and Ruminococcaceae UCG-013 were significantly enriched at
D = 0.05 1/h, while Bacteroides caccae, Lachnospiraceae unclassified and Escherichia
coli clearly preferred D = 0.2 1/h. In the chemostat cultures, the production of organic
acids and gases from pectin was related to the dilution rate. The ratio of acetate,
propionate and butyrate was 5:2:1 (D = 0.05 1/h) and 14:2:1 (D = 0.2 1/h). It was
shown that the growth rate-related characteristics of the fecal microbiota were concise
in both directions between D = 0.05 and 0.2 1/h. Reproducible adaptation of the
fecal microbiota was shown in the continuous culture with a changing dilution rate:
changestat. Consortia cultivation is a promising approach for research purposes and
several biotechnological applications, including the production of multi-strain probiotics
and fecal transplantation mixtures.

Keywords: continuous cultivation, changestat, fecal microbiota, apple pectin, birch xylan

INTRODUCTION

The cultivation of fecal consortia is essential for understanding the mechanisms behind the
coexistence of gut microbial species under changing environmental conditions. This information is
required in biotechnological and clinical applications, although better defined methods are required
for safer procedures. As the desired consortia can be composed of tens or even hundreds of strains,
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e.g., next generation probiotics, the cultivation of a balanced
consortium saves time and labor compared to the production of
single cultures. Moreover, the biomass yields of pure cultures can
remain below those of natural bacterial communities, because of
a deficiency of several growth factors produced by other consortia
members. In this field, the culturomics approach has been
developed, where a set of different media are used to cultivate
each isolate in a multi-parallel approach (Lagier et al., 2012). This
approach has expanded the range of microorganisms that can be
cultivated in the lab. The reintroduction of fecal microbiota is
a promising method to cure certain gastrointestinal conditions
(Petrof et al., 2013). Previously, the most diverse stool substitute
containing 33 single fecal isolates was developed by Petrof et al.
(2013) to cure antibiotic-resistant Clostridium difficile-induced
colitis. Also, batch cultures have been used for the production
of fecal biomass to treat diarrhea caused by C. difficile infection
(Jorup-Ronstrom et al., 2012). Batch cultures are most commonly
used for high-throughput small-scale parallel experiments.
However, such conditions as substrate concentrations and
the accumulation of metabolites are continuously changing.
Furthermore, the overgrowth of fast-growing bacteria in mixed
cultures is common for batch cultures; for instance, an over
10% increase in Escherichia coli from the total population has
been reported (Brahma et al, 2017; Adamberg et al, 2018).
Thus, it is difficult to analyze the actual selectivity of a tested
substrate. Consequently, batch technologies are well suited for
high throughput screening or for the industrial production of
biomass, but have limited value for studies of specific growth
mechanisms and the metabolism of complex microbial consortia.

In a microbial consortium, the steady state composition is
defined by complex microbial interactions. These interactions
can be supportive (mutual or commensal) or inhibitory
(ammensal or competitive), and are driven by residual
concentrations of substrates, bacterial metabolites and cross-
feeding between different bacteria (Gottschal, 1990). By
cultivating 37 mouse gut bacteria in continuous mode, Freter
et al. (1983) demonstrated that the population dynamics of
indigenous intestinal bacteria are controlled by one or a few
substrates. Chung et al. (2019) studied the degradation of
five different fibers or fiber mixtures by fecal microbiota in a
chemostat and showed that mixed fiber substrates led to the
growth of more diverse microbiota than inulin alone. In the
cultures of gut microbes, cross-feeding has been supposed to be
one of the most important factors for gut microbiota richness.
To explain the interactions between different microorganisms
in a consortium, in addition to cell modeling, simple culture
systems, such as defined mixed cultures and single substrates,
should be studied first. This makes it possible to elucidate the
primary degraders and substrates (hetero- or autotrophies),
auxotrophies and compounds derived from cross-feeding. The
dynamic data for predicting bacterial behavior in communities
can be best obtained from continuous cultures at low substrate
concentrations (Russell and Baldwin, 1979; Tannock, 2017).
For example, ecological studies have shown that growth under
multiple substrate limitations at very low dilution rates supports
species having high growth efficiency (higher yield) but low
maximal specific growth rate (Gottschal, 1990). Auxotrophy to a

specific compound can be used to promote a species in a mixed
culture by supplementing the culture medium with this substrate.
Two species containing batch experiments revealed that acetate
or lactate produced by Bacteroides or Bifidobacterium stimulated
the growth of butyric acid producing bacteria, while formate and
hydrogen enhanced methanogens (Rowland et al., 2018). The
dynamics and stability of freshly collected fecal cultures have
been studied by several groups, although the use of fresh samples
does not allow for direct comparison of the results from different
studies (Miller and Wolin, 1981; Macfarlane et al., 1998; Sghir
et al., 1998; McDonald et al., 2013; Yen et al., 2015; Chung et al.,
2016; von Martels et al., 2017).

The determination of community composition is essential in
microbiota research. Next-generation sequencing methods, such
as 16S rDNA analysis and whole genome sequencing (WGS),
are high throughput approaches that make it possible to identify
all of the taxa in whole consortia, but only semi-quantitatively
as proportions of the bacteria in a consortium. To obtain
quantitative data, bacterial counting through flow cytometry, dry
weight analysis or plate counting should be carried out in parallel.
Moreover, to determine the taxa of low abundance, the coverage
of sequences has to be proportionally higher. Also, species level
analysis might require more detailed sequence analysis (WGS)
than is available by 16S rDNA sequencing. For the quantitative
analysis of bacteria in fecal consortia, species are usually assessed
by fluorescent in situ hybridization with 16S rRNA probes
(Langendijk et al., 1995), although as each species requires a
specific probe, this approach is limited by the number of species
analyzed or is expensive in an array setup, such as HITChip
(Rajili¢-Stojanovic et al., 2009).

With all cultivation models it should be kept in mind that
the specific growth rate of bacteria is not linearly related to
the colonic transit rate, since the density of bacteria gradually
increases, while the moving rate decreases along the colon.
An alternative continuous cultivation technology, changestat, in
which all cultivation parameters are computer-controlled, has
been developed in our lab. In changestat, the effect of a selected
parameter is studied by the gradual change in this parameter
within a certain range, while keeping all other conditions
constant (Paalme et al.,, 1995; Kasemets et al., 2003; Adamberg
et al, 2015). Our recent study highlighted the importance of
dilution rate in determining the composition and diversity of
fecal microbiota (Adamberg and Adamberg, 2018). It was also
shown that by using de-celerostat (De-stat), the fast- and slow-
growing consortia were differentiated from the fecal microbiota
during the same experiment (Adamberg and Adamberg, 2018).
To analyze whether these results were too biased depending on
the starting point, we carried out experiments in both directions:
gradually moving dilution rates from slow to fast (accelerostat:
A-stat) and from fast to slow (De-stat), between 0.05 and 0.2 1/h.

The main aims of the current study were: (1) to elucidate the
reproducibility of the chemostat cultures by using the same adult
fecal pool, (2) to study the effects of dilution rate on the dynamics
and metabolism of fecal microbiota by using A-stat and De-stat
cultures, and (3) to elucidate the metabolism of two common
dietary fibers, pectin and xylan, by fecal microbiota. Food is an
important factor in modulating colonic microbiota and through
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bacterial metabolism promoting health-supporting or disease-
activating mechanisms. Pectins are a part of the daily diet,
consumed in the form of fruits and vegetables and used as food
additives. Xylans are abundant in nature as major constituents of
hemicellulose in plant cells.

MATERIALS AND METHODS

Fecal Inoculum

Fecal samples were collected from seven healthy adult volunteers
(19-37 years old, Caucasian, both male and female) and
homogenized in four volumes of 5% DMSO-containing buffer,
as described in Adamberg et al. (2015). The exclusion criteria
included the use of supplements of prebiotics and probiotics,
laxatives and antibiotics for 4 weeks prior to donation. Equal
volumes of the seven fecal slurries were pooled together
and aliquots were kept at —80°C for repetitive cultivation
experiments. Similar sample preparation (standardization by
pooling) has also been used and approved by others for in vitro
testing in the TIM-2 proximal colon model (Aguirre et al., 2015;
Bussolo de Souza et al., 2019).

Defined Base Medium

The defined growth medium was prepared in a 0.05 M potassium
phosphate buffer made from 1 M stock solutions (ml/L):
K;HPO4 (28.9) and KH,PO4 (21.1); mineral salts (mg/L):
MgSO4*7H20 (36), FCSO4*7H20 (0.1), CaClz (9), MI’ISO4*H20
(3), ZnSO4*7H20 (1), COSO4*7H20 (1), CuSO4*5H20 (1),
(NH4)6Mo07024*4H,0 (1), NaCl (527); hemin (5 mg/L); vitamin
K1 (0.5 mg/L); L-amino acids (g/L): Ala (0.044), Arg (0.023),
Asn (0.038), Asp (0.038), Glu (0.036), GIn (0.018), Gly (0.032),
His (0.027), Ile (0.060), Leu (0.120), Lys-HCI (0.080), Met
(0.023), Phe (0.050), Pro (0.041), Ser (0.095), Thr (0.041), Trp
(0.009), Val (0.060), Tyr (0.015); vitamins (mg/L): biotin (0.25),
Ca-pantothenate (0.25), folic acid (0.25), nicotinamide (0.25),
pyridoxine-HCI (0.50), riboflavin (0.25), thiamine-HCI (0.25)
and other components (g/L): bile salts (0.5), NaHCO3 (2.0),
Tween-80 (0.5), Na-thioglycolate (0.5), and Cys-HCI (0.5, freshly
made). The carbohydrate substrates were sterilized separately
and mixed with the medium before cultivation. Two substrate
combinations, either birch xylan (Sigma-Aldrich, United States)
or apple pectin (Sigma-Aldrich, United States) with porcine
mucin (Type II, Sigma Aldrich, United States), were added to
the base medium in equal amounts (2.5 g/L each). The pH of the
growth medium was 7.2 + 0.1.

Fermentation System

The Biobundle cultivation system consisted of the ADI 1030
bio-controller and cultivation control program “BioXpert”
(Applikon, Netherlands). The fermenter was equipped with
sensors for pH, pO,, and temperature. Variable speed pumps
for feeding and outflow were controlled by a De-stat or A-stat
algorithm: D = Dy - d*t or D = Dy + a*t, respectively, where
D is the dilution rate (1/h), Dy is the initial dilution rate, d and
a are the deceleration and acceleration rate (1/h2), respectively,
and t is the time (h). In accelerostat (A-stat), the dilution rate

was gradually increased from 0.05 to 0.2 1/h and in decelerostat
(De-stat) the dilution rate was gradually decreased from 0.2 to
0.05 1/h in accordance with the typical transit rate of the human
colon (Adamberg and Adamberg, 2018). pH was controlled by a
1M NaOH addition according to the pH set-point. The culture
volume was kept constant (300 mL) by monitoring the weight
of the fermenter with the PC-linked balance and outflow pump.
The pH of the culture was kept at 7.0 and the temperature
was kept constant at 36.6°C. The medium in the feeding bottle
and the fermenter was flushed with sterile-filtered nitrogen gas
(99.9%, AGA) overnight before inoculation and throughout the
cultivation to maintain anaerobiosis. Nitrogen flushing was on
during the whole experiment. Two mL of the pooled fecal culture
was inoculated to start the experiment.

The cultivation algorithm was started 15-17 h after
inoculation in the midst of the exponential growth of bacteria.
The dilution rate was stabilized at either 0.05 or 0.2 1/h, at pH
7.0, and run for stabilization at these conditions by 6-7 residence
times. After achieving a stable titration rate and gas production,
the dilution rate was decreased to 0.05 1/h or increased to 0.2 1/h
at a rate of 0.05 units per day (the experimental timeline is
presented in Figure 1). The dilution rate interval was chosen
to cover the realistic growth rates of luminal bacteria in the
colon. The range of the specific growth rate of the bacteria
was calculated based on the colonic transit time of digesta in
people consuming Western diets, which varies from 40 to 140 h
(median 60-70 h) (Burkitt et al., 1972; Cummings et al., 1976;
Fallingborg et al., 1989), and the estimated amount of bacteria,
which increases from 10% in the proximal colon to 10! cfu/g
in feces (Sender et al., 2016). Considering both the period the
bacteria have for degradation of dietary fibers and the coinciding
increase in the bacterial biomass in the colon, the specific growth
rate of the bacteria decreased from 0.3 to 0.02 1/h. Thus, the
range of the dilution rates tested in the cultivation experiments,
0.05-0.2 1/h, was chosen.

Analytical Methods

Samples from the outflow were collected on ice, centrifuged
(14,000 g, 5 min, 4°C) and stored separately as pellets and
supernatants at —20°C until HPLC analyses (sugars and organic
acids), UPLC analyses (amino acids), and microbial 16S rDNA
sequencing were carried out.

For chromatographic analyses, culture supernatants were
filtered using AmiconR Ultra-10K Centrifugal Filter Devices,
cut-off 3 kDa according to the manufacturer’s instructions
(Millipore, United States). The concentrations of organic acids
(succinate, lactate, formate, acetate, propionate, isobutyrate,
butyrate, isovalerate, and valerate), ethanol and free sugars
(mono-, di-, and trisaccharides) were determined by high-
performance liquid chromatography (HPLC, Alliance 2795
system, Waters, Milford, MA, United States), using BioRad HPX-
87H column (Hercules, CA, United States) with isocratic elution
of 0.005 M H,SO4 at a flow rate of 0.5 mL/min and at 35°C.
Refractive index (RI) (model 2414; Waters, United States) and
UV (210 nm; model 2487; Waters, United States) detectors
were used for quantification of the substances. The detection
limit for the HPLC method was 0.1 mM. Concentrations of
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FIGURE 1 | Scheme of the A-stat (accelerostat) and De-stat (decelerostat) experimental set-up. The pooled fecal inoculum was added into 300 ml growth medium
at time O h followed by batch phase (ca 15 h) until mid- exponential growth phase. Then continuous mode was started and after the stabilization of the fecal culture
at D =0.2 1/h (De-stat) or D = 0.05 1/h (A-stat, 6-7 residential times in total), the dilution rate was gradually decreased down to 0.05 1/h or increased up to 0.2 1/h
(deceleration or acceleration rate 0.05 1/h per day), respectively, followed by re-stabilization for approximately 2 residential times. The same procedure was applied
for two substrate combinations (birch xylan + mucin and, apple pectin + mucin). Dset indicates the controlled change of the dynamics of the pre-set dilution rate.
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amino acids and amines were determined with an amino acid
analyzer (UPLC; Waters, Milford, United States) according to the
manufacturer’s instructions. The detection limit of the method
was 0.01 mM. All standard substrates were of analytical grade.
Empower software (Waters, United States) was used for the
processing of HPLC and UPLC data.

The composition of the gas outflow (H,, CO,, H,S, CHy, and
N3) was analyzed using an Agilent 490 Micro GC Biogas Analyzer
(Agilent 269 Technologies Ltd., United States) connected to a
thermal conductivity detector. The volume of the gas flow was
regularly recorded.

The Redox potential of the growth medium and culture
supernatant was measured by a pH/Redox meter using an InLab®
Redox electrode (Mettler Toledo).

The biomass dry weight was measured gravimetrically by
centrifuging the biomass from a 10 mL culture, washing twice
with distilled water and drying in an oven at 105°C for 24 h.

DNA Extraction and Amplification

DNA was extracted from the pellets using a PureLink
Microbiome DNA extraction kit (Thermo Fisher Scientific,
United Kingdom) according to the manufacturer’s instructions.
Universal primers:

S-D-Bact-0341-b-S-17 Forward (5 TCGTCGGCAGCGTCAG
ATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG) and
S-D-Bact-0785-a-A-21 Reverse (5 GTCTCGTGGGCTCGGA
GATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC)
were used for PCR amplification of the V3-V4 hypervariable
regions of the 16S rRNA genes (Klindworth et al., 2013). The
amplified region was 390-410 bp long and an average of 67,000
reads per sample were obtained. The mixture of amplicons
was sequenced using an Illumina MiSeq 2 x 250 v2 platform
(Estonian Genome Centre, University of Tartu, Estonia).

Taxonomic Profiling of Microbiota

Samples
The DNA sequence data was analyzed using a BION-meta',
currently unpublished open source program, according to the

L www.box.com/bion

author’s instructions. Sequences were first cleaned at both ends
using a 99.5% minimum quality threshold for at least 18 of 20
bases for 5'-end and 28 of 30 bases for 3’-end, then joined,
followed by the removal of contigs shorter than 350 bp. Then
sequences were cleaned of chimeras and clustered by 95%
oligonucleotide similarity (k-mer length of 8 bp, step size 2 bp).
Lastly, consensus reads were aligned to the SILVA reference 16S
rDNA database (v123) using a word length of 8 and similarity
cut-off of 90%. The bacterial designation was analyzed at different
taxonomic levels, down to species if applicable.

Calculations

For quantitative data analysis, the relative data of bacterial
abundances from 16S rDNA sequencing analysis were first
converted to quantitative values [Xj (g/L), where i illustrates
bacterial taxa i] by the formula: Xj = X; * Aj, where X, is the dry
weight of the total biomass of bacteria (g/L) and A; is the relative
abundance of bacterial taxa i in the sample.

The growth characteristics of the bacteria in A-stat and
De-stat experiments were calculated based on bacterial mass,
total volume of medium pumped out from the fermenter (Vour,
L) and product concentrations in the culture medium (mol/L)
as follows:

_d(Vour) | dXy)

= — 1
V x dt dt x X; m
Si x d(Vour)  d(Si)
- _ 2
Qsi V x X; x dt dt x X, @
_ Pixd(Vour) | d(P)
Qi = V x X; x dt dt x Xy ®

where p is the specific growth rate (1/h), Qg is the specific
consumption rate of carbohydrate (in carbon equivalents, mol-
C/g-X¢/h), i is the concentration of consumed carbohydrate i
(C-mol/L), Qpj is the specific production rate of product i (mol-
prod/g-X/h), P; is the concentration of product i (mol/L), V is the
current fermenter volume (L), Vour is the outflow volume and t
is the cultivation time (h).
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Statistical Analysis

Concentrations of metabolites or abundances of bacteria
from three independent experiments were compared by
average values and by unpaired and t-test (unadjusted
P-values < 0.05 were considered significant) for chemostat
point comparison. To compare differences in bacterial
abundances and metabolite productions during A-stat
and De-stat experiments, samples were divided into two
groups: (1) samples taken at D < 0.07 1/h (slow growth)
and (2) samples taken at D > 0.17 1/h (fast growth).
Average and standard deviation of bacterial abundances
and metabolite productions were calculated in both
groups and a single parametric t-test was used to estimate
statistical significance.

Ethics Statement
This study was approved by the Tallinn Medical Research Ethics
Committee, Estonia (protocol no. 554).

RESULTS

Reproducibility of Chemostat Cultures of

Fecal Microbiota

Until now, continuous fecal cultures have mostly been inoculated
with fresh fecal inocula and information on reproducibility of this
type of experiment is scarce. Hence, the aim of this work was to
elucidate the reproducibility of the continuous fecal cultures. To
elucidate the reproducibility of the growth of biological replicates
of adult pooled fecal microbiota, six chemostat cultures (three at
Diow = 0.05 1/h and three at Dy;g, = 0.2 1/h) in a defined base
medium with apple pectin and mucin were carried out.

Formation of Organic Acids and Gases
The production of organic acids and gases from pectin and
mucin was related to the specific growth rate (Figure 2). The
most abundant organic acid in all chemostat cultures was
acetate [23.2 + 3.1 and 252 + 2.0 mM at Dy, (0.05 1/h)
and Dyjgy (0.2 1/h), respectively]. Compared to Dpgy, the
production of propionate, butyrate and carbon dioxide was
more enhanced at Djyy. At Digy, 9.4 £ 0.3 mM propionate
and less than 4 mM succinate were produced, while at Dygh,
concentrations of propionate and succinate were practically equal
(42 £ 0.3 and 3.9 £ 0.8 mM, respectively). The ratio of
acetate, propionate and butyrate was 5:2:1 at Dy, and 14:2:1
at Dpjgn. Similar to the product profile at Djoy, a ratio of 4:2:1
for acetate:propionate:butyrate was reported by Larsen et al.
(2019) in TIM-2 experiments. In accordance with the organic
acid profiles, about twice as much carbon dioxide was produced
at Djoy than at Dygp (20.3 £ 2.4 and 10.5 & 2.8 mmol per
L medium, respectively). On average, the relative difference
between parallels of the concentrations of propionate, butyrate
and lactate in stabilized fecal cultures (after six residential times)
remained below 10% and that of acetate below 25% at both
dilution rates (Djoy and Dygp).

In addition to organic acids and gases, the consumption
of amino acids was analyzed. It was determined that amino
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FIGURE 2 | Comparison of the fermentation products from three
(independent) chemostat experiments with the same pooled fecal culture at
dilution rates 0.05 (blue dots) and 0.2 (red dots) 1/h in apple pectin containing
medium. Numbers behind the metabolite name indicate significant difference
between Diow and Dpign (D = 0.05 and 0.2 1/h, respectively).

acids were fully depleted from the culture medium at both
dilution rates, except for alanine and branched-chain amino
acids (BCAA), which were practically not consumed at
Dhign (Figure 3). The increased production of propionate,
butyrate and CO; at Dj,,, was accompanied by the conversion
of BCAA to isobutyric (0.27 + 0.29 mM) and isovaleric
acids (0.87 £ 0.82 mM). Another amino acid degradation
product significantly higher at Dy, was H,S (0.76 £ 0.12
vs. 036 £ 0.09 mmol per L medium at Do, vs. Dhygp,
respectively) derived from the sulfur-containing amino acids
Cys and Met. At Dy;gp, isoleucine and leucine were consumed
in the range required for biomass formation (0.18-0.24 and
0.45-0.58 mmol/gDW, respectively. Supplementary Table S2
Chemostat), based on the amino acid contents in the biomass
of E. coli (0.22 and 0.37 mmol/gDW for Ile and Leu,
respectively; Valgepea et al, 2011) and Lactococcus lactis
(0.25 and 0.37 mmol/gDW for Ile and Leu, respectively;
Adamberg et al., 2012). As the total amount of biomass produced
was 0.5-0.7 g/L (Supplementary Table S2 Chemostat), the
consumption of other amino acids exceeded 1.6-5.5 times the
amount required for biomass synthesis, except for serine, which
was consumed about 10 times as much. Serine is the major
amino acid in mucins and may be converted to acetate. However,
serine degradation (2.1 and 2.6 mmol/gDW at Djo,, and Dpgh,
respectively) could not have contributed to more than 5% of
the total acetate production (39 and 51 mmol/gDW at Dj,y,
vs. Dyjgh, respectively) as 80-86% of the carbon was derived
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FIGURE 3 | Comparison of amino acid consumptions and related metabolites
(branched chain fatty acids and H»S) from three independent chemostat
experiments of fecal culture at dilution rate 0.05 (blue dots) and 0.2 (red dots)
1/h in apple pectin medium. Positive values indicate the production and
negative values indicate the consumption of the amino acid. Numbers behind
the metabolite name indicate significant difference between Dioy and Drigh

(D =0.05and 0.2 1/h, respectively). isoval, isovalerate; isobut, isobutyrate.

from carbohydrate fermentation. The overall carbon recovery
was 79% and 67% at Djo,, and Dyjgy, respectively, showing that
some products were under-determined or missing, especially at
high dilution rate.

Growth Rate Specific Differences of Fecal Microbiota
The profiles of the metabolic products were in accordance with
the bacterial compositions detected (Figures 2-4). Three taxa
clearly prevalent at both dilution rates were the acetate- and
propionate- or succinate-producing species Bacteroides ovatus
(17 and 14%, at Doy, and Dpgh, respectively), Bacteroides vulgatus
(7.9 and 3.6%, at Dyyy and Dy, respectively) and butyrate-
producing bacterium Faecalibacterium (2.4 and 7.2%, at D, and
Dhigh» respectively). Also several other bacteria were abundant
(1-4% of the total population) at both dilution rates, such
as mixed acid (acetate, propionate and butyrate) fermenting
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FIGURE 4 | Abundance of bacteria (in log scale) at dilution rate 0.05 (blue
dots) and 0.2 (red dots) 1/h in apple pectin medium. Each dot represents an
independent chemostat experiment. Numbers behind the metabolite name
indicate significant difference between Dioy, @nd Dhign (D = 0.05 and 0.2 1/h,
respectively).

bacteria, and the acetate- and propionate-producing Bacteroides
uniformis and Bacteroides cellulosilyticus (Figure 4). At Dy, the
mucin degrading species Akkermansia muciniphila and a group
of Ruminococcaceae UCG-013 (from 0.1 to 16% and from 0.5
to 14%, respectively) were significantly enriched. In different,
at Dyjgh, Bacteroides caccae, Lachnospiraceae unclassified and
mainly acetate-producing E. coli (7.7%, 21% and 6.3% of total
reads, respectively) became dominant. The butyrate-producing
bacterium Intestimonas butyriciproducens and Sarcina were
detected only at Dy, whereas Bacteroides acidifaciens was
found only at Dygp,. The increased production of ethanol and
formate at Dyg can be linked to higher abundances of Dorea
and Blautia.

A remarkable enrichment of Enterobacteriaceae (up to 60% of
total population) was observed in batch phase before starting the
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continuous flow. The amount of E. coli formed nearly 50% of the
microbial population but decreased to about 10% in a chemostat
stabilized at Dpjgh, and to 1.2% at Djq,,. These data confirm the
competitiveness of the fast-growing E. coli at high dilution rates.

Comparison of A-Stat and De-Stat

Cultures

Changes in the dilution rate in both directions between 0.05
to 0.2 1/h, starting from the stabilized cultures of pooled fecal
microbiota in apple pectin and birch xylan media, were analyzed.
In A-stat, the dilution rate was gradually increased from 0.05
to 0.2 1/h, and in De-stat the dilution rate was gradually
decreased from 0.2 to 0.05 1/h. The stabilization of the chemostat
culture was controlled by the titration rate of sodium hydroxide,
indicating the rate of acid production rate, and the gas production
rate (Supplementary Figure S1). Average fluctuations of these
parameters below 5% within the last three residential times were
considered to be stable cultures to start the changestat algorithm
(on average, six or seven residential volumes were needed to
achieve the stable cultures).

Formation of Organic Acids and Gases

In total, of one mole of carbohydrates, 1.2-1.3 and 1.7-1.9 mol
of acids were produced in xylan and pectin supplemented
media, respectively. Acetate formed in nearly two thirds of all
fermentation products and its production did not depend on the
dilution rate (Figure 5). Except for acetate and carbon dioxide,
the formation of other metabolites from pectin and xylan was
comparable in both directions of the dilution rate change (from
0.05 to 0.2 and from 0.2 to 0.05 1/h). Almost twice as much acetate
was produced from xylan than from pectin (0.6-0.7 and 1.1-
1.2 mol per mole of carbohydrates consumed, respectively). As

xylose is a five-carbon sugar and galacturonic acid is a six-carbon
compound, the lower amount of acids produced in the xylan
medium can partly be explained by these differences. However, at
all dilution rates, the carbon balance (Csupstrates = Cproducts) Was
still lower in the xylan- than in the pectin-containing medium
(average values 74 £ 5% and 82 £ 2%, respectively). The
formation of other metabolites, especially carbon dioxide and
propionate, was strongly dilution rate-dependent. The synthesis
of carbon dioxide was 0.9 and 0.4 mmol per L medium at
Diow and at Dygp, in the pectin medium in both experimental
directions (A-stat and De-stat). A similar trend was observed for
xylan, suggesting that the production of carbon dioxide is linked
to the growth rate rather than the substrate. To compensate for
the change in the carbon flux caused by the decreased production
of CO,, the succinate production increased, especially in the
xylan medium. For example, in the A-stat experiment of the
xylan medium, the reduction of CO, production from 0.42 to
0.22 mol per mole of carbohydrates was compensated for by
enhanced formation of succinate (0.26 to 0.42 at D = 0.05 1/h
and D = 0.2 1/h, respectively) and formate (0.02 to 0.2 mol
per mol carbohydrates at D = 0.05 1/h and D = 0.2 1/h,
respectively). Similarly, propionate synthesis was decreased as a
response to increasing formate production, keeping the carbon
flux consistent (0.27 to 0.09 mol per mol carbohydrates at
D =0.051/h and D = 0.2 1/h, respectively). A reverse correlation
between concentrations of propionic and succinic acids was
observed. In comparing the gas production, notably less carbon
dioxide (0.3-0.4 mol per mole of carbohydrates consumed) was
formed from xylan, built of xylose, a five-carbon molecule, at all
dilution rates. Carbon dioxide may originate from succinate to
propionate conversion or butyrate production or demetoxylation
of metoxylated galacturonic acid (Figure 5).
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FIGURE 5 | Fermentation product yields per carbohydrates consumed (mol/mol) during the growth in change-stat experiments. The fiber source is indicated by
color (red, apple pectin; blue, birch xylan), and the color intensity refers to culture type: A-stat (light color) and De-stat (dark color). D — dilution rate (1/h).
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The described changes were characteristic under both
directions of the dilution rate (A-stat and De-stat). These data
suggest that the acceleration rate applied allowed the culture to
adapt to the changing conditions.

Consumption and Formation of Amino Acids

Similarly to the chemostat cultures, most of the amino
acids were completely depleted from the medium, except for
alanine and BCAA (Table 1). The consumption of valine
and leucine increased at lower dilution rates. The formation
of isobutyrate and isovalerate was practically missing at high
dilution rates, but they were produced in concentrations of
2.2-11 and 13-44 mmol/mol-carbohydrates, respectively, at
low dilution rates (D < 1/h) (Table 1). In both media,
the alanine metabolism was more intensive at low dilution
rates (up to 14 mmol/mol-carbohydrates). The degradation
of the reducing agent cysteine to H»S up to 41 mmol/mol-
carbohydrates was observed at low dilution rates in all
experiments (Table 1), which corresponds to the degradation of
22% of the total cysteine.

Growth Rate Specific Changes in Fecal Microbiota

The initial fecal slurry contained 88 bacterial species with
abundance above 0.1% and, of these, 25 species had abundance
higher than 1% (Supplementary Table S1). During the chemostat
and the following A-stat and De-stat cultivations, the species
richness decreased to 27-32 and 10-18 species with abundance
of 0.1 and 1% with apple pectin and xylan, respectively.
A significant decrease in species richness has been shown
by other authors (McDonald et al, 2013; Chung et al,
2016). The abundance of the majority of bacterial taxa was
determined by the dilution rate on both substrates. The prevailing
genus in the consortia — Bacteroides (up to 58% of the
total population) - adapted well within the whole range of
specific growth rates tested. However, the abundances of some
species, such as B. ovatus and Bacteroides cellulosilyticus, tended
to decrease at higher dilution rates (A-stat) in the xylan-
supplemented medium (p = 0.02) (Figure 6). Pectin selectively
enriched the Ruminococcaceae group UCGO013, which was never
detected in the xylan-containing medium. The abundance of
the Ruminococcaceae group UCG-013 was also related to the
dilution rate being 17% at lower dilution rates and down

to 5% at dilution rates below D < 0.15 in both change
directions (Figure 6). These data are in accordance with the
chemostat results.

Significant increases in abundances of Collinsella aerofaciens
(p = 0.002), E. coli (p = 0.001), Faecalibacterium prausnitzii
(p = 0.009) and a group of Lachnospiraceae (closest similarity
to Coprococcus, p = 0.008) (median abundances 1.6, 12, 5.1,
and 19%, respectively) were observed at dilution rates above
0.17 1/h on both substrates. Although the abundances of
butyrate-producing bacteria (Faecalibacterium, Coprococcus, and
Lachnospiraceae) increased along with the increasing dilution
rate, the tested substrates and conditions did not enhance
the production of butyrate, resulting in other fermentation
products instead.

At higher dilution rates, the increased formate production
was accompanied by higher amounts of species from the
genus Lachnoclostridium that are known to be involved
in formate production. The abundance of the prevailing
species at dilution rates below 0.07 1/h, A. muciniphila
(median abundance 22%) decreased significantly at dilution
rates above 0.17 1/h (abundance > 1%) in all changestat
experiments. This is in accordance with the production of
propionic acid, the characteristic metabolite of Akkermansia
(Figure 5). Another taxa inhibited at higher dilution rates was
Intestinimonas (Figure 6).

DISCUSSION

In continuous cultures, the environmental parameters, including
substrate concentrations, pH, and flow rate, can be precisely
controlled. The in vivo situation in the colon probably remains
somewhere between chemostat and batch states, ie., the
availability of fermentable substrates decreases, the amounts
of metabolites change dynamically and pH moves toward
the alkaline region slowly. Our results demonstrate that the
changestat techniques, the A-stat and De-stat, can be applied
to study the effects of growth rate on the composition
and metabolism of fecal microbiota. Using the same fecal
inoculum, we showed that continuous cultures are reproducible
at dilution rates of D = 0.2 and 0.05 1/h. The dilution
rate during the stabilization phase impacts the results of

TABLE 1 | Consumption of amino acids and formation of degradation products from amino acids (mmol per mol carbohydrates consumed) during A-stat and De-stat

experiments and significantly different at fast or slow dilution rate.

Experiment* State** D, 1/h Isobutyrate Isovalerate HoS Ala lle Leu
XylLA SS 0.058 2.2 13.6 221 1.0 6.4 12.7
Xyl_D Q 0.058 ND ND 29.7 23 4.8 12.6
Xyl_.D SS 0.193 ND 23.9 7.4 ND 2.8 6.8
Xyl_A Q 0.193 ND 1.0 12.4 3.4 4.1 55
Pec_A SS 0.055 11.3 441 291 6.9 10.6 16.3
Pec_D Q 0.054 2.7 17.1 4.3 14.3 8.8 15.2
Pec_D SS 0.196 0.2 1.8 12.2 ND 5.7 8.5
Pec_A Q 0.197 4.1 12.2 16.0 ND 5.4 2.2

*A and D indicate A-stat and De-stat, respectively. **SS and Q indicate steady state and quasi steadly state, respectively. ND, not detected.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

February 2020 | Volume 8 | Article 24



Adamberg et al.

Fecal Changestat

Collinsella.aerofaciens .ovatus uncl.
0ko® 0 2 © o 4
o 0 0
14 1 e 0 -1 eS8 o EEE e o 1
.’*”?o.“ & ® o o ® O o° ‘. o ©
o oM ] oA PR RX A
24 g 8 D4 27 ® & 24 > 24 4% © o o & 2-4e% <% P
P °
-3-"xo e o @ 34 34 34 34 N
P
-4+ -4+ -4 -4 -4
T T T T T T T T T T T T T T T T T T T T
Ruminococcaceae_UCG.013 Escherichia.coli Akkermansia.muciniphila Lachnospiraceae.uncl. Bifidobacterium
— 000 % ] QO o o &
8 .14 ®% -1 e goa.‘b -1-’:‘ L4 -1-0}.3. $ :A -1 A
5 do® & . H
s ° }° & ° ° L] ® A
E 2 A o4 2 ® 2 o ©
2 = J
5 31 -3+ 3 A 34
S
-4 -odoe ® ® o 4 -4 ® o o A .4
T T T T T T T T T T T T
Peptoniphilus Dorea Lachnoclostridium Faecalibacterium Intestinimonas
4 - 14 e _ ] ° 1 -
é%% 02 o 1 se% | & t. : 2 - *°*°%e
24 49 © @ 24 ; > o 24eae 8 @ La 270 ¢ &% o 24%% ® o °
A w®’ ~ e® oo 'a ‘oo ® » 2 s
< : 4 W ] - A ; - ° i
3-e 3 oo ® ° 3 e 3 -3 ® o o
®
-4 @A 440 © © 0 0 0 A 44 o -4 -4 ®a
. r T _Tr . r_ __r T T T T T T T T T T T T T
0 ° © o 0 o 0 o 0 ° © o 0 ° © ° 0 ° © o
o = 7 S o = - I o = = I S = = I o = - I
S s 5 o s 5 S o S s 5 c s 5 S S S S 5 I
D, 1/h
FIGURE 6 | Bacterial taxa enriched in apple pectin (red) and xylan (blue) medium during A-stat (light color) and De-stat (dark color) experiments. Color indicates the
fiber source in the medium (red, apple pectin; blue, birch xylan). D-dilution rate (1/h). Only taxa those of which abundance was changed during experiments are
shown.

the following culture characteristics. Therefore, the microbiota
and metabolite patterns were comparatively analyzed in A-stat
and De-stat cultures in a defined base medium containing
mucin and either apple pectin or xylan. Similar microbiota
and metabolite structures were observed within the scanned
range of dilution rates in both directions, from D = 0.05
to 0.2 1/h or vice versa. The data of the steady state point
of the chemostat at D = 0.2 1/h and the end point of
the A-stat (D 0.2 1/h) coincided well. Thus, the fecal
culture was able to adapt to the change rate applied. This
shows that by using suitable acceleration or deceleration rates
it is possible to achieve a state of culture comparable to
those of classical chemostat cultures. This is new information
for consortia cultivation, although it has long been known
for pure cultures.

In a previous De-stat study with fecal samples from children
(5-15 vyears old), similar structural changes in the fecal
microbiota were seen (Adamberg and Adamberg, 2018). This
suggests that for this age group adult-like microbiota are mostly
established. Moreover, these data indicate the crucial role of the
growth rate in metabolism and the structure of colon microbiota.
For example, in both studies, the taxa clearly preferring
high dilution rates were C. aerofaciens, Bifidobacterium,
B. wulgatus, E. coli, Lachnospira and Lachnoclostridium,
whereas A. muciniphila and the Ruminococcaceae group
UCG-013 were enriched at low dilution rates. Accordingly,
in vivo studies have shown that Akkermansia and ruminococci
are more prevalent in people with slow colonic transit,

while Bifidobacterium and Lachnospiraceae correlate with
high transit rates (Kim et al, 2015 Roager et al, 2016;
Vandeputte et al., 2016). The impact of pectin structure on
the dynamics metabolism and fecal microbiota has been
shown by Larsen et al. (2019). Highly methoxylated pectins
were shown to stimulate F. prausnitzii, commonly referred
to as a health-promoting species. In both of our studies with
apple pectin, the abundance of Faecalibacterium was 1-7%
of the total population within the whole range of dilution
rates, indicating the importance of pectin for the growth of
colonic Faecalibacterium (the current study, and Adamberg and
Adamberg, 2018).

Similarities between child and adult fecal pools were also
observed at the metabolic level, but with some minor differences.
Although the abundances of Faecalibacterium in adult and child
cultures were similar (1.9-5.2% and 4.5-7.5%, respectively),
about twice as much butyrate and CO; were produced by adults’
than by children’s consortia at slow dilution rates, suggesting
higher activity of the butyrate producers in adult microbiota.
The dynamics of other metabolites, including BCFA and H,S,
from the degradation of amino acids was comparable in both
fecal consortia. The enhanced production of propionate, as
well as the extensive use of amino acids and BCFA formation
at low specific growth rates, may be related to a shortage
of energy, ammonia, or NAD™ regeneration. These properties
are known for pure cultures (Tempest, 1984) but seem to
also be common for fecal microbial consortia (Adamberg and
Adamberg, 2018). K, values of carbohydrates and amino acids
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for different species should be measured to determine the
carbon or nitrogen limitation, but these data are very scarce
for gut bacteria.

The application of changestat makes it possible to elucidate
the mechanisms of the co-existence of different bacteria
by adapting mixed cultures under different environmental
conditions. The cultivation of microbial consortia instead
of single cultures is a promising approach for several
biotechnological applications, including the development of
multi-strain probiotics or material for fecal transplantation.
As mentioned above, this and previous studies reveal that
various consortia can be generated using continuous cultivation
strategies. Still, the question remains of how to produce
safe consortia with desired properties and/or therapeutic
effects. Thus, detailed information is needed about selective
pressure on the development of bacterial consortia under
various environmental conditions: pH, the availability and
concentration of substrate, dilution rate, selective additives,
defining the inocula, etc. The changestat approach makes it
possible to scan selected environmental conditions in an adaptive
manner; providing an opportunity to predict appropriate
conditions for the development of a consortium with a desired
bacterial pattern.

CONCLUSION

The changestat experiments presented in this paper showed that
continuous cultures of complex fecal consortia are reproducible
in chemostat. Similar microbiota and metabolite changes were
observed within the scanned range of dilution rates in changestat
cultures in both directions, from D = 0.05 to 0.2 1/h or vice versa.
This is new information for consortia cultivation, although it has
long been known for pure cultures.

Our work confirmed that dilution rate is a crucial trigger
in consortia development. Some species, such as propionate-
producing B. ovatus and B. vulgatus and butyrate-producing
Faecalibacterium, were prevalent within the whole range
of dilution rates, while the mucin-degrading bacterium
A. muciniphila and some ruminococci were enriched at low
dilution rates only.

The production of organic acids and gases from pectin
in the presence of mucin was related to the dilution rate
in chemostat cultures. The ratio of acetate, propionate and
butyrate was 5:2:1 at D = 0.5 1/h and 14:2:1 at D = 0.2 1/h.
Most amino acids were completely depleted from the medium
except for alanine and BCAA, which were metabolized to
isobutyric and isovaleric acids in chemostat as well as
changestat cultures.

For further analysis of the interactions in complex consortia,
other gut-relevant environmental conditions and substrates
available in the colon will be studied. It should be stressed that, in
addition to high-throughput sequencing analysis, it is necessary
to concentrate on the growth and metabolism of fecal consortia
to work out novel methods for bacterial therapies. Changestat
cultures make it possible to screen the combined effects of
important environmental and feed parameters, such as acidity,

temperature, medium composition, dilution rate, and the effects
of inocula and multiple substrates.
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FIGURE S1 | On-line measured data that are used for stability analyses during
chemostat before A-stat (left side figures) or De-stat (right side figures)
experiments. Upper figures show data in xylan + mucin medium and lower figures
in apple pectin medium. Base rate, titration rate of 1M NaOH (ml/min); rGas, gas
production rate (ml/min); D, dilution rate (1/h).

TABLE S1 | Abundances of bacteria in the inocula and samples from A-stat and
De-stat experiments.

TABLE S2 | Production of metabolites per carbohydrate consumed
(mol/mol-carbohydrates and mmol/gDW), carbon recovery, and biomass yield
(9DW/g-carbohydrates) during A-stat and De-stat experiments.
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ABSTRACT

Environmental pH and gut transit rate are the key factors determining the dynamics of colonic microbiota. In this study, the
effect of changing pH on the composition and metabolism of pooled faecal microbiota was elucidated at physiologically
relevant dilution rates Dpigy = 0.2 and Doy, = 0.05 1/h. The results showed the best adaptability of Bacteroides ovatus within
the pH range 6.0-8.0 at both dilution rates. The butyrate producing Faecalibacterium and Coprococcus comes were extremely
sensitive to pH > 7.5, while the abundance of Akkermansia muciniphila increased significantly at pH >7 at Dy;gy, causing a
pH-dependant shift in the dynamics of mucin degrading species. Increased gas formation was observed at

PH < 6.5. Substantially more CO, was produced at Djoy, than at Dyig, (18-29 vs 12-23 mmol per L medium, respectively).
Methane was produced only at Dy, and pH > 7, consistent with the simultaneous increased abundance of
Methanobrevibacter smithii. Our study confirmed the importance of pH in the development of faecal microbiota in
pectin-supplemented medium. Fermentation of other dietary fibres can be studied using the same approach. The
significance of pH should be more emphasized in gut research and diagnostics.

Keywords: continuous culture; changestat; faecal microbiota; pH; growth rate; apple pectin

INTRODUCTION

Human gastrointestinal tract contains trillions of bacteria which
are in a dynamic relationship with the host. These bacteria
can break down complex polysaccharides such as plant-derived
dietary fibres, which are indigestible by host digestive enzymes
(Martens et al. 2011; Kaoutari et al. 2013). Consumption of dietary
fibre as a part of normal diet ensures the diversity of the colon
microbial consortium and helps to supress overgrowth of poten-
tial pathogens (O’Keefe 2016; Chung et al. 2018; Schroeder et al.
2018). Bacterial metabolites provide energy and substrates for
mucin-producing epithelial cells and protect from gastrointesti-
nal diseases (Martens, Neumann and Desai 2018; Schroeder et al.
2018; Birchenough et al. 2019; Schroeder 2019). Recent advances

in cultivation and analytical methods provide tools to study
these interactions and to elucidate the relationships between
gut microbiome and human health.

Nutrient and energy metabolism in human colon depends on
colonic transit rate as it influences the specific growth rates of
gut bacteria. The density of bacteria increases along the colon
while the transit rate decreases, causing a non-linear relation-
ship. Parameters such as environmental pH, peristalsis, redox
potential and others affect the composition and physiology of
gut microbiota and vice versa (Duncan et al. 2009; Vandeputte
et al. 2015; Chung et al. 2016; Roager et al. 2016). The effect of pH
on the growth of faecal microbiota has been studied by Chung
et al. (2016) and on the growth of individual strains by Duncan
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et al. (2009). Moreover, the gastrointestinal acidity depends on
an individual’s dietary habits. Certain polysaccharides bind sub-
stantial amounts of water and increase the volume and moving
rate of the chyme (Cummings 1984; Elia and Cummings 2007; de
Vries, Miller and Verbeke 2015). Degradation of polysaccharides,
release of organic acids, absorption of bile salts and water create
a pH gradient inside the large intestine (Cummings and Macfar-
lane 1991).

Mucins, the main components of intestinal mucus, pro-
vide substrate for mucin-degrading bacteria such as Akkerman-
sia muciniphila and Bacteroides thetaiotaomicron (Van Bueren et al.
2017; Van Herreweghen et al. 2017). Pectins are a group of car-
bohydrates found in the cell walls and middle lamellae of
fruits and vegetables and are common in human diet. Pectins
are structurally complex and contain arabinan, arabinogalac-
tan and galactan side chains connected to a galacturonan back-
bone (Muzzarelli et al. 2012). Such dietary fibres are important
in modulating the composition of the gut microbial consor-
tium and in controlling the colonic transit rate (Parkar et al.
2010; Larsen et al. 2019). The effect of pectins from citrus and
apple as substrates for faecal microbiota was recently stud-
ied by us (Adamberg and Adamberg 2018; Adamberg, Raba and
Adamberg 2020).

Compositional and metabolic responses to various changes
of environmental parameters can be studied by using a pooled
faecal inoculum (Aguirre et al. 2014, 2015; de Souza et al. 2019;
Adamberg, Raba and Adamberg 2020). Microbiota standardisa-
tion by pooling is useful for studying the growth trends in a
complex faecal consortium, unaffected by variations from indi-
vidual donors. Although resulting in slightly higher biodiver-
sity, the majority of OTUs are shared in pooled and individ-
ual samples (Aguirre et al. 2014). Advanced cultivation meth-
ods enable to mimic specific conditions of human gut with
precise computer-controlled algorithms and frequent sampling
(Chung et al. 2016, 2018; Adamberg, Raba and Adamberg 2020).
In a changestat (D-stat), a chosen environmental parameter is
gradually changed while all the other parameters are kept con-
stant, allowing to scan a steady state growth space within a sin-
gle experiment (Kasemets et al. 2003; Adamberg, Valgepea and
Vilu 2015). An essential advantage of continuous cultures over
in vivo experiments is the precise control of the environmen-
tal and nutritional parameters to elucidate specific effects of,
for example, a single substrate or dilution rate on the micro-
bial diversity and metabolic potential (Adamberg, Raba and
Adamberg 2020).

The aim of the present study was to elucidate the effect of
smooth change of pH on the composition and metabolism of
pooled faecal microbiota. A range of pH between 6.0 and 8.0 was
scanned at dilution rates Dioy = 0.05 1/h and Dyig, = 0.2 1/h, cor-
responding to slow and fast colonic transit rates, respectively.

MATERIALS AND METHODS
Faecal inoculum

Faecal samples were donated by seven healthy volunteers (19—
37 years old, Caucasian). Exclusion criteria comprised the use of
prebiotics and probiotics, laxatives and antibiotics four weeks
prior to sample collection. Faecal samples were homogenized
in 4 volumes of 5% DMSO-containing PBS buffer as described
previously (Adamberg et al. 2015). Equal volumes of seven faecal
slurries were pooled and 2 mL aliquots were kept at —80°C for
use in repeated cultivation experiments.

Defined base medium and substrates

The defined growth medium (pH 7.2 + 0.1) was prepared in
0.05 M potassium phosphate buffer made from 1 M stock solu-
tions (ml/L): K;HPO, (28.9) and KHyPO, (21.1). The medium
contained mineral salts (mg/L): MgSO4*7H,0 (36), FeSO4*7H,0
(0.1), CaCl, (9), MnSO4*H,0 (3), ZnS04*7H,0 (1), CoSO4*7H,0
(1), CuSO4*5H,0 (1), (NH4)sMo;024*4H,0 (1), NaCl (527); hemin
(5 mg/L); vitamin K1 (0.5 mg/L); L-amino acids (g/L): Ala (0.044),
Arg (0.023), Asn (0.038), Asp (0.038), Glu (0.036), Gln (0.018),
Gly (0.032), His (0.027), Tle (0.060), Leu (0.120), Lys-HCl (0.080),
Met (0.023), Phe (0.050), Pro (0.041), Ser (0.095), Thr (0.041),
Trp (0.009), Val (0.060), Tyr (0.015); vitamins (mg/L): biotin
(0.25), Ca-pantothenate (0.25), folic acid (0.25), nicotinamide
(0.25), pyridoxine-HCI (0.50), riboflavin (0.25), thiamine-HCI (0.25)
and (g/L): bile salts (0.5), NaHCO;3; (2.0), Tween-80 (0.5), Na-
thioglycolate (0.5), Cys-HCl (0.5). The medium was supple-
mented with porcine gastric mucin (2.5 g/L; Type II, Sigma-
Aldrich, USA). Apple pectin (2.5 g/L; Sigma-Aldrich, USA) was
used as a widely consumed dietary fibre in Estonian.

Cultivation system and culture conditions

Four continuous cultivation experiments were carried out to
study the combined effect of dilution rate and pH on faecal
microbiota: (i) gradual pH decrease from 7.0 to 6.0 (D = 0.05 1/h),
(ii) pH increase from 7.0 to 8.0 (D = 0.05 1/h), (iii) pH decrease
from 7.0 to 6.0 (D = 0.2 1/h) and (iv) pH increase from 7.0 to 8.0
(D =0.21/h), all at 36.6°C.

D-stat cultivation experiments were carried out in a 1 litre
fermenter using Biobundle cultivation system controlled by
‘BioXpert’ software (Applikon, The Netherlands) as described in
Adamberg and Adamberg (2018). Culture volume was kept con-
stant 300 mL by monitoring the weight of the fermenter with
PC-linked balance and outflow pump. Feeding and outflow were
controlled with variable speed pumps controlled by D-stat algo-
rithm: N = Ny + a*t, where "N” is the parameter that is being
changed (in this case pH), "N ¢” is the initial value of the param-
eter, "a” is the rate of change of parameter N (unit per hour), and
"t” is the time (h).

Cell growth in steady state is described by Monod equation:
U= umax*S/(K s + S), where p is the specific growth rate of the
cell, S is the limiting substrate and K  is a constant describing
the cell’s affinity to the substrate (Monod 1950). In a change-
stat culture, the dilution rate D is directly related to u, as the
dilution rate controls the inflow of the limiting substrate. Thus,
bacteria with a low specific growth rate may be washed out at
a high dilution rate and vice versa (Adamberg and Adamberg
2018; Adamberg, Raba and Adamberg 2020). Two different dilu-
tion rates, Diow = 0.05 1/h and Dy;g, = 0.2 1/h were tested to
represent slow and fast transit rates of the human colon (Cum-
mings, Jenkins and Wiggins 1976; Fallingborg et al. 1989; Kozi-
olek et al. 2015; Maurer et al. 2015; Roager et al. 2016). The dilu-
tion rates were chosen to promote the growth of physiologically
relevant consortium whose specific growth rate was calculated
based on the estimation of the colonic transit time on a Western
diet between 10-120 h and the increase of bacterial counts from
10 ¢ in proximal colon to 10! cfu/g in the faeces (Sender et al.
2016).

The healthy colonic pH is neutral or mildly acidic (pH = 6.1-
7.5; Nugent et al. 2001) but may increase up to pH 8 in the case of
colorectal cancer (Kashtan et al. 1990; Ohigashi et al. 2013). More-
over, protein-rich diets can increase the colonic pH as a result of
ammonia release from protein fermentation (Russell et al. 2011;
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Aguirre et al. 2016). pH of the in vitro culture was controlled by
the addition of 1M NaOH. The D-stat algorithm was started dur-
ing the exponential growth phase of the bacteria, 15-17 h after
inoculation. Culture stability was evaluated by a stabilization of
the titration (indicating the acid production rate) and gas pro-
duction rates. Average fluctuations of these parameters below
5% within the last three residential times were considered as
indicator of a stable culture to start the changestat algorithm. In
average, 6-7 residential volumes were needed to achieve stable
cultures. When stabilized at pH 7, the pH was either gradually
changed from 7.0 to 6.0 or from 7.0 to 8.0 with acceleration rates
a = 0.005 and 0.02 U/h, corresponding to Djoy and Dy;gh, respec-
tively (Fig. S1, Supporting Information). This strategy allowed to
start all experiments from a comparable steady state.

The feeding medium and the culture were flushed with
sterile-filtered nitrogen gas (99.9%, AGA) overnight before inoc-
ulation and throughout the experiments to maintain anaerobio-
sis in the fermenter. The redox potential of the outflow culture
was monitored regularly using InLab®Redox electrode (Mettler
Toledo, USA). Samples were taken from the fermenter after every
0.05pH-units.

Analytical methods

Samples from the fermenter outflow were collected on ice, cen-
trifuged (14000 g, 5 min, +4°C) and stored separately as super-
natants and cell pellets at —20°C until analysis. The super-
natants were filtered using AmiconR Ultra-10K Centrifugal Filter
Devices, cut-off 3 kDa (Millipore, USA). Concentrations of succi-
nate, lactate, formate, acetate, propionate, isobutyrate, butyrate,
isovalerate and valerate were determined by HPLC (Alliance 2795
system; Waters, USA) equipped with BioRad HPX 87H column
(Hercules, USA) with isocratic elution of 0.005 M H,SOs, flow
rate 0.5 mL/min, 35°C. The RI (model 2414; Waters, USA) and
UV (210 nm; model 2487; Waters, USA) detectors were used
for quantification. Amino acid concentrations were determined
with UPLC (Acquity; Waters, USA). The chromatographic data
were processed in Empower software (Waters, USA).

Gas volume was recorded using MilliGascounter (Ritter, Ger-
many). Composition of the gas outflow was analysed with gas
analyser (Agilent 490 MicroGC Biogas Analyzer; Agilent 269
Technologies Ltd., USA). Soluble gas concentration (c) in the cul-
ture liquid was calculated using Henry law: ¢ = H®?**p, where p
is the partial pressure of the given gas in the gas phase and HP*
(M/atm) is the effective Henry constant of the given gas depen-
dent on pH (Sander 2015).

DNA extraction, sequencing and taxonomic profiling

DNA was extracted from the cell pellets using PureLink Micro-
biome DNA extraction kit (Thermo Fisher Scientific, UK). Univer-
sal primers: F515 5’-GTGCCAGCMGCCGCGGTAA-3’ and R806 5’-
GGACTACHVGGGTWTCTAAT-3’ were used for PCR amplification
of the V4 hypervariable regions of the 16S rRNA genes. Sequenc-
ing libraries were prepared with Nextera XT Index Kit (Illu-
mina). Prepared libraries were quantified using Qubit™ dsDNA
HS Assay Kit (quantitation range 0.2-100 ng; Thermo Fisher Sci-
entific) or Qubit™ dsDNA BR Assay Kit (quantitation range 2-
1000 ng; Thermo Fisher Scientific). All reagent kits were handled
in accordance with manufacturer’s instructions. Pooled libraries
were sequenced using Illumina iSeq 100 platform and il reagent
kit. The amplified region was 250-280 bp long and in average
75474 reads per sample were obtained.
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The DNA sequence data was analysed using BION-meta (ww
w.box.com/bion). The sequences were first cleaned at both ends
using a 99.5% minimum quality threshold for at least 18 of
20 bases for 5'-end and 28 of 30 bases for 3'-end, then joined,
followed by the removal of contigs shorter than 250 bp. The
sequences were then cleaned of chimeras and clustered by 95%
oligonucleotide similarity (k-mer length of 8 bp, step size 2 bp).
Lastly, consensus reads were aligned to the SILVA reference 16S
rDNA database (v123) using a word length of 8 and similarity
cut-off of 90%.

Statistical analysis

Differences in bacterial abundances and metabolite productions
during D-stat experiments were calculated by dividing samples
into two groups: (i) samples taken at pH < 6.5 (low pH) and (ii)
samples taken at pH > 7.5 (high pH). Mean values and stan-
dard deviations of bacterial abundances and metabolite produc-
tions were calculated in both groups and single parametric t-test
Benjamini-Hochberg correction of P-values was used to estimate
statistical significance.

Ethics statement

The study was approved by the Tallinn Medical Research Ethics
Committee, Estonia (protocol No. 554).

RESULTS

The effect of pH on the metabolism of apple pectin by
faecal microbiota at low dilution rate (Djow = 0.05 1/h)

The most abundant taxa at Dy within the whole pH range
tested were Bacteroides ovatus (that combines B. ovatus, B. thetaio-
taomicron and B. xylanisolvens which could not be differenti-
ated by SILVA 16S rDNA reference database v123), Ruminococ-
caceae UCG-013 and Akkermansia muciniphila (Fig. 1). B. ovatus is
a common species in the human colon and its active growth
has been shown at pH 6.0-6.9 (Chung et al. 2016). As opposed
to Ruminococcaceae UCG-013 and A. muciniphila, B. ovatus was
highly abundant also at Dyigy. The other taxa with distinctly
higher abundance at Dy, were Bacteroides dorei/vulgatus, Alistipes
sp. and Ruminococcaceae UCG-002 (Fig. 1).

The growth of B. cellulosilyticus, Clostridium subterminale,
Clostridium tertium and Sutterella wadsworthensis was significantly
favored at pH >7 (Fig. 2). In contrast, growth of Dorea longicatena,
Faecalibacterium sp. and Escherichia coli, were supported by pH < 7.

The metabolite patterns followed the microbiota along with
the pH change. The molar ratio of acetate:propionate:butyrate
was 1:0.47:0.34 at pH 6 and 1:0.31:0.16 at pH 8. Acetate, the main
metabolite of many gut bacteria, was produced within the whole
pH range and at both dilution rates (Fig. 3). Slightly less acetate
was detected at low pH (19 vs 25 mM at pH 6.0 vs pH 8.0, respec-
tively). Significant correlations between the consortial changes
and acetate production could not be elucidated from these data.

In accordance with the prevalence of B. ovatus, Ruminococ-
caceae and A. muciniphila, production of propionate and butyrate
was seen throughout the whole tested pH range with slightly
lower values at higher pH-s (Fig. 3). The family Ruminococ-
caceae includes several butyrate producing genera such as
Faecalibacterium. In agreement with the decreasing abundance
of Faecalibacterium, significantly less butyrate was formed at
pH > 7.5, compared to that at pH < 6.5. However, similar trend
was not observed for other Ruminococcaceae.
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Figure 1. Dynamic changes of the dominant species of faecal microbiota in pectin supplemented medium during changing the pH from 6.0 to 8.0, at dilution rates
Diow = 0.05 1/h (left) and Dyig = 0.2 1/h (right).
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Figure 2. Dynamic changes of the abundances (log scale) of the species of significant difference (P-value < 0.05) between pH 6.0 and 8.0 at dilution rates Doy = 0.05
1/h (dark blue dots) and Dy;gn = 0.2 1/h (light blue dots). Dark and light pink dots indicate the steady state conditions at pH = 7.0, before increase or decrease of the pH
at Diow and Dpign, respectively. The species detected at least 0.5% in at least one sample are shown. Data on abundances of all bacteria and P-values can be found in
the Table S1, Supporting Information.
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Figure 3. Dynamic changes of the metabolites (acids in mM, gases in mmol per L medium) produced by faecal microbiota in pectin supplemented medium at pH
between 6.0 and 8.0 at two dilution rates: Djoy, = 0.05 1/h (dark blue dots) and Dy;g, = 0.2 1/h (light blue dots). Dark and light pink dots indicate the steady state
conditions at pH = 7.0, before increase or decrease of the pH at Diow and Dyign, respectively. Data on metabolite concentrations and P-values can be found in the

Supplementary Table S1, Supporting Information.

Notable changes in gas formation profiles were seen depend-
ing on the dilution rate and changing pH. The amount of car-
bon dioxide, the main gaseous product, was 27 mmol per L
medium at pH 6.0 but only 18 mmol per L medium at pH 8.0 at
D 1w - Methanogenesis is a process carried out by slow-growing
archeae who convert acetate, carbon dioxide and hydrogen gas
into methane. Production of methane at D j,,, Was observed
at pH >7, in accordance with the increase of Methanobre-
vibacter smithii from < 0.05 (pH 7.5) to 0.5% (pH 7.9) (Fig. 2).
Methanogenic species in general are sensitive to the accumu-
lation of organic acids, especially propionate, and typically have
neutral or slightly alkaline pH optima (Angelidaki et al. 2011).
However, occurrence of M. smithii in our experiments at Digy,
with elevated concentrations of propionate, suggests its toler-
ance to propionate. Similarly, Barredo and Evison ( 1991) have
reported increased methane production by M. smithii at pH 8.0
despite the presence of propionate. Conversion of CO, (and H,)
into CH,4 could partially explain the drop of CO, (and a small drop
in hydrogen concentrations) at increasing pH. In addition, CO,
is fixed during production of succinate, amount of which was
rising at pH > 7.

Most of the amino acids from the growth medium were
depleted at Djoy (Table S1, Supporting Information). Distinctly
higher concentrations of isobutyrate, isovalerate and valerate —
the metabolites derived from the breakdown of the branched
chain amino acids (BCAA) were found, compared to those at
Dhigh (Fig. 4). Production of hydrogen sulphide was more preva-
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Figure 4. Dynamic changes in concentrations of valerate, isovalerate, isobutyrate
(mM) and hydrogen sulphide (mmol per L medium) during the growth of fae-
cal microbiota on apple pectin at pH between 6.0 AND 8.0 at two dilution rates:
Diow = 0.05 1/h (dark blue dots), and Dpgn = 0.2 1/h (light blue dots). Dark and
light pink dots indicate the steady state conditions at pH = 7.0 before increase
or decrease of the pH at Djoy and Dpign, respectively. Data on metabolite concen-
trations and P-values can be found in the Table S1, Supporting Information.
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lent at Djow. This agrees with our previous findings about
conversion of the reducing agent cysteine into H,S by faecal
microbiota at low dilution rate (Adamberg and Adamberg 2018;
Adamberg, Raba and Adamberg 2020).

The effect of pH on the metabolism of apple pectin by
faecal microbiota at high dilution rate (Dpign = 0.2 1/h)

The most abundant taxa at Dy;g throughout the tested pH range
were B. ovatus and Lachnospiraceae UCG-008 (Fig. 1). The growth
of some other species, namely Bifidobacterium bifidum, Clostrid-
ium subterminale, Dorea longicatena, Lachnoclostridium torques, Sut-
terella wadsworthensis and Escherichia coli, was also favored by
Dhign (Fig. 1). The most distinct difference in microbial compo-
sition between the two dilution rates was the prevalence of var-
ious Ruminococcaceae at Dioy, and that of Lachnospiraceae at
Dhigh. Two species from the family Lachnospiraceae, Lachnospira
pectinoschiza and Lachnoclostridium lactaris, were highly abundant
(1-5%) at Dy;gn, whilst not detected at Dioy-

Growth of B. dorei/vulgatus, Blautia unclassified and Fae-
calibacterium was significantly stimulated at pH <7 (Fig. 2). In
contrast, the abundances of Bacteroides uniformis, C. subterminale
and A. muciniphila, increased significantly at pH > 7. Competi-
tiveness of A. muciniphila at alkaline pH at Dy;g, Was especially
interesting, considering that this species is known to have a
low specific growth rate. Although being below the detection
limit in a steady state at pH 7, its population achieved levels
comparable to those at Djo at pH 8. Bifidobacterium bifidum and
Bacteroides caccae had the highest abundances around neutral
PH (6.5-7.5), a feature that was not seen for other taxa, neither
at Dpigh OF Diow (Fig. 2). Significant reorganisation within the
genus Bacteroides was observed regarding to the dilution rate
(Fig. 2). While Bacteroides caccae was more prevalent at Dyigy, the
opposite was observed for B. dorei/vulgatus.

Acetate was the main metabolite produced at all pH values
(23-27 mM, Fig. 3). Molar ratio of acetate:propionate:butyrate was
1:0.35:0.20 at pH 6 and 1:0.24:0.10 at pH 8. At Dygy, trace amounts
of lactate were seen, which were not detected at Djoy,. This is
most likely linked to the higher abundance of Bifidobacterium
bifidum at Dpgp.

Substantially less CO, was produced at Dy;g than at Digy (12-
23 vs 18-29 mmol per L medium). Similar to Dy, decrease in
production of CO, and H, was observed with the change of pH
towards alkaline (Fig. 3). No methane was detected at Dyg.

The majority of amino acids were depleted from the cul-
ture medium within the whole pH range at Dy, (Table S1,
Supporting Information). Notable amounts of alanine, leucine,
isoleucine and valine were detected at Dy;g,. Between pH 6.3
7.9, only 15%-30% of BCAA were metabolized. Below pH 6.3, the
consumption of BCAA decreased even more and was minuscule
at pH 6 (Table S1, Supporting Information). This was supported
by the negligible amounts of metabolites of BCAA fermentation.

DISCUSSION

The species Bacteroides caccae, B. cellulosilyticus, B. ovatus and
B. thetaiotaomicron, Faecalibacterium and Lachnospira pectinoschiza
comprised 30%-50% of the total population in th faecal cul-
tures grown in apple pectin supplemented medium. The preva-
lence of these pectin-degrading bacteria (Sirotek et al. 2004; Bid-
dle et al. 2013; Magnusdottir et al. 2017) emphasizes the impor-
tance of primary fibre degraders in faecal microbiota. Inter-
estingly, along with the increasing pH, the composition of the

pectin-degrading taxa changed from butyrate-producing Faecal-
ibacterium and Lachnospira to propionate-producing B. cellulosilyti-
cus. This indicates the dynamics of microbiota and metabolite
patterns in the colonic environment in regard to the acid for-
mation and pH. Pure cultures of B. caccae were shown to con-
vert apple pectin into acetate and propionate (Sirotek et al. 2004).
Depending on the species, Bacteroides may produce either succi-
nate, propionate, or both in parallel with acetate. The production
of propionate via succinate requires CO, which is used for regen-
eration of NAD". On the other hand, when propionate is pro-
duced via catabolism of puryvate, CO, is released. Our data sug-
gest that Dy, favours the development of consortia that produce
propionate through succinate and CO,, while Dy;g, supports the
fast growing microbes that produce succinate without its further
conversion into propionate.

A surprising dilution rate specific effect was seen for mucin
degrading bacteria Akkermansia and Lachnoclostridium (L. torques
and L. gnavus). These bacteria can degrade mucins but have dif-
ferent pH optima. At Dy;gn, the abundance of lachnoclostridia
decreased while that of A. muciniphila increased along with the
rise of pH from 7 to 8. This trend was not seen at Djqy,. Although
A. muciniphila is generally regarded as a beneficial gut bacterium,
its abundance may increase in the case of colorectal cancer
(CRC) progression along with elevated pH (pH > 7.5) (Weir et al.
2013; Zackular et al. 2013; Borges-Canha et al. 2015). Moreover,
we saw the decline of butyrate producing taxa as well as lower
concentrations of butyrate at pH > 7.5, that often occur together
with CRC. Moreover, the alkaline pH usually accompanies slow
gastrointestinal transit (Lewis and Heaton 1997) and constipa-
tion, thatis typical for CRC (Kojima et al. 2004). This suggests that
alkaline environments enable this bacterium to acquire bene-
fits over lachnoclostridia or other mucin degrading bacteria such
as Bifidobacterium bifidum, B. caccae and B. fragilis which abun-
dances decreased at higher pH. A. muciniphila was a dominant
bacterium also at Djoy, independent of the pH.

High pHin colonic lumen is one of the key parameters related
to CRC (Kashtan et al. 1990; Walker and Walker 1992; Ohigashi
et al. 2013), however, the data on the influence of alkaline envi-
ronment on the development of colon microbiota are missing. It
might be explained by the relevance of alkaline pH to protein fer-
mentation resulting in formation of ammonia from amino acids.
Branched short chain fatty acids (BCFA) isobutyrate and isovaler-
ate, which are produced during protein degradation have been
considered to be biomarkers for gut health as protein fermenta-
tion by genera such as Bacteroides and Clostridium can yield phe-
nols, p-cresol and biogenic amines—potentially harmful com-
pounds for the intestinal epithelium (Aguirre et al. 2016; Rios-
Covian et al. 2020). Our results revealed the increase of prote-
olytic bacteria (Clostridium, Escherichia) along with the decrease
of butyrate producers (Faecalibacterium, Blautia, Lachnospira) at
pH > 7.5, even in the presence of fermentable carbohydrate
pectin. A decrease in abundances of Faecalibacterium and Blautia
as a result of changing pH from 5.5 to 6.9 in chemostat experi-
ments with apple pectin as substrate (D = 0.04 1/h) was reported
by Chung et al. (2016). Similarly, Reichardt et al. (2018) showed an
enhanced growth of butyrate producers in faecal microbiota at
PH 5.5, compared to that at pH 6.5. In parallel with the decreas-
ing abundances of butyrate producers, we saw an increase in
production of BCFA at Dioy,. In addition, at pH close to 8, the
increased solubility of H,S would lead to formation of HS™ ions,
that might inhibit the butyrate producing bacteria.

Methane production was detected only at Dioy. Increased
methane formation is also related to higher proportion of
colonic methanogenic microbes in CRC patients. We observed
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gradual increase of Methanobrevibacter together with that of
methane production while changing the pH > 7.5 at Digy.
Methanobrevibacter is commonly associated with slow transit
microbiomes (Vandeputte et al. 2015), however, the effect of pH
on its growth has not been described earlier. The increased
abundance of Methanobrevibacter may be related to its lower sen-
sitivity to H,S, while the abundances of butyrate-producing H,S-
sensitive bacteria such as Faecalibacterium decreased along with
the increase of H,S concentrations. The main source of H,S
was cysteine, added to the culture medium. According to Meta-
Cyc.org database, Alistipes, B. cellulosilyticus, B. ovatus, Escherichia
coli, and Klebsiella (all detected in this study) can convert cys-
teine to H,S. Reaction of H,S with metal (for example iron) ions
results in formation of insoluble sulphides that are not available
for bacterial cells. For anaerobic bacteria, however, iron in the
form of ferredoxins is extremely important for regeneration of
the whole redox system.

In conclusion, we showed that pH is a crucial trigger in
the development of continuously growing faecal consortia. The
changestat experiments demonstrated the pH-specific changes
in the faecal microbiota, for example in relation to alkaline pH
environment, often associated with pathologies. The species
such as B. ovatus were prevalent within the whole range of pH,
while butyrate producing Faecalibacterium or Coprococcus comes
were severely inhibited at pH > 7.5. Further variations in the
composition and metabolism were caused by the dilution rate,
representing either fast or slow colonic transit rate. Conse-
quently, the concomitant bacterial metabolites have specific
health effects. The effect of pH on the fermentation of other
dietary fibres, and their combinations, by faecal microbiota can
be studied by applying a similar cultivation approach. As the pH
of the colonic environment is directly related to diet, science-
driven diet modifications could be an easy solution to support
gut health.
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OPEN ACCESS  'he gut microbiota interacts with the host through the mucus that covers and protects
the gastrointestinal epithelium. The main component of the mucus are mucins, glycopro-
teins decorated with hundreds of different O-glycans. Some microbiota members can utilize
mucin O-glycans as carbons source. To degrade these host glycans the bacteria express
multiple carbohydrate-active enzymes (CAZymes) such as glycoside hydrolases, sulfatases
and esterases which are active on specific linkages. The studies of these enzymes in an
in vivo context have started to reveal their importance in mucin utilization and gut colo-
nization. It is now clear that bacteria evolved multiple specific CAZymes to overcome the
diversity of linkages found in O-glycans. Additionally, changes in mucin degradation by gut
microbiota have been associated with diseases like obesity, diabetes, irritable bowel disease
and colorectal cancer. Thereby understanding how CAZymes from different bacteria work
to degrade mucins is of critical importance to develop new treatments and diagnostics for
these increasingly prevalent health problems. This mini-review covers the recent advances
in biochemical characterization of mucin O-glycan-degrading CAZymes and how they are
connected to human health.

Introduction

The human gut harbours a complex and diverse microbial community, the gut microbiota, that has an
essential role on human health. The gut microbiota colonizes the mucus layer that covers the intestinal
epithelium [1]. The properties of this mucus layer are variable along the gastrointestinal (GI) tract. In the
small intestine the mucus forms a single loose layer. However, in the colon the mucus is organized into two
layers: the inner layer, attached to the epithelium, is tightly arranged and it is almost devoid of bacteria,
whereas the outer mucus layer is loosely arranged and is heavily colonized by the microbiota (Figure 1A)
[1]. This double-layer organization of the colonic mucus is essential to the host health. The outer layer
provides the ideal habitat for the bacteria to thrive in the gut environment, while the impenetrable inner
mucus layer acts as a barrier keeping the bacteria away from the intestinal epithelium preventing close
contact and inflammation [2]. The major components of the mucus are mucins, heavily O-glycosylated
glycoproteins (Figure 1B). These host glycans have a major role in determining which bacteria can suc-
cessfully colonise the host [1,3,4]. At the same time, some members of the human microbiota have been
shown to be able to forage on mucins and if excessive, the bacterial degradation of mucins can lead to
alterations on microbiota composition and a thinner and penetrable mucus barrier (Figure 1A) [5-7]. It
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Figure 1. Overview of colonic mucus layers

(A) In the healthy colon the mucus is organized as the inner and outer mucus layer, which have low and high bacterial colonization,
respectively. The major components of the mucus layer are mucins that are synthesized and secreted by goblet cells. In diseases,
such as ulcerative colitis, there is an increase in the mucus layer penetrability and bacteria can be found close to the inflamed
intestinal epithelium. ( B) Schematic representation of the MUCIN 2 (MUC2). In the mucus layer, MUC2 is organized in a complex
network due to N- and C-terminal disulfide bounds. This glycoprotein is heavily O-glycosylated in proline, threonine and serine (PTS)
domains. The MUC2 monomer backbone has a molecular weight of around 500 kDa which goes up to 2.5 MDa after glycosylation.

Select members of the microbiota can degrade mucin
O-glycans

Mucins can be membrane-bound or secreted. Membrane mucins are a part of the glycocalyx of mucosal surfaces
where they are involved in cell signalling and act as a last defence line to keep bacteria away from the epithelium
[10]. Secreted mucins are the main components of the mucus and give it its viscous gel-like properties. The mucus
composition along the GI tract is variable with Mucin5AC (MUC5AC) and Mucin2 (MUC2) being the most com-
mon mucins in the stomach and intestine, respectively (Figure 1B) [1]. The mucin protein backbone is characterized
by having multiple repeating units of proline-threonine-serine (PTS) domains that are extensively decorated with
complex O-glycans made of N-acetylgalactosamine (GalNAc), galactose (Gal) and N-acetylglucosamine (GlcNAc)
chains capped with sialic acid, sulfate and fucose (Fuc) in multiple positions and blood groups generating multiple
terminal epitopes (Figure 2). A single mucin can contain more than a hundred different O-glycan structures with
these sugars making up to 80% of the total mucin molecular weight [1,11]. Importantly, the O-glycosylation varies
spatially along the GI tract and between different species. In humans and pigs, there is an increasing gradient of sialy-
ation and sulfation along the Gl tract, whereas the opposite is observed for fucosylation [12-16]. Such variations in
glycosylation will have a significant impact on the microbiota utilization of these complex glycans. Indeed, a recent
study showed that Akkermansia muciniphila, a bacterium known to grow on O-glycans of porcine gastric mucins
(PGM), failed to grow on colonic O-glycans [17]. Therefore, to address the mechanisms of degradation of mucins, it
is critical to understand the structural variability of mucin O-glycosylation.

To degrade O-glycans, the gut bacteria encode multiple carbohydrate active enzymes (CAZymes) such as glycoside
hydrolases (GHs), carbohydrate esterases (CE) and sulfatases. CAZymes are classified into families based of sequence
similarity in the databases CAZy (GHs and CEs) and SulfAtlas (only sulfatases) [18,19]. Inside a family the proteins
share a conserved fold, catalytic mechanism and active site residues. Additionally, depending on the cleavage site, the
GHs and sulfatases are also classified as either exo- or endo-active with the former hydrolysing glycans from one end
and the latter within the glycan chain [20].

CAZymes active on terminal mucin capping structures

The substitution of mucins with sialic acid, sulfate, fucose and blood groups creates a barrier against degradation by
the microbiota (Figure 2). To utilize mucin glycans the bacteria need to encode specific enzymes that remove the
various capping structures. The different enzymes active on the mucin substitutions are described below.

(©) 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 2. Schematic representation of mucin O-glycan structures
Different terminal epitopes and cores structures highlighted inside the blue and yellow boxes, respectively. Sugars are shown
according to the Symbol Nomenclature for Glycan system [60].

Sulfatases

In mucins, sulfation occurs O-linked to Gal at positions 3, 4 and 6 (3S-, 4S- and 6S-Gal, respectively) and to GIcNAc
in position 6 (6S-GlcNac). Sulfation on Gal is always terminal whereas 6S-GlcNAc can be terminal or internal (Figure
2) [17]. Sulfation is variable between species with 3S-Gal and 6S-GlcNAc being common in porcine colonic mucins
while human colonic mucins also show a high level of 6S-Gal [13,15,21]. The sulfation on 4S-Gal is present on saliva
mucins that transit trough the GI tract where they become an available carbon source for the gut microbiota [22].
Several members of the human microbiota encode sulfatases that remove the sulfate capping group allowing access
to O-glycan (Figure 3) [17]. The microbial sulfatase activity has been previously associated with colitis, a type of IBD
[23]. Additionally, it has been shown that Bacteroides thetaiotaomicron, a prominent member of the human mi-
crobiota, can lead to colitis in a susceptible animal model and the development of this disease is dependent of active
sulfatases [24]. Despite the link between sulfatases and disease, these enzymes remain poorly characterized. Recently,
astudy identified the activity of 12 of the 28 sulfatases encoded by B. thetaiotaomicron [17]. Surprisingly, 11 on these
enzymes are active on sulfated linkages found on mucin O-glycans. Together these enzymes can potentially remove
all the sulfate groups found in mucin. However, only 4 sulfatases were found active on colonic mucin O-glycans,
cleaving specifically sulfation of 3S-Gal or 6S-GlcNAc. The present study also identified the first sulfatase active on
3S-linked to GalNAc (3S-GalNAc), a linkage not yet identified in mucin or other host glycans [17]. The structural
characterization of B. thetaiotaomicron sulfatases showed for the first time that these enzymes evolved different
specificity determinants to specifically recognize the target linkage within different glycan contexts [17,25]. Impor-
tantly, the present study identified a single 3S-Gal sulfatase (BT1636) as essential to B. thetaiotaomicron growth on
colonic O-glycans and in vivo fitness during a competitive gut colonization [25]. A similar key role of sultases in gut
colonization was also shown in Bacteroides fragilis. BF3134, a homolog of the 6S-GIcNAc enzymes characterized in
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Figure 3. Specificity of mucin O-glycans CAZymes
The arrows point to the linkage cleaved by the different enzymes shown inside green boxes. Sugars are shown according to the
Symbol Nomenclature for Glycan system [60]; GHXXX, glycoside hydrolase family XXX.

B. thetaiotaomicron, has been shown to have a key role in B. fragilis in vivo fitness in presence of an invading strain
suggesting that sulfatases are also important in securing colonization within the gut [26].

Sulfation in 6S-GlcNAc is a major substitution found in colonic mucins of human, pigs and mice. To remove this
sulfation some gut bacteria, such as Prevotella and Bifidobacterium bifidum, developed an alternative mechanism
of overcoming the 6S-GlcNAc blockage. These bacteria do not use sulfatases but instead their genomes encode a
GH20 that cleaves terminal 6S-GlcNAc (Figure 3) [27,28]. In B. bifidum, this 6-sulfo-(3-N-acetylglucosaminidase
is expressed at the bacteria cell surface and it has been shown to be active on PGM [28]. However, the specificity
of these GH20 enzymes against colonic mucins remains unclear. Overall, all the mucin active enzymes that cleave
sulfation have evolved to recognize sulfate groups at the terminal positions suggesting that these enzymes act in the
initial stages of mucin degradation by microbiota members.

Sialidases

On O-glycans, terminal sialic acid residues are found «2,3/2,6-linked to Gal and GalNAc (Figure 2) [13]. Hu-
mans only have N-acetylneuraminic acid (Neu5Ac) while pigs also have N-glycolylneuraminic acid [17]. Colonic
mucins are highly sialylated and the ability to cleave and/or utilize sialic acid has a key role in gut colonization. To
cleave sialic acid most bacteria encode one or several GH33 sialidases (Figure 3) [29]. These enzymes can be clas-
sified either as trans-sialidases that cleave 2,3 linkages, or hydrolytic sialidases that cleave all sialic acid linkages.
Trans-sialidases were identified on Ruminococcus gnavus where the activity of these enzymes converts Neu5Ac into
2,7-anhydro-Neu5Ac that is specifically metabolized by this bacterium [30,31]. This modification of the sialic acid
confers an advantage within the gut environment where R. gnavus does not need to compete with other bacteria
to utilize this O-glycan monosaccharide. Recently, it was shown that the deletion of the trans-sialidase impaired the
R. gnavus growth on mucin and, in vivo, the mutant had a fitness defect when competing with the WT strain [31].
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Interestingly, in monocolonized mice the mutant strain lost the ability to colonize the colonic mucus layer closer to
the intestinal epithelium indicating that the trans-sialidase is required to colonize the niches within the mucus barrier
[31]. The bacteria relying on hydrolytic sialidases that utilize sialic acid have all the required enzymes for Neu5Ac
metabolism grouped together into Nan clusters [29]. For bacteria with incomplete Nan clusters, Neu5Ac can be used
in interspecies crosstalk. For example, B. thetaiotaomicron can release Neu5Ac from mucin glycans, but lacks the
enzymes for its further metabolism, thereby leaving the Neu5Ac residues to be consumed by other bacteria in the
environment such as Salmonella typhimurium and Clostridium difficile who lack sialidase-activity [32]. More re-
cently, founding member of the GH156 family displayed activity against «2,3/2,6-Neu5Ac on short oligosaccharides
[33]. This new enzyme was initially isolated from hot spring metagenomes but the taxonomic display shows that the
genome of gut microbiota members, such as, Parabacteroides merdae and Parabacteroides johnsonii, also encode
GH156 enzymes [18]. Although the characterized enzyme failed to show activity in glycans presented on the surface
of cancer cells, the activity of these enzymes was not yet addressed on complex O-glycans [34].

Fucosidases

On mucin O-glycans, fucose can be «1,2-linked to Gal or «1,3/1,4-linked to GIcNAc which determines the different
H type or Lewis antigen epitopes (Figure 2) [11]. To cleave fucose the gut bacteria rely on fucosidases from families
GH29 and GH95 (Figure 3). While the GH95 are known to be «1,2-fucosidases, members of GH29 family can act on
all fucose linkages found in mucins [18]. The GH29 enzymes can be divided into two subfamilies (A or B) accord-
ing to their specificity. GH29-A have a broad specificity and act on p-nitrophenyl(pNP)-c-fucoside, while GH29-B
specifically cleave «1,3/1,4-fucose [35]. In presence of mucin, bacteria up-regulate the expression of multiple fucosi-
dases indicating that the removal of fucose is critical to growth and/or to access other sugars in O-glycans [3,6,36].
Additionally, fucose released by gut commensals, like B. thetaiotaomicron, can also be scavenged by pathogens, such
as enterohaemorrhagic Escherichia coli, leading to the increased expression of virulence factors and gut colonization
[37]. Despite the importance of fucosidases, the characterization of the substrate specificity of these enzymes remains
limited to few members and such activities have only been shown against synthetic oligosaccharides and not complex
O-glycans. B. thetaiotaomicron encodes nine GH29 and four GH95 genes that can be associated in mucin degrada-
tion. So far, only 4 of the GH29s enzymes have been characterized. BT2970 and BT4136 are active on pNP-x-fucoside
[35,38]. BT1625 and BT2192 are 1,3/1,4-fucosidases. BT2192 specifically acts on trisaccharide substrates (Lewis® and
Lewis*) while BT1625 is active against all Lewis antigens [35,39]. For B. fragilis only four GH29s out of the 12 pre-
dicted fucosidases have been previously characterized [40]. BF0810 was only active on pNP-c-fucoside while BF0028
also showed weak activity against «1,2 and «1,3 linkages. BF3242 and BF3591 were able to cleave «1,2/1,3/1,4-fucose.
However, BF3591 displays a preference to «1,3-Fuc found in Lewis¥’¥, common epitopes found in mucins [40]. Re-
cently a study aiming the characterization of fucosidase activity in different Ruminococcus gnavus strains showed
that two GH29s encoded by the E1 and ATCC 29149 strains preferably cleave «1,3/1,4-Fuc and «1,2-Fuc, respectively.
Interestingly, only one enzyme from E1 strain (E1-10125) was able to accommodate terminal sialic acid modifications,
a common feature in O-glycans [36].

An alternative mechanism to remove fucose can be cleaving the terminal oligosaccharides containing this substi-
tution. Recently, a member of GH136, a family populated with lacto-N-biosidases, was shown to specifically release
Lewis® and Lewis* from human milk oligosaccharides, a substrate that is similar to O-glycans [41]. This enzyme iden-
tified in Roseburia inulinivorans evolved to recognize Fuc-«1,4-GlcNac at the subsite-1 (Figure 3). Interestingly, it
was shown that this bacterium also encodes a GH29 specific towards «1,4-fucose [41]. Although these enzymes were
not shown to be active on mucin O-glycans it would be interesting to determine if mucin degrading bacteria encode
GHI136 or/and «1,4-specific GH29s that are able to cleave terminal fucosylated oligosaccharides.

Enzymes cleaving A/B blood groups and other additional capping

structures

To access mucins gut bacteria have also evolved to encode enzymes that remove blood groups. To remove blood
group A and B bacteria can deploy x-N-acetylgalactosaminidases (GH109) and x-galactosidases (GH110), respec-
tively (Figure 3) [42]. Very few members of these families have been characterized so far. In GH110 it has been
shown that B. thetaiotaomicron and B. fragilis encode enzymes that specifically recognize the trisaccharide B group
[Gal-«1,3(Fucx1,2-)Gal] and enzymes that are active on both linear and branched Gal-«1,3-Gal oligosaccharides
[43]. Recently a GH109 enzyme of A. muciniphila was shown to be display both «-retaining and 3-inverting mech-
anisms releasing the same product (x-GalNac) from o-GalNac and 3-GalNAc substrates, respectively [44]. This
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dual mechanism can allow the bacterium to access different glycans such as mucins or glycolipids that cover ep-
ithelium cells. To remove A/B blood groups, bacteria can also encode endo-31,4-galactosidases (GH98 enzymes)
(Figure 3) [45]. Of relevance, a GH98 enzyme from Ruminococcus gnavus ATCC29149 was shown to release
GalNAc-o1,3(Fucacl,2-)Gal from PGM [46]. Interestingly, this enzyme enables R. gnavus E1 (a strain lacking GH98s)
to grow on the released trisaccharide and also the underlaying O-glycans exposed after enzyme treatment. It was sug-
gested that in Ruminococcus species the GH98s can be critical to the utilization of mucin glycans [46]. Recently a
study aiming to identify novel blood group cleaving enzymes encoded by the microbiota revealed an alternative mech-
anism to remove these epitopes. Flavonifractor plautii deploys two enzymes to specifically remove blood group A
[47]. First, a metallo-GalNAc-deacetylase converts the terminal GalNAc to N-galactosamine (GalN) that acts as a
substrate for a novel GH36 x-galactosaminidase (Figure 3) [47]. The sequential action of these enzymes allows the
quick conversation of blood group A to group H demonstrating that the gut microbiota evolved different mechanisms
to remove terminal epitopes found on mucins.

Additional terminal capping structures, such as «1,4-GlcNAc, can be found in gastric mucins [48]. Although this
epitope is not found on colonic mucin, several gut bacteria encode x-N-acetylglucosaminidases (GH89) that can
remove this linkage from mucins passing through the gut lumen (Figure 3) [6,11]. At last, O-acetylation in sialic acid
is a common modification on colonic mucins that blocks the access of bacterial sialidases [13]. To overcome this
barrier, some microbiota members express sialate-O-acetylesterases (Figure 3). Although not much is known about
these enzymes, EstA, an acetylesterase expressed by B. thetaiotaomicron and B. fragilis, enables E. coli to access
sialic acid and grow on mucin [49]. Interestingly, EstA is a specific 9-O-acetylesterase that requires the spontaneous
migration of the O-acetyl group from carbon 7 to 9 to be active [49]. Since O-acetylation is a common feature of
human colonic mucins, further studies are required to characterize novel O-glycan specific O-acetylesterases and
understand the role of such enzymes in gut colonization.

CAZymes active on mucin O-glycans backbone and cores
Upon the cleavage of the terminal capping sugars bacteria can access the protected O-glycans backbone. The cleavage
of these can happen through the sequential action of 3-galactosidases and (3-N-acetylglucosaminidases that cleave
[3-Gal and 3-GlcNAc. Several bacteria known as able to grow on O-glycans express several enzymes with such speci-
ficities; however, almost none of these enzymes have ever been tested on colonic mucins. Internal Gal is 31,4-linked to
GlcNAc whereas terminal Gal can be linked 31,3 or 31,4 generating type 1 or type 2 epitopes, respectively. Addition-
ally, core 1 and 2 also contain Gal-f1,3-GalNAc. (Figure 2) [11]. These linkages can be cleaved by (3-galactosidases
from families GH2, GH35 and GH42 (Figure 3) [18]. A. muciniphila genome encodes 6 GH2 enzymes. Only 3 of
these proteins were characterized showing that this bacterium has evolved to target all the different linkages found
in mucin [50]. Amuc_0771, Amuc_1666 and Amuc_0924 specifically cleave Gal-[31,3-GlcNAc, Gal-(31,4-GlcNAc and
Gal-31,3-GalNAg, respectively. Only Amuc_0771 and Amuc_0924 display activity on PGM which is consistent with
the high abundance of type 1 linkages on this substrate [50]. A GH35 from A. muciniphila was also shown to be ac-
tive on core 1 and core 2 structures. However, the activity of mucins was never shown for this enzyme [51]. After Gal
has been cleaved, the [3-N-acetylglucosaminidases (GH20 and GH84) will then cleave the exposed GlcNAc (Figure
3). These enzymes have been mostly characterized on short glycans or against pNP substrates [52-55]. Additionally,
families GH101 and GH129 are populated with enzymes that share structural similarities and target mucin cores
with different specificities (Figure 3) [56]. GH129 enzymes are highly abundant in Bifidobacterium and specifically
cleave Tn antigen (GalNAc-«1-Ser) but can also act on core 1 (Gal-f31,3-GalNAc-1-Ser) [57]. The family GH101 is
encoded in genomes of Actinobacteria and several Firmicutes and these endo-enzymes specifically target core 1 [58].
Endo-active enzymes that cleave within O-glycans offer an additional mechanism to access these sugars without
the need to remove capping groups. Such endo-acting O-glycanases were recently identified in GH16 family (Figure
3) [59]. Interestingly, these endo-[31,4-galactosidases require the removal of sialic acid prior to the activity [59]. Since
these enzymes are encoded by commensals such as B. thetaiotaomicron, B. fragilis and A. muciniphilia, the block-
age of this enzymatic activity by sialic acid can represent an adaptation to limit the access of these bacteria to mucin
glycans within the colonic mucus layer.

Summary

e Some gut microbiota members are able to break down and utilize complex mucin O-glycans that
are found in the colonic mucus layer.
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e Gut bacteria express specific enzymes to target all the different linkages found on O-glycans.
However, most of the enzymes lack a characterization on complex colonic mucin O-glycans.

e Enzymes cleaving terminal epitopes, such as sulfatases and sialidases, have a key role in bacterial
gut colonization.

e Understanding the mechanisms of mucin O-glycans degradation and utilization by microbiota
members can reveal key enzymes that are potential drug targets in diseases associated with the
increase of bacterial foraging on mucins and the disruption of the protective colonic mucus layers,
such as IBD, obesity and colorectal cancer.
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ABSTRACT

The human gut microbiota is crucial for degrading dietary fibres from the diet. However, some of
these bacteria can also degrade host glycans, such as mucins, the main component of the protective
gut mucus layer. Specific microbiota species and mucin degradation patterns are associated with
inflammatory processes in the colon. Yet, it remains unclear how the utilization of mucin glycans
affects the degradation of dietary fibres by the human microbiota. Here, we used 14 dietary fibres
and oligosaccharides to study in vitro the dynamics of mucin and dietary fibre degradation by the
human faecal microbiota. Three dietary fibres (apple pectin, B-glucan and xylan) showed clearly
distinguishing modulatory effects on faecal microbiota composition. The utilization of mucin in
cultures led to alterations in microbiota composition and metabolites. Co-metabolism of mucin and
complex dietary fibres promoted formation of mixed acids and biogenic amines which have been
shown to be beneficial to the host. Interestingly, the metaproteome analysis showed the central role
of the Bacteroides in degradation of complex fibres while Akkermansia muciniphila was the main
degrader of porcine colonic mucin but not gastric mucin. This work demonstrates the intricacy of
complex glycan metabolism by the gut microbiota and how the utilization of host glycans leads to

alterations in the metabolism of dietary fibres.
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INTRODUCTION

The human gut microbiota has an immense impact on human health and disease. These bacteria are
well adapted to survive in the gastrointestinal tract due to their ability to utilise a wide range of
polysaccharides, especially dietary fibres and host glycans, as carbon source. The degradation of
polysaccharides into monosaccharides by microbiota is catalysed by different carbohydrate-active
enzymes (CAZymes) such as glycoside hydrolases (GH), polysaccharide lyases (PL), carbohydrate
esterases (CE) and sulfatases. CAZymes are classified into families according to their sequence
similarity 2. The metabolism of the resulting monosaccharides by the bacteria provides the host

with an amplitude of beneficial metabolites such as short-chain fatty acids and biogenic amines 3.

The microbiota in the gut colonises the mucus layer that acts simultaneously as a protective barrier
and an interaction site between the intestinal epithelium and the bacteria . The major component
of the colonic mucus layer is Mucin-2, a heavily O-glycosylated glycoprotein produced by goblet cells
in the colonic crypts. The presence of gut microbes is required for normal epithelial development,
mucin turnover and the development of an impenetrable mucus barrier ”-°. However, some
microbiota species can degrade and utilise mucins as carbon source. Indeed, imbalances in the
microbiota composition and metabolism have been shown to promote the expansion of mucin-
degrading bacteria and impaired mucus barrier function. It has been proposed that mucin
degradation and/or the respective shifts in the microbiota metabolism have a crucial role in the
development of diseases such as inflammatory bowel disease (IBD) and obesity %!, Yet, it remains
unclear how the gut microbiota metabolises mucins and how this process is affected by the presence

of dietary fibres.

Previous studies have disclosed how microbiota members have evolved to degrade plant cell wall
polysaccharides. However, the study of the mechanisms behind colonic mucin degradation and
utilization has been significantly limited due to the lack of an available substrate. Recent studies
have been focused on characterising specific enzymes from known species able to grow on porcine
gastric mucin (PGM), such as Akkermansia muciniphila, Bacteroides thetaiotaomicron, Bacteroides
fragilis and Bacteroides caccae **™*°. However, the human gut microbiota is a complex consortium of
hundreds of interacting species. It is likely that within the microbiota dynamic environment some
bacteria will rely on specific systems evolved for selfish utilization of glycans, whereas other
members of the microbiota will share oligosaccharides and metabolites, allowing the growth of
additional bacteria unable to access the complex glycans. To address these dynamic interactions,
human faecal microbiota has been used in in vitro studies of the co-metabolism of polysaccharides

and porcine gastric mucin **7%°. However, it should be emphasized that the glycosylation of mucins
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varies along the gastrointestinal tract 2>*'. Recently, it was shown that some bacterial species able to
grow on PGM do not grow on porcine colonic O-glycans **. Therefore, it is likely that differences in
mucin O-glycosylation have a major impact on the microbiota community. As the fermentation of
dietary fibres happens mainly in the colon, the use of colonic mucins as co-substrate is required to
mimic the physiological conditions. To understand the impact of colonic mucin on the fermentation
of complex dietary glycans, we cultivated human faecal microbiota on a panel of 14 dietary fibres
and oligosaccharides. We studied the co-metabolism of diet- and host-derived glycans on a
metaproteome level. Our data shows the specific modulatory effect of different glycans and how the

presence of mucins alters dietary fibre metabolism.
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RESULTS

The substrate determines the microbiota composition of faecal consortium

Faecal samples from seven healthy donors were pooled to generate a complex inoculum that
overcomes interindividual differences in microbiota. We used isothermal microcalorimetry to
cultivate the resulting microbial community on a panel of 14 dietary fibres and oligosaccharides
(Supplementary Table S1) to study the ability of these bacteria to utilise different complex glycans.
We supplemented the growth medium with porcine gastric mucin (PGM) to study the impact of host
gastrointestinal glycans on dietary fibre fermentation. The community growth heat flows were
recorded, where tall and narrow peaks indicate fast degradation of the substrate, while lower
amounts of released heat suggest poor degradation. The bacterial growth correlatedfig with the
structure and complexity of the substrate (Fig. 1a, S1). Oligosaccharides and simple fibres, such as
galactooligosachharides, were rapidly fermented while complex and/or poorly soluble fibres, such as
K-carrageenan, high-performance inulin, B-glucan, apple pectin and xylan led to a slower and
multiphasic release of heat, suggesting cross-feeding between specific members of the microbiota
(Fig. 1a, S1). The co-fermentation of fibres with PGM resulted in prolonged growth, suggesting that

the presence of mucins leads to alterations in the community composition (Fig. 1a, S1).

Figure 1 Fermentation of 14 dietary fibres and oligosaccharides by faecal microbiota using
isothermal microcalorimetry. a, Heat evolution of substrate fermentation. Solid line represents
average microbial growth curve on the selected poly- or oligosaccharide + 95% Cl, dotted line
represents average microbial growth curve on the selected poly- or oligosaccharide + mucin + 95%
Cl. n=2-7. b, Community composition on the selected substrates based on 16S rRNA sequencing.
Average relative abundances of the top 17 genera. n=2-7. ¢, The number of different glycans
identified from porcine gastric mucin (PGM) and porcine colonic mucin (PCM). d, Ordination plot of
Bray-Curtis distances between microbial communities from cultivations on the selected substrates.
Colours indicate the choice of dietary fibre, empty round dots represent samples from cultivation of
fibre, filled round dots represent samples from cultivation of fibre+PCM or sole PCM. e, Boxplots
showing changes in microbial numbers (mg/l) grown on the selected substrates. Colours indicate the
choice of substrate, empty boxes represent samples from cultivation of fibre, filled boxes represent
samples from cultivation of fibre+PCM or sole PCM. All replicates shown (two-tailed paired t-test, *p
< 0.05). GOS — galactooligosaccharides, Fur — furcellaran, InuHP — high-performance inulin, B-gluc —
B-glucan, PecA — apple pectin, Xyl —xylan, PGM — porcine gastric mucin, PCM — porcine colonic
mucin, Med — growth medium control.

Supplementary Figure 1 Heat evolution of substrate fermentation. Solid line represents average
microbial growth curve on the selected poly- or oligosaccharide + 95% Cl, dotted line represents
average microbial growth curve on the selected poly- or oligosaccharide + mucin + 95% Cl. n=2-7. AP
—amylopectin, InuHSI — high-soluble inulin, XOS — xylooligosaccharides, Car — k-carrageenan, InuD —
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dahlia inulin, AG — arabinogalactan, PecC — citrus pectin, Psy — psyllium, PGM — porcine gastric
mucin, PCM — porcine colonic mucin, Med — growth medium control.

Next, we used 16S rRNA sequencing to determine the microbial composition after growth on
different substrates. The medium without any glycans promoted the growth of a simple community
dominated by Escherichia/Shigella and Eggerthella species (>80% of the consortium) (Fig. 1b).
Supplementing the medium with dietary or mucin-type glycans led to an increase in the diversity of
the community, indicating that the metabolism of such sugars has a key role in the community
development (Fig. S2a). None of the single-fibre fermentations reached the microbial complexity of
the inoculum (Fig. S2b). However, the complex fibres supported the development of more diverse
consortia compared to the fast-fermented glycans (Fig. S2a). Simple glycans and fructose polymers
enhanced the abundances of Bifidobacteria, whereas the complex fibres promoted the abundances
of Bacteroides (Fig. 1b, S2c). This is consistent with studies showing that Bacteroides are adapted to
break down complex glycans 2. Supplementing the cultures with PGM increased the overall
microbial diversity when compared to the respective fibre only (Fig. S2a). Moreover, with the fibres
on which we observed a limited growth (k-carrageenan, furcellaran, psyllium) (Fig. 1a, S1), the
addition of PGM led to a microbial composition similar to that of sole PGM, indicating that such
alterations in diversity were due to the presence of mucin and not to the utilization of the insoluble
polysaccharides (Fig. 1b, S2c). The presence of PGM promoted the growth of Ruminococcus torques
and Bacteroides, two known mucin degraders >?%, and Faecalibacterium who has been shown to be
in a syntrophic relationship with mucin degraders # (Fig. 1b). This indicates that in the absence of
dietary fibres, host glycans promote the growth of a different microbial community well adapted to

degrade this complex substrate.

Supplementary Figure 2 Consortia composition assessed by 16S rRNA sequencing. a, Simpson alpha
diversity indices for the panel of tested substrates. All replicates shown. b, The microbial
composition of the inoculum. Pooled faecal samples from seven healthy donors. Average relative
abundances of the top 21 genera. n=2 (separate aliquots of the pooled inoculum). ¢, Community
composition on the selected substrates. Average relative abundances of the top 17 genera. n=2-7.
Med — growth medium control, Inoc — inoculum control, AP —amylopectin, GOS —
galactooligosaccharides, InuHSI — high-soluble inulin, XOS - xylooligosaccharides, Car — k-
carrageenan, Fur — furcellaran, InuD — dahlia inulin, InuHP — high-performance inulin, AG —
arabinogalactan, B-gluc — B-glucan, PecA — apple pectin, PecC — citrus pectin, Psy — psyllium, Xyl —
xylan, PGM — porcine gastric mucin, PCM — porcine colonic mucin.

To further understand how the metabolism of complex fibres and mucin affects the microbiota, -

glucan, apple pectin and xylan were selected for an in-depth study based on their distinctly different
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molecular structures that require specific enzymes encoded in different bacteria for degradation
(Fig. S3). A known prebiotic, high-performance inulin was included as an easily fermentable control.
Additionally, as the dietary fibres are metabolised mainly in the colon, the co-cultures were
performed, using porcine colonic mucin (PCM), instead of PGM. Gastric and colonic mucins are
distinct, with MUC5AC and MUC2 being prevalent in the stomach and colon, respectively (Fig. S4a).
Indeed, the glycome analysis of PGM and PCM showed that these mucins share only 9% of the O-
glycans, with PGM being mainly fucosylated, while PCM was highly sulfated (Fig. 1c, S4b). Moreover,
our analysis suggested PGM to be severely hydrolysed which is likely to lead to a faster fermentation
of this susbtrate (Fig. S4c, S1). Together, these results indicate that PCM is a more physiologically

relevant mucin source to address the impact of these host glycans on microbiota communities.

Supplementary Figure 3 Schematic representation of the polysaccharides and different putative
CAZyme families targeting the respective linkages for a, B-glucan. b, inulin. ¢, pectin. d, xylan. e,
mucin O- and N-glycans. Monosaccharide symbols are shown according to the Symbol Nomenclature

for Glycan system 75. GH — glycoside hydrolase, PL — polysaccharide lyase, CE — carbohydrate
esterase.

Supplementary Figure 4 Analysis of porcine gastric mucin (PGM) and colonic mucin (PCM)
composition. a, Gel-forming mucins detected in different mucin samples by mass-spectrometry.
Most abundant uncharacterised proteins in each sample were annotated with BLAST as: MUC2 —
UniProt AOA4X1UH57; MUC5AC — UniProt AOA4X1UGK3; MUC6 — UniProt AOA4X1VZCO. b, Different
glycan modifications detected in PGM and PCM. ¢, Mucin samples separated on a composite gel.
MUC2 — Mucin-2, MUC5AC — Mucin-5AC, MUC6 — Mucin-6, PCM — porcine colonic mucin, PGM —
porcine gastric mucin.

As expected, the cultivations showed that both the fibre and the mucin affect the growth dynamics
and the diversity of the microbial community (Fig. 1a, Fig. S2a). The addition of PCM increased the
consortia homogeneity between replicates, but distinct separate clusters were still formed based on
the dietary fibre (Fig. 1d). Compared to fibre+PGM, the fibre+PCM combinations increased the
abundances of gut commensals Bacteroides and Faecalibacterium and decreased the abundances of
an opportunistic pathogen Solobacterium and a pathobiont Collinsella (Fig. 1b). PCM also increased
the abundances of some non-mucin degraders, such as Ruminococcus bromii and Olsenella
scatoligenes (Fig. 1e, S5a). Interestingly, although Akkermansia sp. could not compete in the
community grown on sole PGM or any of the fibre combinations with PGM, it dominated the
consortium on sole PCM as well as being highly abundant on the combination of xylan+PCM (Fig. 1b,
e). For some species, such as Ruminococcus torques and Eisenbergiella tayi, the abundance was
driven by PCM in combination with complex fibres pectin and xylan (Fig. 1e). Inulin fermentation was

characterised by high abundances of Catenibacterium sp., and Bifidobacteria (Fig. 1b, Fig. S5b). B-
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glucan specifically increased the abundances of Collinsella, Streptococcus and Solobacterium (Fig. 1b,
Fig. 5¢). The complex fibres pectin and xylan led to an overall expansion of Bacteroides (Fig. 1b).
Pectin promoted the growth of B. thetaiotaomicron and B. vulgatus, species known to be able to
degrade this complex polysaccharide %, while xylan notably promoted the growth of B. vulgatus and
unclassified Bacteroides (including B. acidifaciens, B. finegoldii, B. ovatus, B. xylanisolvens and others
which are inseparable with the used sequencing method) (Fig. 1e). In both cases the abundance of B.
vulgatus was higher without colonic mucin. Interestingly, Faecalibacterium prausnitzii and
Parabacteroides merdae were able to grow only if both the fibre and mucin were available (Fig. 1e,
S5a). Together, these results suggest that the co-metabolism of dietary fibres and gastric or colonic

mucins promote the growth of different microbiota communities.

Supplementary Figure 5 Boxplots showing changes in microbial numbers (mg/l) grown on the
selected substrates. Colours indicate the choice of substrate, empty boxes represent samples from
cultivation of fibre, filled boxes represent samples from cultivation of fibre+PCM or sole PCM. All
replicates shown (two-tailed paired t-test, *p < 0.05). a, Taxa affected by mucin addition. b, The
most abundant taxa growing on InuHP. ¢, The most abundant taxa growing on B-gluc. B-gluc — 3-
glucan, InuHP — high-performance inulin, PecA — apple pectin, Xyl — xylan, PCM — porcine colonic
mucin.

Degradation mechanisms of different polysaccharides by human gut microbiota

The putative community enzymes implicated in the degradation of the different glycans were
determined by metaproteomics. More than 21 000 protein groups were identified, out of which ca
3% were CAZymes and binding proteins, such as carbohydrate-binding modules involved in
polysaccharide recognition, uptake and degradation, by the gut microbiota (Supplementary Table S2,
S3). The degradation of inulin was associated with GHs from families 32 and 91, known to be
populated only with fructose-active enzymes * (Fig. 2). These GHs were expressed by
Bifidobacterium, Catenibacterium and Bacteroides species, consistent with the high abundance of
these bacteria by 16S rRNA sequencing (Fig. 2, 1b, 1e, S5b). B-glucan degradation relied on enzymes
from families GH1, GH3 and GH94 that cleave B-glucose linkages (Fig. 2). The 16S rRNA sequencing
showed an increase in Collinsella and Streptococcus abundances (Fig. 1b, S5c¢). Although only four
Collinsella and one Streptococcus CAZymes were detected, three of these enzymes were among the
most expressed proteins on B-glucan, suggesting that these bacteria have a key role in B-glucan
degradation within the community. Despite the increased abundance of Solobacterium on B-glucan,
no CAZymes of this species were detected, suggesting that this bacterium relies on cross-feeding.

Additionally, we identified multiple CAZymes from Bacteroides and Bifidobacterium species that are
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specifically associated with B-glucan utilization, showing the importance of these bacteria on this
polysaccharide degradation.

Figure 2 The CAZymes detected after community growth on selected substrates. Enzymes grouped
by CAZyme families are shown as intensity of the protein level. For each protein the respective
bacterial genus is displayed colour coded on the left side. Three independent replicates are shown.

For accession numbers and full data see Supplementary Table S2. PCM — porcine colonic mucin, B-
gluc — B-glucan, PecA — apple pectin, Xyl — xylan.

On pectin, we mostly detected CAZymes of various Bacteroides (B. ovatus, B. thetaiotaomicron, B.
vulgatus and Phocaeicola sartorii) (Fig. 2, Supplementary Table S2). Pectin is composed of three
main polysaccharides: homogalacturonan and rhamnogalacturonan (RG) | and Il. The metaproteome
analysis of microbiota grown on pectin revealed multiple CAZymes associated specifically with the
degradation of these glycans, such as B-galactosidases (GH2), polygalacturonases (GH28),
arabinofuranosidases (GH51 and GH43), unsaturated rhamnogalacturonyl hydrolases (GH105),
rhamnosidases (GH106) and lyases of families 1, 9, 10 and 11 (Fig. 2, Supplementary Table S2). RG I,
the most complex polysaccharide in nature, required additional enzymes for full degradation, such
as sialidases (GH33), aceric acid hydrolases (GH127), rhamnosidases (GH78) and a-galactosidases
(GH95) (Fig. 2). We detected a PL1 enzyme that was previously described as critical in RG 1l
degradation by B. thetaiotaomicron ¥’. An enzyme from PL27, a family populated with L-rhamnose-a-
1,4-D-glucuronate lyase active on arabinogalactan, was also associated with pectin degradation .
Surprisingly, although Olsenella scatoligenes monocultures have been shown to grow on rhamnose
2 and the species was abundant on pectin+PCM (Fig. S5a), its CAZymes were not detected
(Supplementary Table S2). Additionally, only a few CAZymes from F. prausnitzii, one of the most
abundant species on pectin+PCM, were detected (Fig. 2) (Fig. 1e). These results suggest that both
bacteria rely on cross-feeding in faecal cultures. The degradation of xylan (Fig. 2e) was mainly carried
out by B-xylanases, B-glucuronidases, arabinofuranosidases and B-xylosidases belonging to families
GH10, GH30, GH43, GH51, GH67, GH98, GH115 and GH120 (Fig. 2, Supplementary Table S2).
Bacteroides enzymes account for the majority of the GHs associated with xylan degradation.
Interestingly, several of these enzymes are found in PULs similar to the previously characterised B.
ovatus xylan PULs . Similar to fermentation of pectin, the abundance and number of CAZymes of B.

vulgatus was higher on xylan in the absence of mucin (Fig. 1e, Supplementary Table S2).

Only A. muciniphila’s CAZymes were detected on sole PCM, a result consistent with the high
abundance of this bacterium detected by 16S rRNA sequencing (Fig. 1b, e). In case of fibre+PCM, we

also detected CAZymes from Bacteroides species known to be able to utilise mucin, such as B.
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caccae, B. fragilis and B. thetaiotaomicron (Supplementary Table S2). These CAZymes belong to
families known to contain mucin glycan degrading enzymes, such as GH2, (B-galactosidases), GH20
and GH84 (B-N-acetylglucosaminidases), GH29 and GH95 (a-fucosidases), GH89 (a-N-
acetylglucosaminidases) and GH33 (sialidases) (Fig. 2 and Supplementary Table S2). Specifically, the
enzymes Amuc 1835 (GH33), Amuc 1120 (GH95), Amuc 0290 (GH2) and Amuc 1220 (GH89),
detected on PCM, have been shown to be critical for the growth of A. muciniphila on PGM 3!
(Supplementary Table S2). Interestingly, the GH16 endo-active O-glycanases *? were only detected in
mucin samples in the absence of dietary fibres. We detected multiple sulfatases from A. muciniphila,
B. fragilis and B. ovatus, suggesting that these bacteria have a critical role on removing the capping
sulfate groups from mucin O-glycans (Fig. 2, Supplementary Table S2). Surprisingly, the o/B-N-
acetylgalactosaminidases from mucin-specific family GH109 were detected in fibre samples in the
absence of PCM. Interestingly, our data show the highest MUC2 consumption on xylan+PCM (Fig.
S6). This culture was the only combination of fibre with mucin that led to an increased abundance of
A. muciniphila. This suggests that although A. muciniphila has a key role in mucin degradation,
additional bacteria present on xylan can efficiently degrade mucin glycans inaccessible to A.
muciniphila.

Supplementary Figure 6 Quantification of the MUC2 in the samples after fermentation of the chosen
substrates. a, Intensity of porcine MUC2 measured by mass-spectrometry. b, Coverage of porcine
MUC2 domains. Numbers indicate the end of a tryptic peptide in the porcine MUC2 amino acid

sequence. Simplified MUC2 domain scheme has been adapted from UniProt database (protein
sequence AOA5G2QSD1).

Bacterial metabolites reflect different substrates and affect goblet cell mucin production

Extracellular bacterial metabolites from the end of growth were measured to determine the impact
of the different fibres and mucin on the community metabolism. Additionally, the bacterial
metabolism was evaluated via metaproteome analysis. The highest concentration of acetate and the
highest number of enzymes related to acetate synthesis were measured from pectin fermentation
(Fig. 3a, Fig. S7a), likely due to its methylated and acetylated backbone (Fig. S3c) which is easily
converted into acetate. Xylan promoted mixed acids fermentation, especially propionate, while B-
glucan enhanced butyrate production (Fig. 3a, Fig. S7a-b). The complex fibres pectin and xylan
promoted biogenic amine production, especially cadaverine and putrescine (Fig. 3a). Interestingly,
PCM was critical for tyramine synthesis (Fig. 3a).

Figure 3 Metabolites profile of fermentation of selected substrates. a, Boxplots representing the

concentrations of measured metabolites (mmol/gDW) and pH. Colours indicate the choice of
substrate, empty boxes represent samples from cultivation of fibre, filled boxes represent samples
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from cultivation of fibre+PCM or sole PCM. All replicates shown (two-tailed paired t-test, *p < 0.05).
b, Average (+SEM) enzyme counts for reactions related to specific metabolite synthesis. n=3. ¢, The
effect of microbial metabolites on murine colonic spheroids and mCherry-tagged MUC2 production.
Counts and signal intensity of mCherry-positive goblet cells as a result of treating the spheroids with
metabolites from fermentation of the selected substrates, measured by flow cytometry and
normalized against medium control. n=3-4. B-gluc — B-glucan, InuHP — high-performance inulin,
PecA — apple pectin, Xyl — xylan, PCM — porcine colonic mucin.

Sole PCM cultures had the highest concentrations of propionate and the highest number of
propionate synthesis enzymes detected by metaproteomics (Fig. 3a-b). These enzymes were mostly
from A. muciniphila, consistent with the high abundance of this taxon (Fig. 1e, 3c). Moreover, the
fermentation of sole PCM supported the most effective conversion of succinate into CO, and
propionate (Fig. 3a). Additionally, A. muciniphila produced acetyl-CoA via pyruvate:ferredoxin
oxidoreductase, releasing NADH, which is needed for propionate synthesis (Fig. S7d). A. muciniphila
is known to produce succinate via the reductive TCA cycle 32. However, succinate can also be
produced from y-aminobutyric acid (GABA), an intermediate metabolite of the colonic microbiota.
GABA is formed via the decarboxylation of glutamate (Glu), catalysed by Glu decarboxylase, which
was detected in significant amount from A. muciniphila on sole PCM (Fig. 3b-d, Supplementary Table
4). Although no GABA was detected in the spent medium, the decreased levels of Glu, associated
with the detection of A. muciniphila Glu decarboxylase suggests that GABA was fully converted into
succinate, leading to the elevated levels of propionate and CO, detected on PCM (Fig. 3b-c, S7c and
Supplementary Table 4). Since the growth medium was supplemented with only minor amounts of
Glu, it is likely that the additional Glu was produced from proline (Pro) from MUC2 (Fig. 3d). Indeed,
Pro dehydrogenase was detected from A. muciniphila on PCM (Fig. 3b-c, Supplementary Table 4).
Furthermore, the elevated numbers of threonine (Thr) dehydratase on sole PCM indicates that Thr
could have been used for propionate production (Fig. 3b-c). As the backbone of MUC2 is made of
repeating Pro-Thr-Ser units, these data suggest that the bacteria, especially A. muciniphila, were
able to metabolise the protein backbone of MUC2. Additionally, the conversion of glycans into acids
results in lowered pH, observed with all the substrates, except for sole PCM where the pH remained
neutral (Fig. 3a). If A. muciniphila was able to utilise the MUC2 protein, free peptides were released
in addition to ammonia from amino sugar metabolism 32, acting as a buffer neutralising the pH, as
was seen on sole PCM. Together, these results further support the hypothesis of MUC2 backbone
being degraded by A. muciniphila.

Supplementary Figure 7 Metabolites profile of fermentation of selected substrates. a, Boxplots

representing the concentrations of measured metabolites (mmol/gDW). Colours indicate the choice
of substrate, empty boxes represent samples from cultivation of fibre, filled boxes represent

10
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samples from cultivation of fibre+PCM or sole PCM. All replicates shown. b, Boxplots representing
Glu consumption (Ammol/gDW). Colours indicate the choice of substrate, empty boxes represent
samples from cultivation of fibre, filled boxes represent samples from cultivation of fibre+PCM or
sole PCM. All replicates shown. ¢, Average (£tSEM) enzyme counts for reactions related to specific
metabolite synthesis. Colours indicate the choice of substrate, empty bars represent samples from
cultivation of fibre, filled bars represent samples from cultivation of fibre+PCM or sole PCM. n=3. d,
Average (xSEM) protein counts for two pyruvate synthesis enzymes on sole PCM fermentation by
the 8 bacterial groups. B-gluc — B-glucan, InuHP — high-performance inulin, PecA — apple pectin, Xyl —
xylan, PCM — porcine colonic mucin, Glu — glutamate, Bu — butyric group, A — akkermansia group, Bi —
bifidoabcteria group, Ba — bacteroides group, E — enterobacteria group, L — lachnoclostridia group,
As — asaccharolytic group, S — succinivorans group.

The bacterial metabolites, especially the SCFAs, are considered to have an important role in
regulating the intestinal homeostasis, although the exact mechanisms remain unknown. Intestinal
organoid models have been used to study the microbial metabolites’ effect on cellular proliferation
33333 We used the spent medium from the fermentation of dietary fibre and/or colonic mucin on
murine primary cell culture to test if the bacterial metabolites influenced MUC2 production and
secretion (Fig. 3e, S8a). Briefly, spheroids were established from the colon of the transgenic mice
carrying mCherry-tagged MUC2, treated with the spent medium, and monitored for 48 hours. The
mCherry-tagged MUC2 signal was measured with flow cytometry to evaluate the synthesis and
secretion of MUC2. The elevated numbers of mCherry-positive cells and their increased intensity
suggest metabolites from fermentation of complex fibres pectin and xylan can lead to enhanced

MUC2 levels (Fig. 3e, S8a).

Supplementary Figure 8 The effect of microbial metabolites on murine colonic spheroids and
mCherry-tagged MUC2 production. a, Average counts and intensity (+SEM) of mCherry-positive
goblet cells as a result of treating the spheroids with metabolites from fermentation of the selected
substrates, measured by flow cytometry and normalized against medium control. n=3-4. b, Example
of the gating strategy used in flow cytometry experiments. B-gluc — B-glucan, InuHP — high-
performance inulin, PecA — apple pectin, Xyl — xylan, PCM — porcine colonic mucin.

Multiple bacterial groups are required for the metabolism of monosaccharides

Pectin and xylan degradation resulted in the most diverse consortia producing potentially host-
beneficial metabolite mixtures. Thereby, the metabolism of monosaccharides from these fibres and
PCM was evaluated on metaproteome level. The central metabolism and crosstalk between the
bacteria in consortia were elucidated with metaproteomic analysis, supported by calculations with a
constructed Flux Balance Analysis (FBA) metabolic model. The bacteria were divided into eight

metabolic groups to cover the total carbohydrate metabolism: 1) butyric — butyrate and 1,2-
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propanediol producers, 2) akkermansia — derived from the main mucolytic species A. muciniphila, 3)
bifido — lactate and acetate producers, 4) bacteroides — propionate/succinate and acetate
producers, 5) enterobacteria — lactate, succinate and acetate producers, 6) lachnoclostridia —
mucolytic, formate and 1,2-propanediol consumers, 7) asaccharolytic — lactate and amino acid

degraders, and 8) succinivorans — succinate consumers (Supplementary Table S5).

We studied the metabolism of all the monosaccharides found in PCM O-glycans: fucose (Fuc), sialic
acid (Neu5Ac), N-acetyl-galactosamine (GalNAc), N-acetyl-glucosamine (GIcNAc) and galactose (Gal)
(Fig. 2g). The metabolism of Fuc began with its conversion into (S)-lactaldehyde by the butyric,
akkermansia, bacteroides, enterobacteria and lachnoclostridia groups, followed by the synthesis of
(S)-propane-1,2-diol (1,2-PD) by the butyric group (Fig. 4a). Neu5Ac, was converted into GIcNAc by
the enterobacteria groups followed by conversion into b-fructose-6-phosphate by the butyric,
akkermansia, bacteroides and enterobacteria groups and phosphorylation into fructose-1,6-
bisphosphate (F1,6P) by the butyric, akkermansia and bacteroides groups (Fig. 4a). GalNAc, was first
converted into galactose, followed by catabolism via the Leloir pathway by the akkermansia,
bacteroides and enterobacteria groups (Fig. 4a). The bifido group metabolised p-fructose-6-P from

GIlcNAc and GalNAc via the Bifidobacterium shunt.

Figure 4 Metabolic pathways of glycan degradation by faecal microbiota. a, The degradation of
glycans from dietary fibres and mucin based on the metaproteomic analysis. The bacteria were
divided into 8 groups based on their similar metabolism (see text). n=3. b, The degradation of
glycans from dietary fibres and mucin and cross-feeding between bacterial groups based on Flux
Balance Analysis. The bacteria were divided into 8 groups based on their similar metabolism (see
text). n=3. PecA — apple pectin, Xyl — xylan, PCM — porcine colonic mucin.

Although glycolysis is the main energy production pathway for anaerobic C6 sugar metabolism, some
of the carbon is required for the pentose phosphate pathway (PPP) for biomass production. The
enterobacteria group accounts for the enzymes of the oxidative part of the PPP and the non-
oxidative part of PPP was driven by the butyric, akkermansia, bacteroides, enterobacteria and
asaccharolytic groups (Fig. 4a). The akkermansia, bacteroides and enterobacteria channelled some
of the phosphoenolpyruvate from glycolysis into the reductive TCA cycle for succinyl-CoA and
succinate synthesis. Propionate synthesis enzymes were identified from akkermansia and
bacteroides (Fig. 4a). Acetyl-CoA was synthesized via the ferredoxin dependent pyruvate
dehydrogenase (by the butyric, akkermansia, bifido, bacteroides, lachnoclostridia and asaccharolytic
groups) or via the pyruvate-formate lyase (by the butyric, akkermansia, bifido and enterobacteria
groups). The acetyl-CoA was used for the synthesis of acetate or butyrate by the butyric,

akkermansia, enterobacteria and asaccharolytic groups.
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The pectin backbone is made of galacturonic acid (GalA) and rhamnose (Rha) decorated with
arabinose (Ara) and Gal (Fig. S3c). GalA was metabolised via the Entner-Doudoroff pathway by the
butyric, bifido, bacteroides and enterobacteria groups (Fig. 4a). Rha was used by the bacteroides
group to produce glycerone phosphate and (S)-propane-1,2-diol (Fig. 4a). Ara was converted into D-
xylulose-5-phosphate by the bifido, bacteroides and enterobacteria groups (Fig. 4a). Since Gal is also
prevalent in PCM, it was impossible to distinguish the exact source or characterise the separate
fluxes. The xylose from xylan was metabolised via the PPP by the bifido, bacteroides and
enterobacteria groups (Fig. 4a). A small flow of it was used for the oxidative PPP by the bacteroides
and enterobacteria, while most of it was either used for the reductive PPP or channelled into the
glycolysis by the butyric, bacteroides and enterobacteria groups (Fig. 4a). The bifido group
metabolised xylose via the Bifidobacterium shunt. The glucuronic acid (GIcA) from xylan was

degraded into pyruvate by the butyric, bacteroides and enterobacteria groups.

The degradation of mucin components in the presence of pectin or xylan was similar to sole PCM
fermentation, however, some critical differences were observed. In the presence of pectin A.
muciniphila was not able to compete for the substrate, resulting in a change in mucin degraders
(with higher activities of the butyric, bifido and bacteroides group). Interestingly, although A.
muciniphila was highly abundant on xylan+PCM culture (Fig. 1b), this bacterium did not dominate
the metabolism within this culture and some of the mucin degradation pathways were carried out
by members of the butyric group, especially E. tayi and F. prausnitzii (Supplementary table S4).
Additionally, the proportions of Gal degrading bacteria were altered with butyric and bifidobacterial

groups being more active in the presence of fibre.

The calculations with the FBA model confirmed that the akkermansia group (consisting of A.
muciniphila) was the most active taxon on sole PCM (Fig. 4b). The model predicted akkermansia to
consume mainly GIcNAc, Fuc and Gal and to release acetate, propionate, CO; and H,S into the spent
medium. On pectin+PCM, the model verified that the most active degraders were the butryric and
bacteroides groups, especially F. prausnitzii, B. ovatus, B. vulgatus, B. xylanisolvens and B. faecis (Fig.
4b, Supplementary Table S4). At last, the bacteroides group (B. faecis, B. ovatus, B. vulgatus, B.
xylanisolvens) were confirmed to be the main xylose utiliser (Fig. 4b, Supplementary Table S4).
Together, these data show that the dietary glycans are degraded by a complex community of

bacteria and the presence of mucin can affect these metabolic pathways.
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DISCUSSION

The microbiota colonises the mucus layer in the gut and is in contact with mucin glycans and dietary
fibres. In this study, we utilised a human faecal microbiota to study the impact of mucin in the
metabolism of 14 dietary fibres and oligosaccharides. We observed that the glycans with simple
structures were degraded fast and supported the abundance of fast-growing taxa, such as
Bifidobacterium. Complex host glycans such as mucin were only degraded by a subset of the host
microbiota, while inulin and B-glucan were very easily degraded by multiple species. Additionally,
the prolonged degradation of complex fibres enhanced the microbial diversity, especially the growth
of various Bacteroides species. The number of detected CAZymes also reflected the complexity of
the substrate, with pectin requiring more enzymes for its degradation. This observation agrees with
previous studies showing that a single bacterium can encode 54 enzymes to degrade this complex
plant cell wall polysaccharide?®?”. These results are is in line with previous studies demonstrating
that the structure and accessibility of glycans is a key factor in modulating the microbial consortium
173538 Additionally, several studies with Bacteroides mono-cultures have shown this phylum to be
particularly well adapted to utilising complex polysaccharides due to the high number of CAZymes

encoded by these bacteria 1>2%26:3940,

Consistent with previous results 114! the presence of mucin (and no fibre) led to an expansion of a
microbial community adapted to degrade these host glycans. Importantly, the co-cultures with
gastric and colonic mucin resulted in different microbiota communities. This is likely due to the
differences in O-glycosylation in different mucins and highlights the need of using colonic mucins to
study the metabolism of colonic microbiota. In contrast to the gastric mucin, the colonic mucin
specifically supported the growth of propiogenic Akkermansia muciniphila and butyrogenic
Faecalibacterium prausnitzii, both of which are prevalent gut commensals and potential next-
generation probiotic species 2>, A recent study reported that in mono-culture A. muciniphila
does not grow on colonic mucin O-glycans *°. In our study we utilised a microbiota community and
we speculate that the growth of A. muciniphila on PCM can be due to sharing mechanism between
microbiota members or the presence of a key bacterium that encodes enzymes required to remove
capping sugars, allowing A. muciniphila to access mucin glycans previously inaccessible. Indeed, in
our study we detected multiple CAZymes expressed by A. muciniphila that can be implicated in
mucin degradation, suggesting that this bacterium is able to utilise the O-glycans of colonic MUC2.
Interestingly, we also observed that A. muciniphila degraded the mucin protein backbone as a
carbon source. It was previously shown that A. muciniphila encodes proteases active on MUC2 in
colonic cancer cells and is able to hydrolyse the peptide bond N-terminal to O-glycosylated serine

and threonine residues *>*°. Although we did not detect such proteases in our dataset, the high
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abundance of A. muciniphila, the elevated concentration of propionate and CO, and the highly active
GABA shunt on sole PCM suggest that this bacterium is able to degrade colonic mucin. Therefore,
this unique ability to utilise mucin protein backbone is likely to contribute to the expansion of A.

muciniphila in mucin cultures in the absence of dietary fibre.

Among the tested dietary fibres, the enrichment of A. muciniphila was observed only on xylan. This
culture also showed one of the highest propionate and lowest formate concentrations, which is
characteristic for A. muciniphila metabolism >*. The propiogenic effect of xylan has been
demonstrated previously ”°2. When acetyl-CoA is synthesized using pyruvate-formate lyase,
formate is released and no NADH is produced which is needed for propionate synthesis.
Interestingly, to overcome this limitation, A. muciniphila primarily relied on pyruvate:ferredoxin
oxidoreductase for acetyl-CoA production (Fig. S7d). In addition, xylan supported the most diverse
consortium with one of the promoted species being Eisenbergiella tayi, a butyric acid producing
bacterium. Our metaproteome analysis showed E. tayi to be active on various metabolic pathways.
Little is known of this species >3, however, its concomitant growth with A. muciniphila warrants a
further investigation. The xylan+PCM culture achieved the highest mucin degradation, even though
A. muciniphila did not dominate in the consortium. This suggests cross-feeding mechanisms between
mucin-degrading taxa that were specifically promoted by xylan. Indeed, a recent study highlighted

that the degradation of complex glycans might rely on a community, rather than on a single species

54

Xylan and pectin fermentations resulted in mixtures of SCFAs and biogenic amines, especially
cadaverine and putrescine. The potential effect of amines on the epithelial cells is varying, with
tyramine shown to exert toxicity >, whereas putrescine and cadaverine have been shown to support
cell proliferation and gut barrier function #*®. Indeed, the metabolites from xylan and pectin
fermentation were shown to have a positive effect on the MUC2 levels in goblet cells. This result is in
line with previous studies showing that mixed metabolites from a diverse consortium can have a
direct impact on the gut epithelium, promoting proliferation and turnover, whereas only a single
SCFA can exert inhibitory properties on cell proliferation 3333457, Qur data suggests that xylan and
pectin could have potential host-beneficial effects, due to supporting diverse consortia and
metabolites that promote MUC2 production. However, these are preliminary results and further

studies are needed to address the molecular mechanisms behind this potential beneficial effect.

In conclusion, we showed detailed shifts in bacterial communities and metabolic activities on
different glycans, supporting the idea that gut microbiota can be specifically manipulated by dietary

fibres. Moreover, we revealed how dietary fibre degradation is affected by co-metabolism of host
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glycans. For the first time in the literature, we demonstrated that differences between gastric and
colonic mucins impact the microbiota community and metabolism. A result that highlights the need
of using colonic mucins in future studies addressing the metabolism of colonic bacteria. Overall, by
revealing the functional activities of the bacteria in consortia, this study contributes to a better
understanding of the complex metabolic pathways within the human microbiota that can be

manipulated to maximise beneficial microbiota-host interactions.
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MATERIALS AND METHODS
Faecal samples

The faecal samples were donated by seven healthy volunteers (19-37 years old, Caucasian) with
exclusion criteria being the use of prebiotics, probiotics, laxatives and antibiotics four weeks prior to
the donation. Faecal samples were collected freshly into faeces collection tubes (Sarstedt), the
tubes inserted into previously frozen cryoblock and kept at -20 °C until transport to the lab, but no

longer than two days. After arrival to the lab, the samples were stored at -80 °C.

The faecal slurries were prepared in an anaerobic chamber (Concept, Baker Ruskinn) flushed with
95% N,. The faecal samples were homogenized in four volumes of sterile PBS (phosphate buffer
saline) containing 5% (vol/vol) DMSO (dimethyl sulfoxide) and freshly autoclaved reducing agent
sodium thioglycolate (final concentration 50 mg/ml). Equal volumes of the faecal slurries from
different donors were pooled and stored as 0.5 ml aliquots at -80 °C until the cultivation

experiments.

Collecting and handling the faecal samples was approved by the Tallinn Medical Research Ethics

Committee, Estonia (protocol No. 554).

Porcine colonic mucin extraction and purification

Mucins were extracted from flushed porcine colonic tissues, that were acquired from a local butcher
(Saaremaa Meat Factory, Estonia) and stored at -20 °C until extraction. The mucus layer was gently
scraped from the thawed colon epithelium and collected on ice. A total of 138 g of mucosal
scrapings were collected and mixed in 1:2 ratio with cold extraction buffer (6 M GuHCI, 5 mM EDTA,
0.01 M NaH,POs, pH 6.5) and centrifuged 30 min at 18,000 rpm, 10 °C. Floating fat and supernatant
were aspirated and mucus pellet was solubilized in 1:1 ratio with cold extraction buffer. The mixture
was gently stirred for 3 hours at 4 °C, after which centrifugation for 30 min at 18,000 rpm and 10 °C
was repeated. Supernatant was aspirated and the mucus pellet was solubilized in 2:1 ratio with cold

extraction buffer. The mixture was stirred gently overnight at 4 °C.

The mucus mixture extraction and centrifugation steps were repeated on two consecutive days,
after which the mixture was left stirring for 48 hours at 4 °C. A final centrifugation for 30 min at
18,000 rpm and 10 °C was carried out, resulting in 60 g mucus pellet. Freshly prepared reduction
buffer (6 M GuHCI, 0.1 M Tris, 5 mM EDTA, 10 mM DTT) was added to the pellet and stirred gently at

37 °Cfor 5 hours. Alkylation was carried out by adding 25 mM IAA (iodoacetamide) to the mixture
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and stirred gently in the dark for overnight at room temperature. The mucins were dialysed with
12.4 kDa pore size tubes (Sigma-Aldrich, D0530) against deionized water at 4 °C for 24 hours,

changing the water every 4 hours.

Isothermal microcalorimetry (IMC)

The batch cultivations were carried out in a 48-channel isothermal microcalorimeter (TAM IV, TA
Instruments). A defined basal medium was used: 0.05 M potassium phosphate buffer was made
from 1 M stock solutions (ml/l): K;HPO4 (28.9) and KH,PO4 (21.1); mineral salts (mg/1): MgS04*7H,0
(36), FeSO4*7H,0 (0.1), CaCl, (9), MnSO4*H-0 (3), ZnS04*7H.0 (1), CoS04*7H,0 (1), CuSO4*5H,0 (1),
(NH4)6M07024*4H,0 (1), NaCl (527); L-amino acids (g/1): Ala (0.044), Arg (0.023), Asn (0.038), Asp
(0.038), Glu (0.036), GIn (0.018), Gly (0.032), His (0.027), Ile (0.060), Leu (0.120), Lys-HCI (0.080), Met
(0.023), Phe (0.050), Pro (0.041), Ser (0.095), Thr (0.041), Trp (0.009), Val (0.060), Tyr (0.015);
vitamins (mg/l): biotin (0.25), Ca-pantothenate (0.25), folic acid (0.25), nicotinamide (0.25),
pyridoxine-HCI (0.50), riboflavin (0.25), thiamine-HCI (0.25), cyanocobalamine (0.25) and other
components (g/1): bile salts (0.5), NaHCOs (2.0), Tween-80 (0.5), Na-thioglycolate (0.5), Cys-HCI (0.5),
hemin (5 mg/l1), vitamin K1 (0.5 mg/I).

The substrate screening panel consisted of 14 dietary fibres in combination with commercially
available porcine gastric mucin (Supplementary Table 1). Each polysaccharide and mucin were added
at 2.5 g/l final concentration. Follow-up experiments with in-house extracted porcine colonic mucin
were done similarly. Culture medium without any added carbohydrates or mucin was used as a
negative control. The growth medium was pre-reduced in an anaerobic jar (Anaero-Gen™, Oxoid

Inc.).

The growth experiments were carried out in sterile hermetically sealed 3 ml ampoules (2 ml working
volume, 1 ml headspace). The ampoules were inoculated with 120x dilution of the pooled faecal
slurry in an anaerobic chamber (Concept, Baker Ruskinn) and incubated for 64 hours at 37 °Cin
isothermal microcalorimeter. Heat flow (P, uW) and total accumulated heat (Q, J) were registered

throughout the whole experiment, at 5 min intervals.

The ampoules were removed from the calorimeter and the composition of the gas in the headspace
was analysed with gas chromatography. The ampoules were weighed, and the content divided into
0.5 ml aliquots which were centrifuged for 10 min at 10,000 g. The pH of supernatants was
measured with pH-meter (InLab® Solids, Mettler Toledo). Supernatants were stored at -20 °C and

pellets at -80 °C until further analyses.
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DNA extraction and sequencing, bioinformatics

DNA was extracted from the cell pellets using PureLink Microbiome DNA extraction kit (Thermo
Fisher Scientific). PCR amplification of the V4 hypervariable regions of the 16S rRNA genes was
carried out with universal primers F515 5'-GTGCCAGCMGCCGCGGTAA-3' and R806 5'-
GGACTACHVGGGTWTCTAAT-3. Sequencing libraries were prepared with Nextera XT Index Kit
(Illumina). Prepared libraries were quantified with Qubit™ dsDNA HS Assay Kit (quantitation range
0.2-100 ng; Thermo Fisher Scientific) or Qubit™ dsDNA BR Assay Kit (quantitation range 2-1000 ng;
Thermo Fisher Scientific). Pooled libraries were sequenced using lllumina iSeq 100 platform and i1
reagent kit. All reagent kits were handled in accordance with manufacturer’s instructions. The

amplified region was 291 bp long and in average 53,616 reads per sample were obtained.

The DNA sequence data was analysed using BION-meta (www.box.com/bion). Sequences were first
cleaned at both ends using a 99.5% minimum quality threshold for at least 18 of 20 bases for 5’-end
and 28 of 30 bases for 3'-end. Obtained sequences were then joined and contigs shorter than 150 bp
were removed. The sequences were then cleaned of chimeras and clustered by 95% oligonucleotide
similarity (k-mer length of 8 bp, step size 2 bp). Consensus reads were aligned to the SILVA reference

16S rRNA database (v138) using a word length of 8 and similarity cut-off of 90%.

Metaproteomics

The microbial cell pellets were dissolved in 60 pl of lysis buffer (4% SDS (sodium dodecyl sulfate), 100
mM Tris-HCl (pH 7.5), 100 mM DTT (dithiothreitol)) and heated at 95 °C for 5 minutes, followed by 2-
3 short pulses of ultrasonication (15 um amplitude). Heating and sonication steps were repeated
twice followed by centrifugation for 5 min at 14,000 g to pellet any debris. Cell lysates (30 ul) were
digested with LysC and trypsin on 30 kDa cut-off filters (NanoSep, Pall Life Sciences) according to
Filter Aided Sample Preparation (FASP) protocol *%. Peptide yield was measured with a microvolume
spectrophotometer (Nano Drop 2000; Thermo Fisher Scientific) at 280 nm wavelength. The samples
were acidified with TFA (trifluoroacetic acid) to final concentration of 0.5% and 15 ug of peptides

were cleaned and stored in C18-StageTip filters > at -20 °C.

Samples were analysed in triplicates with an EASY-nLC 1000 system (Thermo Fisher Scientific)
connected to a Q-Exactive mass-spectrometer (Thermo Fisher Scientific) through a nanoelectrospray
ion source. Peptides were separated with an in-house packed column [150 mm x 0.075 mm inner

diameter (New Objective, Woburn), Reprosil-Pur C18-AQ 3 um particles (Dr. Maisch)] using a
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gradient: 3-25% B over 175 min, 25-45% B over 30 min, 45-100% B over 5 minutes and held for
additional 20 min on 100% of B, at flow rate of 250 nl/min (A: 0.1% FA, B: 80% ACN, 0.1% FA). The
Q-Exactive HF hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific) was
operated at 250 °C capillary temperature and 2.0 kV spray voltage. Full mass spectra were acquired
in the Orbitrap mass analyser over a mass range from m/z 400 to 1600 with resolution of 60 000
(m/z 200) after accumulation of ions to a 3e6 target value based on predictive AGC from the
previous full scan. Twelve most intense peaks with a charge state 22 were fragmented in the HCD
collision cell with normalized collision energy of 27%, and tandem mass spectrum was acquired in
the Orbitrap mass analyser with resolution of 15 000, AGC target value 1e5. Dynamic exclusion was
set to 30 s. The maximum allowed ion accumulation times were 20 ms for full MS scans and 50 ms

for tandem mass spectrum.

A custom database was constructed for the metaproteomics searches. First, de novo peptide
identification was done for the raw MS spectra, using PEAKS Studio software (version 8.5,
Bioinformatics Solutions Inc) . Average local confidence (ALC) was set to be > 80%. The acquired list
of peptides was analysed with ProteoClade ! in order to annotate the de novo identified peptides to
all potential organisms in the sample using the entire UniProt repository . The list of taxa from
ProteoClade was further optimized by i) including only taxa from kingdoms of bacteria, archaea and
viruses, ii) removing taxa which were identified in < 3 samples per substrate group, iii) adding
missing taxa from 16S rRNA gene sequencing analysis results. Protein sequences for each taxon were
downloaded from UniProt database (2021.01.14, uniprot.org), reference proteomes preferred
where possible. The final custom database contained 291 bacterial as well as pig and human
proteomes and was used for the final analysis of MS/MS spectra with MaxQuant (version 1.4) %3,
Searches were performed using trypsin as an enzyme, maximum 1 missed cleavage, precursor
tolerance of 20 ppm in the first search used for recalibration, followed by 7 ppm for the main search
and 0.5 Da for fragment ions. Carbamidomethylation of cysteine was set as a fixed modification and
methionine oxidation and protein N-terminal acetylation were set as variable modifications. The
required false discovery rate (FDR) was set to 1% both for peptide and protein levels and the
minimum required peptide length was set to seven amino acids. More than 21,000 protein groups

were identified.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository % with the dataset

identifier PXDOXXXXX.
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Carbohydrate metabolism analysis

All identified proteins were annotated for CAZymes using dbCAN
(http://bcb.unl.edu/dbCAN2/blast.php). Three tools were used for automatic CAZyme annotation: a)
HMMER to search against the dbCAN HMM (Hidden Markov Model) database; b) DIAMOND to
search against the CAZy pre-annotated CAZyme sequence database; and c) Hotpep to search against
the conserved CAZyme PPR (peptide pattern recognition) short peptide library. To improve
annotation accuracy, a filtering step was used to retain only hits to CAZy families found by at least

two tools .

Porcine mucin analysis

The protein composition of porcine gastric and colonic mucins was analysed with mass-spectrometry
system as described for metaproteomics analysis. Briefly, protein samples were digested with
trypsin overnight according to FASP protocol 8. Peptides were cleaned with C18-StageTip filters °
and separated with a 45 min gradient of 5-60% B (A: 0.1% FA, B: 80% ACN, 0.1% FA). The raw
MS/MS spectra were searched with MaxQuant (version 1.6.11.0) % against pig database downloaded
from UniProt (2020.09.12) The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE

partner repository 5 with the dataset identifier PXDXXXXX.

Composite agarose-polyacrylamide (AgPAGE) gel was prepared according to the protocol of Schulz
and co-workers . Porcine gastric and colonic mucins were solubilized by the addition of 2-times
reducing gel-loading buffer (62.5 mM TrisHCI pH 6.8, 2% SDS, 50 mM DTT 20% (v/v) glycerol) and
heated for 5 min at 95 °C before separation via AgPAGE for 3.5 h at 30 mA and 6 °C and stained with
Alcian blue. For controls HiMark™ Pre-stained Protein Standard (ThermoFisher Scientific, LC5699)

and MUC2 purified from LS174T cells (LS material) as described previously ¢’ were used.

Mucin glycan analysis

0O-glycans were released by reductive beta-elimination at a concentration of 10 mg/ml B-elimination
solution (0.5 M NaBHs and 50 mM NaOH). Samples were covered tightly and incubated overnight
(ca. 18 h) at 50 °C. The samples were acidified with glacial acetic acid (5%, v/v) and desalted using

cation exchange resin packed in a C18 ZipTip °°.
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Released glycans were resuspended in water and analysed by liquid chromatograph-electrospray
ionization tandem mass spectrometry (LC-ESI/MS). The oligosaccharides were separated on a
column (10 cm x 250 um) packed in-house with 5 um porous graphite particles (Hypercarb, Thermo-
Hypersil). The oligosaccharides were injected on to the column and eluted with an acetonitrile
gradient (Buffer A, 10 mM ammonium bicarbonate; Buffer B, 10 mM ammonium bicarbonate in 80%
acetonitrile). The gradient (0-45% Buffer B) was eluted for 46 min, followed by a wash step with
100% Buffer B, and equilibrated with Buffer A in next 24 min. A 40 cm x 50 um i.d. fused silica

capillary was used as transfer line to the ion source.

The samples were analysed in negative ion mode on a LTQ linear ion trap mass spectrometer
(Thermo Electron), with an lonMax standard ESI source equipped with a stainless-steel needle kept
at —3.5 kV. Compressed air was used as nebulizer gas. The heated capillary was kept at 270 °C, and
the capillary voltage was —50 kV. Full scan (m/z 380-2000, two microscan, maximum 100 ms, target
value of 30,000) was performed, followed by data dependent MS? scans (two microscans, maximum
100 ms, target value of 10,000) with normalized collision energy of 35%, isolation window of 2.5
units, activation g=0.25 and activation time 30 ms. The threshold for MS? was set to 300 counts.
Data acquisition and processing were conducted with Xcalibur software (Version 2.0.7). The LC-

MS/MS data was processed using Progenesis QI (Nonlinear Dynamics, Waters).

The glycomic MS raw files have been deposited in the GlycoPOST database under the ID of XXXX
(https://glycopost.glycosmos.org/preview/174480073162c4138e3c5e5, (code: 8410)).

Gas analysis

The microcalorimeter ampoule headspace gas composition was analysed with a gas chromatograph
(Agilent 490 Micro GC Biogas Analyzer, Agilent Technologies Ltd.) using CP-Molsieve 5A and CP-
PoraPLOT U columns and a thermal conductivity detector. Soluble gas concentration (c) was
calculated using Henry law: ¢ = H®"*p, where p is the partial pressure of given gas in the gas phase

and H®" (M/atm) the effective Henry constant of the given gas dependent on pH .

Analysis of organic acids, free amino acids and amines

The supernatant samples were filtered using centrifugal devices with a 3 kDa cut-off filter (Amicon®

Ultra-0.5, Merck). The concentrations of organic acids were measured with high-performance liquid
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chromatography (HPLC) system (Alliance 2795 system; Waters) equipped with BioRad HPX 87H
column (Hercules) with isocratic elution of 0.005 M H,SO,, flow rate 0.5 ml/min, 35 °C. Rl (model
2414; Waters) and UV (210 nm; model 2487; Waters) detectors were used for quantification with

external standards. The data were processed with Empower software (Waters).

The concentrations of free amino acids and amines were determined by the UPLC-UV methodology
(Acquity; AccQ:Tag™ Ultra Derivatization Kit; Waters) developed by Waters with modifications. The
standards and samples were derivatised with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate
and then loaded on an AccQ-Tag Ultra RP column (130 A, 1.7 um, 2.1x100 mm; Waters). Amino acids
and amines were separated using a gradient of eluent A (AccQ-Tag Ultra eluent A) and eluent B (1%
formic acid in acetonitrile) as follows: 0-0.54 min 99.9% A and 0.1% B. A flow rate of 0.7 ml/min, an
autosampler temperature of 8 °C, a column temperature of 55 °C and injection volume of 1 pl were
used. Amino acids and amines were detected with a photodiode array detector (260 nm), and data
were processed with Empower 2 software (Waters). The detection limit was 0.001 mM. All standard

substrates were of analytical grade.

Spheroid culture

Spheroid cultures were generated from distal colon crypts isolated from transgenic mice carrying
mCherry-tagged human MUC2 (RedMUC2°%T¢) 8, The cultures were maintained as spheroids in
Matrigel® Basement Membrane Matrix (Corning), using 50% conditioned medium (CM)
supplemented with 10 uM ROCK-inhibitor (Y-27632 dihydrochloride, Tocris) and 10 uM transforming
growth factor-B (TGF-B) type | receptor inhibitor (SB 431542, Tocris) as described by Miyoshi and
Stappenbeck 7°. Spheroids were incubated at 37 °C, 5% CO, and used at passage numbers 11-16 for
all assays. A wild-type (C57BL/6N; Taconic) mouse distal colon spheroid line was maintained

simultaneously and used at passage number 15-20 as a negative control in all assays.

All animal work was approved by the Swedish Laboratory Animal Ethic Committee in Gothenburg,
Sweden (ethical permits 2285-19, 3006-20) and conducted following the guidelines of Swedish
animal welfare legislation which meets the European Convention for the Protection of Vertebrate
Animals used for Experimental and other Scientific Purposes (Council of Europe No. 123, Strasbourg
1985) and the European Union Directive 2010/63/EU on the protection of animals used for scientific

purposes.

Flow cytometry
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The effects of microbial metabolites on MUC2 in spheroids were studied using flow cytometry (FC).
Trypsinised cells were seeded on 24-well plates (Sarstedt) and maintained in 50% CM with 10 pM Y-
27632 dihydrochloride and 10 uM SB 431542. The RedMUC2% e cells were seeded in density ca
14,000 cells/well and the wild-type cells in density ca 3000 cells/well. To study the effect of bacterial
metabolites on the early growth of intestinal cells, 10% dilutions of bacterial culture supernatants
were prepared in 50% CM and added. After 24 hours, medium was replaced by 5% CM (1 volume of
50% CM in 9 volumes of primary culture medium: advanced DMEM/F12 (Invitrogen, 12634-010),
20% vol/vol FCS, 100 U/ml penicillin, 100 pg/ml streptomycin, 2 mM Glutamax™) with 10 uM Y-
27632 and fresh 10% dilutions of bacterial culture supernatants. Cells in plain 5% CM and 50% CM
were seeded simultaneously with the test samples and used as growth medium controls. Cells
treated with DAPT and trypsin were used as positive controls. Wild-type mouse spheroids were used

as negative control.

After 24 hours cells were harvested for FC. Spheroids were trypsinised for 3 min at 37 °C to obtain
single cell suspensions and washed in 1xPBS by centrifugation. Samples were incubated on ice for 10
min in YOYO™-1 nucleic acid stain (1:10,000; Thermo Fisher Scientific), washed by centrifugation at
200 g and 4 °C for 5 min and resuspended in cold FC buffer (2% w/v BSA in 1xPBS). Samples were
analysed using CytoFLEX flow cytometer (Beckman Coulter Life Sciences). The data were analysed
with CytExpert software (version 2.4, Beckman Coulter Life Sciences). An example of the applied
gating rules is in supplementary data (Fig S8). Gating strategies and thresholds were kept the same

for all samples to obtain comparable results.

Construction of metabolic networks

The 100 most abundant taxa from cultivations were grouped into 8 metabolic groups based on
information acquired from phylogenetic data in NCBI database and genome annotation. Combined
metabolic networks for each group were built using information from public databases MetaCyc *
and KEGG 72 (reactions in pathways and their reversibility). The following networks were

constructed:

1. Butyric group — butyrate producers with 1,2-propanediol production capacity, combines 12
different species, 570 reactions, 429 metabolites
2. Akkermansia group — derived from the main mucin degrader A. muciniphila that has a

unique metabolism, 1 species, 544 reactions, 424 metabolites
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3. Bifidobacteria group — lactate and acetate producers, combines 5 different species, 453
reactions, 355 metabolites

4. Bacteroides group — propionate/succinate and acetate producers, combines 8 different
species, 609 reactions, 466 metabolites

5. Enterobacteria group — lactate, succinate and acetate producers, combines 3 different
species, 607 reactions, 465 metabolites

6. Lachnoclostridia group — mucin degrading and formate or 1,2-propanediol consumers,
combines 6 different species, 511 reactions, 395 metabolites

7. Asaccharolytic group — lactate and amino acid degraders, combines 4 different species, 430
reactions, 335 metabolites

8. Succinivorans group — succinate consumers (named after Negativicoccus succinivorans),

combines 2 different species, 394 reactions, 309 metabolites

Individual metabolic networks representing respective metabolic groups (Supplementary Table S6)
were combined to a Consortia type metabolic network by assigning common metabolite pool
outside of intracellular space and removing duplicate exchange fluxes. The relative amounts of
different species in consortia manifest through modified stoichiometric coefficients of transport
reactions of respective bacteria that exchange matter between intracellular space and common
metabolite pool. The final metabolic network of bacterial consortia consisted of 2774 metabolites

and 3752 reactions.

Biomass

Biomass synthesis in model was described with separate consumption fluxes (sinks) for major
biomass monomers and included 20 proteogenic amino acids, 8 (deoxy-)ribonucleotides, cell
membrane lipids and peptidoglycan. The potential existence of glycogen, lipo- and

exopolysaccharides in biomass was ignored as a simplification.

Biomass protein and RNA content were set to 50% and 12%, respectively and were assumed to be
uniform in all species 7. DNA content was determined assuming 1 chromosome per cell. The AA
distribution in biomass was calculated from measured metaproteome data and was also assumed to
be uniform in all species as simplification. Acquired values were inserted into model inputs
(Supplementary Table 7). The cell mass was set to 1072 g and the shape was set to cylindrical with
spherical caps with a height to radius ratio of 2 for all Gr+ groups (butyric, bifido, lachnoclostridium,

asaccharolytic and succinivorans) as well as Gr- groups (akkermansia, bacteroides and
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enterobacteria). The amount of lipids and peptidoglycan needed per gram biomass was calculated

from size and geometry of cells (Supplementary Table S8).

Flux Balance Analysis

The flux balance analysis 7 model was generated in Wolfram Mathematica format using in-house
software built in MatLab. Calculations were performed using Wolfram Mathematica 8.01 on a laptop

computer with six-core Intel i7-8750H processor and 24GB RAM.

FBA input data (exchange fluxes, biomass sinks, Supplementary Table S7) were inserted into the
model and calculations were performed with an increasing automatic error step of £1% to input
fluxes until a feasible solution was found. Carbon mass balance analysis was performed to assess the
physiological relevance of measured metabolome in respect of metabolic background of given

organisms.

Sequence-based metabolism mapping from metaproteomics

The metabolism of faecal cultures was mapped using an in-house database of bacterial metabolism.
The DNA sequences for enzymes for key metabolic reactions were selected from the database and
BLASTed using a local NCBI blastx function. The resulting amino acid sequences were then mapped
to the peptides from the metaproteomic analysis. The sum of matching peptides per taxon was
considered as protein copy number. The taxa were then divided into similar metabolic groups as in
the Flux Balance Analysis (see “Construction of metabolic networks” under Materials and Methods).
In total, 31 enzymes of central metabolism, 47 enzymes of glycan degradation and 26 enzymes of

secondary metabolites synthesis were searched from 41 more abundant taxa.

Statistics

Statistical analysis for fibre vs fibre+PCM comparisons was done with two-tailed paired t-test and
corrected with Benjamini-Hochenberg method. Multiple comparisons for all conditions were done
with Dunn’s Kruskal-Wallis multiple comparisons and Benjamini-Hochenberg correction. The
statistical details of the experiments can be found in the figure legends, including the specific
statistical tests used and the exact number of n. Differences were considered significant when p <

0.05.
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Statistics were calculated with R version R-3-6-1.
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FIGURE LEGENDS

Figure 1 Fermentation of 14 dietary fibres and oligosaccharides by faecal microbiota using
isothermal microcalorimetry. a, Heat evolution of substrate fermentation. Solid line represents
average microbial growth curve on the selected poly- or oligosaccharide + 95% Cl, dotted line
represents average microbial growth curve on the selected poly- or oligosaccharide + mucin + 95%
Cl. n=2-7. b, Community composition on the selected substrates based on 16S rRNA sequencing.
Average relative abundances of the top 17 genera. n=2-7. ¢, The number of different glycans
identified from porcine gastric mucin (PGM) and porcine colonic mucin (PCM). d, Ordination plot of
Bray-Curtis distances between microbial communities from cultivations on the selected substrates.
Colours indicate the choice of dietary fibre, empty round dots represent samples from cultivation of
fibre, filled round dots represent samples from cultivation of fibre+PCM or sole PCM. e, Boxplots
showing changes in microbial numbers (mg/l) grown on the selected substrates. Colours indicate the
choice of substrate, empty boxes represent samples from cultivation of fibre, filled boxes represent
samples from cultivation of fibre+PCM or sole PCM. All replicates shown (two-tailed paired t-test, *p
< 0.05). GOS - galactooligosaccharides, Fur — furcellaran, InuHP — high-performance inulin, B-gluc —
B-glucan, PecA —apple pectin, Xyl —xylan, PGM — porcine gastric mucin, PCM — porcine colonic
mucin, Med — growth medium control.

Figure 2 The CAZymes detected after community growth on selected substrates. Enzymes grouped
by CAZyme families are shown as intensity of the protein level. For each protein the respective
bacterial genus is displayed colour coded on the left side. Three independent replicates are shown.
For accession numbers and full data see Supplementary Table S2. PCM — porcine colonic mucin, B-
gluc — B-glucan, PecA — apple pectin, Xyl —xylan.

Figure 3 Metabolites profile of fermentation of selected substrates. a, Boxplots representing the
concentrations of measured metabolites (mmol/gDW) and pH. Colours indicate the choice of
substrate, empty boxes represent samples from cultivation of fibre, filled boxes represent samples
from cultivation of fibre+PCM or sole PCM. All replicates shown (two-tailed paired t-test, *p < 0.05).
b, Average (+SEM) enzyme counts for reactions related to specific metabolite synthesis. n=3. ¢, The
effect of microbial metabolites on murine colonic spheroids and mCherry-tagged MUC2 production.
Counts and signal intensity of mCherry-positive goblet cells as a result of treating the spheroids with
metabolites from fermentation of the selected substrates, measured by flow cytometry and
normalized against medium control. n=3-4. B-gluc — B-glucan, InuHP — high-performance inulin,
PecA — apple pectin, Xyl — xylan, PCM — porcine colonic mucin.

Figure 4 Metabolic pathways of glycan degradation by faecal microbiota. a, The degradation of
glycans from dietary fibres and mucin based on the metaproteomic analysis. The bacteria were
divided into 8 groups based on their similar metabolism (see text). n=3. b, The degradation of
glycans from dietary fibres and mucin and cross-feeding between bacterial groups based on Flux
Balance Analysis. The bacteria were divided into 8 groups based on their similar metabolism (see
text). n=3. PecA — apple pectin, Xyl — xylan, PCM — porcine colonic mucin.
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Supplementary Figure 1 Heat evolution of substrate fermentation. Solid line represents average
microbial growth curve on the selected poly- or oligosaccharide £ 95% Cl, dotted line represents
average microbial growth curve on the selected poly- or oligosaccharide + mucin + 95% CI. n=2-7. AP
—amylopectin, InuHSI — high-soluble inulin, XOS — xylooligosaccharides, Car — k-carrageenan, InuD —
dahlia inulin, AG — arabinogalactan, PecC — citrus pectin, Psy — psyllium, PGM — porcine gastric
mucin, PCM — porcine colonic mucin, Med — growth medium control.

Supplementary Figure 2 Consortia composition assessed by 16S rRNA sequencing. a, Simpson alpha
diversity indices for the panel of tested substrates. All replicates shown. b, The microbial
composition of the inoculum. Pooled faecal samples from seven healthy donors. Average relative
abundances of the top 21 genera. n=2 (separate aliquots of the pooled inoculum). ¢, Community
composition on the selected substrates. Average relative abundances of the top 17 genera. n=2-7.
Med — growth medium control, Inoc — inoculum control, AP —amylopectin, GOS —
galactooligosaccharides, InuHSI — high-soluble inulin, XOS - xylooligosaccharides, Car — k-
carrageenan, Fur — furcellaran, InuD — dahlia inulin, InuHP — high-performance inulin, AG —
arabinogalactan, B-gluc — B-glucan, PecA — apple pectin, PecC — citrus pectin, Psy — psyllium, Xyl —
xylan, PGM — porcine gastric mucin, PCM — porcine colonic mucin.

Supplementary Figure 3 Schematic representation of the polysaccharides and different putative
CAZyme families targeting the respective linkages for a, B-glucan. b, inulin. c, pectin. d, xylan. e,
mucin O- and N-glycans. Monosaccharide symbols are shown according to the Symbol Nomenclature

for Glycan system 75, GH — glycoside hydrolase, PL — polysaccharide lyase, CE — carbohydrate
esterase.

Supplementary Figure 4 Analysis of porcine gastric mucin (PGM) and colonic mucin (PCM)
composition. a, Gel-forming mucins detected in different mucin samples by mass-spectrometry.
Most abundant uncharacterised proteins in each sample were annotated with BLAST as: MUC2 —
UniProt AOA4X1UH57; MUC5AC — UniProt AOA4X1UGK3; MUC6 — UniProt AOA4X1VZCO. b, Different
glycan modifications detected in PGM and PCM. ¢, Mucin samples separated on a composite gel.
MUC2 — Mucin-2, MUC5AC — Mucin-5AC, MUC6 — Mucin-6, PCM — porcine colonic mucin, PGM —
porcine gastric mucin.

Supplementary Figure 5 Boxplots showing changes in microbial numbers (mg/l) grown on the
selected substrates. Colours indicate the choice of substrate, empty boxes represent samples from
cultivation of fibre, filled boxes represent samples from cultivation of fibre+PCM or sole PCM. All
replicates shown (two-tailed paired t-test, *p < 0.05). a, Taxa affected by mucin addition. b, The
most abundant taxa growing on InuHP. ¢, The most abundant taxa growing on B-gluc. B-gluc — 3-
glucan, InuHP — high-performance inulin, PecA — apple pectin, Xyl —xylan, PCM — porcine colonic
mucin.

Supplementary Figure 6 Quantification of the MUC2 in the samples after fermentation of the chosen
substrates. a, Intensity of porcine MUC2 measured by mass-spectrometry. b, Coverage of porcine
MUC2 domains. Numbers indicate the end of a tryptic peptide in the porcine MUC2 amino acid
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sequence. Simplified MUC2 domain scheme has been adapted from UniProt database (protein
sequence AOA5G2QSD1).

Supplementary Figure 7 Metabolites profile of fermentation of selected substrates. a, Boxplots
representing the concentrations of measured metabolites (mmol/gDW). Colours indicate the choice
of substrate, empty boxes represent samples from cultivation of fibre, filled boxes represent
samples from cultivation of fibre+PCM or sole PCM. All replicates shown. b, Boxplots representing
Glu consumption (Ammol/gDW). Colours indicate the choice of substrate, empty boxes represent
samples from cultivation of fibre, filled boxes represent samples from cultivation of fibre+PCM or
sole PCM. All replicates shown. ¢, Average (:tSEM) enzyme counts for reactions related to specific
metabolite synthesis. Colours indicate the choice of substrate, empty bars represent samples from
cultivation of fibre, filled bars represent samples from cultivation of fibre+PCM or sole PCM. n=3. d,
Average (+SEM) protein counts for two pyruvate synthesis enzymes on sole PCM fermentation by
the 8 bacterial groups. B-gluc — B-glucan, InuHP — high-performance inulin, PecA — apple pectin, Xyl —
xylan, PCM — porcine colonic mucin, Glu — glutamate, Bu — butyric group, A — akkermansia group, Bi —
bifidoabcteria group, Ba — bacteroides group, E — enterobacteria group, L — lachnoclostridia group,
As — asaccharolytic group, S — succinivorans group.

Supplementary Figure 8 The effect of microbial metabolites on murine colonic spheroids and
mCherry-tagged MUC2 production. a, Average counts and intensity (+SEM) of mCherry-positive
goblet cells as a result of treating the spheroids with metabolites from fermentation of the selected
substrates, measured by flow cytometry and normalized against medium control. n=3-4. b, Example
of the gating strategy used in flow cytometry experiments. B-gluc — B-glucan, InuHP — high-
performance inulin, PecA —apple pectin, Xyl — xylan, PCM — porcine colonic mucin.
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